WO2024101870A1 - 전고체전지 제조장치 - Google Patents

전고체전지 제조장치 Download PDF

Info

Publication number
WO2024101870A1
WO2024101870A1 PCT/KR2023/017826 KR2023017826W WO2024101870A1 WO 2024101870 A1 WO2024101870 A1 WO 2024101870A1 KR 2023017826 W KR2023017826 W KR 2023017826W WO 2024101870 A1 WO2024101870 A1 WO 2024101870A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
solid
unit
holder
state battery
Prior art date
Application number
PCT/KR2023/017826
Other languages
English (en)
French (fr)
Inventor
이자우
전해영
정구윤
Original Assignee
(주)미래컴퍼니
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220188254A external-priority patent/KR20240067767A/ko
Application filed by (주)미래컴퍼니, 삼성에스디아이 주식회사 filed Critical (주)미래컴퍼니
Publication of WO2024101870A1 publication Critical patent/WO2024101870A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery manufacturing device.
  • Lithium-ion batteries have reached the limit of performance improvement, and recently, all-solid batteries, which replace the electrolyte with a solid electrolyte, have been attracting attention. Compared to secondary batteries that use liquid electrolyte solutions, all-solid-state batteries do not cause decomposition of the electrolyte due to overcharging of the battery, and also have high cycle durability and energy density.
  • Korean Patent Publication No. 10-2022-0089332 proposes a method of bringing the particles into close contact so that the voids between them are as small as possible. All-solid-state battery manufacturing methods that manufacture solid-state batteries by pressurizing them have been proposed.
  • the technical problem to be achieved by the present invention is to provide an all-solid-state battery manufacturing device that can sufficiently remove voids in the all-solid-state battery.
  • Another technical problem to be achieved by the present invention is to provide an all-solid-state battery manufacturing device capable of manufacturing battery cells that are uniformly pressurized throughout.
  • Another technical problem to be achieved by the present invention is to provide an all-solid-state battery manufacturing device that prevents the all-solid-state battery from being damaged even during the pressurization process.
  • an embodiment of the present invention is a holder on which a workpiece is seated on one side, a pressurizing device disposed on the one side of the holder, and pressurizing the workpiece seated on the holder at a preset pressure.
  • An all-solid-state battery manufacturing apparatus including a unit, and a heating unit disposed in one area of the holder and capable of applying heat to the workpiece.
  • another embodiment of the present invention is a holder on which a workpiece is seated on one side, disposed on the one side of the holder, and pressurizing the workpiece seated on the holder with a preset pressure.
  • An all-solid-state battery manufacturing apparatus including a pressurizing unit and a buffering auxiliary member disposed in an area adjacent to the workpiece and dispersing the pressure applied to the workpiece.
  • an all-solid-state battery manufacturing apparatus capable of sufficiently removing voids in an all-solid-state battery can be provided.
  • an all-solid-state battery manufacturing apparatus capable of manufacturing battery cells that are uniformly pressurized throughout can be provided.
  • an all-solid-state battery manufacturing device that prevents the all-solid-state battery from being damaged even during the pressurization process.
  • FIG. 1 is an exemplary diagram of an all-solid-state battery manufacturing apparatus provided by an embodiment of the present invention.
  • FIG. 2 is an exemplary diagram of a battery cell manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is an exemplary diagram of a battery cell manufacturing apparatus according to an embodiment of the present invention.
  • Figure 4 is an exemplary diagram of a battery cell manufacturing apparatus according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component.
  • the term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • an all-solid-state battery manufacturing device that sufficiently removes voids within the all-solid-state battery and prevents the all-solid-state battery from being damaged even during the pressurization process.
  • FIG. 1 is an exemplary diagram of an all-solid-state battery manufacturing apparatus provided by an embodiment of the present invention.
  • an embodiment of the present invention includes a holder 100 and a pressing unit 200 on which a workpiece 20 is mounted, and the holder 100 or the pressing unit 200.
  • the holder 100 is configured to seat the workpiece 20 on one surface.
  • the pressing unit 200 is configured to pressurize the workpiece 20 mounted on the holder 100.
  • the heating unit 300 is disposed in one area of the holder 100 or the pressurizing unit 200 and is configured to apply heat to the workpiece 20.
  • the workpiece refers to both a battery cell or a pouch-type battery
  • the battery cell refers to both a monocell and a stacked cell, and includes a positive electrode material in a solid state, a negative electrode material, and a solid electrolyte. This may mean that it becomes an all-solid-state battery through a process such as pressurization.
  • a monocell is a single cell composed of the anode layer, the cathode layer, and the solid electrolyte layer, and a stacked cell may refer to a cell in which a plurality of monocells are stacked.
  • the stacked cell may be a cell with a bipolar structure that is widely known in the art.
  • the cathode material any cathode material that can be commonly used in the cathode of a lithium secondary battery can be used.
  • the cathode material may be lithium oxide.
  • the cathode material is a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), a compound substituted with one or more transition metals, lithium manganese oxide such as LiMnO 3 and LiMn 2 O 3 , and lithium.
  • Copper oxide, vanadium oxide such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 , Ni site-type lithium nickel oxide, lithium manganese composite oxide, or a combination thereof may be used. It is not limited to this.
  • the negative electrode material may include any negative electrode material that can be commonly used in the negative electrode of a lithium secondary battery.
  • carbon such as non-graphitizable carbon, graphitic carbon (natural graphite, artificial graphite), Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8)
  • Metal complex oxides such as lithium metal, lithium alloy, silicon-based alloy, tin-based alloy, SnO, SnO 2 , PbO, PbO 2 , Sb 2 O 3 , GeO, GeO 2 , Bi 2 O 3 , Bi Metal oxides such as 2 O 4 , conductive polymers such as polyacetylene, Li-Co-Ni-
  • the solid electrolyte is LGPS (Li 10 Ge P 2 S 12 ), LSPSCl (Li 9 .54 Si 1 . 74 P 1 .44 S 11.7 Cl 0 .3 ), sulfide-based materials such as Argyrodite, Perovskite (LLTO), Garnet (LLZO), NASICON, LISICON, etc. It may be made of an oxide-based material or a polymer-based material such as PEO, but is not limited thereto.
  • the solid electrolyte can be mixed with the cathode material to form one layer.
  • the solid electrolyte layer and the positive electrode layer can be formed by mixing the raw material powder of the solid electrolyte and the raw material powder of the positive electrode material, and mixing or adhering to each other.
  • the workpiece may have various shapes and sizes depending on the location, shape, or industrial field of the product in which the all-solid-state battery is used.
  • a battery cell may have a shape such as a circular coin shape or a square shape. You can.
  • the workpiece 20 is seated on one surface of the holder 100.
  • the holder 100 is not limited in its type, size, or material, and can be used in the process of pressing the workpiece 20 or the battery cell, and the object to be pressed can be placed and fixed. All types of holders should be interpreted as falling within the scope of the present invention.
  • the holder 100 is disposed in one area of the holder 100 and may further include a heating unit 300 capable of applying heat to the workpiece 20.
  • a heating unit 300 capable of applying heat to the workpiece 20.
  • the workpiece 20 can be compressed more densely.
  • a heating unit 300 is not particularly limited, and for example, a cartridge heater, induction heater, etc. may be used. However, it is not limited to the above examples.
  • the heating unit 300 may set the temperature of the workpiece 20 to 20°C to 400°C, and in another example, it may set the temperature to 25°C to 85°C. In this way, by improving the temperature of the workpiece 20 using the heating unit 300, the flexibility of the internal materials of the workpiece 20 can be improved, thereby preventing product damage caused by stress during the pressing process. This makes it possible to pressurize at a higher pressure, thereby increasing the homogeneity of the workpiece 20.
  • the holder 100 may further include a temperature control unit (not shown) that controls the operation of the heating unit 300.
  • a temperature control unit (not shown) that controls the operation of the heating unit 300.
  • the holder 100 may further include a fixing part (not shown) disposed adjacent to at least a portion of the workpiece 20.
  • a fixing part (not shown) are not particularly limited, and any structure capable of fixing the workpieces during the pressing process should be construed as falling within the scope of the present invention.
  • the holder 100 may further include a buffer member (not shown) disposed adjacent to at least a portion of the workpiece 20.
