WO2024101346A1 - Composite filter, module, and communication device - Google Patents

Composite filter, module, and communication device Download PDF

Info

Publication number
WO2024101346A1
WO2024101346A1 PCT/JP2023/040028 JP2023040028W WO2024101346A1 WO 2024101346 A1 WO2024101346 A1 WO 2024101346A1 JP 2023040028 W JP2023040028 W JP 2023040028W WO 2024101346 A1 WO2024101346 A1 WO 2024101346A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
terminal
composite filter
composite
acoustic wave
Prior art date
Application number
PCT/JP2023/040028
Other languages
French (fr)
Japanese (ja)
Inventor
安藤 智洋
武宏 奥道
雅史 堀内
直史 笠松
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024101346A1 publication Critical patent/WO2024101346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/075Ladder networks, e.g. electric wave filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present disclosure relates to a composite filter having two or more filters, as well as a module and a communication device having the composite filter.
  • Patent Document 1 A filter that combines an LC filter with an elastic wave resonator is known (for example, see Patent Document 1 below).
  • Patent Document 1 the attenuation slope in the transition band between the passband and the stopband is made steeper by combining an LC filter with an elastic wave resonator.
  • a composite filter includes an acoustic wave filter, an LC filter, and an electrical element.
  • the acoustic wave filter includes at least one acoustic wave resonator.
  • the LC filter is electrically interposed between the acoustic wave filter and a first terminal.
  • the electrical element is electrically interposed between the acoustic wave filter and a second terminal.
  • the electrical element is an inductor, a wiring having an inductance of 0.3 nH or more, or a capacitor. At least one of the attenuation slopes on the high frequency side and the low frequency side of the pass band of the composite filter satisfies the following formula 1. Equation 1: Min.
  • f30 The frequency at which the insertion loss of the composite filter is 30 dB larger than the Min. Loss (dB).
  • a module according to one aspect of the present disclosure includes the composite filter and a second filter.
  • the second filter is connected to at least one of the first terminal and the second terminal, and has a pass band different from the pass band of the composite filter.
  • a communication device includes the composite filter, an antenna, and an integrated circuit element.
  • the antenna is connected to one of the first terminal and the second terminal.
  • the integrated circuit element is connected to the other of the first terminal and the second terminal.
  • FIG. 2 is a circuit diagram showing a first configuration example of a composite filter according to the embodiment.
  • FIG. 4 is a circuit diagram showing a second configuration example of the composite filter according to the embodiment.
  • 5 is a schematic diagram for explaining parameters used in an inequality that defines the configuration of a composite filter.
  • FIG. 4 is a schematic diagram for explaining the tendency of changes in the parameters.
  • FIG. 11 is another schematic diagram for explaining the tendency of changes in the parameters.
  • FIG. 4 is a schematic diagram showing an example of a passband of the composite filter according to the embodiment.
  • 5A and 5B are schematic diagrams showing examples of attenuation poles of an LC filter included in the composite filter according to the embodiment.
  • FIG. 6B is a circuit diagram showing an example of a configuration for realizing the attenuation pole of FIG.
  • FIG. 6A is a circuit diagram showing another example of the configuration for realizing the attenuation pole of FIG. 6A.
  • FIG. 2 is a schematic cross-sectional view showing an example of the structure of a composite filter according to an embodiment.
  • 5A to 5C are schematic diagrams showing variations in the structure of the composite filter according to the embodiment.
  • 5A to 5C are schematic diagrams showing other variations in the structure of the composite filter according to the embodiment.
  • 11A to 11C are schematic diagrams showing still another variation of the structure of the composite filter according to the embodiment.
  • 11A to 11C are schematic diagrams showing still another variation of the structure of the composite filter according to the embodiment.
  • FIG. 4 is a plan view illustrating a schematic configuration example of an elastic wave resonator included in the composite filter.
  • FIG. 1 is a block diagram showing a main part of a communication device according to an embodiment.
  • Fig. 1 is a circuit diagram showing a first example of a composite filter 1 (reference numeral is shown in Fig. 7) according to an embodiment.
  • Fig. 2 is a circuit diagram showing a second example of a composite filter 1 according to an embodiment.
  • the composite filter 1 according to the first example of a composite filter 1 may be referred to as a composite filter 1A, and the composite filter 1 according to the first example of a composite filter 1 may be referred to as a composite filter 1B.
  • the composite filter 1 is disposed between a first terminal 3A and a second terminal 3B (hereinafter, sometimes referred to as "terminal 3" (reference numeral in FIG. 7) without distinction between the two terminals) and passes components having frequencies in a predetermined pass band among the signals passing between the two terminals. In other words, the composite filter 1 attenuates components having frequencies outside the pass band.
  • the first terminal 3A or the second terminal 3B may be the input side or the output side.
  • the composite filter 1 has an elastic wave filter 5, an LC filter 7, and an additional circuit 9 (reference numerals shown in FIG. 8A).
  • the configuration of the additional circuit 9 is different between the composite filters 1A and 1B.
  • the additional circuit 9 in the composite filter 1A may be referred to as the additional circuit 9A, and the additional circuit in the composite filter 1B may be referred to as the additional circuit 9B.
  • the elastic wave filter 5 has at least one elastic wave resonator 11 (hereinafter, may be simply referred to as the "resonator 11").
  • the LC filter 7 is interposed between the first terminal 3A and the elastic wave filter 5.
  • the additional circuit 9 is interposed between the elastic wave filter 5 and the second terminal 3B.
  • the additional circuit 9 has at least one electrical element 13 (reference numeral in FIG. 2).
  • the electrical element 13 is, for example, an inductor L, a capacitor C, or a specific wiring 15 (reference numeral in FIG. 8B).
  • the specific wiring 15 is assumed to be a wiring having an inductance of 0.3 nH or more.
  • the specific wiring 15 may be regarded as an inductor L. Therefore, in the description of the embodiment, the description of the inductor L of the additional circuit 9 may be applied to the specific wiring 15 of the additional circuit 9, unless a contradiction arises.
  • Figure 3 is a schematic diagram showing an example of the attenuation characteristics (or, from another perspective, the transmission characteristics) of the composite filter 1.
  • the horizontal axis indicates frequency f (Hz), with higher frequencies toward the right of the diagram.
  • the vertical axis indicates insertion loss (sometimes called "Loss").
  • the vertical axis is in dB, with the loss decreasing toward the top of the diagram. Note that in such graphs, values with "-" may be shown on the vertical axis.
  • explanations regarding the magnitude of Loss are given with Loss treated as a positive value, or the absolute value of Loss is mentioned.
  • Line L1 in the figure indicates the attenuation characteristics of composite filter 1.
  • a bandpass filter is assumed as the composite filter 1. Therefore, loss is small in a predetermined passband PB1. Furthermore, loss is large in the stopbands EB1L or EB1H (symbols in Figure 5) on both sides (low frequency side and high frequency side) of the passband PB1.
  • the portion where loss gradually increases from the passband PB1 to the stopband EB1L or EB1H is referred to as the attenuation slope SLP.
  • the attenuation slopes SLP on the high frequency side and the low frequency side satisfy the following formula 1.
  • Equation 1 Min. Loss (dB) ⁇ a ⁇ ⁇ f ⁇ b
  • Min. Loss is an index indicating the magnitude of Loss in the passband PB1.
  • ⁇ f is an index indicating the steepness of the attenuation slope SLP.
  • a and b are parameters whose values vary depending on the size of the LC filter 7 and the additional circuit 9 (more specifically, the number of stages described later). These will be described in detail later.
  • the composite filter 1 having the above configuration has the following effects, for example:
  • the LC filter 7 generally makes it easy to ensure a wide pass band and/or stop band.
  • the elastic wave filter 5 generally makes it easy to increase the steepness of the attenuation slope. Therefore, by combining the two, it becomes easy to make the attenuation slope steep while ensuring a wide band as the pass band or stop band.
  • an LC filter 7 is interposed between the first terminal 3A and the elastic wave filter 5, and an additional circuit 9 is interposed between the elastic wave filter 5 and the second terminal 3B. Therefore, both the impedance of the composite filter 1 as viewed from the input side and the impedance of the composite filter 1 as viewed from the output side can be adjusted by adjusting the inductance and/or capacitance of the components of the LC filter 7 and the additional circuit 9.
  • Equation 1 (1.1. Definition of parameters in formula 1) 3
  • the Min. Loss in Equation 1 refers to the minimum value of the loss in the passband. Usually, the smaller the Min. Loss, the smaller the loss is over the entire passband. In other words, the Min. Loss is a kind of representative value of the loss in the passband.
  • ⁇ f in Equation 1 refers to a normalized value obtained by dividing the absolute value of the frequency difference (Hz) indicated as “ ⁇ f ⁇ f1.5” in FIG. 3 by the frequency f1.5 (Hz).
