WO2024101794A1 - 전고체 전지 - Google Patents

전고체 전지 Download PDF

Info

Publication number
WO2024101794A1
WO2024101794A1 PCT/KR2023/017512 KR2023017512W WO2024101794A1 WO 2024101794 A1 WO2024101794 A1 WO 2024101794A1 KR 2023017512 W KR2023017512 W KR 2023017512W WO 2024101794 A1 WO2024101794 A1 WO 2024101794A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
cell stack
solid
state battery
tape
Prior art date
Application number
PCT/KR2023/017512
Other languages
English (en)
French (fr)
Inventor
이은경
류영균
박규성
곽병도
조익환
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2024101794A1 publication Critical patent/WO2024101794A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery, and more specifically, to an all-solid-state battery that accommodates a cell stack in an outer case by applying an inner case.
  • a square-type lithium-ion battery is constructed by wrapping and fixing the outside of an electrode assembly consisting of a positive electrode plate, a separator, and a negative electrode plate with adhesive tape and inserting it into the inside of a case.
  • the thickness of the electrode assembly wrapped with tape is smaller than the space gap inside the case.
  • An all-solid-state battery is equipped with a solid electrolyte membrane that functions as a separator and electrolyte between the positive electrode plate and the negative electrode plate. All-solid-state batteries use lithium metal as a cathode to achieve high energy density.
  • the layer volume expands and decreases in the negative electrode plate during the charging and discharging process. This change is much more severe than the change in the negative electrode plate that occurs in the active material due to the insertion and desorption of lithium ions in a lithium-ion battery.
  • lithium ions released from the positive electrode plate are deposited as lithium metal on the negative electrode plate, and are stripped again during the discharging process. Therefore, a change in volume occurs in the negative electrode plate during charging and discharging.
  • the volume change of the negative electrode plate is structurally unstable in terms of the overall cell and is unstable in terms of the growth of lithium dendrites. Therefore, in order to absorb partial pressure changes and distribute force caused by lithium plating and stripping on the negative electrode plate, an elastic sheet may be inserted between the current collectors of the negative electrode plate and the positive electrode plate.
  • the elastic sheet is inserted into the cell stack to form compressible foam for volume compensation.
  • the elastic sheet increases the volume of the cell stack compared to the internal space of the case, making the process of inserting the cell stack into the case difficult.
  • One embodiment of the present invention provides an all-solid-state battery in which a cell stack can be inserted into a case.
  • one embodiment of the present invention provides an all-solid-state battery in which the cell stack is inserted into the outer case and accommodated by applying an inner case.
  • An all-solid-state battery includes a cell stack formed by stacking a first electrode plate, a solid electrolyte layer, and a second electrode plate, and a first case and a second case each housing both sides of the cell stack. It includes an inner case formed by combining an inner case, a cushioning tape attached to an outer surface of the inner case, an outer case containing the inner case to which the cushioning tape is attached, and a cap plate coupled to an opening of the outer case.
  • At least one of the outer case and the cap plate may be electrically connected to the first electrode plate, and an electrode terminal installed on the cap plate through an insulating member may be electrically connected to the second electrode plate.
  • the first electrode plate may be connected to the cap plate through a first electrode tab and connected to the outer case welded to the cap plate, and the second electrode plate may be connected to the electrode terminal through a second electrode tab.
  • the first case and the second case may be coupled to each other in the stacking direction of the cell stack and overlap in the stacking direction.
  • the first case may be connected to the first electrode plate and directly contact the outer case to be electrically connected.
  • the first case forms a first insulating part inside and outside the opening
  • the second case forms a second insulating part inside and outside the opening
  • the first insulating part and the second insulating part form a first insulating part inside and outside the opening.
  • the insulating portions may be tightly coupled to each other.
  • the second insulating part may further include an insulating extension formed on an outer surface of the second case facing the inner surface of the outer case.
  • the buffering tape may be attached to the outer surfaces of the first case and the second case by wrapping it along the overlap line of the first case and the second case in a circumferential direction of the cell stack.
  • the overlap line may be formed between a first electrode tab connected to the first electrode plate and a second electrode tab connected to the second electrode plate.
  • the maximum width of the buffer tape may be a gap set between the first electrode tab and the second electrode tab in the stacking direction of the cell stack.
  • the buffering tape may be formed of acrylic foam or urethane foam.
  • the cushioning tape is made of polyurethane-based, polyacrylic-based, polyacrylic-urethane composite, and rubber-based materials and may have a foam structure as needed.
  • the cushioning tape has a shock absorption rate of 45% or more and may have an adhesive component on at least one side.
  • the cushioning tape intersects the overlap line of the first case and the second case, crosses the longitudinal direction of the cell stack, goes in the width direction of the cell stack, and goes in the height direction of the cell stack, and the first case It can be attached by wrapping it around the outer surface of the case and the second case.
  • the maximum width of the buffering tape may be set to the entire length of the cell stack along the longitudinal direction of the cell stack.
  • the buffering tape is a first tape wound and attached to the outer surfaces of the first case and the second case while going in the circumferential direction of the cell stack along the overlap line of the first case and the second case, and the overlap It intersects the line, intersects the length direction of the cell stack, goes in the width direction of the cell stack, and goes in the height direction of the cell stack, wound around the outer surfaces of the first tape, the first case, and the second case. It may include a second tape attached to the device.
  • the all-solid-state battery accommodates the cell stack in the inner case, allowing the cell stack to be inserted into the outer case. Additionally, in one embodiment, a buffering tape is provided on the outer surface of the inner case, so that the cell stack can be inserted into the outer case and at the same time, vibration or shock can be absorbed through the buffering tape disposed between the inner case and the outer case. Therefore, cutting of the electrode tab located between the inner case and the outer case can be prevented.
  • FIG. 1 is an exploded perspective view of an all-solid-state battery according to a first embodiment of the present invention.
  • Figure 2 is an exploded perspective view of the cell assembly and inner case applied to Figure 1.
  • Figure 3 is a cross-sectional view taken along line III-III in Figure 1.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1.
  • Figure 5 is an exploded perspective view of an all-solid-state battery according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5.
  • Figure 7 is an exploded perspective view of an all-solid-state battery according to a third embodiment of the present invention.
  • Figure 1 is an exploded perspective view of an all-solid-state battery according to the first embodiment of the present invention
  • Figure 2 is an exploded perspective view of the cell assembly and inner case applied to Figure 1.
  • the all-solid-state battery 1 of the first embodiment includes a cell stack 10, an inner case 20, a buffering tape 30, and an outer case 40.
  • the cell stack 10 includes a first electrode plate 11, a solid electrolyte layer 13, and a second electrode plate 12, and the first electrode plate 11 and the second electrode plate are placed on both sides of the solid electrolyte layer 13. It is constructed by stacking each of (12).
  • the first electrode plate 11 may be composed of a negative electrode plate
  • the second electrode plate 12 may be composed of a positive electrode plate.
  • the cell stack 10 has a mono-cell or bi-cell structure due to the stacked structure of the first electrode plate 11, the solid electrolyte layer 13, and the second electrode plate 12. Cells (unit cells) can be formed.
  • a bi-cell is formed by providing solid electrolyte layers on both sides of a positive electrode plate and placing a negative electrode plate on each solid electrolyte layer. Additionally, a mono-cell is formed by sequentially stacking a solid electrolyte layer and a negative electrode plate on one side of a positive electrode plate.
  • the first electrode plate 11 that is, the negative electrode plate, includes a negative electrode current collector made of stainless steel or nickel-coated copper (Ni-coated Cu) and a negative electrode composite layer formed by applying a slurry to one side of the negative electrode current collector. Includes.
  • the negative electrode plate may not have a negative electrode composite layer and may be formed only with a negative electrode current collector.
  • the lithium precipitated layer precipitated from the negative electrode current collector acts as a negative electrode composite layer.
  • the negative electrode current collector has a first electrode tab 111 that protrudes further laterally than the solid electrolyte layer 13.
  • the second electrode plate 12, that is, the positive electrode plate, is formed by applying a positive electrode compound layer to a positive electrode current collector.
