WO2024103736A1 - 一种微电网集群以及微电网控制方法 - Google Patents

一种微电网集群以及微电网控制方法 Download PDF

Info

Publication number
WO2024103736A1
WO2024103736A1 PCT/CN2023/102935 CN2023102935W WO2024103736A1 WO 2024103736 A1 WO2024103736 A1 WO 2024103736A1 CN 2023102935 W CN2023102935 W CN 2023102935W WO 2024103736 A1 WO2024103736 A1 WO 2024103736A1
Authority
WO
WIPO (PCT)
Prior art keywords
microgrid
power
active power
reactive power
adjustment amount
Prior art date
Application number
PCT/CN2023/102935
Other languages
English (en)
French (fr)
Inventor
檀添
辛凯
王硕
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024103736A1 publication Critical patent/WO2024103736A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component

Definitions

  • the present application relates to the field of electronic technology, and in particular to a microgrid cluster and a microgrid control method.
  • microgrid groups have many advantages over single microgrids, such as energy can flow in multiple directions between microgrids, which is more flexible. Distributed renewable energy generation in each sub-microgrid can complement each other, and the power supply reliability is high.
  • the power regulation of each microgrid depends on the control of the central controller of the microgrid group, resulting in low reliability of each microgrid.
  • the communication distance between the central controller and each microgrid is large, the communication levels are many, the communication delay is large, and the power regulation response speed of each microgrid is slow.
  • the present application provides a microgrid cluster and a microgrid control method, which can make the microgrid power regulation response speed faster, reduce the communication level, and reduce communication delay.
  • an embodiment of the present application provides a microgrid cluster.
  • the microgrid cluster may include multiple microgrids.
  • the grid connection point of any microgrid is coupled to a connecting line.
  • the connecting line can be used to transmit electrical energy.
  • Any microgrid can be communicatively connected to one or more other microgrids.
  • the microgrid includes a microgrid controller and multiple distributed power sources; the multiple distributed power sources are coupled to the grid connection point of the microgrid to which they belong, and the microgrid controller is used to control the output power of the multiple distributed power sources; the microgrid controller is communicatively connected to the microgrid controllers of the one or more other microgrids, wherein the microgrid controller is used to: in response to the cluster island working mode, send the output power information of the microgrid to which it belongs to the communication connected microgrid controller.
  • a microgrid in the microgrid cluster, may include a microgrid controller and multiple distributed power sources.
  • the microgrid controller exchanges output power information with other microgrid controllers.
  • the microgrid controller centrally controls multiple distributed power sources.
  • the microgrid cluster provided by the embodiment of the present application may include three layers of communication levels.
  • the microgrid controller in each microgrid adopts distributed control to adjust the output power of each microgrid.
  • the microgrid controller adopts centralized control of multiple distributed power sources to adjust the output power of each distributed power source.
  • the microgrid cluster can work in a cluster island working mode. In the cluster island working mode, the microgrid cluster can operate independently without being connected to the large power grid.
  • Any microgrid cluster in the microgrid cluster can provide its own output power to other microgrids connected to the communication in the cluster island working mode. Such a design enables any microgrid to adjust its own output power by using the output power information of the microgrid connected to the communication. It can be seen that there is no need to configure a central controller in the microgrid cluster to provide power instructions to each microgrid. In the microgrid cluster provided by the present application, the microgrids exchange output power information, have fewer communication levels, reduce communication delays, and the microgrid regulates power response speed faster.
  • the output power information may include the active power at the grid connection point of the microgrid.
  • the microgrid controller may determine the total active power adjustment of the microgrid based on the active power at the grid connection point of the microgrid and the active power at the grid connection points of one or more other microgrids.
  • the microgrid controller controls the active power output by the multiple distributed power sources in the microgrid to which it belongs, so that the active power change at the grid connection point of the microgrid is the total active power adjustment.
  • the microgrid controller of each microgrid can respond to the cluster island working mode and send the active power of the grid-connected microgrid to other microgrids connected to the communication, so as to facilitate the adjustment of the output active power of other microgrids connected to the communication.
  • the microgrid can use the active power output by itself and the active power output by other microgrids connected to the communication to adjust the active power.
  • the microgrid does not need to know the active power output by each microgrid in the cluster. Only the active power output by itself and the active power output by the microgrid connected to the communication are used for adjustment. Such a design can reduce the complexity of communication interaction information in the cluster, and the microgrid can adjust the active power without relying on the central controller.
  • the microgrid controller is specifically used to: The first active power adjustment component of the microgrid is determined based on the active power at one or more other microgrid grid connection points; the second active power adjustment component of the microgrid is determined based on the frequency at the grid connection point of the microgrid and the reference frequency of the cluster; and the sum of the first active power adjustment component and the second active power adjustment component is used as the total active power adjustment amount of the microgrid.
  • the first active power adjustment component is used to adjust the active power output of the grid connection point of the microgrid; and the second active power adjustment component is used to adjust the output frequency of the grid connection point of the microgrid.
  • each microgrid can perform active power regulation and frequency regulation operations.
  • the microgrid controller can determine the adjustment amount of active power regulation based on the active power at its own grid connection point and the active power at the grid connection points of other microgrids that are connected to the communication. And determine the adjustment amount of frequency regulation based on the reference frequency of the cluster and the frequency at its own grid connection point. In this field, frequency regulation is also achieved by adjusting the active power.
  • the total active power adjustment amount of the microgrid includes the adjustment amount of active power regulation and the adjustment amount of frequency regulation. In order to adjust the active power output of the microgrid and the frequency at the grid connection point to stabilize at the reference frequency of the cluster.
  • the microgrid controller can obtain the active power adjustment amount of each distributed power source based on the preset active power regulation ratio parameters of each distributed power source and the total active power adjustment amount; according to the active power adjustment amount of each distributed power source, control each distributed power source to adjust the active power output so that the active power output of each distributed power source is the sum of its optimal active power and its active power adjustment amount.
  • the microgrid controller in the microgrid centrally controls each distributed power source, which can improve the response speed of each distributed power source in adjusting the output power.
  • the microgrid controller can respond to the cluster island working mode, allocate the active power adjustment amount of each distributed power source according to the preset active power adjustment ratio parameter of each distributed power source and the total active power adjustment amount, and determine the active power adjustment amount of each distributed power source.
  • the microgrid controller can send an active power control instruction to the controller of each distributed power source to control the distributed power source to output active power.
  • the active power control instruction represents the sum of the active power adjustment amount of each distributed power source and the optimal active power operating point of each distributed power source.
  • the output power information may include the reactive power at the grid connection point of the microgrid; the microgrid controller is also used to: determine the reference voltage of the grid connection point of the microgrid based on the reactive power at the grid connection point of the microgrid, the reactive power at the one or more other microgrid grid connection points, and the reference voltage of the cluster; determine the total reactive power adjustment amount of the microgrid based on the reference voltage of the microgrid and the voltage at the grid connection point of the microgrid; obtain the reactive power adjustment amount of each distributed power source based on the preset reactive regulation ratio parameters of each distributed power source and the total reactive power adjustment amount; control each distributed power source to adjust the output reactive power based on the reactive power adjustment amount of each distributed power source so that the reactive power output by each distributed power source is the sum of its optimal reactive power and its reactive power adjustment amount.
  • the microgrid may be a non-critical voltage node.
  • the microgrid controller in the non-critical voltage node may respond to the cluster island working mode and adjust the reactive power output by itself by using the reactive power at the grid connection point of other microgrids connected by communication and the reactive power at its own grid connection point.
  • the microgrid controller may communicate with other microgrids to exchange reactive power information and determine its own reactive power adjustment amount.
  • the microgrid controller may centrally control each distributed power source to adjust reactive power.
  • the microgrid controller can determine the reference voltage of the microgrid based on the reactive power output by itself, the reactive power at the grid connection point of other microgrids connected by communication, and the reference voltage of the cluster; based on the reference voltage of the microgrid and the voltage at the grid connection point of the microgrid, determine the total reactive power adjustment of the microgrid.
  • the total reactive power adjustment can be determined.
  • the microgrid can allocate the reactive power adjustment of each distributed power source according to the preset reactive adjustment ratio parameters of each distributed power source and the total reactive power adjustment, so as to determine the reactive power adjustment of each distributed power source.
  • the microgrid sends a reactive power control instruction to the controller of each distributed power source to control the distributed power source to adjust the output reactive power.
  • the reactive power control instruction represents the sum of the reactive power adjustment of each distributed power source and the optimal reactive power operating point of each distributed power source.
  • the microgrid controller is also used to: determine the total reactive power adjustment of the microgrid based on the reference voltage of the cluster and the voltage at the grid connection point of the microgrid; obtain the reactive power adjustment of each distributed power source according to the preset reactive regulation ratio parameters of each distributed power source and the total reactive power adjustment; and control the reactive power output of each distributed power source according to the reactive power adjustment of each distributed power source, so that the reactive power output of each distributed power source is the sum of its optimal reactive power and its reactive power adjustment.
  • the total reactive power adjustment of the microgrid is used to adjust the grid connection point output voltage of the microgrid to the reference voltage of the cluster.
  • the microgrid can be a key voltage node, and the microgrid controller can perform voltage regulation in response to the cluster island working mode.
  • voltage regulation is achieved by reactive power regulation.
  • the microgrid controller can use the voltage at the grid connection point of the microgrid to which it belongs and the reference voltage of the cluster to adjust and determine the total reactive power adjustment amount of the microgrid.
  • the microgrid controller can centrally control each distributed Type power supply adjusts reactive power.
  • an embodiment of the present application also provides a microgrid control method, which is applied to a microgrid cluster, wherein the microgrid cluster includes multiple microgrids; the grid connection point of any of the microgrids is coupled to a connecting line, and the connecting line is used to transmit electric energy; any of the microgrids is communicatively connected to one or more other microgrids; the microgrid includes a microgrid controller and multiple distributed power sources; the multiple distributed power sources are coupled to the grid connection point of the microgrid to which they belong; the method includes: the microgrid controller sends the output power information of the microgrid to which it belongs to to the microgrid controller with communication connection in response to the cluster island working mode; the microgrid controller controls the output power of the multiple distributed power sources.
  • the output power information includes the active power at the grid-connected point of the microgrid; after the microgrid controller sends the output power information of the microgrid to the microgrid controller with a communication connection in response to the cluster island working mode, the method further includes: the microgrid controller determines the total active power adjustment amount of the microgrid based on the active power at the grid-connected point of the microgrid and the active power at the grid-connected points of one or more other microgrids; the microgrid controller controls the active power outputted by the multiple distributed power sources in the microgrid to which it belongs, so that the change in active power at the grid-connected point of the microgrid is the total active power adjustment amount.
  • the microgrid controller determines the total active power adjustment amount of the microgrid based on the active power at the microgrid's grid-connected point and the active power at the one or more other microgrid grid-connected points, including: determining a first active power adjustment component of the microgrid based on the active power at the microgrid's grid-connected point and the active power at the one or more other microgrid grid-connected points; determining a second active power adjustment component of the microgrid based on the frequency at the microgrid's grid-connected point and a reference frequency of the cluster; and taking the sum of the first active power adjustment component and the second active power adjustment component as the total active power adjustment amount of the microgrid.
  • the first adjustment component of active power is used to adjust the active power outputted by the microgrid's grid-connected point; and the second adjustment component of active power is used to adjust the output frequency of the microgrid's grid-connected point.
  • the microgrid controller controls the active power output by the multiple distributed power sources in the microgrid to which it belongs, including: the microgrid controller obtains the active power adjustment amount of each distributed power source based on the preset active regulation ratio parameters of each distributed power source and the total active power adjustment amount; the microgrid controller controls each distributed power source to adjust the active power output according to the active power quantity of each distributed power source, so that the active power output by each distributed power source is the sum of its optimal active power and its active power adjustment amount.
  • the output power information includes the reactive power at the grid connection point of the microgrid; after the microgrid controller sends the output power information of the microgrid to which it belongs to the microgrid controller in communication connection in response to the cluster island working mode, the method further includes: the microgrid controller determines the reference voltage of the grid connection point of the microgrid based on the reactive power at the grid connection point of the microgrid, the reactive power at the grid connection points of one or more other microgrids, and the reference voltage of the cluster; the microgrid controller determines the total reactive power adjustment amount of the microgrid based on the reference voltage of the microgrid and the voltage at the grid connection point of the microgrid; the microgrid controller obtains the reactive power adjustment amount of each distributed power source based on the preset reactive regulation ratio parameter of each distributed power source and the total reactive power adjustment amount; the microgrid controller controls each distributed power source to adjust the output reactive power according to the reactive power adjustment amount of each distributed power source, so that the reactive power output by each distributed power source is
  • the output power information includes the reactive power at the grid-connected point of the microgrid; after the microgrid controller sends the output power information of the microgrid to which it belongs to the microgrid controller in communication connection in response to the cluster island working mode, the method further includes: the microgrid controller determines the total reactive power adjustment amount of the microgrid based on the reference voltage of the cluster and the voltage at the grid-connected point of the microgrid; the microgrid controller allocates the reactive power adjustment amount of each distributed power source according to the preset reactive regulation ratio parameters of each distributed power source and the total reactive power adjustment amount; and according to the reactive power adjustment amount of each distributed power source, controls the reactive power outputted by each distributed power source to be adjusted so that the reactive power outputted by each distributed power source is the sum of its optimal reactive power and its reactive power adjustment amount.
  • the total reactive power adjustment amount of the microgrid is used to adjust the grid-connected point output voltage of the microgrid to the reference voltage of the cluster.
  • the present application provides a microgrid controller that can execute the microgrid control method described in the second aspect and any design thereof.
  • the present application provides a distributed power source that can form a microgrid described in the first aspect and any design thereof with a microgrid controller.
  • the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is run on a computer, the computer is enabled to execute the method described in any possible design of the second aspect or the third aspect.
  • the present application provides a computer program product, which includes a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer executes the method described in any possible design of the second or third aspect above.
  • FIG1 is a schematic diagram of the structure of a microgrid cluster provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a microgrid cluster provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the interaction between the first microgrid and the second microgrid
  • FIG4 is a schematic diagram of the interaction between a microgrid controller and a distributed power source and the interaction between a microgrid controller and a second microgrid;
  • FIG5 is a schematic diagram of the interaction between a microgrid controller and a distributed power source and the interaction between a microgrid controller and a second microgrid;
  • FIG6 is a schematic diagram of the interaction between a microgrid controller and a distributed power source and the interaction between a microgrid controller and a second microgrid;
  • FIG7 is a schematic diagram of a control loop
  • FIG8( a ) exemplarily shows a schematic diagram of a control branch 701
  • FIG8( b ) exemplarily shows a schematic diagram of a control branch 701
  • FIG8( c ) exemplarily shows a schematic diagram of a control branch 701
  • FIG9( a ) exemplarily shows a schematic diagram of a control branch 702 ;
  • FIG9( b ) exemplarily shows a schematic diagram of a control branch 702 ;
  • FIG9( c ) exemplarily shows a schematic diagram of a control branch 702 ;
  • FIG. 10( a ) exemplarily shows a schematic diagram of a control branch 702 ;
  • FIG10( b ) exemplarily shows a schematic diagram of a control branch 702 ;
  • FIG10( c ) exemplarily shows a schematic diagram of a control branch 702 ;
  • FIG11 is a schematic diagram of a specific structure of a control loop
  • FIG12 is a schematic diagram of a specific structure of a control loop.
  • Coupled can be understood as electrical connection, and the coupling of two electrical components can be direct or indirect coupling between the two electrical components.
  • the connection between A and B can be direct coupling between A and B, or indirect coupling between A and B through one or more other electrical components, such as A and B coupling, or A and C direct coupling, C and B direct coupling, and A and B are coupled through C.
  • “coupling” can also be understood as connection. In short, the coupling between A and B enables the transmission of electrical energy between A and B.
  • the embodiments of the present application provide a microgrid cluster (topology).
  • the microgrid cluster 100 may include multiple microgrids 101.
  • the microgrid 101 may also be referred to as a sub-microgrid in the microgrid cluster 100.
  • Microgrid 101 can be regarded as a small power network that can achieve a basic balance of internal power. In some scenarios, microgrid 101 can operate independently and can have one or more functions such as power supply to loads and energy storage. In other scenarios, microgrid 101 can be coupled with other microgrids to form a microgrid cluster and operate in parallel with other microgrids.
  • one microgrid 101 has a corresponding grid connection point PCC.
  • the microgrid 101 is connected to the tie line through the corresponding grid connection point PCC.
  • the tie line is used to transmit electric energy.
  • the tie line may be a chain-shaped tie line.
  • the tie line may be a ring-shaped tie line.
  • the embodiments of the present application do not impose too many restrictions on this. The following introduces any one of the multiple microgrids 101.
  • the microgrid 101 may include a microgrid controller 201 and a plurality of distributed power sources 202.
  • each distributed power source 202 may be coupled to the interconnection line through the grid connection point PCC corresponding to the microgrid 101 to which it belongs.
  • Each distributed power source 202 may output electric energy to the interconnection line.
  • the microgrid controller 201 may be connected in communication with each distributed power source 202, and the microgrid controller 201 may send instructions to each distributed power source 202, so that the microgrid controller 201 controls the distributed power sources 202 in the microgrid 101 to which it belongs.
  • each distributed power source 202 may perform power regulation, such as voltage regulation, frequency regulation, etc., under the control of the microgrid controller 201.
  • one microgrid 101 may be communicatively connected to at least one other microgrid 101.
  • the microgrid 101 may exchange information with the microgrids that are communicatively connected.
  • the other microgrid may refer to a microgrid other than the microgrid in the multiple microgrids.
  • the communication link between the microgrid 101 and at least one other microgrid 101 can be a point-to-point communication link, so as to realize the information exchange between the microgrid 101 and at least one other microgrid 101.
  • the dotted line between the two microgrid controllers 201 in Figure 1 shows the communication connection between the two microgrid controllers 201.
  • the communication connection can be communication through wired communication or communication through wireless communication.
  • the communication connection between the microgrid controllers 201 can be communication through wired communication lines.
  • each microgrid 101 can be connected to other microgrids 101 through an Ethernet ring network.
  • Each microgrid 101 can exchange information with one or more other microgrids 101 through the Ethernet ring network.
  • FIG2 and FIG1 please refer to the relevant introduction in FIG1 , which will not be repeated here.
  • the communication connection between the microgrid controllers in the two microgrids is also the communication connection between the two microgrids. This application does not make a specific distinction between them.
  • the microgrid cluster 100 provided in the embodiment of the present application may have multiple working modes.
  • the multiple working modes may include a cluster grid-connected working mode, a cluster island working mode, etc.
  • the microgrid cluster 100 as a whole can operate independently.
  • the microgrid cluster 100 as a whole can be coupled with other grids or clusters and connected to the grid with other grids or clusters.
  • the microgrid cluster 100 can respond to the cluster island working mode and send a cluster island working mode instruction to each microgrid 101.
  • the microgrid controller 201 of each microgrid 101 can receive the cluster island working mode instruction and perform the corresponding control operation of the cluster island working mode.
  • a microgrid controller 201 of a microgrid 101 may exist in the microgrid cluster 100 as a master microgrid controller, which may receive a working mode instruction. After receiving the cluster island working mode, the master microgrid controller may send a cluster island working mode instruction to each microgrid controller 201 that is communicatively connected to the master microgrid controller. After receiving the cluster island working mode instruction, each microgrid controller 201 may send a cluster island working mode instruction to the microgrid controller 201 that is communicatively connected to each other. This enables each microgrid 101 in the microgrid cluster 100 to receive the cluster island working mode instruction.
  • microgrid controller 201 of a microgrid 101 in the microgrid cluster 100 may be communicatively connected with other microgrid controllers in the microgrid cluster 100.
  • the main microgrid controller may send the cluster island working mode instruction to other microgrid controllers in the microgrid cluster 100. This enables each microgrid 101 in the microgrid cluster 100 to receive the cluster island working mode instruction.
  • the main microgrid controller may be point-to-point communicatively connected with other microgrid controllers in the microgrid cluster 100.
  • the main microgrid controller is communicatively connected with other microgrid controllers in the microgrid cluster 100 via an Ethernet ring network.
  • any one microgrid 101 is taken as an example for introduction.
  • any one microgrid 101 in the microgrid cluster 100 is referred to as a first microgrid, and a microgrid connected to the first microgrid in communication is referred to as a second microgrid.
  • the first microgrid may be connected to one or more second microgrids in communication.
  • Fig. 3 exemplarily shows the interaction process between the first microgrid and the second microgrid in the cluster island working mode.
  • the first microgrid can send the output power information of the first microgrid to each second microgrid in the cluster island working mode, and the output power information of the first microgrid can include but is not limited to one or more of the active power at the grid connection point of the first microgrid and the reactive power at the grid connection point of the first microgrid.
  • each second microgrid it is convenient for each second microgrid to adjust the active power or reactive power outputted by the grid connection point of the second microgrid according to the output power information of the first microgrid.
  • each microgrid 101 sends its own output power information to the microgrid connected in communication.
  • each microgrid can receive the output power information of other microgrids.
  • the first microgrid can receive the output power information of one or more second microgrids.
  • the first microgrid can adjust the active power or reactive power outputted by the grid connection point of the first microgrid according to the output power information of one or more second microgrids received.
  • the microgrid controller 201 in the first microgrid can send the output power information of the first microgrid to the microgrid controller 201 of the second microgrid in response to the cluster island working mode.
  • the microgrid controller 201 in the first microgrid can receive the output power information of the second microgrid sent by the microgrid controllers 201 of each second microgrid.
  • the microgrid controller 201 of the first microgrid can determine the total active power adjustment of the first microgrid based on the active power at the grid connection point of the first microgrid and the active power at the grid connection points of other microgrids that are connected to the first microgrid in communication.
  • the microgrid controller 201 of the first microgrid can control the microgrid to which it belongs, that is, control the active power output by multiple distributed power sources in the first microgrid, so that the active power change at the grid connection point of the first microgrid is the total active power adjustment.
  • the active power change at the grid connection point of the first microgrid is the total active power adjustment, which may refer to the active power change at the grid connection point of the first microgrid being equal to or approximately equal to the total active power adjustment, or may refer to the difference between the active power change at the grid connection point of the first microgrid and the total active power adjustment being less than or equal to a preset difference threshold, and the present application does not make specific limitations on this.
  • the output power information of each microgrid may include the active power of each microgrid at the grid connection point.
  • the active power of the first microgrid at the corresponding grid connection point is recorded as the first active power P MGk_sample , where k represents the identifier of the first microgrid.
  • the output power information of the second microgrid includes the active power of the second microgrid at the corresponding grid connection point, which is recorded as the second active power P MGj_sample , where j represents the identifier of the second microgrid, where j is not equal to k.
  • the microgrid controller 201 of the first microgrid can pre-store or obtain the active power ratio parameter of the first microgrid and the active power ratio parameter of each second microgrid.
  • the active power ratio parameter of the first microgrid is recorded as P MGk_base .
  • the active power ratio parameter of the second microgrid is recorded as P MGj_base .
  • the first microgrid can adjust the active power at the grid connection point of the first microgrid and adjust the frequency of the output voltage at the grid connection point of the first microgrid.
  • the first microgrid can determine the active power impact amount ⁇ p k_j corresponding to the second microgrid according to the active power ratio parameter P MGj_base of each second microgrid, the active power P MGj_sample output at the grid connection point of each second microgrid, the active power ratio parameter P MGk_base of the first microgrid, and the active power P MGk_sample output at the grid connection point of the first microgrid.
  • the active power influence amount corresponding to the second microgrid can represent the active power adjustment amount determined by the first microgrid according to the active power of the second microgrid.
  • the microgrid controller 201 of the first microgrid can determine the sum of the active power influence amounts corresponding to all the second microgrids as the first active power adjustment component ⁇ P1 MGk of the first microgrid.
  • the other microgrids that are communicatively connected to the first microgrid are the second microgrid 1, the second microgrid 2, ..., and the second microgrid n.
  • the number of other microgrids that are communicatively connected to the first microgrid is n, where n is a positive integer.
  • the active power influence amount corresponding to the second microgrid 1 is recorded as ⁇ p k_1
  • the active power influence amount corresponding to the second microgrid 2 is recorded as ⁇ p k_2
  • the active power influence amount corresponding to the second microgrid n is recorded as ⁇ p k_n .
  • the first active power adjustment component of the first microgrid is the sum of the active power influence amounts corresponding to all the second microgrids in the second microgrid 1, the second microgrid 2, ..., and the second microgrid n, that is,
  • the first active power adjustment component ⁇ P1 MGk of the first microgrid can be determined based on the configured active power regulation proportional integrator and the sum of the active power influence quantities corresponding to each second microgrid.
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power ratio parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid.
  • K pk is the configured active power regulation proportional integrator of the first microgrid.
  • the microgrid controller 201 of the first microgrid may control an active power control loop filter to filter out interference and adjust the control bandwidth when determining the first active power adjustment component ⁇ P1 MGk of the first microgrid.
  • Quantity W p is the active power regulation loop filter function of the configured first microgrid, which can filter out interference and adjust the control bandwidth.
  • ⁇ ps represents the cutoff frequency of the active power control loop filter of the first microgrid.
  • the first microgrid performs closed-loop control of the frequency at the grid connection point to achieve zero-difference frequency regulation at the first microgrid grid connection point, so that the frequency at the first microgrid grid connection point is equal to or close to the reference frequency of the microgrid cluster 100.
  • the reference frequency of the microgrid cluster 100 is characterized as the frequency of the voltage in the microgrid cluster 100.
  • the microgrid controller 201 of the first microgrid can use a frequency control loop filter to filter out interference and adjust the control bandwidth when determining the second adjustment component ⁇ P2 MGk of the active power of the first microgrid.
  • ⁇ P2 MGk G fk ⁇ (F ref -W f ⁇ f MGk_sample ), where W f is the configured frequency loop filter function of the first microgrid, which can filter out interference and adjust the control bandwidth.
  • F ref represents the reference frequency of the cluster.
  • f MGk_sample represents the frequency at the grid connection point of the first microgrid.
  • ⁇ fs represents the cutoff frequency of the first microgrid frequency control loop filter.
  • the microgrid controller 201 of the first microgrid can determine the first adjustment component of the active power of the microgrid according to the active power at the grid connection point of the first microgrid and the active power at other microgrids connected to the communication.
  • the first adjustment amount of active power can be used to adjust the active power output of the grid connection point of the first microgrid.
  • the controller 201 of the first microgrid can determine the second adjustment component of the active power of the microgrid according to the frequency at the grid connection point of the microgrid and the reference frequency of the cluster.