  • Frequency f1.5 is the frequency f (Hz) when the loss is 1.5 dB greater than the Min. Loss.
  • Frequency f30 is the frequency f (Hz) when the loss is 30 dB greater than the Min. Loss.
  • the passband is often a band where the loss is 3 dB or less. Therefore, ⁇ f indicates the steepness of the attenuation slope in a frequency band relatively close to the passband. The smaller ⁇ f is, the steeper the slope is.
  • a and b in formula 1 are represented by the following formulas.
  • a aa ⁇ (log 10 (order-1)) - ab
  • b b a ⁇ (log 10 (order-1))
  • bb aa 0.00079217 ⁇ exp (0.055664 ⁇ (order-1))
  • ab 3.9180 x exp (-0.0041245 x (order-1))
  • ba 2.8407 ⁇ exp (0.0078456 ⁇ (order-1))
  • bb 0.54831 x exp (0.0032121 x (order-1))
  • the above formulas may be referred to as "formula a”, “formula b", “formula aa”, “formula ab”, “formula ba” and "formula bb” in that order.
  • order is the number (stages) of series arms 17S and parallel arms 17P (FIGS. 1 and 2; hereinafter, these are sometimes referred to as "arms 17" (reference numerals in FIG. 2) without distinction between the two) located on both sides of the acoustic wave filter 5.
  • arms 17 reference numerals in FIG. 2
  • the definition and method of identifying the arms 17 will be described later (Section 1.4).
  • the order will be counted using FIGS. 1 and 2 as examples.
  • LC filter 7 has, in order from first terminal 3A to acoustic wave filter 5, a series arm 17S consisting of a capacitor C, a parallel arm 17P consisting of an inductor L, and a series arm 17S consisting of a capacitor C. Therefore, the number of stages in LC filter 7 is 3.
  • Additional circuit 9A has a series arm 17S consisting of an inductor L. Therefore, the number of stages in additional circuit 9A is 1. As a whole, the number of stages related to order for composite filter 1A is 4.
  • FIG. 2 Take FIG. 2 as an example.
  • the number of stages in LC filter 7 is three, just like in FIG. 1.
  • the number of stages in additional circuit 9B in FIG. 2 is three, just like the number of stages in LC filter 7. Therefore, the number of stages related to order for composite filter 1B as a whole is six.
  • the composite filter 1 has an LC filter 7 on the first terminal 3A side, and an additional circuit 9 on the second terminal 3B side.
  • Each of the LC filter 7 and the additional circuit 9 has at least one arm 17. Therefore, in the configuration of the embodiment, the order is necessarily 2 or more. As a result, the calculation of log 10 0 does not occur.
  • the horizontal axis is a logarithmic axis showing ⁇ f, with values increasing toward the right side of the diagram (the attenuation slope becomes gentler).
  • the vertical axis is a logarithmic axis showing Min. Loss (dB), with loss increasing toward the top of the diagram.
  • Line L3 in the diagram shows the relationship between ⁇ f and Min. Loss when the order is a specific value.
  • Equation 1 shows a trade-off between the steepness of the attenuation slope and the reduction of Loss.
  • FIG. 4B is a schematic diagram showing the relationship between log 10 (order-1) and a and b.
  • the horizontal axis is a logarithmic axis showing log 10 (order-1), and the value of the parameter is larger toward the right side of the figure. It may be considered that the order is larger toward the right side of the figure.
  • the vertical axis on the left side is a logarithmic axis showing a, and the value of a is larger toward the top of the figure.
  • the vertical axis on the right side is a logarithmic axis showing b, and the value of b is larger toward the top of the figure. It should be noted that the size of the vertical axis on the left side and the size of the vertical axis on the right side are different from each other.
  • Line La in the figure shows the relationship between log 10 (order-1) and a.
  • Line Lb shows the relationship between log 10 (order-1) and b.
  • Equation 1 the larger the order, the larger the value of b.
  • b is made negative in Equation 1 and used as an exponent related to the power of ⁇ f.
  • ⁇ f is usually less than 1. Therefore, the larger the order, the larger the value of the right hand side of Equation 1 (from another perspective, Min.Loss shown in Figure 4A).
  • the order of the LC filter 7 and the additional circuit 9 can be determined so that the loss is suppressed to a certain degree in relation to ⁇ f.
  • the certain degree of the above-mentioned loss is for an LC filter with a steep attenuation slope. Therefore, it is possible to achieve both a steep attenuation slope and a reduced insertion loss.
  • LC filters were designed with different numbers of stages and passband bandwidths. Specifically, the variations in the number of stages were 3, 4, 5, 6, 7, and 9.
  • the passbands for all LC filters were set so that the frequency at which the loss was 10 dB on the attenuation slope on the low frequency side was approximately 5 GHz.
  • the passband variations were set so that the frequency band width at which the loss was 10 dB or less was approximately 0.5 GHz, 1 GHz, 2 GHz, and 3 GHz.
  • the LC filters were designed so that the loss in the stopband was 40 dB or more.
  • the inductance of the inductor L and the capacitance of the capacitor C were optimized to satisfy the above requirements.
  • Equation 1 obtained as above, even under conditions (number of stages, etc.) different from those used when Equation 1 was obtained.
  • the arms refer to, for example, multiple intersecting portions of a circuit configured in a ladder type.
  • a ladder type circuit is configured by providing a signal path from the first terminal 3A to the second terminal 3B via the acoustic wave filter 5, and one or more parallel arms (e.g., parallel arms 17P and 21P) that connect multiple positions on the signal path to the reference potential section 19.
  • parallel arms e.g., parallel arms 17P and 21P
  • each separated by one or more connection positions to one or more parallel arms is a series arm (e.g., series arms 17S and 21S).
  • each arm may have only one electrical element (e.g., an inductor L or a capacitor C), or may include two or more electrical elements.
  • an electrical element e.g., an inductor L or a capacitor C
  • a parallel resonant circuit 23P and a series resonant circuit 23S are shown, and such resonant circuits may be included in one arm.
  • a more complex circuit e.g., a dual resonant circuit
  • connection positions from an electrical perspective to the signal path are substantially the same, they may be regarded as one parallel arm.
  • the two parallel arms may be regarded as one parallel arm.
  • electrical elements may be connected in parallel to the signal path across the connection position of the parallel arm to the signal path. Such electrical elements can also be considered as a type of series arm. However, electrical elements such as those described above often contribute to fine-tuning the characteristics. Therefore, the above electrical elements do not need to be included in the series arm when counting the order. In addition, specific parts such as those described above may be appropriately excluded from the arms when counting the order, taking into account the impact they have on the ladder-type circuit.
  • a filter may be constructed by electric field coupling and/or magnetic field coupling between the inductors L of the two parallel arms. The presence or absence of such coupling may be ignored when counting the order. The same applies to couplings in other parts.
  • the series arm 17S and parallel arm 17P related to the order refer to those that the composite filter 1 has on the first terminal 3A side and the second terminal 3B side with respect to the acoustic wave filter 5.
  • the order is the number of stages of the arms 17 interposed between the first terminal 3A and the acoustic wave filter 5 and between the acoustic wave filter 5 and the second terminal 3B.
  • the combination of the matching circuit and the LC filter may be defined as the LC filter 7.
  • the entire circuit having L and C and performing a filter function, and located between the first terminal 3A and the acoustic wave filter 5, may be regarded as the LC filter 7.
  • the entire circuit having L and C and located between the acoustic wave filter 5 and the second terminal 3B may be regarded as the additional circuit 9.
  • the capacitor C on the right side of the LC filter 7 and the leftmost resonator 11 of the acoustic wave filter 5 are not separated by a parallel arm, and therefore can be considered to form one series arm.
  • the series arm 17S on the right side of the LC filter 7 is composed only of the right-side capacitor C.
  • the right-side series arm 17S is interpreted as including the leftmost resonator 11, this does not affect the value of the order. In other words, when counting the order, it is up to the user to interpret whether or not the leftmost resonator 11 is included in the series arm 17S. The same is true for the additional circuit 9.
  • the series arm 17S and the parallel arm 17P related to the order are included in the LC filter 7 or the additional circuit 9.
  • the LC filter 7 and the additional circuit 9 each include an inductor L (including the specific wiring 15) or a capacitor C. Therefore, the series arm 17S and the parallel arm 17P are arms that have at least one inductor L and one capacitor C.
  • the series arm 17S and the parallel arm 17P may include other electrical elements. Examples of such electrical elements include resistors and resonators. The resonators may not include elastic wave resonators.
  • the order in the examples of Figures 1 and 2 is 4 and 6, respectively, the order is the sum of the number (number of stages) of the series arms 17S and the number (number of stages) of the parallel arms 17P, as well as the sum of the number of stages in the LC filter 7 and the number of stages in the additional circuit 9.
