WO2024103465A1 - 金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置 - Google Patents

金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置 Download PDF

Info

Publication number
WO2024103465A1
WO2024103465A1 PCT/CN2022/137736 CN2022137736W WO2024103465A1 WO 2024103465 A1 WO2024103465 A1 WO 2024103465A1 CN 2022137736 W CN2022137736 W CN 2022137736W WO 2024103465 A1 WO2024103465 A1 WO 2024103465A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
glass
transmitting window
preparing
film light
Prior art date
Application number
PCT/CN2022/137736
Other languages
English (en)
French (fr)
Inventor
严振
冯叶
徐泽林
周鸿飞
宁德
杨春雷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2024103465A1 publication Critical patent/WO2024103465A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the present application belongs to the field of optoelectronic technology, and specifically relates to a metal film light-transmitting window and a method and device for preparing the window based on laser lift-off technology.
  • Laser lift-off technology achieves the transfer of devices to the terminal substrate by ablation of materials caused by pulsed laser irradiation.
  • laser lift-off technology Compared with other high-energy beam lift-off methods such as chemical lift-off, mechanical lift-off and ion beam lift-off, laser lift-off technology has the advantages of high energy input efficiency, small device damage, good equipment openness and flexible application methods, and has become an emerging key technology for the manufacture of flexible electronic devices.
  • the current method of stripping metal plate coatings by nanosecond pulse laser is to emit the laser beam emitted by the nanosecond pulse laser to the surface of the coating to be stripped through a two-dimensional scanning galvanometer.
  • the coating to be stripped produces an explosive melting reaction after being ablated by the nanosecond pulse laser, and is driven by the high-speed airflow generated on the coating surface to separate from the metal plate.
  • the current method of stripping coatings is to use nanosecond pulse lasers to ablate the surface of the stripping material, and use the airflow with poor residue dispersion ability as a carrier to strip the metal layer, but it does not meet the design requirement of leaving a high-transparency stripping window after stripping the metal, and will damage the integrity of the substrate, as shown in B and C in Figure 4.
  • the present invention provides a method for preparing a light-transmitting window based on laser lift-off metal film technology, comprising the following steps:
  • the target material to be stripped is suspended in the liquid
  • the glass is scanned and irradiated with a pulse laser.
  • the laser emitted by the pulse laser passes through the glass and directly acts on the interface between the glass and the molybdenum layer.
  • the laser vaporizes the molybdenum at the interface, and the molybdenum layer is peeled off to obtain a light-transmitting window.
  • the glass is soda lime glass.
  • the soda lime glass has a thickness of 3 mm.
  • the thickness of the molybdenum metal film is 1 ⁇ m.
  • the laser removes the molybdenum layer in a defined pattern.
  • the pulse laser is a 50W fiber laser
  • the laser wavelength is 1064nm
  • the pulse energy is 1mJ
  • the scanning speed is greater than or equal to 5000mm/s
  • the pulse laser repetition frequency is 50kHz to 200kHz
  • the laser single pulse width is about 100ns to 200ns
  • the working plane is placed near the laser focus.
  • the liquid is deionized water, acetone, oil, petroleum ether, or alcohol.
  • the embodiment of the present application also provides a light-transmitting window of a metal film, which is prepared based on the above method.
  • An embodiment of the present application also provides a device for preparing a metal film light-transmitting window based on laser lift-off technology, including a container for holding the liquid, a foot supporting the container, and a clamp placed in the container. The target material is placed in the clamp and suspended in the liquid.
  • the technical solution of the present application is to apply the laser action point to the contact surface of the window layer.
  • the laser action on the contact surface can cause the surface molybdenum to be peeled off under transient high temperature, and the heat cannot diffuse to the glass substrate, thereby failing to destroy the glass morphology.
  • the stripping target material of the sputtered molybdenum layer is placed in a liquid medium. After the laser action, the detached molybdenum layer is quickly dispersed by the medium, achieving the purpose of lossless stripping, thereby obtaining high-quality products and realizing the high transparency of the light-transmitting window.
  • FIG1 is a schematic diagram of the structure of a laser power meter provided in an embodiment of the present application.
  • FIG. 2 is a device for preparing a metal film transparent window based on laser lift-off technology provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a 5 ⁇ 5 batch-produced molybdenum glass window provided in an embodiment of the present application.
  • FIG. 4 is a glass window effect test diagram obtained based on three solutions provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • the main purpose of this application is to be able to non-destructively peel off the metal electrode on the glass substrate with the electrode film grown, because this is the design requirement of the copper-cadmium-zinc-tin-selenium laser power meter structure, requiring that the cathode layer of the power meter has a pattern that can contact the lead electrode and has a transparent window with high light transmittance, as shown in Figure 1, including soda-lime glass 1, a molybdenum layer sputtered on the soda-lime glass 1 by magnetron sputtering, used to cover the lead 2 for deriving electrical signals, and a photoelectric response semiconductor Mo-Si substrate, in the middle is a gap peeled off by the technical solution of this application, and the tested laser acts on the photoelectric semiconductor through the gap.
