WO2024103659A1 - 滤波器的处理方法、装置、设备和存储介质 - Google Patents

滤波器的处理方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2024103659A1
WO2024103659A1 PCT/CN2023/095090 CN2023095090W WO2024103659A1 WO 2024103659 A1 WO2024103659 A1 WO 2024103659A1 CN 2023095090 W CN2023095090 W CN 2023095090W WO 2024103659 A1 WO2024103659 A1 WO 2024103659A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
insertion loss
spliced
target
value
Prior art date
Application number
PCT/CN2023/095090
Other languages
English (en)
French (fr)
Inventor
孔祥健
肖礼
马顺飞
陈宏刚
张博
罗勇
马卫东
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2024103659A1 publication Critical patent/WO2024103659A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a filter processing method, device, equipment and storage medium.
  • the filter can effectively filter out the frequency point of a specific frequency in the signal or the frequencies outside the frequency point to obtain a signal of a specific frequency, or eliminate the signal after a specific frequency.
  • an optical filter can only allow light signals of a specific wavelength to pass through.
  • the spliced filter can inherit the advantages of different filters at the same time, and the cascade splicing method can improve the isolation of the spliced filter.
  • the volatility of the indicators of the filter in batch production if the splicing pairing is not standardized, the volatility of the filter indicators obtained by splicing different filters will be further amplified after the filter is spliced, resulting in large volatility of the indicators of the spliced filter and poor consistency of the indicators, which in turn affects the pass rate of the spliced filter and is not conducive to production.
  • the main purpose of the present disclosure is to provide a filter processing method, device, equipment and storage medium, which can improve the performance and pass rate of the spliced target filter.
  • an embodiment of the present disclosure provides a filter processing method, including:
  • the first filter to be spliced and the second filter to be spliced, which are associated with each other, are used to splice to obtain a target filter.
  • the method further comprises:
  • the insertion loss sum is equal to the expected insertion loss value, it is determined that a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located satisfy the preset matching relationship.
  • the method further comprises:
  • determining an insertion loss consistency parameter of the target filter Based on the target insertion loss value, determining an insertion loss consistency parameter of the target filter; wherein the insertion loss consistency parameter is used to characterize the stability of the target filter;
  • the target filter includes at least two channels, and the target insertion loss value includes: a central wavelength insertion loss value of the channel.
  • determining the target insertion loss value of the target filter based on the interrelated insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced includes:
  • the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced, which are associated with each other, is determined as the target insertion loss value.
  • the insertion loss consistency parameter includes: an adjacent channel insertion loss consistency parameter; and determining the insertion loss consistency parameter of the target filter based on the target insertion loss value includes:
  • the adjacent channel insertion loss consistency parameter is determined from each of the absolute values.
  • the insertion loss consistency parameter includes: an inter-channel insertion loss consistency parameter; and determining the insertion loss consistency parameter of the target filter based on the target insertion loss value includes:
  • the inter-channel insertion loss consistency parameter is determined according to the inter-channel insertion loss difference.
  • the method further comprises:
  • the first filter to be spliced and the second filter to be spliced are used to obtain the target filter with a target indicator parameter, and the target indicator parameter is determined by the first target indicator parameter and the second target indicator parameter.
  • the first indicator parameter includes: central wavelength, bandwidth, and adjacent channel isolation; the first candidate filter matching the first indicator parameter with the first target indicator parameter is determined as the first filter to be spliced, including:
  • the absolute value of the wavelength difference is less than the preset wavelength threshold
  • the absolute value of the bandwidth difference is less than the preset bandwidth threshold
  • the adjacent channel isolation of the first alternative filter is greater than the preset adjacent channel isolation threshold
  • the second indicator parameter includes: non-adjacent channel isolation; the second candidate filter matching the second indicator parameter with the second target indicator parameter is determined as the second filter to be spliced, including:
  • the second index parameter of the second candidate filter matches the second target index parameter, and the second candidate filter is determined as the second filter to be spliced.
  • the first filter to be spliced includes: a comb filter
  • the second filter to be spliced includes: a wavelength division multiplexer
  • the target filter is obtained by splicing one of the comb filter and two of the wavelength division multiplexers.
  • an embodiment of the present disclosure provides a filter processing device, including:
  • a first determination module is configured to determine a first insertion loss interval in which an insertion loss value of a first filter to be spliced is located, and a second insertion loss interval in which an insertion loss value of a second filter to be spliced is located;
  • an associating module configured to associate the first filter to be spliced with the second filter to be spliced when a first insertion loss interval where the insertion loss value of the first filter to be spliced is located and a second insertion loss interval where the insertion loss value of the second filter to be spliced is located meet a preset matching relationship;
  • the first filter to be spliced and the second filter to be spliced, which are associated with each other, are used to splice to obtain a target filter.
  • the apparatus further comprises:
  • a summing module configured to sum an upper limit value of a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and an upper limit value of a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located; Add and process to get the insertion loss and value;
  • the second determination module is configured to determine that a first insertion loss interval of the insertion loss value of the first filter to be spliced and a second insertion loss interval of the insertion loss value of the second filter to be spliced satisfy the preset matching relationship when the insertion loss sum value is equal to the expected insertion loss value.
  • the apparatus further comprises:
  • a third determination module configured to determine a target insertion loss value of the target filter based on the interrelated insertion loss values of the first filter to be spliced and the second filter to be spliced;
  • a fourth determination module is configured to determine an insertion loss consistency parameter of the target filter based on the target insertion loss value; wherein the insertion loss consistency parameter is used to characterize the stability of the target filter;
  • the fifth determination module is configured to determine that the stability of the target filter meets the preset requirements when the insertion loss consistency parameter is lower than a preset parameter threshold; wherein the target filter includes at least two channels, and the target insertion loss value includes: the center wavelength insertion loss value of the channel.
  • the third determination module is configured as:
  • the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced, which are associated with each other, is determined as the target insertion loss value.
  • the insertion loss consistency parameter includes: an adjacent channel insertion loss consistency parameter; the fourth determination module is configured as:
  • the adjacent channel insertion loss consistency parameter is determined from each of the absolute values.
  • the insertion loss consistency parameter includes: an insertion loss consistency parameter between channels; the fourth determination module is configured as:
  • the inter-channel insertion loss consistency parameter is determined according to the inter-channel insertion loss difference.
  • the apparatus further comprises:
  • An acquisition module configured to acquire a first index parameter of each first candidate filter and a second index parameter of each second candidate filter
  • a sixth determination module configured to determine a first candidate filter that matches the first indicator parameter with a first target indicator parameter as the first filter to be spliced, and to determine a second candidate filter that matches the second indicator parameter with the second target indicator parameter as the second filter to be spliced;
  • the first filter to be spliced and the second filter to be spliced are used to obtain the target filter with a target indicator parameter, and the target indicator parameter is determined by the first target indicator parameter and the second target indicator parameter.
  • the first indicator parameter includes: central wavelength, bandwidth, and adjacent channel isolation; the sixth determination module is configured as follows:
  • the absolute value of the wavelength difference is less than the preset wavelength threshold
  • the absolute value of the bandwidth difference is less than the preset bandwidth threshold
  • the adjacent channel isolation of the first alternative filter is greater than the preset adjacent channel isolation threshold
  • the second indicator parameter includes: non-adjacent channel isolation; the sixth determination module is configured as:
  • the second index parameter of the second candidate filter matches the second target index parameter, and the second candidate filter is determined as the second filter to be spliced.
  • the preset isolation threshold can be determined according to actual conditions.
  • the first filter to be spliced includes: a comb filter
  • the second filter to be spliced includes: a wavelength division multiplexer
  • the target filter is obtained by splicing one of the comb filter and two of the wavelength division multiplexers.
  • an embodiment of the present disclosure provides an electronic device, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, and when the processor executes the program, the steps of any one of the methods described in the first aspect are implemented.
  • an embodiment of the present disclosure provides a computer-readable storage medium having a computer program stored thereon, wherein the computer program, when executed by a processor, implements the steps of any one of the methods described in the first aspect above.
  • a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located can be first determined; then, when the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship, the first filter to be spliced and the second filter to be spliced are associated; wherein the associated first filter to be spliced and the second filter to be spliced are used to splice to obtain a target filter.
  • the insertion loss values of the first filter to be spliced and the second filter to be spliced can be managed in grades, the insertion loss values of the first filter to be spliced and the second filter to be spliced can be included in the corresponding insertion loss interval, and it is determined whether the first insertion loss interval where the insertion loss value of the first filter to be spliced is located and the second insertion loss interval where the insertion loss value of the second filter to be spliced is located meet the preset matching relationship.
  • the first filter to be spliced and the second filter to be spliced whose first insertion loss interval and second insertion loss interval meet the preset matching relationship are associated, and the insertion loss values of the first filter to be spliced and the second filter to be spliced used to obtain the target filter can be limited to the corresponding interval, and then the insertion loss value of the target filter can be limited to the set range, reducing the volatility of the insertion loss index of the target filter, and enhancing the consistency of the insertion loss index of the target filter, so that the performance of the target filter is better and the qualified rate is higher.
  • FIG1 is a flowchart 1 of a filter processing method according to an exemplary embodiment of the present disclosure
  • FIG2 is a second flowchart of a filter processing method according to an exemplary embodiment of the present disclosure
  • FIG3 is a flowchart 3 of a filter processing method according to an exemplary embodiment of the present disclosure.
  • FIG4 is a first structural diagram of a target filter according to an exemplary embodiment of the present disclosure.
  • FIG5 is a second structural diagram of a target filter according to an exemplary embodiment of the present disclosure.
  • FIG6 is a fourth flowchart of a method for processing a filter according to an exemplary embodiment of the present disclosure
  • FIG7 is a schematic diagram showing the definition of a central wavelength and central wavelength accuracy according to an exemplary embodiment of the present disclosure
  • FIG8 is a schematic diagram showing bandwidth definition according to an exemplary embodiment of the present disclosure.
  • FIG9 is a schematic diagram showing the definition of adjacent channel isolation according to an exemplary embodiment of the present disclosure.
  • FIG10 is a schematic diagram showing the definition of loss non-flatness within a channel according to an exemplary embodiment of the present disclosure
  • FIG11 is a schematic diagram of a transmission spectrum of a comb filter according to an exemplary embodiment of the present disclosure.
  • FIG12 is a schematic diagram showing channel insertion loss values of a comb filter, a wavelength division multiplexer, and a target filter according to an exemplary embodiment of the present disclosure
  • FIG13 is a schematic diagram of a transmission spectrum of a wavelength division multiplexer according to an exemplary embodiment of the present disclosure
  • FIG14 is a partial schematic diagram of a transmission spectrum of a wavelength division multiplexer according to an exemplary embodiment of the present disclosure
  • FIG15 is a schematic diagram of a transmission spectrum of a target filter according to an exemplary embodiment of the present disclosure.
  • FIG16 is a partial schematic diagram of a transmission spectrum of a target filter according to an exemplary embodiment of the present disclosure.
  • FIG17 is a schematic diagram of transmission spectra of a comb filter, a wavelength division multiplexer and a target filter according to an exemplary embodiment of the present disclosure
  • FIG18 is a partial schematic diagram of a transmission spectrum of a comb filter, a wavelength division multiplexer, and a target filter according to an exemplary embodiment of the present disclosure
  • FIG19 is a schematic diagram of the structure of a filter processing device according to an exemplary embodiment of the present disclosure.
  • Fig. 20 is a schematic diagram showing the structure of an electronic device according to an exemplary embodiment of the present disclosure.
  • the filter for example, a comb filter
  • a multiplexer for example, a wavelength division multiplexer
  • FIG. 1 is a flowchart 1 of a filter processing method according to an exemplary embodiment of the present disclosure. As shown in FIG. 1 , the method includes:
  • Step 110 determining a first insertion loss interval in which an insertion loss value of a first filter to be spliced is located, and a second insertion loss interval in which an insertion loss value of a second filter to be spliced is located;
  • Step 120 when a first insertion loss interval of the insertion loss value of the first filter to be spliced and a second insertion loss interval of the insertion loss value of the second filter to be spliced meet a preset matching relationship, the first filter to be spliced and the second filter to be spliced are associated;
  • the first filter to be spliced and the second filter to be spliced that are associated with each other are used to splice to obtain a target filter.
  • the filter processing method provided in the present disclosure can be applied to electronic devices, for example, can be applied to electronic devices such as terminal devices and servers.
  • the terminal devices may include: mobile terminals, fixed terminals, etc.
  • the mobile terminals may include: mobile phones, tablet computers, laptop computers and other devices
  • the fixed terminals may include: desktop computers, etc.
  • the first filter to be spliced and the second filter to be spliced can be any filter selected randomly, or can be a filter selected by a preset screening condition. It can be a filter whose central wavelength is close to the central wavelength of the International Telecommunication Union (ITU), or a filter whose bandwidth is greater than a specific bandwidth, and the second filter to be spliced can be a filter whose non-adjacent channel isolation is greater than a preset isolation.
  • the first filter to be spliced can be a comb filter
  • the second filter to be spliced can be a wavelength division multiplexer.
  • the shape of the spectrum of the first filter to be spliced may be different from the shape of the spectrum of the second filter to be spliced.
  • the width of the spectrum of the second filter to be spliced may be greater than the width of the spectrum of the first filter to be spliced, and the shape of the in-band spectrum of the second filter to be spliced is flatter than the shape of the in-band spectrum of the first filter to be spliced.
  • the insertion loss value of the filter (i.e., the insertion loss value) can be the maximum insertion loss of the filter within the effective bandwidth, the peak insertion loss, or the center wavelength insertion loss, and is not limited here.
  • the insertion loss value of the filter can characterize the attenuation of the original signal caused by the introduction of the filter.
  • the insertion loss interval in which the insertion loss value of the filter is located can characterize the insertion loss value range of the filter. For example, the insertion loss value of the first filter to be spliced is 0.3 decibels (dB), and the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located is (0dB, 0.5dB).
  • the insertion loss value of the second filter to be spliced is 5.2dB, and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located is (5dB, 5.5dB).
  • the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship, which can characterize that the insertion loss value of the target filter obtained by splicing the first filter to be spliced and the second filter to be spliced is consistent with the expected insertion loss value.
  • the correlation between the index parameters of the first filter to be spliced, the index parameters of the second filter to be spliced, and the index parameters of the target filter obtained by splicing can be obtained through theoretical analysis.
  • the in-band spectrum of the second filter to be spliced is flatter than the in-band spectrum of the first filter to be spliced, it can be determined that the shape of the in-band spectrum of the target filter obtained by splicing the first filter to be spliced and the second filter to be spliced is determined by the first filter to be spliced, and thus the central wavelength of the target filter
  • the sum bandwidth is determined by the first filter to be spliced, the central wavelength of the target filter is close to the central wavelength of the first filter to be spliced, and the bandwidth of the target filter is close to the bandwidth of the first filter to be spliced.
  • the adjacent channel isolation of the target filter is determined by the first filter to be spliced, and since splicing the filters can reduce the adjacent channel spectrum power and thus improve the adjacent channel isolation, the adjacent channel isolation of the target filter can be greater than the adjacent channel isolation of the first filter to be spliced.
  • the non-adjacent channel isolation of the target filter is determined by the second filter to be spliced, and the non-adjacent channel isolation of the target filter is similar to the non-adjacent channel isolation of the second filter to be spliced.
  • the insertion loss value of the target filter can be jointly determined by the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced. Therefore, the correlation between the insertion loss value of the first filter to be spliced, the insertion loss value of the second filter to be spliced, and the insertion loss value of the target filter obtained by splicing can be determined.
  • the insertion loss value of the target filter can be the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced.
  • a first preset insertion loss interval corresponding to the first filter to be spliced and a second preset insertion loss interval corresponding to the second filter to be spliced that meet the preset matching relationship can be set.
  • the interval length of the first preset insertion loss interval can be determined by the insertion loss index distribution of the first filter to be spliced
  • the interval length of the second preset insertion loss interval can be determined by the insertion loss index distribution of the second filter to be spliced. For example, the more concentrated the insertion loss index distribution is, the smaller the interval length can be; the more scattered the insertion loss index distribution is, the larger the interval length can be.
  • a plurality of first preset insertion loss intervals and a plurality of second preset insertion loss intervals may be preset.
  • the first preset insertion loss interval and the second preset insertion loss interval that match each other, and the matching relationship between the first preset insertion loss interval and the second preset insertion loss interval are recorded in the interval matching list.
  • Table 1 is an interval matching list 1 according to an exemplary embodiment of the present disclosure.
  • the first column in the interval matching list may store various first preset insertion loss intervals
  • the second column in the preset matching list may store various second preset insertion loss intervals
  • the first preset insertion loss interval and the second preset insertion loss interval in the same row may have a matching relationship.
  • Table 1 shows an interval matching list when the expected insertion loss value of the target filter is expected to be less than 6.5 dB, and specifically, it may be an interval matching list when the expected insertion loss value is 6 dB.
  • the insertion loss value of the first filter to be spliced is a
  • the insertion loss value of the second filter to be spliced is b
  • the insertion loss value of the target filter i.e., the expected insertion loss value
  • c a+b.
  • the upper limit value of the interval where a is located is x
  • the interval lengths of a and b are both 0.5dB
  • the interval where a is located is (0dB, 0.5dB)
  • the interval where b is located is (5dB, 5.5dB).
  • the expected insertion loss value of the target filter is expected to be below 6.5dB, that is, the insertion loss value of the target filter is required to be less than or equal to 6.5dB.
  • the index parameters (such as insertion loss value) of the spliced target filter will fluctuate to a certain extent. Therefore, the insertion loss value of the target filter can be allowed to fluctuate within a certain fluctuation range, so the expected insertion loss value can be set to 6dB, and the fluctuation range can be set to +/-0.5dB.
  • Table 2 is a second interval matching list according to an exemplary embodiment of the present disclosure.
  • the first column in the interval matching list can store each first preset insertion loss interval
  • the second column in the preset matching list may store each second preset insertion loss interval
  • the first preset insertion loss interval and the second preset insertion loss interval located in the same row may have a matching relationship.
  • Table 2 shows a range matching list when the expected insertion loss value is 5.5 dB.
  • the insertion loss value of the target filter is required to be less than or equal to 6.5 dB.
  • the expected insertion loss value is 5.5 dB
  • the corresponding fluctuation range is +/-1 dB.
  • the expected insertion loss value can be set lower, that is, the fluctuation range can be set larger. In this way, the pass rate of the target filter obtained by splicing the first filter to be spliced and the second filter to be spliced can be improved.
  • the screening requirements of the first filter to be spliced and the second filter to be spliced will be increased, so that the pass rate of the first filter to be spliced and the second filter to be spliced is lower.