  • the number of stages in the LC filter 7 may be determined by substituting the number of stages in the LC filter 7 into Equation 1 as the value of order, or the number of stages in the additional circuit 9 may be applied to Equation 1 as the value of order to determine the number of stages in the LC filter 7.
  • Equation 1 the smaller the value of the order in Equation 1, the smaller the value of the right side becomes, so that a composite filter 1 with better characteristics is obtained.
  • the larger of the number of stages in the LC filter 7 and the number of stages in the additional circuit 9 may be substituted into Equation 1 as the value of order to determine the number of stages in the circuit with the larger number of stages.
  • ⁇ f may be calculated based on f20.
  • f20 is the frequency f at which the loss is 20 dB smaller than the Min. Loss.
  • the composite filter 1 shown in Fig. 1 and Fig. 2 may be configured with a focus on either the pass band or the stop band.
  • the pass band or the stop band may be specified by both the lower limit (low frequency end) frequency and the upper limit (high frequency end) frequency, or only one of them.
  • the composite filter 1 may be regarded as, for example, any of a band pass filter, a high pass filter, a low pass filter, and a band elimination filter.
  • the description in this paragraph may also be applied to each of the acoustic wave filter 5, the LC filter 7, and the additional circuit 9 (when a filter is configured).
  • the passband and stopband may be specified as appropriate. For example, they may be specified by a specification, or they may be specified by measuring the filter characteristics of the product.
  • the attenuation required for the passband and stopband differs depending on the device to which the composite filter 1 is applied.
  • a frequency band with a loss of 5 dB or less or 3 dB or less may be specified as the passband.
  • a frequency band with a loss of 30 dB or more or 40 dB or more may be specified as the stopband.
  • f1.5 may be located within the passband or outside the passband.
  • the composite filter 1 may have any configuration from a structural standpoint.
  • the composite filter 1 may be configured as a chip-type electronic component and mounted on a circuit board or the like, or it may be part of an electronic component, part of a multilayer board, or part of a module consisting of a circuit board and multiple electronic components. Examples of the structure of the composite filter 1 will be given later (Section 7).
  • the configuration of the electrical elements (e.g., inductor L and capacitor C) of the composite filter 1 (or, from another perspective, the acoustic wave filter 5, the LC filter 7, and/or the additional circuit 9) from a structural standpoint is also arbitrary.
  • the electrical elements may be chip-type, or may be built into a multilayer board.
  • the chip-type electrical elements may be mounted on the multilayer board, or may be embedded in the multilayer board.
  • the characteristics of the electrical elements e.g., inductance and capacitance
  • the reference potential section 19 is a section to which a reference potential is applied.
  • a representative example of the reference potential is 0 V, but is not limited to this.
  • the specific configuration of the reference potential section 19 is arbitrary.
  • the reference potential section 19 may be the terminal 3 ( Figure 7) and a ground layer in the circuit board.
  • reference potential sections 19 are shown in multiple positions.
  • the reference potential sections 19 shown in multiple positions may actually be different locations from each other, or may simply be considered to be shown separately from each other for convenience of illustration.
  • two or more reference potential sections 19 as different locations from each other may or may not be connected to each other within the composite filter 1.
  • the acoustic wave filter 5 (resonator 11) filters electrical signals using acoustic waves.
  • acoustic waves may be surface acoustic waves (SAWs), bulk acoustic waves (BAWs), boundary acoustic waves, or plate waves. Note that these acoustic waves are not necessarily clearly distinguishable.
  • BAWs may propagate in the direction in which the piezoelectric layer (see the description of the chip substrate 41 described later) expands, or may propagate in the thickness direction of the piezoelectric layer.
  • the elastic wave filter 5 may have various configurations as long as it utilizes elastic waves. Typical examples of elastic wave filter configurations include a ladder filter in which multiple resonators 11 are connected in a ladder configuration, and a multimode filter (including a dual mode filter) in which multiple resonators 11 are arranged in the propagation direction of the elastic waves. These filters are bandpass filters.
  • the elastic wave filter 5 may also be the same as such typical examples.
  • the elastic wave filter 5 has a configuration in which multiple arms 21 (series arms 21S and parallel arms 21P) are connected in a ladder shape (however, this differs from the configuration generally referred to as a ladder-type filter). More specifically, the elastic wave filter 5 has multiple (or one) series arms 21S. Each series arm 21S includes at least one resonator 11. The elastic wave filter 5 also has multiple (or one) parallel arms 21P. Each parallel arm 21P includes an inductor L rather than a resonator 11, which differs from the configuration generally referred to as a ladder-type filter.
  • the elastic wave filter 5 in the illustrated example functions, for example, as a band elimination filter.
  • the absolute value of the impedance of the resonator 11 becomes a minimum value at the resonant frequency and a maximum value at the anti-resonant frequency.
  • the resonator 11 in the series arm 21S forms an attenuation pole at the anti-resonant frequency of the resonator 11, and thus attenuates signals having frequencies within a predetermined stopband.
  • the anti-resonant frequencies (and/or resonant frequencies) of the multiple resonators 11 may be the same as each other or may be different from each other.
  • the parallel arm 21P reduces the likelihood that the entire group of resonators 11 (series arms 21S) will function as a capacitor with a large capacitance, and thus contributes to reducing the likelihood that a signal having a frequency within the stopband will pass through the series arms 21S.
  • the inductor L of the parallel arm 21P may cooperate with the resonator 11 (series arm 21S) to form a high-pass filter.
  • the parallel arm 21P may include a capacitor C, or may include an inductor L and a capacitor C. Coupling of the electric fields and/or magnetic fields of the inductors L included in two or more parallel arms 21P may be used for filtering.
  • the elastic wave filter 5 may not have a resonator 11 in the series arm 17S (e.g., may have an inductor L or a capacitor C) and may have a resonator 11 in the parallel arm 17P.
  • the resonators 11 in the multiple series arms 17S may have the same resonance frequency (and/or anti-resonance frequency) as each other or may be different from each other.
  • the resonators 11 in the multiple parallel arms 17P may have the same resonance frequency (and/or anti-resonance frequency) as each other or may be different from each other.
  • the LC filter 7 may have various configurations, for example, a known configuration, as long as it has L and C and performs a filter function. Also, as already mentioned, the LC filter 7 may be defined as the entire circuit between the first terminal 3A and the acoustic wave filter 5, and may include a matching circuit. For the same reason, the LC filter 7 may include two or more filters that can be recognized as different filters from the viewpoint of structure and/or characteristics. In relation to the above, the LC filter 7 may include a piezoelectric filter including a piezoelectric body, and/or a dielectric filter that utilizes electromagnetic waves in a dielectric. Coupling of electric fields and/or magnetic fields of two or more inductors L may be used for filtering.
  • the LC filter 7 may or may not be configured as a ladder type. In other words, the LC filter 7 may be configured with only one series arm 17S or only one parallel arm 17P.
  • Typical examples of LC filters include, for example, an LC series resonant circuit or an LC parallel resonant circuit that connects the first terminal 3A and the second terminal 3B, an LC series resonant circuit or an LC parallel resonant circuit that connects the signal path between the first terminal 3A and the second terminal 3B and the reference potential unit 19, or a combination of two or more of these.
  • the LC filter 7 may have, for example, an appropriate number of such typical examples of LC filters.
  • the LC filter 7 has one or more (multiple (two) in the illustrated example) series arms 17S including a capacitor C, and one or more (one in the illustrated example) parallel arms 17P including an inductor L.
  • Such an LC filter 7 functions, for example, as a high-pass filter.
  • the LC filter 7 in the illustrated example is merely one example, and for convenience of explanation, it has a relatively simple configuration.
  • Another example close to the illustrated example, although not specifically shown, is one that has one or more series arms 17S including an inductor L and one or more parallel arms 17P including a capacitor C and functions as a low-pass filter.
  • the LC filter 7 may have at least one series arm 17S connecting the first terminal 3A and the acoustic wave filter 5.
  • the LC filter 7 may not have a series arm 17S, but may have only one parallel arm 17P, and may simply be connected between the first terminal 3A and the acoustic wave filter 5.
  • the LC filter 7 may include either of the above two aspects.
  • the term “electrically intervening” or simply “intervening” is used for the additional circuit 9, etc.
  • the additional circuit 9 may have various configurations as long as it has L and C and is electrically interposed between the acoustic wave filter 5 and the second terminal 3B.
  • the additional circuit 9 may function only as a matching circuit, may function as a filter, or may function as both.
  • the matching circuit may have a known configuration.
  • the LC filter may also have a known configuration, and the above description of the LC filter 7 may be applied to the LC filter included in the additional circuit 9.
  • the additional circuit 9A in the example of FIG. 1 has only an inductor L (or from another point of view, only one series arm 17S). Such an inductor L functions, for example, as a matching circuit and/or a low-pass filter.