  • This application focuses on using high-energy nanosecond 1064nm pulsed laser to achieve high transparency of this light-transmitting window.
  • a method for preparing a metal thin film light-transmitting window based on laser lift-off technology comprises the following steps:
  • S4 Use a pulse laser to scan and irradiate the glass.
  • the laser emitted by the pulse laser passes through the glass 1 and directly acts on the interface between the glass 1 and the molybdenum layer 3.
  • the laser vaporizes the molybdenum at the interface, and the molybdenum layer 3 is peeled off to obtain a light-transmitting window.
  • the glass 1 is soda-lime glass, and a 1 ⁇ m thick molybdenum metal film is vacuum magnetron sputtered on the 3 mm thick soda-lime glass.
  • the photoelectric thin film semiconductor detector used in the laser power meter is copper cadmium zinc tin selenium photoelectric absorption film (CCZTSe), that is, a photoelectric thin film absorption material Cu2CdxZn1-xSnSe4 based on Cu2-II-IV-VI4 group semiconductors, referred to as CCZTSe, which achieves response in the visible light and near-infrared bands, can absorb near-infrared light in a narrow bandgap, has the characteristics of fast response and good signal-to-noise ratio, and has excellent sensing and measurement capabilities for laser power in this band.
  • CCZTSe copper cadmium zinc tin selenium photoelectric absorption film
  • an ultrashort pulse laser generated by a 50W fiber laser (IPGlaser, Germany) is used, with a laser wavelength of 1064nm, a pulse energy of 1mJ, a scanning speed of 5000mm/s (or higher), a pulse laser repetition frequency of 50kHz to 200kHz, and a fill scan near the laser beam focus.
  • the laser single pulse width is about 100ns to 200ns.
  • the working plane is placed near the laser focus to achieve the most complete scanning shape.
  • the software for controlling the laser is SamLight software (SCAPS GmbH, Deisenhofen, Germany).
  • the target material selected is 1 micron metallic molybdenum grown by magnetron sputtering on 10 mm ⁇ 10 mm soda-lime glass.
  • the product after laser peeling is shown in Figure 3. By cutting, the glass is made into 25 product parts required by the design.
  • the target material 8 is clamped in a deionized water container 5 by a clamp 7 , and the laser passes through the glass layer according to the bitmap pattern imported by CAD and acts directly on the interface where the glass and molybdenum contact.
  • the laser vaporizes the molybdenum on the interface and peels off the raw material to make a product.
  • the target material 8 should be suspended in the middle of the liquid to provide a space for the debris that falls after peeling to escape.
  • the container 5 is made of a transparent material, which can ensure that the container will not be damaged by the laser.
  • a foot 6 is provided under the container 5, and the foot 6 can also be an integrated structure with the container 5. The purpose of providing the foot 6 is to suspend the container 5 in the air to prevent excessive laser from passing through the vessel after the treatment is completed and acting on the table (or plane) supporting the vessel, causing the contact surface under the vessel to heat up and be ablated and damaged.
  • the deionized water in this embodiment can also be replaced by acetone to assist in the laser non-destructive peeling of the deposited metal film sputtered on the glass.
  • the liquid medium should include all liquids that have cooling and residue dispersion functions, not just limited to deionized water and acetone, such as but not limited to acetone, oil, petroleum ether, alcohol, etc.
  • the method for identifying the liquid medium that can be used in the embodiment of the present application is whether the liquid has a lower absorption coefficient near the wavelength of the laser used, for example: in this embodiment, deionized water does not absorb 1064nm infrared laser.
  • Window A is a transparent window obtained by adopting the solution of the present application, and the window layer is complete, transparent and undamaged;
  • the B window is obtained by directly applying laser to the front side of the molybdenum glass and peeling it off in liquid.
  • the window layer is transparent, but not complete, or slightly burnt and damaged, which does not meet the technical target requirements;
  • the C window is obtained by applying laser to the contact surface of molybdenum and glass in flowing gas, without liquid, and directly peeling off.
  • the window layer is intact, but charred and opaque, and the glass window has corrugated damage.
  • the method disclosed in this application is applicable to the peeling of thin films on all transparent substrate materials
  • the technical solution of this application should not be limited by the following factors: the shape of the container, the engraved pattern, the material of the target, the composition of the liquid, the wavelength of the light and the pulse width.
  • the present application can also import the electrode embossing CAD layout into the laser control software, so that the pattern of the interdigitated electrode is left on the glass, and the conduction performance of the resistor meets the needs of the electrode.
  • the present application can also manufacture metal electrodes, cut electrodes, etc. by removing metal films according to corresponding patterns on a transparent substrate through the concept of subtractive material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种金属薄膜透光窗口及基于激光剥离技术制备的方法和装置,方法包括以下步骤:取光洁透明的玻璃(1);利用磁控溅射法在玻璃(1)上溅射钼层(3),从而得到待剥离的靶材(8);将待剥离的靶材(8)悬空置于液体中;采用脉冲激光器对玻璃(1)进行扫描照射,脉冲激光器发射的激光穿过玻璃(1)直接作用在玻璃(1)与钼层(3)接触的界面处,激光汽化界面处的钼,钼层(3)剥离从而得到透光窗口。可以实现无损剥离。