  • a buffering member (not shown) is also not particularly limited, and any buffering member (not shown) that can prevent volume expansion or product damage that occurs during the process of expanding the workpiece to the surroundings during the pressurizing process is of the present invention. It should be interpreted as falling within the scope of rights.
  • the pressurizing unit 200 is disposed on one surface of the holder 100 and can pressurize the workpiece 20 seated on the holder 100 at a preset pressure.
  • the pressing unit 200 may have a flat pressing surface to uniformly press the workpiece 20 seated on the holder 100.
  • the pressing unit 200 may be made of a material with a certain size of stiffness, which can prevent the pressing surface of the pressing unit 200 and the workpiece 20 from being adsorbed by the pressing pressure. there is.
  • the pressing unit 200 may further include a pressing pad (not shown) in an area in contact with the workpiece 20.
  • a pressing pad (not shown) can be made of various materials depending on the type and size of the workpiece 20.
  • the pressure pad may include an elastic material. If the workpiece 20 is a battery cell, the battery cell may be damaged during the pressurization process using the pressurizing unit 200, so the pressurizing unit 200 applies a pressure pad (not shown) containing an elastic material to the workpiece. By placing it in an area in contact with (20), the battery cell can be prevented from being damaged.
  • the preset pressure may vary depending on the thickness and type of the positive electrode material, negative electrode material, and solid electrolyte included in the target workpiece 20, and may vary depending on the purpose of use of the all-solid-state battery being manufactured. You can.
  • the pressurizing unit 200 may pressurize with a pressure of 2500 kN or less.
  • the pressurizing unit 200 may further include a pressure control unit (not shown) that controls the pressurizing pressure of the pressurizing unit 200.
  • a pressure control unit (not shown) is not particularly limited, and any pressure control unit that can be easily selected by a technician skilled in the art should be construed as falling within the scope of the present invention.
  • the pressing unit 200 may further include a unit control unit (not shown) that controls the pressing time and movement of the pressing unit 200.
  • a unit control unit (not shown) is also not particularly limited, and any unit control unit that can be easily selected by a technician skilled in the art should be construed as falling within the scope of the present invention.
  • the unit control unit may cause the pressurizing unit 200 to pressurize the workpiece 20 for 5 to 15 seconds. If the pressurizing process of the pressurizing unit 200 is too short, less than 5 seconds, the pressurizing process of the workpiece 20 may not be sufficient, and conversely, the pressurizing process of the workpiece 20 of the pressurizing unit 200 may take 15 seconds. If it exceeds, damage to the workpiece 20 may occur.
  • the pressing unit 200 is disposed in one area of the pressing unit 200 and may further include a heating unit 300 capable of applying heat to the workpiece 20.
  • a heating unit 300 capable of applying heat to the workpiece 20.
  • the workpiece 20 can be compressed more densely.
  • a heating unit 300 is not particularly limited.
  • a cartridge heater, etc. may be used, but it is not limited to the above example.
  • the heating unit 300 may set the temperature of the workpiece 20 to 20°C to 400°C, and in another example, it may set the temperature to 25°C to 85°C. In this way, by improving the temperature of the workpiece 20 using the heating unit 300, the flexibility of the internal materials of the workpiece 20 can be improved, thereby preventing product damage caused by stress during the pressing process. This makes it possible to pressurize at a higher pressure, thereby increasing the homogeneity of the workpiece 20.
  • the battery cell manufacturing apparatus 10 may further include a temperature control unit (not shown) that controls the operation of the heating unit 300 disposed in one area of the holder 100.
  • a temperature control unit (not shown) that controls the operation of the heating unit 300 disposed in one area of the holder 100.
  • a temperature control unit (not shown) may be further included.
  • FIGS. 2 to 4 are exemplary diagrams of a battery cell manufacturing apparatus according to an embodiment of the present invention.
  • the battery cell manufacturing device 10 is disposed in an area adjacent to the workpiece 20 and provides buffering assistance to distribute the pressure applied to the workpiece 20. It may further include a member 400.
  • the battery cell manufacturing apparatus 10 is located at least one of between the workpiece 20 and the pressurizing unit 20 and between the workpiece 20 and the holder 100. It may further include a buffering auxiliary member 400 disposed.
  • the buffering auxiliary member 400 in the process of pressing the workpiece 20 using the pressing unit 200, the buffering auxiliary member 400 more stably supports the workpiece 20. ) can be pressurized.
  • the buffering auxiliary member 400 is located between the workpiece 20 and the holder 100 or the workpiece 20 and the pressurizing unit 200 when performing the pressurizing process to compensate for the slight thickness deviation of the workpiece 20.
  • the pressure is uniformly distributed over the entire surface of the workpiece 20 to prevent the workpiece 20 from being damaged, and to prevent short-circuiting of the workpiece (e.g., battery cell) by preventing deformation in the lateral direction.
  • Such a buffering auxiliary member 400 may be provided in various forms, such as a form that can entirely cover the workpiece 20 or a form in which the workpiece 20 can be placed within the buffering auxiliary member 400. It is preferable that the size is equal to or larger than the size of the workpiece 20.
  • the cushioning auxiliary member 400 is preferably a member that is thin and can cover the entire workpiece 20, and at the same time has a flexible structure, It is desirable to select a member that does not cause damage to the surface or interior of the workpiece 20 by not stretching it during the pressurizing process using the pressurizing unit 200.
  • Such buffering auxiliary members 400 include, for example, gaskets, paper, pouch films, paper pouches, silicone films, or release films, but are not limited to the above examples.
  • the battery cell manufacturing apparatus 10 may include a buffering auxiliary member 400 disposed between the workpiece 20 and the holder 100.
  • a buffering auxiliary member 400 disposed between the workpiece 20 and the holder 100.
  • the battery cell manufacturing apparatus 10 may include a buffering auxiliary member 405 disposed between the workpiece 20 and the pressing unit 200.
  • a buffering auxiliary member 405 disposed between the workpiece 20 and the pressing unit 200.
  • the battery cell manufacturing apparatus 10 may include a first buffering auxiliary member 400a and a second buffering auxiliary member 400b.
  • the first buffering auxiliary member 400a is disposed between the workpiece 20 and the holder 100
  • the second buffering auxiliary member 400b is disposed between the workpiece 20 and the pressing unit 200. .
  • the battery cell manufacturing apparatus 10 may include a buffering auxiliary member 400 that disposes the workpiece 20 therein.
  • the battery cell manufacturing apparatus 10 may be provided with a paper pouch inside which the workpiece 20 is placed as a buffering auxiliary member 400.
  • the pressure can be distributed to both the upper and lower areas of the workpiece 20, thereby improving the quality of the final product of the workpiece 20.
  • the all-solid-state battery manufacturing apparatus 10 may further include a pressure measurement unit 400 that measures the pressure applied to the workpiece 20, where the pressure measurement unit 400 includes a load cell ( It may be a sensor that measures the pressure applied to the workpiece 20, such as a load cell.
  • the workpiece 20 that can be used in the all-solid-state battery manufacturing apparatus 10 provided by an embodiment of the present invention may have various shapes and sizes, and thus all-solid-state battery can be manufactured.
  • the device 10 can measure the pressure applied to the workpiece 20 through the pressure measurement unit 400 and apply uniform pressure to the workpiece 20.
  • the all-solid-state battery manufacturing apparatus 10 can measure and record the pressurized pressure used using the pressure measurement unit 400, and thereby mass-produce all-solid-state batteries with constant battery performance. This can be made possible.
  • the pressure measurement unit 400 that measures the pressure applied to the workpiece 20 may be connected to the pressing unit 200 and disposed.
  • the pressure measuring unit 400 is placed on the holder 100 and can measure the pressing pressure while the pressing unit 200 pressurizes the workpiece 20.
  • the pressure measurement unit 400 may be placed on both the holder 100 and the pressurizing unit 200.
  • the present invention relates to an all-solid-state battery manufacturing device and can be used to manufacture all-solid-state batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예는 일면에 피가공물이 안착되는 거치대, 상기 거치대의 상기 일면 상에 배치되며, 상기 거치대에 안착된 상기 피가공물을 기 설정된 압력으로 가압하는 가압유닛, 및 상기 거치대의 일 영역에 배치되며, 상기 피가공물에 열을 가할 수 있는 가열부를 포함하는, 전고체전지 제조장치를 제공할 수 있다.

