WO2024103419A1 - 一种电流分路装置、通信装置及系统 - Google Patents
一种电流分路装置、通信装置及系统 Download PDFInfo
- Publication number
- WO2024103419A1 WO2024103419A1 PCT/CN2022/133029 CN2022133029W WO2024103419A1 WO 2024103419 A1 WO2024103419 A1 WO 2024103419A1 CN 2022133029 W CN2022133029 W CN 2022133029W WO 2024103419 A1 WO2024103419 A1 WO 2024103419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- resistor
- isolator
- current
- signal
- Prior art date
Links
- 230000006854 communication Effects 0.000 title claims abstract description 205
- 238000004891 communication Methods 0.000 title claims abstract description 205
- 230000005540 biological transmission Effects 0.000 claims abstract description 252
- 230000006855 networking Effects 0.000 abstract description 34
- 238000010586 diagram Methods 0.000 description 34
- 238000000034 method Methods 0.000 description 28
- 239000003990 capacitor Substances 0.000 description 15
- 230000006870 function Effects 0.000 description 12
- 238000007726 management method Methods 0.000 description 9
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 6
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 6
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 5
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 5
- 239000011324 bead Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
Definitions
- the present application relates to the field of communication technology, and in particular to a current shunt device, a communication device and a system.
- Wired communication is communication achieved through physical media or cable transmission. Cables can be, for example, waveguides, optical fibers, etc.
- wired communication has advantages such as stable transmission and anti-interference, it has disadvantages such as complex wiring and poor scalability. This disadvantage is particularly obvious when there are many devices that need to be connected by wire harnesses, the wiring area is small, and the structure is complex. When communicating, how to save wire harnesses and reduce wiring complexity to meet the application needs of future communications is an urgent problem to be solved.
- the present application discloses a current shunt device, a communication device and a system, which can save wiring harnesses, reduce wiring difficulty, and help improve communication reliability.
- the present application provides a current shunt device, comprising: a first resistor, a second resistor, a first AC breaker, a second AC breaker and a DC-AC shunt unit, wherein the first end of the first resistor is used to input current, the second end of the first resistor is connected to the first end of the second resistor, the second end of the second resistor is used to output current, the first resistor is connected in parallel with the first AC breaker, the second resistor is connected in parallel with the second AC breaker, the first end of the DC-AC shunt unit is connected to the second end of the first resistor, the second end of the DC-AC shunt unit is used to output DC, and the third end of the DC-AC shunt unit is used to input and/or output AC.
- the resistance value of the first resistor is equal to the resistance value of the second resistor.
- the AC block is also called an AC block, which has the function of blocking the AC current from passing the DC current.
- the AC block can be, for example, an inductor or a magnetic bead. Therefore, the first AC block and the second AC block can block the AC current from passing and allow the DC current to pass.
- the second end of the second resistor may also be used for inputting current, and the first end of the first resistor is used for outputting current.
- the current shunt device presents a "T" shaped structure.
- the signal loss when it is transmitted on the main circuit where the first resistor and the second resistor are located i.e., "T" shaped structure "one"
- the branch circuit i.e., half of the "T” shaped structure.
- the power of the signal received at the second end of the second resistor is greater than the power of the signal received at the third end of the DC-AC shunt unit; when a signal is input from the second end of the second resistor, the power of the signal received at the first end of the first resistor is greater than the power of the signal received at the third end of the DC-AC shunt unit; when a signal is input from the third end of the DC-AC shunt unit, the power of the signal received at the first end of the first resistor is equal to the power of the signal received at the second end of the second resistor.
- the current shunt device can solve the problem of AC and DC shunts between the transmission line and the node, which is suitable for scenarios where RF signals and power signals are transmitted on the same transmission line. It is not only helpful to reduce the length of the wiring harness that needs to be deployed when the nodes are wired networked, but also reduces the difficulty of wiring.
- the DC-AC shunt unit includes at least one AC breaker and at least one DC breaker, the at least one AC breaker being used to output at least part of the DC current in the current from the first end of the DC-AC shunt unit to the second end of the DC-AC shunt unit, the at least one DC breaker being used to output at least part of the AC current in the current from the first end of the DC-AC shunt unit to the third end of the DC-AC shunt unit, and/or to output at least part of the AC current in the current from the third end of the DC-AC shunt unit to the first end of the DC-AC shunt unit.
- the DC Block is also called a DC Block, which has the function of blocking the DC current and allowing the AC current to pass.
- the DC Block can be, for example, a capacitor or a diode.
- the AC current and the DC current are divided in the DC/AC dividing unit through at least one AC isolator and at least one DC isolator.
- the at least one AC isolator includes a third AC isolator
- the at least one DC isolator includes a first DC isolator.
- the first end of the third AC isolator and the first end of the first DC isolator are respectively connected to the second end of the first resistor, the second end of the third AC isolator is the second end of the DC-AC shunt unit, and the second end of the first DC isolator is the third end of the DC-AC shunt unit.
- the first DC breaker can prevent the DC current from passing through
- the third AC breaker can prevent the AC current from passing through, thereby achieving the branching of the AC current and the DC current in the DC-AC branch unit.
- the DC/AC branching unit further includes a third resistor, the second end of the DC breaker is grounded through the third resistor, and a resistance value of the third resistor is greater than a resistance value of the first resistor.
- the at least one AC isolator includes a third AC isolator and a fourth AC isolator
- the at least one DC isolator includes a first DC isolator
- the DC-AC shunt unit also includes a third resistor
- the third AC isolator is connected in parallel with the third resistor
- the first end of the third resistor is connected to the second end of the first resistor
- the second end of the third resistor is respectively connected to the first end of the fourth AC isolator and the first end of the first DC isolator
- the second end of the fourth AC isolator is the second end of the DC-AC shunt unit
- the second end of the first DC isolator is connected to the third end of the DC-AC shunt unit.
- the resistance of the third resistor is greater than the resistance of the first resistor, which can ensure that the transmission loss of the signal on the main path in the current branching device is smaller than the transmission loss on the branch path.
- the at least one DC isolator also includes a second DC isolator
- the DC-AC shunt unit also includes a fourth resistor
- the second DC isolator and the fourth resistor form a series circuit, the first end of the first DC isolator is connected to the first end of the series circuit, the second end of the series circuit is grounded, and the resistance of the fourth resistor is greater than the resistance of the third resistor.
- the direct current carries a power signal
- the alternating current carries a data signal or a control signal
- the current splitting device can realize the transmission of data signals/control signals and power signals on the same transmission line.
- the current shunt device also includes a duplexer, and the third end of the DC-AC shunt unit is connected to the duplexer, and the duplexer is used to separate the AC into a first frequency AC signal and a second frequency AC signal, or to merge the first frequency AC signal and the second frequency AC signal into the AC.
- the duplexer can isolate signals of different frequency bands.
- the duplexer is generally composed of two sets of bandpass filters of different frequencies to prevent the transmitting signal and the receiving signal of the machine from interfering with each other.
- the first frequency AC signal is a data signal or a control signal
- the second frequency AC signal is a clock signal
- the current shunt device is equipped with a duplexer, which can solve the branching of RF signals, clock signals and power signals, realize the transmission of RF signals, clock signals and power signals on the same transmission line, and synchronize the nodes connected to the current shunt device with the nodes operating at other frequencies on the same transmission line, such as synchronization of transmission and reception timing and orthogonalization of carriers.
- the current splitting device further includes a power divider or a switching element, the first end of the power divider or the first end of the switching element is connected to the third end of the DC/AC splitting unit, the second end of the power divider or the second end of the switching element is connected to the wireless transceiver, the third end of the power divider or the third end of the switching element is used to input and/or output AC, the first end of the switching element is conductively connected to the second end of the switching element or the third end of the switching element, and the power divider is used to distribute the signal power on the first end of the power divider to the second end of the power divider and the third end of the power divider, or to merge the signal power on the second end of the power divider and the signal power on the third end of the power divider to the first end of the power divider.
- a power divider or a switching element the first end of the power divider or the first end of the switching element is connected to the third end of the DC/AC splitting unit, the second end of the power
- the power divider is also called a power divider. It is a device that divides the energy of one input signal into two or more outputs with equal or unequal energy. It can also combine the energy of multiple signals into one output, in which case it is also called a combiner.
- the wireless transceiver device may be an antenna, an antenna transmitter, a radio transmitter, or the like.
- any one of the wired communication and wireless communication can be selected through the switch element, and the link transmission of the wired communication and/or wireless communication can be realized through the power divider.
- the current splitting device further includes the wireless transceiver.
- the wireless transceiver device can be integrated into the current shunt device.
- a first end of the first resistor and a second end of the second resistor are connected to a bus.
- the transmission line refers to a cable used to transmit electromagnetic energy, and can also be understood as a cable used to transmit electrical energy and signals.
- the transmission line can be, for example, a coaxial cable or a radio frequency cable, or a two-wire transmission line, a microstrip transmission line, etc.; when the transmission line is only used to transmit AC current, the transmission line can be, for example, a waveguide transmission line, an optical fiber, a two-wire transmission line, a microstrip transmission line, etc.
- the present application provides a communication device, comprising: a first resistor, a second resistor and a wireless transceiver, wherein the first end of the first resistor is used to input current, the second end of the first resistor is connected to the first end of the second resistor, the second end of the second resistor is used to output current, and the second end of the first resistor is also connected to the wireless transceiver.
- the resistance value of the first resistor is equal to the resistance value of the second resistor.
- the wireless transceiver device may be an antenna, an antenna transmitter, a radio transmitter, or the like.
- the second end of the second resistor may also be used for inputting current, and the first end of the first resistor is used for outputting current.
- the loss of the signal when it is transmitted on the main path between the first end of the first device and the second end of the second resistor is smaller than the loss when the signal is transmitted to the wireless transceiver.
- the device provided in the present application can reduce the loss of the signal on the transmission line.
- the power of the signal received at the second end of the second resistor is greater than the power of the signal received by the wireless transceiver; when a signal is input from the second end of the second resistor, the power of the signal received at the first end of the first resistor is greater than the power of the signal received by the wireless transceiver; when a signal is input from the wireless transceiver, the power of the signal received at the first end of the first resistor is equal to the power of the signal received at the second end of the second resistor.
- the communication device provided in the present application includes two resistors and a wireless transceiver.
- the communication device is suitable for scenarios where the transmission line only transmits alternating current, which is conducive to improving the flexibility of integrated networking for wired and wireless communications based on transmission lines, and reducing the length of deployed wiring harnesses.
- the communication device receives the radio frequency signal radiated in the air through its own wireless transceiver, and transmits the radio frequency signal to the first end of the first resistor and the second end of the second resistor of the device, that is, wireless communication is used first and then wired communication; the device can also obtain the radio frequency signal from the first end of the first resistor or the second end of the second resistor, and radiate the radio frequency signal into the air through its own wireless transceiver, that is, wired communication is used first and then wireless communication is used. It can be seen that the device can realize communication with other nodes with wireless communication capabilities or nodes on other transmission lines with the same capabilities. The device realizes the integration of wired communication and wireless communication based on the connected transmission line and its own wireless transceiver.
- the current includes an alternating current, and the alternating current carries a radio frequency signal.
- the communication device includes a first resistor, a second resistor and a wireless transceiver
- the communication device is suitable for a scenario where a radio frequency signal is transmitted on a transmission line.
- the device also includes a first AC isolator, a second AC isolator and a DC isolator, wherein the first AC isolator is connected in parallel with the first resistor, the second AC isolator is connected in parallel with the second resistor, and the second end of the first resistor is also connected to the wireless transceiver, including: the second end of the first resistor is also connected to the wireless transceiver through the DC isolator.
- the AC isolator and the DC isolator can refer to the description of the corresponding contents of the first aspect.
- the first AC isolator and the second AC isolator can be used for transmitting DC current on the main circuit of the communication device, and the DC isolator can prevent the DC current on the main circuit of the communication device from damaging the wireless transceiver.
- the current further includes a direct current, and the direct current carries a power signal.
- the communication device is suitable for a scenario where radio frequency signals and power signals are transmitted on a transmission line.
- the device further includes a third resistor, the wireless transceiver device is further grounded through the third resistor, and a resistance value of the third resistor is greater than a resistance value of the first resistor.
- the DC isolator may be, for example, a capacitor, or a device including a capacitor and a fourth resistor, wherein the capacitor and the fourth resistor form a series circuit, in which case the resistance of the fourth resistor is greater than the resistance of the first resistor and the resistance of the fourth resistor is less than the resistance of the third resistor.
- the fourth resistor may also be integrated into the wireless transceiver.
- the first end of the first resistor and the second end of the second resistor are connected to a bus.
- the communication device can use a wired medium to transmit signals, which can reduce the occupation of spectrum resources.
- the present application provides a communication system, comprising a first plurality of node devices connected based on a first transmission line, the first plurality of node devices comprising a device described in at least one of the first and second aspects above, or comprising at least one of a device of any possible implementation of the first aspect and a device of any possible implementation of the second aspect.
- the system also includes a second plurality of node devices connected based on a second transmission line, and the second plurality of node devices include the devices described in at least one of the first and second aspects above, or include at least one of the devices of any possible implementation of the first aspect and any possible implementation of the second aspect.
- the first plurality of node devices include a first node device, which includes any one of the devices of the second aspect or any possible implementation of the second aspect;
- the second plurality of node devices include a second node device, which includes any one of the devices of the second aspect or any possible implementation of the second aspect;
- the first node device and the second node device are used to implement wireless communication between the first plurality of node devices and the second plurality of node devices.
- the first plurality of node devices include a third node device, and the third node device includes any one of the current branching devices including a power divider or a switching element described in the first aspect;
- the second plurality of node devices include a fourth node device, and the fourth node device includes any one of the devices of the second aspect or any possible implementation of the second aspect;
- the fourth node device is used to implement wireless communication between the third node device and the second plurality of node devices.
- the first plurality of node devices include a fifth node device, and the fifth node device includes any one of the current branching devices including a power divider or a switching element described in the first aspect;
- the second plurality of node devices include a sixth node device, and the sixth node device includes any one of the current branching devices including a power divider or a switching element described in the first aspect; and the communication between the fifth node device and the sixth node device is wireless communication.
- the head node device and/or the end node device in the first plurality of node devices includes any one of the devices of the second aspect or any possible implementation manner of the second aspect.
- the first node device and/or the last node device among the first plurality of node devices include an AC isolator and a DC isolator
- the AC isolator is used to output at least part of the DC current in the current from the first transmission line
- the DC isolator is used to output at least part of the AC current in the current from the first transmission line
- the AC isolator is used to output at least part of the AC current in the current from the first transmission line
- the first plurality of node devices include a first group of node devices, each node device in the first group of node devices includes any one of the current branching devices including a duplexer described in the first aspect above, and the clock signal in the first group of node devices is a first frequency.
- the first plurality of node devices include a second group of node devices, each node device in the second group of node devices includes any one of the current branching devices including a duplexer described in the first aspect above, and the clock signal in the second group of node devices is a second frequency, which is different from the first frequency.
- the first plurality of node devices include a master node and at least one slave node
- the master node includes any one of the devices of the first aspect or any possible implementation of the first aspect
- the slave node includes any one of the devices of the first aspect and the second aspect, or includes any one of the devices of any possible implementation of the first aspect and any one of the devices of any possible implementation of the second aspect
- the master node is used to allocate time domain resources and/or frequency domain resources of the at least one slave node.
- the present application provides a vehicle, comprising the device described in at least one of the first and second aspects above, or comprising at least one of the device in any possible implementation of the first aspect and any possible implementation of the second aspect, or comprising the system in the third aspect or any possible implementation of the third aspect.
- FIG1 is a schematic diagram of the structure of a node provided in an embodiment of the present application.
- FIG2A is a circuit structure diagram of a current splitting device provided in an embodiment of the present application.
- FIG2B is a circuit structure diagram of another current splitting device provided in an embodiment of the present application.
- FIG3A is a circuit structure diagram of a communication device provided in an embodiment of the present application.
- FIG3B is a circuit structure diagram of another communication device provided in an embodiment of the present application.
- FIG4 is a circuit structure diagram of another communication device provided in an embodiment of the present application.
- FIG5A is a schematic diagram of a wired network provided in an embodiment of the present application.
- FIG5B is a schematic diagram of another wired networking provided in an embodiment of the present application.
- FIG6 is a schematic diagram of a wireless communication and wired communication converged networking provided in an embodiment of the present application.
- 7A is a schematic diagram of a network in which wired communication and wireless communication serve as backup for each other, provided in an embodiment of the present application;
- 7B is a schematic diagram of another networking in which wired communication and wireless communication serve as backup for each other, provided in an embodiment of the present application;
- FIG. 8 is a schematic diagram of another networking method in which wired communication and wireless communication serve as backup for each other, provided in an embodiment of the present application;
- FIG. 9 is a schematic diagram of a wired network for multi-communication domain synchronization provided in an embodiment of the present application.
- FIG. 10 is another schematic diagram of a network provided in an embodiment of the present application.
- the number of described objects is not limited by the prefix, and can be one or more. Taking “first device” as an example, the number of "devices" can be one or more.
- the objects modified by different prefixes can be the same or different. For example, if the object being described is a "device”, then the "first device” and the “second device” can be the same device, the same type of device, or different types of devices; for another example, if the object being described is "information”, then the "first information” and the “second information” can be information of the same content or information of different contents.
- the use of prefixes used to distinguish the described objects in the embodiments of the present application does not constitute a limitation on the described objects. For the statement of the described objects, refer to the description in the context of the claims or embodiments, and no unnecessary limitation should be constituted due to the use of such prefixes.
- the description methods such as "at least one of a1, a2, ... and an" used in the embodiments of the present application include the situation where any one of a1, a2, ... and an exists alone, and also include any combination of any multiple of a1, a2, ... and an, and each situation can exist alone.
- the description method of "at least one of a, b and c" includes the situation where a is alone, b is alone, c is alone, a combination of a and b, a combination of a and c, b and c, or a combination of abc.
- AC Block is also called AC isolator.
- An AC isolator refers to a component that can conduct direct current while blocking the transmission of alternating current.
- the AC isolator can be an electronic component such as an inductor or a magnetic bead.
- direct current can also be referred to as direct current
- alternating current can also be referred to as alternating current.
- DC Block is also called DC isolator.
- a DC breaker is a component that can conduct AC current and block DC current.
- the DC breaker can be an electronic component such as a capacitor or a diode.
- Coaxial cable is a cable that transmits electromagnetic energy in the radio frequency range, also known as radio frequency cable.
- Coaxial cable consists of a coaxial inner conductor, an outer conductor, and a medium that supports the inner and outer conductors.
- Fig. 1 is a schematic diagram of the structure of a node provided in an embodiment of the present application.
- the node includes a power management unit and a signal processing unit, and the power management unit is connected to the signal processing unit.
- the signal processing unit includes a radio frequency unit and a baseband processing unit, wherein the power management unit is connected to the baseband processing unit.
- the power management unit is connected to the signal processing unit including: the power management unit is connected to the baseband processing unit.
- the signal processing unit is configured with a signal codec, and the channel codec supports the node to perform wireless communication and/or wired communication.
- the signal processing unit is configured with a signal codec, specifically, the baseband processing unit is configured with a channel codec.
