WO2024103814A1 - 光学整形模组及激光雷达装置、系统 - Google Patents
光学整形模组及激光雷达装置、系统 Download PDFInfo
- Publication number
- WO2024103814A1 WO2024103814A1 PCT/CN2023/107456 CN2023107456W WO2024103814A1 WO 2024103814 A1 WO2024103814 A1 WO 2024103814A1 CN 2023107456 W CN2023107456 W CN 2023107456W WO 2024103814 A1 WO2024103814 A1 WO 2024103814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- optical shaping
- shaping module
- light
- homogenization
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 73
- 238000007493 shaping process Methods 0.000 title claims abstract description 64
- 230000006835 compression Effects 0.000 claims abstract description 65
- 238000007906 compression Methods 0.000 claims abstract description 65
- 238000000265 homogenisation Methods 0.000 claims abstract description 42
- 238000002493 microarray Methods 0.000 claims description 16
- 238000010586 diagram Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0916—Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0961—Lens arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0966—Cylindrical lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
Definitions
- the present application relates to the field of optical technology, and more specifically, to an optical shaping module and a laser radar device and system.
- the combination of a linear spot emission system and a one-dimensional rotating scanning mirror (referred to as the "rotating mirror solution”) is one of the mainstream solutions for the laser radar transmitter.
- the size of the near-field spot emitted by the laser radar transmitter module determines the size of the working surface of the rotating scanning mirror, and the volume of the rotating scanning mirror of the rotating mirror solution accounts for more than 50% of the volume of the entire laser radar. Therefore, reducing the size of the near-field spot emitted by the transmitter module while ensuring the far-field spot shape is a key factor affecting the important indicator of laser radar miniaturization.
- the current optical solution at the transmitting end is to form a uniform linear spot with a slow axis.
- a major problem with this solution is that the spot size is too large at the working surface of the rotating scanning mirror, so a large rotating scanning mirror is required to be compatible, which will cause the overall size of the LiDAR to be too large.
- the conventional solution is to add an imaging lens group at the back end of the optical solution to solve the problem of the large spot size at the working surface.
- the imaging lens group needs to use multiple lenses to eliminate aberrations, and all of them are cylindrical lenses, it is difficult to assemble and adjust, the cost is high, and the volume is also large. Limited by the cost and volume requirements of the LiDAR, this solution is not acceptable.
- the purpose of this application is to provide an optical shaping module and a laser radar device and system that can compress the spot size at the working surface and reduce the volume of the laser radar device.
- an optical shaping module configured to compress and homogenize a light beam of received incident light in a first direction
- the optical shaping module is configured as a discrete component, including a first direction compression module and a first direction homogenization module, the first direction compression module includes at least one first direction compression lens, configured to compress the light beam in the first direction, the first direction homogenization module includes at least one first direction homogenization mirror, configured to homogenize the light beam in the first direction, and the first direction compression module is located at the light exit side and/or light entrance side of the first direction homogenization module;
- the optical shaping module is configured as an integrated component
- the integrated component comprises an incident surface and an exit surface
- the incident surface and/or the exit surface is configured to compress and homogenize the light beam in the first direction.
- the optical shaping module can compress the near-field spot size in the first direction. It can compress the spot size at the near-field working surface while maintaining the same far-field spot size. When used in conjunction with a rotating scanning mirror, it can reduce the volume of the rotating scanning mirror, thereby reducing the volume of the lidar device. At the same time, it can also achieve the same far-field spot size as a single homogenizing mirror at a low cost to meet the needs of miniaturized optical scenes.
- the first-direction compression module includes at least two first-direction compression lenses, and at least two first-direction compression lenses are simultaneously arranged on the same side of the first-direction homogenization module, or at least two first-direction compression lenses are respectively arranged on both sides of the first-direction homogenization module.
- the first-direction compression lens is a cylindrical lens, and an incident surface or an exit surface of the cylindrical lens is set to be a convex surface in the first direction.
- the first-direction compression lens is a wedge-shaped mirror, and an incident surface or an exit surface of the wedge-shaped mirror is set as a wedge-shaped surface in the first direction.
- the first direction homogenizing mirror is a micro cylindrical array lens.
- the cylindrical lens is a spherical cylindrical lens or an aspherical cylindrical lens.
- the above-mentioned different surface shapes can form different types of refractive surfaces on the exit surface to compress the light beam.
- the incident surface and the exit surface are respectively set as a convex surface and a microarray in the first direction, or the incident surface or the exit surface is set as a convex surface in the first direction and a microarray is set on the convex surface.
- the incident surface and the exit surface are respectively configured as a wedge-shaped surface and a microarray in the first direction, or the incident surface or the exit surface is configured as a wedge-shaped surface in the first direction and a microarray is configured on the wedge-shaped surface.
- the above-mentioned different surface shapes can form different types of refractive surfaces on the output surface to compress and homogenize the light beam.
- a second aspect of the present application provides a laser radar device, comprising a laser light source, and the above-mentioned optical shaping module arranged on the light emitting side of the laser light source.
