WO2024104090A1 - 一种构造楼宇专网的方法和楼宇专网 - Google Patents
一种构造楼宇专网的方法和楼宇专网 Download PDFInfo
- Publication number
- WO2024104090A1 WO2024104090A1 PCT/CN2023/127282 CN2023127282W WO2024104090A1 WO 2024104090 A1 WO2024104090 A1 WO 2024104090A1 CN 2023127282 W CN2023127282 W CN 2023127282W WO 2024104090 A1 WO2024104090 A1 WO 2024104090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- virtual
- port
- virtual network
- management agent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 105
- 239000003795 chemical substances by application Substances 0.000 claims description 104
- 238000000060 site-specific infrared dichroism spectroscopy Methods 0.000 claims description 55
- 230000005540 biological transmission Effects 0.000 claims description 50
- 230000002776 aggregation Effects 0.000 claims description 31
- 238000004220 aggregation Methods 0.000 claims description 31
- 238000004891 communication Methods 0.000 claims description 15
- 239000013307 optical fiber Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 5
- 238000012423 maintenance Methods 0.000 abstract description 5
- 238000007726 management method Methods 0.000 description 132
- 230000006870 function Effects 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 9
- 238000004134 energy conservation Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- the present invention relates to the technical field of smart buildings, and in particular to a method for constructing a building private network and a building private network.
- Smart Building also known as intelligent building or smart building, is a new type of modern building that integrates advanced technologies in construction, communication, computer and control into an optimized whole to meet the development needs of the information society.
- Smart buildings mainly meet the needs of three levels of customers in the building: owners, tenants, and individuals. Owners need to transform building infrastructure through digital technology to achieve smarter automatic control, security monitoring, energy conservation and emission reduction, personnel management, etc., to reduce costs and increase efficiency. Tenants hope that the building can provide more digital services, obtain communication and information technology more conveniently and at a lower cost, and quickly build the capabilities required for digital transformation. Individuals in the building need to be able to solve mobile network coverage and communicate at high speed anytime and anywhere.
- the communication network is built and operated by telecom operators, including 4G/5G in-building coverage and fiber-to-the-building/to-the-home, providing basic communication and broadband access services for customers in the building.
- the automatic control network is commissioned by the building owner to build and operate, realizing the automatic control function of key infrastructure such as waterways, circuits, air conditioners, elevators, security, parking lots, and properties in the building, and ensuring public services in the building.
- the enterprise information network is built and maintained by the tenants of commercial enterprises in the building to realize the office informatization and management digitization needs of the commercial enterprises themselves.
- the three networks in the building are independent physical networks, which are built by different entities and work independently.
- the three networks cannot form a synergistic effect.
- the business needs of the automatic control network and the enterprise information network cannot be used to know the dynamic adjustment and optimization of the basic communication network, which reduces the efficiency of the three networks.
- Some facilities of the three networks are duplicated, and to a large extent, The three networks need to deploy computing resources, or use physical servers, which makes operation and maintenance very complicated; or rent public cloud hosts, which requires public network access and requires high costs to meet performance and security requirements.
- the three networks in buildings are not conducive to energy conservation and environmental protection.
- the technical problem to be solved by the present invention is to provide a method for constructing a building private network and a building private network that realizes the integration of three networks in order to solve the above-mentioned deficiencies in the prior art, which can realize the integrated development of three networks, is conducive to reducing construction costs, and brings great convenience to customers.
- a method for constructing a building private network comprising:
- a first network management agent is deployed in the gateway virtual computing unit of the virtual network, and a second network management agent is deployed in the gateway virtual computing unit of the network management network; and/or a first computing resource management agent is deployed in the gateway virtual computing unit of the virtual network, and a second computing resource management agent is deployed in the gateway virtual computing unit of the network management network to realize virtual network management.
- an account may be allocated to the administrator of the virtual network in the network management software, and an account may be allocated to the administrator of the virtual network in the cloud computing management software.
- the number of the virtual computing units required by the virtual network and the configuration parameters of each of the virtual computing units can be determined according to the needs of the virtual network, and a number of the virtual computing units can be allocated to the virtual network in the edge computing node according to the number and the configuration parameters;
- the in-building network equipment that the virtual network traffic needs to pass through if the virtual computing unit is allocated, determine the edge computer room network equipment that the virtual network traffic needs to pass through according to the allocated virtual computing unit, and configure the virtual network identifier to the in-building network equipment and the edge computer room network equipment.
- the in-building network equipment may include an in-building network switch port and an in-building aggregation device port
- the edge computer room network equipment may include a network switch port, a physical server, a computer room network switch port, and a computer room interface device port.
- the virtual network identifier may include a VLAN ID and/or a VxLAN ID.
- the configuration parameters of the virtual computing unit may include processing power, storage capacity, and network bandwidth.
- the method may further comprise:
- the SSID is created on the Wi-Fi AP and Wi-Fi AC using the parameters of the SSID, and the virtual network identifier is bound to the SSID, so that the data message generated by the SSID carries the virtual network identifier when being sent to the network switch, and when the data message carrying the virtual network identifier is received from the network switch, it is forwarded to the SSID.
- the parameters of the SSID may include the name, frequency band, and authentication method of the SSID.
- the method may further comprise:
- the virtual network identifier is configured to the interface device port, each network switch port, and the broadband access device port on the transmission path;
- a virtual egress gateway is created for the virtual network, and the virtual egress gateway is responsible for forwarding traffic that needs to go to the public network to the public network.
- the virtual network may be a 5G indoor bearer network
- the 5G indoor bearer network includes one or more micro base stations, each micro base station includes a BBU and several pRRUs; the BBU communicates with the pRRUs via an eCPRI protocol, and a virtual network is created for each micro base station, or a virtual network is created for several micro base stations.
- the method may further comprise:
- a network switch near the pRRU is found, and an idle port is allocated on the network switch for connecting the pRRU.
- the second network interface being capable of connecting to a mobile core network
- the pRRU may be an independent physical device.
- the pRRU can be integrated with the Wi-Fi AP in the same physical device.
- the virtual network may be a building infrastructure management and control network
- the building infrastructure management and control network includes two types of subnets, namely, an automatic control network and a centralized management network
- the step of creating the automatic control network may include:
- Wi-Fi For each terminal/controller in the self-controlled network accessed via Wi-Fi, determine the Wi-Fi AP that can cover the terminal/controller, create the SSID on the Wi-Fi AP and the Wi-Fi AC using the SSID parameters of the self-controlled network, and configure the virtual network identifier to the Wi-Fi AP and the port of the network switch to which the Wi-Fi AP is connected;
- the network switch connected to the Wi-Fi AP and the network switch connected to the terminal/controller determine the transmission path required to achieve their full interconnection, and configure the virtual network identifier to each port of the network switch on the transmission path.
- the transmission path required for full interconnection can be determined according to a spanning tree algorithm.
- the step of creating the centrally managed network may include:
- a network switch is selected as an egress switch, a port in the network switch is selected as an egress port, the virtual network identifier of the self-controlled network is configured to the egress port, and a virtual egress port is created on the egress port.
- An egress gateway, or a router device is connected as the egress gateway;
- Centralized management software for building infrastructure is deployed in the virtual computing unit.
- the virtual network may be an enterprise information network
- the step of creating the enterprise information network may include:
- the network switch to which the Wi-Fi AP is connected and the network switch that allocates ports to the enterprise determine the transmission path to the aggregation device and configure the virtual network identifier to each port of the network switch and the port of the aggregation device on the transmission path.
- the enterprise information network may not pass through the aggregation device in the building, but the network switch in the enterprise information network may be directly connected to the interface device in the edge computer room using a direct optical fiber.
- the method may further comprise:
- Constructing a virtual network as a collaboration network the steps of constructing the collaboration network may include:
- Each of the virtual networks provides a service API in the collaborative network through the gateway virtual computing unit.
- the method may further comprise:
- the terminal in the virtual network sends a network management function access request to the first network management agent
- the first network management agent forwards the access request to the second network management agent through a collaborative network
- the second network management agent adds the account assigned to the virtual network in the access request, and the second network management agent forwards the access request to the network management software;
- the network management software sends a reply message to the second network management agent
- the second network management agent forwards the reply information to the first network management agent.
- the first network management agent forwards the reply information to the terminal that issued the request.
- the method may further comprise:
- the first network management agent of each virtual network is configured as a unified network address, so that each virtual network can access the network management function through the same network address, deploy an independent domain name resolution system for the virtual network, and configure the first network management agent of each virtual network as a unified domain name, so that each virtual network can access the network management function through the same domain name.
- the method may further comprise:
- the terminal in the virtual network sends a computing resource management function access request to the first computing resource management agent
- the first computing resource management agent forwards the access request to the second computing resource management agent through a collaborative network
- the second computing resource management agent adds the account assigned to the virtual network in the access request, and the second computing resource management agent forwards the access request to the cloud computing management software;
- the cloud computing management software sends a reply message to the second computing resource management agent
- the second computing resource management agent forwards the reply information to the first computing resource management agent.
- the first computing resource management agent forwards the reply information to the terminal that issued the request;
- the method may further comprise:
- the first computing resource management agent of each virtual network is configured as a unified network address, so that each virtual network can access the computing resource management function through the same network address, deploy an independent domain name resolution system for the virtual network, and configure the first computing resource management agent of each virtual network as a unified domain name, so that each virtual network can access the computing resource management function through the same domain name.
- the method may further comprise:
- a virtual network integrating the basic communication network, building automatic control network and enterprise information network is constructed on the same physical network.
- the invention also discloses a building-specific network constructed according to the method.
- a physical network with unified technical standards consisting of network switches, Wi-Fi APs and other equipment is built in the building.
- a virtual local area network a basic communication network, a building automatic control network and an enterprise information network are constructed on the same physical network, realizing the integration of three networks, effectively utilizing resources and reducing construction and maintenance costs.
- computing nodes are deployed in the edge computer room, and the building and operator edge computer room networks are connected to form a virtual local area network, and virtual computing units are allocated to the virtual network, thereby concentrating the computing resources needed by the building in the edge computer room, increasing the flexibility of computing resource configuration and convenience of use, reducing procurement and use costs, and also contributing to energy conservation and emission reduction.
- FIG1 shows a building-specific network constructed according to an embodiment of the present invention
- FIG2 shows a 5G indoor bearer network constructed according to an embodiment of the present invention
- FIG3 illustrates a building infrastructure management and control network constructed according to an embodiment of the present invention
- FIG4 shows an enterprise information network constructed according to an embodiment of the present invention
- FIG5 shows a building-specific network constructed according to an embodiment of the present invention
- FIG6 shows a method for constructing a building private network according to an embodiment of the present invention.
- FIG. 7 shows a flow chart of a method for constructing a building-specific network according to an embodiment of the present invention.
- the building-specific network 11 of the present invention is composed of an in-building network 12 and an operator edge computer room network 13 .
- Wi-Fi AP (access point device) 121 is installed in the building to achieve Wi-Fi wireless coverage throughout the building.