- a power management unit is a single-chip microcomputer used to control the power supply function of a digital platform. It can integrate several traditionally separate types of power management devices, such as DC/DC converters and low dropout linear regulators (LDOs), into one package, reducing the number of components and board space while achieving higher power conversion efficiency and lower power consumption.
- DC/DC converters DC/DC converters
- LDOs low dropout linear regulators
- the functions of the baseband processing unit include but are not limited to baseband signal modulation and demodulation, channel equalization, channel encoding and decoding, scrambling and descrambling, data verification, etc.
- the radio frequency unit is used to transform radio frequency signals.
- the radio frequency unit converts the received radio frequency signal from a higher frequency band to a lower frequency band so that the baseband processing unit can further process it, and converts the radio frequency signal output by the baseband processing unit from a lower frequency band to a higher frequency band and outputs it externally.
- the radio frequency unit can output the radio frequency signal through an antenna connected to itself or through a cable (or transmission line) connected to itself.
- the structural diagram of the communication node shown in FIG1 is only an example.
- the node shown in FIG1 may also include more or fewer functional entities.
- the other end of the RF unit in FIG1 may be connected to the output interface through a DC block.
- the node shown in FIG1 may also include a wireless transceiver, such as an antenna, which is not specifically limited here.
- the multiple nodes when wired communication is adopted between multiple nodes (such as the nodes shown in FIG. 1 ), in order to save the length of the wiring harness that needs to be deployed, the multiple nodes can be hung on a transmission line, and the transmission line can be a bus.
- the embodiment of the present application provides some current shunt devices, and the nodes can be connected to the transmission line through the current shunt devices.
- a transmission line refers to a cable used to transmit electromagnetic energy (e.g., radio frequency signals, power signals, etc.), and can also be understood as a cable used to transmit electrical energy and signals.
- the transmission line can be, for example, a coaxial cable or a radio frequency cable, or a two-wire transmission line, a microstrip transmission line, etc.; when a transmission line is used only to transmit radio frequency signals, the transmission line can be, for example, a waveguide transmission line, an optical fiber, a two-wire transmission line, a microstrip transmission line, etc.
- the current shunt device includes a first resistor, a second resistor, a first AC breaker, a second AC breaker and a DC-AC shunt unit, wherein the first end of the first resistor is used to input current, the second end of the first resistor is connected to the first end of the second resistor, the second end of the second resistor is used to output current, the first resistor is connected in parallel with the first AC breaker, the second resistor is connected in parallel with the second AC breaker, the first end of the DC-AC shunt unit is connected to the second end of the first resistor, the second end of the DC-AC shunt unit is used to output DC, and the third end of the DC-AC shunt unit is used to input and/or output AC.
- the resistance value of the first resistor is equal to the resistance value of the second resistor.
- the second end of the second resistor may also be used for inputting current, and the first end of the first resistor is used for outputting current.
- the DC-AC shunt unit includes at least one AC breaker and at least one DC breaker, wherein the at least one AC breaker is used to output at least part of the DC current in the current from the first end of the DC-AC shunt unit to the second end of the DC-AC shunt unit, and the at least one DC breaker is used to output at least part of the AC current in the current from the first end of the DC-AC shunt unit to the third end of the DC-AC shunt unit, and/or output at least part of the AC current in the current from the third end of the DC-AC shunt unit to the first end of the DC-AC shunt unit.
- direct current carries power signals
- alternating current carries data signals or control signals.
- a first end of the first resistor and a second end of the second resistor are connected to a bus.
- circuit structure of the current splitting device is described in detail below based on FIG. 2A and FIG. 2B .
- the directions of various devices in the circuit are first defined.
- devices such as resistors, AC isolators, DC isolators, etc. in the circuit
- the connection direction of their two ends is up and down, the end located on the upper side of the device is called the first end of the device, and the end located on the lower side of the device is called the second end of the device;
- the connection direction of their two ends is left and right, the end located on the left side of the device is called the first end of the device, and the end located on the right side of the device is called the second end of the device.
- FIG. 2A is a circuit structure diagram of a current splitting device provided in an embodiment of the present application.
- the current shunt device includes a resistor R1, a resistor R2, an AC isolator ACBlock1, an AC isolator ACBlock2 and a DC-AC shunt unit
- R1 is the above-mentioned first resistor
- R2 is the above-mentioned second resistor
- ACBlock1 is the above-mentioned first AC isolator
- ACBlock2 is the above-mentioned second AC isolator
- the connection method among the resistor R1, the resistor R2, the AC isolator ACBlock1 and the AC isolator ACBlock2 is not repeated.
- the DC-AC shunt unit specifically includes an AC breaker ACBlock3, an AC breaker ACBlock4, a resistor R3 and a DC breaker DCBlock1, wherein ACBlock3 is connected in parallel with R3, a first end of R3 is connected to a second end of R1, a second end of R3 is respectively connected to a first end of ACBlock4 and a first end of DCBlock1, a second end of ACBlock4 is a second end of the DC-AC shunt unit, a second end of DCBlock1 is a third end of the DC-AC shunt unit, and a resistance value of R3 is greater than a resistance value of R1.
- the DC-AC shunt unit further includes a DC breaker DCBlock2 and a resistor R4, wherein DCBlock2 and R4 form a series circuit, a first end of DCBlock1 is connected to a first end of the series circuit, a second end of the series circuit is grounded, and a resistance value of R4 is greater than a resistance value of R3.
- the current includes an alternating current
- the alternating current carries a radio frequency signal.
- the transmission of the radio frequency signal in the current shunt device satisfies the following two conditions: (1) The loss of the radio frequency signal when it is transmitted between the first end of the first resistor and the third end of the DC-AC shunt unit is equal to the loss of the radio frequency signal when it is transmitted between the first end of the second resistor and the third end of the DC-AC shunt unit; (2) The loss of the radio frequency signal when it is transmitted between the first end of the first resistor and the second end of the second resistor is less than the loss of the radio frequency signal when it is transmitted between the first end of the first resistor and the third end of the DC-AC shunt unit.
- the loss of the radio frequency signal when it is transmitted between the first end of the first resistor and the second end of the second resistor is also less than the loss of the radio frequency signal when it is transmitted between the second end of the second resistor and the third end of the DC-AC shunt unit.
- the resistance values of resistors R1, R2, R3, and R4 can be determined according to the impedance matching requirements of the system. After the resistance values of resistors R1, R2, R3, and R4 are determined, the types and values of AC isolators AC Block1, AC Block2, AC Block3, and AC Block4 and DC isolators DC Block1 and DC Block2 can be further determined according to the frequency bands of the power signal and the radio frequency signal transmitted on the transmission line.
- the types of AC isolators include but are not limited to inductors, magnetic beads, etc.
- the types of DC isolators include but are not limited to capacitors, diodes, etc.
- the AC isolator in FIG2A needs to have a good DC current carrying capacity (i.e., the DC resistance is as small as possible) so that the AC isolator is not saturated or burnt out within the preset current range, and the AC impedance of the AC isolator is large enough (for example, the AC impedance is greater than the preset impedance threshold) to prevent the AC signal from passing through.
- the DC isolator in FIG2A needs to have a sufficiently small impedance to the AC signal, or even negligible.
- each resistor in Figure 2A Exemplarily, based on the size relationship of each resistor in Figure 2A, it can be seen that when the signal is input from the first end of the first resistor, the power of the signal received at the second end of the second resistor is greater than the power of the signal received at the third end of the DC-AC shunt unit; when the signal is input from the second end of the second resistor, the power of the signal received at the first end of the first resistor is greater than the power of the signal received at the third end of the DC-AC shunt unit; when the signal is input from the third end of the DC-AC shunt unit, the power of the signal received at the first end of the first resistor is equal to the power of the signal received at the second end of the second resistor.
- the AC isolator has the function of isolating AC and passing DC
- the DC isolator has the function of isolating DC and passing AC.
- the current shunt device shown in FIG2A is suitable for the scenario where data signals/control signals and power signals are transmitted simultaneously on the transmission line.
- the first end of the first resistor in FIG2A is used as an input end to illustrate the shunt of the RF signal and the power signal in the current shunt device.
- the RF signal is divided into two RF signals after passing through the resistor R1.
- One RF signal is transmitted to the second end of R2 through R2, and the other RF signal is transmitted to the third end of the DC-AC shunt unit through R3 and DC Block1; the power signal is divided into two power signals through AC Block1.
- One power signal is transmitted to the second end of R2 through AC Block2, and the other power signal is transmitted to the second end of the DC-AC shunt unit through AC Block3 and AC Block4.
- AC Block4 can prevent the AC signal from damaging the power management unit of the node.
- DC Block1 can prevent the DC input from damaging the signal processing unit
- DC Block2 can prevent the power signal from generating DC loss through R4.
- the current splitting device shown in FIG. 2A can solve the splitting of the signal source and the power supply signal, and realize the transmission of the signal source and the power supply signal on the same transmission line.
- the current splitting device shown in Figure 2A also includes a power divider or a switching element, the first end of the power divider or the first end of the switching element is connected to the third end of the DC-AC splitting unit, the second end of the power divider or the second end of the switching element is connected to the wireless transceiver, the third end of the power divider or the third end of the switching element is used for inputting and/or outputting AC, the first end of the switching element is conductive to the second end of the switching element or the third end of the switching element, and the power divider is used to distribute the signal power on the first end of the power divider to the second end of the power divider and the third end of the power divider, or to merge the signal power on the second end of the power divider and the signal power on the third end of the power divider into the first end of the power divider.
- a power divider or a switching element the first end of the power divider or the first end of the switching element is connected to the third end of the DC-AC splitting unit, the
- the wireless transceiver may be provided by a node connected to the current shunt device shown in FIG. 2A , and the wireless transceiver may be, for example, an antenna.
- the power divider is also called a power divider. It is a device that divides the energy of one input signal into two or more outputs with equal or unequal energy. It can also combine the energy of multiple signals into one output, which is also called a combiner. In this way, link transmission of wired communication and/or wireless communication can be achieved through the power divider.
- the switch element has two states: closed and open, and each state corresponds to a communication mode. Any communication mode of wired communication and wireless communication can be selected through the switch element.
- the current splitting device shown in FIG. 2A may also include a wireless transceiver, wherein the wireless transceiver is connected to the power divider or the switch element.
- the wireless transceiver when the wireless transceiver is connected to the switch element, when the switch element is in a closed state, the wireless transceiver is in an unusable state, that is, wired communication is selected; when the switch element is in an open state, the wireless transceiver is in an usable state, that is, wireless communication is selected.
- the current shunt device shown in FIG2A further includes a duplexer, and the third end of the DC-AC shunt unit is connected to the duplexer, and the duplexer is used to separate the AC into a first frequency AC signal and a second frequency AC signal, or to merge the first frequency AC signal and the second frequency AC signal into the AC.
- the first frequency AC signal is a data signal or a control signal
- the second frequency AC signal is a clock signal.
- the current splitting device is configured with a duplexer, which can solve the splitting of RF signals, clock signals and power signals, and realize the transmission of RF signals, clock signals and power signals on the same transmission line.
- the present application embodiment further provides a circuit structure diagram of a current shunt device, see FIG2B.
- the current shunt device shown in FIG2B saves one AC isolator and one DC isolator while achieving the same function.
- the current shunt device includes a resistor R1, a resistor R2, an AC isolator ACBlock1, an AC isolator ACBlock2 and a DC-AC shunt unit
- R1 is the above-mentioned first resistor
- R2 is the above-mentioned second resistor
- ACBlock1 is the above-mentioned first AC isolator
- ACBlock2 is the above-mentioned second AC isolator
- the connection method among the resistor R1, the resistor R2, the AC isolator ACBlock1 and the AC isolator ACBlock2 is not repeated.
- the DC-AC shunt unit specifically includes an AC breaker ACBlock3 and a DC breaker DCBlock1, wherein the first end of ACBlock3 and the first end of DCBlock1 are respectively connected to the second end of R1, the second end of ACBlock3 is the second end of the DC-AC shunt unit, and the second end of DCBlock1 is the third end of the DC-AC shunt unit.
- the DC/AC branching unit further includes a resistor R3 , wherein the second end of DCBlock1 is grounded through R3 , and the resistance of R3 is greater than the resistance of R1 .
- DCBlock1 may be, for example, a capacitor, or a device including a capacitor and a resistor R4, wherein the capacitor is connected in series with the resistor R4, in which case the resistance of R4 is greater than the resistance of R1 and the resistance of R4 is less than the resistance of R3.
- the resistor R4 when the capacitor is connected in series with the resistor R4, the resistor R4 may be located below the capacitor.
- the resistance values of the resistors and the types and values of the AC isolators and DC isolators can be determined by referring to the description of the corresponding contents in FIG. 2A , which will not be repeated here.
- the current shunt device shown in FIG2B is also applicable to the scenario where the data signal/control signal and the power signal are transmitted simultaneously on the transmission line.
- the first end of the first resistor in FIG2B is used as an input end to illustrate the shunt of the RF signal and the power signal in the current shunt device, wherein the RF signal is divided into two RF signals after passing through the resistor R1, one RF signal is transmitted to the second end of the second resistor through R2, and the other RF signal is transmitted to the third end of the DC-AC shunt unit through DC Block 1; and the power signal is divided into two power signals through AC Block 1, one power signal is transmitted to the second end of the second resistor through AC Block 2, and the other power signal is transmitted to the second end of the DC-AC shunt unit through AC Block 3.
- DC Block 1 can prevent the DC input from damaging the signal processing unit and prevent the power signal from generating DC loss through R3.
- the current shunt device shown in FIG2B can solve the shunt of the RF signal and the power signal at a lower hardware cost, and realize the transmission of the RF signal and the power signal on the same transmission line.
- the current splitting device shown in Figure 2B also includes a power divider or a switching element, the first end of the power divider or the first end of the switching element is connected to the third end of the DC-AC splitting unit, the second end of the power divider or the second end of the switching element is connected to the wireless transceiver, the third end of the power divider or the third end of the switching element is used for inputting and/or outputting AC, the first end of the switching element is conductive to the second end of the switching element or the third end of the switching element, and the power divider is used to distribute the signal power on the first end of the power divider to the second end of the power divider and the third end of the power divider, or to merge the signal power on the second end of the power divider and the signal power on the third end of the power divider into the first end of the power divider.
- a power divider or a switching element the first end of the power divider or the first end of the switching element is connected to the third end of the DC-AC splitting unit, the
- the current shunt device shown in FIG2B does not include a wireless transceiver.
- the wireless transceiver may be a wireless transceiver of a node connected to the current shunt device shown in FIG2B , and the wireless transceiver may be an antenna, for example.
- the current splitting device shown in FIG. 2B further includes a wireless transceiver.
- link transmission of wired communication and/or wireless communication can be achieved through the power divider, and any communication mode of wired communication and wireless communication can be selected through the switch element.
- the current shunt device shown in FIG2B further includes a duplexer, and the third end of the DC-AC shunt unit is connected to the duplexer, and the duplexer is used to separate the AC into a first frequency AC signal and a second frequency AC signal, or to combine the first frequency AC signal and the second frequency AC signal into the AC.
- the first frequency AC signal is a data signal or a control signal
- the second frequency AC signal is a clock signal.
- the current splitting device is equipped with a duplexer, which can solve the splitting of radio frequency signals, clock signals and power supply signals, and realize the transmission of radio frequency signals, clock signals and power supply signals on the same transmission line.
- a communication device is also provided.
- the nodes on the same transmission line can not only perform wired communication based on the transmission line, but also perform wireless communication with other wireless communication nodes or nodes on other transmission lines with the same capability through the communication device.
- the communication device includes a first resistor, a second resistor and a wireless transceiver, wherein the first end of the first resistor is used for inputting current, the second end of the first resistor is connected to the first end of the second resistor, the second end of the second resistor is used for outputting current, and the second end of the first resistor is also connected to the wireless transceiver.
- the resistance value of the first resistor is equal to the resistance value of the second resistor.
- the second end of the second resistor is used for inputting current
- the first end of the first resistor is used for outputting current
- the first end of the first resistor and the second end of the second resistor are connected to the same transmission line, which may be a bus, for example.
- the communication device can have different circuit structures.
- the current includes a direct current and an alternating current, wherein the direct current carries a power signal and the alternating current carries a data signal/control signal.
- the circuit structure of the communication device can be shown in FIG3A .
- FIG. 3A is a circuit diagram of a communication device provided in an embodiment of the present application.
- the communication device in addition to resistors R1, R2, and a wireless transceiver, the communication device also includes two AC blockers, ACBlock1 and ACBlock2, and a DC blocker DC Block.
- resistor R1 is the first resistor in the above communication device
- resistor R2 is the second resistor in the above communication device. The connection method of resistors R1 and R2 will not be repeated here.
- ACBlock1 is connected in parallel with R1
- ACBlock2 is connected in parallel with R2.
- the communication device includes a DC Block
- the second end of the above-mentioned R1 is also connected to the wireless transceiver device, including: the second end of R1 is also connected to the wireless transceiver device through the DC Block.
- the communication device further includes a resistor R3 , and the wireless transceiver in the communication device is also grounded via R3 , and the resistance value of R3 is greater than the resistance value of R1 .
- DCBlock may be, for example, a capacitor, or a device including a capacitor and a resistor R4, wherein the capacitor and the resistor R4 form a series circuit, in which case the resistance of R4 is greater than the resistance of R1 and the resistance of R4 is less than the resistance of R3.
- DCBlock when the capacitor and the resistor R4 form a series circuit, the second end of R1 is connected to one end of the series circuit, and the other end of the transmission circuit is grounded through R3.
- R4 may also be integrated into the wireless transceiver.
- the current shunt device shown in FIG3A is also applicable to the scenario where the data signal/control signal and the power signal are transmitted simultaneously on the transmission line.
- the first end of the first resistor in FIG3A is used as an input end to illustrate the shunt of the RF signal and the power signal in the current shunt device, wherein the RF signal is divided into two RF signals after passing through R1, one RF signal is transmitted to the second end of the second resistor through R2, and the other RF signal is transmitted to the wireless transceiver through the DC Block; and the power signal is divided into two power signals through AC Block1, one power signal is transmitted to the second end of the second resistor through AC Block2, and the other power signal is blocked by the DC Block to prevent the DC power supply from damaging the wireless transceiver.
- the DC Block can prevent the DC input from damaging the wireless transceiver when there is a DC path between the signal and the ground in the wireless transceiver (that is, the oscillator in the wireless transceiver is grounded), and can also protect the power supply from being damaged.
- the wireless transceiver can receive a radio frequency signal from the air, and the radio frequency signal is output from the first end of the first resistor and the second end of the second resistor along the transmission line; the wireless transceiver can also obtain the radio frequency signal from the first end of the first resistor or the second end of the second resistor and radiate the radio frequency signal outward.
- the communication device shown in FIG3A can not only solve the branching of the radio frequency signal and the power signal, and realize the transmission of the radio frequency signal and the power signal on the same transmission line, but also realize the integration of wired communication and wireless communication based on the connected transmission line and its own wireless transceiver.