  • the expected insertion loss value of the target filter when setting a plurality of first preset insertion loss intervals and a plurality of second preset insertion loss intervals, can be determined first based on the insertion loss value requirements for the target filter and the fluctuation of the insertion loss value of the target filter. Then, in combination with the expected insertion loss value, the insertion loss index distribution of the first filter to be spliced, and the insertion loss index distribution of the second filter to be spliced, a plurality of first preset insertion loss intervals and a plurality of second preset insertion loss intervals are set. Furthermore, an interval matching list can also be obtained based on the matching relationship between each first preset insertion loss interval, each second preset insertion loss interval, and each first preset insertion loss interval and each second preset insertion loss interval.
  • the insertion loss value of the first filter to be spliced can be compared with the first preset insertion loss interval in the interval matching list, thereby determining the first insertion loss interval where the insertion loss value of the first filter to be spliced is located; comparing the insertion loss value of the second filter to be spliced with the first preset insertion loss interval in the interval matching list; The second preset insertion loss interval is compared with the first preset insertion loss interval, so as to determine the second insertion loss interval where the insertion loss value of the second filter to be spliced is located.
  • determining a first insertion loss interval in which an insertion loss value of a first filter to be spliced is located and a second insertion loss interval in which an insertion loss value of a second filter to be spliced is located may include:
  • a second preset insertion loss interval in which the second preset lower limit value is less than the insertion loss value of the second filter to be spliced and the second preset upper limit value is greater than or equal to the insertion loss value of the second filter to be spliced is determined as the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located.
  • the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located it can be determined whether the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship.
  • FIG. 2 is a second flowchart of a filter processing method according to an exemplary embodiment of the present disclosure. As shown in FIG. 2 , in some embodiments, the filter processing method may include the following steps:
  • Step 210 determining a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located, and a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located;
  • Step 220 summing up the upper limit value of the first insertion loss interval where the insertion loss value of the first filter to be spliced is located and the upper limit value of the second insertion loss interval where the insertion loss value of the second filter to be spliced is located, to obtain an insertion loss sum value;
  • Step 230 When the insertion loss sum is equal to the expected insertion loss value, determine the first filter to be spliced A first insertion loss interval where the insertion loss value of the filter to be spliced is located and a second insertion loss interval where the insertion loss value of the second filter to be spliced is located meet a preset matching relationship;
  • Step 240 when a first insertion loss interval of the insertion loss value of the first filter to be spliced and a second insertion loss interval of the insertion loss value of the second filter to be spliced meet a preset matching relationship, the first filter to be spliced and the second filter to be spliced are associated;
  • the first filter to be spliced and the second filter to be spliced that are associated with each other are used to splice to obtain a target filter.
  • the expected insertion loss value may represent an expected insertion loss value of the target filter.
  • first filter to be spliced and the second filter to be spliced can make the index of the spliced target filter meet the preset index requirements, that is, can make the index parameters of the target filter reach the expected value, then the first filter to be spliced and the second filter to be spliced can be spliced.
  • the insertion loss value of the target filter can be equal to the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced used to obtain the target filter. Therefore, when setting the interval, the first insertion loss interval and the second insertion loss interval that satisfy the preset matching relationship can be set according to this association relationship.
  • the insertion loss value of the target filter can meet the expected insertion loss value, and the insertion loss value of the target filter can be limited to be below the expected insertion loss value (including the expected insertion loss value).
  • the insertion loss sum is equal to the expected insertion loss value
  • the first insertion loss interval of the insertion loss value of the first filter to be spliced and the second insertion loss interval of the insertion loss value of the second filter to be spliced satisfy a preset matching relationship.
  • the first filter to be spliced whose insertion loss value is in the first insertion loss interval can be spliced with the second filter to be spliced whose insertion loss value is in the second insertion loss interval.
  • the preset matching relationship may be a first insertion loss interval where the insertion loss value of the first filter to be spliced is located and a second insertion loss interval where the insertion loss value of the second filter to be spliced is located.
  • the sum meets the preset requirement. For example, the sum of the lower limit of the first insertion loss interval and the lower limit of the second insertion loss interval is greater than the lower limit of the preset interval, and the upper limit of the first insertion loss interval and the upper limit of the second insertion loss interval are less than the upper limit of the preset interval.
  • the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced can be limited within a preset range, and then the insertion loss value of the target filter obtained by splicing the first filter to be spliced and the second filter to be spliced can be limited within a certain range.
  • the preset matching relationship may be that a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located is the same as a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located.
  • the preset matching relationship may be that a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located is close to a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located, for example, the difference between the lower limit value of the first insertion loss interval and the lower limit value of the second insertion loss interval is small, and the difference between the upper limit value of the first insertion loss interval and the upper limit value of the second insertion loss interval is small.
  • the first filter to be spliced and the second filter to be spliced can be associated, and the first filter to be spliced and the second filter to be spliced that are associated with each other are used to splice to obtain a target filter.
  • the channel insertion loss non-flatness of the target filter can also be determined to be equal to the sum of the channel insertion loss non-flatness of the first filter to be spliced and the channel insertion loss non-flatness of the second filter to be spliced.
  • the first filter to be spliced and the second filter to be spliced are associated.
  • the first filter to be spliced and the second filter to be spliced can be associated if a first insertion loss interval where the insertion loss value of the first filter to be spliced is located and a second insertion loss interval where the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship, and if the intra-channel insertion loss non-flatness of the first filter to be spliced and the intra-channel insertion loss non-flatness of the second filter to be spliced both meet corresponding requirements.
  • the device identifier of the first filter to be spliced may be associated with the device identifier of the second filter to be spliced.
  • the device identification of the first filter to be spliced, the device identification of the second filter to be spliced associated with the first filter to be spliced, and the association between the first filter to be spliced and the second filter to be spliced may be recorded in an association list.
  • the device identification of the first filter to be spliced and the device identification of the second filter to be spliced that are associated with each other can be obtained from the association relationship list, and the first filter to be spliced and the second filter to be spliced can be selected according to the device identification, and then the selected first filter to be spliced and the second filter to be spliced can be spliced to obtain a target filter.
  • the output port of the selected first filter to be spliced is connected to the input port of the second filter to be spliced to obtain the target filter.
  • the second filter to be spliced that is associated with the first filter to be spliced may include two filters, and the structures and parameters of the two filters may be the same or similar.
  • the output port of the first filter to be spliced can be connected to the input ports of the two filters in the second filter to be spliced, respectively, and the first filter to be spliced can form a target filter together with the two filters in the second filter to be spliced.
  • a signal can enter from the input port of the first filter to be spliced, and after filtering by the first filter to be spliced, two signals are obtained, and the two signals enter the two filters in the second filter to be spliced, respectively, and are output through the output ports of the two filters in the second filter to be spliced.
  • a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located can be first determined; then, when the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship, the first filter to be spliced and the second filter to be spliced are associated; wherein the associated first filter to be spliced and the second filter to be spliced are used to splice to obtain a target filter.
  • the insertion loss values of the first filter to be spliced and the second filter to be spliced can be managed in grades, the insertion loss values of the first filter to be spliced and the second filter to be spliced can be included in the corresponding insertion loss interval, and it is determined whether the first insertion loss interval where the insertion loss value of the first filter to be spliced is located and the second insertion loss interval where the insertion loss value of the second filter to be spliced is located meet the preset matching relationship.
  • the first filter to be spliced and the second filter to be spliced whose first insertion loss interval and second insertion loss interval meet the preset matching relationship are associated, and the insertion loss values of the first filter to be spliced and the second filter to be spliced used to obtain the target filter can be limited to the corresponding interval, and then the insertion loss value of the target filter can be limited to the set range, reducing the volatility of the insertion loss index of the target filter, and enhancing the consistency of the insertion loss index of the target filter, so that the performance of the target filter is better and the qualified rate is higher.
  • FIG. 3 is a flowchart of a filter processing method according to an exemplary embodiment of the present disclosure. As shown in FIG. 3 , in some embodiments, the filter processing method includes the following steps:
  • Step 310 determining a first insertion loss interval in which an insertion loss value of a first filter to be spliced is located, and a second insertion loss interval in which an insertion loss value of a second filter to be spliced is located;
  • Step 320 when a first insertion loss interval of the insertion loss value of the first filter to be spliced and a second insertion loss interval of the insertion loss value of the second filter to be spliced meet a preset matching relationship, the first filter to be spliced and the second filter to be spliced are associated; wherein the associated first filter to be spliced and the second filter to be spliced are used to splice to obtain a target filter;
  • Step 330 determining a target insertion loss value of a target filter based on the interrelated insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced;
  • Step 340 determining an insertion loss consistency parameter of a target filter based on the target insertion loss value; wherein the insertion loss consistency parameter is used to characterize the stability of the target filter;
  • Step 350 when the insertion loss consistency parameter is lower than a preset parameter threshold, determine whether the stability of the target filter meets the preset requirement; wherein the target filter includes at least two channels, and the target insertion loss value includes: the central wavelength insertion loss value of the channel.
  • the preset parameter threshold can be determined according to actual conditions.
  • the correlation between the insertion loss value of the first filter to be spliced, the insertion loss value of the second filter to be spliced, and the insertion loss value of the target filter obtained by splicing the first filter to be spliced and the second filter to be spliced can be obtained through theoretical analysis. Furthermore, based on the correlation and the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced, the target insertion loss value of the target filter can be determined.
  • the insertion loss value of the target filter when the insertion loss value of the target filter is equal to the sum of the insertion loss values of the mutually associated first filter to be spliced and the insertion loss values of the second filter to be spliced, the sum of the insertion loss values of the mutually associated first filter to be spliced and the insertion loss values of the second filter to be spliced can be determined as the target insertion loss value, or the sum of the insertion loss value of the mutually associated first filter to be spliced, the insertion loss value of the second filter to be spliced and a preset offset can be determined as the target insertion loss value.
  • the insertion loss value of the target filter obtained by splicing has certain fluctuations, so the allowable fluctuation of the insertion loss value of the target filter can be characterized by a preset offset.
  • determining the target insertion loss value of the target filter may include:
  • the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced, which are associated with each other, is determined as the target insertion loss value.
  • the insertion loss value of the target filter can be determined more accurately and quickly based on the existing insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced, without measuring the insertion loss value of the target filter again.
  • the insertion loss consistency parameter of the target filter can be determined based on the target insertion loss value, and the stability of the target filter can be evaluated by the insertion loss consistency parameter.
  • the insertion loss consistency parameter when the insertion loss consistency parameter is lower than the preset parameter threshold, it is determined that the stability of the target filter meets the preset requirements and the target filter is qualified; when the insertion loss consistency parameter is higher than the preset parameter threshold, it is determined that the stability of the target filter does not meet the preset requirements and the target filter is unqualified, and it is necessary to reselect the first filter to be spliced and the second filter to be spliced and re-splice them to obtain the target filter.
  • the stability of the target filter can be evaluated by the insertion loss consistency parameter of the target filter, thereby making the stability of the final target filter better.
  • the insertion loss consistency parameter may include an inter-channel insertion loss consistency parameter and/or an adjacent channel insertion loss consistency parameter.
  • the target filter can be obtained by splicing a comb filter and two wavelength division multiplexers, that is, the first filter to be spliced can be a comb filter, and the second filter to be spliced can be two wavelength division multiplexers.
  • the odd channel and the even channel of the target filter can correspond to an independent wavelength division multiplexer respectively, for example, the odd channel corresponds to the first wavelength division multiplexer, and the even channel corresponds to the second wavelength division multiplexer.
  • the adjacent channel insertion loss consistency between the adjacent odd channel and the even channel is significantly different, it will affect the performance of the communication system where the target filter is located. Therefore, the stability of the target filter can be evaluated by the adjacent channel insertion loss consistency.
  • the insertion loss consistency parameter includes: adjacent channel insertion loss consistency parameter; in step 340, the insertion loss consistency parameter of the target filter is determined based on the target insertion loss value, including:
  • the adjacent channel insertion loss consistency parameter is determined from each of the absolute values. number.
  • the center wavelength insertion loss value may represent an insertion loss value corresponding to the center wavelength of the channel.
  • the absolute value of the adjacent channel insertion loss difference of the center wavelength insertion loss values of any two adjacent channels can characterize the volatility (or consistency) of the insertion loss of any two adjacent channels. For example, the larger the absolute value of the adjacent channel insertion loss difference of the center wavelength insertion loss values of two adjacent channels, the greater the insertion loss volatility of the two adjacent channels and the poorer the insertion loss consistency.
  • the adjacent channel insertion loss consistency parameter of the target filter can be determined based on the absolute values of the adjacent channel insertion loss differences of the center wavelength insertion loss values of each group of adjacent channels. For example, after sorting the absolute values, the adjacent channel insertion loss consistency parameter is determined from the absolute values according to the sorting result.
  • the absolute values are sorted by arranging them in ascending order or in descending order. Based on the sorting result, determining the adjacent channel insertion loss consistency parameter from the absolute values may include taking the maximum value among the absolute values as the adjacent channel insertion loss consistency parameter.
  • Uniformity A may represent an insertion loss consistency parameter of adjacent channels
  • IL i may represent a central wavelength insertion loss value of an i-th channel
  • i may be greater than or equal to 1.
  • the adjacent channel insertion loss consistency parameter determined can accurately reflect the insertion loss consistency between adjacent channels in the target filter.
  • the target filter obtained by splicing may be a multi-channel filter.
  • the stability of the target filter may be evaluated by the inter-channel insertion loss consistency parameter of the target filter.
  • the insertion loss consistency parameter includes: an insertion loss consistency parameter between channels; and determining the insertion loss consistency parameter of the target filter based on the target insertion loss value includes:
  • the inter-channel insertion loss consistency parameter is determined according to the inter-channel insertion loss difference.
  • the inter-channel insertion loss difference between the maximum insertion loss value and the minimum insertion loss value can be determined as the inter-channel insertion loss consistency parameter.
  • Uniformity may represent an insertion loss consistency parameter between channels
  • IL k may represent a central wavelength insertion loss value of the kth channel, where k represents the total number of channels, and k may be greater than or equal to 2.
  • the inter-channel insertion loss consistency parameter determined according to the maximum insertion loss value and the minimum insertion loss value in the central wavelength insertion loss value of each channel in the target filter can accurately reflect the insertion loss consistency between multiple channels in the target filter.
  • the filter processing method proposed in the present disclosure further includes:
  • the first filter to be spliced and the second filter to be spliced are used to obtain the target filter with a target indicator parameter, and the target indicator parameter is determined by the first target indicator parameter and the second target indicator parameter.
  • the first filter to be spliced can be firstly screened out from the first alternative filters, and the second filter to be spliced can be screened out from the second alternative filters, and then the first filter to be spliced and the second filter to be spliced can be associated when it is determined that the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship.
  • the first indicator parameter of the first alternative filter can be read from the device parameters of the first alternative filter, or can be calculated based on the device parameters of the first alternative filter, or can be measured through experiments;
  • the second indicator parameter of the second alternative filter can be read from the device parameters of the second alternative filter, or can be calculated based on the device parameters of the second alternative filter, or can be measured through experiments.
  • the first target parameter and the second target parameter may be the index parameters of the target filter that are expected to be obtained.
  • the first target parameter may be the index parameters of the target filter that correspond to the first candidate filter, such as the center wavelength, bandwidth, and adjacent channel isolation;
  • the second target parameter may be the index parameters of the target filter that correspond to the second candidate filter, such as non-adjacent channel isolation.
  • the wavelength division multiplexer needs to be screened by using adjacent channel isolation and non-adjacent channel isolation as screening indicators.
  • the first alternative filter can be used as the first filter to be spliced
  • the second alternative filter can be used as the second filter to be spliced
  • the filter obtained by splicing the first alternative filter and the second alternative filter is the desired target filter.
  • the correlation between the first index parameter of the first candidate filter, the second index parameter of the second candidate filter and the target index parameter of the target filter for obtaining the target filter can be obtained in advance through theoretical analysis.
  • the target filter required A first condition that a first index parameter of the first filter to be spliced must satisfy, and a second condition that a second index parameter of the second filter to be spliced required to obtain such a target filter must satisfy.
  • the first indicator parameter of the first alternative filter When the first indicator parameter of the first alternative filter satisfies the first condition, it can be determined that the first indicator parameter matches the target filtering parameter, and the first alternative filter can be determined as the first filter to be spliced; when the second indicator parameter of the second alternative filter satisfies the second condition, it can be determined that the second indicator parameter matches the target multiplexing parameter, and the second alternative filter can be determined as the second filter to be spliced, and the first alternative filter and the second alternative filter can be spliced to obtain the desired target filter.
  • the first filter to be spliced is determined from the first alternative filters based on the first target indicator parameter
  • the second filter to be spliced is determined from the second alternative filters based on the second target indicator parameter. This allows the first filter to be spliced and the second filter to be spliced to obtain the desired target filter with the target indicator parameters.
  • the first indicator parameter includes: central wavelength, bandwidth, and adjacent channel isolation; the first candidate filter matching the first indicator parameter with the first target indicator parameter is determined as the first filter to be spliced, including:
  • the absolute value of the wavelength difference is less than the preset wavelength threshold
  • the absolute value of the bandwidth difference is less than the preset bandwidth threshold
  • the adjacent channel isolation of the first alternative filter is greater than the preset adjacent channel isolation threshold
  • the adjacent channel isolation may be the insertion loss difference between the central wavelength insertion loss values of two adjacent channels in the filter, and may represent the isolation between the two adjacent channels.
  • the correlation between the first index parameter of the first candidate filter, the second index parameter of the second candidate filter and the target index parameter of the target filter for obtaining the target filter can be obtained in advance through theoretical analysis.
  • the target center wavelength of the target filter is The center wavelengths of the first candidate filters are similar, that is, the absolute value of the wavelength difference between the target center wavelength and the center wavelength of the first candidate filter is small, such as the wavelength difference is less than the preset wavelength threshold.
  • the preset wavelength threshold and the preset bandwidth threshold can be determined according to actual application conditions.
  • the target bandwidth of the target filter is close to the bandwidth of the first alternative filter, that is, the absolute value of the bandwidth difference between the target bandwidth and the bandwidth of the first alternative filter is small, such as the bandwidth difference is less than a preset bandwidth threshold.
  • the target adjacent channel isolation of the target filter can be greater than the adjacent channel isolation of the first alternative filter. Therefore, as long as the adjacent channel isolation of the first alternative filter is greater than the preset adjacent channel isolation threshold, the target adjacent channel isolation of the target filter is greater than the preset adjacent channel isolation threshold.
  • the preset adjacent channel isolation threshold can be determined according to actual conditions.
  • the first alternative filter can be spliced with a second alternative filter to obtain the desired target filter with the target center wavelength, target bandwidth and target adjacent channel isolation, and the first alternative filter can be determined as the first filter to be spliced.
  • the first candidate filter can be spliced with the second candidate filter to obtain the desired target filter based on the center wavelength, bandwidth and adjacent channel isolation of the first candidate filter.
  • the splicing effect of the first filter to be spliced and the second filter to be spliced determined based on this method is good, and the index parameters of the obtained target filter can reach the expected index parameters.
  • the second indicator parameter includes: non-adjacent channel isolation; the second candidate filter matching the second indicator parameter with the second target indicator parameter is determined as the second filter to be spliced, including:
  • the second index parameter of the second candidate filter matches the second target index parameter, and the second candidate filter is determined as the second filter to be spliced.