  • the positive electrode plate includes a positive electrode current collector made of aluminum and a positive electrode composite layer formed by applying a slurry to both sides of the positive electrode current collector. That is, during charging and discharging, the positive electrode composite layer allows lithium ions to enter and exit.
  • the positive electrode current collector has a second electrode tab 121 that protrudes further laterally than the solid electrolyte layer 13.
  • the first electrode tabs 111 are overlapped with each other in the stacking direction and are drawn out to one side of the cell stack 10 .
  • the second electrode tabs 121 are overlapped with each other in the stacking direction and are pulled out to one side of the cell stack 10.
  • first electrode tabs 111 and the second electrode tabs 121 may be pulled out in the same direction of the cell stack 10, as shown in FIGS. 1 and 2 .
  • first electrode tabs and the second electrode tabs may be pulled out from both sides of the cell stack in opposite directions.
  • lithium ions from the positive electrode plate 12 pass through the solid electrolyte layer 13 and precipitate on one side of the negative electrode current collector of the negative electrode plate 11, forming a lithium precipitation layer. do.
  • lithium ions in the lithium precipitation layer of the negative electrode plate 11 are dissociated and move to the positive electrode plate 12 through the solid electrolyte layer 13.
  • the inner case 20 is formed by combining the first case 21 and the second case 22, which respectively embed both sides of the cell stack 10, with each other.
  • the first case 21 accommodates a portion of the lower portion of the cell stack 10 on the negative electrode plate 11 disposed at the lowest side.
  • the second case 22 accommodates the other upper part of the cell stack 10. Additionally, the first and second cases 21 and 22 are provided on both sides of the cell stack 10 in the stacking direction and are coupled to each other in the stacking direction to accommodate the cell stack 10 therein.
  • the buffering tape 30 is attached to the outer surface of the inner case 20.
  • the outer case 40 contains an inner case 20 to which a buffering tape 30 is attached. Therefore, the buffering tape 30 can absorb vibration or shock between the inner case 20 and the outer case 40.
  • the cap plate 50 is coupled to the opening of the outer case 40 to form the all-solid-state battery 1.
  • Figure 3 is a cross-sectional view taken along line III-III in Figure 1.
  • the first electrode plate 11 that is, the negative electrode plate, is electrically connected to at least one of the outer case 40 and the cap plate 50.
  • the first electrode plate 11 is connected to the cap plate 50 through the first electrode tab 111, and since the cap plate 50 is welded to the outer case 40, it is also electrically connected to the outer case 50.
  • the second electrode plate 12 that is, the positive electrode plate, is electrically connected to the electrode terminal 52 installed on the cap plate 50 through the insulating member 51. Accordingly, the electrode terminal 52 becomes positive, and the outer case 40 and the cap plate 50 welded to each other become negative.
  • the insulating member 51 is made of silicon, polytetrafluoroethylene (PTFE), and fluoropolymer, and the electrode terminal 52 is surrounded by an insulating member 51 such as a sealant. Accordingly, the electrode terminal 52 and the cap plate 50 form independent metal surfaces with different polarities.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1.
  • the first case 21 and the second case 22 are coupled to each other in the stacking direction (up and down direction in Figure 4) of the cell stack 10 and overlap in the stacking direction. This forms the inner case 20 that accommodates the cell stack 10.
  • the first case 21 is connected to the first electrode plate 11 and can be electrically connected by directly contacting the outer case 40.
  • the first electrode tab 111 of the first electrode plate 11 may not be provided, and the configuration of the first electrode plate 11 can be simplified.
  • FIG. 3 shows a configuration in which the first electrode tab 111 of the first electrode plate 11 is welded to the inner surface of the cap plate 50.
  • the first case 21 forms a first insulating portion 211 inside and outside the opening.
  • the second case 22 forms second insulating portions 221 inside and outside the opening.
  • the second insulating part 221 further includes an insulating extension part 222 formed on the outer surface of the second case 22. Since the insulating extension portion 222 is formed on the outer surface of the second case 22 to face the inner surface of the outer case 40, the second case 22 and the outer case 40 are electrically insulated from each other.
  • the overlap line OL is formed between the first electrode tab 111 connected to the first electrode plate 11 and the second electrode tab 121 connected to the second electrode plate 12.
  • the first electrode tab 111 and the second electrode tab 121 are spaced apart in the width direction (x-axis direction) of the cell stack 10 and are spaced apart in the stacking direction (z-axis direction).
  • the first case 21 is provided with a first open groove 213 on one side of the cell stack 10 in the longitudinal direction (y-axis direction).
  • the first open groove 213 is open toward the first electrode tab 111 and the second case 22.
  • the second case 22 is provided with a second open groove 223 on one side of the cell stack 10 in the longitudinal direction (y-axis direction).
  • the second open groove 223 is open toward the second electrode tab 121 and the first case 21.
  • the cell stack 10 is accommodated inside the first and second cases 21 and 22, and the first and second electrode tabs 111 , 121) can be drawn out into the first and second open grooves 213 and 223.
  • the buffer tape 30 moves in the circumferential direction of the cell stack 10 along the overlap line OL of the first and second cases 21 and 22, and is attached to the first case 21 and the second case 22. It is attached by wrapping around the outside.
  • the maximum width of the cushioning tape 30 is set between the first electrode tab 111 and the second electrode tab 121 in the stacking direction (z-axis direction) of the cell stack 10.
  • the width of the buffering tape 30 may be set to a size that can provide the required buffering performance.
  • the cushioning tape 30 may be formed of acrylic foam or urethane foam.
  • the cushioning tape 30 has a shock absorption rate of 45% or more and has an adhesive component on at least one side, making it easy to handle when attached to the first and second cases 21 and 22.
  • the cushioning tape 30 is made of polyurethane-based, polyacrylic-based, polyacrylic-urethane composite, and rubber-based materials and has a foam structure as needed, so it can have excellent shock absorption between the inner case 20 and the outer case 40. there is. Therefore, the buffering tape 30 can prevent the first electrode tab 111 and the second electrode tab 121 from being damaged between the cell stack 10 and the cap plate 50.
  • Figure 5 is an exploded perspective view of an all-solid-state battery according to a second embodiment of the present invention
  • Figure 6 is a cross-sectional view taken along line VI-VI of Figure 5.
  • the buffer tape 60 intersects the overlap line OL of the first and second cases 21 and 22 and forms a cell stack.
  • the first case It is attached by wrapping it around the outer surfaces of 21) and the second case 22.
  • the maximum width of the cushioning tape 60 is set to the entire length of the cell stack 10 along the longitudinal direction (y-axis direction) of the cell stack 10.
  • the width of the buffering tape 60 may be set to a size that can provide the required buffering performance.
  • the buffering performance of the cushioning tape 60 of the second embodiment is compared to that of the cushioning tape 30 of the first embodiment. It may be superior to the buffering performance caused by .
  • the buffering tape 60 exhibits excellent buffering performance between the cell stack 10 and the outer case 40, so that the first electrode tab is connected between the cell stack 10 and the cap plate 50. Damage of the 111 and the second electrode tab 121 can be further prevented.
  • Figure 7 is an exploded perspective view of an all-solid-state battery according to a third embodiment of the present invention.
  • the cushioning tape 70 includes a first tape 71 and a second tape 72.
  • the first tape 71 corresponds to the cushioning tape 30 of the first embodiment
  • the second tape 72 corresponds to the cushioning tape 60 of the second embodiment.
  • the first tape 71 moves in the circumferential direction of the cell stack 10 along the overlap line OL of the first and second cases 21 and 22, and is connected to the first and second cases 21 and 22. ) is attached by wrapping it around the outer surface.
  • the second tape 72 intersects the overlap line OL of the first and second cases 21 and 22 and crosses the longitudinal direction (y-axis direction) of the cell stack 10 to form the cell stack 10. is wound around the outer surfaces of the first tape 71, the first case 21, and the second case 22 in the width direction (x-axis direction) and in the height direction (z-axis direction) of the cell stack 10. It is attached.
  • the buffering tape 70 of the third embodiment is a combination of the buffering tape 30 of the first embodiment and the buffering tape 60 of the second embodiment, and can further improve buffering performance. That is, in the third embodiment, the buffering tape 70 exhibits excellent buffering performance between the cell stack 10 and the outer case 40, so that the first electrode tab is connected between the cell stack 10 and the cap plate 50. Damage of the 111 and the second electrode tab 121 can be further prevented.
  • first electrode plate 12 second electrode plate
  • Cap plate 51 Insulating member
  • second insulating part 222 insulating extended part
  • first open groove 223 second open groove