- the oscillator in the wireless transceiver is not grounded, it means that there is no DC path between the signal in the wireless transceiver and the ground, and the communication device shown in FIG3B is also applicable to the scenario where the RF signal and the power signal are transmitted simultaneously on the transmission line. It can be seen that in FIG3B and FIG3A, the types and quantities of components included in the communication device are the same, but the difference between FIG3B and FIG3A is that the connection position of DCBlock is different. In FIG3B, the second end of R1 is connected to the first end of DCBlock, and the second end of DCBlock is grounded through resistor R3.
- the second end of the first resistor is connected to the wireless transceiver device by: the second end of the first resistor is connected to the wireless transceiver device through a resistor R4, in which case the resistance of R4 is greater than the resistance of R1 and the resistance of R4 is less than the resistance of R3.
- R4 may also be integrated into the wireless transceiver device.
- the current only includes an alternating current, and the alternating current carries a radio frequency signal.
- the circuit structure of the communication device can be shown in FIG. 4 .
- FIG. 4 is a circuit structure diagram of another communication device provided in an embodiment of the present application.
- the communication device shown in Figure 4 includes a resistor R1, a resistor R2 and a wireless transceiver, wherein the resistor R1 is the first resistor in the above-mentioned communication device, and the resistor R2 is the second resistor in the above-mentioned communication device.
- the connection method between the resistor R1, the resistor R2 and the wireless transceiver is not repeated.
- the communication device further includes a resistor R3 , and the wireless transceiver in the communication device is also grounded via R3 , and the resistance value of R3 is greater than the resistance value of R1 .
- the communication device may further include a resistor R4, and the second end of the first resistor may be connected to the wireless transceiver device as follows: the second end of the first resistor is connected to the wireless transceiver device through the resistor R4.
- the resistance value of R4 is greater than the resistance value of R1 and the resistance value of R4 is less than the resistance value of R3.
- the current shunt device shown in FIG4 is suitable for a scenario where only data signals/control signals are transmitted on the transmission line. Taking the second end of R2 in FIG4 as an input end as an example, the shunt of the RF signal in the current shunt device is explained.
- the RF signal is divided into two RF signals after passing through the resistor R2. One RF signal is transmitted to the first end of R1 through R1, and the other RF signal is transmitted to the wireless transceiver.
- the wireless transceiver can receive a radio frequency signal from the air, and the radio frequency signal is output from the first end of the first resistor and the second end of the second resistor along the transmission line; the wireless transceiver can also obtain the radio frequency signal from the first end of the first resistor or the second end of the second resistor and radiate the radio frequency signal outward.
- the communication device shown in FIG4 can realize the integration of wired communication and wireless communication based on the connected transmission line and its own wireless transceiver.
- the following may be networked based on at least one of the current shunting device and the communication device described above and a plurality of nodes shown in FIG. 1 .
- the signal processing unit of the node is configured with a channel coding code, and the signal coding code is used to support the node to perform wired communication and/or wireless communication. That is, the channel coding code can be configured accordingly according to the communication mode of the node.
- the networked system includes multiple node devices connected based on a first transmission line, and the multiple node devices include at least one device in the embodiments of Figures 2A, 2B, 3A, 3B and 4 above.
- the first transmission line may be a bus, and multiple node devices may be connected in a bus-like manner to save the length of the wiring harness.
- the node device may be a node (e.g., the node shown in FIG. 1 ) or the above-mentioned communication device, and the node device may also include a node and a current shunt device connected to the node, which is not specifically limited herein.
- FIG. 5A is a schematic diagram of a wired network provided in an embodiment of the present application.
- multiple nodes are connected to the same transmission line (i.e., the first transmission line), where the multiple nodes include node 1, node 2, node 3, ..., node n, where n is a positive integer, node 1 is the first node on the transmission line, node n is the last node on the transmission line, and the nodes other than node 1 and node n among the multiple nodes are intermediate nodes on the transmission line.
- the first node such as node 1 in FIG. 5A
- the last node such as node n in FIG. 5A
- the intermediate nodes on the transmission line need to consider the forward and backward transmission of the signal
- the intermediate nodes need to be connected to the transmission line through a current shunt device.
- node 2 is connected to the transmission line through current shunt device 1
- node 3 is connected to the transmission line through current shunt device 2.
- the first node device or the last node device on the transmission line can be a node, for example, the first node device is node 1, and the last node device is node n.
- the first node device or the last node device on the transmission line includes an AC isolator and a DC isolator, wherein the AC isolator is used to output at least part of the DC current from the current on the transmission line to the node in the node device, and the DC isolator is used to output at least part of the AC current from the current on the transmission line to the node in the node device, and/or output at least part of the AC current received from the node in the node device to the transmission line.
- Each node device between the first and last node devices on the transmission line includes a corresponding node and a current shunt device connected to the node, for example, the second node device on the transmission line includes node 2 and current shunt device 1.
- the current shunt device 1 and the current shunt device 2 are the current shunt devices shown in FIG2A.
- the connection mode between the current shunt device and the node, the circuit structure and the principle of the current shunt device can refer to the description of the corresponding contents in the embodiment of FIG2A. Any two node devices on the transmission line can communicate with each other through the transmission line.
- the current shunt device 1 can be used to realize the shunt of the radio frequency signal and the power signal between the node 2 and the next node of the node 2.
- the next node of the node 2 is determined according to the transmission direction of the signal source. For example, if the signal source is transmitted from left to right, the next node of the node 2 is the node 3; if the signal source is transmitted from right to left, the next node of the node 2 is the node 1. It can be understood that any two node device nodes on the transmission line communicate by wire through the transmission line.
- the second end of the DC-AC branching unit in the current branching device 1 is connected to the power management unit in node 2
- the third end of the DC-AC branching unit in the current branching device 1 is connected to the radio frequency unit in node 2.
- the current shunt device 1 may be independent of the node 2 or may be integrated into the node 2, which is not specifically limited herein.
- the current shunt device in FIG. 2A may also adopt the current shunt device shown in FIG. 2B.
- FIG. 5B is another wired networking schematic diagram provided in an embodiment of the present application.
- multiple node devices are connected to the same transmission line, and any two node devices among the multiple node devices perform wired communication through the transmission line.
- the circuit structure of the current shunt device shown in FIG. 2B in FIG. 5B is simpler. Under the premise of achieving the same function, the current shunt device in FIG.
- the current shunt device 1 and node 2 in FIG. 5B can save at least one AC isolator and one DC isolator compared to the current shunt device in FIG. 5A.
- the current shunt device 1 and node 2 in FIG. 5B constitute a node device, wherein the current shunt device 1 can be independent of node 2 or integrated in node 2, which is not specifically limited here.
- Fig. 5B the circuit structure, principle and connection mode of the current shunt device and the node can be specifically referred to the relevant description of Fig. 2B.
- the node devices and the connection between the node devices and the transmission line in Fig. 5B can be referred to the relevant description in the embodiment of Fig. 5A, which will not be repeated here.
- the wired networking system shown in FIG5A or FIG5B multiple node devices connected by the same transmission line can be regarded as a node group or device group, and the node devices in the device group can only communicate by wire through the transmission line. It can be understood that since the current shunt device shown in FIG2A or FIG2B is suitable for the scenario where the RF signal and the power signal are transmitted simultaneously on the transmission line, the wired networking system shown in FIG5A or FIG5B is also suitable for the scenario where the RF signal and the power signal are transmitted simultaneously on the transmission line.
- a fusion network of wired communication and wireless communication can be performed, and the networked system can also include a wireless transceiver connected to the transmission line.
- the wireless transceiver can be regarded as a node device. In this way, the node devices in the same device group can perform wired communication through the transmission line, and any node device in the same device group can realize wireless communication with other wireless communication nodes or node devices in other device groups with the same capabilities through the transmission line and the wireless transceiver connected to the transmission line.
- the device shown in FIG. 3A or FIG. 3B can replace any node device on the transmission line except the first and last node devices, wherein the current shunt device shown in FIG. 3A or FIG. 3B is suitable for the scenario where the RF signal and the power signal are transmitted simultaneously on the transmission line.
- a wireless transceiver device (such as an antenna) can also be used to replace the first node device or the last node device on the transmission line.
- the wireless transceiver device may not be obtained by performing the above-mentioned replacement operation, but a new wireless transceiver device may be newly hung on the transmission line.
- the wireless transceiver device may be directly hung on the front end or end of the transmission line in FIG. 5B.
- node 1 is no longer the first node device, and node 1 needs to be connected to the transmission line through a current shunt device; when the wireless transceiver device is hung on the end of the transmission line in FIG.
- node n is no longer the last node device, and node n needs to be connected to the transmission line through a current shunt device.
- the wireless transceiver device is connected to the middle of the transmission line in FIG. 5B, the device shown in FIG. 3A or FIG. 3B is directly connected to the transmission line.
- the device shown in FIG. 3A or FIG. 3B can be regarded as a node device connected to the transmission line.
- FIG. 6 is a schematic diagram of a wireless communication and wired communication converged network provided in an embodiment of the present application.
- the communication system includes at least a first device group and a second device group, wherein the first device group includes a first plurality of node devices connected based on a first transmission line, the second device group includes a second plurality of node devices connected based on a second transmission line, and the first transmission line and the second transmission line are not the same transmission line. Any two node devices in the first device group can communicate by wire through the first transmission line, and any two node devices in the second device group can communicate by wire through the second transmission line.
- the first plurality of node devices in the first device group include the device shown in Figure 3A
- the second plurality of node devices in the second device group include antenna 2. Since antenna 2 is located at the end of the second transmission line, it can be directly connected to the second transmission line.
- the device shown in Figure 3A is located in the middle of the first transmission line in Figure 6, and antenna 2 is located at the end of the second transmission line. Then, antenna 1 and antenna 2 can realize cross-device group communication between the first plurality of node devices in the first device group and the second plurality of node devices in the second device group.
- the specific process of communication between node 1 in the first device group and node 5 in the second device group can be: the radio frequency unit in node 1 outputs a radio frequency signal, which is transmitted to antenna 1 along the first transmission line, and antenna 1 radiates the radio frequency signal into the air after receiving the radio frequency signal, and antenna 2 on the second transmission line receives the radio frequency signal radiated by antenna 1, and the radio frequency signal is transmitted to node 5 along the second transmission line and current shunt device 4, thus completing the one-way communication from node 1 in the first device group to node 5 in the second device group.
- the one-way communication from node 5 in the second device group to node 1 in the first device group can refer to the relevant description of the one-way communication from node 1 to node 5 mentioned above, it will not be repeated here.
- a network in which wired communication and wireless communication serve as backup for each other can also be implemented between node devices in the same device group.
- each of the multiple node devices connected to the transmission line further includes a switch element and a wireless transceiver (e.g., an antenna), and the wireless transceiver is connected to the switch element in the same node device.
- the switch element has two states, namely, closed and open. Specifically, when the switch element is in a closed state, it means that the wireless transceiver connected to the switch element is in an unusable state, which is equivalent to using wired communication; when the switch element is in an open state, it means that the wireless transceiver connected to the switch element is in a usable state, which is equivalent to using wireless communication.
- the node device includes a switch element and a wireless transceiver device
- the node device may include: the current shunt device in the node device includes a switch element and a wireless transceiver device, that is, the switch element and the wireless transceiver device are integrated in the current shunt device, and reference may be made to the description of the corresponding contents in the embodiment of FIG2B; or, the node in the node device includes a switch element and a wireless transceiver device, that is, the switch element and the wireless transceiver device are integrated in the node; or, the switch element is integrated in the current shunt device and the wireless transceiver device is integrated in the node, which is not specifically limited herein.
- Figure 7A is a schematic diagram of a network in which wired communication and wireless communication are backed up for each other, provided in an embodiment of the present application.
- Figure 7A shows that antennas and switch elements are added to each node device connected to the transmission line, for example, antenna 1 and switch element 1 are added to node 1, antenna 2 and switch element 2 are added to current shunt device 1, antenna 3 and switch element 3 are added to current shunt device 2, ..., antenna n and switch element n are added to node n.
- node 1 in the first node device (i.e., node 1) or the last node device (i.e., node n) on the transmission line, node 1 is taken as an example to illustrate the connection between antenna 1, switch element 1, and other elements of node 1: in node 1, antenna 1 is only connected to switch element 1, and switch element 1 is also respectively connected to the radio frequency unit and DC block in node 1.
- the node device composed of node 2 and current shunt device 1 (see FIG.
- antenna 2B is taken as an example to illustrate the connection between antenna 2, switch element 2, and node 2: in the current shunt device 1, the first end of switch element 2 is connected to the second end of DC Block, the second end of switch element 2 is connected to the radio frequency unit in node 2, and antenna 2 is only connected to switch element 2 (for example, antenna 2 is connected to the third end of switch element 2).
- antenna 2 and switch element 2 may not be integrated in current shunt device 1, for example, antenna 2 and switch element 2 may be integrated in node 2, or switch element 2 is integrated in current shunt device 1 and antenna 2 is integrated in node 2, which is not specifically limited here.
- the switch element in each node device on the transmission line when there is environmental interference or the wireless channel transmission condition does not meet the preset condition, the switch element in each node device on the transmission line is configured to be in a closed state, that is, it is uniformly switched to adopt wired communication, so that any two node devices on the transmission line can communicate with each other through the transmission line; when it is detected that the transmission line is damaged or there is a current shunt device failure in a node device on the transmission line, the switch element in each node device on the transmission line is configured to be in an open state, that is, it is uniformly switched to adopt wireless communication, so that any two node devices on the transmission line can communicate with each other wirelessly through the corresponding antenna.
- the networking system shown in FIG7A realizes the dual backup link transmission of wired communication and wireless communication.
- the switch elements in each node device on the transmission line may not be uniformly controlled, and the switch elements corresponding to the corresponding nodes may be determined according to the actual communication requirements between the nodes. For example, assuming that each switch element in FIG. 7A is in an open state, when wired communication is required between node 2 and node 3, the switch element 2 corresponding to node 2 and the switch element 3 corresponding to node 3 are in a closed state, while the switch elements corresponding to other nodes on the transmission line that do not have wired communication requirements may continue to remain in an open state. Similarly, for a node with wireless communication requirements, the switch element corresponding to the node is in an open state, but the state of the switch elements corresponding to other nodes on the transmission line is not limited.
- the current splitting device and the node can be independently provided, or the current splitting device can be integrated into the node.
- the current splitting device 1 can be independent of the node 2, or can be integrated into the node 2, which is not specifically limited here.
- each of the multiple node devices connected to the transmission line further includes a power divider and a wireless transceiver (e.g., an antenna), and the wireless transceiver is connected to the power divider in the same node device.
- any node device on the transmission line can select a communication mode of wired communication and/or wireless communication through the power divider.
- the description of the power divider specifically refers to the description of the power divider in the aforementioned embodiment.
- the node device includes a power divider and a wireless transceiver device, which may be: the current shunt device in the node device includes a switch element and a wireless transceiver device, that is, the switch element and the wireless transceiver device are integrated in the current shunt device, and reference may be made to the description of the corresponding contents in the embodiment of FIG2B ; or, the node in the node device includes a switch element and a wireless transceiver device, that is, the switch element and the wireless transceiver device are integrated in the node; or, the power divider is integrated in the current shunt device and the wireless transceiver device is integrated in the node, which is not specifically limited herein.
- Figure 7B is a schematic diagram of another network configuration in which wired communication and wireless communication are backed up for each other provided in an embodiment of the present application.
- Figure 7B adds an antenna and a power divider to each node device, for example, antenna 1 and power divider 1 are added to node 1, antenna 2 and power divider 2 are added to current splitter device 1, antenna 3 and power divider 3 are added to current splitter device 2, ..., antenna n and power divider n are added to node n.
- node 1 is taken as an example to illustrate the connection between antenna 1, power divider 1 and other components of node 1: in node 1, antenna 1 is only connected to power divider 1, and power divider 1 is also respectively connected to the radio frequency unit and DC block in node 1.
- the connection between antenna 2, power divider 2 and node 2 can refer to the description of the corresponding content in the embodiment of FIG. 2B .
- antenna 2 and power divider 2 may not be integrated in current shunt device 1, for example, antenna 2 and power divider 2 may be integrated in node 2, or power divider 2 may be integrated in current shunt device 1 and antenna 2 may be integrated in node 2, which is not specifically limited here.
- the power divider has no state (closed or open) switching.
- node 3 when node 3 needs to transmit a radio frequency signal, node 3 divides the radio frequency signal to be transmitted into two paths through the power divider, one of which is transmitted through the transmission line, and the other is transmitted through its own antenna (i.e., antenna 3); when node 3 needs to receive a radio frequency signal, node 3 receives the radio frequency signals transmitted by other nodes from the wired channel and the wireless channel at the same time through the power divider.
- node 3 when node 3 needs to transmit a radio frequency signal, if it is detected that the transmission line is damaged or there is a current shunt device failure on the transmission line, node 3 can transmit all the radio frequency signals to be transmitted through antenna 3 in a wireless communication manner based on the power divider. When there is environmental interference or the transmission conditions of the wireless channel do not meet the preset conditions, node 3 can transmit all the radio frequency signals to be transmitted through the transmission line in a wired communication manner based on the power divider. That is, based on the networking system shown in FIG. 7B , the node can receive and transmit signals from the wired channel and/or the wireless signal through the corresponding power splitter, thereby realizing dual backup link transmission of wired communication and wireless communication.
- the multiple node devices on the transmission line in FIG. 7A above all use switch elements to realize mutual backup of wired communication and wireless communication
- the multiple node devices on the transmission line may also include switch elements in some node devices and power dividers in other node devices. In this case, if all the node devices on the transmission line use wired communication, each switch element is uniformly configured to be in a closed state; if all the node devices on the transmission line use wireless communication, each switch element is uniformly configured to be in an open state.
- multiple node devices connected based on the transmission line also include a wireless transceiver connected to the transmission line.
- the wireless transceiver can be regarded as a node device. In this way, compared with the networking method shown in FIG. 7A , the node device on the transmission line can independently control the state of the corresponding switch element according to the selected communication method.
- the device shown in FIG. 3A or FIG. 3B can replace any node device on the transmission line except the first and last node devices, wherein the device shown in FIG. 3A or FIG. 3B is suitable for the scenario where the RF signal and the power signal are transmitted simultaneously on the transmission line.
- a wireless transceiver device (such as an antenna) can also be used to replace the first node device (i.e., node 1) or the last node device (i.e., node n) on the transmission line and directly connect to the transmission line.
- the wireless transceiver device may not be obtained by performing the above-mentioned replacement operation, but a new wireless transceiver device may be newly hung on the transmission line.
- the wireless transceiver device may be directly hung on the front end or end of the transmission line in FIG. 7A.
- node 1 is no longer the first node device, and node 1 needs to be connected to the transmission line through a current shunt device; when the wireless transceiver device is hung on the end of the transmission line in FIG. 7A, for example, the antenna 2 in the second device group in FIG.
- node n is no longer the last node device, and node n needs to be connected to the transmission line through a current shunt device.
- the wireless transceiver device is connected to the middle of the transmission line in FIG. 7A, the device shown in FIG. 3A or FIG. 3B is directly connected to the transmission line. In this case, the device shown in FIG. 3A or FIG. 3B is a node device connected to the transmission line.