- Wi-Fi AP 121 is connected to a network switch (Ethernet switch or Layer 3 switch) 122.
- a network switch Ethernet switch or Layer 3 switch
- the operator's edge computer room network 13 includes an interface device 131, a broadband access device 132, and an edge computing node 133, and the various devices are connected through a network switch 122.
- the interface device 131 is connected to the building network 12 through an optical fiber 124;
- the broadband access device 132 is connected to the public network (public Internet) to provide services for the terminals in the building to access the Internet;
- the edge computing node 133 is composed of a series of servers, with cloud management software installed, and multiple virtual computing units (virtual machines or containers) can be allocated as needed.
- Each virtual computing unit has an independent virtual network interface connected to the edge computer room network 13.
- the traffic from the building is divided according to the routing forwarding rules, with part going to the public network and part going to the edge computing node 133.
- the in-building network 12 and the edge computer room network 13 constitute a complete building physical network.
- Multiple virtual networks 14 can be divided on this physical network, and each virtual network is isolated from each other.
- the virtual computing unit of the network management network is used for network management, and the following software is installed in it: cloud computing management software to manage the virtual computing unit; Wi-Fi AC software to manage the Wi-Fi wireless network in a unified manner, including SSID management, cross-AP switching management, etc.; network management software to manage all network devices in a unified manner, including configuring virtual networks; and authentication server software to provide unified authentication services for terminal access.
- each virtual network 14 the communication traffic from the in-building network 12, after passing through the computer room interface device 131, is divided according to the IP routing forwarding rules. One part enters the public network through the broadband access device 132, and the other part enters the virtual computing unit of the edge computing node 133. Yuan.
- the terminals in the building access the virtual network 14 by connecting to the Wi-Fi AP 121, or by connecting to the network switch port.
- the same Wi-Fi AP 121 can be allocated to a virtual network 14 exclusively, or can be shared by multiple virtual networks.
- the method for constructing a building private network includes creating virtual networks such as a 5G indoor bearer network, a building infrastructure management and control network, and an enterprise information network.
- the method comprises the following steps:
- the number of virtual computing units required by the virtual network 14 and the configuration parameters such as the processing power, storage capacity, and network bandwidth of each virtual computing unit are determined. According to the number and configuration, a number of virtual computing units are allocated to the virtual network 14 in the edge computing node 133.
- a virtual network can use one or more virtual network technologies.
- the virtual network identifier i.e., virtual network ID
- the in-building network switch port and the in-building aggregation device port through which the virtual network traffic needs to pass determine the physical server, computer room network switch port, and computer room interface device port through which the virtual network traffic needs to pass according to the allocated virtual computing unit.
- One device can be configured with one or more virtual network identifiers.
- the method for constructing a building private network may further include the following steps:
- Wi-Fi SSIDs required by virtual network 14, as well as parameters such as the name, frequency band, and authentication method of each SSID.
- Bind the virtual network identifier to the SSID that is, the data packets generated by the SSID are sent to the network switch.
- 122 carries the above virtual network identifier; when receiving a data message carrying the above virtual network identifier from the network switch 122, forwards it to the SSID.
- the method for constructing a building private network may further include the following steps:
- a transmission path is found from interface device 131 to broadband access device 132, and the identifier of virtual network 14 is configured to the interface device port, each network switch port, and broadband access device port on the transmission path.
- the egress gateway is responsible for forwarding traffic that needs to go to the public network to the public network.
- the 5G indoor bearer network 14A includes one or more micro base stations, each of which includes a BBU 134 and several pRRUs 126; the BBU 134 and the pRRU 126 communicate via the eCPRI protocol.
- the pRRU 126 can be an independent physical device or integrated with the Wi-Fi AP 121 in the same physical device. It is necessary to create a virtual network for each micro base station, or to create a virtual network for several micro base stations.
- the method for constructing a building private network includes the following steps:
- a network switch 122 near the pRRU 126 is found according to its installation location, and a free port is allocated on the network switch 122 for connecting the pRRU 126.
- a virtual network ID is configured to the network switch port.
- a second network interface is created for the virtual computing unit, and the second network interface can be connected to the mobile core network 15 .
- the building infrastructure management and control network includes two types of subnets, namely, the self-control network 14C and 14D and the centralized management network 14B. Each subnet is also assigned a separate virtual network identifier.
- the self-control networks 14C and 14D need to be assigned Wi-Fi SSID parameters.
- the building infrastructure includes waterways, circuits, air conditioners, elevators, parking lots, security, property, etc.
- the building infrastructure is organized according to the principle of centralized management and decentralized control. Generally, the infrastructure is divided into multiple control areas, each of which includes a number of terminals, Controller.
- the method of creating the self-control networks 14C and 14D includes:
- each terminal 125/controller 127 in the self-controlled networks 14C and 14D that accesses through Wi-Fi determine the Wi-Fi AP 121 that can cover the terminal 125/controller 127, and create an SSID on the Wi-Fi AP 121 and the Wi-Fi AC using the SSID parameters of the self-controlled networks 14C and 14D. Configure the virtual network ID to the Wi-Fi AP 121 and the network switch port to which the Wi-Fi AP 121 is connected.
- a network switch 122 nearby is found, and an idle port is allocated on the network switch 122 for connecting the terminal 125/controller 127.
- a virtual network ID is configured to the network switch port.
- the transmission path required to achieve full interconnection For the network switch 122 connected to the Wi-Fi AP 121 and the network switch 122 connected to the terminal 125/controller 127, determine the transmission path required to achieve full interconnection. For example, the path required for interconnection can be determined based on a spanning tree algorithm. Configure the virtual network ID to each network switch port on the transmission path.
- the method of creating a centralized management network 14B includes:
- a network switch 122 is selected as an egress switch, and a port in the network switch 122 is selected as an egress port.
- the virtual network ID of the autonomous networks 14C and 14D is configured to the egress port, and a virtual egress gateway 128 is created on the egress port, or a router device is connected as the egress gateway 128.
- Centralized management software for the building infrastructure is deployed in the virtual computing unit 134.
- a method for creating an enterprise information network 14E includes:
- Wi-Fi AP 121 that covers the enterprise based on the floor and room where the enterprise is located. Create SSIDs on these Wi-Fi APs 121 and Wi-Fi AC using the SSID parameters of the enterprise information network 14E. Configure virtual network IDs to these Wi-Fi APs 121 and the network switch ports to which these Wi-Fi APs 121 are connected. Bind the virtual network ID to the SSID.
- a network switch 122 near the enterprise is found, and ports of the network switch 122 are allocated to the enterprise. Virtual network IDs are configured to these network switch ports.
- the network switch 122 For the network switch 122 connected to the above-mentioned Wi-Fi AP 121 and the network switch 122 that allocates ports to the enterprise, determine its transmission path to the aggregation device 123, and configure the virtual network ID to each network switch port and aggregation device port on the path.
- the enterprise information network 14E may also not pass through the in-building aggregation device 123, and the network switch 122 in the enterprise information network 14E may be directly connected to the interface device 131 of the edge computer room 13C using a direct optical fiber 129, thereby providing a stable transmission rate for the enterprise information network 14E.
- a method for constructing a building private network in one embodiment also includes: constructing a virtual network as a collaborative network 14G to interconnect the virtual computing units 135 of each virtual network 14A, 14B, 14E and 14F, thereby realizing data sharing and exchange among the networks.
- the method includes:
- a virtual computing unit is configured for each virtual network 14A, 14B, 14E and 14F as a gateway virtual computing unit 135.
- a gateway refers to a node located at the junction of multiple networks and can connect to multiple networks at the same time.
- the gateway virtual computing unit 135 is a computing unit located at the gateway, configured with multiple network interfaces, and can connect to different virtual networks.
- a third network interface is configured for the gateway virtual computing unit 135 , and the third network interface of each gateway virtual computing unit 135 is connected to the network switch 122 .
- the transmission path required to achieve full interconnection For the network switch 122 connected to the third network interface, determine the transmission path required to achieve full interconnection. For example, the path required for interconnection can be determined based on a spanning tree algorithm. Configure the virtual network ID of the collaborative network to each network switch port on the transmission path.
- Each virtual network 14A, 14B, 14E and 14F provides a service API in the collaborative network 14G through the gateway virtual computing unit 135.
- a service API in the collaborative network 14G through the gateway virtual computing unit 135.
- an API in the form of HTTP Service is provided.
- a method for deploying a network management function for a virtual network includes: allocating an account to an administrator of the virtual network in the network management software 19, through which the administrator can access the network management software 19 and manage and control the virtual network.
- a first network management agent 17 is deployed in a virtual computing unit at a gateway of the virtual network
- a second network management agent 18 is deployed in a virtual computing unit at a gateway of the network management network.
- the access process includes:
- the terminal 16 in the virtual network sends a network management function access request to the first network management agent 17 .
- the first network management agent 17 forwards the access request to the second network management agent 18 through the cooperative network.
- the second network management agent 18 adds the account assigned to the virtual network to the access request.
- the second network management agent 18 forwards the access request to the network management software 19.
- the network management software 19 sends a reply message to the second network management agent 18 .
- the second network management agent 18 forwards the reply information to the first network management agent 17 .
- the first network management agent 17 forwards the reply information to the terminal 16 that issued the request.
- the method for constructing a building private network in one embodiment further includes: configuring the first network management agent 17 of each virtual network as a unified network address, so that each virtual network can access the network management function through the same network address. Deploying an independent domain name resolution system for the virtual network, configuring the first network management agent 17 of each virtual network as a unified domain name, so that each virtual network can access the network management function through the same domain name.
- a method for deploying a computing resource management function for a virtual network includes:
- an account is allocated to the administrator of the virtual network, through which the administrator can access the cloud computing management software and manage and control the virtual computing resources of the virtual network.
- a first computing resource management agent is deployed in the gateway virtual computing unit of the virtual network, and a second computing resource management agent is deployed in the gateway virtual computing unit of the network management network.
- the access process includes the following steps:
- the terminal in the virtual network sends a computing resource management function access request to the first computing resource management agent.
- the first computing resource management agent forwards the access request to the second computing resource management agent through the collaborative network.
- the second computing resource management agent adds the account number allocated for the virtual network to the access request.
- the second computing resource management agent forwards the access request to the cloud computing management software.
- the cloud computing management software sends a reply message to the second computing resource management agent.
- the second computing resource management agent forwards the reply information to the first computing resource management agent.
- the first computing resource management agent forwards the reply information to the terminal that issued the request.
- the method for constructing a building private network in one embodiment further includes: configuring the first computing resource management agent of each virtual network as a unified network address, so that the computing resource management function can be accessed through the same network address within each virtual network. Deploying an independent domain name resolution system for the virtual network, configuring the first computing resource management agent of each virtual network as a unified domain name, so that the computing resource management function can be accessed through the same domain name within each virtual network.
- FIG7 shows a flow chart of a method for constructing a building private network according to an embodiment of the present invention.