- the third aspect of the present application provides a laser radar system, including the above-mentioned laser radar device.
- the beneficial effects of the present application include: the optical shaping module and laser radar device and system provided in the embodiments of the present application, when the light beam emitted by the laser light source passes through the optical shaping module, the optical shaping module compresses and homogenizes the light beam in the first direction, the optical shaping module can be separately provided, and it includes at least a first direction compression module and a first direction homogenization module, the first direction compression module is located on the light output side and/or light input side of the first direction homogenization module; it can also be provided as one piece, and its incident surface and/or exit surface is configured to compress and homogenize the light beam in the first direction.
- the near-field spot size in the first direction can be compressed, and the spot size at the near-field working surface can be compressed while maintaining the same far-field spot size.
- the volume of the rotating scanning mirror is reduced, thereby reducing the volume of the lidar device; at the same time, the same far-field light spot as a single homogenizing mirror can be obtained at a low cost to meet the needs of miniaturized optical scenes.
- FIG1 is a schematic diagram of a structure in which an optical shaping module provided in an embodiment of the present application is configured as discrete components;
- FIG2 is a second structural schematic diagram of an optical shaping module provided in an embodiment of the present application configured as discrete components;
- FIG3 is a third structural schematic diagram of an optical shaping module provided in an embodiment of the present application configured as discrete components;
- FIG4 is a fourth schematic diagram of the structure of the optical shaping module provided in an embodiment of the present application configured as discrete components;
- FIG5 is a fifth structural diagram of an optical shaping module provided in an embodiment of the present application configured as discrete components
- FIG6 is a far-field optical path diagram formed by a separate first-direction homogenization module provided in an embodiment of the present application.
- FIGS 7-10 are schematic diagrams of several structures in which the optical shaping module provided in the embodiments of the present application is set as an integrated component.
- Icons 100 - second direction collimation module; 200A - discrete component; 201a - wedge-shaped mirror; 201b - cylindrical mirror; 202 - first direction homogenization module; 200B - integrated component.
- horizontal does not mean that the components are required to be absolutely horizontal or suspended, but can be slightly tilted.
- horizontal only means that its direction is more horizontal than “vertical”, and does not mean that the structure must be completely horizontal, but can be slightly tilted.
- the terms “set”, “install”, “connect”, and “connect” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
- the specific meanings of the above terms in this application can be understood according to specific circumstances.
- the optical solution of the laser radar transmitter is generally based on the solution of a fast-axis collimator and a homogenizer, which respectively completes the collimation compression of the fast axis and the homogenization shaping of the slow axis to form a uniform linear light spot on the slow axis; a major problem with this solution is that the light spot size is too large at the working surface of the rotating scanning mirror, so a large-size rotating scanning mirror is required to be compatible, which will cause the overall volume of the laser radar to be too large.
- the conventional solution is to add an imaging lens group after the homogenizer to project the light spot on the homogenizer onto the working surface, so that the size of the light spot on the working surface can be consistent with the size of the light spot on the homogenizer.
- the imaging lens group needs to use multiple lenses to eliminate aberrations, and all of them are cylindrical lenses, it is difficult to assemble and adjust, the cost is high, and the volume is also large. Limited by the cost and volume requirements of the laser radar, this solution is not acceptable.
- Figure 1 is a schematic diagram of the structure of one embodiment of the optical shaping module provided in the embodiment of the present application.
- the optical shaping module provided in the embodiment of the present application is configured to compress and homogenize the light beam of the received incident light in a first direction; the first direction is one of the directions perpendicular to the optical axis.
- the optical shaping module is set as a discrete component 200A, including a first direction compression module and a first direction homogenization module 202, the first direction compression module includes at least one first direction compression lens, configured to compress the light beam in the first direction, the first direction homogenization module 202 includes at least one first direction homogenization lens, configured to homogenize the light beam in the first direction, and the first direction compression module is located at the light output side and/or the light input side of the first direction homogenization module 202;
- the optical shaping module is configured as an integrated component 200B, and the integrated component 200B includes an incident surface and an exit surface, and the incident surface and/or the exit surface is configured to compress and homogenize the light beam in the first direction.
- the optical shaping module receives incident light and can compress and homogenize the incident light in a first direction.
- the optical shaping module can be presented in the form of a separate discrete component 200A or in the form of an integrated component 200B.
- the optical shaping module when it is a discrete component 200A, it includes two modules, namely a first direction compression module for compressing a light beam in a first direction and a first direction homogenization module 202 for homogenizing a light beam in a first direction, so as to respectively complete the compression and homogenization of the light beam in the first direction.
- a first direction compression module for compressing a light beam in a first direction
- a first direction homogenization module 202 for homogenizing a light beam in a first direction
- the first direction compression module includes at least one first direction compression lens
- the first direction homogenization module 202 includes at least one first direction homogenization mirror.