  • the second adjustment component of active power can be used to adjust the output frequency of the first grid connection point.
  • the first microgrid can adjust the active power at the grid connection point of the first microgrid and adjust the frequency of the first microgrid (that is, secondary frequency modulation operation) in the cluster island working mode.
  • the microgrid controller 201 of the first microgrid can control the active power output of multiple distributed power sources in the microgrid, that is, the first microgrid, so that the active power change at the grid connection point of the microgrid is the total active power adjustment amount.
  • the microgrid controller 201 of the first microgrid can obtain the active power adjustment amount of each distributed power source based on the total active power adjustment amount ⁇ PZ MGk of the first microgrid and the active power regulation ratio parameter of each distributed power source in the first microgrid. In other words, the active power adjustment amount of each distributed power source in the first microgrid is allocated. Usually, the ratio of the active power adjustment amount of a distributed power source to the total active power adjustment amount of the first microgrid is the active power regulation ratio parameter of the distributed power source. Optionally, the active power regulation ratio parameters of each distributed power source can be the same. In other words, in the first microgrid, the active power adjustment amount of the distributed power sources participating in power regulation is evenly divided.
  • the first microgrid controls the internal distributed power supply to achieve that the change in active power output by the first microgrid at the grid connection point is close to or equal to the total active power adjustment amount and the frequency at the grid connection point is adjusted to the reference frequency of the microgrid cluster 100.
  • the microgrid controller 201 of the first microgrid can obtain the optimal active power operating point of each distributed power source, that is, the optimal active power.
  • the optimal active power operating point of each distributed power source can be provided by an energy management system (EMS).
  • EMS energy management system
  • the microgrid controller 201 of the first microgrid can control each distributed power source 202 to adjust the output active power.
  • the active power output of a distributed power source 202 is the sum of the optimal active power of the distributed power source and the active power adjustment amount of the distributed power source.
  • the microgrid controller 201 of the first microgrid can send an active power control instruction to each distributed power source 202, where the active power control instruction represents the sum of the active power adjustment amount allocated to the distributed power source 202 and the optimal active power operating point of the distributed power source 202.
  • the microgrid controller 201 may send an active power control instruction 1 to the distributed power source 1, wherein the active power control instruction 1 is the sum of the active power adjustment amount allocated to the distributed power source 1 and the optimal active power operating point of the distributed power source 1.
  • the microgrid controller 201 may send an active power control instruction m to the distributed power source m, wherein the active power control instruction m is the sum of the active power adjustment amount allocated to the distributed power source m and the optimal active power operating point of the distributed power source m.
  • the multiple distributed power sources 202 in the first microgrid may include one or more of an energy storage power source and a photovoltaic sub-array. Because the frequency regulation power that can be shared by the energy storage power source and the photovoltaic sub-array in the first microgrid is different.
  • the first adjustment component of the active power of the first microgrid can be understood as the active power adjustment amount required for adjusting the active power operation
  • the second adjustment component of the active power of the first microgrid can be understood as the active power adjustment amount required for adjusting the frequency operation.
  • the first active power adjustment component ⁇ P1 MGk of the first microgrid may include the first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power supply and the first active power adjustment component ⁇ P1 MGk_PV of the photovoltaic sub-array.
  • the second active power adjustment component ⁇ P2 MGk of the first microgrid may include the second active power adjustment component ⁇ P2 MGk_ESS of the energy storage power supply and the second active power adjustment component ⁇ P2 MGk_PV of the photovoltaic sub-array. They are introduced below respectively.
  • the first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power supply can be determined according to the active power influence amount corresponding to each second microgrid and the active power adjustment proportional integrator K pk_ESS corresponding to the energy storage battery.
  • K pk_ESS can represent the proportional integrator (ie, PI controller) of the active power regulation of the energy storage power supply in the first microgrid.
  • W p is the configured active power loop filter function of the first microgrid.
  • K pPk_ESS represents the proportional coefficient of the proportional integrator (ie, PI controller) for active power regulation of the energy storage power supply
  • K iPk_ESS represents the integral coefficient of the proportional integrator (ie, PI controller) for active power regulation of the energy storage power supply.
  • the first active power adjustment component ⁇ P1 MGk_PV of the photovoltaic sub-array can be determined according to the active power influence amount corresponding to each second microgrid and the active power adjustment proportional integrator K pk_PV corresponding to the photovoltaic sub-array.
  • K pk_PV can represent the proportional integrator (ie, PI controller) of the active power regulation of the photovoltaic array in the first microgrid.
  • W p is the configured active power loop filter function of the first microgrid.
  • K pPk_PV represents the proportional coefficient of the proportional integrator (ie, PI controller) for active power regulation of the photovoltaic sub-array
  • K pIk_PV represents the integral coefficient of the proportional integrator (ie, PI controller) for active power regulation of the photovoltaic sub-array
  • the second adjustment component ⁇ P2 MGk_ESS of the active power of the energy storage power supply can be determined based on the frequency f MGk_sample at the grid connection point of the first microgrid, the reference frequency F ref of the cluster, and the frequency adjustment integrator G fk_ESS corresponding to the energy storage battery.
  • the second adjustment component ⁇ P2 MGk_ESS of the active power of the energy storage power supply G fk_ESS ⁇ (F ref -W f ⁇ f MGk_sample ).
  • G fk_ESS can represent the proportional integrator (i.e., PI controller) of the frequency adjustment of the energy storage power supply.
  • K fPk_ESS represents the proportional coefficient of the proportional integrator (ie, PI controller) of the frequency regulation of the energy storage power supply
  • K fIk_ESS represents the integral coefficient of the proportional integrator (ie, PI controller) of the frequency regulation of the energy storage power supply.
  • the second adjustment component ⁇ P2 MGk_PV of the active power of the photovoltaic sub-array can be determined based on the frequency f MGk_sample at the grid connection point of the first microgrid, the reference frequency F ref of the cluster, and the frequency adjustment integrator G fk_PV corresponding to the photovoltaic sub-array.
  • the second adjustment component ⁇ P2 MGk_PV of the active power of the photovoltaic sub-array G fk_PV ⁇ (F ref -W f ⁇ f MGk_sample ).
  • G fk_PV can represent the proportional integrator (i.e., PI controller) of the frequency adjustment of the photovoltaic sub-array.
  • K fPk_PV represents the proportional coefficient of the proportional integrator (ie, PI controller) of the frequency regulation of the photovoltaic subarray
  • K fIk_ESS represents the integral coefficient of the proportional integrator (ie, PI controller) of the frequency regulation of the photovoltaic subarray
  • the total active power adjustment amount of the first microgrid may include the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power supplies in the first microgrid and the total active power adjustment amount ⁇ PZ MGk_PV of all photovoltaic sub-arrays.
  • the sum of the first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power supply and the second active power adjustment component ⁇ P2 MGk_ESS of the energy storage power supply can be used as the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power supplies in the first microgrid.
  • the sum of the first active power adjustment component ⁇ P1 MGk_PV of the photovoltaic sub-array and the second active power adjustment component ⁇ P2 MGk_PV of the photovoltaic sub-array can be used as the total active power adjustment amount ⁇ PZ MGk_PV of all photovoltaic sub-arrays in the first microgrid.
  • multiple distributed power sources 202 in the first microgrid are all energy storage power sources, that is, each distributed power source 202 is an energy storage power source.
  • the first active power adjustment component ⁇ P1 MGk_PV of the photovoltaic subarray in the first active power adjustment component ⁇ P1 MGk of the first microgrid can be regarded as zero.
  • the second active power adjustment component ⁇ P2 MGk_PV of the photovoltaic subarray in the second active power adjustment component ⁇ P2 MGk of the first microgrid can be regarded as zero.
  • the microgrid controller 201 of the first microgrid can allocate the active power adjustment amount of each energy storage power supply in the first microgrid according to the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power supplies.
  • the ratio of the active power adjustment amount of one energy storage power supply to the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power supplies is the adjustment ratio of the energy storage power supply.
  • the active power adjustment amount of each energy storage power supply can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated active power adjustment amount to each energy storage power supply so that each energy storage power supply adjusts the output active power.
  • the multiple distributed power sources 202 in the first microgrid are all photovoltaic sub-arrays, that is, each distributed power source 202 is a photovoltaic sub-array.
  • the active power first adjustment component ⁇ P1 of the first microgrid is the active power first adjustment component of the energy storage power source in MGk.
  • the integral component ⁇ P1 MGk_ESS can be regarded as zero.
  • the active power second adjustment component ⁇ P2 MGk of the first microgrid The active power second adjustment component ⁇ P2 MGk_ESS of the energy storage power source can be regarded as zero.
  • the microgrid controller 201 of the first microgrid can allocate the active power adjustment amount of each photovoltaic subarray in the first microgrid according to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic subarray.
  • the ratio of the active power adjustment amount of a photovoltaic subarray to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic subarray is the adjustment ratio of the photovoltaic subarray.
  • the active power adjustment amount of each photovoltaic subarray can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated active power adjustment amount to each photovoltaic subarray so that each photovoltaic subarray adjusts the output active power.
  • the multiple distributed power sources 202 in the first microgrid may include energy storage power sources and photovoltaic sub-arrays.
  • the microgrid controller 201 of the first microgrid may allocate the active power adjustment amount of each energy storage power source in the first microgrid according to the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power sources.
  • the ratio of the active power adjustment amount of one energy storage power source to the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power sources is the adjustment ratio of the energy storage power source.
  • the active power adjustment amount of each energy storage power source may be the same.
  • the microgrid controller 201 of the first microgrid may send the allocated active power adjustment amount to each energy storage power source so that each energy storage power source adjusts the output active power.
  • the microgrid controller 201 of the first microgrid may allocate the active power adjustment amount of each photovoltaic sub-array in the first microgrid according to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic sub-array.
  • the ratio of the active power adjustment amount of one photovoltaic sub-array to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic sub-array is the adjustment ratio of the photovoltaic sub-array.
  • the active power adjustment amount of each photovoltaic sub-array may be the same.
  • the microgrid controller 201 of the first microgrid may send the allocated active power adjustment amount to each photovoltaic sub-array, so that each photovoltaic sub-array adjusts the output active power.
  • the microgrid controller 201 of the first microgrid can send the allocated active power adjustment amount to each energy storage power source, so that each energy storage power source adjusts the output active power and adjusts the frequency at the grid connection point, thereby realizing active power regulation of the energy storage power source and secondary frequency regulation of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can send the allocated active power adjustment amount to each photovoltaic sub-array, so that each photovoltaic sub-array adjusts the output active power and adjusts the frequency at the grid connection point, thereby realizing active power regulation of the photovoltaic sub-array and secondary frequency regulation of the photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can obtain the optimal active power operating point of each distributed power source, that is, the optimal active power.
  • the optimal active power operating point of each distributed power source can be provided to the energy management system (EMS), and the microgrid controller 201 of the first microgrid can send an active power control instruction to each distributed power source 202, and the active power control instruction represents the sum of the active power adjustment amount allocated to the distributed power source 202 and the optimal active power operating point of the distributed power source 202.
  • EMS energy management system
  • the microgrid controller 201 of the first microgrid can obtain the optimal active power operating point of each energy storage power source, that is, the optimal active power.
  • the microgrid controller 201 of the first microgrid can send an active power control instruction to the energy storage power source, and the active power control instruction of the energy storage power source represents the sum of the active power adjustment amount allocated to the energy storage power source and the optimal active power operating point of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can obtain the optimal active power operation point of each photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can send an active power control instruction to the photovoltaic sub-array, and the active power control instruction of the photovoltaic sub-array represents the sum of the active power adjustment amount allocated to the photovoltaic sub-array and the optimal active power operation point of the photovoltaic sub-array.
  • the following introduces the reactive power regulation of the first microgrid in the cluster island working mode.
  • the output power information of each microgrid may include the reactive power of each microgrid at the grid connection point.
  • the reactive power of the first microgrid at the corresponding grid connection point is recorded as the first reactive power Q MGk_sample , where k represents the identifier of the first microgrid.
  • the output power information of the second microgrid includes the reactive power of the second microgrid at the corresponding grid connection point as the second reactive power Q MGj_sample , where j represents the identifier of the second microgrid, where j is not equal to k.
  • the microgrid controller 201 of the first microgrid can pre-store or obtain the reactive power ratio parameter of the first microgrid and the reactive power ratio parameter of each second microgrid.
  • the reactive power ratio parameter of the first microgrid is recorded as Q MGk_base .
  • the reactive power ratio parameter of the second microgrid is recorded as Q MGj_base .
  • the first microgrid can adjust the reactive power at the grid connection point of the first microgrid in the cluster island working mode.
  • the microgrid controller 201 of the first microgrid can be based on the reference voltage V MGk_ref of the first microgrid and the voltage V MGk_sample at the grid connection point of the first microgrid.
  • the multiple microgrids of the microgrid cluster 100 may include two types of microgrids, one type of microgrid is a critical voltage node.
  • the other type of microgrid is a non-critical voltage node.
  • a critical voltage node may refer to a microgrid that controls the voltage at its own grid connection point to be stable at the rated value of the cluster voltage.
  • the number of critical voltage nodes in the microgrid cluster 100 is one.
  • the critical voltage node controls the voltage at its own grid connection point to be stable at the rated value of the cluster voltage by adjusting the reactive power.
  • a non-critical voltage node may refer to a microgrid that participates in adjusting the reactive power distribution of the microgrid cluster.
  • the non-critical voltage node participates in adjusting the reactive power distribution of the microgrid cluster by adjusting the output reactive power.
  • the first microgrid is a non-critical voltage node in the microgrid cluster 100.
  • the microgrid controller 201 of the first microgrid can determine the reference voltage V MGK _ ref of the first microgrid according to the reactive power Q MGk _ sample output at the grid connection point of the first microgrid, the reactive power Q MGj _ sample output at the grid connection points of each second microgrid, and the reference voltage V ref of the cluster.
  • the first microgrid can be based on the reactive power ratio parameter QMGj_base of any second microgrid, the grid connection of the second microgrid, and the reactive power ratio parameter QMGj_base of any second microgrid.
  • the reactive power Q MGj_sample output at the point, the reactive power ratio parameter Q MGk_base of the first microgrid, and the reactive power Q MGk_sample output at the grid connection point of the first microgrid are used to determine the reactive power impact amount ⁇ q k_j corresponding to the second microgrid.
  • the reactive power influence amount corresponding to the second microgrid can represent the reactive power adjustment amount determined by the first microgrid according to the grid active power of the second microgrid.
  • the microgrid controller 201 of the first microgrid can determine the first reactive power adjustment amount ⁇ Q1 MGk of the first microgrid based on the sum of the reactive power influence amounts corresponding to all the second microgrids.
  • the other microgrids connected to the first microgrid in communication are the second microgrid 1, the second microgrid 2, ..., the second microgrid n.
  • the number of other microgrids connected to the first microgrid in communication is n, and n is a positive integer.
  • the reactive power influence amount corresponding to the second microgrid 1 is recorded as ⁇ q k_1
  • the reactive power influence amount corresponding to the second microgrid 2 is recorded as ⁇ q k_2
  • the reactive power influence amount corresponding to the second microgrid n is recorded as ⁇ q k_n .
  • the first reactive power adjustment amount of the first microgrid is the sum of the reactive power influence amounts corresponding to each second microgrid in the second microgrid 1, the second microgrid 2, ..., the second microgrid n, that is,
  • the microgrid controller 201 of the first microgrid can determine the total reactive power adjustment amount ⁇ Q1 MGk of the first microgrid based on the reactive power regulation proportional integrator of the first microgrid and the sum of the reactive power influence amounts corresponding to all the second microgrids.
  • Q MGi_sample is the reactive power at the grid connection point of the second microgrid i
  • Q MGi_base is the reactive power proportional parameter of the second microgrid i
  • Q MGk_sample is the reactive power at the grid connection point of the first microgrid
  • Q MGk_base is the reactive power proportional parameter of the first microgrid.
  • K qk is the reactive power regulation proportional integrator configured for the first microgrid.
  • the microgrid controller 201 of the first microgrid may control a reactive power control loop filter to filter out interference and adjust the control bandwidth when determining the first reactive power adjustment amount ⁇ Q1 MGk of the first microgrid.
  • W q is the reactive power regulation loop filter function of the configured first microgrid, which can filter out interference and adjust the control bandwidth.
  • ⁇ qs represents the cutoff frequency of the reactive power control loop filter of the first microgrid.
  • the microgrid controller 201 of the first microgrid can calculate the reference voltage V MGK — ref of the first microgrid based on the reference voltage V ref of the cluster and the first reactive power adjustment amount ⁇ Q1 MGk of the first microgrid.
  • ⁇ vs represents the cutoff frequency of the first microgrid voltage control loop filter.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each distributed power source in the first microgrid based on the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid and the adjustment ratio of each distributed power source in the first microgrid.
  • the ratio of the reactive power adjustment amount of a distributed power source to the total reactive power adjustment amount of the first microgrid is the reactive power adjustment ratio parameter of the distributed power source.
  • the reactive power adjustment ratio parameters of each distributed power source can be the same. In other words, in the first microgrid, the reactive power adjustment amount of the distributed power sources participating in power regulation is evenly divided.
  • the first microgrid controls the internal distributed power source so that the deviation between the reactive power output by the first microgrid at the grid connection point and the total reactive power adjustment amount ⁇ QZ MGk is less than the deviation threshold.
  • the first microgrid controls the internal distributed power source so that the reactive power change output by the first microgrid at the grid connection point is close to or equal to the total reactive power adjustment amount.
  • the multiple distributed power sources 202 in the first microgrid may include one or more of an energy storage power source and a photovoltaic subarray. Since the voltage regulation power that can be shared by the energy storage power source and the photovoltaic subarray in the first microgrid is different, the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid may include the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power source and the total reactive power adjustment amount ⁇ QZ MGk_QV of the photovoltaic subarray.
  • the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power supply can be determined according to the reactive power influence amount corresponding to each second microgrid and the voltage regulation proportional integrator K vk_ESS corresponding to the energy storage battery.
  • K vk_ESS can characterize the proportional integrator (i.e., PI controller) of reactive power regulation of the energy storage power supply in the first microgrid.
  • K pQk_ESS represents the proportional coefficient of the proportional integrator (ie, the QI controller) for reactive power regulation of the energy storage power supply
  • K iQk_ESS represents the integral coefficient of the proportional integrator (ie, the QI controller) for reactive power regulation of the energy storage power supply.
  • the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic sub-array can be determined according to the reactive power influence amount corresponding to each second microgrid and the voltage regulation proportional integrator K vk_PV corresponding to the photovoltaic sub-array.
  • K vk_PV can represent the proportional integrator of the reactive power regulation of the photovoltaic sub-array in the first microgrid.
  • K pQk_PV represents the proportional coefficient of the proportional integrator (ie, PI controller) for reactive power regulation of the photovoltaic subarray
  • K iQk_PV represents the integral coefficient of the proportional integrator (ie, PI controller) for reactive power regulation of the photovoltaic subarray
  • multiple distributed power sources 202 in the first microgrid are all energy storage power sources, that is, each distributed power source 202 is an energy storage power source.
  • the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray in the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid can be regarded as zero.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each energy storage power supply in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power supplies and the reactive power regulation ratio parameter of each energy storage power supply.
  • the ratio of the reactive power adjustment amount of one energy storage power supply to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power supplies is the reactive power regulation ratio parameter of the energy storage power supply.
  • the reactive power regulation ratio parameters of each energy storage power supply can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each energy storage power supply so that each energy storage power supply adjusts the output reactive power.
  • the multiple distributed power sources 202 in the first microgrid are all photovoltaic sub-arrays, that is, each distributed power source 202 is a photovoltaic sub-array.
  • the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power source in the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid can be regarded as zero.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each photovoltaic subarray in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray and the reactive power regulation ratio parameter of each photovoltaic subarray.
  • the ratio of the reactive power adjustment amount of a photovoltaic subarray to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray is the reactive power regulation ratio parameter of the photovoltaic subarray.
  • the reactive power regulation ratio parameters of each photovoltaic subarray can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each photovoltaic subarray so that each photovoltaic subarray adjusts the output reactive power.
  • the multiple distributed power sources 202 in the first microgrid may include energy storage power sources and photovoltaic sub-arrays.
  • the microgrid controller 201 of the first microgrid may allocate the reactive power adjustment amount of each energy storage power source in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power sources and the reactive power regulation ratio parameter of each energy storage power source.
  • the ratio of the reactive power adjustment amount of one energy storage power source to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power sources is the reactive power regulation ratio parameter of the energy storage power source.
  • the reactive power regulation ratio parameters of each energy storage power source may be the same.
  • the microgrid controller 201 of the first microgrid may send the allocated reactive power adjustment amount to each energy storage power source so that each energy storage power source adjusts the output reactive power.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each photovoltaic subarray in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray and the reactive power regulation ratio parameter of each photovoltaic subarray.
  • the ratio of the reactive power adjustment amount of a photovoltaic subarray to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray is the reactive power regulation ratio parameter of the photovoltaic subarray.
  • the reactive power regulation ratio parameters of each photovoltaic subarray can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each photovoltaic subarray so that each photovoltaic subarray adjusts the output reactive power.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each energy storage power source, so that each energy storage power source adjusts the output reactive power and adjusts the frequency at the grid connection point to achieve reactive regulation of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each photovoltaic sub-array, so that each photovoltaic sub-array adjusts the output reactive power.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each distributed power source.
  • the optimal reactive power operating point of each distributed power source can be provided to the energy management system (EMS), and the microgrid controller 201 of the first microgrid can send a reactive power control instruction to each distributed power source 202, and the reactive power control instruction represents the sum of the reactive power adjustment amount allocated to the distributed power source 202 and the optimal reactive power operating point of the distributed power source 202.
  • EMS energy management system
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each energy storage power source.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to the energy storage power source, and the reactive power control instruction of the energy storage power source represents the sum of the reactive power adjustment amount allocated to the energy storage power source and the optimal reactive power operating point of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to the photovoltaic sub-array, and the reactive power control instruction of the photovoltaic sub-array represents the sum of the reactive power adjustment amount allocated to the photovoltaic sub-array and the optimal reactive power operating point of the photovoltaic sub-array.
  • the first microgrid may include a microgrid controller 201 and m distributed power sources.
  • the microgrid controller 201 may receive the reactive power of each second microgrid and send the reactive power of the first microgrid to each second microgrid.
  • the microgrid controller 201 may calculate the total reactive power adjustment of the first microgrid based on the reactive power of each second microgrid.
  • the microgrid controller 201 may send a reactive power control instruction 1 to the distributed power source 1, wherein the reactive power control instruction 1 is the sum of the reactive power adjustment amount allocated to the distributed power source 1 and the optimal reactive power operating point of the distributed power source 1.
  • the microgrid controller 201 may send a reactive power control instruction m to the distributed power source m, wherein the reactive power control instruction m is the sum of the reactive power adjustment amount allocated to the distributed power source m and the optimal reactive power operating point of the distributed power source m.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each energy storage power source.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to the energy storage power source, and the reactive power control instruction of the energy storage power source represents the sum of the reactive power adjustment amount allocated to the energy storage power source and the optimal reactive power operating point of the energy storage power source.
  • the microgrid controller 201 of the first microgrid controls the energy storage power source to adjust the output reactive power.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to the photovoltaic sub-array, and the reactive power control instruction of the photovoltaic sub-array represents the sum of the reactive power adjustment amount allocated to the photovoltaic sub-array and the optimal reactive power operating point of the photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid controls the photovoltaic sub-array to adjust the output reactive power.
  • the first microgrid is a key voltage node in the microgrid cluster 100.
  • the voltage at the grid connection point of the first microgrid needs to remain stable, and the voltage at the grid connection point is equal to or close to the reference voltage V ref of the cluster.
  • the first microgrid adjusts the grid connection point output voltage, which can be achieved by adjusting the reactive power output of the first microgrid.
  • the microgrid controller 201 of the first microgrid can determine the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid based on the reference voltage V ref of the cluster and the voltage V MGk_sample at the grid connection point of the first microgrid.
  • ⁇ QZ MGk K vk ⁇ (V ref -W v ⁇ V MGk_sample ).
  • K vk is the configured voltage regulation proportional integrator of the first microgrid
  • W v is the configured voltage control loop filter function of the first microgrid.
  • ⁇ vs represents the cutoff frequency of the first microgrid voltage control loop filter.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each distributed power source in the first microgrid based on the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid and the adjustment ratio of each distributed power source in the first microgrid.
  • the ratio of the reactive power adjustment amount of a distributed power source to the total reactive power adjustment amount of the first microgrid is the reactive power adjustment ratio parameter of the distributed power source.
  • the reactive power adjustment ratio parameters of each distributed power source can be the same. In other words, in the first microgrid, the reactive power adjustment amount of the distributed power sources participating in power regulation is evenly divided.
  • the first microgrid controls the internal distributed power source so that the deviation between the reactive power output by the first microgrid at the grid connection point and the total reactive power adjustment amount ⁇ QZ MGk is less than the deviation threshold.
  • the first microgrid controls the internal distributed power source so that the reactive power change output by the first microgrid at the grid connection point is close to or equal to the total reactive power adjustment amount.
  • the multiple distributed power sources 202 in the first microgrid may include one or more of an energy storage power source and a photovoltaic subarray. Since the voltage regulation power that can be shared by the energy storage power source and the photovoltaic subarray in the first microgrid is different, the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid may include the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power source and the total reactive power adjustment amount ⁇ QZ MGk_QV of the photovoltaic subarray.
  • the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power supply can be determined based on the reactive power influence amount corresponding to each second microgrid and the voltage regulation proportional integrator K vk_ESS corresponding to the energy storage battery.
  • K vk_ESS can represent the proportional integrator (i.e., PI controller) of reactive power regulation of the energy storage power supply in the first microgrid.
  • K pQk_ESS represents the proportional coefficient of the proportional integrator (ie, the QI controller) for reactive power regulation of the energy storage power supply
  • K iQk_ESS represents the integral coefficient of the proportional integrator (ie, the QI controller) for reactive power regulation of the energy storage power supply.
  • the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic sub-array can be determined based on the reactive power influence amount corresponding to each second microgrid and the voltage regulation proportional integrator K vk_PV corresponding to the photovoltaic sub-array.
  • K vk_PV can represent the proportional integrator (i.e., PI controller) of the reactive power regulation of the photovoltaic sub-array in the first microgrid.
  • K pQk_PV represents the proportional coefficient of the proportional integrator (ie, PI controller) for reactive power regulation of the photovoltaic subarray
  • K iQk_PV represents the integral coefficient of the proportional integrator (ie, PI controller) for reactive power regulation of the photovoltaic subarray
  • multiple distributed power sources 202 in the first microgrid are all energy storage power sources, that is, each distributed power source 202 is an energy storage power source.