  • the non-adjacent channel isolation may be the insertion loss difference between the central wavelength insertion loss values of two non-adjacent channels in the filter, and may represent the isolation between the two non-adjacent channels.
  • the correlation between the first index parameter of the first candidate filter, the second index parameter of the second candidate filter and the target index parameter of the target filter for obtaining the target filter can be obtained in advance through theoretical analysis.
  • the target non-adjacent channel isolation of the target filter is similar to the non-adjacent channel isolation of the second alternative filter, that is, the absolute value of the isolation difference between the target non-adjacent channel isolation and the non-adjacent channel isolation of the second alternative filter is small, such as, the isolation difference is less than a preset isolation threshold.
  • the target non-adjacent channel isolation of the desired target filter is known, it is possible to infer whether the non-adjacent channel isolation of each second alternative filter meets the corresponding conditions, such as whether the isolation difference between the non-adjacent channel isolation and the target non-adjacent channel isolation is less than a preset isolation threshold.
  • the second candidate filter can be spliced with a first candidate filter to obtain the desired target filter with the target non-adjacent channel isolation, and the second candidate filter can be determined as the second filter to be spliced.
  • the second candidate filter can be spliced with the first candidate filter to obtain the desired target filter based on the non-adjacent channel isolation of the second candidate filter.
  • the splicing effect of the first filter to be spliced and the second filter to be spliced determined based on this method is good, and the index parameters of the obtained target filter can reach the expected index parameters.
  • the first index parameter of the first candidate filter for obtaining the target filter, the second index parameter of the second candidate filter, and the target index parameter of the target filter through theoretical analysis, and in the case of known target index parameters, to infer that
  • the value range of the index parameter of the first filter to be spliced or the conditions to be satisfied can be used as the value range of the index parameter of the second filter to be spliced or the conditions to be satisfied.
  • a first filter to be spliced whose index parameter is within the value range or meets certain conditions can be produced; based on the value range of the index parameter of the second filter to be spliced or the conditions that need to be met, a second filter to be spliced whose index parameter is within the value range or meets certain conditions can be produced.
  • the filter processing method proposed in the present disclosure may include:
  • the value range or conditions that need to be met of the first indicator parameter of the first filter to be spliced used to obtain the target filter can be determined.
  • a first filter to be spliced corresponding to the first indicator parameter and a second filter to be spliced corresponding to the second indicator parameter are obtained.
  • obtaining a first filter to be spliced corresponding to the first indicator parameter and a second filter to be spliced corresponding to the second indicator parameter may include:
  • a first filter to be spliced is produced based on the first indicator parameter, and a second filter to be spliced is produced based on the second indicator parameter.
  • Fig. 4 is a schematic diagram of the structure of a target filter according to an exemplary embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of the structure of a target filter according to an exemplary embodiment of the present disclosure.
  • the first filter to be spliced includes: a comb filter
  • the second filter to be spliced includes: a wavelength division multiplexer
  • the target filter is obtained by splicing one of the comb filters and two of the wavelength division multiplexers.
  • FIG4 shows an example of cascading a comb filter and a wavelength division multiplexer to obtain a target filter.
  • the comb filter in FIG4 can be obtained by cascading and splicing several comb filters
  • the wavelength division multiplexer can be obtained by cascading and splicing several comb filters or wavelength division multiplexers.
  • the scheme shown in FIG5 can be regarded as a comb filter cascaded and spliced with corresponding four wavelength division multiplexers; it can also be regarded as a comb filter cascaded and spliced with two wavelength division multiplexers, and the corresponding two wavelength division multiplexers also adopt the comb filter and wavelength division multiplexer cascade splicing scheme.
  • the target filter can also be obtained by n-stage cascading.
  • the frequency interval of the comb filter is f
  • the frequency interval of the wavelength division multiplexer is 2f
  • the filtering wavelengths of the two wavelength division multiplexers correspond to the odd and even channel wavelengths of the comb filter.
  • the optical signal with a frequency interval of f passes through the comb filter and is divided into two columns of optical signals with a frequency interval of 2f, and output from the odd and even paths respectively.
  • the odd and even paths pass through the wavelength division multiplexer with a frequency interval of 2f respectively, and the corresponding odd signal light and even signal light are output.
  • the comb filter can be an MGTI type comb filter (Michelson-Gires-Tournois-Interferometer, Michelson-GT cavity interferometer type comb filter), and the wavelength division multiplexer can be an AWG (Arrayed Waveguide Grating).
  • MGTI type comb filter Michelson-Gires-Tournois-Interferometer, Michelson-GT cavity interferometer type comb filter
  • AWG Arrayed Waveguide Grating
  • FIG6 is a flowchart 4 of a filter processing method according to an exemplary embodiment of the present disclosure. As shown in FIG6, in some embodiments, the filter processing method may include the following steps:
  • Step 510 Determine, based on a preset association relationship, a first indicator parameter that matches the first target indicator parameter and a second indicator parameter that matches the second target indicator parameter.
  • the value range or conditions that need to be met of the first indicator parameter of the first filter to be spliced used to obtain the target filter can be determined.
  • Step 520 Based on the first index parameter and the second index parameter, obtain a first filter to be spliced corresponding to the first index parameter and a second filter to be spliced corresponding to the second index parameter.
  • obtaining a first filter to be spliced corresponding to the first indicator parameter and a second filter to be spliced corresponding to the second indicator parameter may include:
  • a first filter to be spliced is produced based on the first indicator parameter, and a second filter to be spliced is produced based on the second indicator parameter.
  • Step 530 determine a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located, and a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located.
  • multiple first preset insertion loss intervals and multiple second preset insertion loss intervals can be preset, and the mutually matching first preset insertion loss intervals and second preset insertion loss intervals, and the matching relationship between the first preset insertion loss interval and the second preset insertion loss interval are recorded in the interval matching list.
  • the insertion loss value of the first filter to be spliced can be compared with the preset filtering interval in the interval matching list to determine the first insertion loss interval where the insertion loss value of the first filter to be spliced is located; the insertion loss value of the second filter to be spliced can be compared with the preset multiplexing interval in the interval matching list to determine the second insertion loss interval where the insertion loss value of the second filter to be spliced is located.
  • the first insertion loss interval where the insertion loss value of the first filter to be spliced is located and the second insertion loss interval where the insertion loss value of the second filter to be spliced is located it can be determined whether the first insertion loss interval has a matching relationship with the second insertion loss interval based on the above interval matching list.
  • the upper limit value of the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the upper limit value of the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located are added to obtain an insertion loss sum value;
  • the insertion loss sum is equal to the expected insertion loss value, it is determined that a first insertion loss interval where the insertion loss value of the first filter to be spliced is located and a second insertion loss interval where the insertion loss value of the second filter to be spliced is located satisfy a preset matching relationship.
  • Step 540 when a first insertion loss interval of the insertion loss value of the first filter to be spliced and a second insertion loss interval of the insertion loss value of the second filter to be spliced satisfy a preset matching relationship, the first filter to be spliced and the second filter to be spliced are associated; wherein the associated first filter to be spliced and the second filter to be spliced are used to splice to obtain a target filter.
  • the device identification of the first filter to be spliced may be associated with the device identification of the second filter to be spliced.
  • the device identification of the first filter to be spliced, the device identification of the second filter to be spliced associated with the first filter to be spliced, and the association between the first filter to be spliced and the second filter to be spliced may be recorded in an association list.
  • the device identification of the first filter to be spliced and the device identification of the second filter to be spliced that are associated with each other can be obtained from the association relationship list, and the first filter to be spliced and the second filter to be spliced can be selected according to the device identification, and then the selected first filter to be spliced and the second filter to be spliced can be spliced to obtain a target filter.
  • the output port of the selected first filter to be spliced is connected to the input port of the second filter to be spliced to obtain the target filter.
  • Step 550 Determine a target insertion loss value of the target filter based on the interrelated insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced.
  • the insertion loss value of each channel of the first filter to be spliced and the sum of the insertion loss values of each corresponding channel in the second filter to be spliced can be determined as the target insertion loss value of each channel in the target filter, and then the insertion loss consistency parameters between channels and the insertion loss consistency parameters of adjacent channels can be determined according to the target insertion loss values of each channel, and then the stability of the target filter can be evaluated based on the insertion loss consistency parameters.
  • Step 560 Determine an insertion loss consistency parameter of the target filter based on the target insertion loss value; wherein the insertion loss consistency parameter is used to characterize the stability of the target filter.
  • the target insertion loss value may include a center wavelength insertion loss value of each channel of the target filter
  • the insertion loss consistency parameter may include an inter-channel insertion loss consistency parameter and/or an adjacent channel consistency parameter.
  • Step 570 when the insertion loss consistency parameter is lower than a preset parameter threshold, determine whether the stability of the target filter meets a preset requirement; wherein the target filter includes at least two channels, and the target insertion loss value includes: a center wavelength insertion loss value of the channel.
  • the frequency interval 75 GHz
  • the center wavelength accuracy requirement is within [-4, 4] GHz
  • the insertion loss value is required to be within 6.5dB
  • the insertion loss consistency parameter between channels is required to be within 1.5dB
  • the insertion loss consistency parameter of adjacent channels is required to be within 0.8dB
  • the loss flatness within the channel is required to be within 2.5dB
  • the 3dB full bandwidth is required to be within [70,76] GHz
  • the 10dB full bandwidth is required to be within [85,94] GHz
  • the adjacent channel isolation is required
  • the two output channels are called odd channel and even channel respectively.
  • the frequency interval of odd/even channels is 150GHz
  • the interval between odd channel and even channel is 75GHz
  • the number of channels of the two wavelength division multiplexers is 32
  • the frequency interval is 150GHz
  • the center wavelength and frequency interval of the two wavelength division multiplexers correspond to the odd and even channels of the comb filter respectively, that is, the starting wavelength of the odd channel is 1528.773nm, and the ending wavelength is 1565.905nm
  • the starting wavelength of the even channel is 1529.358nm
  • the ending wavelength is 1566.518nm.
  • the correlation between the index parameters of the comb filter, the index parameters of the wavelength division multiplexer and the index parameters of the target filter can be obtained through theoretical analysis, and then based on the correlation relationship, the index parameters of the comb filter and the index parameters of the wavelength division multiplexer can be inferred when the index parameters of the target filter are known.
  • the index parameters here can represent the value range of the index parameters.
  • the value range of the center wavelength of the comb filter can be determined according to the center wavelength of the target filter.
  • FIG7 is a schematic diagram showing the definition of the center wavelength and the center wavelength accuracy according to an exemplary embodiment of the present disclosure.
  • the 3dB center wavelength ⁇ c can be defined as the wavelength value corresponding to the center of the spectral range covered by the center wavelength insertion loss drop of 3dB
  • the center wavelength insertion loss IL ITU is defined as the insertion loss value corresponding to the ITU center wavelength
  • represents the accuracy data of the center wavelength of the target filter
  • ⁇ c represents the wavelength value corresponding to the center of the spectral range covered by a 3 dB drop in insertion loss of the center wavelength
  • ⁇ ITU represents the ITU center wavelength
  • the target central wavelength of the target filter is close to the central wavelength of the comb filter and is between the central wavelength of the comb filter and the central wavelength of the wavelength division multiplexer.
  • the value range of the comb filter center wavelength can be determined, and the comb filter can be selected within this value range.
  • the value range of the bandwidth of the comb filter may be determined according to the bandwidth of the target filter.
  • Fig. 8 is a schematic diagram of bandwidth definition according to an exemplary embodiment of the present disclosure.
  • the bandwidth of the target filter is close to the bandwidth of the comb filter.
  • the range of the center wavelength of the comb filter can be determined, and the comb filter can be selected within this range.
  • the value range of the adjacent channel isolation of the comb filter can be determined according to the adjacent channel isolation of the target filter.
  • FIG9 is a schematic diagram showing the definition of adjacent channel isolation according to an exemplary embodiment of the present disclosure.
  • adjacent channel isolation can be defined as the difference between the insertion loss of the center wavelength of a channel and the insertion loss of the center wavelength of an adjacent channel.
  • the adjacent channel isolation is usually calculated as the left adjacent channel isolation. The minimum value of the isolation between the left and right adjacent channels.
  • the adjacent channel isolation of the target filter is greater than the adjacent channel isolation of the comb filter.
  • the value range of the adjacent channel isolation of the comb filter can be determined, and the comb filter can be selected based on this value range.
  • a comb filter can be selected based on the value range of the central wavelength of the comb filter, the bandwidth range, and the adjacent channel isolation range.
  • the value range of the non-adjacent channel isolation of the wavelength division multiplexer may be determined according to the non-adjacent channel isolation of the target filter.
  • non-adjacent channel isolation can be defined as the difference between the insertion loss of the channel center wavelength and the insertion loss of the non-adjacent channel center wavelength.
  • the non-adjacent channel isolation usually takes the minimum value of all non-adjacent channel isolations.
  • the non-adjacent channel isolation of the target filter is similar to the non-adjacent channel isolation of the wavelength division multiplexer.
  • the value range of the non-adjacent channel isolation of the wavelength division multiplexer can be determined, and the wavelength division multiplexer can be selected based on this value range.
  • the wavelength division multiplexer can be selected based on the isolation range of non-adjacent channels of the wavelength division multiplexer.
  • the insertion loss value of the comb filter and the insertion loss value of the wavelength division multiplexer can also be determined according to the insertion loss value of the target filter.
  • the insertion loss value may include a center wavelength insertion loss value, an inter-channel insertion loss consistency parameter, an adjacent channel insertion loss consistency parameter, and an intra-channel loss flatness parameter.
  • the definition of the center wavelength insertion loss value IL ITU is shown in FIG7 , which is specifically described as the insertion loss value corresponding to the ITU center wavelength.
  • the inter-channel insertion loss consistency parameter can be defined as the difference between the maximum and minimum insertion losses of the center wavelength in all channels.
  • the adjacent channel insertion loss consistency parameter is defined as the maximum absolute value of the central wavelength insertion loss difference between adjacent channels.
  • Uniformity A may represent an adjacent channel insertion loss consistency parameter
  • IL i may represent a central wavelength insertion loss value of the i-th channel, and in this embodiment, i may be greater than or equal to 1 and less than or equal to 63.
  • the stability of the target filter can be evaluated by the adjacent channel insertion loss consistency parameters of the target filter.
  • Fig. 10 is a schematic diagram showing the definition of channel loss non-flatness according to an exemplary embodiment of the present disclosure. As shown in Fig. 10, channel loss non-flatness is defined as the difference between the maximum insertion loss and the insertion loss within the effective bandwidth of the channel. In this embodiment, the effective bandwidth of the channel is selected as +/-32 GHz.
  • the insertion loss value of the target filter can be the sum of the insertion loss value of the comb filter and the insertion loss value of the wavelength division multiplexer.
  • the insertion loss value of the target filter can be the sum of the insertion loss value of the comb filter and the insertion loss value of the wavelength division multiplexer, and the value range of the insertion loss value of the comb filter and the value range of the insertion loss value of the wavelength division multiplexer can be determined.
  • the comb filter can be selected based on the value range of the insertion loss value of the comb filter, and the wavelength division multiplexer can be selected based on the value range of the insertion loss value of the wavelength division multiplexer.
  • the comb filter and the wavelength division multiplexer can be associated when a first insertion loss interval where the insertion loss value of the comb filter is located and a second insertion loss interval where the insertion loss value of the wavelength division multiplexer is located have a matching relationship, and a target filter can be obtained by splicing a comb filter and two wavelength division multiplexers that are associated with each other.
  • the insertion loss value of the target filter (e.g., the insertion loss value of each channel) can be obtained based on the sum of the insertion loss value of the comb filter and the insertion loss value of the wavelength division multiplexer, and then the insertion loss consistency parameters of the target filter (e.g., the insertion loss consistency parameters of adjacent channels) can be obtained, and the stability of the target filter can be evaluated using the insertion loss consistency parameters.
  • the correlation relationship between the index parameters of the target filter and the index parameters of the comb filter and the index parameters of the wavelength division multiplexer summarized previously can be verified based on the index parameters of the target filter, the index parameters of the comb filter and the index parameters of the wavelength division multiplexer respectively.
  • Fig. 11 is a schematic diagram of a transmission spectrum of a comb filter according to an exemplary embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of channel insertion loss values of a comb filter, a wavelength division multiplexer, and a target filter according to an exemplary embodiment of the present disclosure.
  • the horizontal axis represents the wavelength
  • c represents the speed of light constant
  • c 299792458 m/s
  • the vertical axis represents the transmittance
  • the transmittance is inversely related to the insertion loss value.
  • the corresponding wavelength values after the central wavelength drops by 3dB are 1528.49nm and 1529.07nm respectively.
  • the center wavelength insertion loss is calculated.
  • the corresponding wavelength values after a 3dB drop are 1528.491nm and 1529.07nm respectively.
  • the corresponding wavelength values after a 10dB drop in the center wavelength insertion loss are 1528.429nm and 1529.128nm respectively.
  • Fig. 13 is a schematic diagram of a transmission spectrum of a wavelength division multiplexer according to an exemplary embodiment of the present disclosure.
  • Fig. 14 is a partial schematic diagram of a transmission spectrum of a wavelength division multiplexer according to an exemplary embodiment of the present disclosure.
  • the horizontal axis represents wavelength
  • the vertical axis represents transmittance
  • the transmittance and insertion loss are inversely related. It should be pointed out that although the channel spacing of the wavelength division multiplexer is 150GHz, the analysis indicators are analyzed based on a 75GHz channel spacing.
  • the wavelength division multiplexer focuses on the center wavelength, center wavelength accuracy, center wavelength insertion loss, channel loss flatness, and non-adjacent channel isolation.
  • the central wavelength insertion loss IL ITU-AWG of the wavelength division multiplexer is 4.54dB.
  • the non-adjacent channel isolation can be defined as the difference between the channel center wavelength insertion loss and the non-adjacent channel center wavelength insertion loss.
  • the non-adjacent channel isolation is usually the minimum value of all non-adjacent channel isolations.
  • the channel center wavelength insertion loss is 4.54dB
  • FIG15 is a schematic diagram of a transmission spectrum of a target filter according to an exemplary embodiment of the present disclosure.
  • FIG16 is a partial schematic diagram of a transmission spectrum of a target filter according to an exemplary embodiment of the present disclosure.
  • FIG17 is a schematic diagram of a transmission spectrum of a comb filter, a wavelength division multiplexer, and a target filter according to an exemplary embodiment of the present disclosure.
  • FIG18 is a partial schematic diagram of a transmission spectrum of a comb filter, a wavelength division multiplexer, and a target filter according to an exemplary embodiment of the present disclosure.
  • the transmission spectrum (dB) of the spliced target filter is the sum of the transmission spectrum (dB) of the comb filter and the transmission spectrum (dB) of the wavelength division multiplexer.