- FIG8 is another schematic diagram of a network in which wired communication and wireless communication serve as backup for each other provided in an embodiment of the present application.
- FIG8 shows that the middle of the transmission line shown in FIG8 is connected to the device shown in FIG3A , wherein the wireless transceiver device in FIG3A is an antenna T.
- the antenna T may also be directly connected to the head end or the end end of the transmission line, without connecting the device shown in FIG3A or FIG3B to the transmission line in FIG8 .
- any node connected on the transmission line can independently detect the transmission and/or reception status of the signal source when the corresponding switching element is in a closed or open state, and independently configure the state of the corresponding switching element based on at least one of the transmission and reception conditions of the signal source and the principle of optimal communication performance.
- node 2 When node 2 detects that the communication performance of the wired channel is better than that of the wireless channel, node 2 controls switch element 2 to close, and node 2 communicates through the transmission line.
- switch element 1 of node 1 is in a closed state and switch element 1 of node n is in an open state
- the communication between node 2 and node 1 and node n includes:
- Node 2 and Node 1 communicate via a transmission line.
- the RF unit of node 2 outputs RF signal 1, which is transmitted to antenna T through current shunt device 2, transmission line and current shunt device 1 in sequence, and antenna T radiates RF signal 1 into the air after receiving RF signal 1, and node n receives RF signal 1 radiated by antenna T through antenna n, thus completing the communication from node 2 to node n.
- node n radiates RF signal 2 outward through antenna n
- antenna T receives RF signal 2 radiated by antenna n
- RF signal 2 is transmitted to node 2 through current shunt device 1, transmission line and current shunt device 2 in sequence, thus completing the communication from node n to node 2.
- the node 2 when the switch element 2 is in a closed state, can also wirelessly communicate with other wireless communication nodes in different device groups or nodes in other device groups with the same capabilities through the transmission line and the antenna T, which is not specifically limited here.
- node 2 When node 2 detects that the communication performance of the wireless channel is better than that of the wired channel, node 2 controls switch element 2 to be disconnected, and node 2 communicates through antenna 2.
- switch element 1 of node 1 is in a closed state and switch element of node n is in an open state
- the communication between node 2 and node 1 and node n includes:
- node 2 transmits radio frequency signal 1 through antenna 2 and node n receives radio frequency signal 1 through antenna n, or node n transmits radio frequency signal 2 through antenna n and node 2 receives radio frequency signal 2 through antenna 2.
- the communication between node 2 and node 1 can refer to the corresponding description of the communication process between node 2 and node n in the above situation 1, wherein node 2 is equivalent to node n in the above situation 1, and node 1 is equivalent to node 2 in the above situation 1, which will not be repeated here.
- the node 2 when the switch element 2 is in the off state, the node 2 may also wirelessly communicate with other wireless communication nodes or nodes in other device groups with the same capabilities through the antenna 2, which is not specifically limited here.
- some of the node devices may include switch elements and another part of the node devices may be configured with power dividers, which is not specifically limited here.
- the converged networking diagram of wired communication and wireless communication may be in other forms besides the converged networking diagram shown in FIG. 6 .
- the system after converged networking includes a first device group and a second device group, wherein the first device group includes a first plurality of node devices connected based on a first transmission line, the second device group includes a second plurality of node devices connected based on a second transmission line, and the first transmission line and the second transmission line are not the same transmission line.
- the first device group adopts the networking method of the first device group shown in FIG. 6
- the second device group adopts any one of the networking methods in FIG. 7A , FIG. 7B , or FIG. 8 .
- the first device group may adopt any networking method in FIG. 7A, FIG. 7B or FIG. 8 and the second device group may adopt any networking method in FIG. 7A, FIG. 7B or FIG. 8. That is, the networking method of the first device group and the networking method of the second device group may be the same or different, and are not specifically limited here.
- the node can select wired communication or wireless communication by controlling the corresponding switch element, or the node can select at least one of wired communication and wireless communication through a power divider, which means that the node needs to support both wired communication and wireless communication. Therefore, the channel coding and decoding configured in the baseband processing unit in each node in the system shown in any one of FIG. 7A , FIG. 7B and FIG. 8 needs to support wired communication and wireless communication.
- the node when the node performs wired communication and/or wireless communication, not only can the node's own baseband processing unit be reused, but also the node's own radio frequency unit can be reused, without adding another processing unit, which is conducive to reducing the deployment cost of the network.
- each of the multiple node devices connected to the transmission line also includes a duplexer, so that the power signal, the radio frequency signal and the clock signal can be transmitted on the same transmission line, wherein the power signal is carried by direct current, and the radio frequency signal and the clock signal are carried by alternating current.
- the duplexer can isolate signals of different frequency bands.
- the duplexer is generally composed of two sets of bandpass filters of different frequencies to prevent the transmitting signal and the receiving signal of the machine from interfering with each other.
- a duplexer is used to combine or separate a radio frequency signal and a clock signal.
- the function of the duplexer is to combine the clock signal and the radio frequency signal.
- the function of the duplexer is to separate the clock signal and the radio frequency signal.
- the node device including a duplexer may be: a current shunt device within the node device includes a duplexer, that is, the duplexer is integrated into the current shunt device; or, a node within the node device includes a duplexer, that is, the duplexer is integrated into the node, which is not specifically limited here.
- FIG. 9 is a schematic diagram of a wired networking for synchronization of multiple communication domains provided by an embodiment of the present application.
- a duplexer is added in each node device, for example, a duplexer 1 is added in node 1, a duplexer 2 is added in current shunt device 1, a duplexer 3 is added in current shunt device 2, ..., and a duplexer n is added in node n.
- node 1 is taken as an example to illustrate the connection mode between the duplexer 1 and other components of node 1: in node 1, the first end of the duplexer 1 is connected to the transmission line through the DC isolator DCBlcok, the second end of the duplexer 1 is connected to the radio frequency unit, and the third end of the duplexer 1 is connected to the baseband processing unit.
- the connection mode between the duplexer 2 and other components of node 2 can refer to the description of the corresponding content in the embodiment of FIG2B .
- the duplexer 2 may not be integrated in the current shunt device 1, for example, the duplexer 2 may be integrated in the node 2, which is not specifically limited here.
- the system shown in FIG. 9 may be an orthogonal frequency division multiplexing (OFDM) system based on time division duplexing (TDD).
- OFDM orthogonal frequency division multiplexing
- TDD time division duplexing
- nodes 1 and 2 working at the first frequency belong to communication domain 1
- nodes 3 and n working at the second frequency belong to communication domain 2, wherein the nodes in communication domain 1 use clock 1, and the nodes in communication domain 2 use clock 2, and the first frequency is different from the second frequency.
- the transmission and reception timing between the nodes in communication domain 1 and the nodes in communication domain 2 are synchronized and the carriers are orthogonal to each other, so that signals at different frequencies do not interfere with each other.
- multiple nodes in communication domains working at different frequencies can share the same transmission line, which also saves the length of the wiring harness to be deployed.
- FIG9 only shows a schematic diagram of wired networking for synchronization of multiple communication domains within the same device group.
- a corresponding duplexer can be configured for each node in each device group in FIG6.
- the method of synchronizing multiple communication domains within the same device group can refer to the description of the corresponding content in FIG9; if multiple nodes in the first device group operate at a first frequency, and multiple nodes in the second device group operate at a second frequency, then the synchronization of multiple communication domains between different device groups can be achieved through a wireless communication scheduling algorithm, which will not be repeated here.
- the transmission line in the networking system shown in any of Figures 5A, 5B, 6, 7A, 7B, 8 and 9 can transmit RF signals and power signals at the same time.
- the transmission line connecting multiple node devices can also only transmit AC signals (for example, RF signals, or RF signals and clock signals), and the power signal is not transmitted through the transmission line.
- the networking diagram can refer to Figure 10, for example.
- FIG10 is another networking schematic diagram provided by an embodiment of the present application.