  • the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray in the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid can be regarded as zero.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each energy storage power supply in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power supplies and the reactive power regulation ratio parameter of each energy storage power supply.
  • the ratio of the reactive power adjustment amount of one energy storage power supply to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power supplies is the reactive power regulation ratio parameter of the energy storage power supply.
  • the reactive power regulation ratio parameters of each energy storage power supply can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each energy storage power supply so that each energy storage power supply adjusts the output reactive power.
  • the multiple distributed power sources 202 in the first microgrid are all photovoltaic sub-arrays, that is, each distributed power source 202 is a photovoltaic sub-array.
  • the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power source in the total reactive power adjustment amount ⁇ QZ MGk of the first microgrid can be regarded as zero.
  • the microgrid controller 201 of the first microgrid can adjust the total reactive power of the photovoltaic array according to the total reactive power adjustment value ⁇ QZ MGk_PV of each photovoltaic array.
  • Reactive power adjustment ratio parameter allocates reactive power adjustment amount of each photovoltaic subarray in the first microgrid.
  • the ratio of the reactive power adjustment amount of a photovoltaic subarray to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray is the reactive power adjustment ratio parameter of the photovoltaic subarray.
  • the reactive power adjustment ratio parameters of each photovoltaic subarray may be the same.
  • the microgrid controller 201 of the first microgrid may send the allocated reactive power adjustment amount to each photovoltaic subarray so that each photovoltaic subarray adjusts the output reactive power.
  • the multiple distributed power sources 202 in the first microgrid may include energy storage power sources and photovoltaic sub-arrays.
  • the microgrid controller 201 of the first microgrid may allocate the reactive power adjustment amount of each energy storage power source in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power sources and the reactive power regulation ratio parameter of each energy storage power source.
  • the ratio of the reactive power adjustment amount of one energy storage power source to the total reactive power adjustment amount ⁇ QZ MGk_ESS of all energy storage power sources is the reactive power regulation ratio parameter of the energy storage power source.
  • the reactive power regulation ratio parameters of each energy storage power source may be the same.
  • the microgrid controller 201 of the first microgrid may send the allocated reactive power adjustment amount to each energy storage power source so that each energy storage power source adjusts the output reactive power.
  • the microgrid controller 201 of the first microgrid can allocate the reactive power adjustment amount of each photovoltaic subarray in the first microgrid according to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray and the reactive power regulation ratio parameter of each photovoltaic subarray.
  • the ratio of the reactive power adjustment amount of a photovoltaic subarray to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic subarray is the reactive power regulation ratio parameter of the photovoltaic subarray.
  • the reactive power regulation ratio parameters of each photovoltaic subarray can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each photovoltaic subarray so that each photovoltaic subarray adjusts the output reactive power.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each energy storage power source, so that each energy storage power source adjusts the output reactive power and adjusts the frequency at the grid connection point to achieve reactive regulation of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can send the allocated reactive power adjustment amount to each photovoltaic sub-array, so that each photovoltaic sub-array adjusts the output reactive power.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each distributed power source, that is, the optimal reactive power.
  • the optimal reactive power operating point of each distributed power source can be provided for the energy management system (EMS).
  • the microgrid controller 201 of the first microgrid can control each distributed power source 202 to adjust the output reactive power. Make the reactive power output of the distributed power source 202 the sum of its optimal reactive power and its reactive power adjustment amount.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to each distributed power source 202 so that the distributed power source 202 adjusts its own output reactive power to the reactive power indicated by the received reactive power control instruction.
  • the reactive power control instruction represents the sum of the reactive power adjustment amount allocated to the distributed power source 202 and the optimal reactive power operating point of the distributed power source 202.
  • the microgrid controller 201 of the first microgrid can control each energy storage power supply to adjust the output reactive power. Make the reactive power output by the energy storage power supply the sum of its optimal reactive power and its reactive power adjustment amount.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each energy storage power supply.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to each energy storage power supply so that the energy storage power supply adjusts its own output reactive power to the reactive power indicated by the received reactive power control instruction.
  • the reactive power control instruction of the energy storage power supply represents the sum of the reactive power adjustment amount allocated to the energy storage power supply and the optimal reactive power operating point of the energy storage power supply.
  • the microgrid controller 201 of the first microgrid can control each photovoltaic sub-array to adjust the output reactive power.
  • the reactive power output by the photovoltaic sub-array is the sum of its optimal reactive power and its reactive power adjustment amount.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to each photovoltaic sub-array so that the photovoltaic sub-array adjusts its own output reactive power to the reactive power indicated by the received reactive power control instruction.
  • the reactive power control instruction of the photovoltaic sub-array represents the sum of the reactive power adjustment amount allocated to the photovoltaic sub-array and the optimal reactive power operating point of the photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can directly use the reference voltage of the cluster and the voltage at the grid connection point of the first microgrid to determine the total reactive power adjustment of the first microgrid.
  • the microgrid controller 201 of the first microgrid does not need to obtain the reactive power at the grid connection point of the second microgrid.
  • the first microgrid may include a microgrid controller 201 and m distributed power sources.
  • the microgrid controller 201 may directly use the reference voltage of the cluster and the voltage at the grid connection point of the first microgrid to determine the total reactive power adjustment of the first microgrid.
  • the microgrid controller 201 may send a reactive power control instruction 1 to the distributed power source 1, wherein the reactive power control instruction 1 is the sum of the reactive power adjustment allocated to the distributed power source 1 and the optimal reactive power operating point of the distributed power source 1.
  • the microgrid controller 201 may send a reactive power control instruction m to the distributed power source m, wherein the reactive power control instruction m is the sum of the reactive power adjustment allocated to the distributed power source m and the optimal reactive power operating point of the distributed power source m.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each energy storage power source.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to the energy storage power source so that the energy storage power source adjusts its output reactive power to the reactive power indicated by the received reactive power control instruction.
  • the reactive power control instruction of the energy storage power source indicates the reactive power of the energy storage power source allocated to the The sum of the reactive power adjustment and the optimal reactive power operating point of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can obtain the optimal reactive power operating point of each photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can send a reactive power control instruction to the photovoltaic sub-array so that the photovoltaic sub-array adjusts the reactive power output by itself to the reactive power indicated by the received reactive power control instruction.
  • the reactive power control instruction of the photovoltaic sub-array represents the sum of the reactive power adjustment amount allocated to the photovoltaic sub-array and the optimal reactive power operating point of the photovoltaic sub-array.
  • Fig. 7 shows a control loop of a microgrid controller of a first microgrid in cluster island working mode according to an exemplary embodiment.
  • the control loop may include a control branch 701 for generating active power control instructions for distributed power sources and a control branch 702 for generating reactive power control instructions for distributed power sources.
  • the first microgrid is connected to n other microgrids in communication, where n is a positive integer.
  • the other microgrids connected to the first microgrid in communication are recorded as second microgrids.
  • the number of second microgrids is n.
  • the i-th second microgrid among the n second microgrids is recorded as the second microgrid MGi.
  • the first microgrid is recorded as the first microgrid MGk, where k is not equal to i.
  • the microgrid controller 201 of the first microgrid can receive the active power P MGi_sample at the grid connection point of each second microgrid.
  • the microgrid controller 201 of the first microgrid can obtain the active power P MGk_sample at the grid connection point of the first microgrid.
  • the microgrid controller 201 of the first microgrid can receive the reactive power Q MGi_sample at the grid connection point of each second microgrid.
  • the microgrid controller 201 of the first microgrid can obtain the reactive power Q MGk_sample at the grid connection point of the first microgrid.
  • the control branch 701 is first introduced below.
  • the control branch 701 can generate active power adjustment instructions for each distributed power source according to the active power P MGi_sample at the grid connection point of each second microgrid and the active power P MGk_sample at the grid connection point of the first microgrid, and send them to the controller of each distributed power source so that each distributed power source adjusts the output active power.
  • the control branch 701 may include a second microgrid total active power influence amount generation unit 801, a total active power adjustment amount generation unit 802A of an energy storage power supply, an active power adjustment amount allocation unit 803A of the energy storage power supply, an active power control instruction generation unit 804A of the energy storage power supply, a total active power adjustment amount generation unit 802B of a photovoltaic sub-array, an active power adjustment amount allocation unit 803B of a photovoltaic sub-array, and an active power control instruction generation unit 804B of a photovoltaic sub-array.
  • the second microgrid total active power influence amount generating unit 801 can calculate the second microgrid total active power influence amount according to the active power P MGi_sample received at the grid connection point of each second microgrid.
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power ratio parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid.
  • the second microgrid total active power influence amount generating unit 801 may be provided with an active power control loop filter W p .
  • ⁇ ps represents the cut-off frequency of the first microgrid active power control loop filter.
  • the second microgrid total active power influence quantity generating unit 801 can generate the second microgrid total active power influence quantity after filtering.
  • the total active power adjustment amount generation unit 802A of the energy storage power supply and the total active power adjustment amount generation unit 802B of the photovoltaic sub-array are provided respectively.
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power ratio parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid
  • W p is the configured active power regulation loop filter of the first microgrid.
  • the total active power adjustment amount generating unit 802A of the energy storage power supply can calculate the first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power supply according to the active power adjustment proportional integrator K pk_ESS corresponding to the configured energy storage power supply and the total active power influence amount of the second microgrid after wave processing, Among them, K pk_ESS can represent the proportional integrator (i.e., PI controller) of the active power regulation of the energy storage power supply in the first microgrid.
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power proportional parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power proportional parameter of the first microgrid
  • W p is the configured active power regulation loop filter of the first microgrid.
  • the total active power adjustment amount generating unit 802A of the energy storage power supply can perform a frequency regulation operation.
  • W f is the frequency loop filter function of the configured first microgrid.
  • the multiple distributed power sources of the first microgrid include x energy storage power sources and q photovoltaic sub-arrays, where x and q are both integers, and x and q are not zero at the same time.
  • the ath energy storage power supply among the x energy storage power supplies is recorded as energy storage power supply MGk_ESSa, where a is a value between 1 and x. Any integer.
  • the total active power adjustment amount generating unit 802A of the energy storage power supply can provide the total active power adjustment amount ⁇ PZ MGk_ESS of the energy storage unit to the active power adjustment amount allocating unit 803A of the energy storage power supply.
  • the total active power adjustment amount generating unit 802A of the energy storage power supply can allocate the active power adjustment amount P MGk_ESSa of each energy storage power supply MGk_ESSa according to the active power adjustment ratio parameter of each energy storage power supply MGk_ESSa.
  • the active power adjustment ratio parameters of each energy storage power supply MGk_ESSa can be the same or different.
  • the ratio of the active power adjustment amount P MGk_ESSa of the energy storage power supply MGk_ESSa to the total active power adjustment amount ⁇ PZ MGk_ESS of the energy storage power supply is the active power adjustment ratio parameter of the energy storage power supply MGk_ESSa.
  • the active power adjustment amount distribution unit 803A of the energy storage power supply can provide the active power adjustment amount of each energy storage power supply to the active power control instruction generation unit 804A of the energy storage power supply.
  • the active power control instruction generation unit 804A of the energy storage power supply can obtain the optimal active power operation point P MGk_ESSa_EMS of each energy storage power supply.
  • the energy storage power source active power control instruction generating unit 804A may send the energy storage power source MGk_ESSa active power adjustment instruction P * MGk_ESSa to the energy storage power source MGk_ESSa, so that the energy storage power source MGk_ESSa adjusts its output reactive power to the reactive power indicated by the received reactive power control instruction.
  • Each energy storage power source can perform current source type power following control according to the active power regulation instruction P * MGk_ESSa , or voltage source type frequency/voltage primary support, such as droop or virtual synchronous generator (VSG) control.
  • the present application does not specifically limit the specific control method of each energy storage power source.
  • the total active power adjustment amount generating unit 802B of the photovoltaic sub-array can adjust the proportional integrator Kpk_PV corresponding to the configured photovoltaic sub-array and the total active power influence amount of the second microgrid after wave processing.
  • the first active power adjustment component ⁇ P1 MGk_PV of the PV array is calculated.
  • W p is the active power regulation loop filter function of the configured first microgrid
  • K pk_PV can characterize the proportional integrator (i.e., PI controller) of the active power regulation of the photovoltaic subarray in the first microgrid
  • P MGi_sample is the active power at the grid-connected point of the second microgrid i
  • P MGi_base is the active power proportional parameter of the second microgrid i
  • P MGk_sample is the active power at the grid-connected point of the first microgrid
  • P MGk_base is the active power proportional parameter of the first microgrid.
  • the total active power adjustment amount generating unit 802B of the photovoltaic sub-array can perform frequency regulation operation.
  • G fk_PV can represent the proportional integrator (i.e., PI controller) of the frequency regulation of the photovoltaic sub-array, and W f is the frequency loop filter of the configured first microgrid.
  • the multiple distributed power sources of the first microgrid include x energy storage power sources and q photovoltaic sub-arrays, s and q are both integers, where x and q are not zero at the same time. If q is a positive integer, the b-th photovoltaic sub-array among the q photovoltaic sub-arrays is recorded as the photovoltaic sub-array MGk_PVb, where b takes any integer from 1 to q.
  • the total active power adjustment amount generation unit 802B of the photovoltaic sub-array can provide the total active power adjustment amount ⁇ PZ MGk_PV of the energy storage unit to the active power adjustment amount allocation unit 803B of the photovoltaic sub-array.
  • the total active power adjustment amount generation unit 802A of the photovoltaic sub-array can allocate the active power adjustment amount P MGk_PVb of each photovoltaic sub-array MGk_PVa according to the active power adjustment ratio parameter of each photovoltaic sub-array MGk_PVb.
  • the active power adjustment ratio parameters of each photovoltaic sub-array MGk_PVb can be the same or different.
  • the ratio of the active power adjustment amount P MGk_PVb of the photovoltaic sub-array MGk_PVa to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic sub-array is the active power regulation ratio parameter of the photovoltaic sub-array MGk_PVb.
  • the total active power adjustment amount generating unit 802B of the photovoltaic sub-array can provide the active power adjustment amount of each photovoltaic sub-array to the active power control instruction generating unit 804B of the photovoltaic sub-array.
  • the active power control instruction generating unit 804B of the photovoltaic sub-array can obtain the optimal active power operation point P MGk_PVb_EMS of each photovoltaic sub-array.
  • the PV subarray active power control instruction generating unit 804B may send the PV subarray MGk_PVb active power adjustment instruction P * MGk_PVb to the PV subarray MGk_PVb, so that the PV subarray MGk_PVb adjusts its output reactive power to the reactive power indicated by the received reactive power control instruction.
  • each photovoltaic sub-array can perform active power regulation and voltage regulation.
  • Each photovoltaic sub-array can perform current source type power following control according to the active power regulation instruction P * MGk_PVb , or voltage source type frequency/voltage primary support, such as droop or VSG control. This application does not specifically limit the specific control method of each photovoltaic sub-array.
  • control branch 701 may include a second microgrid total active power influence amount generating unit. 801, total active power adjustment amount generating unit 802A of energy storage power supply, active power adjustment amount allocating unit 803A of energy storage power supply, active power control instruction generating unit 804A of energy storage power supply.
  • control branch 701 may include a second microgrid total active power influence amount generating unit 801, a photovoltaic subarray total active power adjustment amount generating unit 802B, a photovoltaic subarray active power adjustment amount allocating unit 803B, and a photovoltaic subarray active power control instruction generating unit 804B.
  • a second microgrid total active power influence amount generating unit 801 a photovoltaic subarray total active power adjustment amount generating unit 802B, a photovoltaic subarray active power adjustment amount allocating unit 803B, and a photovoltaic subarray active power control instruction generating unit 804B.
  • the control branch 702 is introduced below.
  • the first microgrid is a non-critical voltage node in the microgrid cluster.
  • the control branch 702 can generate reactive power adjustment instructions for each distributed power source based on the reactive power Q MGi_sample at the grid connection point of each second microgrid and the reactive power Q MGk_sample at the grid connection point of the first microgrid. And send it to the controller of each distributed power source, so that each distributed power source adjusts the output reactive power.
  • the control branch 702 may include a reference voltage generation unit 901 of the grid-connected point, a total reactive power adjustment generation unit 902A of the energy storage power supply, a reactive power adjustment allocation unit 903A of the energy storage power supply, a reactive power control instruction generation unit 904A of the energy storage power supply, a total reactive power adjustment generation unit 902B of the photovoltaic sub-array, a reactive power adjustment allocation unit 903B of the photovoltaic sub-array, and a reactive power control instruction generation unit 904B of the photovoltaic sub-array.
  • the reference voltage generating unit 901 of the grid connection point can calculate the first reactive power component of the first microgrid according to the reactive power QMGi_sample received at the grid connection point of each second microgrid.
  • Q MGi_sample is the reactive power at the grid connection point of the second microgrid i
  • Q MGi_base is the reactive power ratio parameter of the second microgrid i
  • Q MGk_sample is the reactive power at the grid connection point of the first microgrid
  • Q MGk_base is the reactive power ratio parameter of the first microgrid.
  • the reference voltage generation unit 901 of the grid connection point can set a reactive power control loop filter W q .
  • ⁇ qs represents the cutoff frequency of the reactive power control loop filter of the first microgrid.
  • the reference voltage generating unit 901 of the grid connection point can be based on the first reactive power component of the first microgrid after filtering.
  • the reactive power regulation proportional integrator K qk of the first microgrid and the reference voltage V ref of the cluster are used to calculate the reference voltage V MGK — ref of the grid connection point of the first microgrid, where: Among them, Q MGi_sample is the reactive power at the grid-connected point of the second microgrid i, Q MGi_base is the reactive power proportional parameter of the second microgrid i, Q MGk_sample is the reactive power at the grid-connected point of the first microgrid, Q MGk_base is the reactive power proportional parameter of the first microgrid, W q is the configured reactive power regulation loop filter of the first microgrid, and K qk is the configured reactive power regulation proportional integrator of the first microgrid.
  • the grid-connected point reference voltage generating unit 901 can provide the reference voltage V MGK_ref of the grid-connected point of the first microgrid to the total reactive power adjustment amount generating unit 902A of the energy storage power source and the total reactive power adjustment amount generating unit 902B of the photovoltaic subarray respectively.
  • W v is the configured voltage control loop filter of the first microgrid
  • K vk_ESS can represent the proportional integrator (i.e., PI controller) of reactive power regulation of the energy storage power supply in the first microgrid.
  • the multiple distributed power sources of the first microgrid include x energy storage power sources and q photovoltaic sub-arrays, and s and q are both integers, wherein x and q are not zero at the same time.
  • the ath energy storage power supply among the x energy storage power supplies is recorded as the energy storage power supply MGk_ESSa, where a is any integer from 1 to s.
  • the total reactive power adjustment amount generation unit 902A of the energy storage power supply can provide the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage unit to the reactive power adjustment amount allocation unit 903A of the energy storage power supply.
  • the total reactive power adjustment amount generation unit 902A of the energy storage power supply can allocate the reactive power adjustment amount Q MGk_ESSa of each energy storage power supply MGk_ESSa according to the reactive power adjustment ratio parameter of each energy storage power supply MGk_ESSa.
  • the reactive power adjustment ratio parameters of each energy storage power supply MGk_ESSa can be the same or different.
  • the ratio of the reactive power adjustment amount Q MGk_ESSa of the energy storage power supply MGk_ESSa to the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power supply is the reactive power adjustment ratio parameter of the energy storage power supply MGk_ESSa.
  • the total reactive power adjustment amount generating unit 902A of the energy storage power supply can provide the reactive power adjustment amount of each energy storage power supply to the reactive power control instruction generating unit 904A of the energy storage power supply.
  • the reactive power control instruction generating unit 904A of the energy storage power supply can obtain the optimal reactive power operating point Q MGk_ESSa_EMS of each energy storage power supply.
  • the reactive power control instruction generating unit 904A of the energy storage power supply can send the reactive power adjustment instruction Q * MGk_ESSa of the energy storage power supply MGk_ESSa to the energy storage power supply MGk_ESSa.
  • Each energy storage power supply can perform current source type power following control according to the reactive power regulation instruction Q * MGk_ESSa , or voltage source type frequency/voltage primary support, such as droop or VSG control. This application does not specifically limit the specific control method of each energy storage power supply.
  • the total reactive power adjustment amount generating unit 902B of the photovoltaic sub-array can calculate the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic sub-array according to the voltage V MGk_sample at the grid connection point of the first microgrid, the reference voltage V MGK_ref of the grid connection point of the first microgrid, and the voltage regulation proportional integrator K vk_PV corresponding to the photovoltaic sub- array .
  • K vk_ESS can represent the proportional integrator (ie, PI controller) of the reactive power regulation of the photovoltaic sub-array in the first microgrid
  • W v is the configured voltage control loop filter function of the first microgrid.
  • the multiple distributed power sources of the first microgrid include x energy storage power sources and q photovoltaic sub-arrays, where x and q are both integers, and x and q are not zero at the same time. If q is a positive integer, the b-th photovoltaic sub-array among the q photovoltaic sub-arrays is recorded as the photovoltaic sub-array MGk_PVb, where b takes any integer from 1 to q.
  • the total reactive power adjustment amount generation unit 902B of the photovoltaic sub-array can provide the total reactive power adjustment amount ⁇ QZ MGk_PV of the energy storage unit to the reactive power adjustment amount allocation unit 903A of the photovoltaic sub-array.
  • the total reactive power adjustment amount generation unit 902B of the photovoltaic sub-array can allocate the reactive power adjustment amount Q MGk_PVb of each photovoltaic sub-array MGk_PVa according to the reactive power adjustment ratio parameter of each photovoltaic sub-array MGk_PVb.
  • the reactive power adjustment ratio parameters of each photovoltaic sub-array MGk_PVb can be the same or different.
  • the ratio of the reactive power adjustment amount Q MGk_PVb of the photovoltaic sub-array MGk_PVa to the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic sub-array is the reactive power regulation ratio parameter of the photovoltaic sub-array MGk_PVb.
  • the total reactive power adjustment amount generating unit 902B of the photovoltaic sub-array can provide the reactive power adjustment amount of each photovoltaic sub-array to the reactive power control instruction generating unit 904A of the photovoltaic sub-array.
  • the reactive power control instruction generating unit 904A of the photovoltaic sub-array can obtain the optimal reactive power operation point Q MGk_PVb_EMS of each photovoltaic sub-array.
  • the reactive power control instruction generating unit 904A of the photovoltaic sub-array may send the reactive power regulating instruction Q * MGk_PVb of the photovoltaic sub-array MGk_PVb to the photovoltaic sub-array MGk_PVb.
  • Each energy storage power source can perform current source type power following control according to the reactive power regulation instruction Q * MGk_PVb , or voltage source type frequency/voltage primary support, such as droop or VSG control. This application does not specifically limit the specific control method of each energy storage power source.
  • control branch 702 may include a reference voltage generation unit 901 of the grid connection point, a total reactive power adjustment amount generation unit 902A of the energy storage power supply, a reactive power adjustment amount allocation unit 903A of the energy storage power supply, and a reactive power control instruction generation unit 904A of the energy storage power supply.
  • control branch 702 may include a reference voltage generation unit 901 of the grid connection point, a total reactive power adjustment amount generation unit 902B of the photovoltaic sub-array, a reactive power adjustment amount allocation unit 903B of the photovoltaic sub-array, and a reactive power control instruction generation unit 904B of the photovoltaic sub-array.
  • the first microgrid is a key voltage node in the microgrid cluster.
  • the control branch 702 may include a reference voltage generation unit 901 of the grid connection point, a total reactive power adjustment amount generation unit 902A of the energy storage power supply, a reactive power adjustment amount allocation unit 903A of the energy storage power supply, a reactive power control instruction generation unit 904A of the energy storage power supply, a total reactive power adjustment amount generation unit 902B of the photovoltaic sub-array, a reactive power adjustment amount allocation unit 903B of the photovoltaic sub-array, and a reactive power control instruction generation unit 904B of the photovoltaic sub-array.
  • the grid-connected point reference voltage generating unit 901 can use the cluster reference voltage V ref as the grid-connected point reference voltage of the first microgrid, and provide it to the total reactive power adjustment amount generating unit 902A of the energy storage power source and the total reactive power adjustment amount generating unit 902B of the photovoltaic subarray respectively.
  • the total reactive power adjustment amount generating unit 902A of the energy storage power supply can calculate the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power supply according to the reference voltage V ref of the cluster, the reference voltage V MGK_ref of the grid connection point of the first microgrid, and the voltage regulation proportional integrator K vk_ESS corresponding to the energy storage battery.
  • ⁇ QZ MGk_ESS K vk_ESS ⁇ (V ref -W v ⁇ V MGk_sample ), W v is the configured voltage control loop filter function of the first microgrid, and K vk_ESS can represent the proportional integrator (i.e., PI controller) of reactive power regulation of the energy storage power supply in the first microgrid.
  • the total reactive power adjustment amount generating unit 902A of the energy storage power supply can provide the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage unit to the reactive power adjustment amount allocating unit 903A of the energy storage power supply.
  • the function of the reactive power control instruction generating power supply 904A can be found in the related introduction of FIG. 9( a ) and will not be described again here.
  • the total reactive power adjustment amount generating unit 902B of the photovoltaic sub-array can generate the total reactive power adjustment amount according to the voltage at the grid connection point of the first microgrid.
  • the reference voltage V ref of the cluster and the voltage regulation proportional integrator corresponding to the photovoltaic array Calculate the total reactive power adjustment of the PV array W v is the configured voltage control loop filter function of the first microgrid, and K vk_ESS can represent the proportional integrator (ie, PI controller) for reactive power regulation of the energy storage power source in the first microgrid.
  • the functions of the reactive power adjustment amount distribution unit 903B of the photovoltaic sub-array and the reactive power control instruction generating power source 904B of the photovoltaic sub-array can be referred to the relevant introduction of FIG. 9( a ), which will not be described again here.
  • the control branch 702 may include a reference voltage generation unit 901 of the grid connection point, a total reactive power adjustment amount generation unit 902A of the energy storage power supply, a reactive power adjustment amount allocation unit 903A of the energy storage power supply, and a reactive power control instruction generation unit 904A of the energy storage power supply.
  • control branch 702 may include a reference voltage generation unit 901 of the grid connection point, a total reactive power adjustment amount generation unit 902B of the photovoltaic sub-array, a reactive power adjustment amount allocation unit 903B of the photovoltaic sub-array, and a reactive power control instruction generation unit 904B of the photovoltaic sub-array.