  • An example of a configuration similar to this example is, for example, an additional circuit 9 consisting of only a capacitor C as the series arm 17S, or only a capacitor C or an inductor L as the parallel arm 17P, although not shown in the figure.
  • the additional circuit 9B in the example of FIG. 2 has a similar configuration to the LC filter 7 (although the specific characteristics may be different).
  • the additional circuits 9A and 9B in the illustrated example are merely examples, and for convenience of explanation, they have a relatively simple configuration.
  • the additional circuit 9 may have a more complex configuration, for example, a more complex configuration than the LC filter 7, or may have more stages than the LC filter 7.
  • each of the composite filter 1, the acoustic wave filter 5, the LC filter 7, and the additional circuit 9 may be regarded as a band-pass filter, a high-pass filter, a low-pass filter, or a band elimination filter. Examples are shown below.
  • FIG. 5 shows an example of the attenuation characteristics of the composite filter 1.
  • the vertical and horizontal axes are the same as in FIG. 3.
  • line LNB shows the characteristics of composite filter 1
  • lines LNH, LNL, and LNE show the characteristics of the filters that make up composite filter 1.
  • the characteristics of line LNH are those of a high-pass filter, with small loss in the pass band higher than a specified frequency.
  • the characteristics of line LNL are those of a low-pass filter, with small loss in the pass band lower than a specified frequency.
  • the characteristics of line LNE are those of a band elimination filter, with large loss in a specified stop band.
  • the lower limit (low-frequency end) of the passband of the high-pass filter (line LNH) is lower than the upper limit (high-frequency end) of the passband of the low-pass filter (line LNL). Therefore, a band-pass filter (line LNB) is formed in which the overlapping band of both passbands is the passband PB1.
  • the attenuation slope on the low-frequency side is formed by the attenuation slope of the high-pass filter.
  • the attenuation slope on the high-frequency side is formed by the attenuation slope of the low-pass filter.
  • the attenuation slope on the high frequency side of the band elimination filter (line LNE) is steeper than the attenuation slope of the high pass filter.
  • the former attenuation slope overlaps at least part of the latter attenuation slope, forming at least part of the attenuation slope on the low frequency side of the band pass filter (line LNB). This results in a band pass filter (composite filter 1) with a steep attenuation slope and a wide bandwidth of the pass band PB1.
  • the attenuation slope on the low frequency side is steeper than the attenuation slope on the high frequency side (the attenuation slope of the low pass filter).
  • the transition band (symbol omitted) between the stop band EB1L on the low frequency side and the pass band PB1 is narrower than the transition band (symbol omitted) between the stop band EB1H on the high frequency side and the pass band PB1.
  • the band elimination filter (line LNE) is, for example, composed of an elastic wave filter 5 (part or all of it).
  • the high-pass filter (line LNH) is, for example, composed of one of an LC filter 7 and an additional circuit 9.
  • the low-pass filter (line LNL) is, for example, composed of the other of an LC filter 7 and an additional circuit 9.
  • the LC filter 7 may include both a high-pass filter and a low-pass filter.
  • a band elimination filter (from another perspective, elastic wave filter 5) having a stop band on the high frequency side of the pass band PB1 may be provided. Then, the attenuation slope on the low frequency side of the band elimination may be made steeper on the high frequency side of the band pass filter (composite filter 1).
  • a bandpass filter (LC filter 7 or additional circuit 9) may be provided instead of the lowpass filter (line LNL).
  • the passband of this bandpass filter includes the passband PB1, and the attenuation slope on the high frequency side constitutes an attenuation slope on the high frequency side adjacent to the passband PB1, instead of the lowpass filter in the illustrated example.
  • the attenuation slope on the low frequency side and/or high frequency side of the composite filter 1 (bandpass filter) may be made steeper by the attenuation slope of the band elimination filter (elastic wave filter 5) as before.
  • a bandpass filter (LC filter 7 or additional circuit 9) and a band elimination filter (elastic wave filter 5).
  • the attenuation slope on the low frequency side and/or high frequency side of the composite filter 1 (bandpass filter) may be made steeper by the attenuation slope of the band elimination filter (elastic wave filter 5), as in the past.
  • a band elimination filter may be constructed by making the pass band of the high pass filter (LC filter 7 or additional circuit 9) higher than the pass band of the low pass filter (LC filter 7 or additional circuit 9).
  • the attenuation slope of this band elimination filter may be made steeper by the attenuation slope of the acoustic wave filter 5 (band elimination filter).
  • FIG. 5 is merely a schematic diagram. Actual characteristics are usually represented by curves and/or complex lines. Also, unlike the schematic diagram, the characteristics may vary in the passband and stopband of each filter. An attenuation pole (minimum value) may appear in the stopband.
  • the line LNE showing the characteristics of the elastic wave filter 5 may be an inverted triangle with one attenuation pole as its apex, rather than an inverted trapezoid as in the illustrated example, or may be a wave shape with multiple attenuation poles. The same applies to other diagrams showing characteristics.
  • the specific values of the bandwidth and center frequency of the passband PB1 are arbitrary.
  • the passband PB1 may be partially or entirely within the range of 3 GHz to 10 GHz.
  • the passband PB1 may be set in accordance with an appropriate communication standard.
  • the passband PB1 may correspond to only one band defined by the standard, or may include two or more bands defined by the standard.
  • the fractional bandwidth of the acoustic wave filter 5 may be smaller than the fractional bandwidth of the composite filter 1.
  • the LC filter 7 and/or the additional circuit 9 may have an attenuation pole in the second and/or third harmonic band of the passband PB1.
  • FIG. 6A is a diagram showing the characteristics of such an embodiment.
  • the horizontal axis and the vertical axis on the left side are the same as those in FIG. 5.
  • the vertical axis on the right side shows the absolute value
  • an attenuation pole appears at frequency fa where
  • Frequency fa is located in the double harmonic band of passband PB1.
  • the double harmonic band may be a band ranging from twice the frequency of the low-frequency end of passband PB1 to twice the frequency of the high-frequency end of passband PB1.
  • an attenuation pole may be formed in the triple harmonic band.
  • the triple harmonic band may be defined as the above double harmonic band, with "double" replaced by "triple".
  • Figures 6B and 6C show typical examples.
  • Figure 6B illustrates a parallel resonant circuit 23P that constitutes one series arm 17S (all or part of it).
  • the resonant frequency of the parallel resonant circuit 23P is frequency fa.
  • Figure 6C illustrates a series resonant circuit 23S that constitutes one parallel arm 17P (all or part of it).
  • the resonant frequency of the series resonant circuit 23S is frequency fa.
  • Fig. 7 is a schematic cross-sectional view showing an example of the structure of the composite filter 1. Any direction of the composite filter 1 may be regarded as the upper side, but for convenience, in the description of Fig. 7, the upper side of the figure (the upper side along the paper surface) is regarded as the upper side, and terms such as the upper surface and the lower surface may be used.
  • the composite filter 1 is configured, for example, as a surface-mounted chip component. Its overall shape is, for example, roughly a thin rectangular parallelepiped (with the thickness being shorter than the length of the short side in a plan view) with the thickness direction being in the vertical direction.
  • a plurality of terminals 3 are provided on the underside of the composite filter 1 for mounting the composite filter 1.
  • the plurality of terminals 3 include, for example, the first terminal 3A, the second terminal 3B, and the reference potential portion 19 (consisting of terminals) already described.
  • the composite filter 1 is mounted on the circuit board by joining the plurality of terminals 3 to a plurality of pads on the circuit board with a plurality of conductive bumps (for example, solder).
  • the composite filter 1 has, for example, a circuit board 31, a chip 33 mounted on the circuit board 31, and a sealing portion 35 that seals the chip 33.
  • the multiple resonators 11 of the acoustic wave filter 5 may be provided on the chip 33.
  • Some or all of the other components of the acoustic wave filter 5 (inductor L constituting the parallel arm 21P in the example of FIG. 1) may be provided on the chip 33 or on the circuit board 31.
  • the circuit board 31 is formed, for example, in a generally thin rectangular parallelepiped shape with its thickness direction extending in the vertical direction.
  • the basic structure and materials of the circuit board 31 may be similar to the structures and materials of various known printed circuit boards.
  • the circuit board 31 may be a Low Temperature Co-fired Ceramics (LTCC) board, a High Temperature Co-fired Ceramic (HTCC) board, an Integrated Passive Device (IPD) board, or an organic multilayer board.
  • An example of an LTCC substrate is one in which a glass-based material is added to alumina, allowing firing at low temperatures (e.g., around 900°C).
  • a glass-based material is added to alumina, allowing firing at low temperatures (e.g., around 900°C).
  • Cu or Ag may be used as the conductive material.