- multiple node devices are connected to the same transmission line, wherein node 1 is the first node device on the transmission line, and node n is the last node device on the transmission line. Since the nodes located at the head end or the end of the transmission line do not need to consider the forward and backward transmission of the signal source, node 1 and node n can be directly connected to the transmission line.
- the nodes located in the middle of the transmission line, such as node 2 need to be connected to the transmission line through the current shunt device 1 shown in FIG1 because the forward and backward transmission of the signal source needs to be considered.
- the current shunt device 1 is a current shunt device corresponding to node 2.
- Node 2 is connected to the transmission line through the current shunt device 1.
- node 2 and the current shunt device 1 constitute a node device.
- the current shunt device 1 can be independent of node 2 or integrated into node 2, which is not specifically limited here.
- any two node devices on the transmission line can communicate with each other by wire through the transmission line.
- the multiple node devices on the transmission line also include a wireless transceiver, which is the device shown in Figure 4 above. Any node device on the transmission line can also communicate wirelessly with other wireless communication nodes or nodes in other equipment groups with the same capabilities through the wireless transceiver, which is not specifically limited here.
- the position, connection method and resistance size of the three resistors in the current branching device 1 in Figure 10 are the same as the position, connection method and resistance size of the three resistors in the circuit of the device shown in Figure 4. Please refer to the relevant description of Figure 4 for details, and no further details will be given here.
- each node in FIG. 1 can select a communication mode of wired communication and/or wireless communication.
- a switch element and a wireless transceiver are configured for each node, wherein the wireless transceiver is connected to the switch element, or a power divider and a wireless transceiver (such as an antenna) are configured for each node, wherein the wireless transceiver is connected to the power divider.
- FIG. 10 it can be seen that in the current shunt device 1, the first end of the first resistor and the second end of the second resistor, the second end of the first resistor is connected to the radio frequency unit in the node 2.
- the antenna is only connected to the switch element, and the connection between the second end of the first resistor and the radio frequency unit in the node 2 can be: the second end of the first resistor is connected to the radio frequency unit in the node 2 through the switch element.
- the connection mode of the power divider and the antenna with the node 2 and the current shunt device 1 can refer to the connection mode described when the switch element and the antenna are configured for the node 2.
- a duplexer can be configured for each node on the transmission line based on FIG10 to achieve synchronization between multiple communication domains in the same device group.
- the connection method of the duplexer can refer to the connection method of the duplexer in FIG9, which will not be repeated here.
- a plurality of node devices connected to the transmission line are called a device group, each device group includes a master node and at least one slave node, wherein the master node is used to allocate time domain resources and/or frequency domain resources of at least one slave node.
- the master node may be the first node device having a signal processing unit in the device group, or may be the last node device having a signal processing unit in the device group.
- the various networking systems provided in the above-mentioned embodiments of the present application are suitable for various application scenarios, such as the following application scenarios: mobile internet (MI), industrial control, self driving, transportation safety, internet of things (IoT), smart city, or smart home, etc.
- MI mobile internet
- IoT internet of things
- smart city smart home, etc.
- ROM read-only memory
- RAM random access memory
- PROM programmable read-only memory
- EPROM erasable programmable read-only memory
- OTPROM one-time programmable read-only memory
- EEPROM electrically-erasable programmable read-only memory
- CD-ROM compact disc read-only memory or other optical disc storage, magnetic disk storage, magnetic tape storage, or any other computer-readable medium that can be used to carry or store data.
- the essence of the technical solution of the present application or the part that makes the contribution or all or part of the technical solution can be embodied in the form of a software product.
- the computer program product is stored in a storage medium and includes a number of instructions for enabling a device (which can be a personal computer, a server, or a network device, a robot, a single-chip microcomputer, a chip, a robot, etc.) to execute all or part of the steps of the method described in each embodiment of the present application.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Transceivers (AREA)
Abstract
本申请公开了一种电流分路装置、通信装置及系统,该电流分路装置至少包括两个电阻、两个交流隔断器和直流交流分路单元,两个电阻、两个交流隔断器和直流交流分路单元呈现T型结构,两个电阻串联,每个电阻并联一个交流隔断器,一个电阻的一端分别与另一个电阻的一端以及直流交流分路单元的第一端连接,直流交流分路单元的第二端用于输出直流,所述直流交流分路单元的第三端用于输入和/或输出交流。该装置可以应用于传输线上传输有交流电流和直流电流的场景。通过本申请提供的装置,在基于传输线进行多节点的组网时,可以节省线束,降低布线难度以及提高组网的灵活性。
Description
本申请涉及通信技术领域,尤其涉及一种电流分路装置、通信装置及系统。
有线通信为经实体介质或线缆传输实现的通信,线缆例如可以是波导、光纤等。有线通信尽管具有传输稳定、抗干扰等优点,但有线通信存在布线复杂、扩展性差等缺点,在需要线束连接的器件多且布线区域狭小、结构复杂的情况下,该缺点尤为明显。在进行通信时,如何节省线束、降低布线复杂度以满足未来通信的应用需求,是急需解决的问题。
发明内容
本申请公开了一种电流分路装置、通信装置及系统,能够节省线束,降低布线难度,有利于提高通信的可靠性。
第一方面,本申请提供了一种电流分路装置,所述装置包括:第一电阻、第二电阻、第一交流隔断器、第二交流隔断器和直流交流分路单元,所述第一电阻的第一端用于输入电流,所述第一电阻的第二端与所述第二电阻的第一端相连接,所述第二电阻的第二端用于输出电流,所述第一电阻与所述第一交流隔断器并联,所述第二电阻与所述第二交流隔断器并联,所述直流交流分路单元的第一端与所述第一电阻的第二端相连接,所述直流交流分路单元的第二端用于输出直流,所述直流交流分路单元的第三端用于输入和/或输出交流。
优选地,所述第一电阻的阻值与所述第二电阻的阻值相等。
这里,交流隔断器AC Block也称为隔交器,具有阻交流电流通直流电流的作用。交流隔断器例如可以是电感或磁珠。故第一交流隔断器和第二交流隔断器可以阻止交流电流通过,允许直流电流通过。
可选地,第二电阻的第二端也可用于输入电流,则第一电阻的第一端用于输出电流。
基于上述连接关系的叙述,可知电流分路装置呈现“T”形结构,信号在第一电阻和第二电阻所在的主路(即“T”形结构“一”)上传输时的损耗相较于在信号在支路(即“T”形结构的一半)上传输时的损耗更小,如此使得传输线上可以通过电流分路装置连接更多的节点,节省了线束的长度。
例如,信号从第一电阻的第一端输入时,第二电阻的第二端接收的信号的功率大于直流交流分路单元的第三端接收的信号的功率;信号从第二电阻的第二端输入时,第一电阻的第一端接收的信号的功率大于直流交流分路单元的第三端接收的信号的功率;信号从直流交流分路单元的第三端输入时,第一电阻的第一端接收的信号的功率等于第二电阻的第二端接收的信号的功率。
上述方法中,通过上述电流分路装置可以解决交流和直流在传输线路与节点之间的分路,适用于射频信号和电源信号在同一传输线上传输的场景,不仅有利于减少节点有线组网时需部署的线束的长度,还降低了布线难度。
第一方面的一种可能的实现方式中,所述直流交流分路单元包括至少一个交流隔断器和 至少一个直流隔断器,所述至少一个交流隔断器用于将来自所述直流交流分路单元的第一端的电流中的至少部分直流电流输出到所述直流交流分路单元的第二端,所述至少一个直流隔断器用于将来自所述直流交流分路单元的第一端的电流中的至少部分交流输出到所述直流交流分路单元的第三端,和/或将来自所述直流交流分路单元的第三端的电流中的至少部分交流输出到所述直流交流分路单元的第一端。
这里,直流隔断器DC Block也称为隔直器,具有阻直流电流通交流电流的作用。直流隔断器例如可以是电容或二极管。
实施上述实现方式,通过至少一个交流隔断器和至少一个直流隔断器,实现直流交流分路单元中交流电流和直流电流的分路。
第一方面的一种可能的实现方式中,所述至少一个交流隔断器包括第三交流隔断器,所述至少一个直流隔断器包括第一直流隔断器,所述第三交流隔断器的第一端、所述第一直流隔断器的第一端分别与所述第一电阻的第二端相连接,所述第三交流隔断器的第二端为所述直流交流分路单元的第二端,所述第一直流隔断器的第二端为所述直流交流分路单元的第三端。
实施上述实现方式,第一直流隔断器可以阻止直流电流通过,第三交流隔断器可以阻止交流电流通过,从而实现直流交流分路单元中交流电流和直流电流的分路。
第一方面的一种可能的实现方式中,所述直流交流分路单元还包括第三电阻,所述直流隔断器的第二端通过所述第三电阻接地,所述第三电阻的阻值大于所述第一电阻的阻值。
第一方面的一种可能的实现方式中,所述至少一个交流隔断器包括第三交流隔断器和第四交流隔断器,所述至少一个直流隔断器包括第一直流隔断器,所述直流交流分路单元还包括第三电阻,所述第三交流隔断器与所述第三电阻并联,所述第三电阻的第一端与所述第一电阻的第二端相连接,所述第三电阻的第二端分别与所述第四交流隔断器的第一端、所述第一直流隔断器的第一端相连接,所述第四交流隔断器的第二端为所述直流交流分路单元的第二端,所述第一直流隔断器的第二端为所述直流交流分路单元的第三端相连接。
实施上述实现方式,第三电阻的阻值大于第一电阻的阻值,能够保证信号在电流分路装置中主路上的传输损耗小于支路上的传输损耗。
第一方面的一种可能的实现方式中,所述至少一个直流隔断器还包括第二直流隔断器,所述直流交流分路单元还包括第四电阻,所述第二直流隔断器与所述第四电阻构成串联电路,所述第一直流隔断器的第一端与所述串联电路的第一端相连接,所述串联电路的第二端接地,所述第四电阻的阻值大于所述第三电阻的阻值。
第一方面的一种可能的实现方式中,所述直流承载电源信号,所述交流承载数据信号或控制信号。
实施上述实现方式,电流分路装置可以实现数据信号/控制信号和电源信号在同一传输线上的传输。
第一方面的一种可能的实现方式中,所述电流分路装置还包括双工器,所述直流交流分路单元的第三端与所述双工器连接,所述双工器用于把所述交流分离为第一频率交流信号和第二频率交流信号,或者把所述第一频率交流信号和所述第二频率交流信号合并为所述交流。
这里,双工器可以隔离不同频段的信号。双工器一般由两组不同频率的带通滤波器组成,避免本机的发射信号与接收信号相互干扰。
所述第一频率交流信号为数据信号或控制信号,所述第二频率交流信号为时钟信号。
实施上述实现方式,电流分路装置配置双工器,可以解决射频信号、时钟信号和电源信号的分路,实现射频信号、时钟信号和电源信号在同一传输线上的传输,以及电流分路装置连接的节点与同一传输线上工作在其他频率的节点之间的同步,例如收发时序同步且载波正交化。
第一方面的一种可能的实现方式中,所述电流分路装置还包括功分器或开关元件,所述功分器的第一端或所述开关元件的第一端与所述直流交流分路单元的第三端相连接,所述功分器的第二端或所述开关元件的第二端与无线收发装置相连接,所述功分器的第三端或所述开关元件的第三端用于输入和/或输出交流,所述开关元件的第一端与所述开关元件的第二端或者所述开关元件的第三端之间导通,所述功分器用于把所述功分器的第一端上的信号功率分配到所述功分器的第二端和所述功分器的第三端,或者把所述功分器的第二端上的信号功率和所述功分器的第三端上的信号功率合并到所述功分器的第一端上
这里,功分器也称为功率分配器(power divider),是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可以反过来将多路信号能量合成一路输出,此时可也称为合路器。
示例性地,无线收发装置可以是天线、天线发射器、无线电发射器等。
实施上述实现方式,通过开关元件可以选择有线通信和无线通信中的任意一种通信方式,通过功分器可以实现有线通信和/或无线通信的链路传输。
第一方面的一种可能的实现方式中,所述电流分路装置还包括所述无线收发装置。
实施上述实现方式,无线收发装置可以集成于电流分路装置中。
第一方面的一种可能的实现方式中,所述第一电阻的第一端、所述第二电阻的第二端与总线连接。
这里,传输线(transmission line)是指用于传输电磁能的线缆,也可以理解为用于传输电能量和信号的电缆。传输线用于传输交流电流和直流电流时,传输线例如可以是同轴电缆或射频电缆,也可以是双线传输线、微带传输线等;传输线仅用于传输交流电流时,传输线例如可以是波导管传输线、光纤、双线传输线、微带传输线等。
实施上述实现方式,采用有线介质来传输信号,能减少对频谱资源的占用。
第二方面,本申请提供一种通信装置,所述装置包括:第一电阻、第二电阻和无线收发装置,所述第一电阻的第一端用于输入电流,所述第一电阻的第二端与所述第二电阻的第一端相连接,所述第二电阻的第二端用于输出电流,所述第一电阻的第二端还与所述无线收发装置相连接。
优选地,所述第一电阻的阻值与所述第二电阻的阻值相等。
示例性地,无线收发装置可以是天线、天线发射器、无线电发射器等。
可选地,第二电阻的第二端也可用于输入电流,则第一电阻的第一端用于输出电流。
这里,基于上述电阻的阻值大小关系可知,信号在第一设备的第一端和第二电阻的第二端之间的主路上传输时的损耗相较于信号传输至无线收发装置时的损耗更小,本申请提供的装置能降低传输线上信号的损耗。
例如,当信号从第一电阻的第一端输入时,第二电阻的第二端接收的信号的功率大于无线收发装置接收的信号的功率;当信号从第二电阻的第二端输入时,第一电阻的第一端接收 的信号的功率大于无线收发装置接收的信号的功率;当信号从无线收发装置输入时,第一电阻的第一端接收的信号的功率等于第二电阻的第二端接收的信号的功率。
可以看出,本申请提供的通信装置包括两个电阻和一个无线收发装置,该通信装置适用于传输线仅传输交流电流的场景,有利于提高基于传输线进行有线通信和无线通信的融合组网的灵活性,以及减少部署的线束的长度。
该通信装置通过自身的无线收发装置接收空中辐射的射频信号,该射频信号传输至装置的第一电阻的第一端和第二电阻的第二端,即先使用无线通信再使用有线通信;该装置还可以从第一电阻的第一端或者第二电阻的第二端获取射频信号,并通过自身的无线收发装置向空中辐射该射频信号,即先使用有线通信再使用无线通信。可以看出,该装置可以实现与其他具有无线通信能力的节点或具有相同能力的其他传输线上的节点之间的通信,该装置基于连接的传输线和自身的无线收发装置实现有线通信和无线通信的融合。
第二方面的一种可能的实现方式中,所述电流包括交流电流,所述交流电流承载射频信号。
实施上述实现方式,通信装置包括第一电阻、第二电阻和无线收发装置的情况下,该通信装置适用于传输线上传输射频信号的场景。
第二方面的一种可能的实现方式中,所述装置还包括第一交流隔断器、第二交流隔断器和直流隔断器,其中,第一交流隔断器与所述第一电阻并联,所述第二交流隔断器与所述第二电阻并联,所述第一电阻的第二端还与所述无线收发装置相连接包括:所述第一电阻的第二端还通过所述直流隔断器与所述无线收发装置相连接。
这里,交流隔断器和直流隔断器可参考第一方面相应内容的叙述。
实施上述实现方式,第一交流隔断器和第二交流隔断器可用于通信装置中主路上直流电流的传输,直流隔断器可以防止通信装置中主路上的直流电流损坏无线收发装置。
第二方面的一种可能的实现方式中,所述电流还包括直流电流,所述直流电流承载电源信号。
实施上述实现方式,通信装置还包括上述交流隔断器和直流隔断器时,该通信装置适用于传输线上传输射频信号和电源信号的场景。
第二方面的一种可能的实现方式中,所述装置还包括第三电阻,所述无线收发装置还通过所述第三电阻接地,所述第三电阻的阻值大于所述第一电阻的阻值。
示例性地,直流隔断器例如可以是电容,也可以是包括电容和第四电阻的器件,其中,该电容与第四电阻构成串联电路,在此情况下,第四电阻的阻值大于第一电阻的阻值且第四电阻的阻值小于第三电阻的阻值。可选地,第四电阻也可以集成于无线收发装置中。
第二方面的一种可能的实现方式中,所述第一电阻的第一端、所述第二电阻的第二端与总线相连接。实施上述实现方式,通信装置可以采用有线介质来传输信号,能减少对频谱资源的占用。
第三方面,本申请提供了一种通信系统,所述系统包括基于第一传输线连接的第一多个节点装置,所述第一多个节点装置包括上述第一方面和第二方面中至少一项所述的装置,或者包括上述第一方面的任一可能的实现方式的装置和第二方面的任一可能的实现方式的装置中的至少一项。