Description

전고체전지 제조장치
본 발명은 전고체전지 제조장치에 관한 것이다.
리튬이온전지는 성능 개선의 한계에 왔으며 최근, 전해액을 고체전해질로 치환한 전고체전지(All Solid Battery)가 주목을 받고 있다. 액체상태의 전해액을 이용하는 이차전지와 비교하여, 전고체전지는 전지의 과충전에 기인하는 전해액의 분해 등이 생기는 일 없으며, 또한 높은 사이클 내구성 및 에너지 밀도를 가지고 있다.
고체이기 때문에 온도 변화와 외부 충격에 따른 위험이 적어 안전할 뿐 아니라, 에너지 밀도 역시 리튬이온전지 대비 높다.
한편, 전고체전지는 전지 반응을 담당하는 활물질입자 간, 또는 활물질입자와 고체전해질 입자 간의 접촉저항이 전지의 내부 저항에 크게 영향을 미치고 있는 것이 알려져 있으며, 이러한 활물질입자 간, 또는 활물질입자와 고체전해질 입자 사이의 접촉성을 개선하여 내부저항의 증대 등을 억제하는 기술이 제안되고 있다.
이러한 입자들 사이의 접촉성을 개선하기 위한 전고체전지 제조방법으로, 대한만국 공개특허공보 제10-2022-0089332호에는 입자 사이의 공극이 최대한 적어지도록 입자 사이를 밀착시키는 방법이 제시되었으며, 전고체전지를 가압하여 제조하는 전고체전지 제조방법들이 제안되었다.
다만, 종래 제시된 전고체전지 제조방법에 의해서는, 전고체전지 내의 공극이 충분히 제거되지 못하거나, 가압과정에서 전고체전지가 손상되어 전지의 성능이 떨어지는 문제점이 있었다. 이에, 전고체전지 내의 공극을 충분히 제거되면서, 가압과정에서도 전고체전지가 손상되지 않게 하는 전고체전지 제조장치가 필요한 실정이다.
본 발명이 이루고자 하는 기술적 과제는 전고체전지 내의 공극을 충분히 제거할 수 있는 전고체전지 제조장치를 제공하는 데 있다.
또한, 본 발명이 이루고자 하는 다른 기술적 과제는 전체적으로 균일하게 가압되는 전지셀을 제조할 수 있는 전고체전지 제조장치를 제공하는 데 있다.
또한, 본 발명이 이루고자 하는 다른 기술적 과제는 가압과정에서도 전고체전지가 손상되지 않도록 하는 전고체전지 제조장치를 제공하는 데 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 실시예는 일면에 피가공물이 안착되는 거치대, 상기 거치대의 상기 일면 상에 배치되며, 상기 거치대에 안착된 상기 피가공물을 기 설정된 압력으로 가압하는 가압유닛, 및 상기 거치대의 일 영역에 배치되며, 상기 피가공물에 열을 가할 수 있는 가열부를 포함하는, 전고체전지 제조장치를 제공한다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 일 실시예는, 일면에 피가공물이 안착되는 거치대, 상기 거치대의 상기 일면 상에 배치되며, 상기 거치대에 안착된 상기 피가공물을 기 설정된 압력으로 가압하는 가압유닛, 및 상기 피가공물에 인접한 영역에 배치되며, 상기 피가공물에 가해지는 압력을 분산시키는 완충보조 부재를 포함하는, 전고체전지 제조장치를 제공한다.
본 발명의 일 실시예에 따르면, 전고체전지 내의 공극을 충분히 제거할 수 있는 전고체전지 제조장치를 제공할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 전체적으로 균일하게 가압되는 전지셀을 제조할 수 있는 전고체전지 제조장치를 제공할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 가압과정에서도 전고체전지가 손상되지 않도록 하는 전고체전지 제조장치를 제공할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 의해 제공되는 전고체전지 제조장치의 예시도면이다.
도 2는 본 발명의 일 실시예에 따른 전지셀 제조장치의 예시 도면이다.
도 3은 본 발명의 일 실시예에 따른 전지셀 제조장치의 예시 도면이다.
도 4는 본 발명의 일 실시예에 따른 전지셀 제조장치의 예시 도면이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
소자(elements) 또는 층이 다른 소자 또는 층의 "위(on)" 또는 "상(on)"으로 지칭되는 것은 다른 소자 또는 층의 바로 위뿐만 아니라 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 반면, 소자가 "직접 위(directly on)" 또는 "바로 위"로 지칭되는 것은 중간에 다른 소자 또는 층을 개재하지 않은 것을 나타낸다.
종래 전고체전지 내 입자 사이의 공극이 최대한 적어지도록 입자 사이를 밀착시키는 방법이 제시되었으며, 전고체전지를 가압하여 제조하는 전고체전지 제조방법들이 제안되었다. 다만, 종래 제시된 전고체전지 제조방법에 의해서는, 전고체전지 내의 공극이 충분히 제거되지 못하거나, 가압과정에서 전고체전지가 손상되어 전지의 성능이 떨어지는 문제점이 있었다.
이에, 전고체전지 내의 공극을 충분히 제거되면서, 가압과정에서도 전고체전지가 손상되지 않게 하는 전고체전지 제조장치가 필요한 실정이다.
이하, 본 발명의 일 실시예의 전고체전지 제조장치(10)를 설명한다.
도 1은 본 발명의 일 실시예에 의해 제공되는 전고체전지 제조장치의 예시도면이다.