  • An example of an HTCC substrate is one that uses ceramics whose main component is alumina or aluminum nitride.
  • tungsten or molybdenum may be used as the conductive material.
  • An example of an IPD substrate is one in which passive elements are formed on a Si substrate.
  • An example of an organic multilayer substrate is one in which a prepreg impregnated with resin is laminated on a base material made of glass or the like.
  • the circuit board 31 has, for example, a substantially insulating plate-like base 37 and a conductor 39 located inside and/or on the surface of the base 37.
  • the base 37 may have, for example, a plurality of insulating layers 37a stacked on top of each other.
  • the conductor 39 may have, for example, a conductor layer 39a located on the main surface of the insulating layer 37a and a via conductor 39b penetrating the insulating layer 37a.
  • the chip 33 is configured as, for example, a surface-mounted chip component. Its overall shape is, for example, roughly a thin rectangular parallelepiped with the thickness direction being in the vertical direction.
  • the basic structure and material of the chip 33 (excluding the specific conductor pattern and dimensions for configuring the composite filter 1) may be similar to the structure and material of chips that configure various known acoustic wave devices.
  • the chip 33 may be a bare chip, a WLP (Wafer level Package) type having a cover that covers the surface of the bare chip facing the circuit board 31, or a FO (Fan Out)-WLP type having a molded part that covers the side of the bare chip.
  • WLP Wide level Package
  • FO Field-WLP type having a molded part that covers the side of the bare chip.
  • an example is taken in which the chip 33 is a bare chip.
  • the chip 33 has, for example, a chip substrate 41 and a conductor layer 43 located on the surface (one of the main surfaces) of the chip substrate 41
  • At least a predetermined region of the surface of the chip substrate 41 on the circuit substrate 31 side is made of a piezoelectric material.
  • the piezoelectric material is made of a single crystal having piezoelectricity.
  • the single crystal is, for example, quartz (SiO 2 ), lithium niobate (LiNbO 3 ) single crystal, or lithium tantalate (LiTaO 3 ) single crystal.
  • the cut angle may be set appropriately according to the type of elastic wave to be used.
  • the chip substrate 41 may be entirely made of a piezoelectric material (may be a piezoelectric substrate), may be a piezoelectric substrate and a support substrate bonded together, may be a substrate in which a plurality of films are laminated on a support substrate and a piezoelectric layer is laminated thereon, or may have a cavity between the piezoelectric layer and the support substrate.
  • the material of the conductor layer 43 may be an appropriate metal such as Al.
  • the chip 33 may have an insulating layer that covers the conductor layer 43 and the surface of the chip substrate 41 facing the circuit substrate 31 while exposing the terminals of the chip 33.
  • Such an insulating layer may simply serve to reduce corrosion of the conductor layer 43, or may have an acoustically advantageous effect.
  • the material of such an insulating layer may be any appropriate material, such as SiO2 .
  • the side and bottom surfaces of the chip substrate 41 may be covered with an insulating layer or the like that is thinner than the thickness of the chip substrate 41.
  • the conductor layer 43 of the chip 33 has, for example, a terminal 43a of the chip 33. Furthermore, the conductor layer 39a located on the upper surface of the circuit board 31 has a pad 39c facing the terminal 43a.
  • the terminal 43a and the pad 39c are joined by conductive bumps 45, and the chip 33 is mounted on the circuit board 31. That is, the chip 33 is fixed to and electrically connected to the circuit board 31 by the bumps 45.
  • the material of the bumps 45 is, for example, solder.
  • the solder includes lead-free solder.
  • the sealing portion 35 covers the upper surface of the circuit board 31 from above the chip 33.
  • a gap is formed between the chip 33 and the circuit board 31 by the thickness of the terminals 43a, the bumps 45, and the pads 39c.
  • the sealing portion 35 is not filled in this gap, and the gap is made into an airtight space sealed by the sealing portion 35.
  • the airtight space may be in a vacuum state or may be filled with an appropriate inert gas (e.g., nitrogen).
  • the material of the sealing portion 35 may be an organic material, an inorganic material, or a combination of both. More specifically, for example, the sealing portion 35 may be made of a resin, or a resin containing particles (filler) made of an inorganic material.
  • the chip 33 may constitute another filter in addition to the composite filter 1 (elastic wave filter 5).
  • a resonator 11 for an elastic wave filter other than the composite filter 1 may be provided on the chip 33.
  • the illustrated chip components may constitute a splitter (e.g., a duplexer) having a transmit filter and a receive filter.
  • the composite filter 1 may constitute one of the transmit filter and the receive filter, and the other filter may constitute the other of the transmit filter and the receive filter.
  • An acoustic wave chip other than chip 33 may be mounted on circuit board 31. More specifically, for example, chip components including chip 33 and another acoustic wave chip may form a splitter (e.g., a duplexer). Then, composite filter 1 may form one of the transmit filter and the receive filter, and a filter formed by another acoustic wave chip may form the other of the transmit filter and the receive filter.
  • chip components including chip 33 and another acoustic wave chip may form a splitter (e.g., a duplexer).
  • composite filter 1 may form one of the transmit filter and the receive filter
  • a filter formed by another acoustic wave chip may form the other of the transmit filter and the receive filter.
  • circuit board 31 The mounting of electronic components such as chips 33 on circuit board 31 is not limited to using bumps 45.
  • electronic components may be fixed to circuit board 31 with an insulating adhesive and electrically connected to circuit board 31 with bonding wires.
  • FIGS. 8A to 8D are schematic diagrams showing variations of the structure. These diagrams show the circuit board 31 and the chip 33 more typically than FIG. 7. Note that for the structural examples described later, only the differences from the structural examples described earlier will basically be described. Items that are not specifically mentioned may be considered to be the same as the structural examples described earlier, or may be inferred from the structural examples described earlier.
  • the LC filter 7 and the additional circuit 9 are built into the circuit board 31.
  • the incorporation may be achieved by building the LC filter 7 and the additional circuit 9 into the circuit board 31, or by embedding chips that constitute the LC filter 7 and the additional circuit 9 into the circuit board 31.
  • the inductor L and the capacitor C are formed by the conductor 39 of the circuit board 31.
  • the base 37 may function as a dielectric between the electrodes of the capacitor C.
  • the inductor L and capacitor C built into the circuit board 31 are arbitrary.
  • the inductor L may be configured with a meandering or spiral conductor pattern included in the conductor layer 39a, or may be configured with a spiral conductor formed by appropriately combining the conductor layer 39a and the via conductor 39b.
  • a pair of electrodes of the capacitor C may be configured with the same conductor layer 39a, or may be configured with different conductor layers 39a.
  • Examples of the former include a pair of strip-shaped electrodes facing each other in a planar view, and a pair of comb-tooth electrodes that mesh with each other in a planar view (see the comb-tooth electrodes of the resonator 11 described later).
  • Examples of the latter include flat plate electrodes facing each other across the insulating layer 37a in the thickness direction of the insulating layer 37a.
  • the additional circuit 9 is composed of the specific wiring 15 (a wiring having an inductance of 0.3 nH or more) already described.
  • the specific wiring 15 is not composed of only via conductors 39b, but includes a conductor layer 39a, for example, to ensure its length and increase its inductance.
  • the specific wiring 15 may be composed of only via conductors 39b.
  • the inductance of a via conductor that penetrates a 50 ⁇ m to 100 ⁇ m thick portion of a multilayer substrate is about 0.1 nH. Therefore, for example, the length of the specific wiring 15 may be three times or more the above length.
  • the specific wiring 15 may be a wiring having an inductance of 0.5 nH or more, unlike the description here.
  • the additional circuit 9 is configured by electronic components mounted on the upper surface of the circuit board 31.
  • the specific configuration of the electronic components may be various, for example, they may be publicly known.
  • the electronic components may be, for example, chip inductors, chip capacitors, or chip-type filters.
  • the mounting method of the electronic components is also arbitrary.
  • the electronic components may be surface-mounted with pads like the chip 33, may be through-hole mounted, or may be surface-mounted with leads instead of pads.
  • the composite filter 1 (1H) in the example of FIG. 8D is not a chip component, but is part of a module 51. More specifically, in the illustrated example, two circuit boards 31 are mounted on a module board 47. One circuit board 31 has an LC filter 7 built in and a chip 33 mounted thereon. The other circuit board 31 has an additional circuit 9 built in.
  • the module 51 is, for example, configured as a chip-type component, and is mounted by joining the terminals 49 to a circuit board (not shown). Alternatively, the module 51 may function like a motherboard. As can be understood from the example of this figure, the first terminal 3A and the second terminal 3B may be located on different circuit boards 31.