  • the central wavelength of the comb filter is 1528.78nm
  • the central wavelength of the wavelength division multiplexer is 1528.744nm
  • the central wavelength of the target filter is 1528.777nm. It can be verified that the central wavelength of the target filter is between the central wavelength of the comb filter and the central wavelength of the wavelength division multiplexer, and is close to the central wavelength of the comb filter.
  • the center wavelength accuracy of the comb filter being 8 picometers (pm)
  • the center wavelength accuracy of the wavelength division multiplexer being -29 pm
  • the center wavelength accuracy of the target filter being 4 pm
  • the center wavelength insertion loss value of the target filter is 5.19dB, which is approximately equal to the sum of the center wavelength loss value of the comb filter (0.35dB) and the center wavelength loss value of the wavelength division multiplexer (4.54dB).
  • the measured value of 5.19dB is 0.3dB more than the theoretical calculated value of 4.89dB.
  • the extra 0.3dB is due to factors such as the fusion loss during optical fiber splicing.
  • the insertion loss of each channel of the target filter is shown in Figure 12, which is generally similar to the theoretical calculated value.
  • the measured inter-channel insertion loss consistency parameter of the target filter is 0.6dB, and the theoretical calculated value is 0.49dB.
  • the measured adjacent channel insertion loss consistency parameter of the target filter is 0.47dB, and the theoretical calculated value is 0.32dB.
  • the theoretical value can be used as an effective reference for selecting comb filters and wavelength division multiplexers.
  • the channel loss non-flatness of the comb filter being 1.16dB
  • the channel loss non-flatness of the wavelength division multiplexer being 0.18dB
  • the channel loss non-flatness of the target filter being 1.39dB
  • the bandwidth of the target filter is similar to that of the comb filter and is slightly lower than that of the comb filter.
  • the adjacent channel isolation of the comb filter being 31.28 dB and the adjacent channel isolation of the target filter being 37.7 dB, it can be verified that the adjacent channel isolation of the target filter is greater than that of the comb filter.
  • the non-adjacent channel isolation of the wavelength division multiplexer being 44.55 dB and the non-adjacent channel isolation of the target filter being 44.66 dB, it can be verified that the non-adjacent channel isolation of the target filter is similar to that of the wavelength division multiplexer.
  • Fig. 19 is a schematic diagram of a filter processing device according to an exemplary embodiment of the present disclosure. As shown in Fig. 19, the present disclosure embodiment further provides a filter processing device 600, and the device 600 may include:
  • a first determination module 610 is configured to determine a first insertion loss interval in which an insertion loss value of a first filter to be spliced is located, and a second insertion loss interval in which an insertion loss value of a second filter to be spliced is located;
  • the associating module 620 is configured to associate the first filter to be spliced with the second filter to be spliced when a first insertion loss interval where the insertion loss value of the first filter to be spliced is located and a second insertion loss interval where the insertion loss value of the second filter to be spliced is located meet a preset matching relationship;
  • the first filter to be spliced and the second filter to be spliced, which are associated with each other, are used to splice to obtain a target filter.
  • the apparatus further comprises:
  • a summing module configured to sum an upper limit value of a first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and an upper limit value of a second insertion loss interval in which the insertion loss value of the second filter to be spliced is located, to obtain an insertion loss sum value;
  • the second determination module is configured to determine that a first insertion loss interval of the insertion loss value of the first filter to be spliced and a second insertion loss interval of the insertion loss value of the second filter to be spliced satisfy the preset matching relationship when the insertion loss sum value is equal to the expected insertion loss value.
  • the apparatus further comprises:
  • a third determination module configured to determine a target insertion loss value of the target filter based on the interrelated insertion loss values of the first filter to be spliced and the second filter to be spliced;
  • a fourth determination module is configured to determine an insertion loss consistency parameter of the target filter based on the target insertion loss value; wherein the insertion loss consistency parameter is used to characterize the stability of the target filter;
  • the fifth determination module is configured to determine that the stability of the target filter meets the preset requirements when the insertion loss consistency parameter is lower than a preset parameter threshold; wherein the target filter includes at least two channels, and the target insertion loss value includes: the center wavelength insertion loss value of the channel.
  • the third determination module is configured as:
  • the sum of the insertion loss value of the first filter to be spliced and the insertion loss value of the second filter to be spliced, which are associated with each other, is determined as the target insertion loss value.
  • the insertion loss consistency parameter includes: an adjacent channel insertion loss consistency parameter; the fourth determination module is configured as:
  • the adjacent channel insertion loss consistency parameter is determined from each of the absolute values.
  • the insertion loss consistency parameter includes: an insertion loss consistency parameter between channels;
  • the step of determining an insertion loss consistency parameter of the target filter based on the target insertion loss value includes:
  • the inter-channel insertion loss consistency parameter is determined according to the inter-channel insertion loss difference.
  • the apparatus further comprises:
  • An acquisition module configured to acquire a first index parameter of each first candidate filter and a second index parameter of each second candidate filter
  • a sixth determination module configured to determine a first candidate filter that matches the first indicator parameter with a first target indicator parameter as the first filter to be spliced, and to determine a second candidate filter that matches the second indicator parameter with a second target indicator parameter as the second filter to be spliced;
  • the first filter to be spliced and the second filter to be spliced are used to obtain the target filter with a target indicator parameter, and the target indicator parameter is determined by the first target indicator parameter and the second target indicator parameter.
  • the first indicator parameter includes: central wavelength, bandwidth, and adjacent channel isolation; the sixth determination module is configured as follows:
  • the absolute value of the wavelength difference is less than the preset wavelength threshold
  • the absolute value of the bandwidth difference is less than the preset bandwidth threshold
  • the adjacent channel isolation of the first alternative filter is greater than the preset adjacent channel isolation threshold
  • the second indicator parameter includes: non-adjacent channel isolation; the sixth determination module is configured as:
  • the first The second indicator parameter of the second candidate filter matches the second target indicator parameter, and the second candidate filter is determined as the second filter to be spliced.
  • the first filter to be spliced includes: a comb filter
  • the second filter to be spliced includes: a wavelength division multiplexer
  • the target filter is obtained by splicing one of the comb filter and two of the wavelength division multiplexers.
  • the filter processing method is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the technical embodiment of the embodiment of the present disclosure is essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions for an electronic device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the methods described in each embodiment of the present disclosure.
  • the aforementioned storage medium includes: various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory (ROM), a magnetic disk or an optical disk.
  • program codes such as a U disk, a mobile hard disk, a read-only memory (ROM), a magnetic disk or an optical disk.
  • an embodiment of the present disclosure provides an electronic device, including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes the steps in any one of the filter processing methods in the above embodiments.
  • an embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in any one of the filter processing methods in the above embodiments are implemented.
  • Fig. 20 is a schematic diagram of the structure of an electronic device according to an exemplary embodiment of the present disclosure.
  • the hardware entity of the electronic device 700 includes: a processor 710 and a memory 720.
  • the electronic device 700 may also include a communication interface 730.
  • the memory 720 may be a volatile memory or a non-volatile memory, and may also include Both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic random access memory (FRAM), ferromagnetic random access memory, flash memory, magnetic surface memory, optical disk, or compact disc read-only memory (CD-ROM); magnetic surface memory can be magnetic disk memory or tape memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • DRRAM direct memory bus random access memory
  • the method disclosed in the above-mentioned embodiment of the present disclosure may be applied to the processor 710, or implemented by the processor 710.
  • the processor 710 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 710 or instructions in the form of software.
  • the above-mentioned processor 710 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • the processor 710 may implement or execute the various methods, steps and logic block diagrams disclosed in the embodiment of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional
  • the steps of the method disclosed in the embodiments of the present disclosure can be directly implemented as a hardware decoding processor, or can be implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a storage medium, which is located in the memory 720.