도 1을 참고하면 상기 기술적 과제를 해결하기 위해, 본 발명의 일 실시예는, 피가공물(20)이 거치되는 거치대(100)와 가압유닛(200), 및 거치대(100) 또는 가압유닛(200)의 일 영역에 배치되는 가열부(300)를 포함하는 전고체전지 제조장치(10)를 제공한다.
거치대(100)는 일면에 피가공물(20)이 안착되는 구성이다.
가압유닛(200)은 거치대(100)에 안착되는 피가공물(20)을 가압하는 구성이다.
가열부(300)는 거치대(100) 또는 가압유닛(200)의 일 영역에 배치되며, 피가공물(20)에 열을 가하는 구성이다.
이때 피가공물은 전지셀 또는 파우치형 전지를 모두 포함하는 것을 의미하며, 또한, 전지셀은 모노셀과 적층셀 모두를 포함하는 의미로, 고체상태의 양극재, 이때 음극재, 및 고체전해질을 포함하여, 가압 등의 공정을 통해 전고체전지가 되는 것을 의미할 수 있다.
모노셀은 상기 양극층, 상기 음극층 및 상기 고체전해질층으로 구성된 단일의 셀이고, 적층셀은 모노셀이 복수개로 구비되어 적층된 셀을 지칭할 수 있다.
적층셀은, 당해 기술 분야에서 널리 알려져 있는 바이폴라 구조의 셀일 수 있다.
양극재는 리튬 이차 전지의 양극에 통상적으로 사용될 수 있는 양극재라면 모두 사용될 수 있다. 예를 들어, 상기 양극재는 리튬 산화물일 수 있다. 구체적으로, 양극재는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물, LiMnO3, LiMn2O3 등의 리튬 망간 산화물, 리튬 동 산화물, LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물, Ni 사이트형 리튬 니켈산화물, 리튬 망간 복합 산화물 또는 이들의 조합 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
음극재는 리튬 이차전지의 음극에 통상적으로 사용될 수 있는 음극재라면 모두 포함할 수 있다. 예를 들어, 난흑연화 탄소, 흑연계 탄소(천연흑연, 인조흑연) 등의 탄소, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물, 리튬 금속, 리튬 합금, 규소계 합금, 주석계 합금, SnO, SnO2, PbO, PbO2, Sb2O3, GeO, GeO2, Bi2O3, Bi2O4 등의 금속 산화물, 폴리아세틸렌 등의 도전성 고분자, Li-Co-Ni계 재료, 티타늄 산화물, 리튬 티타늄 산화물 또는 이들의 조합 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
고체전해질은 LGPS(Li10 Ge P2 S12), LSPSCl(Li9 .54 Si1 . 74 P1 .44 S11.7 Cl0 .3), Argyrodite 등 황화물계 물질, Perovskite(LLTO), Garnet(LLZO), NASICON, LISICON 등의 산화물계 물질 또는 PEO 등의 고분자계 물질로 구비될 수 있으나, 이에 한정되는 것은 아니다.
고체전해질은 양극재와 혼합되어 하나의 층을 형성할 수 있다. 예를 들어, 고체전해질의 원료 분말과 상기 양극재의 원료 분말을 혼합하여, 서로 혼합되거나 밀착된 상태로써, 상기 고체전해질층 및 상기 양극층을 형성할 수 있다.
또한, 피가공물은 전고체전지가 사용되는 제품의 위치, 형태, 또는 산업분야에 따라 다양한 형태 및 크기를 가지게 될 수 있으며, 예를 들면, 원판의 코인형태, 사각형 형태 등의 형태를 가지는 전지셀일 수 있다.
이하에서는, 거치대(100)에 대해 설명한다.
전술한 바와 같이, 거치대(100)는 일면에 피가공물(20)이 안착된다.
일 실시예에 있어서, 거치대(100)는 그 종류, 크기, 또는 재질 등이 제한되는 것은 아니며, 피가공물(20) 또는 전지셀의 가압과정에서 사용될 수 있으며, 피가압물이 배치되어 고정될 수 있는 형태의 거치대는 모두 본 발명의 권리범위에 속하는 것으로 해석해야 할 것이다.
한편, 일 실시예로 거치대(100)는 거치대(100)의 일 영역에 배치되며, 피가공물(20)에 열을 가할 수 있는 가열부(300)를 더 포함할 수 있다. 이와 같은 가열부(300)를 더 포함하여 피가공물(20)에 가열을 하며 가압을 진행함으로써, 피가공물(20)을 보다 더 치밀하게 압축할 수 있게 된다. 이와 같은 가열부(300)는 특별히 한정되는 것은 아니며, 예를 들면 카트리지 히터, 인덕션, 등이 사용될 수 있다. 다만, 상기 예시에 한정되는 것은 아니다.
일 실시예에 있어서, 가열부(300)는, 피가공물(20)의 온도가 20 ℃ 내지 400 ℃가 되도록 할 수 있으며, 다른 일 예시로는 25 ℃ 내지 85 ℃가 되도록 할 수 있다. 이와 같이 가열부(300)를 이용하여 피가공물(20)의 온도를 향상시킴으로써, 피가공물(20)의 내부 소재들의 유연성을 향상시켜, 가압과정에서의 응력 등에 의해 발생하는 제품손상 현상을 방지할 수 있게 되며, 보다 높은 압력으로 가압하는 공정이 가능하도록 하여, 피가공물(20)의 균질성을 높일 수 있다.
일 실시예에 있어서, 거치대(100)는 가열부(300)의 구동을 제어하는 온도제어부(미도시)를 더 포함할 수 있다. 가열부(300)를 사용할 때, 목적하는 전지의 종류와 공정조건에 따라 가열부(300)의 공정조건을 제어하는 것이 필요한 바, 온도제어부(미도시)를 더 포함할 수 있다.