  • the first terminal 3A and the second terminal 3B are simply connected to the terminal 49 by wiring, so the terminal 49 may be regarded as the first terminal 3A and the second terminal 3B shown in FIG. 1, and the module 51 may be regarded as the composite filter 1. Also, unlike the illustrated example, the first terminal 3A and the second terminal 3B may be connected to another circuit (e.g., an IC (Integrated Circuit)) included in the module 51. The other circuit may be mounted on the surface of the module substrate 47, or may be built into the module substrate 47.
  • IC Integrated Circuit
  • the LC filter 7 may be configured with an electronic component (chip) mounted on the circuit board 31.
  • the LC filter 7 may be built into a circuit board 31 other than the circuit board 31 on which the chip 33 is mounted. The LC filter 7 and part or all of the additional circuit 9 may be provided on the chip 33.
  • the chip 33 having the resonator 11 may be mounted on the circuit board 31 having the additional circuit 9 (part or all of it) by the bump 45.
  • the center of the bump 45 and the center of the second terminal 3B may not overlap (may be shifted).
  • at least a part of the second terminal 3B may not overlap the bump 45.
  • at least a part of the bump 45 may not overlap the second terminal 3B.
  • the entire bump 45 and the entire second terminal 3B may not overlap each other.
  • the center of the bump 45 and the center of the second terminal 3B may overlap.
  • the description of the bump 45 in this paragraph may be applied to the terminal 43a and the pad 39c.
  • the resonator 11 of the acoustic wave filter 5 may have various configurations.
  • the resonator 11 may be a SAW resonator, a BAW resonator that has electrodes similar to those of a SAW resonator and uses a BAW, or a film bulk acoustic resonator (also called an FBAR (Film Bulk Acoustic Resonator)) that vibrates a piezoelectric thin film on a cavity.
  • FBAR Film Bulk Acoustic Resonator
  • FIG. 9 is a plan view showing a schematic configuration of a SAW resonator as the resonator 11. This figure shows a partial area of the surface of the chip 33 that faces the circuit board 31.
  • FIG. 9 shows an orthogonal coordinate system consisting of the D1 axis, the D2 axis, and the D3 axis. Either direction of the resonator 11 may be considered to be upward or downward. However, in the following description, for convenience, the positive side of the D3 axis may be considered to be upward, and terms such as upper surface and lower surface may be used.
  • the D1 axis is defined to be parallel to the propagation direction of the elastic wave propagating along the surface (upper surface 41a) of the chip substrate 41 facing the circuit substrate 31.
  • the D2 axis is defined to be parallel to the upper surface 41a and perpendicular to the D1 axis.
  • the D3 axis is defined to be perpendicular to the upper surface 41a.
  • the resonator 11 is configured as a so-called one-port elastic wave resonator.
  • the resonator 11 outputs a signal input from one of the two wirings 55 shown on both sides of the figure from the other of the two wirings 55.
  • the resonator 11 converts the electrical signal to an elastic wave and converts the elastic wave back to an electrical signal.
  • the resonator 11 includes, for example, a chip substrate 41 (at least a part of its upper surface 41a), an excitation electrode 57 located on the upper surface 41a, and a pair of reflectors 59 located on either side of the excitation electrode 57.
  • the excitation electrode 57 and the reflectors 59 are formed of layered conductors provided in the region.
  • a plurality of resonators 11 may be formed on one chip substrate 41. In other words, the chip substrate 41 may be shared by a plurality of resonators 11.
  • the excitation electrode 57 is composed of a so-called IDT (Interdigital Transducer) electrode, and has a pair of comb-tooth electrodes 61 (one of which is hatched for ease of visibility).
  • Each comb-tooth electrode 61 has, for example, a bus bar 63, a number of electrode fingers 65 extending in parallel from the bus bar 63, and a number of dummy electrodes 67 protruding from the bus bar 63 between the electrode fingers 65.
  • the pair of comb-tooth electrodes 61 are arranged so that the electrode fingers 65 interdigitate with (intersect with) each other.
  • the pair of reflectors 59 are located on both sides of the multiple excitation electrodes 57 in the propagation direction of the elastic wave. Each reflector 59 may be, for example, electrically floating or may be applied with a reference potential. Each reflector 59 is formed, for example, in a lattice shape. That is, the reflector 59 includes a pair of bus bars 69 facing each other and multiple strip electrodes 71 extending between the pair of bus bars 69.
  • the voltage is applied to the upper surface 41a (piezoelectric body) by the multiple electrode fingers 65, causing the piezoelectric body to vibrate.
  • elastic waves are excited.
  • the elastic waves that propagate in the arrangement direction of the multiple electrode fingers 65 with the pitch p of the multiple electrode fingers 65 being approximately half the wavelength ( ⁇ /2) tend to have large amplitudes because the multiple waves excited by the multiple electrode fingers 65 overlap in phase.
  • the elastic waves propagating through the piezoelectric body are converted into an electrical signal by the multiple electrode fingers 65.
  • the resonator 11 functions as a resonator whose resonant frequency is the frequency of elastic waves whose pitch p is approximately half the wavelength ( ⁇ /2).
  • the anti-resonant frequency is determined by the resonant frequency and the capacitance of the excitation electrode 57, etc.
  • the pair of reflectors 59 contribute to confining the elastic waves.
  • a BAW resonator using an electrode similar to excitation electrode 57 may, for example, generate a BAW that propagates in the D1 direction by a similar action as described above, or may generate thickness-shear vibration by a different action than described above. In the latter case, the resonant frequency is relatively highly dependent on the thickness of the piezoelectric layer and relatively less dependent on the pitch p. Also, reflector 59 is not required.
  • Example of using composite filters 10 is a block diagram showing a main part of a communication device 151 as an example of the use of the composite filter 1.
  • the communication device 151 has a module 171 and a housing 173 that houses the module 171.
  • the module 171 performs wireless communication using radio waves and includes the composite filters 1 (1C and 1D). More specifically, in the illustrated example, the composite filters 1C and 1D are used as the two filters that make up the diplexer 154.
  • the two composite filters 1 for example, share the first terminal 3A and have separate second terminals 3B.
  • the shared terminal may be the second terminal 3B.
  • the first terminal 3A of one composite filter 1 and the second terminal 3B of the other composite filter 1 may be shared.
  • one of the two filters of the diplexer 154 does not have to be a composite filter 1.
  • the composite filter 1 may be part of the filter that constitutes the diplexer 154.
  • the radio signal (radio wave) received by antenna 159 is converted to an electrical signal by antenna 159 and input to diplexer 154 (more specifically, first terminal 3A shared by two composite filters 1).
  • received signal RS1 having a frequency in the pass band of composite filter 1C is output from composite filter 1C (more specifically, second terminal 3B of composite filter 1C).
  • received signal RS2 having a frequency in the pass band of composite filter 1D is output from composite filter 1D (second terminal 3B of composite filter 1D).
  • the received signal RS1 output from the composite filter 1C is amplified by the amplifier 155A, and unnecessary components outside a predetermined passband are removed by the bandpass filter 157A.
  • the received signal RS1 is then frequency-downshifted and demodulated by the RF (Radio Frequency)-IC 153 to become the received information signal RIS1.
  • the received signal RS2 output from the composite filter 1D is amplified by the amplifier 155B, and unnecessary components outside the specified passband are removed by the bandpass filter 157B.
  • the received signal RS2 is then frequency-downshifted and demodulated by the RF-IC 153 to become the received information signal RIS2.
  • the received information signals RIS1 and RIS2 may be low-frequency signals (baseband signals) containing appropriate information.
  • these signals may be analog audio signals, digitized audio signals, or signals using a satellite positioning system.
  • the modulation method may be, for example, phase modulation, amplitude modulation, or frequency modulation, or a combination of two or more of these.
  • a direct conversion method is illustrated as the circuit method, other appropriate methods may be used, for example, a double superheterodyne method.
  • FIG. 10 shows only the essential parts in a schematic manner, and filters, isolators, etc. may be added in appropriate positions, and the positions of amplifiers, etc. may be changed.
  • the module 171 has, for example, components from the RF-IC 153 to the antenna 159 on the same circuit board (they may be either built-in or mounted). That is, the composite filter 1 is combined with other components to be modularized.
  • This circuit board may be the circuit board 31, a board on which the circuit board 31 is mounted, or a module board 47.
  • the composite filter 1 may not be modularized and may be included in the communication device 151.
  • the components exemplified as components of the module 171 may be located outside the module or may not be housed in the housing 173. For example, the antenna 159 may be exposed to the outside of the housing 173.
  • the composite filter 1 includes the acoustic wave filter 5, the LC filter 7, and the electric element 13 (included in the additional circuit 9).
  • the acoustic wave filter 5 includes at least one acoustic wave resonator 11.
  • the LC filter 7 is electrically interposed between the acoustic wave filter 5 and the first terminal 3A.
  • the electric element 13 is electrically interposed between the acoustic wave filter 5 and the second terminal 3B.