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Dispersion Chemistry (AREA)

Abstract

일 실시예의 전고체 전지(ALL SOLID BATTERY)는, 제1극판과 고체전해질층 및 제2극판을 적층하여 형성되는 셀 적층체, 상기 셀 적층체의 양측을 각각 내장하는 제1케이스와 제2케이스를 서로 결합하여 형성되는 인너 케이스, 상기 인너 케이스의 외면에 부착되는 완충 테이프, 상기 완충 테이프가 부착된 상기 인너 케이스를 내장하는 아웃 케이스, 및 상기 아웃 케이스의 개구에 결합되는 캡 플레이트를 포함한다.

Description

전고체 전지
본 발명은 전고체 전지에 관한 것으로서, 보다 상세하게는 인너 케이스를 적용하여 셀 적층체를 아웃 케이스에 수용하는 전고체 전지에 관한 것이다.
각형 타입의 리튬이온전지는 양극극판, 분리막 및 음극극판으로 이루어진 전극조립체의 외부를 점착 테이프로 감싸서 고정하여 케이스의 내부에 삽입하여 구성된다. 테이프로 감싸인 전극조립체의 두께는 케이스 내부의 공간의 간격보다 작다.
전고체전지는 분리막과 전해질의 기능을 수행하는 고체전해질막을 양극극판과 음극극판 사이에 구비한다. 전고체전지는 높은 에너지밀도를 구현하기 위하여, 리튬금속을 음극으로 사용한다.
리튬금속을 음극으로 사용하는 경우, 충방전 과정에서 음극극판에서 층 부피의 팽창 및 감소가 일어난다. 이 변화는 리튬이온전지에서 리튬이온의 삽입 탈리로 활물질에서 이루어지는 음극극판에서의 변화보다 훨씬 심하다.
충전과정에서 양극극판으로부터 나온 리튬이온이 음극극판에 리튬 금속으로 석출(plating)되고, 방전과정 중에는 다시 스트립핑(stripping) 된다. 따라서 음극극판에서는 충방전시 부피 변화가 발생한다.
한편 음극극판의 부피 변화는 셀 전체 측면에서 볼 때, 구조적으로 불안정하고, 리튬덴드라이트의 성장 측면에서 불안정하다. 따라서 음극극판에 리튬 석출(plating)과 스트립핑(stripping)으로 인하여 생기는 부분적인 압력 변화를 흡수하고 힘을 분산하기 위하여, 음극극판과 양극극판의 집전체 사이에 탄성시트를 삽입할 수도 있다.
탄성시트는 셀 적층체 내부에 부피 보상을 목적으로 압축 가능한 폼을 형성하여 삽입되는 것이다. 그러나 탄성시트는 셀 적층체의 부피를 케이스의 내부 공간에 비하여 증대시키므로 셀 적층체를 케이스에 삽입하는 공정을 어렵게 한다.
본 발명의 일 실시예는 셀 적층체를 케이스에 삽입 가능한 전고체 전지를 제공하는 것이다. 또한 본 발명의 일 실시예는 인너 케이스를 적용하여 셀 적층체를 아웃 케이스에 삽입하여 수용케 하는 전고체 전지를 제공하는 것이다.
본 발명의 일 실시예에 따른 전고체 전지는, 제1극판과 고체전해질층 및 제2극판을 적층하여 형성되는 셀 적층체, 상기 셀 적층체의 양측을 각각 내장하는 제1케이스와 제2케이스를 서로 결합하여 형성되는 인너 케이스, 상기 인너 케이스의 외면에 부착되는 완충 테이프, 상기 완충 테이프가 부착된 상기 인너 케이스를 내장하는 아웃 케이스, 및 상기 아웃 케이스의 개구에 결합되는 캡 플레이트를 포함한다.
상기 아웃 케이스와 상기 캡 플레이트 중 적어도 하나는, 상기 제1극판에 전기적으로 연결되고, 상기 캡 플레이트에 절연부재를 개재하여 설치되는 전극단자는, 상기 제2극판에 전기적으로 연결될 수 있다.
상기 제1극판은 제1전극탭으로 상기 캡 플레이트에 연결되어 상기 캡 플레이트와 용접되는 상기 아웃 케이스에 연결되고, 상기 제2극판은 제2전극탭으로 상기 전극단자에 연결될 수 있다.
상기 제1케이스와 상기 제2케이스는 상기 셀 적층체의 적층 방향으로 서로 결합되고 상기 적층 방향으로 오버랩(overlap) 될 수 있다.
상기 제1케이스는 상기 제1극판에 연결되어 상기 아웃 케이스에 직접 접촉되어 전기적으로 연결될 수 있다.
상기 오버랩되는 부분에서 상기 제1케이스는 개구의 내측과 외측에 제1절연부를 형성하고, 상기 제2케이스는 개구의 내측과 외측에 제2절연부를 형성하며, 상기 제1절연부와 상기 제2절연부는 서로 밀착 결합될 수 있다.
상기 제2절연부는 상기 아웃 케이스의 내면을 대향하는 상기 제2케이스의 외면에 형성되는 절연 확장부를 더 포함할 수 있다.
상기 완충 테이프는 상기 제1케이스와 상기 제2케이스의 오버랩 라인을 따라 상기 셀 적층체의 둘레 방향으로 가면서 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착될 수 있다.
상기 오버랩 라인은 상기 제1극판에 연결되는 제1전극탭과 상기 제2극판에 연결되는 제2전극탭 사이에 형성될 수 있다.
상기 완충 테이프의 최대폭은 상기 셀 적층체의 적층 방향에서 상기 제1전극탭과 상기 제2전극탭 사이에 설정되는 간격일 수 있다.
상기 완충 테이프는 아크릴폼 또는 우레탄폼으로 형성될 수 있다.
상기 완충 테이프는 폴리우레탄계, 폴리아크릴계, 폴리아크릴-우레탄 복합, 및 고무계의 소재로 필요에 따라 발포 구조를 가질 수 있다.