  • the processor 710 reads the information in the memory 720 and completes the steps of the aforementioned method in combination with its hardware.
  • the electronic device can be implemented by one or more application specific integrated circuits (ASIC), DSP, programmable logic device (PLD), complex programmable logic device (CPLD), field programmable gate array (FPGA), general processor, controller, microcontroller (MCU), microprocessor, or other electronic components to execute the aforementioned method.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field programmable gate array
  • general processor controller, microcontroller (MCU), microprocessor, or other electronic components to execute the aforementioned method.
  • MCU microcontroller
  • the disclosed methods and devices can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division.
  • the communication connection between the components shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units; some or all of the units may be selected according to actual needs to achieve the purpose of this embodiment.
  • the integrated unit of the embodiment of the present disclosure is implemented in the form of a software functional unit and used as When it is sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the technical embodiment of the embodiment of the present disclosure can essentially or in other words, the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium and includes a number of instructions for an electronic device (which can be a personal computer, server, or network device, etc.) to execute all or part of the methods described in each embodiment of the present disclosure.
  • the aforementioned storage medium includes: various media that can store program codes, such as mobile storage devices, ROMs, magnetic disks, or optical disks.
  • the present disclosure discloses the filter processing method, device, equipment and computer storage medium recorded in the examples only taking the embodiments described in the present disclosure as an example, but is not limited to this. As long as the filter processing method, device, equipment and computer storage medium are involved, they are within the protection scope of the present disclosure.
  • the disclosed embodiment manages the insertion loss values of the first filter to be spliced and the second filter to be spliced in different grades, includes the insertion loss values of the first filter to be spliced and the second filter to be spliced in corresponding insertion loss intervals, and determines the first insertion loss interval in which the insertion loss value of the first filter to be spliced is located and the second insertion loss interval in which the insertion loss value of the second filter to be spliced is located. Whether the second insertion loss interval where the insertion loss value of the filter is located satisfies the preset matching relationship.
  • the insertion loss values of the first filter to be spliced and the second filter to be spliced used to obtain the target filter can be limited to the corresponding interval, and then the insertion loss value of the target filter can be limited to the set range, reducing the volatility of the insertion loss index of the target filter, enhancing the consistency of the insertion loss index of the target filter, so that the performance of the target filter is better and the qualified rate is higher.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供一种滤波器的处理方法、装置、设备和存储介质。其中,所述方法包括:确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间;在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器。在本公开中,可以减小目标滤波器的插损指标的波动性,增强目标滤波器的插损指标的一致性,使得目标滤波器的性能更佳,合格率更高。

Description

滤波器的处理方法、装置、设备和存储介质 技术领域
本公开涉及通信技术领域,具体涉及一种滤波器的处理方法、装置、设备和存储介质。
相关申请的交叉引用
本公开基于申请号为202211419185.0、申请日为2022年11月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
背景技术
滤波器可以对信号中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的信号,或消除一个特定频率后的信号。例如,在光纤通信领域,光学滤波器可以仅允许特定波长的光信号通过。
为了提高滤波器的性能,可以将不同滤波器进行拼接,拼接后的滤波器能够同时继承不同滤波器的优点,并且级联拼接的方式能够提高拼接后的滤波器的隔离度。然而,由于滤波器批量生产时指标存在一定的波动性,若拼接配对不加以规范,对滤波器进行拼接后,由不同滤波器拼接得到的滤波器指标波动性会进一步放大,导致拼接得到的滤波器的指标波动性较大,指标一致性较差的问题,进而影响拼接得到的滤波器的合格率,不利于生产。
发明内容
有鉴于此,本公开的主要目的在于提供一种滤波器的处理方法、装置、设备和存储介质,能够提高拼接得到的目标滤波器的性能和合格率。
为达到上述目的,本公开的技术方案是这样实现的:
第一方面,本公开实施例提供一种滤波器的处理方法,包括:
确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
在所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将所述第一待拼接滤波器和所述第二待拼接滤波器进行关联;
其中,相互关联的所述第一待拼接滤波器和所述第二待拼接滤波器用于拼接得到目标滤波器。
在一些实施例中,所述方法还包括:
对所述第一待拼接滤波器的插损值所处的第一插损区间的上限值和所述第二待拼接滤波器的插损值所处的第二插损区间的上限值进行加和处理,得到插损和值;
在所述插损和值与期望插损值相等的情况下,确定所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足所述预设匹配关系。
在一些实施例中,所述方法还包括:
基于相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值;
基于所述目标插损值,确定所述目标滤波器的插损一致性参数;其中,所述插损一致性参数用于表征所述目标滤波器的稳定性;
在所述插损一致性参数低于预设参数阈值的情况下,确定所述目标滤波器的稳定性满足预设要求;
其中,所述目标滤波器包括至少两个通道,所述目标插损值包括:所述通道的中心波长插损值。
在一些实施例中,所述基于相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值,包括:
将相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值的和值,确定为所述目标插损值。
在一些实施例中,所述插损一致性参数包括:相邻通道插损一致性参数;所述基于所述目标插损值,确定所述目标滤波器的插损一致性参数,包括:
对所述目标滤波器中任意相邻两个所述通道的中心波长插损值进行求差处理,得到至少一个相邻通道插损差值,并确定各个所述相邻通道插损差值的绝对值;
对各个所述绝对值进行排序处理,得到排序结果;
基于所述排序结果,从各个所述绝对值中确定所述相邻通道插损一致性参数。
在一些实施例中,所述插损一致性参数包括:通道间插损一致性参数;所述基于所述目标插损值,确定所述目标滤波器的插损一致性参数,包括:
对所述目标滤波器中各个所述通道的中心波长插损值进行排序处理,确定各个所述中心波长插损值中的插损最大值和插损最小值;
对所述插损最大值和所述插损最小值进行求差处理,得到通道间插损差值;
根据所述通道间插损差值,确定所述通道间插损一致性参数。
在一些实施例中,所述方法还包括:
获取各个第一备选滤波器的第一指标参数和各个第二备选滤波器的第二指标参数;
将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,并将所述第二指标参数与所述第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器;
其中,所述第一待拼接滤波器和所述第二待拼接滤波器用于得到具有目标指标参数的所述目标滤波器,所述目标指标参数由所述第一目标指标参数和所述第二目标指标参数确定。
在一些实施例中,所述第一指标参数包括:中心波长、带宽、相邻通道隔离度;所述将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,包括:
确定所述第一备选滤波器的中心波长与目标中心波长之间的波长差值;
确定所述第一备选滤波器的带宽与目标带宽之间的带宽差值;
在所述波长差值的绝对值小于预设波长阈值、所述带宽差值的绝对值小于预设带宽阈值、且所述第一备选滤波器的相邻通道隔离度大于预设相邻通道隔离度阈值的情况下,则确定所述第一备选滤波器的第一指标参数与所述第一目标指标参数相匹配,将所述第一备选滤波器确定为所述第一待拼接滤波器。
在一些实施例中,所述第二指标参数包括:非相邻通道隔离度;所述将所述第二指标参数与所述第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器,包括:
确定所述第二备选滤波器的非相邻通道隔离度与目标非相邻通道隔离度之间隔离度差值;
在所述隔离度差值的绝对值小于预设隔离度阈值的情况下,则确定所述第二备选滤波器的第二指标参数与所述第二目标指标参数相匹配,将所述第二备选滤波器确定为所述第二待拼接滤波器。
在一些实施例中,所述第一待拼接滤波器包括:梳状滤波器,所述第二待拼接滤波器包括:波分复用器;所述目标滤波器由一个所述梳状滤波器和两个所述波分复用器拼接得到。
第二方面,本公开实施例提供一种滤波器的处理装置,包括:
第一确定模块,配置为确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
关联模块,配置为在所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将所述第一待拼接滤波器和所述第二待拼接滤波器进行关联;
其中,相互关联的所述第一待拼接滤波器和所述第二待拼接滤波器用于拼接得到目标滤波器。
在一些实施例中,所述装置还包括:
加和模块,配置为对所述第一待拼接滤波器的插损值所处的第一插损区间的上限值和所述第二待拼接滤波器的插损值所处的第二插损区间的上限值进行 加和处理,得到插损和值;
第二确定模块,配置为在所述插损和值与期望插损值相等的情况下,确定所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足所述预设匹配关系。
在一些实施例中,所述装置还包括:
第三确定模块,配置为基于相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值;
第四确定模块,配置为基于所述目标插损值,确定所述目标滤波器的插损一致性参数;其中,所述插损一致性参数用于表征所述目标滤波器的稳定性;
第五确定模块,配置为在所述插损一致性参数低于预设参数阈值的情况下,确定所述目标滤波器的稳定性满足预设要求;其中,所述目标滤波器包括至少两个通道,所述目标插损值包括:所述通道的中心波长插损值。
在一些实施例中,所述第三确定模块配置为:
将相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值的和值,确定为所述目标插损值。
在一些实施例中,所述插损一致性参数包括:相邻通道插损一致性参数;所述第四确定模块配置为:
对所述目标滤波器中任意相邻两个所述通道的中心波长插损值进行求差处理,得到至少一个相邻通道插损差值,并确定各个所述相邻通道插损差值的绝对值;
对各个所述绝对值进行排序处理,得到排序结果;
基于所述排序结果,从各个所述绝对值中确定所述相邻通道插损一致性参数。
在一些实施例中,所述插损一致性参数包括:通道间插损一致性参数;所述第四确定模块配置为:
对所述目标滤波器中各个所述通道的中心波长插损值进行排序处理,确定各个所述中心波长插损值中的插损最大值和插损最小值;
对所述插损最大值和所述插损最小值进行求差处理,得到通道间插损差值;
根据所述通道间插损差值,确定所述通道间插损一致性参数。
在一些实施例中,所述装置还包括:
获取模块,配置为获取各个第一备选滤波器的第一指标参数和各个第二备选滤波器的第二指标参数;
第六确定模块,配置为将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,并将所述第二指标参数与所述第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器;
其中,所述第一待拼接滤波器和所述第二待拼接滤波器用于得到具有目标指标参数的所述目标滤波器,所述目标指标参数由所述第一目标指标参数和所述第二目标指标参数确定。
在一些实施例中,所述第一指标参数包括:中心波长、带宽、相邻通道隔离度;所述第六确定模块配置为:
确定所述第一备选滤波器的中心波长与目标中心波长之间的波长差值;
确定所述第一备选滤波器的带宽与目标带宽之间的带宽差值;
在所述波长差值的绝对值小于预设波长阈值、所述带宽差值的绝对值小于预设带宽阈值、且所述第一备选滤波器的相邻通道隔离度大于预设相邻通道隔离度阈值的情况下,则确定所述第一备选滤波器的第一指标参数与所述第一目标指标参数相匹配,将所述第一备选滤波器确定为所述第一待拼接滤波器。
在一些实施例中,所述第二指标参数包括:非相邻通道隔离度;所述第六确定模块配置为:
确定所述第二备选滤波器的非相邻通道隔离度与目标非相邻通道隔离度之间隔离度差值;
在所述隔离度差值的绝对值小于预设隔离度阈值的情况下,则确定所述第二备选滤波器的第二指标参数与所述第二目标指标参数相匹配,将所述第二备选滤波器确定为所述第二待拼接滤波器。
这里,预设隔离度阈值可以根据实际情况确定。
在一些实施例中,所述第一待拼接滤波器包括:梳状滤波器,所述第二待拼接滤波器包括:波分复用器;所述目标滤波器由一个所述梳状滤波器和两个所述波分复用器拼接得到。
第三方面,本公开实施例提供一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述第一方面所述的任一种方法中的步骤。
第四方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面所述的任一种方法中的步骤。
在本公开中,可以先确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间;然后在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;其中,相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器。
在本公开中,可以对第一待拼接滤波器和第二待拼接滤波器的插损值进行分档管理,将第一待拼接滤波器和第二待拼接滤波器的插损值纳入对应的插损区间,并确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间是否满足预设匹配关系。将第一插损区间和第二插损区间满足预设匹配关系的第一待拼接滤波器和第二待拼接滤波器进行关联,可以将用于得到目标滤波器的第一待拼接滤波器和第二待拼接滤波器的插损值限制在对应的区间内,进而将目标滤波器的插损值限制在设定范围内,减小目标滤波器的插损指标的波动性,增强目标滤波器的插损指标的一致性,使得目标滤波器的性能更佳,合格率更高。
附图说明
图1是根据本公开一示例性实施例示出的滤波器的处理方法的流程图一;
图2是根据本公开一示例性实施例示出的滤波器的处理方法的流程图二;
图3是根据本公开一示例性实施例示出的滤波器的处理方法的流程图三;
图4是根据本公开一示例性实施例示出的目标滤波器的结构示意图一;
图5是根据本公开一示例性实施例示出的目标滤波器的结构示意图二;
图6是根据本公开一示例性实施例示出的滤波器的处理方法的流程图四;
图7是根据本公开一示例性实施例示出的中心波长与中心波长精确度定义的示意图;
图8是根据本公开一示例性实施例示出的带宽定义的示意图;
图9是根据本公开一示例性实施例示出的相邻通道隔离度定义的示意图;
图10是根据本公开一示例性实施例示出的通道内损耗不平坦度定义的示意图;
图11是根据本公开一示例性实施例示出的梳状滤波器的透射光谱示意图;
图12是根据本公开一示例性实施例示出的梳状滤波器、波分复用器及目标滤波器的通道插损值的示意图;
图13是根据本公开一示例性实施例示出的波分复用器的透射光谱示意图;
图14是根据本公开一示例性实施例示出的波分复用器的透射光谱的局部示意图;
图15是根据本公开一示例性实施例示出的目标滤波器的透射光谱示意图;
图16是根据本公开一示例性实施例示出的目标滤波器的透射光谱的局部示意图;
图17是根据本公开一示例性实施例示出的梳状滤波器、波分复用器及目标滤波器的透射光谱示意图;
图18是根据本公开一示例性实施例示出的梳状滤波器、波分复用器及目标滤波器的透射光谱的局部示意图;
图19是根据本公开一示例性实施例示出的滤波器的处理装置的结构示意图;
图20是根据本公开一示例性实施例示出的电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对发明的具体技术方案做进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
可以理解的是,为了提高滤波器的性能,可以将多个滤波器拼接,拼接后的滤波器能够同时继承多个滤波器的优点。
例如,由于数据通信业务量持续高速增长,因此需要提高光纤通信系统的通信容量,而相关技术中的滤波器无法同时满足宽带宽要求和高隔离度要求,使得光纤通信系统扩容的难度较大,因此,在本公开实施例中,可以将滤波器(例如,梳状滤波器)与复用器(例如,波分复用器)拼接,以得到宽带宽且高隔离度的滤波器,从而可以实现光纤系统的扩容。
图1是根据本公开一示例性实施例示出的滤波器的处理方法的流程图一,如图1所示,该方法包括:
步骤110,确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
步骤120,在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;
其中,相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器。
需说明的是,本公开提供的滤波器的处理方法可以应用于电子设备,例如可以应用于终端设备和服务器等电子设备。这里,终端设备可以包括:移动终端、固定终端等。其中,移动终端可以包括:手机、平板电脑、笔记本电脑等设备,固定终端可以包括:台式电脑等。
这里,第一待拼接滤波器和第二待拼接滤波器可以是随机选择的任意滤波器,也可以是通过预设的筛选条件筛选出的滤波器。例如,第一待拼接滤波器 可以是筛选出的中心波长接近国际电信联盟(International Telecommunication Union,ITU)中心波长的滤波器,或者带宽大于特定带宽的滤波器,第二待拼接滤波器可以是筛选出的非相邻通道隔离度大于预设隔离度的滤波器。在一些实施例中,第一待拼接滤波器可以是梳状滤波器,第二待拼接滤波器可以是波分复用器。
在一些实施例中,第一待拼接滤波器的频谱的形状可以与第二待拼接滤波器的频谱的形状不同。
例如,第二待拼接滤波器的频谱的宽度可以大于第一待拼接滤波器的频谱的宽度,第二待拼接滤波器的带内频谱的形状比第一待拼接滤波器的带内频谱的形状更加平坦。
滤波器的插损值(即,插入损耗值),可以是滤波器在有效带宽内的最大插损、也可以是峰值插损、也可以是中心波长插损中任意一种,在此不做限定。滤波器的插损值,可以表征该滤波器的引入对原有信号带来的衰耗。滤波器的插损值所处的插损区间,可以表征滤波器的插损值所处的插损值范围。例如,第一待拼接滤波器的插损值为0.3分贝(dB),则第一待拼接滤波器的插损值所处的第一插损区间为(0dB,0.5dB)第二待拼接滤波器的插损值为5.2dB,则第二待拼接滤波器的插损值所处的第二插损区间为(5dB,5.5dB)。