- a method for constructing a building private network includes the following steps:
- S1 creating a virtual computing unit for the virtual network and assigning a virtual network identifier, and configuring the virtual network identifier to a network device through which traffic in the virtual network needs to pass;
- S2 deploy a first network management agent in a gateway virtual computing unit of a virtual network, and deploy a second network management agent in a gateway virtual computing unit of a network management network; and/or, deploy a first computing resource management agent in a gateway virtual computing unit of a virtual network, and deploy a second computing resource management agent in a gateway virtual computing unit of a network management network to implement virtual network management.
- the virtual network identifier allocated to the virtual network may be one identifier or a group of identifiers, and the present invention does not limit this.
- the gateway virtual computing unit is connected to the network switch.
- the method may further include:
- a virtual network integrating three networks, including the basic communication network (also known as the 5G indoor bearer network), the building automatic control network (also known as the building infrastructure management and control network), and the enterprise information network, is constructed on the same physical network.
- the basic communication network also known as the 5G indoor bearer network
- the building automatic control network also known as the building infrastructure management and control network
- the enterprise information network is constructed on the same physical network.
- a physical network is built in the building, which includes Wi-Fi APs, network switches, aggregation devices, interface devices, edge computing nodes, broadband access devices, etc.
- Wi-Fi APs Wi-Fi APs
- network switches aggregation devices
- interface devices interface devices
- edge computing nodes edge computing nodes
- broadband access devices etc.
- the method may further include:
- An account is allocated to the administrator of the virtual network in the network management software, and an account is allocated to the administrator of the virtual network in the cloud computing management software.
- the method may further include:
- the in-building network equipment that the virtual network traffic needs to pass through if the virtual computing unit is allocated, determine the edge computer room network equipment that the virtual network traffic needs to pass through according to the allocated virtual computing unit, and configure the virtual network identifier to the in-building network equipment and the edge computer room network equipment.
- the in-building network equipment may include an in-building network switch port and an in-building aggregation device port
- the edge computer room network equipment may include a network switch port, a physical server, a computer room network switch port, and a computer room interface device port.
- the virtual network identifier may include a VLAN ID and/or a VxLAN ID.
- the configuration parameters of the virtual computing unit may include processing capability, storage capacity, and network bandwidth.
- the method may further include:
- the SSID is created on the Wi-Fi AP and Wi-Fi AC using the parameters of the SSID, and the virtual network identifier is bound to the SSID, so that the data message generated by the SSID carries the virtual network identifier when being sent to the network switch, and when the data message carrying the virtual network identifier is received from the network switch, it is forwarded to the SSID.
- the parameters of the SSID may include the name, frequency band, and authentication method of the SSID.
- the method may further include:
- the virtual network identifier is configured to the interface device port, each network switch port, broadband Access device ports;
- a virtual egress gateway is created for the virtual network, and the virtual egress gateway is responsible for forwarding traffic that needs to go to the public network to the public network.
- the virtual network may be a 5G indoor bearer network, the 5G indoor bearer network including one or more micro base stations, each micro base station including a BBU and several pRRUs; the BBU communicates with the pRRUs via an eCPRI protocol, creating a virtual network for each micro base station, or creating a virtual network for several micro base stations.
- the 5G indoor bearer network including one or more micro base stations, each micro base station including a BBU and several pRRUs; the BBU communicates with the pRRUs via an eCPRI protocol, creating a virtual network for each micro base station, or creating a virtual network for several micro base stations.
- the method may further comprise:
- each of the pRRUs For each of the pRRUs, according to its installation location, find a network switch near it, allocate an idle port on the network switch for connecting the pRRU, and configure the virtual network identifier to the port of the network switch;
- the second network interface being capable of connecting to a mobile core network
- the pRRU may be an independent physical device.
- the pRRU can be integrated with the Wi-Fi AP in the same physical device.
- the virtual network may be a building infrastructure management and control network
- the building infrastructure management and control network includes two types of subnets, namely, an autonomous network and a centralized management network
- the step of creating the autonomous network may include:
- Wi-Fi For each terminal/controller in the self-controlled network accessed via Wi-Fi, determine the Wi-Fi AP that can cover the terminal/controller, create the SSID on the Wi-Fi AP and the Wi-Fi AC using the SSID parameters of the self-controlled network, and configure the virtual network identifier to the Wi-Fi AP and the port of the network switch to which the Wi-Fi AP is connected;
- the network switch connected to the Wi-Fi AP and the network switch connected to the terminal/controller determine the transmission path required to achieve their full interconnection, and configure the virtual network identifier to each port of the network switch on the transmission path.
- the transmission path required for full interconnection may be determined according to a spanning tree algorithm.
- the step of creating the centralized management network may include:
- a network switch is selected as an egress switch, a port in the network switch is selected as an egress port, the virtual network identifier of the autonomous network is configured to the egress port, and a virtual egress gateway is created on the egress port, or a router device is connected as the egress gateway;
- Centralized management software for building infrastructure is deployed in the virtual computing unit.
- the virtual network may be an enterprise information network
- the step of creating the enterprise information network may include:
- the network switch to which the Wi-Fi AP is connected and the network switch that allocates ports to the enterprise determine the transmission path to the aggregation device and configure the virtual network identifier to each port of the network switch and the port of the aggregation device on the transmission path.
- the enterprise information network may not pass through the aggregation device in the building, but the network switch in the enterprise information network may be directly connected to the interface of the edge computer room using a direct optical fiber. equipment.
- the method may further include:
- Constructing a virtual network as a collaboration network the steps of constructing the collaboration network may include:
- Each of the virtual networks provides a service API in the collaborative network through the gateway virtual computing unit.
- the method may further include:
- the terminal in the virtual network sends a network management function access request to the first network management agent
- the first network management agent forwards the access request to the second network management agent through a collaborative network
- the second network management agent adds the account assigned to the virtual network in the access request, and the second network management agent forwards the access request to the network management software;
- the network management software sends a reply message to the second network management agent
- the second network management agent forwards the reply information to the first network management agent.
- the first network management agent forwards the reply information to the terminal that issued the request.
- the method may further include:
- the first network management agent of each virtual network is configured as a unified network address, so that each virtual network can access the network management function through the same network address, deploy an independent domain name resolution system for the virtual network, and configure the first network management agent of each virtual network as a unified domain name, so that each virtual network can access the network management function through the same domain name.
- the method may further include:
- the terminal in the virtual network sends a computing resource management function to the first computing resource management agent.
- the first computing resource management agent forwards the access request to the second computing resource management agent through a collaborative network
- the second computing resource management agent adds the account assigned to the virtual network in the access request, and the second computing resource management agent forwards the access request to the cloud computing management software;
- the cloud computing management software sends a reply message to the second computing resource management agent
- the second computing resource management agent forwards the reply information to the first computing resource management agent.
- the first computing resource management agent forwards the reply information to the terminal that issued the request;
- the method may further include:
- the first computing resource management agent of each virtual network is configured as a unified network address, so that each virtual network can access the computing resource management function through the same network address, deploy an independent domain name resolution system for the virtual network, and configure the first computing resource management agent of each virtual network as a unified domain name, so that each virtual network can access the computing resource management function through the same domain name.
- a physical network with unified technical standards consisting of network switches, Wi-Fi APs and other equipment is built in the building.
- a basic communication network i.e., 5G indoor bearer network
- a building automatic control network i.e., building infrastructure management and control network
- an enterprise information network is constructed on the same physical network to achieve the integration of three networks, effectively utilize resources, and reduce construction and maintenance costs.
- computing nodes are deployed in the edge computer room, and the building and operator edge computer room networks are connected to form a virtual local area network, and virtual computing units are allocated to the virtual network, thereby concentrating the computing resources needed by the building in the edge computer room, increasing the flexibility of computing resource configuration and ease of use, reducing procurement and use costs, and also contributing to energy conservation and emission reduction.
- Such software can be distributed on a computer-readable medium
- the computer-readable medium may include a computer storage medium (or a non-temporary medium) and a communication medium (or a temporary medium).
- the term computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules or other data).
- Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, disk storage or other magnetic storage devices, or any other medium that can be used to store desired information and can be accessed by a computer.