第三方面的一种可能的实现方式中,所述系统还包括基于第二传输线连接的第二多个节 点装置,所述第二多个节点装置包括上述第一方面和第二方面中至少一项所述的装置,或者包括上述第一方面的任一可能的实现方式的装置和第二方面的任一可能的实现方式的装置中的至少一项。
第三方面的一种可能的实现方式中,所述第一多个节点装置包括第一节点装置,所述第一节点装置包括第二方面或者第二方面的任一可能的实现方式的装置中的任一项;所述第二多个节点装置包括第二节点装置,所述第二节点装置包括第二方面或者第二方面的任一可能的实现方式的装置中的任一项;所述第一节点装置和所述第二节点装置用于实现所述第一多个节点装置与所述第二多个节点装置之间的无线通信。
第三方面的一种可能的实现方式中,所述第一多个节点装置包括第三节点装置,所述第三节点装置包括上述第一方面所述的包括功分器或开关元件的电流分路装置中的任一项;所述第二多个节点装置包括第四节点装置,所述第四节点装置包括第二方面或者第二方面的任一可能的实现方式的装置中的任一项;所述第四节点装置用于实现所述第三节点装置与所述第二多个节点装置之间的无线通信。
第三方面的一种可能的实现方式中,所述第一多个节点装置包括第五节点装置,所述第五节点装置包括上述第一方面所述的包括功分器或开关元件的电流分路装置中的任一项;所述第二多个节点装置包括第六节点装置,所述第六节点装置包括上述第一方面所述的包括功分器或开关元件的电流分路装置中的任一项;所述第五节点装置与所述第六节点装置之间的通信为无线通信。
第三方面的一种可能的实现方式中,所述第一多个节点装置中的首节点装置和/或末节点装置包括第二方面或者第二方面的任一可能的实现方式的装置中的任一项。
第三方面的一种可能的实现方式中,所述第一多个节点装置中的首节点装置和/或末节点装置包括交流隔断器和直流隔断器,所述交流隔断器用于将来自所述第一传输线上的电流中的至少部分直流电流输出,所述直流隔断器用于将来自所述第一传输线上的电流中的至少部分交流电流输出,和/或,将接收到的电流中的至少部分交流电流输出至所述第一传输线。
第三方面的一种可能的实现方式中,所述第一多个节点装置包括第一组节点装置,所述第一组节点装置中的每个节点装置包括上述第一方面所述的包括双工器的电流分路装置中的任一项,所述第一组节点装置中的所述时钟信号为第一频率。
第三方面的一种可能的实现方式中,所述第一多个节点装置包括第二组节点装置,所述第二组节点装置中的每个节点装置包括上述第一方面所述的包括双工器的电流分路装置中的任一项,所述第二组节点装置中的所述时钟信号为第二频率,所述第二频率与所述第一频率不同。
第三方面的一种可能的实现方式中,所述第一多个节点装置包括一个主节点和至少一个从节点,所述主节点包括第一方面或者第一方面的任一可能的实现方式的装置中的任一项,所述从节点包括第一方面和第二方面中任一项所述的装置,或者包括第一方面的任一可能的实现方式的装置和第二方面的任一可能的实现方式的装置中的任一项,所述主节点用于分配所述至少一个从节点的时域资源和/或频域资源。
第四方面,本申请提供了一种车辆,该车辆包括上述第一方面和第二方面中至少一项所述的装置,或者包括第一方面的任一可能的实现方式中的装置和第二方面的任一可能的实现 方式中的装置中的至少一项,或者包括第三方面或者第三方面的任一可能的实现方式中的系统。
图1是本申请实施例提供的一种节点的结构示意图;
图2A是本申请实施例提供的一种电流分路装置的电路结构图;
图2B是本申请实施例提供的又一种电流分路装置的电路结构图;
图3A是本申请实施例提供的一种通信装置的电路结构图;
图3B是本申请实施例提供的又一种通信装置的电路结构图;
图4是本申请实施例提供的又一种通信装置的电路结构图;
图5A是本申请实施例提供的一种有线组网示意图;
图5B是本申请实施例提供的又一种有线组网示意图;
图6是本申请实施例提供的一种无线通信和有线通信融合组网的示意图;
图7A是本申请实施例提供的一种有线通信和无线通信互为备份的组网示意图;
图7B是本申请实施例提供的又一种有线通信和无线通信互为备份的组网示意图;
图8是本申请实施例提供的又一种有线通信和无线通信互为备份的组网示意图;
图9是本申请实施例提供的一种用于多通信域同步的有线组网示意图;
图10是本申请实施例提供的又一种组网示意图。
需要说明的是,本申请中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有任何限定作用。例如,被描述对象为“字段”,则“第一字段”和“第二字段”中“字段”之前的序数词并不限制“字段”之间的位置或顺序,“第一”和“第二”并不限制其修饰的“字段”是否在同一个消息中,也不限制“第一字段”和“第二字段”的先后顺序。再如,被描述对象为“等级”,则“第一等级”和“第二等级”中“等级”之前的序数词并不限制“等级”之间的优先级。再如,被描述对象的数量并不受前缀词的限制,可以是一个或者多个,以“第一设备”为例,其中“设备”的数量可以是一个或者多个。此外,不同前缀词修饰的对象可以相同或不同,例如,被描述对象为“设备”,则“第一设备”和“第二设备”可以是同一个设备、相同类型的设备或者不同类型的设备;再如,被描述对象为“信息”,则“第一信息”和“第二信息”可以是相同内容的信息或者不同内容的信息。总之,本申请实施例中对用于区分描述对象的前缀词的使用不构成对所描述对象的限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。
需要说明的是,本申请实施例中采用诸如“a1、a2、……和an中的至少一项(或至少一个)”等的描述方式,包括了a1、a2、……和an中任意一个单独存在的情况,也包括了a1、a2、……和an中任意多个的任意组合情况,每种情况可以单独存在。例如,“a、b和c中的至少一项”的描述方式,包括了单独a、单独b、单独c、a和b组合、a和c组合、b和c组合,或abc三者组合的情况。
为了便于理解,下面先对本申请实施例可能涉及的相关术语等进行介绍。
(1)交流隔断器
交流隔断器(AC Block)也称为隔交器。
交流隔断器是指能够导通直流电流当阻断交流电流传输的元器件。示例性地,交流隔断器可以是电感、磁珠等电子元件。在本申请实施例中,直流电流也可以简称为直流,交流电流也可以简称为交流。
(2)直流隔断器
直流隔断器(DC Block)也称为隔直器。
直流隔断器是指能够导通交流电流阻断直流电流的元器件。示例性地,直流隔断器可以是电容、二极管等电子元件。
(3)同轴电缆
同轴电缆(coaxial cable)是传输射频范围内电磁能量的电缆,也称为射频电缆。同轴电缆由互相同轴的内导体、外导体以及支撑内外导体的介质组成。
参见图1,图1是本申请实施例提供的一种节点的结构示意图。在图1中,该节点包括电源管理单元和信号处理单元,电源管理单元与信号处理单元连接。
示例性地,信号处理单元包括射频单元和基带处理单元,其中,电源管理单元与基带处理单元连接。电源管理单元与信号处理单元连接包括:电源管理单元与基带处理单元连接。
这里,信号处理单元配置有信号编译码,信道编译码支持节点进行无线通信和/或有线通信。示例性地,信号处理单元配置有信号编译码具体为基带处理单元配置有信道编译码。
电源管理单元(power management unit,PMU)是一种用于控制数字平台供电功能的单片机,可以实现将传统分离的若干类电源管理器件,如直流/直流(DC/DC)转换器、低压差线性稳压器(low dropout linear regulator,LDO)集成到一个封装里,缩小了组建数量和板级空间之余,同时实现更高的电源转换效率,其功耗更低。
基带处理单元的功能包括但不限于基带信号的调制解调、信道均衡、信道编解码、加扰解扰、数据校验等。
射频单元用于射频信号的变换。例如,射频单元将接收的射频信号从较高的频段变频到较低的频段以便基带处理单元进行进一步处理,以及将基带处理单元输出的射频信号从较低的频段变频到较高的频段并向外输出。示例性地,射频单元可以通过自身连接的天线输出射频信号或者通过自身挂接的电缆(或称为传输线)输出射频信号。
需要说明的是,图1所示的通信节点的结构示意图只是一种示例。在一些可能的实施例中,基于节点在通信时的需求不同,图1所示的节点还可以包括更多或者更少的功能实体,例如,为了防止直流输入损坏节点,图1中的射频单元的另一端可以通过直流隔断器(DC Block)与输出接口连接。又例如,为了实现节点的无线通信,图1所示的节点还可以包括无线收发装置,例如天线,在此不作具体限定。
在本申请实施例中,多个节点(例如图1所示的节点)之间采用有线通信时,为了节省需要部署的线束的长度,可以将这多个节点挂接在传输线上,且该传输线可以是总线。为了使该传输线上可以挂接尽可能多的节点以进一步地节省线束长度,本申请实施例提供了一些电流分路装置,节点可以通过电流分路装置与传输线连接。
这里,传输线(transmission line)是指用于传输电磁能(例如,射频信号、电源信号等) 的线缆,也可以理解为用于传输电能量和信号的电缆。传输线用于传输射频信号和电源信号时,传输线例如可以是同轴电缆或射频电缆,也可以是双线传输线、微带传输线等;传输线仅用于传输射频信号时,传输线例如可以是波导管传输线、光纤、双线传输线、微带传输线等。
电流分路装置包括第一电阻、第二电阻、第一交流隔断器、第二交流隔断器和直流交流分路单元,第一电阻的第一端用于输入电流,第一电阻的第二端与第二电阻的第一端相连接,第二电阻的第二端用于输出电流,第一电阻与第一交流隔断器并联,第二电阻与第二交流隔断器并联,直流交流分路单元的第一端与第一电阻的第二端相连接,直流交流分路单元的第二端用于输出直流,直流交流分路单元的第三端用于输入和/或输出交流,优选地,第一电阻的阻值与第二电阻的阻值相等。
可选地,第二电阻的第二端也可用于输入电流,则第一电阻的第一端用于输出电流。
进一步地,直流交流分路单元包括至少一个交流隔断器和至少一个直流隔断器,所述至少一个交流隔断器用于将来自直流交流分路单元的第一端的电流中的至少部分直流电流输出到直流交流分路单元的第二端,至少一个直流隔断器用于将来自直流交流分路单元的第一端的电流中的至少部分交流电流输出到直流交流分路单元的第三端,和/或将来自直流交流分路单元的第三端的电流中的至少部分交流电流输出到直流交流分路单元的第一端。
其中,直流承载电源信号,交流承载数据信号或控制信号。
一种实现方式中,第一电阻的第一端和第二电阻的第二端与总线连接。
下面分别基于图2A和图2B具体说明电流分路装置的电路结构。
在介绍电路结构之前,在本申请实施例中,先定义电路中的各种器件的方向,对于电路中的电阻、交流隔断器、直流隔断器等器件,若其两端的连接方向为上下连接,则位于器件上侧的那端称之为该器件的第一端,位于器件下侧的那端称之为该器件的第二端;若其两端的连接方向为左右连接,则位于器件左侧的那端称之为该器件的第一端,位于器件右侧的那端称之为该器件的第二端。
参见图2A,图2A是本申请实施例提供的一种电流分路装置的电路结构图。
在图2A中,电流分路装置包括电阻R1、电阻R2、交流隔断器ACBlock1、交流隔断器ACBlock2和直流交流分路单元,R1即为上述第一电阻,R2即为上述第二电阻,ACBlock1即为上述第一交流隔断器,ACBlock2即为上述第二交流隔断器,电阻R1、电阻R2、交流隔断器ACBlock1和交流隔断器ACBlock2四者之间的连接方式不再赘述。
在图2A中,直流交流分路单元具体包括交流隔断器ACBlock3、交流隔断器ACBlock4、电阻R3和直流隔断器DCBlock1,其中,ACBlock3与R3并联,R3的第一端与R1的第二端相连接,R3的第二端分别与ACBlock4的第一端、DCBlock1的第一端相连接,ACBlock4的第二端为直流交流分路单元的第二端,DCBlock1的第二端为直流交流分路单元的第三端,R3的阻值大于R1的阻值。
进一步地,在图2A中,直流交流分路单元还包括直流隔断器DCBlock2和电阻R4,其中,DCBlock2和R4构成串联电路,DCBlock1的第一端与该串联电路的第一端相连接,该串联电路的第二端接地,R4的阻值大于R3的阻值。
在本申请实施例中,电流包括交流电流,交流电流承载射频信号,基于上述电阻R1、R2、R3和R4之间的大小关系,射频信号在电流分路装置中的传输满足以下两个条件:(1)射频 信号在第一电阻的第一端和直流交流分路单元的第三端之间传输时的损耗等于射频信号在第二电阻的第一端和直流交流分路单元的第三端之间传输时的损耗;(2)射频信号在第一电阻的第一端和第二电阻的第二端之间传输时的损耗小于射频信号在第一电阻的第一端和直流交流分路单元的第三端之间传输时的损耗。同理,射频信号在第一电阻的第一端和第二电阻的第二端之间传输时的损耗也小于射频信号在第二电阻的第二端和直流交流分路单元的第三端之间传输时的损耗。
示例性地,可以根据系统阻抗匹配需求确定电阻R1、R2、R3和R4的阻值。在电阻R1、R2、R3和R4的阻值确定后,可以根据传输线上传输的电源信号和射频信号的频段,进一步确定交流隔断器AC Block1、AC Block2、AC Block3和AC Block4以及直流隔断器DC Block1、DC Block2的种类和取值。示例性地,交流隔断器的种类包括但不限于电感、磁珠等,直流隔断器的种类包括但不限于电容、二极管等。
图2A中的交流隔断器需要有较好的直流通流能力(即直流电阻尽量小),使得在预设的电流范围内交流隔断器不饱和或者不会烧坏,交流隔断器的交流阻抗要足够大(例如,交流阻抗大于预设阻抗阈值)以阻止交流信号通过。图2A中的直流隔断器需对交流信号的阻抗足够小,甚至忽略不计。
示例性地,基于图2A中各电阻的大小关系可知,信号从第一电阻的第一端输入时,第二电阻的第二端接收的信号的功率大于直流交流分路单元的第三端接收的信号的功率;信号从第二电阻的第二端输入时,第一电阻的第一端接收的信号的功率大于直流交流分路单元的第三端接收的信号的功率;信号从直流交流分路单元的第三端输入时,第一电阻的第一端接收的信号的功率等于第二电阻的第二端接收的信号的功率。
在图2A中,交流隔断器具有隔交流通直流的作用,直流隔断器具隔直流通交流的作用,图2A所示的电流分路装置适用于传输线上同时传输数据信号/控制信号和电源信号的场景,以图2A中的第一电阻的第一端作为输入端为例说明射频信号和电源信号在电流分路装置内的分路,射频信号通过电阻R1后分为两路射频信号,一路射频信号通过R2传输至R2的第二端,另一路射频信号通过R3和DC Block1传输至直流交流分路单元的第三端;电源信号通过AC Block1分为两路电源信号,一路电源信号通过AC Block2传输至R2的第二端,另一路电源信号通过AC Block3和AC Block4传输至直流交流分路单元的第二端。可以看出,AC Block4可以防止交流信号损坏节点的电源管理单元。DC Block1可以防止直流输入损坏信号处理单元,DC Block2可以防止电源信号经过R4产生直流损耗。如此,图2A所示的电流分路装置可以解决信号源和电源信号的分路,实现信号源和电源信号在同一传输线上的传输。
在一些可能的实施例中,图2A所示的电流分路装置还包括功分器或开关元件,功分器的第一端或开关元件的第一端与直流交流分路单元的第三端相连接,功分器的第二端或开关元件的第二端与无线收发装置相连接,功分器的第三端或开关元件的第三端用于输入和/或输出交流,开关元件的第一端与开关元件的第二端或者开关元件的第三端之间导通,功分器用于把功分器的第一端上的信号功率分配到功分器的第二端和功分器的第三端,或者把功分器的第二端上的信号功率和功分器的第三端上的信号功率合并到功分器的第一端上。
示例性地,无线收发装置可以是与图2A所示的电流分路装置连接的节点提供,无线收发装置例如可以是天线。
这里,功分器也称为功率分配器(power divider),是一种将一路输入信号能量分成两路 或多路输出相等或不相等能量的器件,也可以反过来将多路信号能量合成一路输出,此时可也称为合路器。如此,通过功分器可以实现有线通信和/或无线通信的链路传输。
这里,开关元件具有闭合和断开两种状态,每种状态对应一种通信方式。通过开关元件可以选择有线通信和无线通信中的任意一种通信方式。
进一步地,图2A所示的电流分路装置也可以包括无线收发装置,其中,无线收发装置与功分器或开关元件连接。
其中,无线收发装置与开关元件连接时,开关元件处于闭合状态时,无线收发装置处于不可使用状态,即选择了有线通信;开关元件处于断开状态时,无线收发装置处于可使用状态,即选择了无线通信。
在一些可能的实施例中,图2A所示的电流分路装置还包括双工器,直流交流分路单元的第三端与双工器连接,双工器用于把所述交流分离为第一频率交流信号和第二频率交流信号,或者把第一频率交流信号和第二频率交流信号合并为所述交流。其中,第一频率交流信号为数据信号或控制信号,第二频率交流信号为时钟信号。
可以看出,电流分路装置配置双工器,可以解决射频信号、时钟信号和电源信号的分路,实现射频信号、时钟信号和电源信号在同一传输线上的传输。
在一些可能的实施例中,为了节省图2A中器件的消耗,本申请实施例又提供了一种电流分路装置的电路结构图,参见图2B。相较于图2A所示的电流分路装置,图2B所示的电流分路装置在实现相同功能的前提下,节省了一个交流隔断器和一个直流隔断器。
在图2B中,电流分路装置包括电阻R1、电阻R2、交流隔断器ACBlock1、交流隔断器ACBlock2和直流交流分路单元,R1即为上述第一电阻,R2即为上述第二电阻,ACBlock1即为上述第一交流隔断器,ACBlock2即为上述第二交流隔断器,电阻R1、电阻R2、交流隔断器ACBlock1和交流隔断器ACBlock2四者之间的连接方式不再赘述。
在图2B中,直流交流分路单元具体包括交流隔断器ACBlock3和直流隔断器DCBlock1,其中,ACBlock3的第一端、DCBlock1的第一端分别与R1的第二端相连接,ACBlock3的第二端为直流交流分路单元的第二端,DCBlock1的第二端为直流交流分路单元的第三端。
进一步地,在图2B中,直流交流分路单元还包括电阻R3,其中,DCBlock1的第二端通过R3接地,R3的阻值大于R1的阻值。
可选地,在图2B中,DCBlock1例如可以是电容,DCBlock1也可以是包括电容和电阻R4的器件,其中,该电容与电阻R4串联,在此情况下,R4的阻值大于R1的阻值且R4的阻值小于R3的阻值。示例性地,DCBlock1中,电容与电阻R4串联时,电阻R4可以位于该电容的下方。
可以理解,图2B中,各电阻的阻值以及交流隔断器、直流隔断器的种类和取值的确定可参考图2A中相应内容的叙述,在此不再赘述。
示例性地,基于图2B中各电阻的大小关系可知,信号从第一电阻的第一端输入时,第二电阻的第二端接收的信号的功率大于直流交流分路单元的第三端接收的信号的功率;信号从第二电阻的第二端输入时,第一电阻的第一端接收的信号的功率大于直流交流分路单元的第三端接收的信号的功率;信号从直流交流分路单元的第三端输入时,第一电阻的第一端接收的信号的功率等于第二电阻的第二端接收的信号的功率。
在图2B中,基于交流隔断器和直流隔断器的功能,图2B所示的电流分路装置也适用于 传输线上同时传输数据信号/控制信号和电源信号的场景,以图2B中的第一电阻的第一端作为输入端为例说明射频信号和电源信号在电流分路装置内的分路,其中,射频信号通过电阻R1后分为两路射频信号,一路射频信号通过R2传输至第二电阻的第二端,另一路射频信号通过DC Block1传输至直流交流分路单元的第三端;而电源信号通过AC Block1分为两路电源信号,一路电源信号通过AC Block2传输至第二电阻的第二端,另一路电源信号通过AC Block3传输至直流交流分路单元的第二端。可以看出,DC Block1可以防止直流输入损坏信号处理单元以及防止电源信号经过R3产生直流损耗。如此,图2B所示的电流分路装置可以以较低的硬件成本解决射频信号和电源信号的分路,实现射频信号和电源信号在同一传输线上的传输。
在一些可能的实施例中,图2B所示的电流分路装置还包括功分器或开关元件,功分器的第一端或开关元件的第一端与直流交流分路单元的第三端相连接,功分器的第二端或开关元件的第二端与无线收发装置相连接,功分器的第三端或开关元件的第三端用于输入和/或输出交流,开关元件的第一端与开关元件的第二端或者开关元件的第三端之间导通,功分器用于把功分器的第一端上的信号功率分配到功分器的第二端和功分器的第三端,或者把功分器的第二端上的信号功率和功分器的第三端上的信号功率合并到功分器的第一端上。
一种实现方式中,图2B所示的电流分路装置不包括无线收发装置,在此情况下,无线收发装置可以是与图2B所示电流分路装置连接的节点的无线收发装置,无线收发装置例如可以是天线。
另一种实现方式中,图2B所示的电流分路装置还包括无线收发装置。
有关功分器和开关元件的说明具体参考图2A实施例中相应内容的介绍,在此不再赘述。
如此,通过功分器可以实现有线通信和/或无线通信的链路传输,通过开关元件可以选择有线通信和无线通信中的任意一种通信方式。
在一些可能的实施例中,图2B所示的电流分路装置还包括双工器,则直流交流分路单元的第三端与双工器连接,双工器用于把所述交流分离为第一频率交流信号和第二频率交流信号,或者把第一频率交流信号和第二频率交流信号合并为所述交流。其中,第一频率交流信号为数据信号或控制信号,第二频率交流信号为时钟信号。
电流分路装置配置双工器,可以解决射频信号、时钟信号和电源信号的分路,实现射频信号、时钟信号和电源信号在同一传输线上的传输。
在本申请实施例中,还提供了一种通信装置。基于传输线进行多个节点的有线组网时,同一传输线上的节点除了可以基于传输线进行有线通信外,还可以通过该通信装置实现与其他无线通信节点或者具有相同能力的其他传输线上的节点进行无线通信。
通信装置包括第一电阻、第二电阻和无线收发装置,第一电阻的第一端用于输入电流,第一电阻的第二端与第二电阻的第一端相连接,第二电阻的第二端用于输出电流,第一电阻的第二端还与无线收发装置相连接,优选地,第一电阻的阻值与第二电阻的阻值相等。
可选地,第二电阻的第二端用于输入电流,则第一电阻的第一端用于输出电流。
一种实现方式中,第一电阻的第一端和第二电阻的第二端与同一传输线连接。该传输线例如可以是总线。
基于电流包括的内容的不同,通信装置可以有不同的电路结构。
一种实现方式中,电流包括直流电流和交流电流,其中,直流电流承载电源信号,交流电流承载数据信号/控制信号。在此情况下,通信装置的电路结构可参见图3A所示。
参见图3A,图3A是本申请实施例提供的一种通信装置的电路结构图。在图3A中,通信装置除了包括电阻R1、电阻R2和无线收发装置外,通信装置还包括两个交流隔断器,分别为ACBlock1和ACBlock2以及一个直流隔断器DC Block。其中,电阻R1即为上述通信装置内的第一电阻,电阻R2即为上述通信装置内的第二电阻。电阻R1和R2的连接方式在此不再赘述。
在图3A中,ACBlock1与R1并联,ACBlock2与R2并联,在通信装置包括DC Block的情况下,上述R1的第二端还与无线收发装置相连接包括:R1的第二端与还通过DC Block与无线收发装置相连接。
进一步地,在图3A中,通信装置还包括电阻R3,则通信装置内的无线收发装置还通过R3接地,R3的阻值大于R1的阻值。
可选地,在图3A中,DCBlock例如可以是电容,DCBlock也可以是包括电容和电阻R4的器件,其中,该电容与电阻R4构成串联电路,在此情况下,R4的阻值大于R1的阻值且R4的阻值小于R3的阻值。示例性地,DCBlock中,电容与电阻R4构成串联电路时,R1的第二端与串联电路的一端连接,传输电路的另一端通过R3接地。在一些可能的实施例中,R4也可以集成于无线收发装置中。
示例性地,基于图3A中各电阻之间的大小关系,当信号从第一电阻的第一端输入时,第二电阻的第二端接收的信号的功率大于无线收发装置接收的信号的功率;当信号从第二电阻的第二端输入时,第一电阻的第一端接收的信号的功率大于无线收发装置接收的信号的功率;当信号从无线收发装置输入时,第一电阻的第一端接收的信号的功率等于第二电阻的第二端接收的信号的功率。
在图3A中,基于交流隔断器和直流隔断器的功能,图3A所示的电流分路装置也适用于传输线上同时传输数据信号/控制信号和电源信号的场景,以图3A中的第一电阻的第一端作为输入端为例说明射频信号和电源信号在电流分路装置内的分路,其中,射频信号通过R1后分为两路射频信号,一路射频信号通过R2传输至第二电阻的第二端,另一路射频信号通过DC Block传输至无线收发装置;而电源信号通过AC Block1分为两路电源信号,一路电源信号通过AC Block2传输至第二电阻的第二端,另一路电源信号被DC Block隔断,以防止直流电源损坏无线收发装置。可以看出,DC Block可以在无线收发装置内信号与地之间有直流通路(即无线收发装置内的振子接地)的情况下防止直流输入损坏无线收发装置,也能保护电源不被损坏。