可以理解的是,第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系,可以表征基于第一待拼接滤波器和第二待拼接滤波器拼接得到的目标滤波器的插损值符合期望插损值。
在一些实施例中,可以通过理论分析得到第一待拼接滤波器的指标参数、第二待拼接滤波器的指标参数和拼接得到的目标滤波器的指标参数之间的关联关系。
例如,根据第二待拼接滤波器的带内频谱比第一待拼接滤波器的带内频谱更加平坦,可以确定第一待拼接滤波器和第二待拼接滤波器拼接得到的目标滤波器的带内频谱的形状由第一待拼接滤波器决定,进而目标滤波器的中心波长 和带宽由第一待拼接滤波器决定,目标滤波器的中心波长与第一待拼接滤波器的中心波长相近,目标滤波器的带宽与第一待拼接滤波器的带宽相近。
还例如,根据第二待拼接滤波器的相邻通道的频谱比第一待拼接滤波器的相邻通道的频谱的更加平坦,可以确定目标滤波器的相邻通道隔离度由第一待拼接滤波器决定,且由于对滤波器进行拼接可以将相邻通道频谱功率降低,进而提高相邻通道隔离度,因此目标滤波器的相邻通道隔离度可以大于第一待拼接滤波器的相邻通道隔离度。
还例如,根据第一待拼接滤波器的非相邻通道的频谱的形状比第二待拼接滤波器的非相邻通道的频谱的形状更加平坦,可以确定目标滤波器的非相邻通道隔离度由第二待拼接滤波器决定,目标滤波器的非相邻通道隔离度与第二待拼接滤波器的非相邻通道隔离度相近。
还例如,通过理论分析还可以确定目标滤波器的插损值可以由第一待拼接滤波器的插损值和第二待拼接滤波器的插损值共同决定,因此,可以确定出第一待拼接滤波器的插损值、第二待拼接滤波器的插损值和拼接得到的目标滤波器的插损值之间的关联关系。如,目标滤波器的插损值可以为第一待拼接滤波器的插损值与第二待拼接滤波器的插损值的和值。
这样,基于得到的关联关系和期望得到的目标滤波器的期望插损值,可以设置满足预设匹配关系的与第一待拼接滤波器对应的第一预设插损区间和与第二待拼接滤波器对应的第二预设插损区间。
如,设定第一待拼接滤波器的插损值为a,第二待拼接滤波器的插损值为b,目标滤波器的期望插损值为c,则c=a+b,此时若a所处的区间(第一预设插损区间)的上限值为x,则b所处的区间(第二预设插损区间)的上限值为c-x。
在一些实施例中,第一预设插损区间的区间长度可以由第一待拼接滤波器的插损指标分布情况决定,第二预设插损区间的区间长度可以由第二待拼接滤波器的插损指标分布情况决定。如,插损指标分布的越集中,则区间长度可以越小;插损指标分布的越零散,则区间长度可以越大。
在一些实施例中,可以预先设置多个第一预设插损区间和多个第二预设插 损区间,并将各个相互匹配的第一预设插损区间和第二预设插损区间,和第一预设插损区间与第二预设插损区间的匹配关系记录在区间匹配列表中。
表1是根据本公开一示例性实施例示出的区间匹配列表一。如表1所示,在一些实施例中,区间匹配列表中的第一列可以存放各个第一预设插损区间,预设匹配列表中的第二列可以存放各个第二预设插损区间,位于同一行的第一预设插损区间和第二预设插损区间可以具有匹配关系。
表1区间匹配列表一
这里,表1示出的是期望得到的目标滤波器的期望插损值在6.5dB以下时的区间匹配列表,具体可以是期望插损值为6dB时的区间匹配列表。
如上文所述的,假设第一待拼接滤波器的插损值为a,第二待拼接滤波器的插损值为b,目标滤波器的插损值(即期望插损值)为c,则c=a+b,此时若a所处的区间的上限值为x,则b所处的区间的上限值为c-x。因此,在c=6dB的情况下,a所处的区间的上限值为0.5dB,则b所在区间的上限值为5.5dB。此时,若a和b的区间长度均为0.5dB,则a所在区间为(0dB,0.5dB),b所处的区间为(5dB,5.5dB)。
可以理解的是,期望得到的目标滤波器的期望插损值在6.5dB以下,也就是说,对目标滤波器的插损值要求是小于或等于6.5dB。考虑到,在实际应用的过程中,拼接得到的目标滤波器的指标参数(如,插损值)会存在一定的波动情况。因此,可以允许目标滤波器的插损值在一定的波动范围内波动,故可以将期望插损值设置为6dB,将波动范围设置为+/-0.5dB。
表2是根据本公开一示例性实施例示出的区间匹配列表二。如表2所示,在一些实施例中,区间匹配列表中的第一列可以存放各个第一预设插损区间, 预设匹配列表中的第二列可以存放各个第二预设插损区间,位于同一行的第一预设插损区间和第二预设插损区间可以具有匹配关系。
表2区间匹配列表二
这里,表2示出的是期望插损值为5.5dB时的区间匹配列表。
如上文实施例所述的,对目标滤波器的插损值要求是小于或等于6.5dB。在期望插损值为5.5dB时,对应的波动范围为+/-1dB。
可以理解的是,若期望得到的目标滤波器的性能越好,可以将期望插损值设置的越低,即将波动范围设置的越大。这样,可以提高第一待拼接滤波器和第二待拼接滤波器拼接得到的目标滤波器的合格率。但是,另一方面,会提高第一待拼接滤波器和第二待拼接滤波器的筛选要求,从而使得第一待拼接滤波器和第二待拼接滤波器的合格率较低。
也就是说,在本公开实施例中,在设置多个第一预设插损区间和多个第二预设插损区间时,可以先根据对目标滤波器的插损值要求,以及目标滤波器的插损值的波动情况,确定目标滤波器的期望插损值。然后,结合期望插损值、第一待拼接滤波器的插损指标分布情况和第二待拼接滤波器的插损指标分布情况,设置多个第一预设插损区间和多个第二预设插损区间。并且,还可以根据各个第一预设插损区间、各个第二预设插损区间以及各个第一预设插损区间与各个第二预设插损区间的匹配关系,得到区间匹配列表。
在确定第一待拼接滤波器的插损值所在的第一插损区间,以及第二待拼接滤波器的插损值所在的第二插损区间时,可以将第一待拼接滤波器的插损值与区间匹配列表中的第一预设插损区间进行比对,进而确定第一待拼接滤波器的插损值所在的第一插损区间;将第二待拼接滤波器的插损值与区间匹配列表中 的第二预设插损区间进行比对,进而确定第二待拼接滤波器的插损值所在的第二插损区间。
在一些实施例中,在步骤110中,所述确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所在的第二插损区间,可以包括:
分别将所述第一待拼接滤波器的插损值与各个第一预设插损区间的第一预设下限值和第一预设上限值进行比对;
将所述第一预设下限值小于所述第一待拼接滤波器的插损值且所述第一预设上限值大于或等于所述第一待拼接滤波器的插损值的第一预设插损区间,确定为所述第一待拼接滤波器的插损值所处的第一插损区间;
分别将所述第二待拼接滤波器的插损值与各个第二预设插损区间的第二预设下限值和第二预设上限值进行比对;
将所述第二预设下限值小于所述第二待拼接滤波器的插损值且所述第二预设上限值大于或等于所述第二待拼接滤波器的插损值的第二预设插损区间,确定为所述第二待拼接滤波器的插损值所处的第二插损区间。
在确定出第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间之后,可以判断第一待拼接滤波器的插损值所处的第一插损区间与第二待拼接滤波器的插损值所处的第二插损区间是否满足预设匹配关系。
图2是根据本公开一示例性实施例示出的滤波器的处理方法的流程图二,如图2所示,在一些实施例中,所述滤波器的处理方法可以包括以下步骤:
步骤210,确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
步骤220,对第一待拼接滤波器的插损值所处的第一插损区间的上限值和第二待拼接滤波器的插损值所处的第二插损区间的上限值进行加和处理,得到插损和值;
步骤230,在插损和值与期望插损值相等的情况下,确定第一待拼接滤波 器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系;
步骤240,在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;
其中,相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器。
这里,期望插损值可以表征期望得到的目标滤波器的插损值。
可以理解的是,若第一待拼接滤波器和第二待拼接滤波器能够使得拼接得到的目标滤波器的指标满足预设指标要求,也就是说能够使目标滤波器的指标参数达到期望值,则该第一待拼接滤波器和该第二待拼接滤波器能够进行拼接。
如上文实施例所述的,目标滤波器的插损值可以等于用于得到目标滤波器的第一待拼接滤波器的插损值和第二待拼接滤波器的插损值的和值,因此在设定区间时,可以按照此关联关系来设定满足预设匹配关系的第一插损区间和第二插损区间。
这样,可以使得目标滤波器的插损值满足期望插损值,将目标滤波器的插损值限制在期望插损值以下(包括期望插损值)。
因此,在插损和值等于期望插损值的情况下,则可以说明第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系。
这里,通过判断插损和值是否等于期望插损值,可以得出第一插损区间内的插损值和第二插损区间内的插损值的和值,是否满足期望插损值,进而能够准确地判断出第一插损区间是否与第二插损区间是否满足预设匹配关系,准确地判断出插损值位于该第一插损区间的第一待拼接滤波器是否能够与插损值位于该第二插损区间的第二待拼接滤波器拼接。
也就是说,在一些实施例中,预设匹配关系可以为第一待拼接滤波器的插损值所处的第一插损区间与第二待拼接滤波器的插损值所处的第二插损区间的 和值满足预设要求。例如,第一插损区间的下限值与第二插损区间的下限值的和值大于预设区间的下限值,且第一插损区间的上限值与第二插损区间的上限值小于预设区间的上限值。
这样,可以将第一待拼接滤波器的插损值与第二待拼接滤波器的插损值的和值限制在预设区间内,进而可以将由第一待拼接滤波器和第二待拼接滤波器拼接得到的目标滤波器的插损值限制在某个范围内。
在另一些实施方式中,预设匹配关系可以为第一待拼接滤波器的插损值所处的第一插损区间与第二待拼接滤波器的插损值所处的第二插损区间相同。
在另一些实施方式中,预设匹配关系可以为第一待拼接滤波器的插损值所处的第一插损区间与第二待拼接滤波器的插损值所处的第二插损区间相近,例如,第一插损区间的下限值与第二插损区间的下限值之间的差值较小,第一插损区间的上限值与第二插损区间的上限值的差值较小。
在确定第一待拼接滤波器的插损值所处的第一插损区间与第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,可以将第一待拼接滤波器和第二待拼接滤波器进行关联,相互关联的所述第一待拼接滤波器和所述第二待拼接滤波器用于拼接得到目标滤波器。
在另一些实施例中,通过理论分析,还可以确定目标滤波器的通道内插损不平坦度,等于第一待拼接滤波器的通道内插损不平坦度和第二待拼接滤波器的通道内插损不平坦度的和值。
在此实施例中,也可以通过类似于上文实施例中判断第一待拼接滤波器的插损值所在的第一插损区间与第二待拼接滤波器的插损值所在的第二插损区间是否满足预设匹配关系的方法,判断第一待拼接滤波器的通道内插损不平坦度所在的第一不平坦度区间与第二待拼接滤波器的通道内插损不平坦度所在的第二不平坦度区间是否满足预设匹配关系。
进而在第一待拼接滤波器的通道内插损不平坦度所在的第一不平坦度区间与第二待拼接滤波器的通道内插损不平坦度所在的第二不平坦度区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联。
在另一些实施例中,还可以在第一待拼接滤波器的插损值所在的第一插损区间与第二待拼接滤波器的插损值所在的第二插损区间是否满足预设匹配关系,且第一待拼接滤波器的通道内插损不平坦度和第二待拼接滤波器的通道内插损不平坦度均满足对应要求的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联。
在一些实施例中,将第一待拼接滤波器和第二待拼接滤波器进行关联时,可以将第一待拼接滤波器的设备标识与第二待拼接滤波器的设备标识进行关联。
在一些实施例中,可以将第一待拼接滤波器的设备标识、与第一待拼接滤波器具有关联关系的第二待拼接滤波器的设备标识、以及第一待拼接滤波器与第二待拼接滤波器的关联关系记录在关联关系列表中。
在进行滤波器的拼接的过程中,可以从关联关系列表中,获取相互关联的第一待拼接滤波器的设备标识和第二待拼接滤波器的设备标识,并根据设备标识选取第一待拼接滤波器和第二待拼接滤波器,进而将选取的第一待拼接滤波器和第二待拼接滤波器进行拼接,得到目标滤波器。例如,将选取的第一待拼接滤波器的输出端口与第二待拼接滤波器的输入端口进行连接,得到目标滤波器。
在一些实施例中,与第一待拼接滤波器相互关联的第二待拼接滤波器可以为包含两个滤波器,这两个滤波器的结构和参数可以相同或相近。
第一待拼接滤波器的输出端口可以分别与第二待拼接滤波器中的两个滤波器的输入端口连接,第一待拼接滤波器可以与第二待拼接滤波器中的两个滤波器共同构成目标滤波器。信号可以从第一待拼接滤波器的输入端口进入,经过第一待拼接滤波器的滤波处理之后得到两路信号,两路信号分别进入第二待拼接滤波器中的两个滤波器,并通过第二待拼接滤波器中的两个滤波器的输出端口输出。
可以理解的是,由于滤波器批量生产时指标存在一定的波动性,若拼接配对不加以规范,对滤波器进行拼接后,由滤波器拼接得到的目标滤波器指标波 动性会进一步放大,造成了目标滤波器的指标波动性较大,指标一致性较差的问题。
在本公开中,可以先确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间;然后在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;其中,相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器。
在本公开中,可以对第一待拼接滤波器和第二待拼接滤波器的插损值进行分档管理,将第一待拼接滤波器和第二待拼接滤波器的插损值纳入对应的插损区间,并确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间是否满足预设匹配关系。将第一插损区间和第二插损区间满足预设匹配关系的第一待拼接滤波器和第二待拼接滤波器进行关联,可以将用于得到目标滤波器的第一待拼接滤波器和第二待拼接滤波器的插损值限制在对应的区间内,进而将目标滤波器的插损值限制在设定范围内,减小目标滤波器的插损指标的波动性,增强目标滤波器的插损指标的一致性,使得目标滤波器的性能更佳,合格率更高。
图3是根据本公开一示例性实施例示出的滤波器的处理方法的流程图三,如图3所示,在一些实施例中,所述滤波器的处理方法包括以下步骤:
步骤310,确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
步骤320,在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;其中,相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器;
步骤330,基于相互关联的第一待拼接滤波器的插损值和第二待拼接滤波器的插损值,确定目标滤波器的目标插损值;
步骤340,基于目标插损值,确定目标滤波器的插损一致性参数;其中,插损一致性参数用于表征目标滤波器的稳定性;
步骤350,在插损一致性参数低于预设参数阈值的情况下,确定目标滤波器的稳定性满足预设要求;其中,目标滤波器包括至少两个通道,目标插损值包括:所述通道的中心波长插损值。
这里,预设参数阈值可以根据实际情况确定。
如上文实施例所述的,可以通过理论分析得出第一待拼接滤波器的插损值、第二待拼接滤波器的插损值以及由第一待拼接滤波器和第二待拼接滤波器拼接得到的目标滤波器的插损值之间的关联关系。进而,可以基于关联关系,以及相互关联的所述第一待拼接滤波器的插损值和第二待拼接滤波器的插损值,确定目标滤波器的目标插损值。
例如,在目标滤波器的插损值等于相互关联的第一待拼接滤波器的插损值和第二待拼接滤波器的插损值的和值的情况下,可以将相互关联的第一待拼接滤波器的插损值和第二待拼接滤波器的插损值的和值,确定为目标插损值,或者,将相互关联的第一待拼接滤波器的插损值、第二待拼接滤波器的插损值以及预设偏移量的和值,确定为目标插损值。
可以理解的是,在实际应用的过程中,拼接得到的目标滤波器的插损值存在一定的波动性,因此可以通过预设偏移量来表征目标滤波器的插损值的允许的波动情况。
也就是说,在一些实施例中,在步骤330中,基于相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值可以包括:
将相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值的和值,确定为所述目标插损值。
这样,可以较为准确且快速地基于已有的第一待拼接滤波器的插损值和第二待拼接滤波器的插损值确定出目标滤波器的插损值,无需再次对目标滤波器的插损值进行测量。
可以理解的是,确定出目标滤波器的目标插损值之后,可以基于目标插损值,确定目标滤波器的插损一致性参数,并通过插损一致性参数来评估目标滤波器的稳定性。
例如,在插损一致性参数低于预设参数阈值的情况下,确定目标滤波器的稳定性满足预设要求,该目标滤波器合格;在插损一致性参数高于预设参数阈值的情况下,确定目标滤波器的稳定性不满足预设要求,该目标滤波器不合格,需要重新选取第一待拼接滤波器和第二待拼接滤波器,并重新拼接得到目标滤波器。
这里,在拼接得到目标滤波器之后,可以通过目标滤波器的插损一致性参数来评估目标滤波器的稳定性,进而使得最终得到的目标滤波器的稳定性更佳。
这里,插损一致性参数可以包括通道间插损一致性参数和/或相邻通道插损一致性参数。
可以理解的是,目标滤波器可以由一个梳状滤波器和两个波分复用器拼接得到,也就是说,第一待拼接滤波器可以为一个梳状滤波器,第二待拼接滤波器可以为两个波分复用器。在此情况下,目标滤波器的奇通道和偶通道可以分别对应一个独立的波分复用器,例如,奇通道对应第一波分复用器,偶通道对应第二波分复用器。这样,若相邻的奇通道和偶通道之间的相邻通道插损一致性差别较大,则会影响目标滤波器所在的通信系统的性能。因此可以通过相邻通道插损一致性来评估目标滤波器的稳定性。
在一些实施例中,所述插损一致性参数包括:相邻通道插损一致性参数;在步骤340中,所述基于目标插损值,确定目标滤波器的插损一致性参数,包括:
对所述目标滤波器中任意相邻两个所述通道的中心波长插损值进行求差处理,得到至少一个相邻通道插损差值,并确定各个所述相邻通道插损差值的绝对值;
对各个所述绝对值进行排序处理,得到排序结果;
基于所述排序结果,从各个所述绝对值中确定所述相邻通道插损一致性参 数。
这里,中心波长插损值可以表征通道的中心波长处对应的插损值。
任意相邻两个通道的中心波长插损值的相邻通道插损差值的绝对值,可以表征任意相邻两个通道的插损的波动性(或一致性),例如,相邻两个通道的中心波长插损值的相邻通道插损差值的绝对值越大,说明该相邻两个通道的插损波动性越大,插损一致性较差。
在确定目标滤波器中各组相邻通道的中心波长插损值的相邻通道插损差值的绝对值之后,可以基于各组相邻通道的中心波长插损值的相邻通道插损差值的绝对值,确定出目标滤波器的相邻通道插损一致性参数。如,对各个绝对值进行排序处理后,根据排序结果从各个绝对值中确定出相邻通道插损一致性参数。
可以理解的是,目标滤波器的各组相邻通道的相邻通道插损差值的绝对值中的最大值越小,则说明目标滤波器的插损一致性越佳;目标滤波器的各组相邻通道的相邻通道插损差值的绝对值中的最大值越大,则说明目标滤波器的插损一致性(即,目标滤波器的相邻通道插损一致性)越差。
在一些实施例中,对各个绝对值进行排序处理,可以是将各个绝对值按照从小到大的顺序排列,或者按照从大到小的顺序排列。基于排序结果,从各个绝对值中确定相邻通道插损一致性参数可以包括,将绝对值中的最大值作为相邻通道插损一致性参数。
在一些实施例中,目标滤波器的相邻通道插损一致性参数的计算公式如下:
UniformityA=max(|ILi+1-ILi|)    (1);
这里,UniformityA可以表示相邻通道插损一致性参数,ILi可以表示第i个通道的中心波长插损值,i可以大于或等于1。
这里,根据目标滤波器中任意相邻两个通道的中心波长插损值之间的相邻通道插损差值的绝对值,确定的相邻通道插损一致性参数可以准确地体现出目标滤波器中相邻通道间的插损一致性。
可以理解的是,拼接得到的目标滤波器可以为多通道滤波器,在此情况下,可以通过目标滤波器的通道间插损一致性参数,来评估目标滤波器的稳定性。
在一些实施例中,所述插损一致性参数包括:通道间插损一致性参数;所述基于目标插损值,确定目标滤波器的插损一致性参数,包括:
通过对所述目标滤波器中各个所述通道的中心波长插损值进行排序处理,确定各个所述中心波长插损值中的插损最大值和插损最小值;
对所述插损最大值和所述插损最小值进行求差处理,得到通道间插损差值;
根据所述通道间插损差值,确定所述通道间插损一致性参数。这里,可以将插损最大值和插损最小值之间的通道间插损差值确定为通道间插损一致性参数。
在一些实施例中,目标滤波器的通道间插损一致性参数的计算公式如下:
Uniformity=max(IL1,…,ILk)-min(IL1,…,ILk)    (2);
这里,Uniformity可以表示通道间插损一致性参数,ILk可以表示第k个通道的中心波长插损值,式中k表示总通道数,k可以大于或等于2。
这里,根据目标滤波器中各个通道的中心波长插损值中的插损最大值和插损最小值确定的通道间插损一致性参数可以准确地体现出目标滤波器中多个通道间的插损一致性。
在一些实施例中,本公开提出的滤波器处理方法还包括:
获取各个第一备选滤波器的第一指标参数和各个第二备选滤波器的第二指标参数;
将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,并将所述第二指标参数与所述第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器;
其中,所述第一待拼接滤波器和所述第二待拼接滤波器用于得到具有目标指标参数的所述目标滤波器,所述目标指标参数由所述第一目标指标参数和所述第二目标指标参数确定。
也就是说,在本公开实施例中,可以先从第一备选滤波器中筛选出第一待拼接滤波器,从第二备选滤波器中筛选出第二待拼接滤波器,然后再在确定第一待拼接滤波器的插损值所处的第一插损区间与第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联。
这里,第一备选滤波器的第一指标参数可以从第一备选滤波器的设备参数中读取,也可以根据第一备选滤波器的设备参数计算得到,还可以通过实验测得;第二备选滤波器的第二指标参数可以从第二备选滤波器的设备参数中读取,也可以根据第二备选滤波器的设备参数计算得到,还可以通过实验测得。
第一目标参数和第二目标参数,可以是期望得到的目标滤波器的指标参数。第一目标参数可以是目标滤波器的指标参数中与第一备选滤波器对应的部分指标参数,如,中心波长、带宽、相邻通道隔离度;第二目标参数可以是目标滤波器的指标参数中与第二备选滤波器对应的部分指标参数,如,非相邻通道隔离度。
可以理解的是,在第一备选滤波器或第二备选滤波器为波分复用器的情况下,需要通过相邻通道隔离度和非相邻通道隔离度作为筛选指标来对波分复用器进行筛选。
在第一备选滤波器的第一指标参数与第一目标指标参数相匹配,第二备选滤波器的第二指标参数与第二目标指标参数相匹配的情况下,该第一备选滤波器能够作为第一待拼接滤波器,该第二备选滤波器能够作为第二待拼接滤波器,该第一备选滤波器与该第二备选滤波器拼接得到的滤波器为期望的目标滤波器。
可以理解的是,在本公开实施例中,可以预先通过理论分析得到用于得到目标滤波器的第一备选滤波器的第一指标参数、第二备选滤波器的第二指标参数和目标滤波器的目标指标参数之间的关联关系。
这样,在确定期望得到的目标滤波器的目标指标参数(如,第一目标指标参数和第二目标指标参数)之后,可以反推出,得到这样的目标滤波器所需的 第一待拼接滤波器的第一指标参数需满足的第一条件,以及得到这样的目标滤波器所需的第二待拼接滤波器的第二指标参数需满足的第二条件。
在第一备选滤波器的第一指标参数满足第一条件的情况下,可以确定第一指标参数与目标滤波参数相匹配,该第一备选滤波器可以确定为第一待拼接滤波器;在第二备选滤波器的第二指标参数满足第二条件的情况下,可以确定第二指标参数与目标复用参数相匹配,该第二备选滤波器可以确定为第二待拼接滤波器,该第一备选滤波器和第二备选滤波器拼接可以得到期望得到的目标滤波器。
这样,基于第一目标指标参数从第一备选滤波器中确定出第一待拼接滤波器,基于第二目标指标参数从第二备选滤波器中确定出第二待拼接滤波器,可以使得第一待拼接滤波器和第二待拼接滤波器拼接能够得到期望的具有目标指标参数的目标滤波器。
在一些实施例中,所述第一指标参数包括:中心波长、带宽、相邻通道隔离度;所述将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,包括:
确定所述第一备选滤波器的中心波长与目标中心波长之间的波长差值;