Description

金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置 技术领域
本申请属于光电技术领域,具体涉及一种金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置。
背景技术
激光剥离技术(LLO)通过脉冲激光辐照致材料烧蚀实现器件向终端基底的转移。相比于化学剥离、机械剥离和离子束等其他高能束剥离,激光剥离技术具有能量输入效率高、器件损伤小、设备开放性好、应用方式灵活等优势,已成为柔性电子器件制造的新兴关键技术。
近年来随着电子器件持续向轻薄化方向发展,器件功能层厚度与剥离损伤往往已经达到同一数量级,使得简单添加牺牲层的方式已不能满足要求;同时微阵列化等多种新型结构的出现,也对激光剥离技术在微尺度上的高度选择性提出了更苛刻的要求。
当前对金属板涂层进行纳秒脉冲激光剥离的方法为,将纳秒脉冲激光器发出的激光光束通过二维扫描振镜发射至待剥离的涂层表面,待剥离涂层通过纳秒脉冲激光烧蚀后产生爆炸性熔融反应,并在涂层表面产生的高速气流的带动下脱离金属板。可见,当前采用剥离涂层的方法,是利用纳秒脉冲激光在剥离物质表面烧蚀,利用分散残渣能力差的气流作载体,可以剥离金属层,但是不满足设计所需的剥离金属后遗留高透明性能剥离窗口的要求,会损坏基底完整性,如图4中的B、C所示。
技术问题
鉴于此,有必要针对现有技术存在的缺陷提供一种基于激光剥离技术制备金属薄膜透光窗口的方法及装置,实现激光在瞬态的高温下使接触玻璃的表层钼脱离,且脱离的样品迅速被介质分散,达到无损剥离的目的。
技术解决方案
为解决上述问题,本申请采用下述技术方案:
本申请实施例提供一种基于激光剥离金属薄膜技术制备透光窗口的方法,包括以下步骤:
取光洁透明的玻璃;
利用磁控溅射法在所述玻璃上溅射钼层,从而得到待剥离的靶材;
将待剥离的靶材悬空置于液体中;
采用脉冲激光器对所述玻璃进行扫描照射,所述脉冲激光器发射的激光穿过所述玻璃直接作用在玻璃与所述钼层接触的界面处,所述激光汽化界面处的钼,钼层剥离从而得到透光窗口。
在一些实施例中,所述玻璃为钠钙玻璃。
在一些实施例中,所述钠钙玻璃的厚度为3mm。
在一些实施例中,所述钼层金属薄膜的厚度为1μm。
在一些实施例中,所述激光按照设定的图案剥离钼层。
在一些实施例中,所述脉冲激光为50W光纤激光器,激光波长为1064nm,脉冲能量1mJ,扫描速度为大于或等于5000mm/s,脉冲激光重复频率为50kHz~200kHz,激光单脉冲宽度约100ns~200ns,工作平面置于激光焦点附近。
在一些实施例中,所述液体为去离子水、丙酮、油、石油醚、酒精。
本申请实施例还提供一种金属薄膜的透光窗口,基于上述方法制备得到。
本申请实施例还提供一种基于激光剥离技术制备金属薄膜透光窗口的装置,包括盛放所述液体的容器、支撑所述容器的垫脚、置于所述容器内的夹具,所述靶材置于夹具内,并悬空于所述液体中。
有益效果
本申请采用上述技术方案具备下述效果:
本申请的技术方案将激光作用点作用在窗口层接触面,通过接触面的激光作用可以在瞬态的高温下使接触剥离的表层钼脱离,热量无法扩散给玻璃基底,从而无法破坏玻璃形貌;将溅射钼层的剥离靶材置于液体介质中,在激光作用后,脱离的钼层很快被介质分散,达到无损剥离的目的,从而可获得高质量的产物,实现透光窗口的高度透明性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的激光功率计结构示意图;
图2为本申请实施例提供的基于激光剥离技术制备金属薄膜透明窗口的装
置示意图;
图3为本申请实施例提供的5×5批量制造的钼玻璃窗口示意图;
图4为本申请实施例提供的基于三种方案得到的玻璃窗口效果测试图。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
实施例1
本申请的主要目的是为了能够在生长有电极薄膜的玻璃基底上无损剥离金属电极,因为这是铜镉锌锡硒激光功率计结构的设计需要,要求在功率计阴极层有既可以接触引线电极,又具备高透光性能透明窗口的图案,如图1所示,包括钠钙玻璃1、采用磁控溅射法溅射在钠钙玻璃1上的钼层,用于包覆导出电信号的引线2,以及光电响应半导体Mo-Si基底,中间是采用本申请技术方案剥离的缺口,受测试的激光通过该缺口作用在光电半导体上。本申请着力于利用高能量纳秒级1064nm脉冲激光实现这一透光窗口的高度透明性。