상기 완충 테이프는 충격흡수율 45% 이상을 가지며, 적어도 일면에 점착성분을 가질 수 있다.
상기 완충 테이프는 상기 제1케이스와 상기 제2케이스의 오버랩 라인에 교차하고 상기 셀 적층체의 길이 방향에 교차하여 상기 셀 적층체의 폭 방향으로 가고 상기 셀 적층체의 높이 방향으로 가면서 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착될 수 있다.
상기 완충 테이프의 최대폭은 상기 셀 적층체의 길이 방향을 따라 상기 셀 적층체의 전체 길이로 설정될 수 있다.
상기 완충 테이프는 상기 제1케이스와 상기 제2케이스의 오버랩 라인을 따라 상기 셀 적층체의 둘레 방향으로 가면서 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착되는 제1테이프, 및 상기 오버랩 라인에 교차하고 상기 셀 적층체의 길이 방향에 교차하여 상기 셀 적층체의 폭 방향으로 가고 상기 셀 적층체의 높이 방향으로 가면서 상기 제1테이프 및 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착되는 제2테이프를 포함할 수 있다.
본 발명의 일 실시예에 따른 전고체 전지는 셀 적층체를 인너 케이스에 수용하므로 셀 적층체를 아웃 케이스에 삽입 가능하게 한다. 또한, 일 실시예는 인너 케이스의 외면에 완충 테이프를 구비하므로 셀 적층체를 아웃 케이스에 삽입 가능하게 하면서 동시에 인너 케이스와 아웃 케이스 사이에 배치되는 완충 테이프를 통하여 진동이나 충격을 흡수할 수 있다. 따라서 인너 케이스와 아웃 케이스 사이에 위치하는 전극탭의 절단이 방지될 수 있다.
도 1은 본 발명의 제1실시예에 따른 전고체 전지의 분해 사시도이다.
도 2는 도 1에 적용되는 셀 조립체와 인너 케이스의 분해 사시도이다.
도 3은 도 1의 Ⅲ-Ⅲ 선을 따라 잘라서 도시한 단면도이다.
도 4는 도 1의 Ⅳ-Ⅳ 선을 따라 잘라서 도시한 단면도이다.
도 5는 본 발명의 제2실시예에 따른 전고체 전지의 분해 사시도이다.
도 6은 도 5의 Ⅵ-Ⅵ 선을 따라 잘라서 도시한 단면도이다.
도 7은 본 발명의 제3실시예에 따른 전고체 전지의 분해 사시도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
도 1은 본 발명의 제1실시예에 따른 전고체 전지의 분해 사시도이고, 도 2는 도 1에 적용되는 셀 조립체와 인너 케이스의 분해 사시도이다. 도 1 및 도 2를 참조하면, 제1실시예의 전고체 전지(1)는 셀 적층체(10), 인너 케이스(20), 완충 테이프(30) 및 아웃 케이스(40)를 포함한다.
셀 적층체(10)는 제1극판(11), 고체전해질층(13) 및 제2극판(12)을 포함하며, 고체전해질층(13)의 양면에 제1극판(11)과 제2극판(12)을 각각 구비하여 적층하여 구성된다. 일례로써, 제1극판(11)은 음극극판으로 구성되고, 제2극판(12)은 양극극판으로 구성될 수 있다.
셀 적층체(10)는 제1극판(11)과 고체전해질층(13) 및 제2극판(12)의 적층 구조에 의하여 모노셀(mono-cell) 또는 바이셀(bi-cell) 구조로 단위셀(unit cell)을 형성할 수 있다.
즉 바이셀(bi-cell)은 양극극판의 양면에 고체전해질층을 각각 구비하고, 각각의 고체전해질층에 음극극판을 배치하여 형성된다. 또한 모노셀(mono-cell)은 양극극판의 일측에 고체전해질층과 음극극판을 순차적으로 적층하여 형성된다.
제1극판(11), 즉 음극극판은 스테인레스강(Stainless steel) 또는 니켈코팅구리(Ni-coated Cu)로 이루어지는 음극 집전체와 음극 집전체의 한 면에 슬러리를 도포하여 형성되는 음극합재층을 포함한다.
음극극판에는 음극합재층이 없고 음극 집전체만으로 형성될 수도 있다. 이 경우, 음극 집전체에서 석출되는 리튬 석출층이 음극합재층으로 작용한다. 음극 집전체는 고체전해질층(13)보다 측방으로 더 돌출되는 제1전극탭(111)을 구비한다.
제2극판(12), 즉 양극극판은 양극 집전체에 양극합재층을 도포하여 형성된다. 양극극판은 알루미늄으로 이루어지는 양극 집전체와 양극 집전체의 양면에 슬러리를 도포하여 형성되는 양극합재층을 포함한다. 즉 충전 및 방전시, 양극합재층은 리튬이온의 출입을 가능하게 한다. 양극 집전체는 고체전해질층(13)보다 측방으로 더 돌출되는 제2전극탭(121)을 구비한다.
제1전극탭들(111)은 적층 방향으로 서로 포개어져 셀 적층체(10)의 일측으로 인출된다. 제2전극탭들(121)은 적층 방향으로 서로 포개어져 셀 적층체(10)의 일측으로 인출된다.
이때, 제1전극탭들(111)과 제2전극탭(121)은 도 1 및 도 2에 도시된 바와 같이, 셀 적층체(10)의 동일 방향으로 인출될 수 있다. 도시하지 않았으나 제1전극탭들과 제2전극탭들은 셀 적층체의 서로 반대 방향 양측으로 각각 인출될 수도 있다.