确定所述第一备选滤波器的带宽与目标带宽之间的带宽差值;
在所述波长差值的绝对值小于预设波长阈值、所述带宽差值的绝对值小于预设带宽阈值、且所述第一备选滤波器的相邻通道隔离度大于预设相邻通道隔离度阈值的情况下,则确定所述第一备选滤波器的第一指标参数与所述第一目标指标参数相匹配,将所述第一备选滤波器确定为所述第一待拼接滤波器。
这里,相邻通道隔离度可以为滤波器中相邻两个通道的中心波长插损值之间的插损差值,可以表征两个相邻通道之间的隔离度。
如上文实施例中所述的,可以预先通过理论分析得到用于得到目标滤波器的第一备选滤波器的第一指标参数、第二备选滤波器的第二指标参数和目标滤波器的目标指标参数之间的关联关系。
在一些实施例中,根据理论分析可以得出,目标滤波器的目标中心波长与 第一备选滤波器的中心波长相近,即目标中心波长与第一备选滤波器的中心波长之间的波长差值的绝对值较小,如,波长差值小于预设波长阈值。这里,预设波长阈值和预设带宽阈值均可以根据实际应用情况确定。
在一些实施例中,根据理论分析可以得出,目标滤波器的目标带宽与第一备选滤波器的带宽相近,即目标带宽与第一备选滤波器的带宽的之间带宽差值的绝对值较小,如带宽差值小于预设带宽阈值。
在一些实施例中,根据理论分析可以得出,目标滤波器的目标相邻通道隔离度可以大于第一备选滤波器的相邻通道隔离度。因此,只要第一备选滤波器的相邻通道隔离度大于预设相邻通道隔离度阈值,则目标滤波器的目标相邻通道隔离度大于预设相邻通道隔离度阈值。
这里,预设相邻通道隔离度阈值可以根据实际情况确定。
这样,在已知期望得到的目标滤波器的目标中心波长、目标带宽和目标相邻通道隔离度的情况下,可以反推出各个第一备选滤波器的中心波长、带宽和相邻通道隔离度是否满足对应的条件,如中心波长与目标中心波长之间的波长差值是否小于预设波长阈值。
在第一备选滤波器的中心波长、带宽和相邻通道隔离度分别满足对应的条件的情况下,第一备选滤波器可以与某个第二备选滤波器拼接得到期望得到的具有目标中心波长、目标带宽和目标相邻通道隔离度的目标滤波器,可以将该第一备选滤波器确定为第一待拼接滤波器。
这样,可以准确地基于第一备选滤波器的中心波长、带宽和相邻通道隔离度,判断出该第一备选滤波器能否与第二备选滤波器拼接得到期望得到的目标滤波器。且基于此方法确定的第一待拼接滤波器与第二待拼接滤波器拼接的拼接效果较好,得到的目标滤波器的指标参数能够达到期望的指标参数。
在一些实施例中,所述第二指标参数包括:非相邻通道隔离度;所述将所述第二指标参数与所述第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器,包括:
确定所述第二备选滤波器的非相邻通道隔离度与目标非相邻通道隔离度之 间隔离度差值;
在所述隔离度差值的绝对值小于预设隔离度阈值的情况下,则确定所述第二备选滤波器的第二指标参数与所述第二目标指标参数相匹配,将所述第二备选滤波器确定为所述第二待拼接滤波器。
这里,非相邻通道隔离度可以为滤波器中非相邻的两个通道的中心波长插损值之间的插损差值,可以表征两个非相邻的通道之间的隔离度。
如上文实施例中所述的,可以预先通过理论分析得到用于得到目标滤波器的第一备选滤波器的第一指标参数、第二备选滤波器的第二指标参数和目标滤波器的目标指标参数之间的关联关系。
在一些实施例中,根据理论分析可以得出,目标滤波器的目标非相邻通道隔离度与第二备选滤波器的非相邻通道隔离度相近,即目标非相邻通道隔离度与第二备选滤波器的非相邻通道隔离度之间的隔离度差值的绝对值较小,如,隔离度差值小于预设隔离度阈值。
这样,在已知期望得到的目标滤波器的目标非相邻通道隔离度的情况下,可以反推出各个第二备选滤波器的非相邻通道隔离度是否满足对应的条件,如非相邻通道隔离度与目标非相邻通道隔离度之间的隔离度差值是否小于预设隔离度阈值。
在第二备选滤波器的非相邻通道隔离度满足对应的条件的情况下,第二备选滤波器可以与某个第一备选滤波器拼接得到期望得到的具有目标非相邻通道隔离度的目标滤波器,可以将该第二备选滤波器确定为第二待拼接滤波器。
这样,可以准确地基于第二备选滤波器的非相邻通道隔离度,判断出该第二备选滤波器能否与第一备选滤波器拼接得到期望得到的目标滤波器。且基于此方法确定的第一待拼接滤波器与第二待拼接滤波器拼接的拼接效果较好,得到的目标滤波器的指标参数能够达到期望的指标参数。
在一些实施例中,还可以根据通过理论分析得到用于得到目标滤波器的第一备选滤波器的第一指标参数、第二备选滤波器的第二指标参数和目标滤波器的目标指标参数之间的关联关系,在已知目标指标参数的情况下,反推出能够 第一待拼接滤波器的指标参数的取值范围或需满足的条件,以及能够作为第二待拼接滤波器指标参数的取值范围或需满足的条件。
进而,可以根据第一待拼接滤波器的指标参数的取值范围或需满足的条件,生产出指标参数位于的取值范围内或满足某些条件的第一待拼接滤波器;可以根据第二待拼接滤波器的指标参数的取值范围或需满足的条件,生产出指标参数位于的取值范围内或满足某些条件的第二待拼接滤波器。
在一些实施例中,本公开提出的滤波器的处理方法可以包括:
基于预设关联关系,确定与第一目标指标参数匹配的第一指标参数和与第二目标指标参数匹配的第二指标参数;
例如,基于第一目标指标参数与用于得到目标滤波器的第一待拼接滤波器的第一指标参数相近的关联关系(如,目标中心波长与第一待拼接滤波器的中心波长相近),在已知第一目标指标参数的情况下,可以确定与用于得到目标滤波器的第一待拼接滤波器的第一指标参数的取值范围或需满足的条件。
基于所述第一指标参数和所述第二指标参数,得到与所述第一指标参数对应的第一待拼接滤波器和与所述第二指标参数对应的第二待拼接滤波器。
这里,基于第一指标参数和第二指标参数,得到与第一指标参数对应的第一待拼接滤波器和与第二指标参数对应的第二待拼接滤波器,可以包括:
基于所述第一指标参数从第一备选滤波器中确定第一待拼接滤波器,基于所述第二指标参数从第二备选滤波器中确定第二待拼接滤波器;或者,
基于所述第一指标参数生产第一待拼接滤波器,基于所述第二指标参数生产第二待拼接滤波器。
图4是根据本公开一示例性实施例示出的目标滤波器的结构示意图一,图5是根据本公开一示例性实施例示出的目标滤波器的结构示意图二。如图4所示,在一些实施例中,所述第一待拼接滤波器包括:梳状滤波器,所述第二待拼接滤波器包括:波分复用器;所述目标滤波器由一个所述梳状滤波器和两个所述波分复用器拼接得到。
图4中示出的是对梳状滤波器和波分复用器进行级联得到目标滤波器的示 意图。在一些实施例中,图4中的梳状滤波可以由若干个梳状器进行级联拼接得到,波分复用器可以由若干个梳状滤波器或波分复用器进行级联拼接得到。图5中示出的方案可以看成由三个梳状滤波器级联而成梳状滤波器与相应的四个波分复用器级联拼接得到;也可以看成一个梳状滤波器与两个波分复用器级联拼接得到,而且对应的两个波分复用器也都采用梳状滤波器与波分复用器级联拼接方案。在另一些实施例中,以此方法,还可以通过n级级联得到目标滤波器。
如图4所示,梳状滤波器的频率间隔为f,波分复用器的频率间隔为2f,且两个波分复用器的滤波波长分别与梳状滤波器的奇偶信道波长对应。频率间隔为f的光信号通过梳状滤波器,被分成两列频率间隔为2f的光信号,并分别从奇偶两路输出,奇偶两路光分别通过频率间隔为2f的波分复用器,输出对应奇信号光与偶信号光。
在一些实施例中,梳状滤波器可以为MGTI型梳状滤波器(Michelson-Gires-Tournois-Interferometer,迈克尔逊-GT腔干涉仪型梳状滤波器),波分复用器可以为AWG(Arrayed Waveguide Grating,阵列波导光栅)。
图6是根据本公开一示例性实施例示出的滤波器的处理方法的流程图四。如图6所示,在一些实施例中,所述滤波器的处理方法可以包括以下步骤:
步骤510,基于预设关联关系,确定与第一目标指标参数匹配的第一指标参数和与第二目标指标参数匹配的第二指标参数。
例如,基于第一目标指标参数与用于得到目标滤波器的第一待拼接滤波器的第一指标参数相近的关联关系(如,目标中心波长与第一待拼接滤波器的中心波长相近),在已知第一目标指标参数的情况下,可以确定与用于得到目标滤波器的第一待拼接滤波器的第一指标参数的取值范围或需满足的条件。
步骤520,基于第一指标参数和第二指标参数,得到与第一指标参数对应的第一待拼接滤波器和与第二指标参数对应的第二待拼接滤波器。
这里,基于第一指标参数和第二指标参数,得到与第一指标参数对应的第一待拼接滤波器和与第二指标参数对应的第二待拼接滤波器,可以包括:
基于所述第一指标参数从第一备选滤波器中确定第一待拼接滤波器,基于所述第二指标参数从第二备选滤波器中确定第二待拼接滤波器;或者,
基于所述第一指标参数生产第一待拼接滤波器,基于所述第二指标参数生产第二待拼接滤波器。
步骤530,确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间。
这里,可以预先设置多个第一预设插损区间和多个第二预设插损区间,并将各个相互匹配的第一预设插损区间和第二预设插损区间,和第一预设插损区间与第二预设插损区间的匹配关系记录在区间匹配列表中。
可以将第一待拼接滤波器的插损值与区间匹配列表中的预设滤波区间进行比对,进而确定第一待拼接滤波器的插损值所在的第一插损区间;将第二待拼接滤波器的插损值与区间匹配列表中的预设复用区间进行比对,进而确定第二待拼接滤波器的插损值所在的第二插损区间。
在确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间之后,可以基于上述区间匹配列表判断第一插损区间是否与第二插损区间具有匹配关系。
或者,在确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间之后,对第一待拼接滤波器的插损值所处的第一插损区间的上限值和所述第二待拼接滤波器的插损值所处的第二插损区间的上限值进行加和处理,得到插损和值;
在插损和值与期望插损值相等的情况下,确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系。
步骤540,在第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将第一待拼接滤波器和第二待拼接滤波器进行关联;其中,相互关联的第一待拼接滤波器和第二待拼接滤波器用于拼接得到目标滤波器。
在一些实施例中,可以将第一待拼接滤波器的设备标识与第二待拼接滤波器的设备标识进行关联。
在一些实施例中,可以将第一待拼接滤波器的设备标识、与第一待拼接滤波器具有关联关系的第二待拼接滤波器的设备标识、以及第一待拼接滤波器与第二待拼接滤波器的关联关系记录在关联关系列表中。
在进行滤波器的拼接的过程中,可以从关联关系列表中,获取相互关联的第一待拼接滤波器的设备标识和第二待拼接滤波器的设备标识,并根据设备标识选取第一待拼接滤波器和第二待拼接滤波器,进而将选取的第一待拼接滤波器和第二待拼接滤波器进行拼接,得到目标滤波器。例如,将选取的第一待拼接滤波器的输出端口与第二待拼接滤波器的输入端口进行连接,得到目标滤波器。
步骤550,基于相互关联的第一待拼接滤波器的插损值和第二待拼接滤波器的插损值,确定目标滤波器的目标插损值。
这里,可以将第一待拼接滤波器的各个通道的插损值,与第二待拼接滤波器中各个对应通道的插损值的和值,确定为目标滤波器中各个通道的目标插损值,进而可以根据各个通道的目标插损值,确定通道间的插损一致性参数和相邻通道的插损一致性参数,然后基于插损一致性参数评估目标滤波器的稳定性。
步骤560,基于目标插损值,确定目标滤波器的插损一致性参数;其中,插损一致性参数用于表征所述目标滤波器的稳定性。
这里,目标插损值可以包括目标滤波器的各个通道的中心波长插损值,插损一致性参数可以包括通道间插损一致性参数和/或相邻通道一致性参数。
步骤570,在插损一致性参数低于预设参数阈值的情况下,确定目标滤波器的稳定性满足预设要求;其中,目标滤波器包括至少两个通道,目标插损值包括:所述通道的中心波长插损值。
可以理解的是,假设期望得到的目标滤波器的通道数要求为64通,频率间隔要求为75吉赫(GHz),起始频率要求为fITU-1=196100GHz(终止频率为 fITU-64=fITU-1-75×63=191375GHz),对应ITU中心波长为λITU-1=c/fITU-1=1528.773纳米(nm)(终止波长为λITU-64=c/fITU-64=1566.518nm),中心波长精确度要求为[-4,4]GHz以内,插损值要求6.5dB以内,通道间插损一致性参数要求1.5dB以内,相邻通道插损一致性参数要求0.8dB以内,通道内损耗不平坦度要求2.5dB以内,3dB全带宽要求[70,76]GHz以内,10dB全带宽要求[85,94]GHz以内,相邻通道隔离度要求30dB以上,非相邻通道隔离度要求25dB以上。
根据以上目标滤波器的指标要求,不难得出一输入两输出的梳状滤波器,2个输出通道分别称为奇信道与偶信道,其中奇信道的起始波长为λodd-1=λITU-1=1528.773nm(fodd-1=fITU-1=196100GHz),偶信道的终止波长为λeven-32=λITU-64=1566.518nm(feven-32=fITU-64=191375GHz),奇信道的终止波长为λodd-32=c/(feven-32+75)=1565.905nm,偶信道的起始波长为λeven-1=c/(fodd-1-75)=1529.358nm,因此奇/偶信道的频率间隔都为150GHz,奇信道与偶信道的间隔为75GHz,两个波分复用器的通道数都为32,频率间隔都为150GHz,两个波分复用器的中心波长与频率间隔分别与梳状滤波器的奇偶信道对应,即对应奇信道的起始波长为1528.773nm,终止波长为1565.905nm,对应偶信道的起始波长为1529.358nm,终止波长为1566.518nm。
可以理解的是,可以理论分析得到梳状滤波器的指标参数、波分复用器的指标参数与目标滤波器的指标参数之间的关联关系,然后基于关联关系在已知目标滤波器的指标参数的情况下,反推出梳状滤波器的指标参数和波分复用器的指标参数,这里的指标参数可以表示指标参数的取值范围。
在一些实施例中,可以根据目标滤波器的中心波长确定梳状滤波器的中心波长的取值范围。
图7是根据本公开一示例性实施例示出的中心波长与中心波长精确度定义的示意图。如图7所示,3dB中心波长λc可以定义为中心波长插损下降3dB所覆盖的光谱范围中心处对应的波长值,且中心波长插损ILITU定义为ITU中心波长对应的插损值,中心波长精确度定义为3dB中心波长与ITU中心波长的差值, 即中心波长精确度的计算公式为:
Δλ=λcITU          (3);
在公式(3)中,Δλ表示目标滤波器的中心波长的精确度数据,λc表示中心波长插损下降3dB所覆盖的光谱范围中心处对应的波长值,λITU表示ITU中心波长。
例如,通过理论分析,确定目标滤波器的目标中心波长与梳状滤波器的中心波长相近,且介于梳状滤波器的中心波长和波分复用器的中心波长之间。
根据目标滤波器中心波长精确度要求为[-4,4]GHz以内,结合目标滤波器的目标中心波长与梳状滤波器的中心波长相近,且介于梳状滤波器的中心波长和波分复用器的中心波长之间,可以确定梳状滤波器的中心波长的取值范围,能够以此取值范围选取梳状滤波器。
在一些实施例中,可以根据目标滤波器的带宽确定梳状滤波器的带宽的取值范围。
图8是根据本公开一示例性实施例示出的带宽定义的示意图。如图8所示,ndB带宽可以定义为中心波长插损下降ndB所覆盖的光谱宽度,且全带宽=BW1+BW2,净带宽=2*min(BW1,BW2),本实施例以全带宽指标为例。
例如,通过理论分析的方式,确定目标滤波器的带宽与梳状滤波器的带宽相近。
根据目标滤波器的3dB全带宽要求[70,76]GHz以内,结合目标滤波器的带宽与梳状滤波器的带宽相近,可以确定梳状滤波器的中心波长的取值范围,能够以此取值范围选取梳状滤波器。
在一些实施例中,可以根据目标滤波器的相邻通道隔离度确定梳状滤波器的相邻通道隔离度的取值范围。
图9是根据本公开一示例性实施例示出的相邻通道隔离度定义的示意图。如图9所示,相邻通道隔离度(Adjacent Isolation,AI)可以定义为通道中心波长插损与相邻通道中心波长插损的差值,相邻通道隔离度通常取左相邻通道隔 离度与右相邻通道隔离度中的最小值。
例如,通过理论分析的方式,确定目标滤波器的相邻通道隔离度大于梳状滤波器的相邻通道隔离度。
根据目标滤波器的相邻通道隔离度要求30dB以上,结合目标滤波器的相邻通道隔离度大于梳状滤波器的相邻通道隔离度,可以确定梳状滤波器的相邻通道隔离度的取值范围,能够以此取值范围选取梳状滤波器。
进而,可以基于梳状滤波器的中心波长的取值范围、带宽范围和相邻通道隔离度范围,选取梳状滤波器。
在一些实施例中,可以根据目标滤波器的非相邻通道隔离度确定波分复用器的非相邻通道隔离度的取值范围。
如图9所示,非相邻通道隔离度(Non-adjacent Isolation,NI)可以定义为通道中心波长插损与非相邻通道中心波长插损的差值,非相邻通道隔离度通常取所有非相邻通道隔离度中的最小值。
例如,通过理论分析,确定目标滤波器的非相邻通道隔离度与波分复用器的非相邻通道隔离度相近。
根据目标滤波器的非相邻通道隔离度要求25dB以上,结合目标滤波器的非相邻通道隔离度与波分复用器的非相邻通道隔离度相近,可以确定波分复用器的非相邻通道隔离度的取值范围,能够以此取值范围选取波分复用器。
进而,可以基于波分复用器的非相邻通道隔离度范围,选取波分复用器。在一些实施例中,还可以根据目标滤波器的插损值,确定梳状滤波器的插损值和波分复用器的插损值。
这里,插损值可以包括中心波长插损值、通道间插损一致性参数、相邻通道插损一致性参数以及通道内损耗不平坦度参数,中心波长插损值ILITU的定义如图7所示,具体描述为ITU中心波长对应的插损值。
通道间插损一致性参数可以定义为所有通道中的中心波长插损插损最大值与最小值的差值,通道间插损一致性参数的计算公式可以参照公式(2),即 Uniformity=max(IL1,…,ILk)-min(IL1,…,ILk)。
这里,Uniformity表示通道间插损一致性参数,ILk可以表示第k个通道的中心波长插损值,式中k表示总通道数,例如,在本实施例中,k=64。
相邻通道插损一致性参数定义为相邻通道间中心波长插损差值的绝对值的最大值,相邻通道插损一致性参数的计算方式可以参照公式(1),即UniformityA=max(|ILi+1-ILi|)。
这里,UniformityA可以表示相邻通道插损一致性参数,ILi可以表示第i个通道的中心波长插损值,在本实施例中,i可以大于或等于1且小于或等于63。
考虑到串扰对系统的影响不仅与隔离度相关,也与信号功率(插损一致性)相关,尤其是相邻通道的插损一致性,因此可以通过目标滤波器的相邻通道插损一致性参数来评估目标滤波器的稳定性。
图10是根据本公开一示例性实施例示出的通道内损耗不平坦度定义的示意图。如图10所示,通道内损耗不平坦度定义为通道有效带宽内最大插损与插损的差值,本实施例通道有效带宽选为+/-32GHz。
通过理论分析,可以确定目标滤波器的插损值可以为梳状滤波器的插损值和波分复用器的插损值的和值。
根据目标滤波器的中心波长插损要求6.5dB以内,通道间插损一致性参数要求1.5dB以内,相邻通道插损一致性参数要求0.8dB以内,通道内损耗不平坦度要求2.5dB以内,结合目标滤波器的插损值可以为梳状滤波器的插损值和波分复用器的插损值的和值,可以确定梳状滤波器的插损值的取值范围和波分复用器的插损值的取值范围。进而,可以基于梳状滤波器的插损值的取值范围选取梳状滤波器,基于波分复用器的插损值的取值范围选取波分复用器。
在选取梳状滤波器和波分复用器之后,可以在梳状滤波器的插损值所处的第一插损区间和波分复用器的插损值所处的第二插损区间具有匹配关系的情况下,将该梳状滤波器和该波分复用器进行关联,并基于相互关联的一个梳状滤波器和两个波分复用器拼接得到目标滤波器。
在得到目标滤波器之后,可以基于梳状滤波器的插损值和波分复用器的插损值的和值,得到目标滤波器的插损值(如,各个通道的插损值),进而得到目标滤波器的插损一致性参数(如,相邻通道插损一致性参数),利用插损一致性参数评估目标滤波器的稳定性。
在本公开中,在基于梳状滤波器和波分复用器拼接得到目标滤波器之后,可以分别基于目标滤波器的指标参数、梳状滤波器的指标参数和波分复用器的指标参数验证之前总结的目标滤波器的指标参数与梳状滤波器的指标参数、波分复用器的指标参数之间的关联关系。
图11是根据本公开一示例性实施例示出的梳状滤波器的透射光谱示意图。图12是根据本公开一示例性实施例示出的梳状滤波器、波分复用器及目标滤波器的通道插损值的示意图。
如图11所示,横坐标表示波长,波长λ与频率f之间的转换关系为λ=c/f,其中c表示光速常数,且c=299792458m/s,纵坐标表示透射率,且透射率与插损值呈相反数关系。
根据图7中对于中心波长插损定义,并结合图11中梳状滤波器的透射光谱,可以计算出梳状滤波器(例如MGTI型梳状滤波器)的ITU中心波长对应的插损值,即梳状滤波器的中心波长插损ILITU-MGTI=0.35dB,且各通道的中心波长插损如图12所示,中心波长下降3dB后对应的波长值分别为1528.49nm与1529.07nm,据此梳状滤波器(例如MGTI型梳状滤波器)的3dB中心波长为:
λc-MGTI=(1528.491+1529.07)/2=1528.78nm;
梳状滤波器的中心波长精确度为:
ΔλMGTI=1528.781-1528.773=0.008nm=8pm;
若转换成频率,梳状滤波器的中心波长对应的频率的精确度为:
ΔfMGTI=c/1528.781-196100=-0.98GHz。
根据图8中对于带宽的定义,结合图11中梳状滤波器(例如MGTI型梳状滤波器)的透射光谱与中心波长插损ILITU-MGTI=0.35dB,计算出中心波长插损下 降3dB后对应的波长值分别为1528.491nm与1529.07nm,中心波长插损下降10dB后对应的波长值分别为1528.429nm与1529.128nm,据此计算出梳状滤波器的3dB带宽与梳状滤波器的10dB带宽为:
BW3-MGTI=c/1528.491-c/1529.07=74.27GHz;
BW10-MGTI=c/1528.429-c/1529.128=88.66GHz;
式中c表示光速常数,且c=299792458m/s。
根据图9中对相邻通道隔离度的定义,结合图11中梳状滤波器的透射光谱与中心波长插损为0.35dB,由于本实施例选取的为首通道,左相邻通道的波长不选用,因此只有右相邻通道隔离度,右相邻通道的中心波长插损值为31.63dB,因此计算出梳状滤波器的相邻通道隔离度为AXMGTI=31.63-0.35=31.28dB。
根据图10中对通道内损耗不平坦度的定义,结合图11中梳状滤波器的透射光谱,计算出通道有效带宽内+/-32GHz插损最大值为1.51dB,最小值为0.35dB,据此梳状滤波器的通道内损耗不平坦度为:
RippleMGTI=1.51-0.35=1.16dB。
图13是根据本公开一示例性实施例示出的波分复用器的透射光谱示意图。图14是根据本公开一示例性实施例示出的波分复用器的透射光谱的局部示意图。
如图13和图14所示,横坐标表示波长,纵坐标表示透射率,且透射率与插损值呈相反数关系。需要指出的是虽然波分复用器的通道间隔为150GHz,但是分析指标时,以75GHz通道间隔来分析。波分复用器重点关注中心波长,中心波长精确度,中心波长插损、通道内损耗不平坦度与非相邻通道隔离度。
根据图7中对于中心波长定义,并结合图13中波分复用器(例如阵列波导光栅AWG)的透射光谱,计算出波分复用器的3dB中心波长为:
λc-AWG=(1528.245+1529.243)/2=1528.744nm;
波分复用器的中心波长精确度为:
ΔλAWG=1528.744-1528.773=-0.029nm=-29pm;
若转换成频率,波分复用器的中心波长对应的频率的精确度为:
ΔfAWG=c/1528.744-196100=3.77GHz。
波分复用器的中心波长插损ILITU-AWG=4.54dB,波分复用器各通道插损如图12所示,根据图10中对通道内损耗不平坦度的定义,结合图13中波分复用器的透射光谱,可以得到波分复用器的通道内损耗不平坦度为:
RippleAWG=4.66-4.48=0.18dB。
如上文实施例所述的,非相邻通道隔离度可以定义为通道中心波长插损与非相邻通道中心波长插损的差值,如图9所示,非相邻通道隔离度通常取所有非相邻通道隔离度中的最小值。根据定义,通道中心波长插损为4.54dB,所有非相邻通道中中心波长插损插损最小值为49.09dB,因此计算出波分复用的非相邻通道隔离度为:NXAWG=49.09-4.54=44.55dB。
图15是根据本公开一示例性实施例示出的目标滤波器的透射光谱示意图。图16是根据本公开一示例性实施例示出的目标滤波器的透射光谱的局部示意图。图17是根据本公开一示例性实施例示出的梳状滤波器、波分复用器及目标滤波器的透射光谱示意图。图18是根据本公开一示例性实施例示出的梳状滤波器、波分复用器及目标滤波器的透射光谱的局部示意图。