  • the microgrid cluster 100 can send the cluster grid-connected working mode to each microgrid 101 in response to the received cluster grid-connected working mode.
  • the microgrid controller 201 of each microgrid 101 may receive the cluster grid-connected working mode and execute control operations corresponding to the cluster grid-connected working mode.
  • a microgrid controller 201 of a microgrid 101 may exist in the microgrid cluster 100 as a master microgrid controller, which may receive a working mode instruction. After receiving the cluster grid-connected working mode instruction, the master microgrid controller may send the cluster grid-connected working mode instruction to each microgrid controller 201 that is communicatively connected to the master microgrid controller. After receiving the cluster grid-connected working mode instruction, each microgrid controller 201 may send the cluster grid-connected working mode instruction to the microgrid controller 201 that is communicatively connected to each other. This enables each microgrid 101 in the microgrid cluster 100 to receive the cluster grid-connected working mode instruction.
  • a microgrid controller 201 of a microgrid 101 may exist in the microgrid cluster 100 as the main microgrid controller.
  • the main microgrid controller may be communicatively connected with other microgrid controllers in the microgrid cluster 100. After receiving the cluster grid-connected working mode instruction, the main microgrid controller may send the cluster grid-connected working mode instruction to other microgrid controllers in the microgrid cluster 100. This enables each microgrid 101 in the microgrid cluster 100 to receive the cluster grid-connected working mode instruction.
  • the main microgrid controller may be point-to-point communicatively connected with other microgrid controllers in the microgrid cluster 100.
  • the main microgrid controller is communicatively connected with other microgrid controllers in the microgrid cluster 100 via an Ethernet ring network.
  • any one microgrid 101 ie, the aforementioned first microgrid is taken as an example for introduction.
  • the first microgrid can adjust the active power at the grid connection point of the first microgrid in the cluster grid connection working mode.
  • the microgrid controller 201 of the first microgrid can obtain the reference active power P MGk_ref of the first microgrid, the active power ratio parameter P MGk_base of the first microgrid, and the active power P MGk_sample output at the grid connection point of the first microgrid, and determine the first active power adjustment component ⁇ P1 MGk of the first microgrid.
  • K pk is the active power regulation proportional integrator of the configured first microgrid.
  • the microgrid controller 201 of the first microgrid may control an active power control loop filter to filter out interference and adjust the control bandwidth when determining the first active power adjustment component ⁇ P1 MGk of the first microgrid.
  • W p is the active power regulation loop filter function of the configured first microgrid, which can filter out interference and adjust the control bandwidth.
  • ⁇ ps represents the cutoff frequency of the active power control loop filter of the first microgrid.
  • the first microgrid can only adjust the active power at the grid connection point of the first microgrid in the cluster grid connection mode.
  • the microgrid controller 201 of the first microgrid can use the first active power adjustment component ⁇ P1 MGk of the first microgrid as the total active power adjustment amount ⁇ PZ MGk of the first microgrid.
  • the microgrid controller 201 of the first microgrid can allocate the active power adjustment amount of each distributed power source in the first microgrid based on the total active power adjustment amount ⁇ PZ MGk of the first microgrid and the adjustment ratio of each distributed power source in the first microgrid.
  • the ratio of the active power adjustment amount of a distributed power source to the total active power adjustment amount of the first microgrid is the active power adjustment ratio parameter of the distributed power source.
  • the active power regulation ratio parameters of each distributed power source can be the same. In other words, in the first microgrid, the active power adjustment amounts of the distributed power sources participating in power regulation are evenly divided.
  • the first microgrid can adjust the active power and frequency at the grid connection point of the first microgrid in the cluster grid-connected working mode.
  • the microgrid controller 201 of the first microgrid can obtain the reference active power P MGk_ref of the first microgrid, the active power ratio parameter P MGk_base of the first microgrid, and the active power P MGk_sample output at the grid connection point of the first microgrid, and determine the first active power adjustment component ⁇ P1 MGk of the first microgrid.
  • K pk is the active power regulation proportional integrator of the configured first microgrid.
  • the microgrid controller 201 of the first microgrid may control an active power control loop filter to filter out interference and adjust the control bandwidth when determining the first active power adjustment component ⁇ P1 MGk of the first microgrid.
  • W p is the active power regulation loop filter function of the configured first microgrid, which can filter out interference and adjust the control bandwidth.
  • ⁇ ps represents the cutoff frequency of the active power control loop filter of the first microgrid.
  • the microgrid controller 201 of the first microgrid may use a frequency control loop filter to filter out interference and adjust the control bandwidth when determining the second adjustment component ⁇ P2 MGk of the active power of the first microgrid.
  • ⁇ P2 MGk G fk ⁇ (F ref -W f ⁇ f MGk_sample ), where W f is the configured frequency loop filter function of the first microgrid, which can filter out interference and adjust the control bandwidth.
  • ⁇ fs represents the cutoff frequency of the first microgrid frequency control loop filter.
  • the microgrid controller 201 of the first microgrid may determine the sum of the first active power adjustment component ⁇ P1 MGk of the first microgrid and the second active power adjustment component ⁇ P2 MGk of the first microgrid as the total active power adjustment amount ⁇ PZ MGk of the first microgrid.
  • the first microgrid adjusts the active power and voltage frequency output by the first microgrid at the grid connection point by controlling the internal distributed power source.
  • the multiple distributed power sources 202 in the first microgrid may include one or more of an energy storage power source and a photovoltaic subarray. Since the frequency regulation power that can be shared by the energy storage power source and the photovoltaic subarray in the first microgrid is different, the first active power adjustment component ⁇ P1 MGk of the first microgrid may include the first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power source and the first active power adjustment component ⁇ P1 MGk_PV of the photovoltaic subarray.
  • the total active power adjustment amount ⁇ PZ MGk of the first microgrid may include the total active power adjustment amount ⁇ PZ MGk_ESS of the energy storage source and the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic subarray.
  • the total active power adjustment amount ⁇ PZ MGk_ESS of the energy storage power source may include a first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power source and a second active power adjustment component ⁇ P2 MGk_ESS of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can determine the first active power adjustment component ⁇ P1 MGk_ESS of the energy storage power source according to the active power influence amount corresponding to each second microgrid and the active power adjustment proportional integrator K pk_ESS corresponding to the energy storage battery.
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power ratio parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid
  • K pk_ESS can characterize the proportional integrator (ie, PI controller) of the active power regulation of the energy storage power supply in the first microgrid
  • W p is the configured active power loop filter function of the first microgrid.
  • K pPk_ESS represents the proportional coefficient of the proportional integrator (ie, PI controller) for active power regulation of the energy storage power supply
  • K iPk_ESS represents the integral coefficient of the proportional integrator (ie, PI controller) for active power regulation of the energy storage power supply.
  • the microgrid controller 201 of the first microgrid can determine the second adjustment component ⁇ P2 MGk_ESS of the active power of the energy storage power source based on the frequency f MGk_sample at the grid connection point of the first microgrid, the reference frequency F ref of the cluster, and the frequency adjustment integrator G fk_ESS corresponding to the energy storage battery.
  • the second adjustment component ⁇ P2 MGk_ESS of the active power of the energy storage power source G fk_ESS ⁇ (F ref -W f ⁇ f MGk_sample ), where W f is the configured frequency loop filter of the first microgrid.
  • the microgrid controller 201 of the first microgrid can allocate the active power adjustment amount of each energy storage power supply in the first microgrid according to the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power supplies.
  • the ratio of the active power adjustment amount of one energy storage power supply to the total active power adjustment amount ⁇ PZ MGk_ESS of all energy storage power supplies is the adjustment ratio of the energy storage power supply.
  • the active power adjustment amount of each energy storage power supply can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated active power adjustment amount to each energy storage power supply so that each energy storage power supply can adjust the output The active power output.
  • the microgrid controller 201 of the first microgrid can obtain the optimal active power operating point of each energy storage power source.
  • the microgrid controller 201 of the first microgrid can send an active power control instruction to the energy storage power source so that the energy storage power source adjusts the output active power to the active power indicated by the received active power control instruction.
  • the active power control instruction of the energy storage power source represents the sum of the active power adjustment amount allocated to the energy storage power source and the optimal active power operating point of the energy storage power source.
  • the microgrid controller 201 of the first microgrid can determine the first active power adjustment component ⁇ P1 MGk_PV of the photovoltaic sub-array according to the active power influence amount corresponding to each second microgrid and the active power adjustment proportional integrator K pk_PV corresponding to the photovoltaic sub-array.
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power ratio parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid
  • K pk_PV can characterize the proportional integrator (i.e., PI controller) of the active power regulation of the photovoltaic sub-array in the first microgrid.
  • W p is the active power loop filter function of the configured first microgrid.
  • K pPk_PV represents the proportional coefficient of the proportional integrator (ie, PI controller) for active power regulation of the photovoltaic sub-array
  • K pIk_PV represents the integral coefficient of the proportional integrator (ie, PI controller) for active power regulation of the photovoltaic sub-array
  • the microgrid controller 201 of the first microgrid can determine the second adjustment component ⁇ P2 MGk_PV of the active power of the photovoltaic sub-array based on the frequency f MGk_sample at the grid connection point of the first microgrid, the reference frequency F ref of the cluster, and the frequency adjustment integrator G fk_PV corresponding to the photovoltaic sub-array.
  • the second adjustment component ⁇ P2 MGk_PV of the active power of the photovoltaic sub-array G fk_PV ⁇ (F ref -W f ⁇ f MGk_sample ).
  • W f is the configured frequency loop filter of the first microgrid
  • G fk_ESS can represent the proportional integrator (i.e., PI controller) of the frequency adjustment of the photovoltaic sub-array.
  • K fPk_PV represents the proportional coefficient of the proportional integrator (ie, PI controller) of the frequency regulation of the photovoltaic subarray
  • K fIk_ESS represents the integral coefficient of the proportional integrator (ie, PI controller) of the frequency regulation of the photovoltaic subarray.
  • the microgrid controller 201 of the first microgrid can allocate the active power adjustment amount of each photovoltaic subarray in the first microgrid according to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic subarray.
  • the ratio of the active power adjustment amount of a photovoltaic subarray to the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic subarray is the adjustment ratio of the photovoltaic subarray.
  • the active power adjustment amount of each photovoltaic subarray can be the same.
  • the microgrid controller 201 of the first microgrid can send the allocated active power adjustment amount to each photovoltaic subarray so that each photovoltaic subarray adjusts the output active power.
  • the microgrid controller 201 of the first microgrid can obtain the optimal active power operation point of each photovoltaic sub-array.
  • the microgrid controller 201 of the first microgrid can send an active power control instruction to the photovoltaic sub-array so that the photovoltaic sub-array adjusts the output active power to the active power indicated by the received active power control instruction.
  • the active power control instruction of the photovoltaic sub-array represents the sum of the active power adjustment amount allocated to the photovoltaic sub-array and the optimal active power operation point of the photovoltaic sub-array.
  • FIG11 shows a control loop of a microgrid controller of a first microgrid.
  • the first microgrid is a non-critical voltage node in the microgrid cluster 100.
  • the control loop of the microgrid controller may include a control branch 701 and a control branch 702.
  • the control branch 701 can refer to the relevant introduction of FIG8(a), which will not be repeated here.
  • the control branch 702 can refer to the relevant introduction of FIG9(a), which will not be repeated here.
  • FIG12 exemplarily shows a specific schematic diagram of a control loop of a microgrid controller.
  • the second microgrid total active power influence amount generating unit 801 may include a plurality of active power control loop filters Wp .
  • the second microgrid total active power influence amount generating unit 801 may calculate the second microgrid total active power influence amount in the cluster island working mode according to the active power control loop filter Wp , the active power PMG1_sample to PMGx_sample at the grid connection point of the second microgrid, and the active power PMGk_sample at the grid connection point of the first microgrid.
  • the second microgrid total active power influence amount generating unit 801 can calculate the second microgrid total active power influence amount in the cluster grid-connected working mode according to the active power control loop filter W p , the reference active power P MGk — ref of the first microgrid, and the active power P MGk — sample at the grid-connected point of the first microgrid.
  • Adder A1 can output the total active power impact of the second microgrid in cluster island working mode to data selector MUX1
  • P MGi_sample is the active power at the grid connection point of the second microgrid i
  • P MGi_base is the active power ratio parameter of the second microgrid i
  • P MGk_sample is the active power at the grid connection point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid.
  • Adder A2 can output the total active power impact of the second microgrid in the cluster grid connection working mode to the data selector MUX1.
  • P MGk_ref is the reference frequency of the grid-connected point of the first microgrid
  • P MGk_sample is the active power at the grid-connected point of the first microgrid
  • P MGk_base is the active power ratio parameter of the first microgrid.
  • the data selector MUX1 can provide the data output by the adder A1 to the total power supply of the energy storage power supply in the cluster island working mode. Active power adjustment amount generating unit 802A.
  • the data selector MUX1 can provide the data output by the adder A2 to the total active power adjustment amount generating unit 802A of the energy storage power source and the total active power adjustment amount generating unit 802B of the photovoltaic subarray in the cluster grid-connected working mode.
  • one of the total active power adjustment amount generating unit 802A of the energy storage power source or the total active power adjustment amount generating unit 802B of the photovoltaic subarray may include a frequency control loop filter W f of the first microgrid.
  • the total active power adjustment amount generating unit 802A of the energy storage power source in FIG12 includes a frequency control loop filter W f of the first microgrid.
  • the total active power adjustment amount generating unit 802A of the energy storage power supply may further include an active power adjustment proportional integrator K pk_ESS corresponding to the energy storage power supply and a frequency adjustment proportional integrator G fk_ESS corresponding to the energy storage power supply.
  • the total active power adjustment amount generating unit 802A of the energy storage power supply may calculate the total active power adjustment amount ⁇ PZ MGk_ESS of the energy storage power supply according to the data provided by the data selector MUX1, the reference frequency F ref of the cluster, and the frequency f MGk_sample at the grid connection point of the first microgrid , and provide it to the active power adjustment amount allocating unit 803A of the energy storage power supply.
  • the functions of the active power adjustment amount allocating unit 803A of the energy storage power supply and the active power control instruction generating unit 804A of the energy storage power supply may refer to the relevant introduction in the aforementioned embodiment, and will not be repeated here.
  • the total active power adjustment amount generating unit 802B of the photovoltaic sub-array may further include an active power adjustment proportional integrator K pk_PV corresponding to the photovoltaic sub-array and a frequency adjustment proportional integrator G fk_PV corresponding to the photovoltaic sub-array.
  • the total active power adjustment amount generating unit 802B of the photovoltaic sub-array may calculate the total active power adjustment amount ⁇ PZ MGk_PV of the photovoltaic sub-array according to the data provided by the data selector MUX1, the reference frequency F ref of the cluster, and the frequency f MGk_sample at the grid connection point of the first microgrid, and provide it to the active power adjustment amount allocating unit 803B of the photovoltaic sub - array.
  • the functions of the active power adjustment amount allocating unit 803B of the photovoltaic sub-array and the active power control instruction generating unit 804B of the photovoltaic sub-array may refer to the relevant introduction in the above-mentioned embodiments, which will not be repeated here.
  • the reference voltage generating unit 901 of the grid connection point may include a plurality of reactive power control loop filters W q and a reactive power regulation proportional integrator K qk of the first microgrid.
  • the reference voltage generating unit 901 of the grid connection point can calculate the first reactive power component of the first microgrid in the cluster island working mode according to the reactive power Q MG1_sample to Q MGx_sample at the grid connection point of the second microgrid, the reactive power Q MGk_sample at the grid connection point of the first microgrid, the reactive power control loop filter W q and the reactive power regulation proportional integrator K qk of the first microgrid.
  • the reference voltage generating unit 901 of the grid connection point can calculate the first reactive power component of the first microgrid in the cluster grid-connected working mode according to the reference reactive power Q MGk_ref of the grid connection point of the first microgrid, the reactive power Q MGk_sample at the grid connection point of the first microgrid, the reactive power control loop filter W q and the reactive power regulation proportional integrator K qk of the first microgrid.
  • the reference voltage generating unit 901 of the grid connection point can calculate the first reactive power component of the first microgrid in the cluster island working mode when the first microgrid is a non-critical voltage node based on the reactive power Q MG1_sample to Q MGx_sample at the grid connection point of the second microgrid, the reactive power Q MGk_sample at the grid connection point of the first microgrid, the reactive power control loop filter W q and the reactive power regulation proportional integrator K qk of the first microgrid.
  • the adder B1 can output to the data selector MUX2 the first reactive power component of the first microgrid in the cluster island working mode when the first microgrid is a non-critical voltage node.
  • Q MGi_sample is the reactive power at the grid connection point of the second microgrid i
  • Q MGi_base is the reactive power ratio parameter of the second microgrid i
  • Q MGk_sample is the reactive power at the grid connection point of the first microgrid
  • Q MGkbase is the reactive power ratio parameter of the first microgrid.
  • Adder B2 can output the first reactive power component of the first microgrid in the cluster grid connection working mode to data selector MUX2
  • Q MGk_sample is the reactive power at the grid connection point of the first microgrid
  • Q MGk_base is the reactive power ratio parameter of the first microgrid
  • Q MGk_ref is the reference reactive power of the grid connection point of the first microgrid.
  • the reference voltage generating unit 901 of the grid connection point may also include a reactive power regulation proportional integrator K qk of the first microgrid.
  • the data selector MUX2 provides the reactive power regulation proportional integrator K qk with the first reactive power component of the first microgrid in the cluster island working mode when the first microgrid is a non-critical voltage node in the cluster island working mode.
  • the data selector MUX2 provides the first reactive power component of the first microgrid in the cluster grid-connected working mode to the reactive power regulation proportional integrator Kqk in the cluster grid-connected working mode.
  • the data selector MUX3 in the reference voltage generating unit 901 of the grid connection point provides the data output by the reactive power regulation proportional integrator K qk to the adder C1.
  • the data selector MUX3 provides 0 to the adder C1.
  • the adder C1 can add the reference voltage V ref of the cluster and the data output by the digital selector MUX3 to obtain the reference voltage V MGK_ref of the grid connection point of the first microgrid.
  • the adder C1 provides the reference voltage V MGK_ref of the grid connection point of the first microgrid to the total reactive power adjustment amount generation unit 902A of the energy storage power supply and the total reactive power adjustment amount generation unit 902B of the photovoltaic subarray respectively.
  • one of the total reactive power adjustment amount generating unit 902A of the energy storage power source or the total reactive power adjustment amount generating unit 902B of the photovoltaic sub-array may include a voltage control loop filter Wv of the first microgrid.
  • the total reactive power adjustment amount generating unit 902A of the energy storage power source in FIG12 includes a voltage control loop filter Wv of the first microgrid.
  • the total reactive power adjustment amount generating unit 902A of the energy storage power supply may further include a voltage regulation proportional integrator K qk_ESS corresponding to the energy storage power supply.
  • the total reactive power adjustment amount generating unit 902A of the energy storage power supply may calculate the total reactive power adjustment amount ⁇ QZ MGk_ESS of the energy storage power supply according to the data provided by the adder C1, the voltage control loop filter W v , and the voltage regulation proportional integrator K qk_ESS corresponding to the energy storage power supply, and provide it to the reactive power adjustment amount allocating unit 903A of the energy storage power supply.
  • the functions of the reactive power adjustment amount allocating unit 903A of the energy storage power supply and the reactive power control instruction generating unit 904A of the energy storage power supply may refer to the relevant introduction in the aforementioned embodiment, and will not be repeated here.
  • the total reactive power adjustment amount generating unit 902B of the photovoltaic sub-array may include a reactive power adjustment proportional integrator K qk_PV corresponding to the photovoltaic sub-array.
  • the total reactive power adjustment amount generating unit 902B of the photovoltaic sub-array may calculate the total reactive power adjustment amount ⁇ QZ MGk_PV of the photovoltaic sub-array according to the data provided by the adder C1, the voltage control loop filter W v , and the voltage adjustment proportional integrator K qk_PV corresponding to the photovoltaic sub-array, and provide it to the reactive power adjustment amount allocating unit 903B of the photovoltaic sub-array.
  • the functions of the reactive power adjustment amount allocating unit 903B of the photovoltaic sub-array and the reactive power control instruction generating unit 904B of the photovoltaic sub-array may refer to the relevant introduction in the above-mentioned embodiment, and will not be repeated here.
  • the embodiment of the present application also provides a microgrid control method, which can be applied to the microgrid cluster, the grid connection point of any microgrid is coupled with the interconnection line, and the interconnection line is used to transmit electric energy; any microgrid is communicatively connected with one or more other microgrids; the controller in any microgrid cluster can execute the microgrid control method provided in the embodiment of the present application, which is applied to the microgrid cluster, and the microgrid cluster includes multiple microgrids; the grid connection point of any microgrid is coupled with the interconnection line, and the interconnection line is used to transmit electric energy; any microgrid is communicatively connected with one or more other microgrids; the microgrid includes a microgrid controller and multiple distributed power sources; the multiple distributed power sources are coupled with the grid connection point of the microgrid to which they belong.
  • the method includes:
  • the microgrid controller responds to the cluster island working mode, sending the output power information of the microgrid to the microgrid controller connected in communication;
  • the microgrid controller controls the output power of the multiple distributed power sources.
  • the output power information includes active power at a grid connection point of the microgrid
  • the method further includes:
  • the microgrid controller determines a total active power adjustment amount of the microgrid according to the active power at the microgrid's grid connection point and the active power at the one or more other microgrid grid connection points;
  • the microgrid controller controls the active power output by the multiple distributed power sources in the microgrid to which it belongs, so that the active power change at the grid connection point of the microgrid is the total active power adjustment amount.
  • the microgrid controller determines the total active power adjustment amount of the microgrid according to the active power at the microgrid's grid connection point and the active power at the one or more other microgrid grid connection points, including:
  • the sum of the first active power adjustment component and the second active power adjustment component is used as the total active power adjustment amount of the microgrid.
  • the first adjustment component of active power is used to adjust the active power output by the grid connection point of the microgrid
  • the second active power adjustment component is used to adjust the output frequency of the grid connection point of the microgrid.
  • the microgrid controller controls the active power output by the multiple distributed power sources in the microgrid to which it belongs, including:
  • the microgrid controller obtains the active power adjustment amount of each distributed power source according to the preset active power adjustment ratio parameter of each distributed power source and the total active power adjustment amount;
  • the microgrid controller controls each distributed power source to adjust the active power output according to the active power quantity of each distributed power source, so that the active power output by each distributed power source is the sum of its optimal active power and its active power adjustment quantity.
  • the output power information includes reactive power at a grid connection point of the microgrid
  • the method further includes:
  • the microgrid controller determines a reference voltage of the microgrid's grid connection point according to the reactive power at the microgrid's grid connection point, the reactive power at the one or more other microgrid's grid connection points, and the reference voltage of the cluster;
  • the microgrid controller determines the voltage of the microgrid based on the reference voltage of the microgrid and the voltage at the grid connection point of the microgrid. Total reactive power adjustment;
  • the microgrid controller obtains the reactive power adjustment amount of each distributed power source according to the preset reactive power adjustment ratio parameter of each distributed power source and the total reactive power adjustment amount;
  • the microgrid controller controls each distributed power source to adjust the reactive power output according to the reactive power adjustment amount of each distributed power source, so that the reactive power output by each distributed power source is the sum of its optimal reactive power and its reactive power adjustment amount.
  • the output power information includes reactive power at a grid connection point of the microgrid
  • the method further includes:
  • the microgrid controller determines a total reactive power adjustment amount of the microgrid based on a reference voltage of the cluster and a voltage at a grid connection point of the microgrid;
  • the microgrid controller allocates the reactive power adjustment amount of each distributed power source according to the preset reactive power adjustment ratio parameter of each distributed power source and the total reactive power adjustment amount;
  • the reactive power output by each distributed power source is controlled to adjust so that the reactive power output by each distributed power source is the sum of its optimal reactive power and its reactive power adjustment amount.
  • the total reactive power adjustment amount of the microgrid is used to adjust the grid-connected point output voltage of the microgrid to the reference voltage of the cluster.
  • an embodiment of the present application also provides a microgrid controller, which includes a processor and a memory; the memory is used to store computer program instructions; the processor is used to execute the computer program instructions stored in the memory, implement the microgrid control method provided in the above embodiments, or execute the functions of the microgrid controller provided in the above embodiments.
  • an embodiment of the present application also provides a computer-readable storage medium, which stores a computer program.
  • the computer program runs on a computer, the computer executes the microgrid control method provided in the above embodiments, or executes the functions of the microgrid controller provided in the above embodiments.
  • the embodiments of the present application also provide a computer program product, which includes a computer program or an instruction.
  • the computer program or the instruction When the computer program or the instruction is run on a computer, the computer executes the microgrid control method provided in the above embodiment.
  • the embodiments of the present application can be provided as a method, a system, or a computer program product. Therefore, the present application may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware.