일 실시예에 있어서, 거치대(100)는, 피가공물(20)의 적어도 일부에 인접하여 배치되는 고정부(미도시)를 더 포함할 수 있다. 이와 같은 고정부(미도시)는, 특별히 한정되는 것은 아니며, 가압과정에서 피가공물들을 고정할 수 있는 구성이면 모두 본 발명의 권리범위에 속하는 것으로 해석해야할 것이다.
일 실시예에 있어서, 거치대(100)는, 피가공물(20)의 적어도 일부에 인접하여 배치되는 완충부재(미도시)를 더 포함할 수 있다. 이와 같은 완충부재(미도시) 역시 특별히 한정되는 것은 아니며, 가압과정에서 피가공물이 주변으로 팽창하는 과정에서 발생하는 부피팽창 또는 제품손상을 방지할 수 있는 완충부재(미도시)면 모두 본 발명의 권리범위에 속하는 것으로 해석해야할 것이다.
이하에서는 가압유닛(200)에 대해 설명한다.
가압유닛(200)은 거치대(100)의 일면 상에 배치되고, 거치대(100)에 안착된 피가공물(20)을 기 설정된 압력으로 가압할 수 있다.
일 실시예에 있어서, 가압유닛(200)은 거치대(100)에 안착된 피가공물(20)을 균일하게 가압하도록 가압면이 평평한 면으로 이루어질 수 있다. 이 경우, 가압유닛(200)은 일정 크기의 강성(stiffness) 재질로 이루어질 수 있으며, 이를 통해 가압하는 압력에 의해 가압유닛(200)의 가압면과 피가공물(20)이 흡착되는 것을 방지할 수 있다.
일 실시예에 있어서, 가압유닛(200)은, 피가공물(20)과 접촉하는 일 영역에 가압패드(미도시)를 더 포함할 수 있다. 이와 같은 가압패드(미도시)는, 피가공물(20)의 종류와 그 크기에 따라 다양한 소재를 사용할 수 있다.
일 실시예에 있어서, 가압패드(미도시)는, 탄성재질을 포함할 수 있다. 피가공물(20)이 전지셀인 경우, 가압유닛(200)을 이용한 가압과정에서 전지셀이 손상될 수도 있는 바, 탄성재질을 포함하는 가압패드(미도시)를 가압유닛(200)이 피가공물(20)과 접촉하는 일 영역에 배치시킴으로써, 전지셀이 손상되는 것을 방지할 수 있다.
일 실시예에 있어서, 기 설정된 압력은 대상 피가공물(20)에 포함되어 있는 양극재, 음극재, 및 고체전해질의 두께와 종류에 따라 달라질 수 있으며, 제조되는 전고체전지의 사용목적에 따라서 달라질 수 있다. 일 예시로는, 가압유닛(200)은 2500kN 이하의 압력으로 가압하는 것일 수 있다.
일 실시예에 있어서, 가압유닛(200)은 가압유닛(200)의 가압압력을 제어하는 압력제어부(미도시)를 더 포함할 수 있다. 이와 같은 압력제어부(미도시)는 특별히 한정되는 것은 아니며, 본 기술분야의 통상의 지식을 가진 기술자가 용이하게 선택할 수 있는 압력제어부면 모두 본 발명의 권리범위에 속하는 것으로 해석해야할 것이다.
일 실시예에 있어서, 가압유닛(200)은 가압유닛(200)의 가압시간 및 유닛의 이동을 유닛제어부(미도시)를 더 포함할 수 있다. 이와 같은 유닛제어부(미도시) 역시 특별히 한정되는 것은 아니며, 본 기술분야의 통상의 지식을 가진 기술자가 용이하게 선택할 수 있는 유닛제어부면 모두 본 발명의 권리범위에 속하는 것으로 해석해야할 것이다.
일 실시예에 있어서, 유닛제어부(미도시)는, 가압유닛(200)이 피가공물(20)을 5초 내지 15초 동안 가압하도록 할 수 있다. 가압유닛(200)의 가압과정이 5초 미만으로 지나치게 짧은 경우에는 피가공물(20)의 가압과정이 충분하지 않을 수 있으며, 반대로 가압유닛(200)의 피가공물(20)의 가압과정이 15초를 초과하는 경우에는 피가공물(20)의 손상이 일어날 수 있다.
일 실시예에 있어서, 가압유닛(200)은, 가압유닛(200)의 일 영역에 배치되며, 피가공물(20)에 열을 가할 수 있는 가열부(300)를 더 포함할 수 있다. 이와 같은 가열부(300)를 더 포함하여 피가공물(20)에 가열을 하며 가압을 진행함으로써, 피가공물(20)을 보다 더 치밀하게 압축할 수 있게 된다. 이와 같은 가열부(300)는 특별히 한정되는 것은 아니며, 예를 들면, 카트리지 히터, 등이 사용될 수 있으나, 상기 예시에 한정되는 것은 아니다.
일 실시예에 있어서, 가열부(300)는, 피가공물(20)의 온도가 20 ℃ 내지 400 ℃가 되도록 할 수 있으며, 다른 일 예시로는 25 ℃ 내지 85 ℃가 되도록 할 수 있다. 이와 같이 가열부(300)를 이용하여 피가공물(20)의 온도를 향상시킴으로써, 피가공물(20)의 내부 소재들의 유연성을 향상시켜, 가압과정에서의 응력 등에 의해 발생하는 제품손상 현상을 방지할 수 있게 되며, 보다 높은 압력으로 가압하는 공정이 가능하도록 하여, 피가공물(20)의 균질성을 높일 수 있다.
일 실시예에 있어서, 전지셀 제조장치(10)는 거치대(100)의 일 영역에 배치되는 가열부(300)의 구동을 제어하는 온도제어부(미도시)를 더 포함할 수 있다. 가열부(300)를 사용할 때, 목적하는 전지의 종류와 공정조건에 따라 가열부(300)의 공정조건을 제어하는 것이 필요한 바, 온도제어부(미도시)를 더 포함할 수 있다.
이하에서는 완충보조 부재(400)를 설명한다.
도 2 내지 도 4는 본 발명의 일 실시예에 따른 전지셀 제조장치의 예시 도면이다.