如图15至18所示,拼接得到的目标滤波器的透射光谱(dB)为梳状滤波器的透射光谱(dB)与波分复用器的透射光谱(dB)之和。
根据图7中对于中心波长定义,并结合图15中目标滤波器的透射光谱,可以计算出目标滤波器的3dB中心波长为:
λc-MGTT+AWG=(1528.492+1529.061)/2=1528.777nm;
目标滤波器的中心波长精确度为:
ΔλMGTT+AWG=1528.777-1528.773=0.004nm=4pm;
若转换成频率,目标滤波器的中心波长对应的频率的精确度为:
ΔfMGTT+AWG=c/1528.773-196100=0.05GHz。
根据梳状滤波器的中心波长为1528.78nm,波分复用器的中心波长为 1528.744nm,目标滤波器的中心波长为1528.777nm,可以验证,目标滤波器的中心波长介于梳状滤波器的中心波长与波分复用器的中心波长之间,且与梳状滤波器的中心波长相近。
根据梳状滤波器的中心波长精确度为8皮米(pm),波分复用器的中心波长精确度为-29pm,目标滤波器的中心波长精确度为4pm,可以验证,目标滤波器的中心波长精确度介于梳状滤波器的中心波长精确度和波分复用器的中心波长精确度之间,且与梳状滤波器的中心波长精确度相近。
并且,目标滤波器的中心波长插损值为5.19dB,约等于梳状滤波器的中心波长损耗值0.35dB与波分复用器的中心波长损耗值4.54dB之和,实测值5.19dB相对于理论计算值4.89dB多出来0.3dB,多出来的0.3dB为光纤拼接时熔接损耗等因素的影响。
目标滤波器各通道插损如图12所示,与理论计算值整体近似。实测目标滤波器的通道间插损一致性参数为0.6dB,理论计算值为0.49dB,实测目标滤波器的相邻通道插损一致性参数为0.47dB,理论计算值为0.32dB,虽然理论值与实测值有一定的差别,但是理论值可作为选取梳状滤波器和波分复用器时的有效参考。
根据图10中对通道内损耗不平坦度的定义,结合图15中目标滤波器的透射光谱,可以得到目标滤波器的通道内损耗不平坦度为:
RippleMGTT+AWG=6.53-5.14=1.39dB。
根据梳状滤波器的通道内损耗不平坦度为1.16dB,波分复用器的通道内损耗不平坦度为0.18dB,目标滤波器的通道内损耗不平坦度为1.39dB,可以验证目标滤波器的通道内损耗不平坦度近似等于梳状滤波器的通道内损耗不平坦度与波分复用器的通道内损耗不平坦度之和。
根据图8中对于带宽的定义,结合图15中目标滤波器的透射光谱,可以计算出目标滤波器的3dB带宽与10dB带宽分别为:
BW3-MGTT+AWG=c/1528.492-c/1529.061=72.99GHz;
BW10-MGTT+AWG=c/1528.431-c/1529.12=88.38GHz。
根据梳状滤波器的3dB带宽为74.27GHz,10dB带宽为88.86GHz,目标滤波器的3dB带宽为72.99GHz,10dB带宽为88.38GHz,可以验证目标滤波器的带宽与梳状滤波器的带宽相近,且略低于梳状滤波器的带宽。
根据图9中对相邻通道隔离度的定义,结合图15中梳状滤波器的透射光谱,可以得出目标滤波器的相邻通道隔离度为:
AIMGTT+AWG=42.89-5.19=37.7dB。
根据梳状滤波器的相邻通道隔离度为31.28dB,目标滤波器的相邻通道隔离度为37.7dB,可以验证目标滤波器的相邻通道隔离度大于梳状滤波器的相邻通道隔离度。
根据图9中对相邻通道隔离度的定义,结合图15中梳状滤波器的透射光谱,可以得出目标滤波器的目标滤波器的非相邻通道隔离度为:
NIMGTT+AWG=49.85-5.19=44.66dB。
根据波分复用器的非相邻通道隔离度为44.55dB,目标滤波器的非相邻通道隔离度为44.66dB,可以验证,目标滤波器的非相邻通道隔离度与波分复用器的非相邻通道隔离度相近。
图19是根据本公开一示例性实施例示出的滤波器的处理装置的结构示意图。所图19所示,本公开实施例还提供一种滤波器的处理装置600,所述装置600可以包括:
第一确定模块610,配置为确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
关联模块620,配置为在所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将所述第一待拼接滤波器和所述第二待拼接滤波器进行关联;
其中,相互关联的所述第一待拼接滤波器和所述第二待拼接滤波器用于拼接得到目标滤波器。
在一些实施例中,所述装置还包括:
加和模块,配置为对所述第一待拼接滤波器的插损值所处的第一插损区间的上限值和所述第二待拼接滤波器的插损值所处的第二插损区间的上限值进行加和处理,得到插损和值;
第二确定模块,配置为在所述插损和值与期望插损值相等的情况下,确定所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足所述预设匹配关系。
在一些实施例中,所述装置还包括:
第三确定模块,配置为基于相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值;
第四确定模块,配置为基于所述目标插损值,确定所述目标滤波器的插损一致性参数;其中,所述插损一致性参数用于表征所述目标滤波器的稳定性;
第五确定模块,配置为在所述插损一致性参数低于预设参数阈值的情况下,确定所述目标滤波器的稳定性满足预设要求;其中,所述目标滤波器包括至少两个通道,所述目标插损值包括:所述通道的中心波长插损值。
在一些实施例中,所述第三确定模块配置为:
将相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值的和值,确定为所述目标插损值。
在一些实施例中,所述插损一致性参数包括:相邻通道插损一致性参数;所述第四确定模块配置为:
对所述目标滤波器中任意相邻两个所述通道的中心波长插损值进行求差处理,得到至少一个相邻通道插损差值,并确定各个所述相邻通道插损差值的绝对值;
对各个所述绝对值进行排序处理,得到排序结果;
基于所述排序结果,从各个所述绝对值中确定所述相邻通道插损一致性参数。
在一些实施例中,所述插损一致性参数包括:通道间插损一致性参数;所 述基于所述目标插损值,确定所述目标滤波器的插损一致性参数,包括:
对所述目标滤波器中各个所述通道的中心波长插损值进行排序处理,确定各个所述中心波长插损值中的插损最大值和插损最小值;
对所述插损最大值和所述插损最小值进行求差处理,得到通道间插损差值;
根据所述通道间插损差值,确定所述通道间插损一致性参数。
在一些实施例中,所述装置还包括:
获取模块,配置为获取各个第一备选滤波器的第一指标参数和各个第二备选滤波器的第二指标参数;
第六确定模块,配置为将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,并将所述第二指标参数与第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器;
其中,所述第一待拼接滤波器和所述第二待拼接滤波器用于得到具有目标指标参数的所述目标滤波器,所述目标指标参数由所述第一目标指标参数和所述第二目标指标参数确定。
在一些实施例中,所述第一指标参数包括:中心波长、带宽、相邻通道隔离度;所述第六确定模块配置为:
确定所述第一备选滤波器的中心波长与目标中心波长之间的波长差值;
确定所述第一备选滤波器的带宽与目标带宽之间的带宽差值;
在所述波长差值的绝对值小于预设波长阈值、所述带宽差值的绝对值小于预设带宽阈值、且所述第一备选滤波器的相邻通道隔离度大于预设相邻通道隔离度阈值的情况下,则确定所述第一备选滤波器的第一指标参数与所述第一目标指标参数相匹配,将所述第一备选滤波器确定为所述第一待拼接滤波器。
在一些实施例中,所述第二指标参数包括:非相邻通道隔离度;所述第六确定模块配置为:
确定所述第二备选滤波器的非相邻通道隔离度与目标非相邻通道隔离度之间隔离度差值;
在所述隔离度差值的绝对值小于预设隔离度阈值的情况下,则确定所述第 二备选滤波器的第二指标参数与所述第二目标指标参数相匹配,将所述第二备选滤波器确定为所述第二待拼接滤波器。
在一些实施例中,所述第一待拼接滤波器包括:梳状滤波器,所述第二待拼接滤波器包括:波分复用器;所述目标滤波器由一个所述梳状滤波器和两个所述波分复用器拼接得到。
需要说明的是,本公开实施例中,如果以软件功能模块的形式实现上述的滤波器的处理方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术实施例本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个人计算机、服务器、或者网络设备等)执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本公开实施例不限制于任何特定的硬件和软件结合。
对应地,本公开实施例提供一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行上文实施例中任一种滤波器的处理方法中的步骤。
对应地,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上文实施例中任一种滤波器的处理方法中的步骤。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本公开存储介质和设备实施例中未披露的技术细节,请参照本公开方法实施例的描述而理解。
需要说明的是,图20是根据本公开一示例性实施例示出的电子设备的结构示意图。如图20所示,该电子设备700的硬件实体包括:处理器710和存储器720,本公开实施例中,所述电子设备700还可以包括通信接口730。
可以理解,存储器720可以是易失性存储器或非易失性存储器,也可包括 易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本公开实施例描述的存储器720旨在包括但不限于这些和任意其它适合类型的存储器。
上述本公开实施例揭示的方法可以应用于处理器710中,或者由处理器710实现。处理器710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器710可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器710可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规 的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器720,处理器710读取存储器720中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
在本公开所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其他的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个观测量,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其他形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例的目的。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本公开实施例上述集成的单元如果以软件功能单元的形式实现并作 为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术实施例本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个人计算机、服务器、或者网络设备等)执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本公开是实例中记载的滤波器的处理方法、装置、设备和计算机存储介质只以本公开所述实施例为例,但不仅限于此,只要涉及到该滤波器的处理方法、装置、设备和计算机存储介质均在本公开的保护范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
本公开实施例通过对第一待拼接滤波器和第二待拼接滤波器的插损值进行分档管理,将第一待拼接滤波器和第二待拼接滤波器的插损值纳入对应的插损区间,并确定第一待拼接滤波器的插损值所处的第一插损区间和第二待拼接滤 波器的插损值所处的第二插损区间是否满足预设匹配关系。将第一插损区间和第二插损区间满足预设匹配关系的第一待拼接滤波器和第二待拼接滤波器进行关联,可以将用于得到目标滤波器的第一待拼接滤波器和第二待拼接滤波器的插损值限制在对应的区间内,进而将目标滤波器的插损值限制在设定范围内,减小目标滤波器的插损指标的波动性,增强目标滤波器的插损指标的一致性,使得目标滤波器的性能更佳,合格率更高。
以上所述,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种滤波器的处理方法,其中,所述方法包括:
    确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
    在所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情况下,将所述第一待拼接滤波器和所述第二待拼接滤波器进行关联;
    其中,相互关联的所述第一待拼接滤波器和所述第二待拼接滤波器用于拼接得到目标滤波器。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    对所述第一待拼接滤波器的插损值所处的第一插损区间的上限值和所述第二待拼接滤波器的插损值所处的第二插损区间的上限值进行加和处理,得到插损和值;
    在所述插损和值与期望插损值相等的情况下,确定所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足所述预设匹配关系。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    基于相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值;
    基于所述目标插损值,确定所述目标滤波器的插损一致性参数;其中,所述插损一致性参数用于表征所述目标滤波器的稳定性;
    在所述插损一致性参数低于预设参数阈值的情况下,确定所述目标滤波器的稳定性满足预设要求;
    其中,所述目标滤波器包括至少两个通道,所述目标插损值包括:所述通道的中心波长插损值。
  4. 根据权利要求3所述的方法,其中,所述基于相互关联的所述第一待拼 接滤波器的插损值和所述第二待拼接滤波器的插损值,确定所述目标滤波器的目标插损值,包括:
    将相互关联的所述第一待拼接滤波器的插损值和所述第二待拼接滤波器的插损值的和值,确定为所述目标插损值。
  5. 根据权利要求3所述的方法,其中,所述插损一致性参数包括:相邻通道插损一致性参数;所述基于所述目标插损值,确定所述目标滤波器的插损一致性参数,包括:
    对所述目标滤波器中任意相邻两个所述通道的中心波长插损值进行求差处理,得到至少一个相邻通道插损差值,并确定各个所述相邻通道插损差值的绝对值;
    对各个所述绝对值进行排序处理,得到排序结果;
    基于所述排序结果,从各个所述绝对值中确定所述相邻通道插损一致性参数。
  6. 根据权利要求3所述的方法,其中,所述插损一致性参数包括:通道间插损一致性参数;所述基于所述目标插损值,确定所述目标滤波器的插损一致性参数,包括:
    对所述目标滤波器中各个所述通道的中心波长插损值进行排序处理,确定各个所述中心波长插损值中的插损最大值和插损最小值;
    对所述插损最大值和所述插损最小值进行求差处理,得到通道间插损差值;
    根据所述通道间插损差值,确定所述通道间插损一致性参数。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    获取各个第一备选滤波器的第一指标参数和各个第二备选滤波器的第二指标参数;
    将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,并将所述第二指标参数与第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器;
    其中,所述第一待拼接滤波器和所述第二待拼接滤波器用于得到具有目标 指标参数的所述目标滤波器,所述目标指标参数由所述第一目标指标参数和所述第二目标指标参数确定。
  8. 根据权利要求7所述的方法,其中,所述第一指标参数包括:中心波长、带宽、相邻通道隔离度;所述将所述第一指标参数与第一目标指标参数相匹配的第一备选滤波器,确定为所述第一待拼接滤波器,包括:
    确定所述第一备选滤波器的中心波长与目标中心波长之间的波长差值;
    确定所述第一备选滤波器的带宽与目标带宽之间的带宽差值;
    在所述波长差值的绝对值小于预设波长阈值、所述带宽差值的绝对值小于预设带宽阈值、且所述第一备选滤波器的相邻通道隔离度大于预设相邻通道隔离度阈值的情况下,则确定所述第一备选滤波器的第一指标参数与所述第一目标指标参数相匹配,将所述第一备选滤波器确定为所述第一待拼接滤波器。
  9. 根据权利要求7所述的方法,其中,所述第二指标参数包括:非相邻通道隔离度;所述将所述第二指标参数与所述第二目标指标参数相匹配的第二备选滤波器,确定为所述第二待拼接滤波器,包括:
    确定所述第二备选滤波器的非相邻通道隔离度与目标非相邻通道隔离度之间的隔离度差值;
    在所述隔离度差值的绝对值小于预设隔离度阈值的情况下,则确定所述第二备选滤波器的第二指标参数与所述第二目标指标参数相匹配,将所述第二备选滤波器确定为所述第二待拼接滤波器。
  10. 根据权利要求1至9任一项所述的方法,其中,所述第一待拼接滤波器包括:梳状滤波器,所述第二待拼接滤波器包括:波分复用器;所述目标滤波器由一个所述梳状滤波器和两个所述波分复用器拼接得到。
  11. 一种滤波器的处理装置,其中,所述装置包括:
    第一确定模块,配置为确定第一待拼接滤波器的插损值所处的第一插损区间,和第二待拼接滤波器的插损值所处的第二插损区间;
    关联模块,配置为在所述第一待拼接滤波器的插损值所处的第一插损区间和所述第二待拼接滤波器的插损值所处的第二插损区间满足预设匹配关系的情 况下,将所述第一待拼接滤波器和所述第二待拼接滤波器进行关联;
    其中,相互关联的所述第一待拼接滤波器和所述第二待拼接滤波器用于拼接得到目标滤波器。
  12. 一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现权利要求1至10任一项所述方法中的步骤。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至10任一项所述方法中的步骤。
PCT/CN2023/095090 2022-11-14 2023-05-18 滤波器的处理方法、装置、设备和存储介质 WO2024103659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211419185.0 2022-11-14
CN202211419185.0A CN118033896A (zh) 2022-11-14 2022-11-14 滤波器的处理方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024103659A1 true WO2024103659A1 (zh) 2024-05-23

Family

ID=90992212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095090 WO2024103659A1 (zh) 2022-11-14 2023-05-18 滤波器的处理方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN118033896A (zh)
WO (1) WO2024103659A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484775A (zh) * 2000-11-06 2004-03-24 清华大学 光学分插滤波器
CN1777077A (zh) * 2005-11-28 2006-05-24 武汉光迅科技股份有限公司 无热光密集波分复用/解复用器件
CN109644064A (zh) * 2017-05-29 2019-04-16 华为技术有限公司 波分复用设备和方法
CN209560138U (zh) * 2019-09-16 2019-10-29 深圳市科信通信技术股份有限公司 一种波分复用器
CN110602575A (zh) * 2019-09-02 2019-12-20 烽火通信科技股份有限公司 Wdm pon波长扩容方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484775A (zh) * 2000-11-06 2004-03-24 清华大学 光学分插滤波器
CN1777077A (zh) * 2005-11-28 2006-05-24 武汉光迅科技股份有限公司 无热光密集波分复用/解复用器件
CN109644064A (zh) * 2017-05-29 2019-04-16 华为技术有限公司 波分复用设备和方法
CN110602575A (zh) * 2019-09-02 2019-12-20 烽火通信科技股份有限公司 Wdm pon波长扩容方法及系统
CN209560138U (zh) * 2019-09-16 2019-10-29 深圳市科信通信技术股份有限公司 一种波分复用器

Also Published As

Publication number Publication date
CN118033896A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
JP2006018063A (ja) 光導波路デバイス及び光導波路モジュール
US7847652B1 (en) Compact orthomode transducer with improved cross-polarization isolation
CN110708117A (zh) 确定光信号的波长信息的方法、装置及存储介质
CN110730034B (zh) 频偏处理方法、装置、设备及存储介质
WO2024103659A1 (zh) 滤波器的处理方法、装置、设备和存储介质
US20020176660A1 (en) Optical wavelength multiplexer/demultiplexer and use method thereof
US6757100B2 (en) Cascaded semiconductor optical amplifier
WO2024031808A1 (zh) 波的修正方法、装置、设备及计算机可读存储介质
WO2024031810A1 (zh) 滤波器指标确定方法、装置、设备和计算机可读存储介质
WO2024103642A1 (zh) 拼接滤波器的指标确定方法、装置及存储介质
WO2024031764A1 (zh) 波的偏移量的确定方法、装置、设备和存储介质
WO2024031766A1 (zh) 波的补偿方法、装置、设备及可读存储介质
WO2024103661A1 (zh) 拼接滤波器、拼接方法及电子设备
WO2024031765A1 (zh) 波的补偿方法、装置、设备及可读存储介质
US6560380B2 (en) Planar lightwave circuit interleaver
WO2024103641A1 (zh) 拼接滤波器的波长可偏移量确定方法、装置及存储介质
WO2024103660A1 (zh) 一种拼接滤波器、拼接方法及电子设备
JP2002082241A (ja) 光合分波器
EP4027540B1 (en) Method for determining optical signal power change and power calculation device
US20030108283A1 (en) Optical demultiplexer module
Sullca et al. Design of dual stopband filters for interference suppression
CN117233888B (zh) 光栅滤波器及基于布拉格光栅的波分复用解复用器
JP3394637B2 (ja) 光帯域通過フィルタ装置
JP2600507B2 (ja) 光合分波器
WO2023124374A1 (zh) 波长选择器件、波长选择的方法和roadm