  • the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请提供一种微电网集群以及微电网控制方法,可以使微电网调节功率响应速度变快,减少通信层级,降低通信延迟。微电网集群可以包括多个微电网。任一微电网的并网点与联络线耦合。联络线可以用于传输电能。所述微电网包括微电网控制器和多个分布式电源;所述多个分布式电源与所属微电网的并网点耦合,所述微电网控制器用于控制所述多个分布式电源的输出功率;所述微电网控制器与所述一个或多个其它微电网的微电网控制器通信连接,其中,所述微电网控制器用于:响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息。

Description

一种微电网集群以及微电网控制方法
相关申请的交叉引用
本申请要求在2022年11月15日提交中华人民共和国专利局、申请号为202211430310.8、申请名称为“一种微电网集群以及微电网控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种微电网集群以及微电网控制方法。
背景技术
随微电网数量的增加,邻近的微电网可相互连接,构成独立电网或一起接入配电网,组成微电网群。微电网群相对单一微电网具有较多优势,例如能量可在微电网之间多向流动,灵活性较高。各子微电网中分布式新能源发电可互补,供电可靠性高。
微电网群中,各微电网的功率调节依赖于微电网群的中央控制器的控制,造成各微电网可靠性较低。并且中央控制器与各微电网通信距离较大,通信层级较多,通信延迟较大,各微电网功率调节响应速度较慢。
发明内容
本申请提供一种微电网集群以及微电网控制方法,可以使微电网调节功率响应速度变快,减少通信层级,降低通信延迟。
第一方面,本申请实施例提供一种微电网集群。微电网集群可以包括多个微电网。任一微电网的并网点与联络线耦合。联络线可以用于传输电能。任一微电网可以与一个或者多个其它微电网通信连接。对于微电网集群中的任意一个微电网,所述微电网包括微电网控制器和多个分布式电源;所述多个分布式电源与所属微电网的并网点耦合,所述微电网控制器用于控制所述多个分布式电源的输出功率;所述微电网控制器与所述一个或多个其它微电网的微电网控制器通信连接,其中,所述微电网控制器用于:响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息。
本申请实施例中,微电网集群中,一个微电网可以包括微电网控制器和多个分布式电源。由微电网控制器与其他微电网控制器交互输出功率信息。并且由微电网控制器集中控制多个分布式电源。可见本申请实施例提供的微电网集群可以包括三层通信层级。其中,各微电网中的微电网控制器采用分布式控制,调整各微电网的输出功率。各微电网内部,微电网控制器采用集中式控制多个分布式电源,调整各分布式电源的输出功率。微电网集群可以工作在集群孤岛工作模式。集群孤岛工作模式下,微电网集群可以独立运行,不与大电网连接。微电网集群中任一微电网集群在集群孤岛工作模式下,可以向通信连接的其它微电网提供自身的输出功率。这样的设计可使任一微电网利用通信连接的微电网的输出功率信息,调整自身输出功率。可见,不需要微电网集群中配置中央控制器,向各微电网提供功率指令。本申请提供的微电网集群中,微电网之间交互输出功率信息,具有较少的通信层级,减小通信延迟,并且微电网调节功率响应速度较快。
一种可能的设计中,所述输出功率信息可以包括所述微电网的并网点处的有功功率。所述微电网控制器可以根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量。所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,以使所述微电网的并网点处的有功功率变化量为所述总有功功率调整量。
本申请实施例中,各微电网的微电网控制器可以响应于集群孤岛工作模式,将所属微电网的并网处的有功功率发送给通信连接的其它微电网,便于通信连接的其它微电网调整输出的有功功率。所述微电网可以利用自身输出的有功功率,以及通信连接的其它微电网输出的有功功率进行有功功率调节。微电网可以不需要获知集群中每个微电网输出的有功功率情况。仅利用自身输出的有功功率,以及通信连接的微电网输出的有功功率进行调节。这样的设计可以减少集群中通信交互信息的复杂度,并且微电网调节有功功率可以不依赖中央控制器。
一种可能的设计中,所述微电网控制器具体用于:根据所述微电网的并网点处的有功功率、所述一 个或多个其它微电网并网点处的有功功率,确定所述微电网的有功功率第一调整分量;根据所述微电网的并网点处的频率以及集群的参考频率,确定所述微电网的有功功率第二调整分量;将所述有功功率第一调整分量和所述有功功率第二调整分量的总和作为所述微电网的总有功功率调整量。示例性的,所述有功功率第一调整分量用于调整所述微电网的并网点输出的有功功率;所述有功功率第二调整分量用于调整所述微电网的并网点输出频率。
本申请实施例中,各微电网可以进行有功功率调节和频率调节操作。微电网控制器可以根据自身并网点处的有功功率以及通信连接的其它微电网的并网点处的有功功率,确定有功调节的调整量。以及根据集群的参考频率和自身并网点处的频率,确定频率调节的调整量。本领域中,频率调节也是通过调整有功功率实现的。可见本申请实施例中,微电网的总有功功率调整量中包括有功调节的调整量以及频率调节的调整量。以便调整微电网输出有功功率以及并网点处的频率稳定在集群的参考频率。
一种可能的设计中,微电网控制器可以根据预设各分布式电源的有功调节比例参数和所述总有功功率调整量,得到各分布式电源的有功功率调整量;根据所述各分布式电源的有功功率调整量,控制各分布式电源调整输出的有功功率,以使各分布式电源输出的有功功率为其最优有功功率与其有功功率调整量的总和。
本申请实施例中,微电网中由微电网控制器集中对各分布式电源进行控制,可以提升个分布式电源调整输出功率的响应速度。
一些示例中,所述微电网控制器可以响应于集群孤岛工作模式,根据预设各分布式电源的有功调节比例参数和所述总有功功率调整量,分配所述每个分布式电源的有功功率调整量,实现确定各分布式电源的有功功率调整量。微电网控制器可以向所述每个分布式电源的控制器发送有功功率控制指令,实现控制分布式电源输出有功功率。其中,所述有功功率控制指令表征所述每个分布式电源的有功功率调整量与所述每个分布式电源的最优有功功率运行点的总和。
一种可能的设计中,所述输出功率信息可以包括所述为微电网的并网点处的无功功率;所述微电网控制器还用于:根据所述微电网的并网点处的无功功率、所述一个或多个其它微电网并网点处的无功功率、以及集群的参考电压,确定所述微电网的并网点的参考电压;基于所述微电网的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
本申请实施例中,微电网可以为非关键电压节点。非关键电压节点中的微电网控制器可以响应于集群孤岛工作模式,利用通信连接的其它微电网的并网点处的无功功率和自身并网点处的无功功率,调整自身输出的无功功率。微电网控制器可以与其他微电网通信交互无功功率信息,并确定自身无功功率调整量。微电网控制器可以集中控制每个分布式电源调整无功功率。
一些示例中,所述微电网控制器可以根据自身输出的无功功率、通信连接的其它微电网并网点处的无功功率、以及集群的参考电压,确定所述微电网的参考电压;基于所述微电网的参考电压以及所述所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量。可实现确定总无功功率调整量。所述微电网可以根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,分配所述每个分布式电源的无功功率调整量,实现确定各分布式电源的无功功率调整量。所述微电网向各分布式电源的控制器发送无功功率控制指令,实现控制分布式电源调整输出无功功率。所述无功功率控制指令表征所述每个分布式电源的无功功率调整量与所述每个分布式电源的最优无功功率运行点的总和。
一种可能的设计中,所述微电网控制器还用于:基于集群的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。示例性的,所述微电网的总的无功功率调整量用于调整所述微电网的并网点输出电压为所述集群的参考电压。
本申请实施例中,微电网可以为关键电压节点,微电网控制器可以响应于集群孤岛工作模式,进行电压调节。本领域中电压调节是通过无功功率调节实现。微电网控制器可以利用所属微电网的并网点处的电压和集群的参考电压,调整确定微电网的总无功功率调整量。微电网控制器可以集中控制每个分布 式电源调整无功功率。
第二方面,本申请实施例还提供一种微电网控制方法,应用于微电网集群,所述微电网集群包括多个微电网;任一所述微电网的并网点与联络线耦合,所述联络线用于传输电能;任一所述微电网与一个或多个其它微电网通信连接;所述微电网包括微电网控制器和多个分布式电源;所述多个分布式电源与所属微电网的并网点耦合;所述方法包括:所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息;所述微电网控制器控制所述多个分布式电源的输出功率。
一种可能的设计中,本申请实施例提供的微电网控制方法中,所述输出功率信息包括所述微电网的并网点处的有功功率;在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:所述微电网控制器根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量;所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,以使所述微电网的并网点处的有功功率变化量为所述总有功功率调整量。
一种可能的设计中,所述微电网控制器根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量,包括:根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的有功功率第一调整分量;根据所述微电网的并网点处的频率以及集群的参考频率,确定所述微电网的有功功率第二调整分量;将所述有功功率第一调整分量和所述有功功率第二调整分量的总和作为所述微电网的总有功功率调整量。
一种可能的设计中,所述有功功率第一调整分量用于调整所述微电网的并网点输出的有功功率;所述有功功率第二调整分量用于调整所述微电网的并网点输出频率。
一种可能的设计中,所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,包括:所述微电网控制器根据预设各分布式电源的有功调节比例参数和所述总有功功率调整量,得到各分布式电源的有功功率调整量;所述微电网控制器根据所述各分布式电源的有功功率台偶证量,控制各分布式电源调整输出的有功功率,以使各分布式电源输出的有功功率为其最优有功功率与其有功功率调整量的总和。
一种可能的设计中,所述输出功率信息包括所述微电网的并网点处的无功功率;在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:所述微电网控制器根据所述微电网的并网点处的无功功率、所述一个或多个其它微电网并网点处的无功功率、以及集群的参考电压,确定所述微电网的并网点的参考电压;所述微电网控制器基于所述微电网的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;所述微电网控制器根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;所述微电网控制器根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
一种可能的设计中,所述输出功率信息包括所述微电网的并网点处的无功功率;在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:所述微电网控制器基于集群的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;所述微电网控制器根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,分配各分布式电源的无功功率调整量;根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
一种可能的设计中,所述微电网的总的无功功率调整量用于调整所述微电网的并网点输出电压为所述集群的参考电压。
第三方面,本申请提供一种微电网控制器,可以执行第二方面及其任一设计所描述的微电网控制方法。
第四方面,本申请提供一种分布式电源,可以与微电网控制器构成第一方面及其任一设计所描述的微电网。
第五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当 所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或第三方面的任一可能的设计所描述的方法。
第六方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行上述第二方面或第三方面的任一可能的设计所描述的方法。
上述第二方面至第六方面中任一方面可以达到的技术效果可以参照上述第一方面及第一方面中任一可能的设计可以达到的技术效果说明,重复之处不予论述。
附图说明
图1为本申请实施例提供的微电网集群的结构示意图;
图2为本申请实施例提供的微电网集群的结构示意图;
图3为第一微电网与第二微电网交互示意图;
图4为一种微电网控制器与分布式电源交互以及微电网控制器与第二微电网交互示意图;
图5为一种微电网控制器与分布式电源交互以及微电网控制器与第二微电网交互示意图;
图6为一种微电网控制器与分布式电源交互以及微电网控制器与第二微电网交互示意图;
图7为一种控制环路的示意图;
图8(a)示例性的示出一种控制支路701的示意图;
图8(b)示例性的示出一种控制支路701的示意图;
图8(c)示例性的示出一种控制支路701的示意图;
图9(a)示例性的示出一种控制支路702的示意图;
图9(b)示例性的示出一种控制支路702的示意图;
图9(c)示例性的示出一种控制支路702的示意图;
图10(a)示例性的示出一种控制支路702的示意图;
图10(b)示例性的示出一种控制支路702的示意图;
图10(c)示例性的示出一种控制支路702的示意图;
图11为一种控制环路的具体结构示意图;
图12为一种控制环路的具体结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“耦合”可以理解为电连接,两个电学元件耦合可以是两个电学元件之间的直接或间接耦合。例如,A与B连接,既可以是A与B直接耦合,也可以是A与B之间通过一个或多个其它电学元件间接耦合,例如A与B耦合,也可以是A与C直接耦合,C与B直接耦合,A与B之间通过C实现了耦合。在一些场景下,“耦合”也可以理解为连接。总之,A与B之间耦合,可以使A与B之间能够传输电能。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。本申请实施例提供一种微电网集群(拓扑),如图1所示,微电网集群100可以包括多个微电网101。微电网101也可以称为微电网集群100中的子微网。
微电网101可以视为一个小型电力网络,能够实现内部电力电量基本平衡。一些场景中,微电网101可以独立运行,可以具有为负载供电、储能等一种或多种功能。另一些场景中,微电网101可以与其它微电网耦合,构成微电网集群,与其它微电网并网运行。
多个微电网101中,一个微电网101具有对应的并网点PCC。微电网101通过对应的并网点PCC与联络线连接。所述联络线用于传输电能。可选的,如图1所示,一些场景中,所述联络线可以为链状的联络线。在另一些场景中,所述联络线可以为环状的联络线。本申请实施例对此不作过多限定。下面对多个微电网101中的任意一个微电网101进行介绍。
微电网101可以包括微电网控制器201和多个分布式电源202。微电网101中,每个分布式电源202可以通过所属的微电网101对应的并网点PCC与联络线耦合。每个分布式电源202可以向联络线输出电能。微电网控制器201可以与每个分布式电源202通信连接,微电网控制器201可以向每个分布式电源202发送指令,实现微电网控制器201对所属微电网101中的分布式电源202进行控制。由此可见,各微电网101中多个分布式电源202之间可以不需要通信连接,每个分布式电源202可以在微电网控制器201的控制下进行功率调节,如电压调节,频率调节等。
多个微电网101中,一个微电网101可以与至少一个其它微电网101通信连接。微电网101可以与通信连接的微电网之间进行信息交互。本申请实施例中,其它微电网可以指多个微电网中除该微电网之外的微电网。
一些示例中,请继续参见图1,微电网集群100中,微电网101可以与至少一个其它微电网101之间的通信链路为点对点通信链路,实现该微电网101与至少一个其它微电网101之间交互信息。示例性的,图1中两个微电网控制器201之间的虚线,示出两个微电网控制器201之间通信连接。可选的,通信连接可以为通过有线通信的方式进行通信,或者通过无线通信的方式进行通信。在一些应用场景中,微电网控制器201之间的通信连接,可以通过有线通信线路进行通信。
另一些示例中,请参见图2,微电网集群100中,每个微电网101可以通过以太环网与其它微电网101通信连接。每个微电网101通过所述以太环网可以与一个或多个其它微电网101交互信息。图2与图1相同之处,可以参见图1中的相关介绍,此处不再赘述。
本申请实施例中,两个微电网中微电网控制器之间通信连接,也是两个微电网之间通信连接。本申请对此不作具体区分。
本申请实施例提供的微电网集群100可以具有多种工作模式。可选的,多种工作模式可以包括集群并网工作模式,集群孤岛工作模式等。微电网集群100在集群孤岛工作模式下,微电网集群100作为一个整体,可以独立运行。微电网集群100在并网工作模式下,微电网集群100作为一个整体,可以与其它电网或者集群耦合,与其它电网或者集群并网运行。
基于本申请实施例提供的微电网集群100的拓扑,下面对微电网集群100的在集群孤岛工作模式下的工作过程进行介绍。微电网集群100可以响应于集群孤岛工作模式,向各微电网101发送集群孤岛工作模式指令。在微电网集群100中,各微电网101的微电网控制器201可以接收到集群孤岛工作模式指令,并执行集群孤岛工作模式相应的控制操作。
一些示例中,微电网集群100中可以存在一个微电网101的微电网控制器201作为主微电网控制器,可以接收工作模式指令。主微电网控制器可以接收到集群孤岛工作模式后,向与该主微电网控制器通信连接的各微电网控制器201发送集群孤岛工作模式指令。各微电网控制201在接收到集群孤岛工作模式指令后,可以向与各自通信连接的微电网控制器201发送集群孤岛工作模式指令。实现微电网集群100中各微电网101接收到集群孤岛工作模式指令。
另一些示例中,微电网集群100中可以存在一个微电网101的微电网控制器201作为主微电网控制器。主微电网控制器可以与微电网集群100中其它微电网控制器通信连接。主微电网控制器可以接收到集群孤岛工作模式指令后,向微电网集群100中其它微电网控制器发送集群孤岛工作模式指令。实现微电网集群100中各微电网101接收到集群孤岛工作模式指令。可选的,主微电网控制器可以与微电网集群100中其它微电网控制器分别点对点通信连接。或者,主微电网控制器通过以太环网与微电网集群100中其它微电网控制器通信连接。
在微电网集群100中,以任意一个微电网101作为举例进行介绍,便于介绍,下面将微电网集群100中的任意一个微电网101记为第一微电网,并将与第一微电网通信连接的微电网记为第二微电网。第一微电网可以与一个或多个第二微电网通信连接。
图3示例性的示出集群孤岛工作模式下,第一微电网和第二微电网交互过程。第一微电网可以在集群孤岛工作模式下,向各第二微电网发送第一微电网的输出功率信息,第一微电网的输出功率信息可以包括但不限于第一微电网的并网点处的有功功率、第一微电网的并网点处的无功功率中的一种或多种。
便于各第二微电网根据第一微电网的输出功率信息,调整第二微电网的并网点输出的有功功率或者无功功率。微电网集群100中,每个微电网101均向通信连接的微电网发送自身的输出功率信息。从而每个微电网可以接收到其它微电网的输出功率信息。请继续参见图3,第一微电网可以接收到一个或多个第二微电网的输出功率信息。第一微电网可以根据接收到的一个或多个第二微电网的输出功率信息,调整第一微电网的并网点输出的有功功率或者无功功率。
示例性的,第一微电网中的微电网控制器201可以响应于集群孤岛工作模式,向第二微电网的微电网控制器201发送所述第一微电网的输出功率信息。第一微电网中的微电网控制器201可以接收各第二微电网的微电网控制器201发送的第二微电网的输出功率信息。
本申请实施例中,第一微电网可以响应于集群孤岛工作模式,调整第一微电网的并网点处的输出功率。其中调整第一微电网的并网点处的输出功率可以包括第一微电网的并网点处的有功功率调节、第一微电网并网点处的无功功率调节中的一个或多个操作。下面分别对第一微电网在集群孤岛工作模式下并网点处的有功功率调节操作、并网点处的无功功率调节操作分别进行介绍。
首先介绍第一微电网在集群孤岛工作模式下的有功功率调节。
一种可能的设计中,第一微电网的微电网控制器201可以根据第一微电网的并网点处的有功功率、与第一微电网通信连接的其它微电网并网点处的有功功率,确定第一微电网的总有功功率调整量。第一微电网的微电网控制器201可以控制所属的微电网,也即控制第一微电网中的多个分布式电源输出的有功功率,以使第一微电网的并网点处的有功功率变化量为所述总有功功率调整量。本申请实施例中,第一微电网的并网点处的有功功率变化量为总有功功率调整量,可以指第一微电网的并网点处的有功功率变化量等于或者近似等于总有功功率调整量,或者可以指第一微电网的并网点处的有功功率变化量与总有功功率调整量的差值小于或者等于预设差值阈值,本申请对此不作具体限定。
一种可能的场景中,每个微电网的输出功率信息可以包括该每个微电网在并网点处的有功功率。第一微电网在对应的并网点处的有功功率记为第一有功功率PMGk_sample,k表征第一微电网的标识。第二微电网的输出功率信息包括第二微电网在对应的并网点处的有功功率记为第二有功功率PMGj_sample,j表征第二微电网的标识,其中,j与k不相等。
第一微电网的微电网控制器201可以预先存储或者获取第一微电网的有功功率比例参数和各第二微电网的有功功率比例参数。第一微电网的有功功率比例参数记为PMGk_base。第二微电网的有功功率比例参数记为PMGj_base
第一微电网在集群孤岛工作模式下,可以进行调整第一微电网的并网点处的有功功率、以及调整第一微电网的并网点处输出电压的频率。
第一微电网可以根据各第二微电网的有功功率比例参数PMGj_base、各第二微电网的并网点处输出的有功功率PMGj_sample、以及第一微电网的有功功率比例参数PMGk_base、第一微电网的并网点处输出的有功功率PMGk_sample,确定该第二微电网对应的有功功率影响量Δpk_j。其中第二微电网对应的有功功率影响量可以表征第一微电网根据该第二微电网的有功功率确定的有功功率调整量。
第一微电网的微电网控制器201可以将全部第二微电网对应的有功功率影响量的总和,确定为第一微电网的有功功率第一调整分量ΔP1MGk。结合图4,与第一微电网通信连接的其它微电网分别为第二微电网1、第二微电网2、…、第二微电网n。与第一微电网通信连接的其它微电网的数量为n,n为正整数。第二微电网1对应的有功功率影响量记为Δpk_1,第二微电网2对应的有功功率影响量记为Δpk_2,第二微电网n对应的有功功率影响量记为Δpk_n。第一微电网的有功功率第一调整分量为第二微电网1、第二微电网2、…、第二微电网n中全部第二微电网对应的有功功率影响量的总和,也即
第一微电网的有功功率第一调整分量ΔP1MGk可以基于配置的有功功率调节比例积分器和各第二微电网对应的有功功率影响量的总和确定。其中, PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数。Kpk为配置的第一微电网的有功功率调节比例积分器。
可选的,第一微电网的微电网控制器201确定第一微电网的有功功率第一调整分量ΔP1MGk过程中可以采用控制有功功率控制环路滤波器,以滤除干扰、调节控制带宽。第一微电网的有功功率第一调整 分量Wp为配置的第一微电网的有功功率调节环路滤波器函数,可以滤除干扰、调节控制带宽。可选的,ωps表征第一微电网有功功率控制环路滤波器截止频率。
第一微电网执行并网点处频率的闭环控制,实现第一微电网并网点处频率无差调节,使第一微电网并网点处的频率等于或者接近微电网集群100的参考频率。微电网集群100的参考频率表征为微电网集群100中电压的频率。
第一微电网的微电网控制器201可以根据所述第一微电网的并网点处的频率fMGk_sample以及集群的参考频率Fref,确定第一微电网的有功功率第二调整分量ΔP2MGk。其中,ΔP2MGk=Gfk·(Fref-fMGk_sample),其中Gfk为第一微电网并网点处频率调节比例积分器。
可选的,第一微电网的微电网控制器201确定第一微电网的有功功率第二调整分量ΔP2MGk过程中可以采用频率控制环路滤波器,以滤除干扰、调节控制带宽。ΔP2MGk=Gfk·(Fref-Wf·fMGk_sample),其中Wf为配置的第一微电网的频率环路滤波器函数,可以滤除干扰、调节控制带宽。Fref表征集群的参考频率。fMGk_sample表征第一微电网的并网点处的频率。可选的,ωfs表征第一微电网频率控制环路滤波器截止频率。
第一微电网的微电网控制器201可以将有功功率第一调整分量ΔP1MGk与有功功率第二调整分量ΔP2MGk的总和确定第一微电网的总有功功率调整量,其中,ΔPZMGk=ΔP1MGk+ΔP2MGk,也即其中,Kpk为配置的第一微电网的有功功率调节比例积分器,Wp为配置的第一微电网的有功功率调节环路滤波器函数,Gfk为第一微电网并网点处频率调节比例积分器,Wf为配置的第一微电网的频率环路滤波器函数,Fref为集群的参考频率,PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数,fMGk_sample为所述第一微电网的并网点处的频率。
通过上述介绍可知,第一微电网的微电网控制器201可以根据第一微电网的并网点处的有功功率、通信连接的其它微电网处的有功功率,确定所述微电网的有功功率第一调整分量。有功功率第一调整量可以用于调整第一微电网的并网点输出的有功功率。第一微电网的控制器201可以根据所述微电网的并网点处的频率以及集群的参考频率,确定所述微电网的有功功率第二调整分量。有功功率第二调整分量可以用于调整第一并网点输出频率。可见,第一微电网在集群孤岛工作模式下,可以调整第一微电网的并网点处的有功功率,以及调整第一微电网的频率(也即二次调频操作)。第一微电网的微电网控制器201可以控制所属的微电网中,也即第一微电网中的多个分布式电源输出的有功功率,以使所述微电网的并网点处的有功功率变化量为所述总有功功率调整量。
第一微电网的微电网控制器201可以基于第一微电网的总有功功率调整量ΔPZMGk以及第一微电网中各分布式电源的有功调节比例参数,得到各分布式电源的有功功率调整量。或者说,分配第一微电网中每个分布式电源的有功功率调整量。通常,一个分布式电源的有功功率调整量与第一微电网的总有功功率调整量的比值为该分布式电源的有功调节比例参数。可选的,各分布式电源的有功调节比例参可以相同。换句话说,在第一微电网中,参与功率调节的分布式电源的有功功率调整量是均分的。
第一微电网通过控制内部的分布式电源,实现第一微电网在并网点处输出的有功功率变化量接近或者等于所述总有功功率调整量以及并网点处频率调整为微电网集群100的参考频率。
一种可能的设计中,第一微电网的微电网控制器201可以获取到各分布式电源的最优有功功率运行点,也即最优有功功率。各分布式电源的最优有功功率运行点可以由能量管理系统(energy management system,EMS)提供。第一微电网的微电网控制器201可以控制各分布式电源202调整输出的有功功率。其中,一个分布式电源202输出的有功功率为该分布式电源的最优有功功率与该分布式电源的有功功率调整量的总和。
一些示例中,第一微电网的微电网控制器201可以向各分布式电源202发送有功功率控制指令,有功功率控制指令表征该分布式电源202分配到的有功功率调整量与该分布式电源202的最优有功功率运行点的总和。
如图4所示,微电网控制器201可以向分布式电源1发送有功功率控制指令1,其中有功功率控制指令1为分布式电源1分配到的有功功率调整量与分布式电源1的最优有功功率运行点的总和。类似地,微电网控制器201可以向分布式电源m发送有功功率控制指令m,其中有功功率控制指令m为分布式电源m分配到的有功功率调整量与分布式电源m的最优有功功率运行点的总和。
一些应用场景中,第一微电网中多个分布式电源202可以包括储能电源、光伏子阵中的一个或多个。由于第一微电网中储能电源和光伏子阵可分担的频率调节功率不同。