도 2 내지 도 4를 참고하면, 일 실시예에 있어서, 전지셀 제조장치(10)는, 피가공물(20)에 인접한 영역에 배치되며, 피가공물(20)에 가해지는 압력을 분산시키는 완충보조 부재(400)를 더 포함할 수 있다.
보다 구체적으로, 일 실시예에 있어서, 전지셀 제조장치(10)는, 피가공물(20)과 가압유닛(20)의 사이와 피가공물(20)과 거치대(100) 사이 중 적어도 어느 한 위치에 배치되는 완충보조 부재(400)를 더 포함할 수 있다.
일 실시예에 있어서, 완충보조 부재(400)를 더 포함함으로써, 가압유닛(200)을 사용하여 피가공물(20)을 가압하는 과정에서, 완충보조 부재(400)가 보다 안정적으로 피가공물(20)을 가압하도록 할 수 있다.
달리 말해, 완충보조 부재(400)는 가압공정의 수행시 피가공물(20)과 거치대(100) 또는 피가공물(20)과 가압유닛(200) 사이에 위치하여 피가공물(20)의 미세한 두께 편차를 줄임으로써 압력을 피가공물(20)의 전체 표면에 균일하게 분산시켜 피가공물(20)이 훼손되지 않도록 하며, 측방향에 대한 변형 방지 피가공물(예. 전지셀)의 합선을 방지하도록 한다. 이와 같은 완충보조 부재(400)는 피가공물(20)을 전체적으로 덮을 수 있는 형태 또는 피가공물(20)이 완충보조 부재(400) 내에 배치될 수 있는 형태, 등의 다양한 형태의 부재를 구비할 수 있으며, 피가공물(20)의 크기와 같거나 큰 것이 바람직하다.
일 실시예에 있어서, 완충보조 부재(400)는, 두께가 얇으면서도 피가공물(20)의 전체를 덮을 수 있는 부재를 사용하는 것이 바람직하며, 이와 동시에 유연한(flexible)한 구조를 가지도록 하여, 가압유닛(200)을 이용한 가압 과정에서 연신이 일어나지 않아 피가공물(20)의 표면 또는 내부에 손상을 가하지 않도록 하는 부재를 선택하는 것이 바람직하다. 이와 같은 완충보조 부재(400)는, 예를 들면, 가스켓, 종이, 파우치필름, 종이파우치, 실리콘소재의 필름, 또는 이형필름, 등이 있으나, 상기 예시에 한정되는 것은 아니다.
도 2를 참고하면, 일 실시예에 있어서, 전지셀 제조장치(10)는 피가공물(20)과 거치대(100) 사이에 배치되는 완충보조 부재(400)를 포함할 수 있다. 피가공물(20)과 거치대(100) 사이에 완충보조 부재(400)를 배치시킴으로써, 피가공물(20)의 하단 영역이 과도하게 가압되는 현상을 방지할 수 있다.
도 3을 참고하면, 일 실시예에 있어서, 전지셀 제조장치(10)는 피가공물(20)과 가압유닛(200) 사이에 배치되는 완충보조 부재(405)를 포함할 수 있다. 피가공물(20)과 가압유닛(200) 사이에 완충보조 부재(405)를 배치시킴으로써, 피가공물(20)의 특정 영역이 과도하게 가압되는 현상을 방지할 수 있다.
도 4를 참고하면 일 실시예에 있어서, 전지셀 제조장치(10)는 제1 완충보조 부재(400a) 및 제2 완충보조 부재(400b)를 포함할 수 있다. 이때, 제1 완충보조 부재(400a)는 피가공물(20)과 거치대(100) 사이에 배치되고, 제2 완충보조 부재(400b)는 피가공물(20)과 가압유닛(200) 사이에 배치된다.
도면으로 도시되지 않았으나, 일 실시예에 있어서, 전지셀 제조장치(10)는 피가공물(20)을 내부에 배치하는 완충보조 부재(400)를 포함할 수 있다. 일 예로, 전지셀 제조장치(10)는 완충보조 부재(400)로 피가공물(20)을 내부에 배치하는 종이파우치를 구비할 수 있다.
상기 구조를 가지도록 함으로써, 피가공물(20)의 상측 및 하측 영역 모두 압력을 분산시켜, 피가공물(20)의 최종 제품의 품질을 향상시킬 수 있다.
일 실시예에 있어서, 전고체전지 제조장치(10)는 피가공물(20)에 가해지는 압력을 측정하는 압력측정유닛(400)을 더 포함할 수 있으며, 이때 압력측정유닛(400)은 로드셀(Load cell) 등 피가공물(20)에 가해지는 압력을 측정하는 센서일 수 있다.
전술한 바와 같이, 본 발명의 일 실시예에 의해 제공되는 전고체전지 제조장치(10)에 사용할 수 있는 피가공물(20)은, 다양한 형태 및 크기를 가지게 될 수 있으며, 이에 따라 전고체전지 제조장치(10)는 압력측정유닛(400)을 통해 피가공물(20)에 가해지는 압력을 측정하여 피가공물(20)에 균일한 압력을 가할 수 있다.
본 발명의 일 실시예에 따른 전고체전지 제조장치(10)는 압력측정유닛(400)을 이용하여 사용된 가압 압력을 측정하여 기록할 수 있으며, 이를 통해 일정한 전지성능을 가지는 전고체전지의 양산이 가능하도록 할 수 있다.
일 실시예에 있어서, 피가공물(20)에 가해지는 압력을 측정하는 압력측정유닛(400)은 가압유닛(200)에 연결되어 배치될 수 있다.
다른 실시예에 있어서, 압력측정유닛(400)은 거치대(100)에 배치되어, 가압유닛(200)이 피가공물(20)을 가압하는 동안 가압 압력을 측정할 수 있다. 또는, 압력측정유닛(400)은 거치대(100) 및 가압유닛(200) 모두에 배치될 수도 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 전고체전지 제조장치에 관한 것으로 전고체전지 제조에 사용될 수 있다.