- the first direction compression module is located at the light exiting side and/or the light entering side of the first direction homogenizing module 202. That is to say, the first direction compression module can be located at the light exiting side of the first direction homogenizing module 202 (as shown in FIG. 4 ), or the first direction compression module can be located at the light entering side of the first direction homogenizing module 202 (as shown in FIG. 1 and FIG. 2 ), or when the first direction compression module includes two or more first direction compression lenses, the first direction compression module can be located at both the light entering side and the light exiting side of the first direction homogenizing module 202 (as shown in FIG. 5 ).
- the incident surface and/or the exit surface of the integrated component 200B is configured to compress and homogenize the light beam in the first direction.
- the incident surface alone can compress and homogenize the light beam in the first direction
- the exit surface alone can also compress and homogenize the light beam in the first direction
- the incident surface and the exit surface together complete the compression and homogenization of the light beam in the first direction.
- the incident surface can compress the light beam in the first direction and the exit surface homogenizes the light beam in the first direction, or the incident surface homogenizes the light beam in the first direction and the exit surface compresses the light beam in the first direction, or the incident surface alone compresses and homogenizes the light beam in the first direction and the exit surface alone compresses and homogenizes the light beam in the first direction again.
- the optical shaping module when the light beam emitted by the laser light source passes through the optical shaping module, the optical shaping module compresses and homogenizes the light beam in the first direction.
- the optical shaping module can be separately arranged, and includes at least a first direction compression module and a first direction homogenization module 202, and the first direction compression module is located on the light output side and/or light input side of the first direction homogenization module 202; it can also be arranged as a whole, and its incident surface and/or exit surface is configured to compress and homogenize the light beam in the first direction.
- the near-field spot size in the first direction can be compressed, and the spot size at the near-field working surface can be compressed while maintaining the same far-field spot size.
- the volume of the rotating scanning mirror is reduced, thereby reducing the volume of the laser radar device; at the same time, the low cost of the same far-field spot as a single homogenization mirror can be obtained to meet the needs of miniaturized optical scenes.
- the second direction collimating module 100 includes at least one second direction collimating lens.
- the incident light beam in the first direction first passes through the second direction collimation module 100 to complete the fast axis direction collimation compression; then passes through the optical shaping module in the slow axis direction for compression and homogenization, and finally forms a light spot in the near field.
- the first direction compression module includes at least two first direction compression lenses, and the at least two first direction compression lenses are simultaneously arranged on the same side of the first direction homogenization module 202 , or at least two first direction compression lenses are respectively arranged on both sides of the first direction homogenization module 202 .
- two first direction compression lenses are sequentially arranged on the light incident side of the first direction homogenization module 202, or As shown in FIG. 4 , two first direction compression lenses are sequentially arranged on the light exiting side of the first direction homogenizing module 202 .
- one first direction compression lens is arranged on the light incident side of the first direction homogenizing module 202
- the other first direction compression lens is arranged on the light exiting side of the first direction homogenizing module 202 .
- the first direction compression module When the light beam in the first direction passes through the first direction compression module, the first direction compression module refracts the light beam in the first direction.
- the first direction compression module is a refraction module.
- the first direction compression module When the light beam in the first direction passes through the first direction compression module, it is refracted to form a far-field spot shape that is the same or close to that when the first direction homogenizing lens (first direction homogenizing module 202) is used alone, and the near-field spot size is compressed. In this way, the spot size at the working surface of the rotating scanning mirror is compressed, and the size of the rotating scanning mirror does not need to be too large, so the volume of the transmitting end of the entire laser radar device can be reduced.
- the first-direction compression lens is a cylindrical lens 201b
- the incident surface or the exit surface of the cylindrical lens 201b is set to be a convex surface in the first direction.
- FIG2 shows a case where the first-direction compression lens is a cylindrical lens 201b, whose incident surface is a plane and the exit surface is a convex surface in the first direction. After passing through the cylindrical lens 201b, the light beam in the first direction is refracted and compressed, thereby realizing the function of compressing the near-field spot size.
- FIG6 shows a case where, after passing through a separate first-direction homogenization module 202, the near-field spot size is compressed on the working surface, but an expanded far-field spot is formed in the far field.
- cylindrical lens 201b is a spherical cylindrical lens or an aspherical cylindrical lens.
- the cylindrical lens 201b can be the aspherical cylindrical lens or the spherical cylindrical lens in FIG. 1 (not shown in the figure).
- the first direction compression lens is a wedge-shaped mirror 201a, and the incident surface or the exit surface of the wedge-shaped mirror 201a is set as a wedge-shaped surface in the first direction.
- FIG1 shows the case where the first direction compression lens is a wedge-shaped mirror 201 a , whose incident surface is a plane and the exit surface is a wedge-shaped surface in the first direction. After passing through the wedge-shaped mirror 201 a , the light beam in the first direction is refracted and compressed, thereby achieving the function of compressing the near-field spot size.
- the above-mentioned different surface shapes can form different types of refractive surfaces on the exit surface to compress the light beam.
- the first direction homogenizing module 202 includes at least one first direction homogenizing lens.
- the first direction homogenizing lens is a micro cylindrical array lens.
- the micro-cylindrical array lens forms a plurality of array surfaces along the first direction, and the micro-cylindrical array lens can also be a homogenizer or a homogenizer group having a pair of homogenizers.