一种基于激光剥离技术制备金属薄膜透光窗口的方法,包括以下步骤:
S1:取光洁透明的玻璃1;
S2:利用磁控溅射法在所述玻璃1上溅射钼层3,用于包覆导出电信号的引线2,从而得到待剥离的靶材8;
S3:将待剥离的靶材8悬空置于液体中;
S4:采用脉冲激光器对所述玻璃进行扫描照射,所述脉冲激光器发射的激光穿过所述玻璃1直接作用在玻璃1与所述钼层3接触的界面处,所述激光汽化界面处的钼,钼层3剥离从而得到透光窗口。
具体的,所述玻璃1为钠钙玻璃,且在3mm厚的钠钙玻璃上真空磁控溅射的1μm厚的钼金属薄膜。
在一些实施例中,激光功率计采用的光电薄膜半导体探测器是铜镉锌锡硒光电吸收薄膜(CCZTSe),即基于Cu2-II-IV-VI4族半导体的光电薄膜吸收材料Cu2CdxZn1-xSnSe4,简称CCZTSe,实现了可见光及近红外波段的响应,能够在窄禁带实现近红外光的吸收,具有响应快,信噪比好的特点,具备该波段下激光功率优秀的的感应测量能力。
在一些实施例中,采用50W光纤激光器(IPGlaser,德国)产生的超短脉冲激光,激光波长1064nm,脉冲能量1mJ,以5000mm/s(或者更高)的扫描速度,50kHz~200kHz脉冲激光重复频率,在靠近激光束焦点附近填充扫描,激光单脉冲宽度约100ns~200ns。工作平面置于激光焦点附近,以求扫描形状最完整。控制激光的软件为SamLight软件(SCAPSGmbH,Deisenhofen,德国)。
若需要在约2mm×2mm的方格钼层上剥离一个直径小于2mm的圆,选取的靶材是,在10mm×10mm钠钙玻璃上磁控溅射法生长1微米的金属钼,激光剥离后产物如图3所示,通过切割,将玻璃制成设计所需的25个产品零件。
具体的实现过程是,如图2所示,将上述靶材8通过夹具7夹持在去离子水的容器5里,激光按照CAD导入的位图图案,穿过玻璃层直接作用在玻璃与钼接触的界面处,激光汽化界面的钼,剥离从而将原料制成产物,这里靶材8应悬在液体中间,可以为剥离后掉落的碎屑提供脱离的空间。
所述容器5采用透明材质做成,透明材质可以保证容器不会被激光损坏,所述容器5下方设置有垫脚6,所述垫脚6也可以与所述容器5为一体结构,设置所述垫脚6的目的是将容器5悬空,防止处理结束后过盛的激光穿过器皿,作用在支撑器皿的桌面(或平面)上,使器皿下接触面升温被烧蚀损坏。
本实施例中的去离子水也可以用丙酮代替,用于辅助激光无损剥离玻璃上溅射的沉积金属薄膜。理论上液体介质应该包括所有具有冷却作用和分散残渣作用的液体,不仅仅限制于去离子水和丙酮,比如包括但不限于丙酮、油、石油醚、酒精等。辨识可用于本申请实施例的液体介质的方法在于,该液体是否在使用激光的波长附近有较低的吸收系数,比如:本实施例中去离子水不吸收1064nm的红外激光。
本申请经过实验,证明的通过本申请的技术方案能够得到无损透明的窗口,如图4所示。其中:
A窗口为采用本申请方案得到的透明窗口,窗口层完整、透明、无损伤;
B窗口采用的是直接对钼玻璃有钼的正面施加激光,在液体中剥离得到的,窗口层透明,但或不够完整,或微微焦黑产生损伤,不满足技术目标要求;
C窗口采用的是流动气体中对钼和玻璃的接触面施加激光,无液体,直接剥离得到的,窗口层完整,但是焦黑不透明,玻璃窗口有波纹状的损伤。
此外,还需要说明的是,
1、本申请所公开的方法适用于所有透明基底材料上薄膜的剥离;
2、本申请的技术方案不应该受到以下因素限制:容器的形状、刻画的图案、靶材的材料、液体的成分、光的波长和脉冲宽度。
3、本申请还可以通过导入电极阳刻CAD版图到激光控制软件中,使得在玻璃上留下了插指电极的图案,电阻的导通性能满足电极的需要。
4、本申请还可以通过减材的理念,在透明基底上按照对应图案去除金属薄膜来制造金属电极、切割电极等等。
本申请的技术方案将激光作用点作用在窗口层接触面,通过接触面的激光作用可以在瞬态的高温下使接触剥离的表层钼脱离,热量无法扩散给玻璃基底,从而无法破坏玻璃形貌;将溅射钼层的剥离靶材置于液体介质中,在激光作用后,脱离的钼层很快被介质分散,达到无损剥离的目的,从而可获得高质量的产物,实现透光窗口的高度透明性。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (9)