- communication media generally contain computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开一种构造楼宇专网的方法以及楼宇专网,涉及智慧楼宇技术领域,该方法包括:为虚拟网络创建虚拟计算单元及分配虚拟网络标识,并将虚拟网络标识配置到虚拟网络内流量需要经过的网络设备;以及在虚拟网络的关口虚拟计算单元中部署第一网管代理,在网管网络的关口虚拟计算单元中部署第二网管代理;和/或,在虚拟网络的关口虚拟计算单元中部署第一计算资源管理代理,在网管网络的关口虚拟计算单元中部署第二计算资源管理代理,以实现虚拟网络管理。利用本发明的方法,实现三网合一,有效利用资源,降低建设和维护成本。
Description
本发明要求申请日为2022年11月17日、申请号为CN202211460294.7、名称为“一种构造楼宇专网的方法以及楼宇专网”的中国专利申请的优先权。
本发明涉及智慧楼宇技术领域,尤其涉及一种构造楼宇专网的方法和楼宇专网。
智慧楼宇(Intelligent Building)也称智能建筑、智能楼宇,是将建筑、通信、计算机和控制等各方面的先进科技相互融合,合理集成为最优化的整体,形成能够适应信息化社会发展需求的现代化新型建筑。
智慧楼宇主要满足楼内三个层次客户的需求:业主、楼内租户、楼内个人。业主的需要通过数字化技术改造楼宇基础设施,实现更智能的自动控制、安全监控、节能减排、人员管理等,降本增效。楼内租户希望楼宇能提供更多数字化服务,更便捷、更低成本地获得通信和信息技术,快速构建数字化转型所需要的能力。楼内个人需要能解决移动网络覆盖,通信随时随地高速畅通。
在目前的楼宇智能化建设实践中,形成了三张网,即基础通信网、自动控制网和企业信息网。通信网由电信运营商建设和运营,包括4G/5G的楼内覆盖、光纤到楼/到户,为楼内客户提供基础通信、宽带接入服务。自控网由楼宇业主委托建设和运营,实现对楼内水路、电路、空调、电梯、安防、停车场、物业等关键基础设施的自控控制功能,保障楼宇公共服务。企业信息网由楼内商企租户建设和维护,实现商企自身需要的办公信息化、管理数字化等需求。
目前楼宇中的三张网是相互独立的物理网络,由不同的主体负责建设,各自为战,存在下列缺点:三张网之间无法形成协同效应,例如,自动控制网和企业信息网的业务需求,不能用于知道基础通信网动态调整优化,降低了三张网的效能。三张网有部分设施重复建设,很大程度
上增加了企业成本负担。三张网内需要部署计算资源,或者使用物理服务器,这样运行维护复杂度会很高;或者租用公有云主机,这样会需要公网访问,要满足性能和安全性的要求需要较高成本。此外,目前楼宇中的三张网不利于节能环保。
发明内容
本发明所要解决的技术问题是针对现有技术的上述不足,提供一种实现三网合一的构造楼宇专网的方法和楼宇专网,能够实现三网融合化发展,有利于降低建设成本,并为客户带来极大便利性。
一种构造楼宇专网的方法,所述方法包括:
为虚拟网络创建虚拟计算单元及分配虚拟网络标识,并将所述虚拟网络标识配置到所述虚拟网络内流量需要经过的网络设备;以及
在所述虚拟网络的关口虚拟计算单元中部署第一网管代理,在网管网络的关口虚拟计算单元中部署第二网管代理;和/或,在所述虚拟网络的所述关口虚拟计算单元中部署第一计算资源管理代理,在所述网管网络的所述关口虚拟计算单元中部署第二计算资源管理代理,以实现虚拟网络管理。
在所述方法中,可以在网管软件中为所述虚拟网络的管理员分配账号,在云计算管理软件中为所述虚拟网络的管理员分配账号。
在所述方法中,可以根据所述虚拟网络的需求,确定所述虚拟网络需要的所述虚拟计算单元的数量以及每一个所述虚拟计算单元的配置参数,根据所述数量和所述配置参数,在边缘计算节点中为所述虚拟网络分配若干个所述虚拟计算单元;以及
根据所述虚拟网络的网络服务需求,确定所述虚拟网络流量需要经过的楼内网络设备;如果分配了所述虚拟计算单元,则根据所分配的所述虚拟计算单元,确定所述虚拟网络流量需要经过的边缘机房网络设备,将所述虚拟网络标识配置到所述楼内网络设备和所述边缘机房网络设备。
在所述方法中,所述楼内网络设备可以包括楼内网络交换机端口、楼内汇聚设备端口,所述边缘机房网络设备可以包括网络交换机端口、物理服务器、机房网络交换机端口、机房接口设备端口。
在所述方法中,所述虚拟网络标识可以包括VLAN ID和/或VxLAN ID。
在所述方法中,所述虚拟计算单元的配置参数可以包括处理能力、存储容量、网络带宽。
所述方法还可以包括:
根据所述虚拟网络的服务需求确定所述虚拟网络需要的一个或多个Wi-Fi SSID以及每一个所述SSID的参数;
确定所述虚拟网络流量需要经过的若干个Wi-Fi AP,将所述虚拟网络标识配置到所述Wi-Fi AP;以及
使用所述SSID的参数在所述Wi-Fi AP、Wi-Fi AC上创建所述SSID,将所述虚拟网络标识与所述SSID绑定,使得所述SSID产生的数据报文在发往网络交换机时,携带所述虚拟网络标识,当收到来自所述网络交换机的携带有所述虚拟网络标识的数据报文时,转发给所述SSID。
在所述方法中,所述SSID的参数可以包括所述SSID的名称、频段、认证方法。
所述方法还可以包括:
根据所述虚拟网络的网络服务需求,如果需要连接到公共网络的,则寻找一条从接口设备到宽带接入设备的传输路径,将所述虚拟网络标识配置到所述传输路径上的接口设备端口、每个网络交换机端口、宽带接入设备端口;以及
在所述宽带接入设备端口上,为所述虚拟网络创建虚拟出口网关,所述虚拟出口网关负责将需要去往所述公共网络的流量转发到所述公共网络。
在所述方法中,所述虚拟网络可以是5G室内承载网,所述5G室内承载网包括一个或多个微基站,每个微基站包括一个BBU和若干个pRRU;所述BBU与所述pRRU之间通过eCPRI协议通信,为每个微基站创建一个虚拟网络,或者为几个微基站创建一个虚拟网络,
所述方法还可以包括:
对每一个所述pRRU,根据其安装位置,找到其附近的一台网络交换机,在所述网络交换机上分配一个空闲端口,用于连接所述pRRU,
将所述虚拟网络标识配置到所述网络交换机的端口;
寻找从每一个所述网络交换机到楼内汇聚设备的传输路径,将所述虚拟网络标识配置到所述传输路径上每一个所述网络交换机的端口、所述楼内汇聚设备的端口;
为所述虚拟计算单元创建第二网络接口,所述第二网络接口能够连接到移动核心网;以及
在所述虚拟计算单元中安装BBU软件。
在所述方法中,所述pRRU可以是独立的物理设备。
在所述方法中,所述pRRU可以与Wi-Fi AP融合在同一个物理设备中。
在所述方法中,所述虚拟网络可以是楼宇基础设施管理与控制网,所述楼宇基础设施管理与控制网包括自控网络和集中管理网络两类子网,创建所述自控网络的步骤可以包括:
对所述自控网络中的每一个通过Wi-Fi接入的终端/控制器,确定能够覆盖所述终端/控制器的所述Wi-Fi AP,使用所述自控网络的SSID参数在所述Wi-Fi AP以及所述Wi-Fi AC上创建所述SSID,将所述虚拟网络标识配置到所述Wi-Fi AP和所述Wi-Fi AP所连接的所述网络交换机的端口;
对所述自控网络中的每一个通过有线接入的终端/控制器,寻找其附近的一台网络交换机,在所述网络交换机上分配一个空闲端口,用于连接所述终端/控制器,将所述虚拟网络标识配置到所述网络交换机的端口;以及
对于所述Wi-Fi AP所连接的所述网络交换机、终端/控制器所连接的所述网络交换机,确定实现其全互联需要的传输路径,将所述虚拟网络标识配置到所述传输路径上每一个所述网络交换机的端口。
在所述方法中,可以根据生成树算法确定全互联需要的传输路径。
在所述方法中,创建所述集中管理网络的步骤可以包括:
对每一个所述自控网络,选定一台网络交换机作为出口交换机,选定所述网络交换机中的一个端口作为出口端口,将所述自控网络的所述虚拟网络标识配置到所述出口端口,同时在所述出口端口上创建虚拟出
口网关,或者连接一个路由器设备作为所述出口网关;
寻找从每一个所述出口网关到汇聚设备的传输路径,将所述集中管理网络的所述虚拟网络标识配置到所述传输路径上的每一个所述网络交换机的端口;以及
在所述虚拟计算单元中部署楼宇基础设施的集中管理软件。
在所述方法中,所述虚拟网络可以是企业信息网,创建所述企业信息网的步骤可以包括:
根据企业所在的楼层、房间,确定覆盖所述企业的Wi-Fi AP,使用所述企业信息网的SSID参数在所述Wi-Fi AP以及Wi-Fi AC上创建SSID,将所述虚拟网络标识配置到所述Wi-Fi AP和所述Wi-Fi AP所连接的所述网络交换机的端口,将所述虚拟网络标识与所述SSID绑定;
根据所述企业申请的有线端口数量,寻找所述企业附近的网络交换机,为所述企业分配所述网络交换机的端口,将所述虚拟网络标识配置到所述网络交换机的端口;
对于所述Wi-Fi AP所连接的所述网络交换机、为所述企业分配端口的所述网络交换机,确定其到汇聚设备的传输路径,将所述虚拟网络标识配置到所述传输路径上的每一个所述网络交换机的端口、所述汇聚设备的端口。
在所述方法中,所述企业信息网可以不经过楼内汇聚设备,而是由所述企业信息网内的所述网络交换机使用直连光纤直接连接到边缘机房的接口设备。
所述方法还可以包括:
构造一个虚拟网络作为协作网,构造所述协作网的步骤可以包括:
为每个所述虚拟网络配置一个所述虚拟计算单元作为所述关口虚拟计算单元;
为所述关口虚拟计算单元配置第三网络接口,各个所述关口虚拟计算单元的所述第三网络接口连接到网络交换机;
对于所述第三网络接口连接的所述网络交换机,确定实现其全互联需要的传输路径,将协作网的虚拟网络标识配置到传输路径上的每一个网络交换机端口;以及
各个所述虚拟网络通过所述关口虚拟计算单元在所述协作网内提供服务API。
所述方法还可以包括:
虚拟网络内终端向所述第一网管代理发送网管功能访问请求;
所述第一网管代理通过协作网络将所述访问请求转发到所述第二网管代理;
如果访问请求中没有携带账号,所述第二网管代理在所述访问请求中添加为所述虚拟网络分配的账号,所述第二网管代理将所述访问请求转发到所述网管软件;
所述网管软件向所述第二网管代理发送回复信息;
所述第二网管代理将所述回复信息转发到所述第一网管代理;以及
所述第一网管代理将所述回复信息转发到发出请求的终端。
所述方法还可以包括:
各个所述虚拟网络的所述第一网管代理配置为统一网络地址,使每个所述虚拟网络内部能够通过同样的网络地址访问网络管理功能,为所述虚拟网络部署独立的域名解析系统,将各个所述虚拟网络的所述第一网管代理配置为统一域名,使每个所述虚拟网络内部能够通过同样的域名访问网络管理功能。
所述方法还可以包括:
虚拟网络内终端向所述第一计算资源管理代理发送计算资源管理功能访问请求;
所述第一计算资源管理代理通过协作网络将所述访问请求转发到所述第二计算资源管理代理;
如果所述访问请求中没有携带账号,所述第二计算资源管理代理在所述访问请求中添加为所述虚拟网络分配的账号,所述第二计算资源管理代理将所述访问请求转发到所述云计算管理软件;
所述云计算管理软件向所述第二计算资源管理代理发送回复信息;
所述第二计算资源管理代理将所述回复信息转发到所述第一计算资源管理代理;以及
所述第一计算资源管理代理将所述回复信息转发到发出请求的终端;
所述方法还可以包括:
将各个所述虚拟网络的所述第一计算资源管理代理配置为统一网络地址,使每个所述虚拟网络内部能够通过同样的网络地址访问计算资源管理功能,为所述虚拟网络部署独立的域名解析系统,将各个所述虚拟网络的所述第一计算资源管理代理配置为统一域名,使每个所述虚拟网络内部能够通过同样的域名访问计算资源管理功能。
所述方法还可以包括:
在楼宇搭建的物理网络中,通过创建虚拟局域网的方式,在同一个物理网络上构造包括基础通信网、楼宇自动控制网、企业信息网三网融合的虚拟网络。
本发明还公开一种根据上述方法构造的楼宇专网。