- the first direction homogenizing lens changes or homogenizes the slow axis angular space energy distribution and projects a slow axis homogenized line spot.
- the incident surface and the exit surface are respectively set as a convex surface and a microarray in the first direction, or the incident surface or the exit surface is set as a convex surface in the first direction and a microarray is set on the convex surface.
- FIG. 9 shows an integral element 200B having a convex incident surface and a microarray exit surface;
- the emission surface of the element 200B is convex as a whole in the first direction, and a microarray is formed on the convex surface.
- the incident surface and the exit surface are configured as a wedge-shaped surface and a microarray respectively in the first direction, or the incident surface or the exit surface is configured as a wedge-shaped surface in the first direction and a microarray is configured on the wedge-shaped surface.
- FIG10 shows an integrated element 200B whose incident surface is a wedge-shaped surface and whose exit surface is a microarray; in FIG8 , the exit surface of the integrated element 200B is a wedge-shaped surface as a whole in the first direction, and a microarray is formed on the wedge-shaped surface.
- the above-mentioned different surface shapes can form different types of refractive surfaces on the output surface to compress and homogenize the light beam.
- the optical shaping module can compress the spot size at the working surface to form a low-cost, miniaturized optical solution; when applied to the laser radar transmitter, the volume of the rotating scanning mirror can be reduced, thereby reducing the volume of the laser radar device.
- the second aspect of the embodiment of the present application also provides a laser radar device, including a laser light source, and the above-mentioned optical shaping module arranged on the light emitting side of the laser light source.
- the optical shaping module cooperates with the rotating scanning mirror, and the near-field light spot emitted by the optical shaping module is compressed in size at the working surface of the rotating scanning mirror, thereby reducing the volume of the rotating scanning mirror and achieving miniaturization.
- the above-mentioned laser radar device can be applied to a laser radar system.
- a third aspect of an embodiment of the present application provides a laser radar system, including the above-mentioned laser radar device.
- the laser radar device and laser radar system have the same structure and beneficial effects as the optical shaping module in the above-mentioned embodiment.