示例性地,在图3A中,无线收发装置可以从空中接收射频信号,该射频信号沿着传输线分别从第一电阻的第一端和第二电阻的第二端输出;无线收发装置也可以从第一电阻的第一端或第二电阻的第二端获取射频信号并向外辐射该射频信号。如此,图3A所示的通信装置不仅可以解决射频信号和电源信号的分路,实现射频信号和电源信号在同一传输线上的传输,还可以实现基于连接的传输线和自身的无线收发装置实现有线通信和无线通信的融合。
在一些可能的实施例中,若无线收发装置内振子不接地,即说明无线收发装置内的信号与地之间没有直流通路,图3B所示的通信装置也适用于传输线上同时传输射频信号和电源信号的场景。可以看出,图3B和图3A中,通信装置包含的器件的种类和数量相同,但图3B 相较于图3A,区别在于,DCBlock的连接位置不同,在图3B中,R1的第二端与DCBlock的第一端相连接,DCBlock的第二端通过电阻R3接地。
可选地,在图3B中,第一电阻的第二端与无线收发装置连接还可以是:第一电阻的第二端通过电阻R4与无线收发装置连接,在此情况下,R4的阻值大于R1的阻值且R4的阻值小于R3的阻值。在一些可能的实施例中,R4也可以集成于无线收发装置中。
在图3B中,由于无线收发装置中振子不接地,即使无线收发装置直接与第一电阻的第二端连接,传输线上的电源信号也不会损坏无线收发装置。
另一种实现方式中,电流仅包括交流电流,交流电流承载射频信号,在此情况下,通信装置的电路结构可参见图4所示。
参见图4,图4是本申请实施例提供的又一种通信装置的电路结构图。
在图4中,图4所示的通信装置包括电阻R1、电阻R2和无线收发装置,其中,电阻R1即为上述通信装置内的第一电阻,电阻R2即为上述通信装置内的第二电阻,电阻R1、电阻R2和无线收发装置三者之间的连接方式不再赘述。
进一步地,在图4中,通信装置还包括电阻R3,则通信装置内的无线收发装置还通过R3接地,R3的阻值大于R1的阻值。
可选地,在图4中,通信装置还可以包括电阻R4,第一电阻的第二端与无线收发装置连接还可以是:第一电阻的第二端通过电阻R4与无线收发装置连接,在此情况下,R4的阻值大于R1的阻值且R4的阻值小于R3的阻值。
示例性地,基于图4中各电阻之间的大小关系,当信号从第一电阻的第一端输入时,第二电阻的第二端接收的信号的功率大于无线收发装置接收的信号的功率;当信号从第二电阻的第二端输入时,第一电阻的第一端接收的信号的功率大于无线收发装置接收的信号的功率;当信号从无线收发装置输入时,第一电阻的第一端接收的信号的功率等于第二电阻的第二端接收的信号的功率。
图4所示的电流分路装置适用于传输线上仅传输数据信号/控制信号的场景。以图4中的R2的第二端作为输入端为例说明射频信号在该电流分路装置内的分路,射频信号通过电阻R2后分为两路射频信号,一路射频信号通过R1传输至R1的第一端,另一路射频信号传输至无线收发装置。
示例性地,在图4中,无线收发装置可以从空中接收射频信号,该射频信号沿着传输线分别从第一电阻的第一端和第二电阻的第二端输出;无线收发装置也可以从第一电阻的第一端或第二电阻的第二端获取射频信号并向外辐射该射频信号。如此,图4所示的通信装置可以实现基于连接的传输线和自身的无线收发装置实现有线通信和无线通信的融合。
下面可以基于上述所述的电流分路装置、通信装置中的至少一项以及多个图1所示的节点进行组网。
在本申请实施例中,节点的信号处理单元配置有信道编译码,信号编译码用于支持节点进行有线通信和/或无线通信。也就是说,可以根据节点的通信方式相应地配置信道编译码。
在本申请实施例中,组网后的系统包括基于第一传输线连接的多个节点装置,多个节点装置包括上述图2A、图2B、图3A、图3B和图4实施例中至少一种装置。
示例性地,第一传输线可以是总线,多个节点装置采用总线式的连接方式可以节省线束 的长度。示例性地,节点装置可以是一个节点(例如,图1所示的节点)或者上述通信装置,节点装置也可以包括一个节点和该节点连接的电流分路装置,在此不作具体限定。
一种实现方式中,多个节点装置中的任意两个节点装置之间仅通过第一传输线进行有线通信。参见图5A,图5A是本申请实施例提供的一种有线组网示意图。在图5A中,多个节点与同一传输线(即第一传输线)连接,这里多个节点包括节点1、节点2、节点3,…,节点n,n为正整数,节点1为该传输线上的首节点,节点n为该传输线上的末节点,多个节点中除节点1和节点n以外的节点为传输线上的中间节点。
在传输线上,由于首节点(例如图5A中的节点1)或末节点(例如图5A中的节点n)只需要一个接口收发信号,不需要考虑信号的向前或前后传输,故首节点和末节点可以直接与传输线连接。而传输线上的中间节点由于需要考虑信号的向前传输和向后传输,中间节点需通过电流分路装置与传输线连接,例如,在图5A中,节点2通过电流分路装置1与传输线连接,节点3通过电流分路装置2与传输线连接。
在图5A中,传输线上的首个节点装置或末个节点装置可以是节点,例如,首个节点装置为节点1,末个节点装置为节点n。可以看出,传输线上的首个节点装置或末个节点装置包括一个交流隔断器和一个直流隔断器,其中,交流隔断器用于将来自传输线上的电流中的至少部分直流电流输出至该节点装置内的节点,直流隔断器用于将来自传输线上的电流中的至少部分交流电流输出至该节点装置内的节点,和/或将从该节点装置内的节点接收到的电流中的至少部分交流电流输出至传输线。传输线上首、尾节点装置之间的每个节点装置包括对应的节点和该节点连接的电流分路装置,例如传输线上的第二个节点装置包括节点2和电流分路装置1。
在图5A中,电流分路装置1和电流分路装置2为图2A所示的电流分路装置,电流分路装置与节点的连接方式、电流分路装置的电路结构以及原理可参考图2A实施例中相应内容的叙述。传输线上的任意两个节点装置之间均可通过传输线进行有线通信。
以电流分路装置1为例,电流分路装置1可用于实现射频信号和电源信号在节点2和节点2的下一节点之间的分路。这里,节点2的下一节点是依据信号源的传输方向确定的。例如,若信号源是从左向右传输,则节点2的下一节点为节点3;若信号源是从右向左传输,则节点2的下一节点为节点1。可以理解,该传输线上的任意两个节点装置节点通过该传输线进行有线通信。
以电流分路装置1为例,可以看出,电流分路装置1中的直流交流分路单元的第二端与节点2内的电源管理单元连接,电流分路装置1中的直流交流分路单元的第三端与节点2内的射频单元连接。
示例性地,电流分路装置1可以独立于节点2,也可以集成于节点2中,在此不作具体限定。
在一些可能的实施例中,为了节省器件的消耗,图2A中的电流分路装置也可以采用图2B所示的电流分路装置。参见图5B,图5B是本申请实施例提供的又一种有线组网示意图。在图5B中,多个节点装置与同一传输线连接,多个节点装置中的任意两个节点装置通过该传输线进行有线通信。相较于图5A所示的有线组网示意图,图5B中采用图2B所示的电流分路装置的电路结构更简洁,在实现相同功能的前提下,图5B中的电流分路装置比图5A中的电流分路装置至少可以节省一个交流隔断器和一个直流隔断器的消耗。以图5B中电流分 路装置1和节点2为例,电流分路装置1和节点2组成一个节点装置,其中,电流分路装置1可以独立于节点2,也可以集成于节点2中,在此不作具体限定。
在图5B中,电流分路装置的电路结构、原理以及电流分路装置与节点的连接方式具体可参考图2B的相关叙述。另外,图5B中各节点装置以及各节点装置与传输线的连接可参考图5A实施例中的相关叙述,在此不再赘述。
图5A或图5B所示的有线组网系统,由同一传输线挂接的多个节点装置可以视作一个节点组或设备群,在该设备群内的节点装置间仅能通过该传输线进行有线通信。可以理解,由于上述图2A或图2B所示的电流分路装置适用于传输线上同时传输射频信号和电源信号的场景,故图5A或图5B所示的有线组网系统也适用于传输线上同时传输射频信号和电源信号的场景。
进一步地,在上述图5A或图5B的基础上可以进行有线通信和无线通信的融合组网,组网后的系统还可以包括与传输线连接的无线收发装置,该无线收发装置可视作一个节点装置,如此,同一设备群内的节点装置之间通过该传输线进行有线通信,且同一设备群内的任一节点装置可以通过该传输线以及与该传输线连接的无线收发装置,实现与其他无线通信节点或者具有相同能力的其他设备群内的节点装置进行无线通信。
以图5B为例,一种实现方式中,图3A或图3B所示的装置可以替换传输线上除首、尾节点装置以外的任一节点装置,其中,图3A或图3B所示的电流分路装置适用于传输线上同时传输射频信号和电源信号的场景。另一种实现方式中,也可以使用无线收发装置(例如天线)替换传输线上的首个节点装置或末个节点装置。
在一些可能的实施例中,无线收发装置也可以不是执行上述替换操作获得,而是在传输线上新挂接一个无线收发装置。示例性地,无线收发装置可以直接挂接在图5B中传输线的前端或末端,当无线收发装置直接挂接在图5B中传输线的前端时,则节点1不再是首个节点装置,节点1需通过电流分路装置与传输线连接;当无线收发装置挂接在图5B中传输线的末端时,则节点n不再是末个节点装置,节点n需通过电流分路装置与传输线连接。当无线收发装置连接在图5B中传输线的中部时,直接将图3A或图3B所示的装置与传输线连接,在此情况下,图3A或图3B所示的装置可视作与传输线连接的一个节点装置。
参见图6,图6是本申请实施例提供的一种无线通信和有线通信融合组网的示意图。
在图6中,该通信系统至少包括第一设备群和第二设备群,其中,第一设备群包括基于第一传输线连接的第一多个节点装置,第二设备群包括基于第二传输线连接的第二多个节点装置,第一传输线与第二传输线不是同一传输线。第一设备群内的任意两个节点装置可以通过第一传输线进行有线通信,第二设备群内的任意两个节点装置可以通过第二传输线进行有线通信。
另外,在图6中,第一设备群内的第一多个节点装置包括图3A所示的装置,第二设备群内的第二多个节点装置包括天线2,由于天线2位于第二传输线的末端,故可以直接与第二传输线连接,其中,图3A所示的装置位于图6中第一传输线的中部,天线2位于第二传输线的末端,则天线1和天线2可以实现第一设备群内的第一多个节点装置与第二设备群内的第二多个节点装置之间的跨设备群的通信。
示例性地,在图6中,第一设备群内的节点1与第二设备群内的节点5之间通信的具体 过程可以是:节点1内的射频单元输出射频信号,该射频信号沿着第一传输线传输至天线1,天线1接收该射频信号后向空中辐射该射频信号,第二传输线上的天线2接收天线1辐射的射频信号,该射频信号沿着第二传输线和电流分路装置4传输至节点5,如此,完成了第一设备群内的节点1至第二设备群内的节点5的单向通信。相应地,若第二设备群内的节点5至第一设备群内的节点1的单向通信可以参考上述节点1至节点5的单向通信的相关叙述,在此不再赘述。
在图5A或图5B的基础上,还可以在同一设备群内的节点装置之间实现有线通信和无线通信互为备份的组网。
一种实现方式中,与传输线连接的多个节点装置中的每个节点装置还包括开关元件和无线收发装置(例如天线),且在同一节点装置内无线收发装置与开关元件连接。这里,开关元件具有两种状态,即闭合和断开,具体地,当开关元件处于闭合状态时,意味着与该开关元件连接的无线收发装置处于不可使用状态,相当于采用了有线通信;当开关元件处于断开状态时,意味着与该开关元件连接的无线收发装置处于可使用状态,相当于采用了无线通信。
示例性地,节点装置包括开关元件和无线收发装置可以是:节点装置内的电流分路装置包括开关元件和无线收发装置,即开关元件和无线收发装置集成于电流分路装置中,可参见图2B实施例中相应内容的叙述;或者,节点装置内的节点包括开关元件和无线收发装置,即开关元件和无线收发装置集成于节点中;或者,开关元件集成于电流分路装置中而无线收发装置集成于节点中,在此不作具体限定。
参见图7A,图7A是本申请实施例提供的一种有线通信和无线通信互为备份的组网示意图。图7A相较于图5B,可以看出,与传输线连接的每个节点装置内新增了天线和开关元件,例如节点1内新增天线1和开关元件1,电流分路装置1内新增天线2和开关元件2,电流分路装置2内新增天线3和开关元件3,…,节点n内新增天线n和开关元件n。
在图7A中,传输线上的首个节点装置(即节点1)或末个节点装置(即节点n)中,以节点1为例说明天线1、开关元件1与节点1其他元件之间的连接方式:在节点1中,天线1仅与开关元件1连接,开关元件1还分别与节点1内的射频单元和直流隔断器DC Block连接。对于传输线上处于中部的节点装置,以节点2和电流分路装置1(可参考图2B)组成的节点装置为例说明天线2、开关元件2与节点2的连接方式:在电流分路装置1内,开关元件2的第一端与DC Block的第二端连接,开关元件2的第二端与节点2内的射频单元连接,天线2仅与开关元件2连接(例如,天线2与开关元件2的第三端连接)。在一些可能的实施例中,天线2和开关元件2也可以不集成于电流分路装置1中,例如天线2和开关元件2可以集成于节点2中,或者,开关元件2集成于电流分路装置1中而天线2集成于节点2中,在此不作具体限定。
示例性地,在图7A中,在存在环境干扰或无线信道传输条件不满足预设条件时,该传输线上的每个节点装置内的开关元件被配置为闭合状态,即统一切换以采用有线通信,如此,该传输线上任意两个节点装置之间可以通过该传输线进行有线通信;当检测到传输线损坏或者该传输线上存在一个节点装置内的电流分路装置故障时,该传输线上每个节点装置内的开关元件被配置为断开状态,即统一切换以采用无线通信,如此,该传输线上任意两个节点装置之间可以通过对应的天线进行无线通信。也就是说,图7A所示的组网系统实现了有线通 信和无线通信的双备份的链路传输。
在一些可能的实施例中,在图7A中,传输线上的各节点装置内的开关元件也可以不执行统一控制,可以根据节点间的实际通信需求确定相应节点对应的开关元件。例如,假设图7A中各开关元件均处于断开状态,当节点2与节点3之间需进行有线通信时,节点2对应的开关元件2和节点3对应的开关元件3处于闭合状态,而传输线上其他没有有线通信需求的节点对应的开关元件可以继续保持断开状态。同理,对于有无线通信需求的节点,该节点对应的开关元件处于断开状态,但并不限定传输线上其他节点对应的开关元件的状态。
在图7A中,电流分路装置与节点可以相互独立设置,电流分路装置也可以集成于节点中。例如,电流分路装置1可以独立于节点2,也可以集成于节点2中,在此不作具体限定。
另一种实现方式中,与传输线连接的多个节点装置中的每个节点装置还包括功分器和无线收发装置(例如天线),且在同一节点装置内无线收发装置与功分器连接,在此情况下,传输线上的任一节点装置可以通过功分器选择通信方式为有线通信和/或无线通信。功分器的说明具体参考前述实施例中功分器的叙述。
示例性地,节点装置包括功分器和无线收发装置可以是:节点装置内的电流分路装置包括开关元件和无线收发装置,即开关元件和无线收发装置集成于电流分路装置中,可参见图2B实施例中相应内容的叙述;或者,节点装置内的节点包括开关元件和无线收发装置,即开关元件和无线收发装置集成于节点中;或者,功分器集成于电流分路装置中而无线收发装置集成于节点中,在此不作具体限定。
参见图7B,图7B是本申请实施例提供的又一种有线通信和无线通信互为备份的组网示意图。图7B相较于图5B,每个节点装置内新增了天线和功分器,例如节点1内新增天线1和功分器1,电流分路装置1内新增天线2和功分器2,电流分路装置2内新增天线3和功分器3,…,节点n内新增天线n和功分器n。
在图7B中,传输线上的首个节点装置(即节点1)或末个节点装置(即节点n)中,以节点1为例说明天线1、功分器1与节点1其他元件之间的连接方式:在节点1中,天线1仅与功分器1连接,功分器1还分别与节点1内的射频单元和直流隔断器DC Block连接。对于传输线上处于中部的节点装置,以节点2和电流分路装置1(可参考图2B)组成的节点装置为例,天线2、功分器2与节点2的连接方式可参见图2B实施例中相应内容的叙述。在一些可能的实施例中,天线2和功分器2也可以不集成于电流分路装置1中,例如天线2和功分器2可以集成于节点2中,或者,功分器2集成于电流分路装置1中而天线2集成于节点2中,在此不作具体限定。
这里,由于功分器的特性,相较于图7A中的开关元件,功分器没有状态(闭合或断开)的切换。以图7B中节点3的通信为例,节点3需要发射射频信号时,节点3通过功分器将待发射的射频信号分成两路,其中一路射频信号通过传输线传输,另一路射频信号通过自身的天线(即天线3)传输;节点3需要接收射频信号时,节点3通过功分器同时从有线信道和无线信道接收其他节点发射的射频信号。示例性地,节点3在需要发射射频信号时,若检测到传输线损坏或者传输线上有电流分路装置故障,则节点3可以基于功分器将待发射的射频信号全部以无线通信的方式通过天线3传输。在存在环境干扰或者无线信道传输条件不满足预设条件时,节点3可以基于功分器将待发射的射频信号全部以有线通信的方式通过传输线传输。也就是说,基于图7B所示的组网系统,节点可以通过对应的功分器从有线信道和/ 或无线信号接收和发射信号,从而实现有线通信和无线通信的双备份的链路传输。
可以看出,上述图7A中传输线上的多个节点装置全部采用开关元件实现有线通信和无线通信的互为备份,图7B中传输线上的多个节点装置全部采用功分器实现有线通信和/或无线通信。在一些可能的实施例中,在进行有线通信和无线通信的融合组网时,传输线上的多个节点装置也可以一部分节点装置包括开关元件、另一部分节点装置包括功分器,在此情况下,传输线上的节点装置若全部采用有线通信,则将各开关元件统一配置为闭合状态;传输线上的节点装置若全部采用无线通信,则将各个开关元件统一配置为断开状态。
在一些可能的实施例中,还可以在图7A的基础上,基于传输线连接的多个节点装置还包括与传输线连接的无线收发装置,该无线收发装置可视作一个节点装置,如此,相较于图7A所示的组网方式,传输线上的节点装置可以根据选择的通信方式独立控制对应的开关元件的状态。
以图7A为例,一种实现方式中,图3A或图3B所示的装置可以替换传输线上除首、尾节点装置以外的任一节点装置,其中,图3A或图3B所示的装置适用于传输线上同时传输射频信号和电源信号的场景。另一种实现方式中,也可以使用无线收发装置(例如天线)替换传输线上的首个节点装置(即节点1)或末个节点装置(即节点n),直接与传输线连接。
在一些可能的实施例中,无线收发装置也可以不是执行上述替换操作获得,而是在传输线上新挂接一个无线收发装置。示例性地,无线收发装置可以直接挂接在图7A中传输线的前端或末端,当无线收发装置直接挂接在图7A中传输线的前端时,则节点1不再是首个节点装置,节点1需通过电流分路装置与传输线连接;当无线收发装置挂接在图7A中传输线的末端时,例如像上述图6中第二设备群内天线2挂接在传输线的末端,则节点n不再是末个节点装置,节点n需通过电流分路装置与传输线连接。当无线收发装置连接在图7A中传输线的中部时,直接将图3A或图3B所示的装置与传输线连接,在此情况下,图3A或图3B所示的装置即为与传输线连接的一个节点装置。
参见图8,图8是本申请实施例提供的又一种有线通信和无线通信互为备份的组网示意图。图8相较于图7A所示的组网图,可以看出,图8所示的传输线的中部连接有图3A所示的装置,其中,图3A中的无线收发装置为天线T。在一些可能的实施例中,天线T也可以直接与传输线的首端或末端连接,无需在图8中的传输线上连接上述图3A或图3B所示的装置。
在图8中,传输线上连接的任一节点可以独立检测对应的开关元件处于闭合或者断开状态时信号源的发射情况和/或接收情况,并基于信号源的发射情况和接收情况中的至少一项以及通信性能最优的原则独立配置对应的开关元件的状态。
下面以图8中节点2对应的开关元件2的状态控制进行示例性阐述。
情况1:节点2控制开关元件2闭合
节点2检测到有线信道通信性能优于无线信道通信性能时,节点2控制开关元件2闭合,则节点2通过传输线进行通信。在此基础上,假设图8中,节点1的开关元件1处于闭合状态以及节点n的开关元件处于断开状态,节点2与节点1、节点n之间的通信包括:
(1)节点2与节点1之间通过传输线进行有线通信;
(2)通过天线T、传输线和天线n实现节点2与节点n之间的通信。
这里,以节点2至节点n的单向通信为例,节点2的射频单元输出射频信号1,射频信号1依次通过电流分路装置2、传输线和电流分路装置1传输至天线T,天线T接收到射频信号1后向空中辐射射频信号1,节点n通过天线n接收天线T辐射的射频信号1,如此完成了节点2至节点n的通信。相应地,节点n通过天线n向外辐射射频信号2,天线T接收天线n辐射的射频信号2,射频信号2依次通过电流分路装置1、传输线和电流分路装置2传输至节点2,如此完成了节点n至节点2的通信。
在一些可能的实施例中,开关元件2处于闭合状态时,节点2也可以通过传输线和天线T与非同一设备群内的其他无线通信节点或者具有相同能力的其他设备群内的节点进行无线通信,在此不作具体限定。
情况2:节点2控制开关元件2断开
节点2检测到无线信道通信性能优于有线信道通信性能时,节点2控制开关元件2断开,则节点2通过天线2进行通信。在此基础上,假设图8中,节点1的开关元件1处于闭合状态以及节点n的开关元件处于断开状态,节点2与节点1、节点n之间的通信包括:
(1)通过天线2和天线n实现节点2与节点n之间的无线通信。
这里,节点2通过天线2发射射频信号1而节点n通过天线n接收射频信号1,或者,节点n通过天线n发射射频信号2而节点2通过天线2接收射频信号2。
(2)通过天线2、传输线和天线T实现节点2与节点1之间的通信。
这里,节点2与节点1之间的通信可参考上述情况1下节点2与节点n之间的通信过程的相应叙述,其中,节点2相当于上述情况1中的节点n,节点1相当于上述情况1中的节点2,在此不再赘述。
在一些可能的实施例中,开关元件2处于断开状态时,节点2也可以通过天线2与其他无线通信节点或者具有相同能力的其他设备群内的节点进行无线通信,在此不作具体限定。
在一些可能的实施例中,图8中传输线上挂接的多个节点装置中,也可以部分节点装置包括开关元件以及另一部分节点装置配置功分器,在此不作具体限定。
在一些可能的实施例中,基于上述图7A、图7B和图8的介绍,有线通信和无线通信的融合组网图除了可以是上述图6所示的融合组网图外,还可以是其他形式。
假设融合组网后的系统包括第一设备群和第二设备群,其中,第一设备群包括基于第一传输线连接的第一多个节点装置,第二设备群包括基于第二传输线连接的第二多个节点装置,第一传输线和第二传输线不是同一传输线。
一种实现方式中,第一设备群采用上述图6所示的第一设备群的组网方式,第二设备群采用上述图7A、图7B或图8中的任一种组网方式。
一种实现方式中,第一设备群可以采用上述图7A、图7B或图8中的任一种组网方式,第二设备群可以采用上述图7A、图7B或图8中的任一种组网方式。也就是说,第一设备群的组网方式与第二设备群的组网方式可以相同,也可以不同,在此不作具体限定。
上述图7A、图7B和图8所示的组网系统中,节点可以通过控制对应的开关元件选择有线通信或无线通信,或者,节点可以通过功分器选择有线通信和无线通信中的至少一种,即说明节点需支持有线通信和无线通信两种方式,故图7A、图7B和图8中任一项所示的系统 中每个节点内的基带处理单元配置的信道编译码需支持有线通信和无线通信,如此,使得节点进行有线通信和/或无线通信时,不仅可以复用节点自身的基带处理单元,还可以复用节点自身的射频单元,无需增加另外的处理单元,有利于降低组网的部署成本。
在一些可能的实施例中,在前述图5A或图5B所示的有线组网的基础上,同一设备群内的节点装置可以同时工作在不同的频段,且不同的频段之间无重合,为了防止干扰,与传输线连接的多个节点装置中的每个节点装置还包括双工器,如此可以实现电源信号、射频信号和时钟信号在同一传输线上的传输,其中,电源信号由直流承载,射频信号和时钟信号由交流承载。
这里,双工器可以隔离不同频段的信号。双工器一般由两组不同频率的带通滤波器组成,避免本机的发射信号与接收信号相互干扰。
在本申请实施例中,双工器用于将射频信号和时钟信号合路或分离,例如,在节点装置内,对于输出时钟信号的节点来说,双工器的作用是合路时钟信号和射频信号,对于接收时钟信号的节点来说,双工器的作用是分离时钟信号和射频信号。
示例性地,节点装置包括双工器可以是:节点装置内的电流分路装置包括双工器,即双工器集成于电流分路装置中;或者,节点装置内的节点包括双工器,即双工器集成于节点中,在此不作具体限定。