由于微电网的频率调节也通过调整有功功率实现,第一微电网的有功功率第一调整分量可以理解为调整有功功率操作所需要的有功功率调整量,第一微电网的有功功率第二调整分量可以理解为调整频率操作所需要的有功功率调整量。
第一微电网的有功功率第一调整分量ΔP1MGk可以包括储能电源的有功功率第一调整分量ΔP1MGk_ESS和光伏子阵的有功功率第一调整分量ΔP1MGk_PV。第一微电网的有功功率第二调整分量ΔP2MGk可以包括储能电源的有功功率第二调整分量ΔP2MGk_ESS和光伏子阵的有功功率第二调整分量ΔP2MGk_PV。下面分别进行介绍。
储能电源的有功功率第一调整分量ΔP1MGk_ESS可以根据各第二微电网对应的有功功率影响量以及储能电池对应的有功功率调节比例积分器Kpk_ESS确定。示例性的,储能电源的有功功率第一调整分量Kpk_ESS可以表征第一微电网中储能电源有功功率调节的比例积分器(也即PI控制器)。Wp为配置的第一微电网的有功功率环路滤波器函数。可选的, 其中KpPk_ESS表征储能电源的有功功率调节的比例积分器(也即PI控制器)的比例系数,KiPk_ESS表征储能电源的有功功率调节的比例积分器(也即PI控制器)的积分系数。
光伏子阵的有功功率第一调整分量ΔP1MGk_PV可以根据各第二微电网对应的有功功率影响量以及光伏子阵对应的有功功率调节比例积分器Kpk_PV确定。示例性的,光伏子阵的有功功率第一调整分量Kpk_PV可以表征第一微电网中光伏子阵有功功率调节的比例积分器(也即PI控制器)。Wp为配置的第一微电网的有功功率环路滤波器函数。可选的, 其中KpPk_PV表征光伏子阵的有功功率调节的比例积分器(也即PI控制器)的比例系数,KpIk_PV表征光伏子阵的有功功率调节的比例积分器(也即PI控制器)的积分系数。
储能电源的有功功率第二调整分量ΔP2MGk_ESS可以基于第一微电网的并网点处的频率fMGk_sample、集群的参考频率Fref以及储能电池对应的频率调节积分器Gfk_ESS确定。示例性的,储能电源的有功功率第二调整分量ΔP2MGk_ESS=Gfk_ESS·(Fref-Wf·fMGk_sample)。Gfk_ESS可以表征储能电源的频率调节的比例积分器(也即PI控制器)。可选的,其中KfPk_ESS表征储能电源的频率调节的比例积分器(也即PI控制器)的比例系数,KfIk_ESS表征储能电源的频率调节的比例积分器(也即PI控制器)的积分系数。
光伏子阵的有功功率第二调整分量ΔP2MGk_PV可以基于第一微电网的并网点处的频率fMGk_sample、集群的参考频率Fref以及光伏子阵对应的频率调节积分器Gfk_PV确定。示例性的,光伏子阵的有功功率第二调整分量ΔP2MGk_PV=Gfk_PV·(Fref-Wf·fMGk_sample)。Gfk_PV可以表征光伏子阵的频率调节的比例积分器(也即PI控制器)。可选的,其中KfPk_PV表征光伏子阵的频率调节的比例积分器(也即PI控制器)的比例系数,KfIk_ESS表征光伏子阵的频率调节的比例积分器(也即PI控制器)的积分系数。
由于第一微电网中储能电源和光伏子阵可分担的频率、电压调节功率不同。第一微电网的总有功功率调整量可以包括第一微电网中全部储能电源的总有功功率调整量ΔPZMGk_ESS和全部光伏子阵的总有功功率调整量ΔPZMGk_PV。其中,储能电源的有功功率第一调整分量ΔP1MGk_ESS与储能电源的有功功率第二调整分量ΔP2MGk_ESS的总和可以作为第一微电网中全部储能电源的总有功功率调整量ΔPZMGk_ESS。光伏子阵的有功功率第一调整分量ΔP1MGk_PV与光伏子阵的有功功率第二调整分量ΔP2MGk_PV的总和可以作为第一微电网中全部光伏子阵的总有功功率调整量ΔPZMGk_PV
一种可能的情形中,第一微电网中多个分布式电源202均为储能电源,也即每个分布式电源202均为储能电源。此情形中,第一微电网的有功功率第一调整分量ΔP1MGk中光伏子阵的有功功率第一调整分量ΔP1MGk_PV可以视为零。第一微电网的有功功率第二调整分量ΔP2MGk中光伏子阵的有功功率第二调整分量ΔP2MGk_PV可以视为零。
第一微电网的微电网控制器201可以根据全部储能电源的总有功功率调整量ΔPZMGk_ESS分配第一微电网中每个储能电源的有功功率调整量。一个储能电源的有功功率调整量与全部储能电源的总有功功率调整量ΔPZMGk_ESS的比值为该储能电源的调节比例。可选的,各储能电源的有功功率调整量可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的有功功率调整量,以使各储能电源调整输出的有功功率。
另一种可能的情形中,第一微电网中多个分布式电源202均为光伏子阵,也即每个分布式电源202均为光伏子阵。此情形中,第一微电网的有功功率第一调整分量ΔP1MGk中储能电源的有功功率第一调 整分量ΔP1MGk_ESS可以视为零。第一微电网的有功功率第二调整分量ΔP2MGk中储能电源的有功功率第二调整分量ΔP2MGk_ESS可以视为零。
第一微电网的微电网控制器201可以根据光伏子阵的总有功功率调整量ΔPZMGk_PV分配第一微电网中每个光伏子阵的有功功率调整量。一个光伏子阵的有功功率调整量与光伏子阵的总有功功率调整量ΔPZMGk_PV的比值为该光伏子阵的调节比例。可选的,各光伏子阵的有功功率调整量可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的有功功率调整量,以使各光伏子阵调整输出的有功功率。
又一种可能的情形中,第一微电网中多个分布式电源202可以包括储能电源和光伏子阵。第一微电网的微电网控制器201可以根据全部储能电源的总有功功率调整量ΔPZMGk_ESS分配第一微电网中每个储能电源的有功功率调整量。一个储能电源的有功功率调整量与全部储能电源的总有功功率调整量ΔPZMGk_ESS的比值为该储能电源的调节比例。可选的,各储能电源的有功功率调整量可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的有功功率调整量,以使各储能电源调整输出的有功功率。第一微电网的微电网控制器201可以根据光伏子阵的总有功功率调整量ΔPZMGk_PV分配第一微电网中每个光伏子阵的有功功率调整量。一个光伏子阵的有功功率调整量与光伏子阵的总有功功率调整量ΔPZMGk_PV的比值为该光伏子阵的调节比例。可选的,各光伏子阵的有功功率调整量可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的有功功率调整量,以使各光伏子阵调整输出的有功功率。
第一微电网的微电网控制器201可以向各储能电源发送分配的有功功率调整量,以使各储能电源调整输出的有功功率以及调整并网点处的频率,实现储能电源有功调节以及储能电源二次频率调节。第一微电网的微电网控制器201可以向各光伏子阵发送分配的有功功率调整量,以使各光伏子阵调整输出的有功功率以及调整并网点处的频率,实现光伏子阵有功调节以及光伏子阵二次频率调节。
一种可能的设计中,第一微电网的微电网控制器201可以获取到各分布式电源的最优有功功率运行点,也即最优有功功率。各分布式电源的最优有功功率运行点可以为能量管理系统(EMS)提供,第一微电网的微电网控制器201可以向各分布式电源202发送有功功率控制指令,有功功率控制指令表征该分布式电源202分配到的有功功率调整量与该分布式电源202的最优有功功率运行点的总和。
例如,第一微电网的微电网控制器201可以获取到各储能电源的最优有功功率运行点,也即最优有功功率。第一微电网的微电网控制器201可以向储能电源发送有功功率控制指令,储能电源的有功功率控制指令表征该储能电源分配到的有功功率调整量与该储能电源的最优有功功率运行点的总和。
又例如,第一微电网的微电网控制器201可以获取到各光伏子阵的最优有功功率运行点。第一微电网的微电网控制器201可以向光伏子阵发送有功功率控制指令,光伏子阵的有功功率控制指令表征该光伏子阵分配到的有功功率调整量与该光伏子阵的最优有功功率运行点的总和。
下面介绍第一微电网在集群孤岛工作模式下的无功功率调节。
一种可能的场景中,每个微电网的输出功率信息可以包括该每个微电网在并网点处的无功功率。第一微电网在对应的并网点处的无功功率记为第一无功功率QMGk_sample,k表征第一微电网的标识。第二微电网的输出功率信息包括第二微电网在对应的并网点处的无功功率记为第二无功功率QMGj_sample,j表征第二微电网的标识,其中,j与k不相等。
第一微电网的微电网控制器201可以预先存储或者获取第一微电网的无功功率比例参数和各第二微电网的无功功率比例参数。第一微电网的无功功率比例参数记为QMGk_base。第二微电网的无功功率比例参数记为QMGj_base
第一微电网在集群孤岛工作模式下,可以进行调整第一微电网的并网点处的无功功率。第一微电网的微电网控制器201可以基于第一微电网的参考电压VMGk_ref以及第一微电网的并网点处的电压VMGk_sample
微电网集群100的多个微电网中可以包括两类微电网,一类微电网为关键电压节点。另一类微电网为非关键电压节点。关键电压节点可指控制自身并网点处的电压稳定在集群电压额定值的微电网。一般来说微电网集群100中关键电压节点的数量为一个。关键电压节点通过调整无功功率实现控制自身并网点处的电压稳定在集群电压额定值。非关键电压节点可指参与调整微电网集群的无功功率分布的为微电网。非关键电压节点通过调整输出无功功率实现参与调整微电网集群的无功功率分布。
一种可能的实施方式中,第一微电网为微电网集群100中的非关键电压节点。在此情形中,第一微电网的微电网控制器201可以根据第一微电网的并网点处输出的无功功率QMGk_sample,各第二微电网的并网点处输出的无功功率QMGj_sample、以及集群的参考电压Vref,确定第一微电网的参考电压VMGK_ref
示例性的,第一微电网可以根据任一第二微电网的无功功率比例参数QMGj_base、第二微电网的并网 点处输出的无功功率QMGj_sample、以及第一微电网的无功功率比例参数QMGk_base、第一微电网的并网点处输出的无功功率QMGk_sample,确定该第二微电网对应的无功功率影响量Δqk_j。其中, 第二微电网对应的无功功率影响量可以表征第一微电网根据该第二微电网的网功功率确定的无功功率调整量。
第一微电网的微电网控制器201可以基于全部第二微电网对应的无功功率影响量的总和,确定为第一微电网的第一无功功率调整量ΔQ1MGk。结合图3,与第一微电网通信连接的其它微电网分别为第二微电网1、第二微电网2、…、第二微电网n。与第一微电网通信连接的其它微电网的数量为n,n为正整数。
第二微电网1对应的无功功率影响量记为Δqk_1,第二微电网2对应的无功功率影响量记为Δqk_2,第二微电网n对应的无功功率影响量记为Δqk_n。第一微电网的第一无功功率调整量为第二微电网1、第二微电网2、…、第二微电网n中每个第二微电网对应的无功功率影响量的总和,也即 第一微电网的微电网控制器201可以基于第一微电网的无功功率调节比例积分器和全部第二微电网对应的无功功率影响量的总和,确定第一微电网的总无功功率调整量ΔQ1MGk。其中,QMGi_sample为第二微电网i的并网点处的无功功率,QMGi_base为第二微电网i的无功功率比例参数,QMGk_sample为第一微电网的并网点处的无功功率,QMGk_base为第一微电网的无功功率比例参数。Kqk为配置的第一微电网的无功功率调节比例积分器。
可选的,第一微电网的微电网控制器201确定第一微电网的第一无功功率调整量ΔQ1MGk过程中可以采用控制无功功率控制环路滤波器,以滤除干扰、调节控制带宽。第一微电网的第一无功功率调整量Wq为配置的第一微电网的无功功率调节环路滤波器函数,可以滤除干扰、调节控制带宽。可选的,ωqs表征第一微电网无功功率控制环路滤波器截止频率。
第一微电网的微电网控制器201可以基于集群的参考电压Vref和前述第一微电网的第一无功功率调整量ΔQ1MGk,计算得到第一微电网的参考电压VMGK_ref。其中,
第一微电网的微电网控制器201可以基于第一微电网的参考电压VMGK_ref和第一微电网的并网点处的电压VMGk_sample,确定第一微电网的总无功功率调整量ΔQZMGk,ΔQZMGk=Kvk(VMGK_ref-Wv·VMGk_sample),其中,Kvk为配置的第一微电网的电压调节比例积分器,Wv为配置的第一微电网的电压控制环路滤波器函数。可选的,ωvs表征第一微电网电压控制环路滤波器截止频率。
第一微电网的微电网控制器201可以基于第一微电网的总无功功率调整量ΔQZMGk以及第一微电网中各分布式电源的调节比例,分配第一微电网中每个分布式电源的无功功率调整量。一个分布式电源的无功功率调整量与第一微电网的总无功功率调整量的比值为该分布式电源的无功功率调节比例参数。可选的,各分布式电源的无功功率调节比例参数可以相同。换句话说,在第一微电网中,参与功率调节的分布式电源的无功功率调整量是均分的。
第一微电网通过控制内部的分布式电源,实现第一微电网在并网点处输出的无功功率与所述总无功功率调整量ΔQZMGk的偏差小于偏差阈值。换句话说,第一微电网通过控制内部的分布式电源使得第一微电网在并网点处输出的无功功率变化量接近或者等于所述总无功功率调整量。
一些场景中,第一微电网中多个分布式电源202可以包括储能电源、光伏子阵中的一个或多个。由于第一微电网中储能电源和光伏子阵可分担的电压调节功率不同。第一微电网的总无功功率调整量ΔQZMGk可以包括储能电源的总无功功率调整量ΔQZMGk_ESS和光伏子阵的总无功功率调整量ΔQZMGk_QV
储能电源的总无功功率调整量ΔQZMGk_ESS可以根据各第二微电网对应的无功功率影响量以及储能电池对应的电压调节比例积分器Kvk_ESS确定。示例性的,储能电源的总无功功率调整量ΔQZMGk_ESS=Kvk_ESS·(VMGK_ref-Wv·VMGk_sample)。Kvk_ESS可以表征第一微电网中储能电源无功功率调节的比例积分器(也即PI控制器)。可选的,其中KpQk_ESS表征储能电源的无功功率调节的比例积分器(也即QI控制器)的比例系数,KiQk_ESS表征储能电源的无功功率调节的比例积分器(也即QI控制器)的积分系数。
光伏子阵的总无功功率调整量ΔQZMGk_PV可以根据各第二微电网对应的无功功率影响量以及光伏子阵对应的电压调节比例积分器Kvk_PV确定。示例性的,光伏子阵的总无功功率调整量ΔQZMGk_PV=Kvk_PV·(VMGK_ref-Wv·VMGk_sample)。Kvk_PV可以表征第一微电网中光伏子阵无功功率调节的比例积 分器(也即PI控制器)。可选的,其中KpQk_PV表征光伏子阵的无功功率调节的比例积分器(也即PI控制器)的比例系数,KiQk_PV表征光伏子阵的无功功率调节的比例积分器(也即PI控制器)的积分系数。
一种可能的情形中,第一微电网中多个分布式电源202均为储能电源,也即每个分布式电源202均为储能电源。此情形中,第一微电网的总无功功率调整量ΔQZMGk中光伏子阵的总无功功率调整量ΔQZMGk_PV可以视为零。
第一微电网的微电网控制器201可以根据全部储能电源的总无功功率调整量ΔQZMGk_ESS和各储能电源的无功调节比例参数,分配第一微电网中每个储能电源的无功功率调整量。一个储能电源的无功功率调整量与全部储能电源的总无功功率调整量ΔQZMGk_ESS的比值为该储能电源的无功调节比例参数。可选的,各储能电源的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的无功功率调整量,以使各储能电源调整输出的无功功率。
另一种可能的情形中,第一微电网中多个分布式电源202均为光伏子阵,也即每个分布式电源202均为光伏子阵。此情形中,第一微电网的总无功功率调整量ΔQZMGk中储能电源的总无功功率调整量ΔQZMGk_ESS可以视为零。
第一微电网的微电网控制器201可以根据光伏子阵的总无功功率调整量ΔQZMGk_PV和各光伏子阵的无功调节比例参数,分配第一微电网中每个光伏子阵的无功功率调整量。一个光伏子阵的无功功率调整量与光伏子阵的总无功功率调整量ΔQZMGk_PV的比值为该光伏子阵的无功调节比例参数。可选的,各光伏子阵的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的无功功率调整量,以使各光伏子阵调整输出的无功功率。
又一种可能的情形中,第一微电网中多个分布式电源202可以包括储能电源和光伏子阵。第一微电网的微电网控制器201可以根据全部储能电源的总无功功率调整量ΔQZMGk_ESS和各储能电源的无功调节比例参数,分配第一微电网中每个储能电源的无功功率调整量。一个储能电源的无功功率调整量与全部储能电源的总无功功率调整量ΔQZMGk_ESS的比值为该储能电源的无功调节比例参数。可选的,各储能电源的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的无功功率调整量,以使各储能电源调整输出的无功功率。
第一微电网的微电网控制器201可以根据光伏子阵的总无功功率调整量ΔQZMGk_PV和各光伏子阵的无功调节比例参数,分配第一微电网中每个光伏子阵的无功功率调整量。一个光伏子阵的无功功率调整量与光伏子阵的总无功功率调整量ΔQZMGk_PV的比值为该光伏子阵的无功调节比例参数。可选的,各光伏子阵的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的无功功率调整量,以使各光伏子阵调整输出的无功功率。
第一微电网的微电网控制器201可以向各储能电源发送分配的无功功率调整量,以使各储能电源调整输出的无功功率以及调整并网点处的频率,实现储能电源无功调节。第一微电网的微电网控制器201可以向各光伏子阵发送分配的无功功率调整量,以使各光伏子阵调整输出的无功功率。
一种可能的设计中,第一微电网的微电网控制器201可以获取到各分布式电源的最优无功功率运行点。各分布式电源的最优无功功率运行点可以为能量管理系统(EMS)提供,第一微电网的微电网控制器201可以向各分布式电源202发送无功功率控制指令,无功功率控制指令表征该分布式电源202分配到的无功功率调整量与该分布式电源202的最优无功功率运行点的总和。
例如,第一微电网的微电网控制器201可以获取到各储能电源的最优无功功率运行点。第一微电网的微电网控制器201可以向储能电源发送无功功率控制指令,储能电源的无功功率控制指令表征该储能电源分配到的无功功率调整量与该储能电源的最优无功功率运行点的总和。
又例如,第一微电网的微电网控制器201可以获取到各光伏子阵的最优无功功率运行点。第一微电网的微电网控制器201可以向光伏子阵发送无功功率控制指令,光伏子阵的无功功率控制指令表征该光伏子阵分配到的无功功率调整量与该光伏子阵的最优无功功率运行点的总和。
如图5所示,第一微电网中可以包括微电网控制器201和m个分布式电源。微电网控制器201可以接收各第二微电网的无功功率,以及向各第二微电网发送第一微电网的无功功率。微电网控制器201可以根据各第二微电网的无功功率计算第一微电网的总无功功率调整量。
微电网控制器201可以向分布式电源1发送无功功率控制指令1,其中无功功率控制指令1为分布式电源1分配到的无功功率调整量与分布式电源1的最优无功功率运行点的总和。类似地,微电网控制器201可以向分布式电源m发送无功功率控制指令m,其中无功功率控制指令m为分布式电源m分配到的无功功率调整量与分布式电源m的最优无功功率运行点的总和。
例如,第一微电网的微电网控制器201可以获取到各储能电源的最优无功功率运行点。第一微电网的微电网控制器201可以向储能电源发送无功功率控制指令,储能电源的无功功率控制指令表征该储能电源分配到的无功功率调整量与该储能电源的最优无功功率运行点的总和。实现第一微电网的微电网控制器201控制该储能电源调整输出的无功功率。
又例如,第一微电网的微电网控制器201可以获取到各光伏子阵的最优无功功率运行点。第一微电网的微电网控制器201可以向光伏子阵发送无功功率控制指令,光伏子阵的无功功率控制指令表征该光伏子阵分配到的无功功率调整量与该光伏子阵的最优无功功率运行点的总和。实现第一微电网的微电网控制器201控制该光伏子阵调整输出的无功功率。
另一种可能的实施方式中,第一微电网为微电网集群100中的关键电压节点,换句话说第一微电网的并网点处的电压需保持稳定,并且并网点处的电压等于或接近集群的参考电压Vref。此情形中,第一微电网调整并网点输出电压,可以通过调整第一微电网的输出的无功功率实现。第一微电网的微电网控制器201可以根据集群的参考电压Vref、第一微电网的并网点处的电压VMGk_sample,确定第一微电网的总无功功率调整量ΔQZMGk。ΔQZMGk=Kvk·(Vref-Wv·VMGk_sample)。其中,Kvk为配置的第一微电网的电压调节比例积分器,Wv为配置的第一微电网的电压控制环路滤波器函数。可选的,ωvs表征第一微电网电压控制环路滤波器截止频率。
第一微电网的微电网控制器201可以基于第一微电网的总无功功率调整量ΔQZMGk以及第一微电网中各分布式电源的调节比例,分配第一微电网中每个分布式电源的无功功率调整量。一个分布式电源的无功功率调整量与第一微电网的总无功功率调整量的比值为该分布式电源的无功功率调节比例参数。可选的,各分布式电源的无功功率调节比例参数可以相同。换句话说,在第一微电网中,参与功率调节的分布式电源的无功功率调整量是均分的。
第一微电网通过控制内部的分布式电源,实现第一微电网在并网点处输出的无功功率与所述总无功功率调整量ΔQZMGk的偏差小于偏差阈值。换句话说,第一微电网通过控制内部的分布式电源使得第一微电网在并网点处输出的无功功率变化量接近或者等于所述总无功功率调整量。
一些场景中,第一微电网中多个分布式电源202可以包括储能电源、光伏子阵中的一个或多个。由于第一微电网中储能电源和光伏子阵可分担的电压调节功率不同。第一微电网的总无功功率调整量ΔQZMGk可以包括储能电源的总无功功率调整量ΔQZMGk_ESS和光伏子阵的总无功功率调整量ΔQZMGk_QV
储能电源的总无功功率调整量ΔQZMGk_ESS可以基于各第二微电网对应的无功功率影响量以及储能电池对应的电压调节比例积分器Kvk_ESS确定。示例性的,储能电源的总无功功率调整量ΔQZMGk_ESS=Kvk_ESS·(Vref-Wv·VMGk_sample)。Kvk_ESS可以表征第一微电网中储能电源无功功率调节的比例积分器(也即PI控制器)。可选的,其中KpQk_ESS表征储能电源的无功功率调节的比例积分器(也即QI控制器)的比例系数,KiQk_ESS表征储能电源的无功功率调节的比例积分器(也即QI控制器)的积分系数。
光伏子阵的总无功功率调整量ΔQZMGk_PV可以基于各第二微电网对应的无功功率影响量以及光伏子阵对应的电压调节比例积分器Kvk_PV确定。示例性的,光伏子阵的总无功功率调整量ΔQZMGk_PV=Kvk_PV·(Vref-Wv·VMGk_sample)。Kvk_PV可以表征第一微电网中光伏子阵无功功率调节的比例积分器(也即PI控制器)。可选的,其中KpQk_PV表征光伏子阵的无功功率调节的比例积分器(也即PI控制器)的比例系数,KiQk_PV表征光伏子阵的无功功率调节的比例积分器(也即PI控制器)的积分系数。
一种可能的情形中,第一微电网中多个分布式电源202均为储能电源,也即每个分布式电源202均为储能电源。此情形中,第一微电网的总无功功率调整量ΔQZMGk中光伏子阵的总无功功率调整量ΔQZMGk_PV可以视为零。
第一微电网的微电网控制器201可以根据全部储能电源的总无功功率调整量ΔQZMGk_ESS和各储能电源的无功调节比例参数,分配第一微电网中每个储能电源的无功功率调整量。一个储能电源的无功功率调整量与全部储能电源的总无功功率调整量ΔQZMGk_ESS的比值为该储能电源的无功调节比例参数。可选的,各储能电源的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的无功功率调整量,以使各储能电源调整输出的无功功率。
另一种可能的情形中,第一微电网中多个分布式电源202均为光伏子阵,也即每个分布式电源202均为光伏子阵。此情形中,第一微电网的总无功功率调整量ΔQZMGk中储能电源的总无功功率调整量ΔQZMGk_ESS可以视为零。
第一微电网的微电网控制器201可以根据光伏子阵的总无功功率调整量ΔQZMGk_PV和各光伏子阵的 无功调节比例参数,分配第一微电网中每个光伏子阵的无功功率调整量。一个光伏子阵的无功功率调整量与光伏子阵的总无功功率调整量ΔQZMGk_PV的比值为该光伏子阵的无功调节比例参数。可选的,各光伏子阵的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的无功功率调整量,以使各光伏子阵调整输出的无功功率。
又一种可能的情形中,第一微电网中多个分布式电源202可以包括储能电源和光伏子阵。第一微电网的微电网控制器201可以根据全部储能电源的总无功功率调整量ΔQZMGk_ESS和各储能电源的无功调节比例参数,分配第一微电网中每个储能电源的无功功率调整量。一个储能电源的无功功率调整量与全部储能电源的总无功功率调整量ΔQZMGk_ESS的比值为该储能电源的无功调节比例参数。可选的,各储能电源的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的无功功率调整量,以使各储能电源调整输出的无功功率。
第一微电网的微电网控制器201可以根据光伏子阵的总无功功率调整量ΔQZMGk_PV和各光伏子阵的无功调节比例参数,分配第一微电网中每个光伏子阵的无功功率调整量。一个光伏子阵的无功功率调整量与光伏子阵的总无功功率调整量ΔQZMGk_PV的比值为该光伏子阵的无功调节比例参数。可选的,各光伏子阵的无功调节比例参数可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的无功功率调整量,以使各光伏子阵调整输出的无功功率。
第一微电网的微电网控制器201可以向各储能电源发送分配的无功功率调整量,以使各储能电源调整输出的无功功率以及调整并网点处的频率,实现储能电源无功调节。第一微电网的微电网控制器201可以向各光伏子阵发送分配的无功功率调整量,以使各光伏子阵调整输出的无功功率。
一种可能的设计中,第一微电网的微电网控制器201可以获取到各分布式电源的最优无功功率运行点,也即最优无功功率。各分布式电源的最优无功功率运行点可以为能量管理系统(EMS)提供。第一微电网的微电网控制器201可以控制各分布式电源202调整输出无功功率。使分布式电源202输出无功功率为其最优无功功率与其无功功率调整量的总和。一些示例中,第一微电网的微电网控制器201可以向各分布式电源202发送无功功率控制指令,以使该分布式电源202调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。其中,无功功率控制指令表征该分布式电源202分配到的无功功率调整量与该分布式电源202的最优无功功率运行点的总和。
例如,第一微电网的微电网控制器201可以控制各储能电源调整输出无功功率。使储能电源输出无功功率为其最优无功功率与其无功功率调整量的总和。第一微电网的微电网控制器201可以获取到各储能电源的最优无功功率运行点。第一微电网的微电网控制器201可以向各储能电源发送无功功率控制指令,以使该储能电源调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。储能电源的无功功率控制指令表征该储能电源分配到的无功功率调整量与该储能电源的最优无功功率运行点的总和。
又例如,第一微电网的微电网控制器201可以控制各光伏子阵调整输出无功功率。使光伏子阵输出无功功率为其最优无功功率与其无功功率调整量的总和。第一微电网的微电网控制器201可以获取到各光伏子阵的最优无功功率运行点。第一微电网的微电网控制器201可以向各光伏子阵发送无功功率控制指令,以使该光伏子阵调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。光伏子阵的无功功率控制指令表征该光伏子阵分配到的无功功率调整量与该光伏子阵的最优无功功率运行点的总和。
通过上述介绍可知,第一微电网为关键电压节点的情形中,第一微电网的微电网控制器201可以直接利用集群的参考电压和第一微电网的并网点处的电压,确定第一微电网的总无功功率调整量。第一微电网的微电网控制器201可以不需要获取第二微电网的并网点处的无功功率。
如图6所示,第一微电网中可以包括微电网控制器201和m个分布式电源。第一微电网为关键电压节点的情形中,微电网控制器201可以直接利用集群的参考电压和第一微电网的并网点处的电压,确定第一微电网的总无功功率调整量。微电网控制器201可以向分布式电源1发送无功功率控制指令1,其中无功功率控制指令1为分布式电源1分配到的无功功率调整量与分布式电源1的最优无功功率运行点的总和。类似地,微电网控制器201可以向分布式电源m发送无功功率控制指令m,其中无功功率控制指令m为分布式电源m分配到的无功功率调整量与分布式电源m的最优无功功率运行点的总和。
例如,第一微电网的微电网控制器201可以获取到各储能电源的最优无功功率运行点。第一微电网的微电网控制器201可以向储能电源发送无功功率控制指令,以使该储能电源调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。储能电源的无功功率控制指令表征该储能电源分配到 的无功功率调整量与该储能电源的最优无功功率运行点的总和。