셀 적층체(10)의 충전시, 양극극판(12)에서 리튬이온이 고체전해질층(13)을 통과하여 음극극판(11) 음극 집전체의 일면에서 석출(plating)되어, 리튬 석출층을 형성한다. 방전시, 음극극판(11)의 리튬 석출층의 리튬이온은 해리되어 고체전해질층(13)을 통과하여 양극극판(12)으로 이동된다.
이와 같이, 셀 적층체(10)는 충전과정에서 양극극판(12)으로부터 나온 리튬이온이 음극극판(11)에 리튬 금속으로 석출되고, 방전과정에서 다시 스트립핑(stripping) 된다. 따라서 음극극판(11)에서는 충방전시 부피 변화가 발생한다. 즉 셀 적층체(10)는 충방전시 부피 변화를 발생시킨다.
인너 케이스(20)는 셀 적층체(10)의 양측을 각각 내장하는 제1케이스(21)와 제2케이스(22)를 서로 결합하여 형성된다. 일례로써, 제1케이스(21)는 최하측에 배치되는 음극극판(11) 측에서 셀 적층체(10)의 일부 하측을 수용한다.
제2케이스(22)는 셀 적층체(10)의 다른 일부 상측을 수용한다. 그리고 제1, 제2케이스(21, 22)는 셀 적층체(10)의 적층 방향 양측에 제공되어 적층 방향으로 서로 결합되어 셀 적층체(10)를 내부에 수용하게 된다.
완충 테이프(30)는 인너 케이스(20)의 외면에 부착된다. 아웃 케이스(40)는 완충 테이프(30)가 부착된 인너 케이스(20)를 내장한다. 따라서 완충 테이프(30)는 인너 케이스(20)와 아웃 케이스(40)의 사이에서 진동이나 충격을 흡수할 수 있다. 캡 플레이트(50)는 아웃 케이스(40)의 개구에 결합되어 전고체 전지(1)를 형성한다.
도 3은 도 1의 Ⅲ-Ⅲ 선을 따라 잘라서 도시한 단면도이다. 도 1 내지 도 3을 참조하면, 제1극판(11) 즉 음극극판은 아웃 케이스(40)와 캡 플레이트(50) 중 적어도 하나에 전기적으로 연결된다.
제1극판(11)은 제1전극탭(111)으로 캡 플레이트(50)에 연결되고, 캡 플레이트(50)가 아웃 케이스(40)에 용접되므로 아웃 케이스(50)에도 전기적으로 연결된다.
제2극판(12) 즉 양극극판은 캡 플레이트(50)에 절연부재(51)를 개재하여 설치되는 전극단자(52)에 전기적으로 연결된다. 따라서 전극단자(52)는 양극을 띠게 되고, 서로 용접되는 아웃 케이스(40)와 캡 플레이트(50)는 음극을 띠게 된다.
일례로써, 절연부재(51)는 실리콘, 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene, PTFE), 불소수지로 이루어지며, 전극단자(52)는 실란트(silant)와 같은 절연부재(51)로 둘러싸인다. 따라서 전극단자(52)와 캡 플레이트(50)는 서로 다른 극성을 가지는 독립된 금속면을 형성한다.
도 4는 도 1의 Ⅳ-Ⅳ 선을 따라 잘라서 도시한 단면도이다. 도 1, 도 3 및 도 4를 참조하면, 제1케이스(21)와 제2케이스(22)는 셀 적층체(10)의 적층 방향(도 4에서 상하 방향)으로 서로 결합되고 적층 방향으로 오버랩 되어, 셀 적층체(10)를 수용하는 인너 케이스(20)를 형성한다.
제1케이스(21)는 제1극판(11)에 연결되어 아웃 케이스(40)에 직접 접촉되어 전기적으로 연결될 수 있다. 이 경우, 제1극판(11)의 제1전극탭(111)은 구비되지 않을 수도 있고, 제1극판(11)의 구성을 단순하게 할 수 있다. 편의상, 도 3은 제1극판(11)의 제1전극탭(111)을 캡 플레이트(50)의 내면에 용접하는 구성을 도시하고 있다.
오버랩되는 부분에서, 제1케이스(21)는 개구의 내측과 외측에 제1절연부(211)를 형성한다. 제2케이스(22)는 개구의 내측과 외측에 제2절연부(221)를 형성한다. 제1, 제2케이스(21, 22) 결합시, 제1절연부(211)와 제2절연부(221)는 서로 밀착 결합되고, 서로 전기적으로 절연된다.
제2절연부(221)는 제2케이스(22)의 외면에 형성되는 절연 확장부(222)를 더 포함한다. 절연 확장부(222)는 제2케이스(22)의 외면에서 아웃 케이스(40)의 내면을 대향하여 형성되므로 제2케이스(22)와 아웃 케이스(40)를 서로 전기적으로 절연한다.
인너 케이스(20)에서 오버랩 라인(OL)은 제1극판(11)에 연결되는 제1전극탭(111)과 제2극판(12)에 연결되는 제2전극탭(121) 사이에 형성된다. 제1전극탭(111)과 제2전극탭(121)은 셀 적층체(10)의 폭 방향(x축 방향)으로 이격되고, 적층 방향(z축 방향)으로 이격된다.
제1전극탭(111)의 인출을 위하여 제1케이스(21)는 셀 적층체(10)의 길이 방향(y축 방향) 일측에 제1개방홈(213)을 구비한다. 제1개방홈(213)은 제1전극탭(111) 및 제2케이스(22)를 향하여 개방된다.
제2전극탭(121)의 인출을 위하여 제2케이스(22)는 셀 적층체(10)의 길이 방향(y축 방향) 일측에 제2개방홈(223)을 구비한다. 제2개방홈(223)은 제2전극탭(121) 및 제1케이스(21)를 향하여 개방된다.