- the structure and beneficial effects of the optical shaping module have been described in detail in the above-mentioned embodiment and will not be repeated here.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本申请提供一种光学整形模组及激光雷达装置、系统,涉及光学技术领域,光学整形模组被配置为对接收的入射光在第一方向的光束进行压缩和匀化;光学整形模组设置为分立元件,包括第一方向压缩模块和第一方向匀化模块,第一方向压缩模块包括至少一个第一方向压缩透镜,被配置为压缩第一方向的光束,第一方向匀化模块包括至少一个第一方向匀化镜,被配置为匀化第一方向的光束,第一方向压缩模块位于第一方向匀化模块的出光侧和/或入光侧;或者,光学整形模组设置为一体元件,一体元件包括入射面和出射面,入射面和/或出射面被配置为压缩和匀化第一方向的光束。压缩近场工作面处的光斑尺寸,减小配合使用的旋转扫描镜的体积,适应小型化场景需求。
Description
相关申请的交叉引用
本申请要求于2022年11月14日提交中国专利局的申请号为202211423734.1、名称为“光学整形模组及激光雷达装置、系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光学技术领域,具体而言,涉及一种光学整形模组及激光雷达装置、系统。
目前,线光斑发射系统和一维旋转扫描镜的组合(简称“转镜方案”)是激光雷达发射端的主流方案之一,激光雷达发射端模组出射的近场光斑尺寸决定了旋转扫描镜工作面的尺寸,而转镜方案的旋转扫描镜体积约占整个激光雷达体积的50%以上,因此减小发射端模组出射的近场光斑尺寸,同时保证远场的光斑形态,是影响激光雷达小型化这一重要指标的关键因素。
目前发射端的光学方案是形成一条慢轴均匀的线光斑,此方案的一个主要问题是在旋转扫描镜工作面处,光斑尺寸过大,因此需要大尺寸旋转扫描镜来兼容,这样会导致激光雷达整体体积过大。常规的解决思路是在光学方案后端加一个成像镜组以解决工作面处光斑尺寸过大的问题,但由于成像镜组需使用多片镜片消除像差,且全部为柱镜,装调困难,成本高,体积也较大,受限于激光雷达的成本和体积要求,此种方案不能被接受。
发明内容
本申请的目的在于提供一种光学整形模组及激光雷达装置、系统,能够压缩工作面处的光斑尺寸,减小激光雷达装置的体积。
本申请的实施例是这样实现的:
本申请的一方面,提供一种光学整形模组,所述光学整形模组被配置为对接收的入射光在第一方向的光束进行压缩和匀化;
所述光学整形模组设置为分立元件,包括第一方向压缩模块和第一方向匀化模块,所述第一方向压缩模块包括至少一个第一方向压缩透镜,被配置为压缩所述第一方向的光束,所述第一方向匀化模块包括至少一个第一方向匀化镜,被配置为匀化所述第一方向的光束,所述第一方向压缩模块位于所述第一方向匀化模块的出光侧和/或入光侧;
或者,所述光学整形模组设置为一体元件,所述一体元件包括入射面和出射面,所述入射面和/或所述出射面被配置为压缩和匀化所述第一方向的光束。
光学整形模组,能够压缩第一方向的近场光斑尺寸,可以在保持相同远场光斑的前提下,压缩近场工作面处的光斑尺寸,在和旋转扫描镜配合使用时,减小旋转扫描镜的体积,进而减小激光雷达装置的体积;同时还能得到和单独匀化镜相同远场光斑的低成本,以适应小型化光学场景的需求。
在一个可能的实现中,所述第一方向压缩模块包括至少两个第一方向压缩透镜,至少两个所述第一方向压缩透镜同时设置于所述第一方向匀化模块的同一侧,或者,至少两个所述第一方向压缩透镜分别设置于所述第一方向匀化模块的两侧。
在一个可能的实现中,所述第一方向压缩透镜为柱镜,所述柱镜的入射面或出射面在所述第一方向设置为凸面。
在一个可能的实现中,所述第一方向压缩透镜为楔形镜,所述楔形镜的入射面或出射面在所述第一方向设置为楔形面。
在一个可能的实现中,所述第一方向匀化镜为微柱面阵列透镜。
在一个可能的实现中,所述柱镜为球柱面镜或非球柱面镜。
上述不同的面型均可在出射面形成不同类型的折射面,以压缩光束。
在一个可能的实现中,所述光学整形模组设置为一体元件时,所述入射面和所述出射面在第一方向分别设置为凸面和微阵列,或者,所述入射面或所述出射面在第一方向设置为凸面且在所述凸面上设置微阵列。
在一个可能的实现中,所述光学整形模组设置为一体元件时,所述入射面和所述出射面在第一方向分别设置为楔形面和微阵列,或者,所述入射面或所述出射面在第一方向设置为楔形面且在所述楔形面上设置微阵列。
上述不同的面型均可在出射面形成不同类型的折射面,以压缩和匀化光束。
本申请的第二个方面,提供一种激光雷达装置,包括激光光源,以及设置在所述激光光源出光侧的上述的光学整形模组。
本申请的第三个方面,提供一种激光雷达系统,包括上述的激光雷达装置。
本申请的有益效果包括:本申请实施例提供的光学整形模组及激光雷达装置、系统,激光光源发射的光束经过光学整形模组时,光学整形模组对第一方向的光束进行压缩和匀化,光学整形模组可以分体设置,其包括至少第一方向压缩模块和第一方向匀化模块,第一方向压缩模块位于第一方向匀化模块的出光侧和/或入光侧;也可以一体设置,其入射面和/或出射面被配置为压缩和匀化第一方向的光束。通过光学整形模组,能够压缩第一方向的近场光斑尺寸,可以在保持相同远场光斑的前提下,压缩近场工作面处的光斑尺寸,在
和旋转扫描镜配合使用时,减小旋转扫描镜的体积,进而减小激光雷达装置的体积;同时还能得到和单独匀化镜相同远场光斑的低成本,以适应小型化光学场景的需求。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的光学整形模组设置为分立元件的结构示意图之一;
图2为本申请实施例提供的光学整形模组设置为分立元件的结构示意图之二;
图3为本申请实施例提供的光学整形模组设置为分立元件的结构示意图之三;
图4为本申请实施例提供的光学整形模组结设置为分立元件的构示意图之四;