利用本发明的方法,在楼宇搭建由网络交换机、Wi-Fi AP等设备构成的技术标准统一的物理网络,通过创建虚拟局域网的方式,在同一个物理网络上构造基础通信网、楼宇自动控制网、企业信息网,实现三网合一,有效利用资源,降低建设和维护成本。此外,在边缘机房部署计算节点,同时将楼宇和运营商边缘机房网络打通,组建成虚拟局域网,为虚拟网络分配虚拟计算单元,从而将楼宇需要的计算资源集中到边缘机房,增加了计算资源配置的灵活性、使用便利性,降低采购和使用成本,同时也有利于节能减排。
下面将参考附图描述本发明的具体实施方式,这些实施方式是示例性的,而非限制性的。
图1示出根据本发明实施例构造的楼宇专网;
图2示出根据本发明实施例构造的5G室内承载网;
图3示出根据本发明实施例构造的楼宇基础设施管理与控制网;
图4示出根据本发明实施例构造的企业信息网;
图5示出根据本发明实施例构造的楼宇专网;
图6示出根据本发明实施例的构造楼宇专网的方法;以及
图7示出根据本发明实施例的构造楼宇专网的方法的流程图。
如图1所示,本发明的楼宇专网11由楼内网络12、运营商边缘机房网络13构成。
在楼内安装Wi-Fi AP(接入点设备)121,实现全楼的Wi-Fi无线覆盖。Wi-Fi AP 121连接到网络交换机(以太网交换机或三层交换机)122,通过在楼内部署多级级联的交换机或者POL全光网络,实现楼内全互联,并将需要与外部交换的流量汇聚到楼内汇聚设备123。汇聚设备123一端连接楼内网络12,一端通过光纤124连接运营商边缘机房13的接口设备131。
运营商边缘机房网络13中包括接口设备131、宽带接入设备132和边缘计算节点133,各类设备之间通过网络交换机122连接。接口设备131通过光纤124与楼内网络12连接;宽带接入设备132连接公网(公众互联网),为楼内终端接入互联网提供服务;边缘计算节点133由一系列服务器构成,安装有云管软件,可以根据需要分配多个虚拟计算单元(虚拟机或容器),每一个虚拟计算单元都有独立的虚拟网络接口连接到边缘机房网络13。来自楼内的流量按路由转发规则分流,一部分去往公网,一部分去往边缘计算节点133。
楼内网络12和边缘机房网络13构成完整的楼宇物理网络。在这个物理网络上可以划分多个虚拟网络14,各个虚拟网络是互相隔离的。划分虚拟网络的技术可以有多种,例如VLAN技术、VxLAN技术等。
有一个虚拟网络14为网管网络。网管网络的虚拟计算单元用于网络管理,其中安装有如下软件:云计算管理软件,实现对虚拟计算单元的管理;Wi-Fi AC软件,对Wi-Fi无线网络进行统一管理,包括SSID管理、跨AP的切换管理等;网管软件,对所有网络设备进行统一管理,包括配置虚拟网络;以及认证服务器软件,为终端接入提供统一认证服务。
在每一个虚拟网络14中,来自楼内网络12的通信流量,在经过机房接口设备131之后,根据IP路由转发规则分流,一部分通过宽带接入设备132进入公共网络;另一部分进入边缘计算节点133的虚拟计算单
元。
楼内终端通过连接Wi-Fi AP 121接入虚拟网络14,或者通过连接网络交换机端口接入虚拟网络14。同一个Wi-Fi AP 121可以分配给一个虚拟网络14独占,也可以由多个虚拟网共享。
根据本发明的构造楼宇专网的方法包括创建5G室内承载网、楼宇基础设施管理与控制网、企业信息网等虚拟网络。
具体地说,在一个实施例中,该方法包括如下步骤:
根据虚拟网络14的计算能力需求,确定虚拟网络14需要的虚拟计算单元的数量,以及每一个虚拟计算单元的处理能力、存储容量、网络带宽等配置参数。根据数量和配置,在边缘计算节点133中为虚拟网络14分配若干个虚拟计算单元。
为虚拟网络14分配标识,一个虚拟网络可以使用一种或多种虚拟网络技术,虚拟网络标识(即虚拟网络ID)可以为一个或多个,虚拟网络标识如VLAN ID、VxLAN ID等。
根据虚拟网络14的网络服务需求,确定虚拟网络流量需要经过的楼内网络交换机端口、楼内汇聚设备端口;如果分配了虚拟计算单元,则根据所分配的虚拟计算单元,确定虚拟网络流量需要经过的物理服务器、机房网络交换机端口、机房接口设备端口。将虚拟网络标识配置到上述楼内网络交换机端口、物理服务器、机房网络交换机端口、机房接口设备端口,一个设备可以配置一个或多个虚拟网络标识。
为虚拟网络14部署网管功能,使虚拟网络的管理员可以对网络中的终端接入网络的许可进行管理和控制;为虚拟网络14部署计算资源管理功能,使虚拟网络的管理员可以在虚拟计算单元中部署应用软件。
在一个实施例中,构造楼宇专网的方法还可以包括如下步骤:
根据虚拟网络14的服务需求确定虚拟网络14需要的一个或多个Wi-Fi SSID,以及每一个SSID的名称、频段、认证方法等参数。
确定虚拟网络流量需要经过的若干个Wi-Fi AP,将虚拟网络标识配置到上述Wi-Fi AP。
使用上述参数在上述Wi-Fi AP、Wi-Fi AC上创建SSID。将虚拟网络标识与SSID绑定,即,该SSID产生的数据报文在发往网络交换机
122时,携带上述虚拟网络标识;收到来自网络交换机122的携带有上述虚拟网络标识的数据报文时,转发给该SSID。
在一个实施例中,构造楼宇专网的方法还可以包括如下步骤:
根据虚拟网络14的网络服务需求,如果需要连接到公共网络的,则寻找一条从接口设备131到宽带接入设备132的传输路径,将虚拟网络14的标识配置到该传输路径上的接口设备端口、每个网络交换机端口、宽带接入设备端口。
在宽带接入设备端口上,为虚拟网络14创建虚拟出口网关。出口网关负责将需要去往公共网络的流量转发到公共网络。
如图2所示,在一个实施例的楼宇专网中,5G室内承载网14A包括一个或多个微基站,每个微基站包括一个BBU 134和若干个pRRU 126;BBU 134与pRRU 126之间通过eCPRI协议通信。pRRU 126既可以是独立的物理设备,也可以与Wi-Fi AP 121融合在同一个物理设备中。需要为每个微基站创建一个虚拟网络,或者为几个微基站创建一个虚拟网络。
具体地说,在一个实施例中,构造楼宇专网的方法包括如下步骤:
对每一个pRRU 126,根据其安装位置,找到其附近的一台网络交换机122,在该网络交换机122上分配一个空闲端口,用于连接pRRU 126。将虚拟网络ID配置到该网络交换机端口。
寻找从上述每一个网络交换机122到楼内汇聚设备123的传输路径,将虚拟网络ID配置到传输路径上每一个网络交换机端口、汇聚设备123的端口。
为虚拟计算单元创建第二网络接口,第二网络接口可以连接到移动核心网15。
在虚拟计算单元中安装BBU软件。
如图3所示,在一个实施例的构造楼宇专网的方法中,楼宇基础设施管理与控制网包括自控网络14C和14D、集中管理网络14B两类子网,每个子网也分配单独的虚拟网络标识。自控网络14C和14D需要分配Wi-Fi SSID参数。楼宇基础设施包括水路、电路、空调、电梯、停车场、安防、物业,等等。楼宇基础设施按集中管理、分散控制的原则进行组织。一般会将基础设施分为多个控制区域,每个控制区域包括若干终端、
控制器。
具体地说,在一个实施例中,创建自控网络14C和14D的方法包括:
对自控网络14C和14D中的每一个通过Wi-Fi接入的终端125/控制器127,确定可以覆盖该终端125/控制器127的Wi-Fi AP 121,使用自控网络14C和14D的SSID参数在该Wi-Fi AP 121以及Wi-Fi AC上创建SSID。将虚拟网络ID配置到该Wi-Fi AP 121和该Wi-Fi AP 121所连接的网络交换机端口。
对自控网络14C和14D中的每一个通过有线接入的终端125/控制器127,寻找其附近的一台网络交换机122,在该网络交换机122上分配一个空闲端口,用于连接该终端125/控制器127。将虚拟网络ID配置到该网络交换机端口。
对于上述Wi-Fi AP 121连接的网络交换机122、终端125/控制器127所连接的网络交换机122,确定实现其全互联需要的传输路径。例如,可以根据生成树算法确定互联需要的路径。将虚拟网络ID配置到传输路径上的每一个网络交换机端口。
在一个实施例的构造楼宇基础设施管理与控制网的方法中,具体地说,创建集中管理网络14B的方法包括:
对每一个自控网络14C和14D,选定一台网络交换机122作为出口交换机,选定该网络交换机122中的一个端口作为出口端口。将自控网络14C和14D的虚拟网络ID配置到该出口端口,同时在出口端口上创建虚拟出口网关128,或者连接一个路由器设备作为出口网关128。
寻找从每一个出口网关到汇聚设备123的传输路径,将集中管理网络的虚拟网络标识配置到路径上的每一个网络交换机端口。
在虚拟计算单元134中部署楼宇基础设施的集中管理软件。
如图4所示,在一个实施例的构造楼宇专网的方法中,创建企业信息网14E的方法包括:
根据企业所在的楼层、房间,确定覆盖该企业的Wi-Fi AP 121。使用企业信息网14E的SSID参数在这些Wi-Fi AP 121以及Wi-Fi AC上创建SSID。将虚拟网络ID配置到这些Wi-Fi AP 121和这些Wi-Fi AP 121所连接的网络交换机端口。将虚拟网络ID与SSID绑定。
根据企业申请的有线端口数量,寻找该企业附近的网络交换机122,为该企业分配网络交换机122的端口。将虚拟网络ID配置到这些网络交换机端口。
对于上述Wi-Fi AP 121所连接的网络交换机122、为企业分配端口的网络交换机122,确定其到汇聚设备123的传输路径,将虚拟网络ID配置到路径上的每一个网络交换机端口、汇聚设备端口。
如图4所示,在一个实施例的构造企业信息网方法中,企业信息网14E也可以不经过楼内汇聚设备123,由企业信息网14E内的网络交换机122使用直连光纤129直接连接到边缘机房13C的接口设备131,从而为企业信息网14E提供稳定的传输速率。
如图5所示,一个实施例的构造楼宇专网的方法还包括:构造一个虚拟网络作为协作网14G,实现各个虚拟网络14A、14B、14E和14F的虚拟计算单元135的互联,从而实现各个网络的数据共享和交换。
具体地说,在一个实施例中,该方法包括:
为每个虚拟网络14A、14B、14E和14F配置一个虚拟计算单元作为关口虚拟计算单元135。需要说明的是,关口是指位于多个网络交界处、可以同时连接多个网络的节点。关口虚拟计算单元135是位于关口的计算单元,配置有多个网络接口,可以连接不同的虚拟网络。
为关口虚拟计算单元135配置第三网络接口,各个关口虚拟计算单元135的第三网络接口连接到网络交换机122。
对于上述第三网络接口连接的网络交换机122,确定实现其全互联需要的传输路径。例如,可以根据生成树算法确定互联需要的路径。将协作网的虚拟网络ID配置到传输路径上每一个网络交换机端口。
各个虚拟网络14A、14B、14E和14F通过关口虚拟计算单元135在协作网14G内提供服务API。例如,提供HTTP Service形式的API。
如图6所示,在一个实施例的构造楼宇专网的方法中,为虚拟网络部署网管功能的方法包括:在网管软件19中为虚拟网络的管理员分配账号,通过该账号可以访问网管软件19并对虚拟网络进行管理和控制。在虚拟网络的关口虚拟计算单元中部署第一网管代理17,在网管网络的关口虚拟计算单元中部署第二网管代理18。
具体地说,在一个实施例中,访问过程包括:
虚拟网络内终端16向第一网管代理17发送网管功能访问请求。
第一网管代理17通过协作网络将访问请求转发到第二网管代理18。
如果访问请求中没有携带账号,第二网管代理18在访问请求中添加为上述虚拟网络分配的账号。第二网管代理18将访问请求转发到网管软件19。
网管软件19向第二网管代理18发送回复信息。
第二网管代理18将回复信息转发到第一网管代理17。
第一网管代理17将回复信息转发到发出请求的终端16。
一个实施例的构造楼宇专网的方法还包括:将各个虚拟网络的第一网管代理17配置为统一网络地址,使每个虚拟网络内部可以通过同样的网络地址访问网络管理功能。为虚拟网络部署独立的域名解析系统,将各个虚拟网络的第一网管代理17配置为统一域名,使每个虚拟网络内部可以通过同样的域名访问网络管理功能。