又例如,第一微电网的微电网控制器201可以获取到各光伏子阵的最优无功功率运行点。第一微电网的微电网控制器201可以向光伏子阵发送无功功率控制指令,以使该光伏子阵调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。光伏子阵的无功功率控制指令表征该光伏子阵分配到的无功功率调整量与该光伏子阵的最优无功功率运行点的总和。
图7根据一示例性实施例示出一种在集群孤岛工作模式下第一微电网的微电网控制器的控制环路。该控制环路可以包括用于生成分布式电源的有功功率控制指令的控制支路701和用于生成分布式电源的无功功率控制指令的控制支路702。
假设第一微电网与n个其它微电网通信连接,n为正整数。将与第一微电网通信连接的其它微电网记为第二微电网。从而第二微电网的数量为n。将n个第二微电网中第i个第二微电网记为第二微电网MGi。第一微电网记为第一微电网MGk,k不等于i。第一微电网的微电网控制器201可以接收各第二微电网的并网点处的有功功率PMGi_sample。第一微电网的微电网控制器201可以获取第一微电网的并网点处的有功功率PMGk_sample。第一微电网的微电网控制器201可以接收各第二微电网的并网点处的无功功率QMGi_sample。第一微电网的微电网控制器201可以获取第一微电网的并网点处的无功功率QMGk_sample
下面首先对控制支路701进行介绍。控制支路701可以根据各第二微电网的并网点处的有功功率PMGi_sample、第一微电网的并网点处的有功功率PMGk_sample,生成各分布式电源的有功功率调节指令。并发送给各分布式电源的控制器,以使各分布式电源调整输出的有功功率。
一些示例中,如图8(a)所示,控制支路701可以包括第二微电网总有功功率影响量生成单元801、储能电源的总有功功率调整量生成单元802A、储能电源的有功功率调整量分配单元803A、储能电源的有功功率控制指令生成单元804A、光伏子阵的总有功功率调整量生成单元802B、光伏子阵的有功功率调整量分配单元803B、光伏子阵的有功功率控制指令生成单元804B。
第二微电网总有功功率影响量生成单元801可以根据接收各第二微电网的并网点处的有功功率PMGi_sample,计算得到第二微电网总有功功率影响量其中,PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数。
可选的,第二微电网总有功功率影响量生成单元801可以设置有功功率控制环路滤波器Wp其中ωps表征第一微电网有功功率控制环路滤波器截止频率。第二微电网总有功功率影响量生成单元801可以将滤波处理后的第二微电网总有功功率影响量分别提供给储能电源的总有功功率调整量生成单元802A和光伏子阵的总有功功率调整量生成单元802B。其中,PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数,Wp为配置的第一微电网的有功功率调节环路滤波器。
储能电源的总有功功率调整量生成单元802A可以根据配置的储能电源对应的有功功率调节比例积分器Kpk_ESS和波处理后的第二微电网总有功功率影响量,计算得到储能电源的有功功率第一调整分量ΔP1MGk_ESS其中,Kpk_ESS可以表征第一微电网中储能电源有功功率调节的比例积分器(也即PI控制器)。PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数,Wp为配置的第一微电网的有功功率调节环路滤波器。
储能电源的总有功功率调整量生成单元802A可以执行频率调节操作。储能电源的总有功功率调整量生成单元802A可以根据集群的参考频率Fref以及所述第一微电网的并网点处的频率fMGk_sample,计算储能电源的有功功率第二调整分量ΔP2MGk_ESS,ΔP2MGk_ESS=Gfk_ESS·(Fref-Wf·fMGk_sample)。其中,Wf为配置的第一微电网的频率环路滤波器函数。
储能电源的总有功功率调整量ΔPZMGk_ESS可以为储能电源的有功功率第一调整分量ΔP1MGk_ESS与储能电源的有功功率第二调整分量ΔP2MGk_ESS的总和。也即ΔPZMGk_ESS=ΔP1MGk_ESS+ΔP2MGk_ESS
假设第一微电网的多个分布式电源中包括x个储能电源和q个光伏子阵,x和q均为整数,其中x和q不同时为零。
若x为正整数时,x个储能电源中第a个储能电源记为储能电源MGk_ESSa,其中a取遍1至x中 任意整数。储能电源的总有功功率调整量生成单元802A可以将储能单元的总有功功率调整量ΔPZMGk_ESS提供给储能电源的有功功率调整量分配单元803A。储能电源的总有功功率调整量生成单元802A可以根据各储能电源MGk_ESSa的有功功率调节比例参数,分配各储能电源MGk_ESSa的有功功率调整量PMGk_ESSa。各储能电源MGk_ESSa的有功功率调节比例参数可以相同或者不同。储能电源MGk_ESSa的有功功率调整量PMGk_ESSa与储能电源的总有功功率调整量ΔPZMGk_ESS的比值为储能电源MGk_ESSa的有功功率调节比例参数。
储能电源的有功功率调整量分配单元803A可以将各储能电源的有功功率调整量提供给储能电源的有功功率控制指令生成单元804A。储能电源的有功功率控制指令生成单元804A可以获取到各储能电源的最优有功功率运行点PMGk_ESSa_EMS。储能电源的有功功率控制指令生成单元804A可以生成储能电源MGk_ESSa的有功功率调节指令P* MGk_ESSa,其中P* MGk_ESSa=PMGk_ESSa_EMS+PMGk_ESSa,也即储能电源MGk_ESSa的有功功率调节指令为储能电源MGk_ESSa的有功功率调整量与最优有功功率运行点的总和。储能电源的有功功率控制指令生成单元804A可以向储能电源MGk_ESSa发送储能电源MGk_ESSa的有功功率调节指令P* MGk_ESSa,以使该储能电源MGk_ESSa调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。
这样的设计可使各储能电源进行有功功率调节和频率调节。各储能电源可以根据有功功率调节指令P* MGk_ESSa进行电流源型的功率跟随控制,或者,电压源型的频率/电压一次支撑,如下垂或虚拟同步发电机(virtual synchronous generator,VSG)控制。本申请对各储能电源的具体控制方法不作具体限定。
光伏子阵的总有功功率调整量生成单元802B可以根据配置的光伏子阵对应的有功功率调节比例积分器Kpk_PV和波处理后的第二微电网总有功功率影响量计算得到光伏子阵的有功功率第一调整分量ΔP1MGk_PV其中,Wp为配置的第一微电网的有功功率调节环路滤波器函数,Kpk_PV可以表征第一微电网中光伏子阵有功功率调节的比例积分器(也即PI控制器),PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数。
光伏子阵的总有功功率调整量生成单元802B可以执行频率调节操作。光伏子阵的总有功功率调整量生成单元802B可以根据集群的参考频率Fref以及所述第一微电网的并网点处的频率fMGk_sample,计算光伏子阵的有功功率第二调整分量ΔP2MGk_PV,ΔP2MGk_PV=Gfk_PV·(Fref-Wf·fMGk_sample)。其中,Gfk_PV可以表征光伏子阵的频率调节的比例积分器(也即PI控制器),Wf为配置的第一微电网的频率环路滤波器。
光伏子阵的总有功功率调整量ΔPZMGk_PV可以为光伏子阵的有功功率第一调整分量ΔP1MGk_PV与光伏子阵的有功功率第二调整分量ΔP2MGk_PV的总和。也即ΔPZMGk_PV=ΔP1MGk_PV+ΔP2MGk_PV
假设第一微电网的多个分布式电源中包括x个储能电源和q个光伏子阵,s和q均为整数,其中x和q不同时为零。若q为正整数时,q个光伏子阵中第b个光伏子阵记为光伏子阵MGk_PVb,其中b取遍1至q中任意整数。光伏子阵的总有功功率调整量生成单元802B可以将储能单元的总有功功率调整量ΔPZMGk_PV提供给光伏子阵的有功功率调整量分配单元803B。光伏子阵的总有功功率调整量生成单元802A可以根据各光伏子阵MGk_PVb的有功功率调节比例参数,分配各光伏子阵MGk_PVa的有功功率调整量PMGk_PVb。各光伏子阵MGk_PVb的有功功率调节比例参数可以相同或者不同。光伏子阵MGk_PVa的有功功率调整量PMGk_PVb与光伏子阵的总有功功率调整量ΔPZMGk_PV的比值为光伏子阵MGk_PVb的有功功率调节比例参数。
光伏子阵的总有功功率调整量生成单元802B可以将各光伏子阵的有功功率调整量提供给光伏子阵的有功功率控制指令生成单元804B。光伏子阵的有功功率控制指令生成单元804B可以获取到各光伏子阵的最优有功功率运行点PMGk_PVb_EMS。光伏子阵的有功功率控制指令生成单元804B可以生成光伏子阵MGk_PVa的有功功率调节指令P* MGk_PVb,其中P* MGk_PVb=PMGk_PVb_EMS+PMGk_PVb,也即光伏子阵MGk_PVb的有功功率调节指令为光伏子阵MGk_PVb的有功功率调整量与最优有功功率运行点的总和。光伏子阵的有功功率控制指令生成单元804B可以向光伏子阵MGk_PVb发送光伏子阵MGk_PVb的有功功率调节指令P* MGk_PVb,以使该光伏子阵MGk_PVb调节自身输出的无功功率为接收到的无功功率控制指令所指示的无功功率。
这样的设计可使各光伏子阵进行有功功率调节和电压调节。各光伏子阵可以根据有功功率调节指令P* MGk_PVb进行电流源型的功率跟随控制,或者,电压源型的频率/电压一次支撑,如下垂或VSG控制。本申请对各光伏子阵的具体控制方法不作具体限定。
另一些示例中,如图8(b)所示,控制支路701可以包括第二微电网总有功功率影响量生成单元 801、储能电源的总有功功率调整量生成单元802A、储能电源的有功功率调整量分配单元803A、储能电源的有功功率控制指令生成单元804A。图8(b)与图8(a)中相同之处可以参见图8(a)的相关介绍,此处不再赘述。
又一些示例中,如图8(c)所示,控制支路701可以包括第二微电网总有功功率影响量生成单元801、光伏子阵的总有功功率调整量生成单元802B、光伏子阵的有功功率调整量分配单元803B、光伏子阵的有功功率控制指令生成单元804B。图8(c)与图8(a)中相同之处可以参见图8(a)的相关介绍,此处不再赘述。
下面对控制支路702进行介绍。一种可能的实施方式中,第一微电网为微电网集群中的非关键电压节点。控制支路702可以根据各第二微电网的并网点处的无功功率QMGi_sample、第一微电网的并网点处的无功功率QMGk_sample,生成各分布式电源的无功功率调节指令。并发送给各分布式电源的控制器,以使各分布式电源调整输出的无功功率。
一些示例中,如图9(a)所示,控制支路702可以包括并网点的参考电压生成单元901、储能电源的总无功功率调整量生成单元902A、储能电源的无功功率调整量分配单元903A、储能电源的无功功率控制指令生成单元904A、光伏子阵的总无功功率调整量生成单元902B、光伏子阵的无功功率调整量分配单元903B、光伏子阵的无功功率控制指令生成单元904B。
并网点的参考电压生成单元901可以根据接收各第二微电网的并网点处的无功功率QMGi_sample,计算得到第一微电网的第一无功功率分量其中,QMGi_sample为第二微电网i的并网点处的无功功率,QMGi_base为第二微电网i的无功功率比例参数,QMGk_sample为第一微电网的并网点处的无功功率,QMGk_base为第一微电网的无功功率比例参数。可选的,并网点的参考电压生成单元901可以设置无功功率控制环路滤波器Wq其中ωqs表征第一微电网无功功率控制环路滤波器截止频率。
并网点的参考电压生成单元901可以基于滤波处理后的第一微电网的第一无功功率分量第一微电网的无功功率调节比例积分器Kqk以及集群的参考电压Vref,计算得到第一微电网的并网点的参考电压VMGK_ref,其中,其中,QMGi_sample为第二微电网i的并网点处的无功功率,QMGi_base为第二微电网i的无功功率比例参数,QMGk_sample为第一微电网的并网点处的无功功率,QMGk_base为第一微电网的无功功率比例参数,Wq为配置的第一微电网的无功功率调节环路滤波器,Kqk为配置的第一微电网的无功功率调节比例积分器。
并网点的参考电压生成单元901可以将第一微电网的并网点的参考电压VMGK_ref分别提供给储能电源的总无功功率调整量生成单元902A和光伏子阵的总无功功率调整量生成单元902B。
储能电源的总无功功率调整量生成单元902A可以根据第一微电网的并网点处的电压VMGk_sample、第一微电网的并网点的参考电压VMGK_ref以及储能电池对应的电压调节比例积分器Kvk_ESS,计算储能电源的总无功功率调整量ΔQZMGk_ESS,ΔQZMGk_ESS=Kvk_ESS·(VMGK_ref-Wv·VMGk_sample)。其中,Wv为配置的第一微电网的电压控制环路滤波器,Kvk_ESS可以表征第一微电网中储能电源无功功率调节的比例积分器(也即PI控制器)。
假设第一微电网的多个分布式电源中包括x个储能电源和q个光伏子阵,s和q均为整数,其中x和q不同时为零。
若x为正整数时,x个储能电源中第a个储能电源记为储能电源MGk_ESSa,其中a取遍1至s中任意整数。储能电源的总无功功率调整量生成单元902A可以将储能单元的总无功功率调整量ΔQZMGk_ESS提供给储能电源的无功功率调整量分配单元903A。储能电源的总无功功率调整量生成单元902A可以根据各储能电源MGk_ESSa的无功功率调节比例参数,分配各储能电源MGk_ESSa的无功功率调整量QMGk_ESSa。各储能电源MGk_ESSa的无功功率调节比例参数可以相同或者不同。储能电源MGk_ESSa的无功功率调整量QMGk_ESSa与储能电源的总无功功率调整量ΔQZMGk_ESS的比值为储能电源MGk_ESSa的无功功率调节比例参数。
储能电源的总无功功率调整量生成单元902A可以将各储能电源的无功功率调整量提供给储能电源的无功功率控制指令生成单元904A。储能电源的无功功率控制指令生成单元904A可以获取到各储能电源的最优无功功率运行点QMGk_ESSa_EMS。储能电源的无功功率控制指令生成单元904A可以生成储能电源MGk_ESSa的无功功率调节指令Q* MGk_ESSa,其中Q* MGk_ESSa=QMGk_ESSa_EMS+QMGk_ESSa,也即储能电源MGk_ESSa的无功功率调节指令为储能电源MGk_ESSa的无功功率调整量与最优无功功率运行 点的总和。储能电源的无功功率控制指令生成单元904A可以向储能电源MGk_ESSa发送储能电源MGk_ESSa的无功功率调节指令Q* MGk_ESSa
这样的设计可使各储能电源进行无功功率调节和电压调节。各储能电源可以根据无功功率调节指令Q* MGk_ESSa进行电流源型的功率跟随控制,或者,电压源型的频率/电压一次支撑,如下垂或VSG控制。本申请对各储能电源的具体控制方法不作具体限定。
光伏子阵的总无功功率调整量生成单元902B可以根据第一微电网的并网点处的电压VMGk_sample、第一微电网的并网点的参考电压VMGK_ref以及光伏子阵对应的电压调节比例积分器Kvk_PV,计算光伏子阵的总无功功率调整量ΔQZMGk_PV其中,Kvk_ESS可以表征第一微电网中光伏子阵无功功率调节的比例积分器(也即PI控制器),Wv为配置的第一微电网的电压控制环路滤波器函数。
假设第一微电网的多个分布式电源中包括x个储能电源和q个光伏子阵,x和q均为整数,其中x和q不同时为零。若q为正整数时,q个光伏子阵中第b个光伏子阵记为光伏子阵MGk_PVb,其中b取遍1至q中任意整数。光伏子阵的总无功功率调整量生成单元902B可以将储能单元的总无功功率调整量ΔQZMGk_PV提供给光伏子阵的无功功率调整量分配单元903A。光伏子阵的总无功功率调整量生成单元902B可以根据各光伏子阵MGk_PVb的无功功率调节比例参数,分配各光伏子阵MGk_PVa的无功功率调整量QMGk_PVb。各光伏子阵MGk_PVb的无功功率调节比例参数可以相同或者不同。光伏子阵MGk_PVa的无功功率调整量QMGk_PVb与光伏子阵的总无功功率调整量ΔQZMGk_PV的比值为光伏子阵MGk_PVb的无功功率调节比例参数。
光伏子阵的总无功功率调整量生成单元902B可以将各光伏子阵的无功功率调整量提供给光伏子阵的无功功率控制指令生成单元904A。光伏子阵的无功功率控制指令生成单元904A可以获取到各光伏子阵的最优无功功率运行点QMGk_PVb_EMS。光伏子阵的无功功率控制指令生成单元904A可以生成光伏子阵MGk_PVa的无功功率调节指令Q* MGk_PVb,其中Q* MGk_PVb=QMGk_PVb_EMS+QMGk_PVb,也即光伏子阵MGk_PVb的无功功率调节指令为光伏子阵MGk_PVb的无功功率调整量与最优无功功率运行点的总和。光伏子阵的无功功率控制指令生成单元904A可以向光伏子阵MGk_PVb发送光伏子阵MGk_PVb的无功功率调节指令Q* MGk_PVb
这样的设计可使各光伏子阵进行无功功率调节和电压调节。各储能电源可以根据无功功率调节指令Q* MGk_PVb进行电流源型的功率跟随控制,或者,电压源型的频率/电压一次支撑,如下垂或VSG控制。本申请对各储能电源的具体控制方法不作具体限定。
另一些示例中,如图9(b)所示,控制支路702可以包括并网点的参考电压生成单元901、储能电源的总无功功率调整量生成单元902A、储能电源的无功功率调整量分配单元903A、储能电源的无功功率控制指令生成单元904A。图9(b)与图9(a)中相同之处可以参见图9(a)的相关介绍,此处不再赘述。
又一些示例中,如图9(c)所示,控制支路702可以包括并网点的参考电压生成单元901、光伏子阵的总无功功率调整量生成单元902B、光伏子阵的无功功率调整量分配单元903B、光伏子阵的无功功率控制指令生成单元904B。图9(c)与图9(a)中相同之处可以参见图9(a)的相关介绍,此处不再赘述。
另一种可能的实施方式中,第一微电网为微电网集群中的关键电压节点。一些示例中,如图10(a)所示,控制支路702可以包括并网点的参考电压生成单元901、储能电源的总无功功率调整量生成单元902A、储能电源的无功功率调整量分配单元903A、储能电源的无功功率控制指令生成单元904A、光伏子阵的总无功功率调整量生成单元902B、光伏子阵的无功功率调整量分配单元903B、光伏子阵的无功功率控制指令生成单元904B。
并网点的参考电压生产个单元901可以将集群的参考电压Vref作为第一微电网的并网点的参考电压,并分别提供给储能电源的总无功功率调整量生成单元902A和光伏子阵的总无功功率调整量生成单元902B。
储能电源的总无功功率调整量生成单元902A可以根据集群的参考电压Vref、第一微电网的并网点的参考电压VMGK_ref以及储能电池对应的电压调节比例积分器Kvk_ESS,计算储能电源的总无功功率调整量ΔQZMGk_ESS。其中,ΔQZMGk_ESS=Kvk_ESS·(Vref-Wv·VMGk_sample),Wv为配置的第一微电网的电压控制环路滤波器函数,Kvk_ESS可以表征第一微电网中储能电源无功功率调节的比例积分器(也即PI控制器)。
储能电源的总无功功率调整量生成单元902A可以将储能单元的总无功功率调整量ΔQZMGk_ESS提供给储能电源的无功功率调整量分配单元903A。储能电源的无功功率调整量分配单元903A和储能电源 的无功功率控制指令生成电源904A的功能可以参见图9(a)的相关介绍,此处不再赘述。
光伏子阵的总无功功率调整量生成单元902B可以根据第一微电网的并网点处的电压集群的参考电压Vref以及光伏子阵对应的电压调节比例积分器计算光伏子阵的总无功功率调整量Wv为配置的第一微电网的电压控制环路滤波器函数,Kvk_ESS可以表征第一微电网中储能电源无功功率调节的比例积分器(也即PI控制器)。
光伏子阵的无功功率调整量分配单元903B和光伏子阵的无功功率控制指令生成电源904B的功能可以参见图9(a)的相关介绍,此处不再赘述。
另一些示例中,如图10(b)所示,控制支路702可以包括并网点的参考电压生成单元901、储能电源的总无功功率调整量生成单元902A、储能电源的无功功率调整量分配单元903A、储能电源的无功功率控制指令生成单元904A。图10(b)与图10(a)中相同之处可以参见图10(a)的相关介绍,此处不再赘述。
又一些示例中,如图10(c)所示,控制支路702可以包括并网点的参考电压生成单元901、光伏子阵的总无功功率调整量生成单元902B、光伏子阵的无功功率调整量分配单元903B、光伏子阵的无功功率控制指令生成单元904B。图10(c)与图10(a)中相同之处可以参见图10(a)的相关介绍,此处不再赘述。
基于本申请实施例提供的微电网集群100的拓扑,下面对微电网集群100的在集群并网工作模式下的工作过程进行介绍。微电网集群100可以响应于接收的集群并网工作模式,向各微电网101发送集群并网工作模式。
在微电网集群100中,各微电网101的微电网控制器201可以接收到集群并网工作模式,并执行集群并网工作模式相应的控制操作。
一些示例中,微电网集群100中可以存在一个微电网101的微电网控制器201作为主微电网控制器,可以接收工作模式指令。主微电网控制器可以接收到集群并网工作模式指令后,向与该主微电网控制器通信连接的各微电网控制器201发送集群并网工作模式指令。各微电网控制201在接收到集群并网工作模式指令后,可以向与各自通信连接的微电网控制器201发送集群并网工作模式指令。实现微电网集群100中各微电网101接收到集群并网工作模式指令。
另一些示例中,微电网集群100中可以存在一个微电网101的微电网控制器201作为主微电网控制器。主微电网控制器可以与微电网集群100中其它微电网控制器通信连接。主微电网控制器可以接收到集群并网工作模式指令后,向微电网集群100中其它微电网控制器发送集群并网工作模式指令。实现微电网集群100中各微电网101接收到集群并网工作模式指令。可选的,主微电网控制器可以与微电网集群100中其它微电网控制器分别点对点通信连接。或者,主微电网控制器通过以太环网与微电网集群100中其它微电网控制器通信连接。
在微电网集群100中,以任意一个微电网101(也即前述第一微电网)作为举例进行介绍。
一些示例中,第一微电网在集群并网工作模式下,可以进行调整第一微电网的并网点处的有功功率。第一微电网的微电网控制器201可以获取第一微电网的参考有功功率PMGk_ref、第一微电网的有功功率比例参数PMGk_base、第一微电网的并网点处输出的有功功率PMGk_sample,确定第一微电网的有功功率第一调整分量ΔP1MGk。其中,Kpk为配置的第一微电网的有功功率调节比例积分器。
可选的,第一微电网的微电网控制器201确定第一微电网的有功功率第一调整分量ΔP1MGk过程中可以采用控制有功功率控制环路滤波器,以滤除干扰、调节控制带宽。第一微电网的有功功率第一调整分量Wp为配置的第一微电网的有功功率调节环路滤波器函数,可以滤除干扰、调节控制带宽。可选的,ωps表征第一微电网有功功率控制环路滤波器截止频率。
在本示例中,第一微电网在集群并网工作模式下,可以仅调整第一微电网的并网点处的有功功率。第一微电网的微电网控制器201可以将第一微电网的有功功率第一调整分量ΔP1MGk作为第一微电网的总有功功率调整量ΔPZMGk
第一微电网的微电网控制器201可以基于第一微电网的总有功功率调整量ΔPZMGk以及第一微电网中各分布式电源的调节比例,分配第一微电网中每个分布式电源的有功功率调整量。一个分布式电源的有功功率调整量与第一微电网的总有功功率调整量的比值为该分布式电源的有功调节比例参数。可选的, 各分布式电源的有功调节比例参可以相同。换句话说,在第一微电网中,参与功率调节的分布式电源的有功功率调整量是均分的。
另一些示例中,第一微电网在集群并网工作模式下,可以进行调整第一微电网的并网点处的有功功率和并网点处的频率。
第一微电网的微电网控制器201可以获取第一微电网的参考有功功率PMGk_ref、第一微电网的有功功率比例参数PMGk_base、第一微电网的并网点处输出的有功功率PMGk_sample,确定第一微电网的有功功率第一调整分量ΔP1MGk。其中,Kpk为配置的第一微电网的有功功率调节比例积分器。
可选的,第一微电网的微电网控制器201确定第一微电网的有功功率第一调整分量ΔP1MGk过程中可以采用控制有功功率控制环路滤波器,以滤除干扰、调节控制带宽。第一微电网的有功功率第一调整分量Wp为配置的第一微电网的有功功率调节环路滤波器函数,可以滤除干扰、调节控制带宽。可选的,ωps表征第一微电网有功功率控制环路滤波器截止频率。
第一微电网的微电网控制器201可以根据所述第一微电网的并网点处的频率fMGk_sample以及集群的参考频率Fref,确定第一微电网的有功功率第二调整分量ΔP2MGk。其中,ΔP2MGk=Gfk·(Fref-fMGk_sample),其中Gfk为第一微电网并网点处频率调节比例积分器。
可选的,第一微电网的微电网控制器201确定第一微电网的有功功率第二调整分量ΔP2MGk过程中可以采用频率控制环路滤波器,以滤除干扰、调节控制带宽。ΔP2MGk=Gfk·(Fref-Wf·fMGk_sample),其中Wf为配置的第一微电网的频率环路滤波器函数,可以滤除干扰、调节控制带宽。可选的,ωfs表征第一微电网频率控制环路滤波器截止频率。
第一微电网的微电网控制器201可以将第一微电网的有功功率第一调整分量ΔP1MGk与第一微电网的有功功率第二调整分量ΔP2MGk的总和确定为第一微电网的总有功功率调整量ΔPZMGk
第一微电网通过控制内部的分布式电源,实现调整第一微电网在并网点处输出的有功功率以及电压的频率。
一些场景中,第一微电网中多个分布式电源202可以包括储能电源、光伏子阵中的一个或多个。由于第一微电网中储能电源和光伏子阵可分担的频率调节功率不同。第一微电网的有功功率第一调整分量ΔP1MGk可以包括储能电源的有功功率第一调整分量ΔP1MGk_ESS和光伏子阵的有功功率第一调整分量ΔP1MGk_PV
第一微电网的总有功功率调整量ΔPZMGk可以包括储能电源的总有功功率调整量ΔPZMGk_ESS和光伏子阵的总有功功率调整量ΔPZMGk_PV
储能电源的总有功功率调整量ΔPZMGk_ESS可以包括储能电源的有功功率第一调整分量ΔP1MGk_ESS和储能电源的有功功率第二调整分量ΔP2MGk_ESS
第一微电网的微电网控制器201可以根据各第二微电网对应的有功功率影响量以及储能电池对应的有功功率调节比例积分器Kpk_ESS,确定储能电源的有功功率第一调整分量ΔP1MGk_ESS。示例性的,储能电源的有功功率第一调整分量PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数,Kpk_ESS可以表征第一微电网中储能电源有功功率调节的比例积分器(也即PI控制器),Wp为配置的第一微电网的有功功率环路滤波器函数。可选的,其中KpPk_ESS表征储能电源的有功功率调节的比例积分器(也即PI控制器)的比例系数,KiPk_ESS表征储能电源的有功功率调节的比例积分器(也即PI控制器)的积分系数。
第一微电网的微电网控制器201可以基于第一微电网的并网点处的频率fMGk_sample、集群的参考频率Fref以及储能电池对应的频率调节积分器Gfk_ESS,确定储能电源的有功功率第二调整分量ΔP2MGk_ESS。示例性的,储能电源的有功功率第二调整分量ΔP2MGk_ESS=Gfk_ESS·(Fref-Wf·fMGk_sample),Wf为配置的第一微电网的频率环路滤波器。
第一微电网的微电网控制器201可以根据全部储能电源的总有功功率调整量ΔPZMGk_ESS分配第一微电网中每个储能电源的有功功率调整量。一个储能电源的有功功率调整量与全部储能电源的总有功功率调整量ΔPZMGk_ESS的比值为该储能电源的调节比例。可选的,各储能电源的有功功率调整量可以相同。第一微电网的微电网控制器201可以向各储能电源发送分配的有功功率调整量,以使各储能电源调整输 出的有功功率。
第一微电网的微电网控制器201可以获取到各储能电源的最优有功功率运行点。第一微电网的微电网控制器201可以向储能电源发送有功功率控制指令,以使储能电源调整输出有功功率为接收到的有功功率控制指令所指示的有功功率。储能电源的有功功率控制指令表征该储能电源分配到的有功功率调整量与该储能电源的最优有功功率运行点的总和。
第一微电网的微电网控制器201可以根据各第二微电网对应的有功功率影响量以及光伏子阵对应的有功功率调节比例积分器Kpk_PV,确定光伏子阵的有功功率第一调整分量ΔP1MGk_PV。示例性的,光伏子阵的有功功率第一调整分量PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数,Kpk_PV可以表征第一微电网中光伏子阵有功功率调节的比例积分器(也即PI控制器)。Wp为配置的第一微电网的有功功率环路滤波器函数。可选的,其中KpPk_PV表征光伏子阵的有功功率调节的比例积分器(也即PI控制器)的比例系数,KpIk_PV表征光伏子阵的有功功率调节的比例积分器(也即PI控制器)的积分系数。