图5为本申请实施例提供的光学整形模组设置为分立元件的结构示意图之五;
图6为本申请实施例提供的单独的第一方向匀化模块形成的远场光路图;
图7-图10是本申请实施例提供的光学整形模组设置为一体元件的几种结构示意图。
图标:100-第二方向准直模块;200A-分立元件;201a-楔形镜;201b-柱镜;202-第一方向匀化模块;200B-一体元件。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不
能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
激光雷达发射端的光学方案一般基于快轴准直镜配合匀化镜的方案,分别完成快轴的准直压缩和慢轴的匀化整形,形成一条慢轴均匀的线光斑;此方案的一个主要问题是在旋转扫描镜工作面处,光斑尺寸过大,因此需要大尺寸旋转扫描镜来兼容,这样会导致激光雷达整体体积过大。常规的解决思路是在匀化镜后加一个成像镜组,将匀化镜上的光斑投影在工作面上,可以使工作面光斑大小和匀化镜上的光斑大小一致。但由于成像镜组需使用多片镜片消除像差,且全部为柱镜,装调困难,成本高,体积也较大,受限于激光雷达的成本和体积要求,此种方案不能被接受。
有鉴于此,参照图1所示,图1为本申请实施例提供的光学整形模组的其中一种实施例结构示意图。本申请实施例提供的光学整形模组,光学整形模组被配置为对接收的入射光在第一方向的光束进行压缩和匀化;第一方向为垂直于光轴的其中一个方向。
光学整形模组设置为分立元件200A,包括第一方向压缩模块和第一方向匀化模块202,第一方向压缩模块包括至少一个第一方向压缩透镜,被配置为压缩第一方向的光束,第一方向匀化模块202包括至少一个第一方向匀化镜,被配置为匀化第一方向的光束,第一方向压缩模块位于第一方向匀化模块202的出光侧和/或入光侧;
或者,光学整形模组设置为一体元件200B,一体元件200B包括入射面和出射面,入射面和/或出射面被配置为压缩和匀化第一方向的光束。
光学整形模组接收入射光,且能够对入射光在第一方向的光束上进行压缩和匀化。光学整形模组可以分体式的分立元件200A状态呈现,还可以一体设置的一体元件200B的状态呈现。
具体地,如图1所示,当光学整形模组为分立元件200A时,其包括两个模块,分别为用于压缩第一方向的光束的第一方向压缩模块和用于匀化第一方向的光束的第一方向匀化模块202,以分别完成第一方向的光束的压缩和匀化。
进一步地,第一方向压缩模块包括至少一个第一方向压缩透镜,第一方向匀化模块202包括至少一个第一方向匀化镜。
且,第一方向压缩模块位于第一方向匀化模块202的出光侧和/或入光侧。也就是说,第一方向压缩模块可以位于第一方向匀化模块202的出光侧(如图4所示),也可以第一方向压缩模块可以位于第一方向匀化模块202的入光侧(如图1和图2所示),还可以当第一方向压缩模块包括两个及以上的第一方向压缩透镜时,第一方向压缩模块同时位于第一方向匀化模块202的入光侧和出光侧(如图5所示)。
当光学整形模组为一体元件200B时(图7-图10),一体元件200B的入射面和/或出射面被配置为压缩和匀化第一方向的光束。换言之,单独的入射面可以压缩和匀化第一方向的光束,单独的出射面也可以压缩和匀化第一方向的光束,或者入射面和出射面共同完成压缩和匀化第一方向的光束。
而入射面和出射面共同完成压缩和匀化第一方向的光束时,可以是入射面压缩第一方向的光束、出射面匀化第一方向的光束,或者入射面匀化第一方向的光束、出射面压缩第一方向的光束,或者单独的入射面压缩和匀化第一方向的光束,单独的出射面再次压缩和匀化第一方向的光束。
由此,本申请实施例提供的光学整形模组,激光光源发射的光束经过光学整形模组时,光学整形模组对第一方向的光束进行压缩和匀化,光学整形模组可以分体设置,其包括至少第一方向压缩模块和第一方向匀化模块202,第一方向压缩模块位于第一方向匀化模块202的出光侧和/或入光侧;也可以一体设置,其入射面和/或出射面被配置为压缩和匀化第一方向的光束。通过光学整形模组,能够压缩第一方向的近场光斑尺寸,可以在保持相同远场光斑的前提下,压缩近场工作面处的光斑尺寸,在和旋转扫描镜配合使用时,减小旋转扫描镜的体积,进而减小激光雷达装置的体积;同时还能得到和单独匀化镜相同远场光斑的低成本,以适应小型化光学场景的需求。
在此基础上,第一方向的光束需先进行准直,因此还包括图1所示的第二方向准直模块100,第二方向准直模块100包括至少一个第二方向准直透镜。
以第二方向为快轴方向、则第一方向为慢轴方向为例,如图1所示,入射光在第一方向的光束先经过第二方向准直模块100完成快轴方向准直压缩;再经过光学整形模组在慢轴方向的压缩和匀化,最后在近场形成光斑。
进一步地,第一方向压缩模块包括至少两个第一方向压缩透镜,至少两个第一方向压缩透镜同时设置于第一方向匀化模块202的同一侧,或者,至少两个第一方向压缩透镜分别设置于第一方向匀化模块202的两侧。
如图3所示,两个第一方向压缩透镜依次排列在第一方向匀化模块202的入光侧,或
者如图4所示,两个第一方向压缩透镜依次排列在第一方向匀化模块202的出光侧,还可以如图5所示,一个第一方向压缩透镜排列在第一方向匀化模块202的入光侧、另一个第一方向压缩透镜排列在第一方向匀化模块202的出光侧。
当第一方向的光束通过第一方向压缩模块时,第一方向压缩模块使第一方向的光束发生折射,换言之,第一方向压缩模块为一个折射模块,第一方向的光束经过第一方向压缩模块时,通过折射,用于形成和单独使用第一方向匀化透镜(第一方向匀化模块202)时相同或接近的远场光斑形态,同时压缩近场光斑尺寸。这样一来,在旋转扫描镜工作面处的光斑尺寸被压缩,旋转扫描镜的尺寸就不需过大,就可减小整个激光雷达装置的发射端的体积。
具体地,在本申请的一个实现方式中,第一方向压缩透镜为柱镜201b,柱镜201b的入射面或出射面在第一方向设置为凸面。
图2示出了第一方向压缩透镜为柱镜201b的情况,其入射面为平面、出射面为第一方向的凸面,经柱镜201b后,第一方向的光束折射、压缩,实现了压缩近场光斑尺寸的功能;图6示出了经单独的第一方向匀化模块202后,在工作面压缩近场光斑尺寸,却在远场形成的扩束的远场光斑,当第一方向压缩模块和第一方向匀化模块202一起使用时,可得到与图6相同或接近的光斑形态。