  1. 一种基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,包括以下步骤:
    取光洁透明的玻璃;
    利用磁控溅射法在所述玻璃上溅射钼层,从而得到待剥离的靶材;
    将待剥离的靶材悬空置于液体中;
    采用脉冲激光器对所述玻璃进行扫描照射,所述脉冲激光器发射的激光穿过所述玻璃直接作用在玻璃与所述钼层接触的界面处,所述激光汽化界面处的钼,钼层剥离从而得到透光窗口。
  2. 根据权利要求1所述的基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,所述玻璃为钠钙玻璃。
  3. 根据权利要求2所述的基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,所述钠钙玻璃的厚度为3mm。
  4. 根据权利要求3所述的基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,所述钼层金属薄膜的厚度为1μm。
  5. 根据权利要求1所述的基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,所述激光按照设定的图案剥离钼层。
  6. 根据权利要求1所述的基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,所述脉冲激光为50W光纤激光器,激光波长为1064nm,脉冲能量1mJ,扫描速度为大于或等于5000mm/s,脉冲激光重复频率为50kHz~200kHz,激光单脉冲宽度约100ns~200ns,工作平面置于激光焦点附近。
  7. 根据权利要求1所述的基于激光剥离技术制备金属薄膜透光窗口的方法,其特征在于,所述液体为去离子水、丙酮、油、石油醚、酒精。
  8. 一种金属薄膜的透光窗口,其特征在于,基于上述权利要求1-7任一项所述方法制备得到。
  9. 一种用于实现权利要求1-7任一项所述方法的装置,其特征在于,包括盛放所述液体的容器、支撑所述容器的垫脚、置于所述容器内的夹具,所述靶材置于夹具内,并悬空于所述液体中。
PCT/CN2022/137736 2022-11-16 2022-12-08 金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置 WO2024103465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211433693.4 2022-11-16
CN202211433693.4A CN116174910A (zh) 2022-11-16 2022-11-16 金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置

Publications (1)

Publication Number Publication Date
WO2024103465A1 true WO2024103465A1 (zh) 2024-05-23