  • the electric element 13 is an inductor L, a wiring (specific wiring 15) having an inductance of 0.3 nH or more, or a capacitor C. At least one of the attenuation slopes SP on the high frequency side and the low frequency side of the pass band PB1 of the composite filter 1 satisfies the above-described formula 1.
  • the LC filter 7 and the electrical element 13 can be used in the matching circuit, which allows the composite filter 1 to be made smaller. Since the impedance of the composite filter 1 can be adjusted by the LC filter 7 and the electrical element 13, the design freedom of the elastic wave filter 5 is improved, and it is easier to steepen the attenuation slope of the elastic wave filter 5.
  • the electrical element 13 may be part of a second LC filter (additional circuit 9 constituting an LC filter) electrically interposed between the acoustic wave filter 5 and the second terminal 3B.
  • the additional circuit 9 can be used as both a filter and a matching circuit, which allows for miniaturization.
  • the composite filter 1 may have a chip 33 having an elastic wave resonator 11, a multilayer substrate (circuit board 31) on which the chip 33 is mounted, and a conductive joint (bump 45) joining the chip 33 to the circuit board 31.
  • the electrical element 13 may be located in or on the circuit board 31.
  • the bump 45 may electrically connect the resonator 11 to the electrical element 13. When the circuit board 31 is viewed in a plane, the center of the bump 45 and the center of the second terminal 3B do not have to overlap.
  • the likelihood that the frequency components to be attenuated by the additional circuit 9 will be mixed into the second terminal 3B due to radiation from the bump 45 is reduced.
  • the likelihood that the frequency components to be attenuated by the additional circuit 9 will be mixed into the acoustic wave filter 5 due to radiation from the second terminal 3B to the bump 45 is reduced. From another perspective, the need to provide a shielding layer inside the circuit board 31 in consideration of the above-mentioned radiation is reduced.
  • At least a portion of the passband PB1 of the composite filter 1 may be above 3 GHz.
  • the composite filter 1 can be said to be compatible with relatively high frequencies.
  • the passband In high frequency bands, the passband is widened and the frequency band between the passbands is often narrow. When the passband is widened, it becomes difficult to make the attenuation slope steep. Therefore, the effect of achieving both a steeper attenuation slope and a reduced insertion loss in the embodiment is effective.
  • the fractional bandwidth of the elastic wave filter 5 may be smaller than the fractional bandwidth of the composite filter 1.
  • the narrower the relative bandwidth the easier it is to make the attenuation slope steeper, and therefore it becomes easier to make the attenuation slope of the elastic wave filter 5 steeper.
  • One of the LC filter 7 and the second LC filter may be a high-pass filter and the other a low-pass filter.
  • the acoustic wave filter 5 located between the two improves isolation between them.
  • the LC filter 7 and the second LC filter may have an attenuation pole in the second or third harmonic band of the passband PB1 of the composite filter 1.
  • an LC filter can easily form an attenuation pole at any frequency. And by forming an attenuation pole in the harmonic band, it is possible to reduce noise caused by harmonics.
  • the module 171 includes a composite filter 1 (e.g., 1C) according to the embodiment, and a second filter (e.g., composite filter 1D) that is connected to at least one of the first terminal 3A and the second terminal 3B and has a passband different from the passband PB1 of the composite filter 1.
  • a composite filter 1 e.g., 1C
  • a second filter e.g., composite filter 1D
  • the composite filter 1 can make the attenuation slope steeper, thereby reducing the likelihood of interference between the composite filter 1 and the second filter.
  • the communication device 151 includes the composite filter 1 according to the embodiment, an antenna 153 connected to one of the first terminal 3A and the second terminal 3B, and an integrated circuit element (RF-IC 159) connected to the other of the first terminal 3A and the second terminal 3B.
  • RF-IC 159 integrated circuit element
  • the insertion loss of the composite filter 1 is reduced, thereby improving the quality of communication.
  • the additional circuit 9 when it forms an LC filter, it is an example of a second LC filter.
  • the bump 45 is an example of a joint.
  • the RF-IC 159 is an example of an integrated circuit element.
  • a splitter including a composite filter is not limited to a duplexer or diplexer.
  • it may be a triplexer or quadplexer.
  • a module including at least one composite filter and having two or more filters with different passbands is not limited to a splitter.
  • both the first terminal and the second terminal may be shared between two filters.
  • the module may function as a filter that attenuates components outside the passbands of the two filters.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

This composite filter comprises: an elastic wave filter; an LC filter; and an electrical element. The elastic wave filter has at least one elastic wave resonator. The LC filter is electrically interposed between the elastic wave filter and a first terminal. The electrical element is electrically interposed between the elastic wave filter and a second terminal. The electrical element is an inductor, a wiring having inductance of 0.3 nH or higher, or a capacitor. An attenuation slope of at least one of a high-frequency side and a low-frequency side of a passband of the composite filter satisfies the following expression. Min. Loss (dB)≤a×Δf-b

Description

複合フィルタ、モジュール及び通信装置Composite filter, module and communication device
 本開示は、2以上のフィルタを有している複合フィルタ、並びに該複合フィルタを有しているモジュール及び通信装置に関する。 The present disclosure relates to a composite filter having two or more filters, as well as a module and a communication device having the composite filter.
 LCフィルタと、弾性波共振子とを組み合わせたフィルタが知られている(例えば下記特許文献1)。特許文献1では、LCフィルタに弾性波共振子を組み合わせることによって通過帯域と阻止帯域との間の遷移帯域における減衰スロープを急峻化している。 A filter that combines an LC filter with an elastic wave resonator is known (for example, see Patent Document 1 below). In Patent Document 1, the attenuation slope in the transition band between the passband and the stopband is made steeper by combining an LC filter with an elastic wave resonator.
国際公開第2016/013659号International Publication No. 2016/013659
 本開示の一態様に係る複合フィルタは、弾性波フィルタと、LCフィルタと、電気的要素と、を有している。前記弾性波フィルタは、少なくとも1つの弾性波共振子を有する。前記LCフィルタは、前記弾性波フィルタと第1端子との間に電気的に介在する。前記電気的要素は、前記弾性波フィルタと第2端子との間に電気的に介在する。前記電気的要素は、インダクタ、0.3nH以上のインダクタンスを有する配線、もしくはキャパシタである。該複合フィルタの通過帯域の高周波側及び低周波側の少なくとも一方の減衰スロープは下記の式1を満たす。
   式1: Min.Loss(dB)≦a×Δf-b
 ただし、上記式1の各パラメータについては、以下のとおりとする。
 Min.Loss(dB): 前記通過帯域における前記複合フィルタの挿入損失の最小値
 Δf=|f1.5-f30|/f1.5
 f1.5: 前記複合フィルタの挿入損失がMin.Loss(dB)よりも1.5dBだけ大きくなる周波数
 f30: 前記複合フィルタの挿入損失がMin.Loss(dB)よりも30dBだけ大きくなる周波数
 a=aa×(log10(order-1))-ab
 b=ba×(log10(order-1))bb
 aa=0.00079217×exp(0.055664×(order-1))
 ab=3.9180×exp(-0.0041245×(order-1))
 ba=2.8407×exp(0.0078456×(order-1))
 bb=0.54831×exp(0.0032121×(order-1))
 order: 前記第1端子と前記弾性波フィルタとの間及び前記弾性波フィルタと前記第2端子との間に電気的に介在する、インダクタ及びキャパシタの少なくとも一方を有し、弾性波共振子を有しない直列腕及び並列腕の数
A composite filter according to an aspect of the present disclosure includes an acoustic wave filter, an LC filter, and an electrical element. The acoustic wave filter includes at least one acoustic wave resonator. The LC filter is electrically interposed between the acoustic wave filter and a first terminal. The electrical element is electrically interposed between the acoustic wave filter and a second terminal. The electrical element is an inductor, a wiring having an inductance of 0.3 nH or more, or a capacitor. At least one of the attenuation slopes on the high frequency side and the low frequency side of the pass band of the composite filter satisfies the following formula 1.
Equation 1: Min. Loss (dB) ≦ a × Δf − b
However, the parameters in the above formula 1 are as follows:
Min. Loss (dB): The minimum insertion loss of the composite filter in the pass band Δf=|f1.5−f30|/f1.5
f1.5: The frequency at which the insertion loss of the composite filter is 1.5 dB larger than the Min. Loss (dB). f30: The frequency at which the insertion loss of the composite filter is 30 dB larger than the Min. Loss (dB). a=aa×(log 10 (order-1)) −ab
b = b a × (log 10 (order-1)) bb
aa = 0.00079217 × exp (0.055664 × (order-1))
ab = 3.9180 x exp (-0.0041245 x (order-1))
ba = 2.8407 × exp (0.0078456 × (order-1))
bb = 0.54831 x exp (0.0032121 x (order-1))
order: the number of series arms and parallel arms that have at least one of an inductor and a capacitor and do not have an acoustic wave resonator, electrically interposed between the first terminal and the acoustic wave filter and between the acoustic wave filter and the second terminal
 本開示の一態様に係るモジュールは、上記複合フィルタと、第2フィルタと、を有している。前記第1端子及び前記第2端子の少なくとも一方に接続されており、前記第2フィルタは、前記複合フィルタの前記通過帯域とは異なる通過帯域を有している。 A module according to one aspect of the present disclosure includes the composite filter and a second filter. The second filter is connected to at least one of the first terminal and the second terminal, and has a pass band different from the pass band of the composite filter.