따라서 제1, 제2케이스(21, 22)가 오버랩 결합될 때, 셀 적층체(10)는 제1, 제2케이스(21, 22) 내부에 수용되고, 제1, 제2전극탭(111, 121)은 제1, 제2개방홈(213, 223)으로 인출될 수 있다.
완충 테이프(30)는 제1, 제2케이스(21, 22)의 오버랩 라인(OL)을 따라 셀 적층체(10)의 둘레 방향으로 가면서 제1케이스(21)와 제2케이스(22)의 외면에 감아서 부착된다.
이 때, 완충 테이프(30)의 최대폭은 셀 적층체(10)의 적층 방향(z축 방향)에서 제1전극탭(111)과 제2전극탭(121) 사이에 설정된다. 완충 테이프(30)의 폭은 요구되는 완충 성능을 발휘할 수 있는 크기로 설정될 수 있다.
일례로써, 완충 테이프(30)는 아크릴폼 또는 우레탄폼으로 형성될 수 있다. 또한 완충 테이프(30)는 충격흡수율 45% 이상을 가지며, 적어도 일면에 점착성분을 가지므로 제1, 제2케이스(21, 22)에 부착하는 취급성을 용이하게 한다.
완충 테이프(30)는 폴리우레탄계, 폴리아크릴계, 폴리아크릴-우레탄 복합, 및 고무계의 소재로 필요에 따라 발포 구조를 가지므로 인너 케이스(20)와 아웃 케이스(40) 사이에서 우수한 충격흡수율을 가질 수 있다. 따라서 완충 테이프(30)는 셀 적층체(10)와 캡 플레이트(50) 사이에서 제1전극탭(111)과 제2전극탭(121)의 파손을 방지할 수 있다.
이하 본 발명의 다양한 실시예들에 대하여 설명한다. 제1실시예 및 기 설명된 실시예와 비교하여 동일한 구성에 대한 설명을 생략하고 서로 다른 구성에 대한 설명을 기재한다.
도 5는 본 발명의 제2실시예에 따른 전고체 전지의 분해 사시도이고, 도 6은 도 5의 Ⅵ-Ⅵ 선을 따라 잘라서 도시한 단면도이다. 도 5 및 도 6을 참조하면, 제2실시예의 전고체 전지(2)에서, 완충 테이프(60)는 제1, 제2케이스(21, 22)의 오버랩 라인(OL)에 교차하고 셀 적층체(10)의 길이 방향(y축 방향)에 교차하여 셀 적층체(10)의 폭 방향(x축 방향)으로 가고 셀 적층체(10)의 높이 방향(z축 방향)으로 가면서 제1케이스(21)와 제2케이스(22)의 외면에 감아서 부착된다.
이때 완충 테이프(60)의 최대폭은 셀 적층체(10)의 길이 방향(y축 방향)을 따라 셀 적층체(10)의 전체 길이로 설정된다. 완충 테이프(60)의 폭은 요구되는 완충 성능을 발휘할 수 있는 크기로 설정될 수 있다.
셀 적층체(10)가 길이 방향(y축 방향)보다 폭 방향(x축 방향)보다 더 큰 경우, 제2실시예의 완충 테이프(60)에 의한 완충 성능이 제1실시예의 완충 테이프(30)에 의한 완충 성능보다 우수할 수 있다.
즉 제2실시예에서 완충 테이프(60)는 셀 적층체(10)와 아웃 케이스(40) 사이에서 우수한 완충 성능을 발휘하므로 셀 적층체(10)와 캡 플레이트(50) 사이에서 제1전극탭(111)과 제2전극탭(121)의 파손을 더욱 방지할 수 있다.
도 7은 본 발명의 제3실시예에 따른 전고체 전지의 분해 사시도이다. 도 7을 참조하면, 제3실시예의 전고체 전지(3)에서, 완충 테이프(70)는 제1테이프(71)와 제2테이프(72)를 포함한다. 제1테이프(71)는 제1실시예의 완충 테이프(30)에 대응하고, 제2테이프(72)는 제2실시예의 완충 테이프(60)에 대응한다.
즉 제1테이프(71)는 제1, 제2케이스(21, 22)의 오버랩 라인(OL)을 따라 셀 적층체(10)의 둘레 방향으로 가면서 제1케이스(21)와 제2케이스(22)의 외면에 감아서 부착된다.
제2테이프(72)는 제1, 제2케이스(21, 22)의 오버랩 라인(OL)에 교차하고 셀 적층체(10)의 길이 방향(y축 방향)에 교차하여 셀 적층체(10)의 폭 방향(x축 방향)으로 가고 셀 적층체(10)의 높이 방향(z축 방향)으로 가면서 제1테이프(71) 및 제1케이스(21)와 제2케이스(22)의 외면에 감아서 부착된다.
제3실시예의 완충 테이프(70)는 제1실시예의 완충 테이프(30)와 제2실시예의 완충 테이프(60)를 결합한 것으로 완충 성능을 더욱 높일 수 있다. 즉 제3실시예에서 완충 테이프(70)는 셀 적층체(10)와 아웃 케이스(40) 사이에서 우수한 완충 성능을 발휘하므로 셀 적층체(10)와 캡 플레이트(50) 사이에서 제1전극탭(111)과 제2전극탭(121)의 파손을 더욱 방지할 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 청구범위와 발명의 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
(부호의 설명)
1, 2, 3: 전고체 전지 10: 전극 적층체
11: 제1극판 12: 제2극판
13: 고체전해질층 20: 인너 케이스
30, 60, 70: 완충 테이프 40: 아웃 케이스
50: 캡 플레이트 51: 절연부재
52: 전극단자 71: 제1테이프
72: 제2테이프 111: 제1전극탭
121: 제2전극탭 211: 제1절연부
221: 제2절연부 222: 절연 확장부
213: 제1개방홈 223: 제2개방홈
OL: 오버랩 라인