Family

ID=86431443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137736 WO2024103465A1 (zh) 2022-11-16 2022-12-08 金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置

Country Status (2)

Country Link
CN (1) CN116174910A (zh)
WO (1) WO2024103465A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088799A (ja) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp 半導体装置の製造方法およびレーザー加工装置
CN103367209A (zh) * 2013-07-26 2013-10-23 东莞市中镓半导体科技有限公司 一种液体辅助激光剥离方法
CN104743527A (zh) * 2015-04-22 2015-07-01 山东师范大学 一种硒化铋纳米颗粒的制备方法
CN108342700A (zh) * 2018-03-22 2018-07-31 上海理工大学 一种图案可控的激光剥离金属薄膜的方法
CN108807217A (zh) * 2017-05-03 2018-11-13 上海新昇半导体科技有限公司 晶圆表面处理装置及方法
CN109175709A (zh) * 2018-08-22 2019-01-11 北京工业大学 一种对金属板涂层进行纳秒脉冲激光剥离的方法和系统
KR20210052147A (ko) * 2019-10-31 2021-05-10 한국과학기술연구원 씨스루형 박막 태양전지의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088799A (ja) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp 半導体装置の製造方法およびレーザー加工装置
CN103367209A (zh) * 2013-07-26 2013-10-23 东莞市中镓半导体科技有限公司 一种液体辅助激光剥离方法
CN104743527A (zh) * 2015-04-22 2015-07-01 山东师范大学 一种硒化铋纳米颗粒的制备方法
CN108807217A (zh) * 2017-05-03 2018-11-13 上海新昇半导体科技有限公司 晶圆表面处理装置及方法
CN108342700A (zh) * 2018-03-22 2018-07-31 上海理工大学 一种图案可控的激光剥离金属薄膜的方法
CN109175709A (zh) * 2018-08-22 2019-01-11 北京工业大学 一种对金属板涂层进行纳秒脉冲激光剥离的方法和系统
KR20210052147A (ko) * 2019-10-31 2021-05-10 한국과학기술연구원 씨스루형 박막 태양전지의 제조방법

Also Published As

Publication number Publication date
CN116174910A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
AU2010235991B2 (en) Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source or electromagnetic radiation
TWI542432B (zh) The cutting method of the object to be processed
Schoonderbeek et al. Laser Processing of Thin Films for Photovoltaic Applications.
JPH0677264A (ja) 電子部品の基板からの取外し方法及び装置
Lee et al. Laser removal of oxides and particles from copper surfaces for microelectronic fabrication
Krause et al. Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation
JPH05218472A (ja) 薄膜構成体のレーザ加工方法
TW201330082A (zh) 使用不連續雷射刻劃線之方法及結構
CN111085773A (zh) 金属膜辅助脆性材料的激光打孔装置及方法
JP2009004669A (ja) 金属配線基板の製造方法およびそれを用いて形成した金属配線基板
CN102339899A (zh) 用于薄膜太阳能模块的多程激光边缘去除工艺
WO2024103465A1 (zh) 金属薄膜透光窗口及其基于激光剥离技术制备的方法和装置
JPH0713954B2 (ja) 液晶表示装置作製方法
WO2003040427A1 (en) Thin film deposition by laser irradiation
Kim et al. Comparison of multilayer laser scribing of thin film solar cells with femto, pico, and nanosecond pulse durations
KR101385235B1 (ko) 레이저 스크라이빙 기술을 이용한 투명전도막 미세 패터닝 방법
Ehrhardt et al. Patterning of CIGS thin films induced by rear-side laser ablation of polyimide carrier foil
US20120318776A1 (en) Method and apparatus for machining a workpiece
Plat et al. Laser processing of thin glass printed circuit boards with a picosecond laser at 515 nm wavelength
RU2821014C1 (ru) Способ формирования токопроводящего элемента электрической цепи на диэлектрической подложке методом одностадийного лазерно-индуцированного прямого переноса серебряной пленки
JPS6095978A (ja) 光電変換半導体装置
CN113764551B (zh) 一种led芯片转移方法
RU2746728C1 (ru) Способ повышения стабильности и воспроизводимости электрофизических характеристик биологического сенсора
JP2540501B2 (ja) レ−ザ加工方法
JPH0712032B2 (ja) 有機樹脂上被膜のレーザ加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965643

Country of ref document: EP

Kind code of ref document: A1