Claims (9)

  1. 일면에 피가공물이 안착되는 거치대;
    상기 거치대의 상기 일면 상에 배치되며, 상기 거치대에 안착된 상기 피가공물을 기 설정된 압력으로 가압하는 가압유닛; 및
    상기 거치대 또는 상기 가압유닛의 일 영역에 배치되며, 상기 피가공물에 열을 가할 수 있는 가열부;
    를 포함하는, 전고체전지 제조장치.
  2. 제1 항에 있어서,
    상기 가열부는 상기 피가공물을 20 ℃ 내지 400 ℃의 온도로 가열하는, 전고체전지 제조장치.
  3. 제1 항에 있어서,
    상기 가열부의 일 측면에 배치되며 상기 가열부의 온도를 제어하는 온도제어부;
    를 더 포함하는, 전고체전지 제조장치.
  4. 제1 항에 있어서,
    상기 가압유닛이 상기 피가공물을 가압하는 동안 상기 피가공물에 가해진 압력을 측정하는 압력측정유닛;을 더 포함하는, 전고체전지 제조장치.
  5. 일면에 피가공물이 안착되는 거치대;
    상기 거치대의 상기 일면 상에 배치되며, 상기 거치대에 안착된 상기 피가공물을 기 설정된 압력으로 가압하는 가압유닛; 및
    상기 피가공물에 인접한 영역에 배치되며, 상기 피가공물에 가해지는 압력을 분산시키는 완충보조 부재;
    를 포함하는, 전고체전지 제조장치.
  6. 제5 항에 있어서,
    상기 완충보조 부재는, 상기 거치대 및 상기 피가공물 사이에 배치되는 제1 완충보조 부재를 포함하는, 전고체전지 제조장치.
  7. 제5 항에 있어서,
    상기 완충보조 부재는, 상기 피가공물 및 상기 가압유닛 사이에 배치되는 제2 완충보조 부재를 포함하는, 전고체전지 제조장치.
  8. 제5 항에 있어서,
    상기 가압유닛이 상기 피가공물을 가압하는 동안 상기 피가공물에 가해진 압력을 측정하는 압력측정유닛;을 더 포함하는, 전고체전지 제조장치.
  9. 제8 항에 있어서,
    상기 압력측정유닛은 상기 가압유닛에 연결되어 배치되는, 전고체전지 제조장치.
PCT/KR2023/017826 2022-11-09 2023-11-08 전고체전지 제조장치 WO2024101870A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220148990 2022-11-09
KR10-2022-0148990 2022-11-09
KR10-2022-0188254 2022-12-29
KR1020220188254A KR20240067767A (ko) 2022-11-09 2022-12-29 전고체전지 제조장치