参见图9,图9是本申请实施例提供的一种用于多通信域同步的有线组网示意图。在图9中,图9相较于图5B,每个节点装置内新增了双工器,例如节点1内新增双工器1,电流分路装置1内新增双工器2,电流分路装置2内新增双工器3,…,节点n内新增双工器n。
在图9中,传输线上的首个节点装置(即节点1)或末个节点装置(即节点n)中,以节点1为例说明双工器1与节点1其他元件之间的连接方式:在节点1中,双工器1的第一端通过直流隔断器DCBlcok与传输线连接,双工器1的第二端与射频单元连接以及双工器1的第三端与基带处理单元连接。对于传输线上位于中部的节点装置,以节点2和电流分路装置1(可参考图2B)组成的节点装置为例,双工器2与节点2其他元件之间的连接方式可参见图2B实施例中相应内容的叙述。在一些可能的实施例中,双工器2也可以不集成于电流分路装置1中,例如双工器2可以集成于节点2中,在此不作具体限定。
示例性地,图9所示系统可以是基于时分双工(time division duplexing,TDD)的正交频分复用(orthogonal frequency division multiplexing,OFDM)系统,传输线上连接的节点通过传输线上传输的时钟信号,节点可以根据传输线上传输的时钟信号实现收发时序同步,实现传输线上各节点的载波正交化。
假设图9中,工作在第一频率的节点1和节点2属于通信域1,工作在第二频率的节点3和节点n属于通信域2,其中,通信域1内的节点使用时钟1,通信域2内的节点使用时钟2,第一频率与第二频率不同,则基于传输线上传输的统一的时钟,使得通信域1内的节点与通信域2内的节点之间收发时序同步且载波相互正交,从而使不同频率上的信号互不干扰,如此,多个工作在不同频率的通信域内的节点可以共用同一传输线,也节省了要部署的线束的长度。
这里,图9仅示出了同一设备群内用于多通信域同步的有线组网示意图。在一些可能的实施例中,在多设备群进行组网通信时,例如上述图6所示的组网系统,可以为图6中每个 设备群内的每个节点配置一个对应的双工器,在此情况下,若同一设备群(例如第一设备群或第二设备群)内存在不同节点工作在不同的频段,则同一设备群内多通信域同步的方式可参考图9中相应内容的叙述;若第一设备群内的多个节点工作在第一频率,而第二设备群内的多个节点工作在第二频率,则不同设备群之间的多通信域同步可通过无线通信调度算法实现,在此不再赘述。
可以看出,上述图5A、图5B、图6、图7A、图7B、图8和图9中任一项所示的组网系统中的传输线可以同时传输射频信号和电源信号。在一些可能的实施例中,连接了多个节点装置的传输线也可以仅传输交流信号(例如,射频信号,或者,射频信号和时钟信号),而电源信号不通过该传输线传输,在此情况下,组网图例如可以参考图10。
图10是本申请实施例提供的又一种组网示意图,在图10中,多个节点装置与同一传输线连接,其中,节点1为该传输线上的首个节点装置,节点n为该传输线上的末个节点装置,由于位于传输线上的首端或末端的节点不用考虑信号源的向前和向后传输,故节点1和节点n可以直接与传输线连接。而位于传输线中部的节点,例如节点2,由于需要考虑信号源的向前和向后传输,需通过如图1所示的电流分路装置1与传输线连接,电流分路装置1为与节点2对应的电流分路装置,节点2通过电流分路装置1与传输线连接,这里,节点2和电流分路装置1组成一个节点装置。在一些可能的实施例中,电流分路装置1可以独立于节点2,也可以集成于节点2中,在此不作具体限定。
在图10中,传输线上的任意两个节点装置之间可以通过传输线进行有线通信。另外,由图10可以看出,传输线上的多个节点装置还包括无线收发装置,该无线收发装置为上述图4所示的装置,该传输线上的任一节点装置还可以通过该无线收发装置与其他无线通信节点或者具有相同能力的其他设备群内的节点进行无线通信,在此不作具体限定。
这里,图10中电流分路装置1中三个电阻在电路中的位置、连接方式以及电阻大小与图4所示的装置中三个电阻在电路中的位置、连接方式以及电阻大小相同,具体可参考图4的相关描述,在此不再赘述。
在一些可能的实施例中,还可以在图10的基础上进行改进,使得图1中的每个节点能够选择通信方式为有线通信和/或无线通信。例如,为每个节点配置开关元件和无线收发装置(例如天线),其中,无线收发装置与开关元件连接,或者,为每个节点配置功分器和无线收发装置(例如天线),其中,无线收发装置与功分器连接。在图10中,可以看出,电流分路装置1中,第一电阻的第一端和第二电阻的第二端,第一电阻的第二端与节点2内的射频单元连接,若为节点2配置开关元件和天线,则天线仅与开关元件连接,则第一电阻的第二端与节点2内的射频单元连接可以是:第一电阻的第二端通过开关元件与节点2内的射频单元连接。这里,若为节点2配置功分器和天线,功分器和天线与节点2、电流分路装置1的连接方式可参考为节点2配置开关元件和天线时叙述的连接方式。
在一些可能的实施中,若同一设备群内存在多个节点工作在不同的频率,还可以在图10的基础上为传输线上的每个节点配置双工器,以实现同一设备群内多通信域之间的同步。双工器的连接方式可参考图9中双工器的连接方式,在此不再赘述。
在本申请实施例中,图5A、图5B、图6、图7A、图7B、图8、图9和图10中任一项 所示的组网系统中,与传输线连接的多个节点装置称作一个设备群,每个设备群包括一个主节点和至少一个从节点,其中,主节点用于分配至少一个从节点的时域资源和/或频域资源。
示例性地,主节点可以是该设备群内具有信号处理单元的第一个节点装置,也可以是该设备群内具有信号处理单元的最后一个节点装置。
这里,上述本申请实施例提供的多种组网系统,例如图5A、图5B、图6、图7A、图7B、图8、图9和图10,适用于多种应用场景中,例如以下应用场景:移动互联网(mobile internet,MI)、工业控制(industrial control)、无人驾驶(self driving)、运输安全(transportation safety)、物联网(internet of things,IoT)、智慧城市(smart city)、或智慧家庭(smart home)等。
在本文上述的实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。另外,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,各个实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
需要说明的是,本领域普通技术人员可以看到上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(read-only memory,ROM)、随机存储器(random access memory,RAM)、可编程只读存储器(programmable read-only memory,PROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、一次可编程只读存储器(one-time programmable read-only memory,OTPROM)、电子抹除式可复写只读存储(electrically-erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机程序产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是个人计算机,服务器,或者网络设备、机器人、单片机、芯片、机器人等)执行本申请各个实施例所述方法的全部或部分步骤。
Claims (29)
- 一种电流分路装置,其特征在于,所述装置包括:第一电阻、第二电阻、第一交流隔断器、第二交流隔断器和直流交流分路单元,所述第一电阻的第一端用于输入电流,所述第一电阻的第二端与所述第二电阻的第一端相连接,所述第二电阻的第二端用于输出电流,所述第一电阻与所述第一交流隔断器并联,所述第二电阻与所述第二交流隔断器并联,所述直流交流分路单元的第一端与所述第一电阻的第二端相连接,所述直流交流分路单元的第二端用于输出直流,所述直流交流分路单元的第三端用于输入和/或输出交流。
- 根据权利要求1所述的装置,其特征在于,所述直流交流分路单元包括至少一个交流隔断器和至少一个直流隔断器,所述至少一个交流隔断器用于将来自所述直流交流分路单元的第一端的电流中的至少部分直流电流输出到所述直流交流分路单元的第二端,所述至少一个直流隔断器用于将来自所述直流交流分路单元的第一端的电流中的至少部分交流电流输出到所述直流交流分路单元的第三端,和/或将来自所述直流交流分路单元的第三端的电流中的至少部分交流电流输出到所述直流交流分路单元的第一端。
- 根据权利要求2所述的装置,其特征在于,所述至少一个交流隔断器包括第三交流隔断器,所述至少一个直流隔断器包括第一直流隔断器,所述第三交流隔断器的第一端、所述第一直流隔断器的第一端分别与所述第一电阻的第二端相连接,所述第三交流隔断器的第二端为所述直流交流分路单元的第二端,所述第一直流隔断器的第二端为所述直流交流分路单元的第三端。
- 根据权利要求3所述的装置,其特征在于,所述直流交流分路单元还包括第三电阻,所述直流隔断器的第二端通过所述第三电阻接地,所述第三电阻的阻值大于所述第一电阻的阻值。
- 根据权利要求2所述的装置,其特征在于,所述至少一个交流隔断器包括第三交流隔断器和第四交流隔断器,所述至少一个直流隔断器包括第一直流隔断器,所述直流交流分路单元还包括第三电阻,所述第三交流隔断器与所述第三电阻并联,所述第三电阻的第一端与所述第一电阻的第二端相连接,所述第三电阻的第二端分别与所述第四交流隔断器的第一端、所述第一直流隔断器的第一端相连接,所述第四交流隔断器的第二端为所述直流交流分路单元的第二端,所述第一直流隔断器的第二端为所述直流交流分路单元的第三端相连接。
- 根据权利要求5所述的装置,其特征在于,所述至少一个直流隔断器还包括第二直流隔断器,所述直流交流分路单元还包括第四电阻,所述第二直流隔断器与所述第四电阻构成串联电路,所述第一直流隔断器的第一端与所述串联电路的第一端相连接,所述串联电路的第二端接地,所述第四电阻的阻值大于所述第三电阻的阻值。
- 根据权利要求1-6任一项所述的装置,其特征在于,所述直流承载电源信号,所述交流承载数据信号或控制信号。
- 根据权利要求1-7任一项所述的装置,其特征在于,所述电流分路装置还包括双工器,所述直流交流分路单元的第三端与所述双工器连接,所述双工器用于把所述交流分离为第一频率交流信号和第二频率交流信号,或者把所述第一频率交流信号和所述第二频率交流信号合并为所述交流。
- 根据权利要求8所述的装置,其特征在于,所述第一频率交流信号为数据信号或控制 信号,所述第二频率交流信号为时钟信号。
- 根据权利要求3-7任一项所述的装置,其特征在于,所述电流分路装置还包括功分器或开关元件,所述功分器的第一端或所述开关元件的第一端与所述直流交流分路单元的第三端相连接,所述功分器的第二端或所述开关元件的第二端与无线收发装置相连接,所述功分器的第三端或所述开关元件的第三端用于输入和/或输出交流,所述开关元件的第一端与所述开关元件的第二端或者所述开关元件的第三端之间导通,所述功分器用于把所述功分器的第一端上的信号功率分配到所述功分器的第二端和所述功分器的第三端,或者把所述功分器的第二端上的信号功率和所述功分器的第三端上的信号功率合并到所述功分器的第一端上。
- 根据权利要求10所述的装置,其特征在于,所述电流分路装置还包括所述无线收发装置。
- 根据权利要求1-11任一项所述的装置,其特征在于,所述第一电阻的第一端、所述第二电阻的第二端与总线相连接。
- 一种通信装置,其特征在于,所述装置包括:第一电阻、第二电阻和无线收发装置,所述第一电阻的第一端用于输入电流,所述第一电阻的第二端与所述第二电阻的第一端相连接,所述第二电阻的第二端用于输出电流,所述第一电阻的第二端还与所述无线收发装置相连接。
- 根据权利要求13所述的装置,其特征在于,所述电流包括交流电流,所述交流电流承载射频信号。
- 根据权利要求13或14所述的装置,其特征在于,所述装置还包括第一交流隔断器、第二交流隔断器和直流隔断器,其中,第一交流隔断器与所述第一电阻并联,所述第二交流隔断器与所述第二电阻并联,所述第一电阻的第二端还与所述无线收发装置相连接包括:所述第一电阻的第二端还通过所述直流隔断器与所述无线收发装置相连接。
- 根据权利要求15所述的装置,其特征在于,所述电流还包括直流电流,所述直流电流承载电源信号。
- 根据权利要求13-16任一项所述的装置,其特征在于,所述装置还包括第三电阻,所述无线收发装置还通过所述第三电阻接地,所述第三电阻的阻值大于所述第一电阻的阻值。
- 根据权利要求13-17任一项所述的装置,其特征在于,所述第一电阻的第一端、所述第二电阻的第二端与总线相连接。
- 一种通信系统,其特征在于,所述系统包括基于第一传输线连接的第一多个节点装置,所述第一多个节点装置包括如权利要求1-12和权利要求13-18中至少一项所述的装置。
- 根据权利要求19所述的系统,其特征在于,所述系统还包括基于第二传输线连接的第二多个节点装置,所述第二多个节点装置包括如权利要求1-12和权利要求13-18中至少一项所述的装置。
- 根据权利要求20所述的系统,其特征在于,所述第一多个节点装置包括第一节点装置,所述第一节点装置包括如权利要求13-18中任一项所述的装置;所述第二多个节点装置包括第二节点装置,所述第二节点装置包括如权利要求13-18中 任一项所述的装置;所述第一节点装置和所述第二节点装置用于实现所述第一多个节点装置与所述第二多个节点装置之间的无线通信。
- 根据权利要求20或21所述的系统,其特征在于,所述第一多个节点装置包括第三节点装置,所述第三节点装置包括如权利要求10或11所述的装置;所述第二多个节点装置包括第四节点装置,所述第四节点装置包括如权利要求13-18中任一项所述的装置;所述第四节点装置用于实现所述第三节点装置与所述第二多个节点装置之间的无线通信。
- 根据权利要求20-22任一项所述的系统,其特征在于,所述第一多个节点装置包括第五节点装置,所述第五节点装置包括如权利要求10或11所述的装置;所述第二多个节点装置包括第六节点装置,所述第六节点装置包括如权利要求10或11所述的装置;所述第五节点装置与所述第六节点装置之间的通信为无线通信。
- 根据权利要求19-23任一项所述的系统,其特征在于,所述第一多个节点装置中的首节点装置和/或末节点装置包括如权利要求13-18中任一项所述的装置。
- 根据权利要求19-23任一项所述的系统,其特征在于,所述第一多个节点装置中的首节点装置和/或末节点装置包括交流隔断器和直流隔断器,所述交流隔断器用于将来自所述第一传输线上的电流中的至少部分直流电流输出,所述直流隔断器用于将来自所述第一传输线上的电流中的至少部分交流电流输出,和/或,将接收到的电流中的至少部分交流电流输出至所述第一传输线。
- 根据权利要求19-25任一项所述的系统,其特征在于,所述第一多个节点装置包括第一组节点装置,所述第一组节点装置中的每个节点装置包括如权利要求9所述的装置,所述第一组节点装置中的所述时钟信号为第一频率。
- 根据权利要求26所述的系统,其特征在于,所述第一多个节点装置包括第二组节点装置,所述第二组节点装置中的每个节点装置包括如权利要求9所述的装置,所述第二组节点装置中的所述时钟信号为第二频率,所述第二频率与所述第一频率不同。
- 根据权利要求19-27任一项所述的系统,其特征在于,所述第一多个节点装置包括一个主节点和至少一个从节点,所述主节点包括如权利要求1-12中任一项所述的装置,所述从节点包括如权利要求1-18中任一项所述的装置,所述主节点用于分配所述至少一个从节点的时域资源和/或频域资源。
- 一种车辆,其特征在于,所述车辆包括如权利要求1-18中至少一项所述的装置,或者,包括如权利要求19-28中任一项所述的系统。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280101856.0A CN120202647A (zh) | 2022-11-18 | 2022-11-18 | 一种电流分路装置、通信装置及系统 |
PCT/CN2022/133029 WO2024103419A1 (zh) | 2022-11-18 | 2022-11-18 | 一种电流分路装置、通信装置及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/133029 WO2024103419A1 (zh) | 2022-11-18 | 2022-11-18 | 一种电流分路装置、通信装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024103419A1 true WO2024103419A1 (zh) | 2024-05-23 |
Family
ID=91083559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/133029 WO2024103419A1 (zh) | 2022-11-18 | 2022-11-18 | 一种电流分路装置、通信装置及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN120202647A (zh) |
WO (1) | WO2024103419A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101958703A (zh) * | 2010-07-28 | 2011-01-26 | 锐迪科创微电子(北京)有限公司 | Soi cmos射频开关及包含该射频开关的射频发射前端模块 |
CN102611861A (zh) * | 2012-02-27 | 2012-07-25 | 厦门华侨电子股份有限公司 | 电视机上带精确电流控制的天线供电装置及其供电方法 |
US20130088403A1 (en) * | 2011-10-05 | 2013-04-11 | International Business Machines Corporation | Low Phase Variation CMOS Digital Attenuator |
CN108063627A (zh) * | 2017-12-29 | 2018-05-22 | 苏州威发半导体有限公司 | 射频收发开关 |
-
2022
- 2022-11-18 CN CN202280101856.0A patent/CN120202647A/zh active Pending
- 2022-11-18 WO PCT/CN2022/133029 patent/WO2024103419A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101958703A (zh) * | 2010-07-28 | 2011-01-26 | 锐迪科创微电子(北京)有限公司 | Soi cmos射频开关及包含该射频开关的射频发射前端模块 |
US20130088403A1 (en) * | 2011-10-05 | 2013-04-11 | International Business Machines Corporation | Low Phase Variation CMOS Digital Attenuator |
CN102611861A (zh) * | 2012-02-27 | 2012-07-25 | 厦门华侨电子股份有限公司 | 电视机上带精确电流控制的天线供电装置及其供电方法 |
CN108063627A (zh) * | 2017-12-29 | 2018-05-22 | 苏州威发半导体有限公司 | 射频收发开关 |
Also Published As
Publication number | Publication date |
---|---|
CN120202647A (zh) | 2025-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9504035B2 (en) | Communication terminal, channel selection method, and program | |
US9253657B2 (en) | Wireless communication device and wireless communication system | |
WO2016083812A1 (en) | Passive optical-based data center networks | |
CN103891160A (zh) | 使用时分双工方案的分布式天线系统 | |
WO2018171123A1 (zh) | 多数据模块共用射频天线通信系统及通信方法 | |
US11863217B2 (en) | Module arranged to bidirectionally pass coupled power signal | |
EP3061191A1 (en) | Antenna detection with non-volatile memory powered by dc over coaxial cable | |
JP3744435B2 (ja) | 電力線搬送通信用モデム | |
Tahir | A novel architecture for 5G ultra dense heterogeneous cellular network | |
US10187172B2 (en) | Optical transport apparatus and optical-wavelength defragmenting method | |
WO2017197807A1 (zh) | 一种用于调节天线频带的电路、方法和电子设备 | |
US9119151B2 (en) | Signal transmission device, communication device, electronic apparatus, and signal transmission method | |
WO2024103419A1 (zh) | 一种电流分路装置、通信装置及系统 | |
CN210183329U (zh) | 智慧室分天线装置和智慧室分系统 | |
US20160066307A1 (en) | Mimo communication method and system | |
CN104221434B (zh) | 无线通信设备、无线通信系统和无线通信方法 | |
US11515948B2 (en) | Function split structure for mobile convergence optical transmission network and method of providing coordinated multi-point technology using the same | |
CN110351671A (zh) | 一种双频切换式自组网通信方法 | |
US11212004B2 (en) | Optical/RF wireless hybrid communication system and a control method | |
CN103378900B (zh) | 施体天线装置、服务天线装置及其信号传输方法 | |
CN108092722B (zh) | 一种c-ran多路传输模块的电路及其控制方法 | |
US9641277B2 (en) | Optical signal transmission method, apparatus and system | |
US20240064571A1 (en) | Multi-Link Operation (MLO) in Wi-Fi networks | |
CN113747451A (zh) | 一种基站主机、基站系统及通信方法 | |
CN216313096U (zh) | 基于wapi技术的大功率远距离无线数据传输装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965598 Country of ref document: EP Kind code of ref document: A1 |