在一个实施例的构造楼宇专网的方法中,为虚拟网络部署计算资源管理功能的方法包括:
在云计算管理软件中为虚拟网络的管理员分配账号,通过该账号可以访问云计算管理软件并对虚拟网络的虚拟计算资源进行管理和控制。在虚拟网络的关口虚拟计算单元中部署第一计算资源管理代理,在网管网络的关口虚拟计算单元中部署第二计算资源管理代理。
具体地说,在一个实施例中,访问过程包括如下步骤:
虚拟网络内终端向第一计算资源管理代理发送计算资源管理功能访问请求。
第一计算资源管理代理通过协作网络将访问请求转发到第二计算资源管理代理。
如果访问请求中没有携带账号,第二计算资源管理代理在访问请求中添加为上述虚拟网络分配的账号。第二计算资源管理代理将访问请求转发到云计算管理软件。
云计算管理软件向第二计算资源管理代理发送回复信息。
第二计算资源管理代理将回复信息转发到第一计算资源管理代理。
第一计算资源管理代理将回复信息转发到发出请求的终端。
一个实施例的构造楼宇专网的方法还包括:将各个虚拟网络的第一计算资源管理代理配置为统一网络地址,使每个虚拟网络内部可以通过同样的网络地址访问计算资源管理功能。为虚拟网络部署独立的域名解析系统,将各个虚拟网络的第一计算资源管理代理配置为统一域名,使每个虚拟网络内部可以通过同样的域名访问计算资源管理功能。
图7示出根据本发明实施例的构造楼宇专网的方法的流程图。在本发明的该实施例中,一种构造楼宇专网的方法包括如下步骤:
S1:为虚拟网络创建虚拟计算单元及分配虚拟网络标识,并将虚拟网络标识配置到虚拟网络内流量需要经过的网络设备;以及
S2:在虚拟网络的关口虚拟计算单元中部署第一网管代理,在网管网络的关口虚拟计算单元中部署第二网管代理;和/或,在虚拟网络的关口虚拟计算单元中部署第一计算资源管理代理,在网管网络的关口虚拟计算单元中部署第二计算资源管理代理,以实现虚拟网络管理。
需要说明的是,为虚拟网络分配的虚拟网络标识可以为一个标识或是一组标识,本发明对此不做限制。其中,关口虚拟计算单元与网络交换机连接。
可选地,所述方法还可以包括:
在楼宇搭建的物理网络中,通过创建虚拟局域网的方式,在同一个物理网络上构造包括基础通信网(也即5G室内承载网)、楼宇自动控制网(也即楼宇基础设施管理与控制网)、企业信息网三网融合的虚拟网络。
具体地,在楼宇搭建物理网络,该物理网络包括Wi-Fi AP、网络交换机、汇聚设备、接口设备、边缘计算节点、宽带接入设备等设备。通过创建虚拟局域网的方式,在同一个物理网络上构造基础通信网、楼宇自动控制网、企业信息网,实现三网合一,有效利用资源,降低建设和维护成本。
可选地,所述方法还可以包括:
在网管软件中为所述虚拟网络的管理员分配账号,在云计算管理软件中为所述虚拟网络的管理员分配账号。
可选地,所述方法还可以包括:
根据所述虚拟网络的需求,确定所述虚拟网络需要的所述虚拟计算单元的数量以及每一个所述虚拟计算单元的配置参数,根据所述数量和所述配置参数,在边缘计算节点中为所述虚拟网络分配若干个所述虚拟计算单元;以及
根据所述虚拟网络的网络服务需求,确定所述虚拟网络流量需要经过的楼内网络设备;如果分配了所述虚拟计算单元,则根据所分配的所述虚拟计算单元,确定所述虚拟网络流量需要经过的边缘机房网络设备,将所述虚拟网络标识配置到所述楼内网络设备和所述边缘机房网络设备。
可选地,所述楼内网络设备可以包括楼内网络交换机端口、楼内汇聚设备端口,所述边缘机房网络设备可以包括网络交换机端口、物理服务器、机房网络交换机端口、机房接口设备端口。
可选地,所述虚拟网络标识可以包括VLAN ID和/或VxLAN ID。
可选地,所述虚拟计算单元的配置参数可以包括处理能力、存储容量、网络带宽。
可选地,所述方法还可以包括:
根据所述虚拟网络的服务需求确定所述虚拟网络需要的一个或多个Wi-Fi SSID以及每一个所述SSID的参数;
确定所述虚拟网络流量需要经过的若干个Wi-Fi AP,将所述虚拟网络标识配置到所述Wi-Fi AP;以及
使用所述SSID的参数在所述Wi-Fi AP、Wi-Fi AC上创建所述SSID,将所述虚拟网络标识与所述SSID绑定,使得所述SSID产生的数据报文在发往网络交换机时,携带所述虚拟网络标识,当收到来自所述网络交换机的携带有所述虚拟网络标识的数据报文时,转发给所述SSID。
可选地,所述SSID的参数可以包括所述SSID的名称、频段、认证方法。
可选地,所述方法还可以包括:
根据所述虚拟网络的网络服务需求,如果需要连接到公共网络的,则寻找一条从接口设备到宽带接入设备的传输路径,将所述虚拟网络标识配置到所述传输路径上的接口设备端口、每个网络交换机端口、宽带
接入设备端口;以及
在所述宽带接入设备端口上,为所述虚拟网络创建虚拟出口网关,所述虚拟出口网关负责将需要去往所述公共网络的流量转发到所述公共网络。
可选地,所述虚拟网络可以是5G室内承载网,所述5G室内承载网包括一个或多个微基站,每个微基站包括一个BBU和若干个pRRU;所述BBU与所述pRRU之间通过eCPRI协议通信,为每个微基站创建一个虚拟网络,或者为几个微基站创建一个虚拟网络,
所述方法还可以包括:
对每一个所述pRRU,根据其安装位置,找到其附近的一台网络交换机,在所述网络交换机上分配一个空闲端口,用于连接所述pRRU,将所述虚拟网络标识配置到所述网络交换机的端口;
寻找从每一个所述网络交换机到楼内汇聚设备的传输路径,将所述虚拟网络标识配置到所述传输路径上每一个所述网络交换机的端口、所述楼内汇聚设备的端口;
为所述虚拟计算单元创建第二网络接口,所述第二网络接口能够连接到移动核心网;以及
在所述虚拟计算单元中安装BBU软件。
可选地,所述pRRU可以是独立的物理设备。
可选地,所述pRRU可以与Wi-Fi AP融合在同一个物理设备中。
可选地,所述虚拟网络可以是楼宇基础设施管理与控制网,所述楼宇基础设施管理与控制网包括自控网络和集中管理网络两类子网,创建所述自控网络的步骤可以包括:
对所述自控网络中的每一个通过Wi-Fi接入的终端/控制器,确定能够覆盖所述终端/控制器的所述Wi-Fi AP,使用所述自控网络的SSID参数在所述Wi-Fi AP以及所述Wi-Fi AC上创建所述SSID,将所述虚拟网络标识配置到所述Wi-Fi AP和所述Wi-Fi AP所连接的所述网络交换机的端口;
对所述自控网络中的每一个通过有线接入的终端/控制器,寻找其附近的一台网络交换机,在所述网络交换机上分配一个空闲端口,用于连
接所述终端/控制器,将所述虚拟网络标识配置到所述网络交换机的端口;以及
对于所述Wi-Fi AP所连接的所述网络交换机、终端/控制器所连接的所述网络交换机,确定实现其全互联需要的传输路径,将所述虚拟网络标识配置到所述传输路径上每一个所述网络交换机的端口。
可选地,可以根据生成树算法确定全互联需要的传输路径。
可选地,创建所述集中管理网络的步骤可以包括:
对每一个所述自控网络,选定一台网络交换机作为出口交换机,选定所述网络交换机中的一个端口作为出口端口,将所述自控网络的所述虚拟网络标识配置到所述出口端口,同时在所述出口端口上创建虚拟出口网关,或者连接一个路由器设备作为所述出口网关;
寻找从每一个所述出口网关到汇聚设备的传输路径,将所述集中管理网络的所述虚拟网络标识配置到所述传输路径上的每一个所述网络交换机的端口;以及
在所述虚拟计算单元中部署楼宇基础设施的集中管理软件。
可选地,所述虚拟网络可以是企业信息网,创建所述企业信息网的步骤可以包括:
根据企业所在的楼层、房间,确定覆盖所述企业的Wi-Fi AP,使用所述企业信息网的SSID参数在所述Wi-Fi AP以及Wi-Fi AC上创建SSID,将所述虚拟网络标识配置到所述Wi-Fi AP和所述Wi-Fi AP所连接的所述网络交换机的端口,将所述虚拟网络标识与所述SSID绑定;
根据所述企业申请的有线端口数量,寻找所述企业附近的网络交换机,为所述企业分配所述网络交换机的端口,将所述虚拟网络标识配置到所述网络交换机的端口;
对于所述Wi-Fi AP所连接的所述网络交换机、为所述企业分配端口的所述网络交换机,确定其到汇聚设备的传输路径,将所述虚拟网络标识配置到所述传输路径上的每一个所述网络交换机的端口、所述汇聚设备的端口。
可选地,所述企业信息网可以不经过楼内汇聚设备,而是由所述企业信息网内的所述网络交换机使用直连光纤直接连接到边缘机房的接口
设备。
可选地,所述方法还可以包括:
构造一个虚拟网络作为协作网,构造所述协作网的步骤可以包括:
为每个所述虚拟网络配置一个所述虚拟计算单元作为所述关口虚拟计算单元;
为所述关口虚拟计算单元配置第三网络接口,各个所述关口虚拟计算单元的所述第三网络接口连接到网络交换机;
对于所述第三网络接口连接的所述网络交换机,确定实现其全互联需要的传输路径,将协作网的虚拟网络标识配置到传输路径上的每一个网络交换机端口;以及
各个所述虚拟网络通过所述关口虚拟计算单元在所述协作网内提供服务API。
可选地,所述方法还可以包括:
虚拟网络内终端向所述第一网管代理发送网管功能访问请求;
所述第一网管代理通过协作网络将所述访问请求转发到所述第二网管代理;
如果访问请求中没有携带账号,所述第二网管代理在所述访问请求中添加为所述虚拟网络分配的账号,所述第二网管代理将所述访问请求转发到所述网管软件;
所述网管软件向所述第二网管代理发送回复信息;
所述第二网管代理将所述回复信息转发到所述第一网管代理;以及
所述第一网管代理将所述回复信息转发到发出请求的终端。
可选地,所述方法还可以包括:
各个所述虚拟网络的所述第一网管代理配置为统一网络地址,使每个所述虚拟网络内部能够通过同样的网络地址访问网络管理功能,为所述虚拟网络部署独立的域名解析系统,将各个所述虚拟网络的所述第一网管代理配置为统一域名,使每个所述虚拟网络内部能够通过同样的域名访问网络管理功能。
可选地,所述方法还可以包括:
虚拟网络内终端向所述第一计算资源管理代理发送计算资源管理功
能访问请求;
所述第一计算资源管理代理通过协作网络将所述访问请求转发到所述第二计算资源管理代理;
如果所述访问请求中没有携带账号,所述第二计算资源管理代理在所述访问请求中添加为所述虚拟网络分配的账号,所述第二计算资源管理代理将所述访问请求转发到所述云计算管理软件;
所述云计算管理软件向所述第二计算资源管理代理发送回复信息;
所述第二计算资源管理代理将所述回复信息转发到所述第一计算资源管理代理;以及
所述第一计算资源管理代理将所述回复信息转发到发出请求的终端;
可选地,所述方法还可以包括:
将各个所述虚拟网络的所述第一计算资源管理代理配置为统一网络地址,使每个所述虚拟网络内部能够通过同样的网络地址访问计算资源管理功能,为所述虚拟网络部署独立的域名解析系统,将各个所述虚拟网络的所述第一计算资源管理代理配置为统一域名,使每个所述虚拟网络内部能够通过同样的域名访问计算资源管理功能。
综上所述,利用本发明的方法,在楼宇搭建由网络交换机、Wi-Fi AP等设备构成的技术标准统一的物理网络,通过创建虚拟局域网的方式,在同一个物理网络上构造基础通信网(也即5G室内承载网)、楼宇自动控制网(也即楼宇基础设施管理与控制网)、企业信息网,实现三网合一,有效利用资源,降低建设和维护成本。此外,在边缘机房部署计算节点,同时将楼宇和运营商边缘机房网络打通,组建成虚拟局域网,为虚拟网络分配虚拟计算单元,从而将楼宇需要的计算资源集中到边缘机房,增加了计算资源配置的灵活性、使用便利性,降低采购和使用成本,同时也有利于节能减排。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些
物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (24)