此外,柱镜201b为球柱面镜或非球柱面镜。柱镜201b可为图1中的非球柱面镜或球柱面镜(图中未示出)。
在本申请的另一个实现方式中,第一方向压缩透镜为楔形镜201a,楔形镜201a的入射面或出射面在第一方向设置为楔形面。
图1示出了第一方向压缩透镜为楔形镜201a的情况,其入射面为平面、出射面为第一方向的楔形面,经楔形镜201a后,第一方向的光束折射、压缩,实现了压缩近场光斑尺寸的功能。
上述不同的面型均可在出射面形成不同类型的折射面,以压缩光束。
而对于第一方向匀化模块202来说,如图1和图2所示,其包括至少一个第一方向匀化透镜,在本申请的一个实现方式中,第一方向匀化镜为微柱面阵列透镜。
微柱面阵列透镜沿第一方向形成多个阵列面,微柱面阵列透镜还可为匀化器或者具有一对匀化器的匀化器组。第一方向匀化透镜改变或匀化慢轴角空间能量分布,投射出慢轴匀化线光斑。
另一方面,光学整形模组设置为一体元件200B时,入射面和出射面在第一方向分别设置为凸面和微阵列,或者,入射面或出射面在第一方向设置为凸面且在凸面上设置微阵列。
示例地,图9示出了入射面为凸面、出射面为微阵列的一体元件200B;图7中一体元
件200B出射面在第一方向上整体为凸面,且凸面上形成微阵列。
还可以的情况是,光学整形模组设置为一体元件200B时,入射面和出射面在第一方向分别设置为楔形面和微阵列,或者,入射面或出射面在第一方向设置为楔形面且在楔形面上设置微阵列。
示例地,图10示出了入射面为楔形面、出射面为微阵列的一体元件200B;图8中一体元件200B出射面在第一方向上整体为楔形面,且楔形面上形成微阵列。
上述不同的面型均可在出射面形成不同类型的折射面,以压缩和匀化光束。
通过同步调整第一方向压缩透镜和第一方向匀化透镜的面型,可以得到与单独第一方向匀化透镜相同或接近的远场光斑形态,同时压缩近场光斑尺寸。换言之,在保持相同远场光斑的前提下,光学整形模组可压缩工作面处的光斑尺寸,形成低成本、小型化的光学方案;当应用于激光雷达发射端时,可减小旋转扫描镜的体积,进而减小激光雷达装置的体积。
由此,本申请实施例的第二方面还提供一种激光雷达装置,包括激光光源,以及设置在激光光源出光侧的上述光学整形模组。
光学整形模组配合旋转扫描镜,光学整形模组出射的近场光斑在旋转扫描镜的工作面处得以压缩尺寸,减小了旋转扫描镜的体积,可实现小型化。
上述激光雷达装置可应用于激光雷达系统,本申请实施例的第三方面提供一种激光雷达系统,包括上述激光雷达装置。
该激光雷达装置、激光雷达系统包含与前述实施例中的光学整形模组相同的结构和有益效果。光学整形模组的结构和有益效果已经在前述实施例中进行了详细描述,在此不再赘述。
以上仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
Claims (10)
- 一种光学整形模组,其特征在于,所述光学整形模组被配置为对接收的入射光在第一方向的光束进行压缩和匀化;所述光学整形模组设置为分立元件,包括第一方向压缩模块和第一方向匀化模块,所述第一方向压缩模块包括至少一个第一方向压缩透镜,被配置为压缩所述第一方向的光束,所述第一方向匀化模块包括至少一个第一方向匀化镜,被配置为匀化所述第一方向的光束,所述第一方向压缩模块位于所述第一方向匀化模块的出光侧和/或入光侧;或者,所述光学整形模组设置为一体元件,所述一体元件包括入射面和出射面,所述入射面和/或所述出射面被配置为压缩和匀化所述第一方向的光束。
- 根据权利要求1所述的光学整形模组,其特征在于,所述第一方向压缩模块包括至少两个第一方向压缩透镜,至少两个所述第一方向压缩透镜同时设置于所述第一方向匀化模块的同一侧,或者,至少两个所述第一方向压缩透镜分别设置于所述第一方向匀化模块的两侧。
- 根据权利要求1或2所述的光学整形模组,其特征在于,所述第一方向压缩透镜为柱镜,所述柱镜的入射面或出射面在所述第一方向设置为凸面。
- 根据权利要求1或2所述的光学整形模组,其特征在于,所述第一方向压缩透镜为楔形镜,所述楔形镜的入射面或出射面在所述第一方向设置为楔形面。
- 根据权利要求1或2所述的光学整形模组,其特征在于,所述第一方向匀化镜为微柱面阵列透镜。
- 根据权利要求3所述的光学整形模组,其特征在于,所述柱镜为球柱面镜或非球柱面镜。
- 根据权利要求1所述的光学整形模组,其特征在于,所述光学整形模组设置为一体元件时,所述入射面和所述出射面在所述第一方向分别设置为凸面和微阵列,或者,所述入射面或所述出射面在所述第一方向设置为凸面且在所述凸面上设置微阵列。
- 根据权利要求1所述的光学整形模组,其特征在于,所述光学整形模组设置为一体元件时,所述入射面和所述出射面在所述第一方向分别设置为楔形面和微阵列,或者,所述入射面或所述出射面在所述第一方向设置为楔形面且在所述楔形面上设置微阵列。
- 一种激光雷达装置,其特征在于,包括激光光源,以及设置在所述激光光源出光侧的权利要求1至8任一项所述的光学整形模组。
- 一种激光雷达系统,其特征在于,包括如权利要求9所述的激光雷达装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211423734.1 | 2022-11-14 | ||
CN202211423734.1A CN118068582A (zh) | 2022-11-14 | 2022-11-14 | 光学整形模组及激光雷达装置、系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024103814A1 true WO2024103814A1 (zh) | 2024-05-23 |
Family
ID=91083740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/107456 WO2024103814A1 (zh) | 2022-11-14 | 2023-07-14 | 光学整形模组及激光雷达装置、系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118068582A (zh) |