Publications (1)

Publication Number Publication Date
WO2024101870A1 true WO2024101870A1 (ko) 2024-05-16

Family

ID=91033260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017826 WO2024101870A1 (ko) 2022-11-09 2023-11-08 전고체전지 제조장치

Country Status (1)

Country Link
WO (1) WO2024101870A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579994B2 (en) * 2009-05-11 2013-11-12 Toyota Jidosha Kabushiki Kaisha Method for producing a solid-state cell and a solid-state cell
JP2015179566A (ja) * 2014-03-18 2015-10-08 トヨタ自動車株式会社 固体電池及びその製造方法並びに組電池及びその製造方法
KR20220015008A (ko) * 2020-07-30 2022-02-08 한국전기연구원 전고체 전지용 균일 가압 케이스 및 이를 포함하는 전고체 이차전지
KR20220113188A (ko) * 2021-02-05 2022-08-12 (주)피엔티 전고체 이차전지 제조 장치 및 전고체 이차전지 제조 방법
JP2022163356A (ja) * 2021-04-14 2022-10-26 株式会社Subaru 全固体電池制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579994B2 (en) * 2009-05-11 2013-11-12 Toyota Jidosha Kabushiki Kaisha Method for producing a solid-state cell and a solid-state cell
JP2015179566A (ja) * 2014-03-18 2015-10-08 トヨタ自動車株式会社 固体電池及びその製造方法並びに組電池及びその製造方法
KR20220015008A (ko) * 2020-07-30 2022-02-08 한국전기연구원 전고체 전지용 균일 가압 케이스 및 이를 포함하는 전고체 이차전지
KR20220113188A (ko) * 2021-02-05 2022-08-12 (주)피엔티 전고체 이차전지 제조 장치 및 전고체 이차전지 제조 방법
JP2022163356A (ja) * 2021-04-14 2022-10-26 株式会社Subaru 全固体電池制御システム

Similar Documents

Publication Publication Date Title
WO2016195451A1 (ko) 전지팩 기능 검사장치
WO2016208970A1 (ko) 만곡형 전극 조립체 제조 방법
WO2020159081A1 (ko) 자석을 포함하는 가압 지그 및 이를 포함하는 전지모듈
WO2018169359A1 (ko) 전고체 전지용 전극 조립체 및 이를 제조하는 방법
WO2011059154A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
WO2020159082A1 (ko) 기계적 가압 및 자성에 의한 가압의 동시 부가가 가능한 전지셀을 포함하는 전지 조립체
WO2019074247A1 (ko) 양방향 냉각구조를 가진 배터리 팩
WO2014133303A1 (ko) 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
WO2022164033A1 (ko) 배터리 셀의 단락 검사부를 구비하는 가압 활성화 장치
WO2022019532A1 (ko) 전지셀 용량 측정 장치 및 전지셀 용량 측정 방법
WO2024101870A1 (ko) 전고체전지 제조장치
WO2020231149A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2018030835A1 (ko) 이차 전지
WO2021225346A1 (ko) 전고체 전지
WO2022145747A1 (ko) 재작업 자동화 장비를 포함하는 전지셀 제조장치 및 이를 이용한 재작업 수량 계수 방법
WO2024117600A1 (ko) 전고체전지 제조장치
WO2021080212A1 (ko) 가압식 분리막 저항 측정 장치 및 측정 방법
WO2018012902A1 (en) Electrode and method for manufacturing same
WO2020106106A1 (ko) 음극의 제조방법 및 이에 따른 음극을 포함하는 급속충전 성능이 개선된 이차전지
WO2017213332A2 (ko) 2차 전지 전극의 두께 변화 측정 장치 및 그를 장착한 2차 전지
WO2023063735A1 (ko) 가압 채널 및 이를 포함하는 이차전지 충방전 장치
WO2021246615A1 (ko) 유체를 포함하는 가압장치 및 이를 이용한 전극 및 전극 및 전극조립체 제조방법
WO2023063736A1 (ko) 가압 채널 및 이를 포함하는 이차전지 충방전 장치
WO2022065709A1 (ko) 접착력을 개선한 단위구조체 제조용 라미네이터
WO2022019694A1 (ko) 박막 집전체를 포함하는 전고체전지 및 이의 제조방법