- 一种构造楼宇专网的方法,所述方法包括:为虚拟网络创建虚拟计算单元及分配虚拟网络标识,并将所述虚拟网络标识配置到所述虚拟网络内流量需要经过的网络设备;以及在所述虚拟网络的关口虚拟计算单元中部署第一网管代理,在网管网络的关口虚拟计算单元中部署第二网管代理;和/或,在所述虚拟网络的所述关口虚拟计算单元中部署第一计算资源管理代理,在所述网管网络的所述关口虚拟计算单元中部署第二计算资源管理代理,以实现虚拟网络管理。
- 根据权利要求1所述的方法,其中,在网管软件中为所述虚拟网络的管理员分配账号,在云计算管理软件中为所述虚拟网络的管理员分配账号。
- 根据权利要求1或2所述的方法,其中,根据所述虚拟网络的需求,确定所述虚拟网络需要的所述虚拟计算单元的数量以及每一个所述虚拟计算单元的配置参数,根据所述数量和所述配置参数,在边缘计算节点中为所述虚拟网络分配若干个所述虚拟计算单元;以及根据所述虚拟网络的网络服务需求,确定所述虚拟网络流量需要经过的楼内网络设备;如果分配了所述虚拟计算单元,则根据所分配的所述虚拟计算单元,确定所述虚拟网络流量需要经过的边缘机房网络设备,将所述虚拟网络标识配置到所述楼内网络设备和所述边缘机房网络设备。
- 根据权利要求3所述的方法,其中,所述楼内网络设备包括楼内网络交换机端口、楼内汇聚设备端口,所述边缘机房网络设备包括网络交换机端口、物理服务器、机房网络交换机端口、机房接口设备端口。
- 根据权利要求1或2所述的方法,其中,所述虚拟网络标识包括VLAN ID和/或VxLAN ID。
- 根据权利要求3所述的方法,其中,所述虚拟计算单元的配置参数包括处理能力、存储容量、网络带宽。
- 根据权利要求1或2所述的方法,还包括:根据所述虚拟网络的服务需求确定所述虚拟网络需要的一个或多个Wi-Fi SSID以及每一个所述SSID的参数;确定所述虚拟网络流量需要经过的若干个Wi-Fi AP,将所述虚拟网络标识配置到所述Wi-Fi AP;以及使用所述SSID的参数在所述Wi-Fi AP、Wi-Fi AC上创建所述SSID,将所述虚拟网络标识与所述SSID绑定,使得所述SSID产生的数据报文在发往网络交换机时,携带所述虚拟网络标识,当收到来自所述网络交换机的携带有所述虚拟网络标识的数据报文时,转发给所述SSID。
- 根据权利要求7所述的方法,其中,所述SSID的参数包括所述SSID的名称、频段、认证方法。
- 根据权利要求1或2所述的方法,还包括:根据所述虚拟网络的网络服务需求,如果需要连接到公共网络的,则寻找一条从接口设备到宽带接入设备的传输路径,将所述虚拟网络标识配置到所述传输路径上的接口设备端口、每个网络交换机端口、宽带接入设备端口;以及在所述宽带接入设备端口上,为所述虚拟网络创建虚拟出口网关,所述虚拟出口网关负责将需要去往所述公共网络的流量转发到所述公共网络。
- 根据权利要求1或2所述的方法,其中,所述虚拟网络是5G室内承载网,所述5G室内承载网包括一个或多 个微基站,每个微基站包括一个BBU和若干个pRRU;所述BBU与所述pRRU之间通过eCPRI协议通信,为每个微基站创建一个虚拟网络,或者为几个微基站创建一个虚拟网络,所述方法还包括:对每一个所述pRRU,根据其安装位置,找到其附近的一台网络交换机,在所述网络交换机上分配一个空闲端口,用于连接所述pRRU,将所述虚拟网络标识配置到所述网络交换机的端口;寻找从每一个所述网络交换机到楼内汇聚设备的传输路径,将所述虚拟网络标识配置到所述传输路径上每一个所述网络交换机的端口、所述楼内汇聚设备的端口;为所述虚拟计算单元创建第二网络接口,所述第二网络接口能够连接到移动核心网;以及在所述虚拟计算单元中安装BBU软件。
- 根据权利要求10所述的方法,其中,所述pRRU是独立的物理设备。
- 根据权利要求10所述的方法,其中,所述pRRU与Wi-Fi AP融合在同一个物理设备中。
- 根据权利要求7所述的方法,其中,所述虚拟网络是楼宇基础设施管理与控制网,所述楼宇基础设施管理与控制网包括自控网络和集中管理网络两类子网,创建所述自控网络的步骤包括:对所述自控网络中的每一个通过Wi-Fi接入的终端/控制器,确定能够覆盖所述终端/控制器的所述Wi-Fi AP,使用所述自控网络的SSID参数在所述Wi-Fi AP以及所述Wi-Fi AC上创建所述SSID,将所述虚拟网络标识配置到所述Wi-Fi AP和所述Wi-Fi AP所连接的所述网络交换机的端口;对所述自控网络中的每一个通过有线接入的终端/控制器,寻找其附 近的一台网络交换机,在所述网络交换机上分配一个空闲端口,用于连接所述终端/控制器,将所述虚拟网络标识配置到所述网络交换机的端口;以及对于所述Wi-Fi AP所连接的所述网络交换机、终端/控制器所连接的所述网络交换机,确定实现其全互联需要的传输路径,将所述虚拟网络标识配置到所述传输路径上每一个所述网络交换机的端口。
- 根据权利要求13所述的方法,其中,根据生成树算法确定全互联需要的传输路径。
- 根据权利要求13所述的方法,其中,创建所述集中管理网络的步骤包括:对每一个所述自控网络,选定一台网络交换机作为出口交换机,选定所述网络交换机中的一个端口作为出口端口,将所述自控网络的所述虚拟网络标识配置到所述出口端口,同时在所述出口端口上创建虚拟出口网关,或者连接一个路由器设备作为所述出口网关;寻找从每一个所述出口网关到汇聚设备的传输路径,将所述集中管理网络的所述虚拟网络标识配置到所述传输路径上的每一个所述网络交换机的端口;以及在所述虚拟计算单元中部署楼宇基础设施的集中管理软件。
- 根据权利要求7所述的方法,其中,所述虚拟网络是企业信息网,创建所述企业信息网的步骤包括:根据企业所在的楼层、房间,确定覆盖所述企业的Wi-Fi AP,使用所述企业信息网的SSID参数在所述Wi-Fi AP以及Wi-Fi AC上创建SSID,将所述虚拟网络标识配置到所述Wi-Fi AP和所述Wi-Fi AP所连接的所述网络交换机的端口,将所述虚拟网络标识与所述SSID绑定;根据所述企业申请的有线端口数量,寻找所述企业附近的网络交换机,为所述企业分配所述网络交换机的端口,将所述虚拟网络标识配置到所述网络交换机的端口;对于所述Wi-Fi AP所连接的所述网络交换机、为所述企业分配端口的所述网络交换机,确定其到汇聚设备的传输路径,将所述虚拟网络标识配置到所述传输路径上的每一个所述网络交换机的端口、所述汇聚设备的端口。
- 根据权利要求16所述的方法,其中,所述企业信息网不经过楼内汇聚设备,而是由所述企业信息网内的所述网络交换机使用直连光纤直接连接到边缘机房的接口设备。
- 根据权利要求1或2所述的方法,还包括:构造一个虚拟网络作为协作网,构造所述协作网的步骤包括:为每个所述虚拟网络配置一个所述虚拟计算单元作为所述关口虚拟计算单元;为所述关口虚拟计算单元配置第三网络接口,各个所述关口虚拟计算单元的所述第三网络接口连接到网络交换机;对于所述第三网络接口连接的所述网络交换机,确定实现其全互联需要的传输路径,将协作网的虚拟网络标识配置到传输路径上的每一个网络交换机端口;以及各个所述虚拟网络通过所述关口虚拟计算单元在所述协作网内提供服务API。
- 根据权利要求1或2所述的方法,还包括:虚拟网络内终端向所述第一网管代理发送网管功能访问请求;所述第一网管代理通过协作网络将所述访问请求转发到所述第二网管代理;如果访问请求中没有携带账号,所述第二网管代理在所述访问请求中添加为所述虚拟网络分配的账号,所述第二网管代理将所述访问请求转发到所述网管软件;所述网管软件向所述第二网管代理发送回复信息;所述第二网管代理将所述回复信息转发到所述第一网管代理;以及所述第一网管代理将所述回复信息转发到发出请求的终端。
- 根据权利要求19所述的方法,还包括:各个所述虚拟网络的所述第一网管代理配置为统一网络地址,使每个所述虚拟网络内部能够通过同样的网络地址访问网络管理功能,为所述虚拟网络部署独立的域名解析系统,将各个所述虚拟网络的所述第一网管代理配置为统一域名,使每个所述虚拟网络内部能够通过同样的域名访问网络管理功能。
- 根据权利要求1或2所述的方法,还包括:虚拟网络内终端向所述第一计算资源管理代理发送计算资源管理功能访问请求;所述第一计算资源管理代理通过协作网络将所述访问请求转发到所述第二计算资源管理代理;如果所述访问请求中没有携带账号,所述第二计算资源管理代理在所述访问请求中添加为所述虚拟网络分配的账号,所述第二计算资源管理代理将所述访问请求转发到所述云计算管理软件;所述云计算管理软件向所述第二计算资源管理代理发送回复信息;所述第二计算资源管理代理将所述回复信息转发到所述第一计算资源管理代理;以及所述第一计算资源管理代理将所述回复信息转发到发出请求的终端。
- 根据权利要求21所述的方法,还包括:将各个所述虚拟网络的所述第一计算资源管理代理配置为统一网络地址,使每个所述虚拟网络内部能够通过同样的网络地址访问计算资源管理功能,为所述虚拟网络部署独立的域名解析系统,将各个所述虚拟网络的所述第一计算资源管理代理配置为统一域名,使每个所述虚拟网络内部能够通过同样的域名访问计算资源管理功能。
- 根据权利要求1所述的方法,还包括:在楼宇搭建的物理网络中,通过创建虚拟局域网的方式,在同一个物理网络上构造包括基础通信网、楼宇自动控制网、企业信息网三网融合的虚拟网络。
- 一种根据权利要求1至23中任一项所述的方法构造的楼宇专网。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211460294.7A CN115834293B (zh) | 2022-11-17 | 2022-11-17 | 一种构造楼宇专网的方法和楼宇专网 |
CN202211460294.7 | 2022-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024104090A1 true WO2024104090A1 (zh) | 2024-05-23 |
Family
ID=85529911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/127282 WO2024104090A1 (zh) | 2022-11-17 | 2023-10-27 | 一种构造楼宇专网的方法和楼宇专网 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115834293B (zh) |
WO (1) | WO2024104090A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115834293B (zh) * | 2022-11-17 | 2024-07-19 | 中国联合网络通信集团有限公司 | 一种构造楼宇专网的方法和楼宇专网 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103026660A (zh) * | 2011-08-01 | 2013-04-03 | 华为技术有限公司 | 网络策略配置方法、管理设备以及网络管理中心设备 |
CN105981443A (zh) * | 2013-09-30 | 2016-09-28 | 施耐德电气工业简易股份公司 | 云认证的场所资源管理设备、装置、方法和系统 |
US20160330077A1 (en) * | 2014-01-08 | 2016-11-10 | Interdigital Patent Holding, Inc. | WiFi VIRTUAL NETWORK SOLUTION |
US9571337B1 (en) * | 2010-12-22 | 2017-02-14 | Juniper Networks, Inc. | Deriving control plane connectivity during provisioning of a distributed control plane of a switch |
CN107809378A (zh) * | 2016-09-09 | 2018-03-16 | 江森自控科技公司 | 用于在hvac系统网络之间提供通信的智能网关装置、系统和方法 |