Claims (16)

  1. 제1극판과 고체전해질층 및 제2극판을 적층하여 형성되는 셀 적층체;
    상기 셀 적층체의 양측을 각각 내장하는 제1케이스와 제2케이스를 서로 결합하여 형성되는 인너 케이스;
    상기 인너 케이스의 외면에 부착되는 완충 테이프;
    상기 완충 테이프가 부착된 상기 인너 케이스를 내장하는 아웃 케이스; 및
    상기 아웃 케이스의 개구에 결합되는 캡 플레이트
    를 포함하는 전고체 전지.
  2. 제1 항에 있어서,
    상기 아웃 케이스와 상기 캡 플레이트 중 적어도 하나는, 상기 제1극판에 전기적으로 연결되고,
    상기 캡 플레이트에 절연부재를 개재하여 설치되는 전극단자는, 상기 제2극판에 전기적으로 연결되는 전고체 전지.
  3. 제2 항에 있어서,
    상기 제1극판은 제1전극탭으로 상기 캡 플레이트에 연결되어 상기 캡 플레이트와 용접되는 상기 아웃 케이스에 연결되고,
    상기 제2극판은 제2전극탭으로 상기 전극단자에 연결되는 전고체 전지.
  4. 제1 항에 있어서,
    상기 제1케이스와 상기 제2케이스는
    상기 셀 적층체의 적층 방향으로 서로 결합되고 상기 적층 방향으로 오버랩 되는 전고체 전지.
  5. 제4 항에 있어서,
    상기 제1케이스는 상기 제1극판에 연결되어 상기 아웃 케이스에 직접 접촉되어 전기적으로 연결되는 전고체 전지.
  6. 제4 항에 있어서,
    상기 오버랩되는 부분에서
    상기 제1케이스는 개구의 내측과 외측에 제1절연부를 형성하고,
    상기 제2케이스는 개구의 내측과 외측에 제2절연부를 형성하며,
    상기 제1절연부와 상기 제2절연부는 서로 밀착 결합되는 전고체 전지.
  7. 제6 항에 있어서,
    상기 제2절연부는 상기 아웃 케이스의 내면을 대향하는 상기 제2케이스의 외면에 형성되는 절연 확장부를 더 포함하는 전고체 전지.
  8. 제4 항에 있어서,
    상기 완충 테이프는
    상기 제1케이스와 상기 제2케이스의 오버랩 라인을 따라상기 셀 적층체의 둘레 방향으로 가면서 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착되는 전고체 전지.
  9. 제8 항에 있어서,
    상기 오버랩 라인은 상기 제1극판에 연결되는 제1전극탭과 상기 제2극판에 연결되는 제2전극탭 사이에 형성되는 전고체 전지.
  10. 제9 항에 있어서,
    상기 완충 테이프의 최대폭은
    상기 셀 적층체의 적층 방향에서 상기 제1전극탭과 상기 제2전극탭 사이에 설정되는 전고체 전지.
  11. 제1 항에 있어서,
    상기 완충 테이프는 아크릴폼 또는 우레탄폼으로 형성되는 전고체 전지.
  12. 제1 항에 있어서,
    상기 완충 테이프는 폴리우레탄계, 폴리아크릴계, 폴리아크릴-우레탄 복합, 및 고무계의 소재로 필요에 따라 발포 구조를 가지는 전고체 전지.
  13. 제12 항에 있어서,
    상기 완충 테이프는 충격흡수율 45% 이상을 가지며, 적어도 일면에 점착성분을 가지는 전고체 전지.
  14. 제4 항에 있어서,
    상기 완충 테이프는
    상기 제1케이스와 상기 제2케이스의 오버랩 라인에 교차하고 상기 셀 적층체의 길이 방향에 교차하여 상기 셀 적층체의 폭 방향으로 가고 상기 셀 적층체의 높이 방향으로 가면서 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착되는 전고체 전지.
  15. 제14 항에 있어서,
    상기 완충 테이프의 최대폭은
    상기 셀 적층체의 길이 방향을 따라 상기 셀 적층체의 전체 길이로 설정되는 전고체 전지.
  16. 제4 항에 있어서,
    상기 완충 테이프는
    상기 제1케이스와 상기 제2케이스의 오버랩 라인을 따라 상기 셀 적층체의 둘레 방향으로 가면서 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착되는 제1테이프, 및
    상기 오버랩 라인에 교차하고 상기 셀 적층체의 길이 방향에 교차하여 상기 셀 적층체의 폭 방향으로 가고 상기 셀 적층체의 높이 방향으로 가면서 상기 제1테이프 및 상기 제1케이스와 상기 제2케이스의 외면에 감아서 부착되는 제2테이프를 포함하는 전고체 전지.
PCT/KR2023/017512 2022-11-11 2023-11-03 전고체 전지 WO2024101794A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0150998 2022-11-11
KR1020220150998A KR20240069923A (ko) 2022-11-11 2022-11-11 전고체 전지