第一微电网的微电网控制器201可以基于第一微电网的并网点处的频率fMGk_sample、集群的参考频率Fref以及光伏子阵对应的频率调节积分器Gfk_PV,确定光伏子阵的有功功率第二调整分量ΔP2MGk_PV。示例性的,光伏子阵的有功功率第二调整分量ΔP2MGk_PV=Gfk_PV·(Fref-Wf·fMGk_sample)。Wf为配置的第一微电网的频率环路滤波器,Gfk_ESS可以表征光伏子阵的频率调节的比例积分器(也即PI控制器)。可选的,其中KfPk_PV表征光伏子阵的频率调节的比例积分器(也即PI控制器)的比例系数,KfIk_ESS表征光伏子阵的频率调节的比例积分器(也即PI控制器)的积分系数。
第一微电网的微电网控制器201可以根据光伏子阵的总有功功率调整量ΔPZMGk_PV分配第一微电网中每个光伏子阵的有功功率调整量。一个光伏子阵的有功功率调整量与光伏子阵的总有功功率调整量ΔPZMGk_PV的比值为该光伏子阵的调节比例。可选的,各光伏子阵的有功功率调整量可以相同。第一微电网的微电网控制器201可以向各光伏子阵发送分配的有功功率调整量,以使各光伏子阵调整输出的有功功率。
第一微电网的微电网控制器201可以获取到各光伏子阵的最优有功功率运行点。第一微电网的微电网控制器201可以向光伏子阵发送有功功率控制指令,以使光伏子阵调整输出有功功率为接收到的有功功率控制指令所指示的有功功率。光伏子阵的有功功率控制指令表征该光伏子阵分配到的有功功率调整量与该光伏子阵的最优有功功率运行点的总和。
基于本申请实施例提供的微电网集群100的拓扑,图11示出一种第一微电网的微电网控制器的控制环路。其中第一微电网为微电网集群100中的非关键电压节点。如图11所示,微电网控制器的控制环路可以包括控制支路701和控制支路702。控制支路701可以参见图8(a)的相关介绍,此处不再赘述。控制支路702可以参见图9(a)的相关介绍,此处不再赘述。
图12示例性的示出微电网控制器的控制环路的具体示意图。
在控制支路701中,第二微电网总有功功率影响量生成单元801可以包括多个有功功率控制环路滤波器Wp。第二微电网总有功功率影响量生成单元801可以根据有功功率控制环路滤波器Wp、第二微电网的并网点处的有功功率PMG1_sample至PMGx_sample、第一微电网的并网点处的有功功率PMGk_sample,计算得到集群孤岛工作模式下的第二微电网总有功功率影响量。
第二微电网总有功功率影响量生成单元801可以根据有功功率控制环路滤波器Wp、第一微电网的参考有功功率PMGk_ref、第一微电网的并网点处的有功功率PMGk_sample,计算得到集群并网工作模式下的第二微电网总有功功率影响量。
加法器A1可以向数据选择器MUX1输出集群孤岛工作模式下的第二微电网总有功功率影响量PMGi_sample为第二微电网i的并网点处的有功功率,PMGi_base为第二微电网i的有功功率比例参数,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数。加法器A2可以向数据选择器MUX1输出集群并网工作模式下的第二微电网总有功功率影响量PMGk_ref为第一微电网的并网点的参考频率,PMGk_sample为第一微电网的并网点处的有功功率,PMGk_base为第一微电网的有功功率比例参数。
数据选择器MUX1可以在集群孤岛工作模式下将加法器A1输出的数据,提供至储能电源的总有 功功率调整量生成单元802A。数据选择器MUX1可以在集群并网工作模式下将加法器A2输出的数据,提供至储能电源的总有功功率调整量生成单元802A以及光伏子阵的总有功功率调整量生成单元802B。
可选的,储能电源的总有功功率调整量生成单元802A或者光伏子阵的总有功功率调整量生成单元802B中的一个单元可以包括第一微电网的频率控制环路滤波器Wf。示例性的,图12中储能电源的总有功功率调整量生成单元802A包括第一微电网的频率控制环路滤波器Wf
储能电源的总有功功率调整量生成单元802A还可以包括储能电源对应的有功功率调节比例积分器Kpk_ESS、储能电源对应的频率调节比例积分器Gfk_ESS。储能电源的总有功功率调整量生成单元802A可以根据数据选择器MUX1提供的数据、集群的参考频率Fref、第一微电网的并网点处的频率fMGk_sample,计算得到储能电源的总有功功率调整量ΔPZMGk_ESS,并提供至储能电源的有功功率调整量分配单元803A。储能电源的有功功率调整量分配单元803A、储能电源的有功功率控制指令生成单元804A的功能可以参见前述实施例中的相关介绍,此处不再赘述。
光伏子阵的总有功功率调整量生成单元802B还可以包括光伏子阵对应的有功功率调节比例积分器Kpk_PV、光伏子阵对应的频率调节比例积分器Gfk_PV。光伏子阵的总有功功率调整量生成单元802B可以根据数据选择器MUX1提供的数据、集群的参考频率Fref、第一微电网的并网点处的频率fMGk_sample,计算得到光伏子阵的总有功功率调整量ΔPZMGk_PV,并提供至光伏子阵的有功功率调整量分配单元803B。光伏子阵的有功功率调整量分配单元803B、光伏子阵的有功功率控制指令生成单元804B的功能可以参见前述实施例中的相关介绍,此处不再赘述。
在控制支路702中,并网点的参考电压生成单元901可以包括多个无功功率控制环路滤波器Wq和第一微电网的无功功率调节比例积分器Kqk
并网点的参考电压生成单元901可以根据第二微电网的并网点处的无功功率QMG1_sample至QMGx_sample、第一微电网的并网点处的无功功率QMGk_sample、无功功率控制环路滤波器Wq和第一微电网的无功功率调节比例积分器Kqk,计算得到集群孤岛工作模式下的第一微电网的第一无功功率分量。
并网点的参考电压生成单元901可以根据第一微电网的并网点的参考无功功率QMGk_ref、第一微电网的并网点处的无功功率QMGk_sample、无功功率控制环路滤波器Wq和第一微电网的无功功率调节比例积分器Kqk,计算得到集群并网工作模式下的第一微电网的第一无功功率分量。
并网点的参考电压生成单元901可以根据第二微电网的并网点处的无功功率QMG1_sample至QMGx_sample、第一微电网的并网点处的无功功率QMGk_sample、无功功率控制环路滤波器Wq和第一微电网的无功功率调节比例积分器Kqk,计算得到第一微电网为非关键电压节点时的集群孤岛工作模式下的第一微电网的第一无功功率分量。
加法器B1可以向数据选择器MUX2输出第一微电网为非关键电压节点时的集群孤岛工作模式下的第一微电网的第一无功功率分量QMGi_sample为第二微电网i的并网点处的无功功率,QMGi_base为第二微电网i的无功功率比例参数,QMGk_sample为第一微电网的并网点处的无功功率,QMGkbase为第一微电网的无功功率比例参数。加法器B2可以向数据选择器MUX2输出集群并网工作模式下的第一微电网的第一无功功率分量QMGk_sample为第一微电网的并网点处的无功功率,QMGk_base为第一微电网的无功功率比例参数,QMGk_ref为第一微电网的并网点的参考无功功率。
并网点的参考电压生成单元901还可以包括第一微电网的无功功率调节比例积分器Kqk。数据选择器MUX2在集群孤岛工作模式下向无功功率调节比例积分器Kqk提供第一微电网为非关键电压节点时的集群孤岛工作模式下的第一微电网的第一无功功率分量数据选择器MUX2在集群并网工作模式下向无功功率调节比例积分器Kqk提供集群并网工作模式下的第一微电网的第一无功功率分量
并网点的参考电压生成单元901中数据选择器MUX3在第一微电网为非关键电压节点时,将无功功率调节比例积分器Kqk输出的数据,提供给加法器C1。数据选择器MUX3在第一微电网为关键电压节点时,将0提供给加法器C1。
加法器C1可以将集群的参考电压Vref与数字选择器MUX3输出的数据进行加和操作,得到第一微电网的并网点的参考电压VMGK_ref。加法器C1将第一微电网的并网点的参考电压VMGK_ref分别提供至储能电源的总无功功率调整量生成单元902A和光伏子阵的总无功功率调整量生成单元902B。
可选的,储能电源的总无功功率调整量生成单元902A或者光伏子阵的总无功功率调整量生成单元902B中的一个单元可以包括第一微电网的电压控制环路滤波器Wv。示例性的,图12中储能电源的总无功功率调整量生成单元902A包括第一微电网的电压控制环路滤波器Wv
储能电源的总无功功率调整量生成单元902A还可以包括储能电源对应的电压调节比例积分器Kqk_ESS。储能电源的总无功功率调整量生成单元902A可以根据加法器C1提供的数据、电压控制环路滤波器Wv、储能电源对应的电压调节比例积分器Kqk_ESS,计算得到储能电源的总无功功率调整量ΔQZMGk_ESS,并提供至储能电源的无功功率调整量分配单元903A。储能电源的无功功率调整量分配单元903A、储能电源的无功功率控制指令生成单元904A的功能可以参见前述实施例中的相关介绍,此处不再赘述。
光伏子阵的总无功功率调整量生成单元902B可以包括光伏子阵对应的无功功率调节比例积分器Kqk_PV。光伏子阵的总无功功率调整量生成单元902B可以根据加法器C1提供的数据、电压控制环路滤波器Wv、光伏子阵对应的电压调节比例积分器Kqk_PV,计算得到光伏子阵的总无功功率调整量ΔQZMGk_PV,并提供至光伏子阵的无功功率调整量分配单元903B。光伏子阵的无功功率调整量分配单元903B、光伏子阵的无功功率控制指令生成单元904B的功能可以参见前述实施例中的相关介绍,此处不再赘述。
基于本申请实施例提供的微电网集群的拓扑,本申请实施例还提供一种微电网控制方法,可以应用于微电网集群,任一微电网的并网点与联络线耦合,所述联络线用于传输电能;所述任一微电网与一个或多个其它微电网通信连接;任一微电网集群中的控制器可以执行本申请实施例提供的微电网控制方法,应用于微电网集群,所述微电网集群包括多个微电网;任一所述微电网的并网点与联络线耦合,所述联络线用于传输电能;任一所述微电网与一个或多个其它微电网通信连接;所述微电网包括微电网控制器和多个分布式电源;所述多个分布式电源与所属微电网的并网点耦合。所述方法包括:
所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息;
所述微电网控制器控制所述多个分布式电源的输出功率。
一种可能的设计中,所述输出功率信息包括所述微电网的并网点处的有功功率;
在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:
所述微电网控制器根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量;
所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,以使所述微电网的并网点处的有功功率变化量为所述总有功功率调整量。
一种可能的设计中,所述微电网控制器根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量,包括:
根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的有功功率第一调整分量;
根据所述微电网的并网点处的频率以及集群的参考频率,确定所述微电网的有功功率第二调整分量;
将所述有功功率第一调整分量和所述有功功率第二调整分量的总和作为所述微电网的总有功功率调整量。
一种可能的设计中,所述有功功率第一调整分量用于调整所述微电网的并网点输出的有功功率;
所述有功功率第二调整分量用于调整所述微电网的并网点输出频率。
一种可能的设计中,所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,包括:
所述微电网控制器根据预设各分布式电源的有功调节比例参数和所述总有功功率调整量,得到各分布式电源的有功功率调整量;
所述微电网控制器根据所述各分布式电源的有功功率台偶证量,控制各分布式电源调整输出的有功功率,以使各分布式电源输出的有功功率为其最优有功功率与其有功功率调整量的总和。
一种可能的设计中,所述输出功率信息包括所述微电网的并网点处的无功功率;
在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:
所述微电网控制器根据所述微电网的并网点处的无功功率、所述一个或多个其它微电网并网点处的无功功率、以及集群的参考电压,确定所述微电网的并网点的参考电压;
所述微电网控制器基于所述微电网的参考电压以及所述微电网的并网点处的电压,确定所述微电网 的总无功功率调整量;
所述微电网控制器根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;
所述微电网控制器根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
一种可能的设计中,所述输出功率信息包括所述微电网的并网点处的无功功率;
在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:
所述微电网控制器基于集群的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;
所述微电网控制器根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,分配各分布式电源的无功功率调整量;
根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
一种可能的设计中,所述微电网的总的无功功率调整量用于调整所述微电网的并网点输出电压为所述集群的参考电压。
基于以上实施例及相同构思,本申请实施例还提供一种微电网控制器,该装置包括处理器和存储器;所述存储器用于存储计算机程序指令;所述处理器用于执行所述存储器中存储的计算机程序指令,实现上述实施例所提供的微电网控制方法,或者执行上述实施例所提供的微电网控制器的功能。
基于以上实施例及相同构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述实施例所提供的微电网控制方法,或者执行上述实施例所提供的微电网控制器的功能。
基于以上实施例及相同构思,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行上述实施例所提供的微电网控制方法。本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种微电网集群,其特征在于,包括多个微电网,其中,任一所述微电网的并网点与联络线耦合,所述联络线用于传输电能;任一所述微电网与一个或多个其它微电网通信连接;
    所述微电网包括微电网控制器和多个分布式电源;
    所述多个分布式电源与所属微电网的并网点耦合,所述微电网控制器用于控制所述多个分布式电源的输出功率;
    所述微电网控制器与所述一个或多个其它微电网的微电网控制器通信连接,其中,所述微电网控制器用于:
    响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息。
  2. 如权利要求1所述的微电网集群,其特征在于,所述输出功率信息包括所述微电网的并网点处的有功功率;
    所述微电网控制器还用于:
    根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量;
    控制所属的微电网中的所述多个分布式电源输出的有功功率,以使所述微电网的并网点处的有功功率变化量为所述总有功功率调整量。
  3. 如权利要求1或2所述的微电网集群,其特征在于,所述微电网控制器具体用于:
    根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的有功功率第一调整分量;
    根据所述微电网的并网点处的频率以及集群的参考频率,确定所述微电网的有功功率第二调整分量;
    将所述有功功率第一调整分量和所述有功功率第二调整分量的总和作为所述微电网的总有功功率调整量。
  4. 如权利要求3所述的微电网集群,其特征在于,
    所述有功功率第一调整分量用于调整所述微电网的并网点输出的有功功率;
    所述有功功率第二调整分量用于调整所述微电网的并网点输出频率。
  5. 如权利要求2-4中任一所述的微电网集群,其特征在于,所述微电网控制器具体用于:
    根据预设各分布式电源的有功调节比例参数和所述总有功功率调整量,得到各分布式电源的有功功率调整量;
    根据所述各分布式电源的有功功率调整量,控制各分布式电源调整输出的有功功率,以使各分布式电源输出的有功功率为其最优有功功率与其有功功率调整量的总和。
  6. 如权利要求2-5中任一所述的微电网集群,其特征在于,所述输出功率信息包括所述微电网的并网点处的无功功率;
    所述微电网控制器还用于:
    根据所述微电网的并网点处的无功功率、所述一个或多个其它微电网并网点处的无功功率、以及集群的参考电压,确定所述微电网的并网点的参考电压;
    基于所述微电网的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;
    根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;
    根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
  7. 如权利要求2-5中任一所述的微电网集群,其特征在于,所述微电网控制器还用于:
    基于集群的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;
    根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;
    根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
  8. 如权利要求7所述的微电网集群,其特征在于,所述微电网的总无功功率调整量用于调整所述微电网的并网点输出电压为所述集群的参考电压。
  9. 一种微电网控制方法,其特征在于,应用于微电网集群,所述微电网集群包括多个微电网;任一所述微电网的并网点与联络线耦合,所述联络线用于传输电能;任一所述微电网与一个或多个其它微电网通信连接;所述微电网包括微电网控制器和多个分布式电源;所述多个分布式电源与所属微电网的并网点耦合;
    所述方法包括:
    所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息;
    所述微电网控制器控制所述多个分布式电源的输出功率。
  10. 如权利要求9所述的方法,其特征在于,所述输出功率信息包括所述微电网的并网点处的有功功率;
    在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:
    所述微电网控制器根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量;
    所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,以使所述微电网的并网点处的有功功率变化量为所述总有功功率调整量。
  11. 如权利要求10所述的方法,其特征在于,所述微电网控制器根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的总有功功率调整量,包括:
    根据所述微电网的并网点处的有功功率、所述一个或多个其它微电网并网点处的有功功率,确定所述微电网的有功功率第一调整分量;
    根据所述微电网的并网点处的频率以及集群的参考频率,确定所述微电网的有功功率第二调整分量;
    将所述有功功率第一调整分量和所述有功功率第二调整分量的总和作为所述微电网的总有功功率调整量。
  12. 如权利要求11所述的方法,其特征在于,所述有功功率第一调整分量用于调整所述微电网的并网点输出的有功功率;
    所述有功功率第二调整分量用于调整所述微电网的并网点输出频率。
  13. 如权利要求10所述的方法,其特征在于,所述微电网控制器控制所属的微电网中的所述多个分布式电源输出的有功功率,包括:
    所述微电网控制器根据预设各分布式电源的有功调节比例参数和所述总有功功率调整量,得到各分布式电源的有功功率调整量;
    所述微电网控制器根据所述各分布式电源的有功功率台偶证量,控制各分布式电源调整输出的有功功率,以使各分布式电源输出的有功功率为其最优有功功率与其有功功率调整量的总和。
  14. 如权利要求9或10所述的方法,其特征在于,所述输出功率信息包括所述微电网的并网点处的无功功率;
    在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:
    所述微电网控制器根据所述微电网的并网点处的无功功率、所述一个或多个其它微电网并网点处的无功功率、以及集群的参考电压,确定所述微电网的并网点的参考电压;
    所述微电网控制器基于所述微电网的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;
    所述微电网控制器根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,得到各分布式电源的无功功率调整量;
    所述微电网控制器根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
  15. 如权利要求9或10所述的方法,其特征在于,所述输出功率信息包括所述微电网的并网点处的无功功率;
    在所述微电网控制器响应于集群孤岛工作模式,向通信连接的微电网控制器发送所属的微电网的输出功率信息之后,所述方法还包括:
    所述微电网控制器基于集群的参考电压以及所述微电网的并网点处的电压,确定所述微电网的总无功功率调整量;
    所述微电网控制器根据预设各分布式电源的无功调节比例参数和所述总无功功率调整量,分配各分布式电源的无功功率调整量;
    根据各分布式电源的无功功率调整量,控制各分布式电源调整输出的无功功率,以使各分布式电源输出的无功功率为其最优无功功率与其无功功率调整量的总和。
  16. 如权利要求15所述的方法,其特征在于,所述微电网的总的无功功率调整量用于调整所述微电网的并网点输出电压为所述集群的参考电压。
PCT/CN2023/102935 2022-11-15 2023-06-27 一种微电网集群以及微电网控制方法 WO2024103736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211430310.8A CN115800363A (zh) 2022-11-15 2022-11-15 一种微电网集群以及微电网控制方法
CN202211430310.8 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103736A1 true WO2024103736A1 (zh) 2024-05-23

Family

ID=85437972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102935 WO2024103736A1 (zh) 2022-11-15 2023-06-27 一种微电网集群以及微电网控制方法

Country Status (2)

Country Link
CN (1) CN115800363A (zh)
WO (1) WO2024103736A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800363A (zh) * 2022-11-15 2023-03-14 华为数字能源技术有限公司 一种微电网集群以及微电网控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207225A (ja) * 2008-02-26 2009-09-10 Tokyo Electric Power Co Inc:The 分散型電源
CN104238362A (zh) * 2014-09-19 2014-12-24 国家电网公司 一种光伏电站厂站级控制系统建模方法
CN105576837A (zh) * 2016-03-18 2016-05-11 东南大学 一种微电网群分布式三级协同功率控制方法
CN108565898A (zh) * 2018-03-02 2018-09-21 国电南京自动化股份有限公司 一种基于神经网络的集散式微电网群能量调度方法
CN108599379A (zh) * 2018-06-01 2018-09-28 南方电网科学研究院有限责任公司 一种用于微电网群的功率监控系统
CN115800363A (zh) * 2022-11-15 2023-03-14 华为数字能源技术有限公司 一种微电网集群以及微电网控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207225A (ja) * 2008-02-26 2009-09-10 Tokyo Electric Power Co Inc:The 分散型電源
CN104238362A (zh) * 2014-09-19 2014-12-24 国家电网公司 一种光伏电站厂站级控制系统建模方法
CN105576837A (zh) * 2016-03-18 2016-05-11 东南大学 一种微电网群分布式三级协同功率控制方法
CN108565898A (zh) * 2018-03-02 2018-09-21 国电南京自动化股份有限公司 一种基于神经网络的集散式微电网群能量调度方法
CN108599379A (zh) * 2018-06-01 2018-09-28 南方电网科学研究院有限责任公司 一种用于微电网群的功率监控系统
CN115800363A (zh) * 2022-11-15 2023-03-14 华为数字能源技术有限公司 一种微电网集群以及微电网控制方法

Also Published As

Publication number Publication date
CN115800363A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US8731732B2 (en) Methods and system to manage variability in production of renewable energy
Li et al. A distributed coordination control based on finite-time consensus algorithm for a cluster of DC microgrids
WO2024103736A1 (zh) 一种微电网集群以及微电网控制方法
JP7428759B2 (ja) 充電パイルクラスタの電力共有制御方法、電力共有制御システム及び電力共有制御装置
CN111245026A (zh) 虚拟电厂调控方法、系统及设备
CN105284029A (zh) 用于在电化学蓄能器中存储能量的方法和设备
CN103870649A (zh) 一种基于分布式智能计算的主动配电网自治化仿真方法
KR20200111246A (ko) 에너지 인터넷 시스템, 에너지 라우팅 변환 장치 및 에너지 제어 방법
CN105576837A (zh) 一种微电网群分布式三级协同功率控制方法
CN108683193A (zh) 一种含分布式电源的配电网电压控制方法和装置
CN104901314A (zh) 消费者设备运用管理系统及方法
CN108988359A (zh) 非线性自动发电控制方法、装置、设备及介质
WO2024060387A1 (zh) 多电池包并机充电方法、配电设备及可读介质
CN108614416A (zh) 光伏虚拟同步发电机控制参数的整定方法及系统
CN110429607B (zh) 基于分布因子的主动配电网成本分摊方法
CN111211567A (zh) 基于事件触发机制的孤岛微电网分布式最优频率调节方法
CN110518641A (zh) 一种交流微电网实现功率分配的分布式分层协调控制方法
CN115967083A (zh) 一种虚拟电厂的运行控制方法及系统
WO2022183580A1 (zh) 微电网优化配置方法、装置、设备和存储介质
CN109088432A (zh) 一种电网应急协调控制方法及装置
CN114784891A (zh) 集群储能参与电力系统的紧急频率控制方法、装置及介质
JP7326808B2 (ja) ネガワット取引支援装置、ネガワット取引システム、およびネガワット取引方法
CN107634545A (zh) 一种不对称结构的交流发电机组并联运行功率分配方法
CN113988478A (zh) 基于等微增率的直流微电网互联系统分散式经济优化方法
CN112510753A (zh) 一种变流器协调控制方法及变流器协调控制装置