CN110633127A (zh) * | 2018-06-25 | 2019-12-31 | 华为技术有限公司 | 一种数据处理方法及相关设备 |
KR20200091267A (ko) * | 2019-01-22 | 2020-07-30 | 상명대학교산학협력단 | 가상서버를 활용한 빌딩자동화 시스템 |
US20210311718A1 (en) * | 2020-04-06 | 2021-10-07 | Johnson Controls Technology Company | Building system with dynamic configuration of network resources for 5g networks |
CN115834293A (zh) * | 2022-11-17 | 2023-03-21 | 中国联合网络通信集团有限公司 | 一种构造楼宇专网的方法和楼宇专网 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5718198B2 (ja) * | 2011-09-15 | 2015-05-13 | アラクサラネットワークス株式会社 | ネットワーク管理システム、及び装置 |
CN102694732B (zh) * | 2012-05-31 | 2014-11-12 | 中国科学院计算技术研究所 | 一种基于局部虚拟化的虚拟网构建方法和系统 |
US9898317B2 (en) * | 2012-06-06 | 2018-02-20 | Juniper Networks, Inc. | Physical path determination for virtual network packet flows |
US9710762B2 (en) * | 2012-06-06 | 2017-07-18 | Juniper Networks, Inc. | Dynamic logging |
US9525564B2 (en) * | 2013-02-26 | 2016-12-20 | Zentera Systems, Inc. | Secure virtual network platform for enterprise hybrid cloud computing environments |
JP5974943B2 (ja) * | 2013-03-18 | 2016-08-23 | 富士通株式会社 | 仮想マシン管理装置、方法、およびプログラム |
CN104104534A (zh) * | 2013-04-12 | 2014-10-15 | 中兴通讯股份有限公司 | 一种虚拟网络管理的实现方法和系统 |
US9300580B2 (en) * | 2013-12-19 | 2016-03-29 | International Business Machines Corporation | Virtual machine network controller |
CN107222353B (zh) * | 2017-07-11 | 2019-11-22 | 中国科学技术大学 | 支持协议无关的软件定义网络虚拟化管理平台 |
CN108494894A (zh) * | 2018-03-27 | 2018-09-04 | 快云信息科技有限公司 | 一种私有云集群接入系统和接入方法 |
US10728145B2 (en) * | 2018-08-30 | 2020-07-28 | Juniper Networks, Inc. | Multiple virtual network interface support for virtual execution elements |
US10841226B2 (en) * | 2019-03-29 | 2020-11-17 | Juniper Networks, Inc. | Configuring service load balancers with specified backend virtual networks |
US11991077B2 (en) * | 2021-03-01 | 2024-05-21 | Juniper Networks, Inc. | Data interfaces with isolation for containers deployed to compute nodes |
CN115277701A (zh) * | 2022-07-25 | 2022-11-01 | 明阳产业技术研究院(沈阳)有限公司 | 一种集群系统的网络管理方法、装置、介质、电子设备 |
-
2022
- 2022-11-17 CN CN202211460294.7A patent/CN115834293B/zh active Active
-
2023
- 2023-10-27 WO PCT/CN2023/127282 patent/WO2024104090A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9571337B1 (en) * | 2010-12-22 | 2017-02-14 | Juniper Networks, Inc. | Deriving control plane connectivity during provisioning of a distributed control plane of a switch |
CN103026660A (zh) * | 2011-08-01 | 2013-04-03 | 华为技术有限公司 | 网络策略配置方法、管理设备以及网络管理中心设备 |
CN105981443A (zh) * | 2013-09-30 | 2016-09-28 | 施耐德电气工业简易股份公司 | 云认证的场所资源管理设备、装置、方法和系统 |
US20160330077A1 (en) * | 2014-01-08 | 2016-11-10 | Interdigital Patent Holding, Inc. | WiFi VIRTUAL NETWORK SOLUTION |
CN107809378A (zh) * | 2016-09-09 | 2018-03-16 | 江森自控科技公司 | 用于在hvac系统网络之间提供通信的智能网关装置、系统和方法 |
CN110633127A (zh) * | 2018-06-25 | 2019-12-31 | 华为技术有限公司 | 一种数据处理方法及相关设备 |
KR20200091267A (ko) * | 2019-01-22 | 2020-07-30 | 상명대학교산학협력단 | 가상서버를 활용한 빌딩자동화 시스템 |
US20210311718A1 (en) * | 2020-04-06 | 2021-10-07 | Johnson Controls Technology Company | Building system with dynamic configuration of network resources for 5g networks |
CN115834293A (zh) * | 2022-11-17 | 2023-03-21 | 中国联合网络通信集团有限公司 | 一种构造楼宇专网的方法和楼宇专网 |
Also Published As
Publication number | Publication date |
---|---|
CN115834293A (zh) | 2023-03-21 |
CN115834293B (zh) | 2024-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106487695B (zh) | 一种数据传输方法、虚拟网络管理装置及数据传输系统 | |
US8428036B2 (en) | System and method for providing wireless local area networks as a service | |
US8467355B2 (en) | System and method for providing wireless local area networks as a service | |
WO2024104090A1 (zh) | 一种构造楼宇专网的方法和楼宇专网 | |
US8611358B2 (en) | Mobile network traffic management | |
CN100369434C (zh) | 无线局域网中实现基于wapi体制的虚拟局域网的方法 | |
WO2018019299A1 (zh) | 一种虚拟宽带接入方法、控制器和系统 | |
Alimi et al. | Enhancement of network performance of an enterprises network with VLAN | |
CN103607432A (zh) | 一种网络创建的方法和系统及网络控制中心 | |
CN102656932B (zh) | 在包括多个设备且连接至互联网的本地网络中分配ip子网地址 | |
CN100413260C (zh) | 虚拟局域网从节点中虚拟局域网标识的配置方法 | |
KR101786620B1 (ko) | 소프트웨어 정의 네트워크에서 서브넷을 지원하는 방법, 장치 및 컴퓨터 프로그램 | |
US8437357B2 (en) | Method of connecting VLAN systems to other networks via a router | |
CN104539539A (zh) | 一种 ac 设备多业务板数据转发方法 | |
CN112333711A (zh) | 无线网络提供方法、装置及存储介质 | |
US10944665B1 (en) | Auto-discovery and provisioning of IP fabric underlay networks for data centers | |
KR101378313B1 (ko) | 오픈플로우(OpenFlow)를 이용하여 사용자 단말 장치와 로컬 호스트 사이의 통신을 지원하기 위한 방법, 장치, 시스템 및 컴퓨터 판독 가능한 기록 매체 | |
WO2014084716A2 (en) | A method for creating virtual links in a wireless mesh network | |
CN112671811B (zh) | 一种网络接入方法和设备 | |
CN110661732B (zh) | 基于mac划分vlan的工作组间流量调度装置及方法 | |
WO2021135485A1 (zh) | 一种访问控制方法、装置及系统 | |
CN111147302B (zh) | 一种网络虚拟化实现方法及其系统 | |
KR101786616B1 (ko) | 소프트웨어 정의 네트워크에서 서브넷을 지원하는 방법, 장치 및 컴퓨터 프로그램 | |
CN114726886B (zh) | 一种基于Wi-SUN技术的城市专有物联网网络系统 | |
US11811556B2 (en) | Methods and systems for network traffic management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23890526 Country of ref document: EP Kind code of ref document: A1 |