Publications (1)

Publication Number Publication Date
WO2024101794A1 true WO2024101794A1 (ko) 2024-05-16

Family

ID=91032848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017512 WO2024101794A1 (ko) 2022-11-11 2023-11-03 전고체 전지

Country Status (2)

Country Link
KR (1) KR20240069923A (ko)
WO (1) WO2024101794A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273180A (ja) * 2006-03-30 2007-10-18 Sanyo Electric Co Ltd パック電池
JP2019061861A (ja) * 2017-09-27 2019-04-18 日立造船株式会社 全固体電池およびその製造方法
KR20210077676A (ko) * 2018-09-11 2021-06-25 에너자이저 브랜즈, 엘엘씨 슬롯형 그로밋을 갖춘 보청기 배터리
KR102278993B1 (ko) * 2017-03-20 2021-07-20 주식회사 엘지에너지솔루션 전극 조립체
KR20210152928A (ko) * 2020-06-05 2021-12-16 충칭 브이디엘 일렉트로닉스 컴퍼니 리미티드 버튼형 리튬이온 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273180A (ja) * 2006-03-30 2007-10-18 Sanyo Electric Co Ltd パック電池
KR102278993B1 (ko) * 2017-03-20 2021-07-20 주식회사 엘지에너지솔루션 전극 조립체
JP2019061861A (ja) * 2017-09-27 2019-04-18 日立造船株式会社 全固体電池およびその製造方法
KR20210077676A (ko) * 2018-09-11 2021-06-25 에너자이저 브랜즈, 엘엘씨 슬롯형 그로밋을 갖춘 보청기 배터리
KR20210152928A (ko) * 2020-06-05 2021-12-16 충칭 브이디엘 일렉트로닉스 컴퍼니 리미티드 버튼형 리튬이온 전지

Also Published As

Publication number Publication date
KR20240069923A (ko) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2020138847A1 (ko) 에너지 밀도가 향상된 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2021241939A1 (ko) 이차전지
WO2013151233A1 (ko) 배터리셀
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2012177083A2 (ko) 파우치 및 파우치형 이차전지
WO2021038545A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2015056973A1 (ko) 파우치형 이차전지 및 이를 포함하는 이차전지 모듈
WO2019009511A1 (ko) 이차전지
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2020111469A1 (ko) 이차 전지 및 이를 포함하는 디바이스
WO2018048095A1 (ko) 이차 전지
WO2018164389A1 (ko) 이차 전지
WO2021033959A1 (ko) 원통형 전지
WO2018030835A1 (ko) 이차 전지
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2024101794A1 (ko) 전고체 전지
WO2017039352A1 (ko) 향상된 냉각구조를 갖는 배터리 모듈
WO2019112191A1 (ko) 이차전지 모듈
WO2022108335A1 (ko) 이차전지 및 그 제조방법
WO2022098027A1 (ko) 이차전지 모듈, 이를 포함하는 이차전지 팩 및 자동차
WO2013133540A1 (ko) 배터리셀