WO (1) | WO2024103814A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11312631A (ja) * | 1998-04-27 | 1999-11-09 | Nikon Corp | 照明光学装置および露光装置 |
CN202886732U (zh) * | 2012-10-24 | 2013-04-17 | 北京凯普林光电科技有限公司 | 补偿光源系统及列车运行故障动态图像检测设备 |
CN107850701A (zh) * | 2015-07-27 | 2018-03-27 | 索尼公司 | 光学器件及显示单元 |
CN111198444A (zh) * | 2020-02-20 | 2020-05-26 | 上海鲲游光电科技有限公司 | 增维摄像装置及其光发射组件和应用 |
CN112578572A (zh) * | 2020-12-09 | 2021-03-30 | 西安炬光科技股份有限公司 | 一种光学元件和光学模组 |
-
2022
- 2022-11-14 CN CN202211423734.1A patent/CN118068582A/zh active Pending
-
2023
- 2023-07-14 WO PCT/CN2023/107456 patent/WO2024103814A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11312631A (ja) * | 1998-04-27 | 1999-11-09 | Nikon Corp | 照明光学装置および露光装置 |
CN202886732U (zh) * | 2012-10-24 | 2013-04-17 | 北京凯普林光电科技有限公司 | 补偿光源系统及列车运行故障动态图像检测设备 |
CN107850701A (zh) * | 2015-07-27 | 2018-03-27 | 索尼公司 | 光学器件及显示单元 |
CN111198444A (zh) * | 2020-02-20 | 2020-05-26 | 上海鲲游光电科技有限公司 | 增维摄像装置及其光发射组件和应用 |
CN112578572A (zh) * | 2020-12-09 | 2021-03-30 | 西安炬光科技股份有限公司 | 一种光学元件和光学模组 |
Also Published As
Publication number | Publication date |
---|---|
CN118068582A (zh) | 2024-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6700709B1 (en) | Configuration of and method for optical beam shaping of diode laser bars | |
US8750344B2 (en) | Laser pump arrangement and laser pump method with beam homogenization | |
CN208384331U (zh) | 一种投影照明光路及投影模组 | |
WO2024098826A1 (zh) | 光学整形模组、装置及激光雷达系统 | |
CN102761061A (zh) | 激光光源模组 | |
KR20050057117A (ko) | 반도체 레이저 장치 | |
CN114442203A (zh) | 菲涅尔透镜、准直镜组、光源模组及合光系统 | |
WO2024103814A1 (zh) | 光学整形模组及激光雷达装置、系统 | |
US12078788B2 (en) | Variable magnification afocal telescope element | |
US20180266641A1 (en) | Light device with movable scanning means and optical fiber | |
CN113970871A (zh) | 一种光源系统及投影系统 | |
CN105793757A (zh) | 用于使激光辐射成形的装置 | |
US11249317B2 (en) | Device for collimating a light beam, high-power laser, and focusing optical unit and method for collimating a light beam | |
CN114967311B (zh) | 一种投影系统以及电子设备 | |
KR20130078906A (ko) | 피코 프로젝터의 광학 시스템 | |
JP2009181753A (ja) | 面発光装置および画像表示装置 | |
CN102365574B (zh) | 利用具有轴像散的透镜的折叠式光学系统 | |
US7376296B2 (en) | Optical multiplexer | |
CN202103313U (zh) | 激光光源模组 | |
CN110703450A (zh) | 光束整形组件、模块及激光模块 | |
CN220671746U (zh) | 扫描激光扩束系统和ar显示装置 | |
CN216052461U (zh) | 一种光学准直系统 | |
CN116794920B (zh) | 基于透光单元阵列的背光光学系统及投影显示系统 | |
CN212112107U (zh) | 光源装置及投影系统 | |
CN115087908B (zh) | 一种光学组件及激光雷达系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23890256 Country of ref document: EP Kind code of ref document: A1 |