 本開示の一態様に係る通信装置は、上記複合フィルタと、アンテナと、集積回路素子と、を有している。前記アンテナは、前記第1端子及び前記第2端子の一方に接続されている。前記集積回路素子は、前記第1端子及び前記第2端子の他方に接続されている。 A communication device according to one aspect of the present disclosure includes the composite filter, an antenna, and an integrated circuit element. The antenna is connected to one of the first terminal and the second terminal. The integrated circuit element is connected to the other of the first terminal and the second terminal.
実施形態に係る複合フィルタの第1構成例を示す回路図。FIG. 2 is a circuit diagram showing a first configuration example of a composite filter according to the embodiment. 実施形態に係る複合フィルタの第2構成例を示す回路図。FIG. 4 is a circuit diagram showing a second configuration example of the composite filter according to the embodiment. 複合フィルタの構成を規定する不等式に用いられるパラメータを説明するための模式図。5 is a schematic diagram for explaining parameters used in an inequality that defines the configuration of a composite filter. 上記パラメータの変化の傾向を説明するための模式図。FIG. 4 is a schematic diagram for explaining the tendency of changes in the parameters. 上記パラメータの変化の傾向を説明するための他の模式図。FIG. 11 is another schematic diagram for explaining the tendency of changes in the parameters. 実施形態に係る複合フィルタの通過帯域の一例を示す模式図。FIG. 4 is a schematic diagram showing an example of a passband of the composite filter according to the embodiment. 実施形態に係る複合フィルタが有するLCフィルタの減衰極の一例を示す模式図。5A and 5B are schematic diagrams showing examples of attenuation poles of an LC filter included in the composite filter according to the embodiment. 図6Aの減衰極を実現する構成の例を示す回路図。FIG. 6B is a circuit diagram showing an example of a configuration for realizing the attenuation pole of FIG. 6A. 図6Aの減衰極を実現する構成の他の例を示す回路図。FIG. 6B is a circuit diagram showing another example of the configuration for realizing the attenuation pole of FIG. 6A. 実施形態に係る複合フィルタの構造の一例を示す模式的な断面図。FIG. 2 is a schematic cross-sectional view showing an example of the structure of a composite filter according to an embodiment. 実施形態に係る複合フィルタの構造のバリエーションを示す模式図。5A to 5C are schematic diagrams showing variations in the structure of the composite filter according to the embodiment. 実施形態に係る複合フィルタの構造の他のバリエーションを示す模式図。5A to 5C are schematic diagrams showing other variations in the structure of the composite filter according to the embodiment. 実施形態に係る複合フィルタの構造の更に他のバリエーションを示す模式図。11A to 11C are schematic diagrams showing still another variation of the structure of the composite filter according to the embodiment. 実施形態に係る複合フィルタの構造の更に他のバリエーションを示す模式図。11A to 11C are schematic diagrams showing still another variation of the structure of the composite filter according to the embodiment. 複合フィルタが含む弾性波共振子の構成例を模式的に示す平面図。FIG. 4 is a plan view illustrating a schematic configuration example of an elastic wave resonator included in the composite filter. 実施形態に係る通信装置の要部を示すブロック図。FIG. 1 is a block diagram showing a main part of a communication device according to an embodiment.
(複合フィルタの概要)
 図1は、実施形態に係る複合フィルタ1(符号は図7)の第1構成例を模式的に示す回路図である。図2は、実施形態に係る複合フィルタ1の第2構成例を模式的に示す回路図である。なお、第1構成例に係る複合フィルタ1を複合フィルタ1Aと称し、第1構成例に係る複合フィルタ1を複合フィルタ1Bと称することがある。
(Composite Filter Overview)
Fig. 1 is a circuit diagram showing a first example of a composite filter 1 (reference numeral is shown in Fig. 7) according to an embodiment. Fig. 2 is a circuit diagram showing a second example of a composite filter 1 according to an embodiment. The composite filter 1 according to the first example of a composite filter 1 may be referred to as a composite filter 1A, and the composite filter 1 according to the first example of a composite filter 1 may be referred to as a composite filter 1B.
 複合フィルタ1は、第1端子3Aと第2端子3B(以下、これらを区別せずに、「端子3」(符号は図7)と称することがある。)との間に介在して両端子の間を通過する信号のうち、所定の通過帯域の周波数を有する成分を通過させる。換言すれば、複合フィルタ1は、通過帯域外の周波数を有する成分を減衰させる。なお、第1端子3A及び第2端子3Bのいずれが入力側又は出力側であってもよい。 The composite filter 1 is disposed between a first terminal 3A and a second terminal 3B (hereinafter, sometimes referred to as "terminal 3" (reference numeral in FIG. 7) without distinction between the two terminals) and passes components having frequencies in a predetermined pass band among the signals passing between the two terminals. In other words, the composite filter 1 attenuates components having frequencies outside the pass band. Note that either the first terminal 3A or the second terminal 3B may be the input side or the output side.
 複合フィルタ1は、弾性波フィルタ5と、LCフィルタ7と、付加回路9(符号は図8A)とを有している。なお、複合フィルタ1A及び1Bは、付加回路9の構成が互いに異なっている。複合フィルタ1Aのものを付加回路9Aと称し、複合フィルタ1Bのものを付加回路9Bと称することがある。弾性波フィルタ5は、少なくとも1つの弾性波共振子11(以下、単に「共振子11」ということがある。)を有している。LCフィルタ7は、第1端子3Aと弾性波フィルタ5との間に介在している。付加回路9は、弾性波フィルタ5と第2端子3Bとの間に介在している。 The composite filter 1 has an elastic wave filter 5, an LC filter 7, and an additional circuit 9 (reference numerals shown in FIG. 8A). The configuration of the additional circuit 9 is different between the composite filters 1A and 1B. The additional circuit 9 in the composite filter 1A may be referred to as the additional circuit 9A, and the additional circuit in the composite filter 1B may be referred to as the additional circuit 9B. The elastic wave filter 5 has at least one elastic wave resonator 11 (hereinafter, may be simply referred to as the "resonator 11"). The LC filter 7 is interposed between the first terminal 3A and the elastic wave filter 5. The additional circuit 9 is interposed between the elastic wave filter 5 and the second terminal 3B.
 付加回路9は、少なくとも1つの電気的要素13(符号は図2)を有している。電気的要素13は、例えば、インダクタL、キャパシタC、又は特定配線15(符号は図8B)である。特定配線15は、0.3nH以上のインダクタンスを有する配線であるものとする。特定配線15は、インダクタLとして捉えられても構わない。従って、実施形態の説明において、付加回路9のインダクタLに関する説明は、矛盾等が生じない限り、付加回路9の特定配線15に援用されてよい。 The additional circuit 9 has at least one electrical element 13 (reference numeral in FIG. 2). The electrical element 13 is, for example, an inductor L, a capacitor C, or a specific wiring 15 (reference numeral in FIG. 8B). The specific wiring 15 is assumed to be a wiring having an inductance of 0.3 nH or more. The specific wiring 15 may be regarded as an inductor L. Therefore, in the description of the embodiment, the description of the inductor L of the additional circuit 9 may be applied to the specific wiring 15 of the additional circuit 9, unless a contradiction arises.
 図3は、複合フィルタ1の減衰特性(別の観点では透過特性)の一例を示す模式図である。 Figure 3 is a schematic diagram showing an example of the attenuation characteristics (or, from another perspective, the transmission characteristics) of the composite filter 1.
 この図において、横軸は周波数f(Hz)を示しており、図の右側ほど周波数が高い。縦軸は、挿入損失(「Loss」と称することがある。)を示している。縦軸の単位はdBであり、図の上方ほどLossが小さい。なお、このようなグラフにおいて、縦軸は「-」が付された値が示されることがある。実施形態の説明では、Lossの大小に関する説明は、Lossが正の値として扱われているか、又はLossの絶対値について言及されているものとする。 In this diagram, the horizontal axis indicates frequency f (Hz), with higher frequencies toward the right of the diagram. The vertical axis indicates insertion loss (sometimes called "Loss"). The vertical axis is in dB, with the loss decreasing toward the top of the diagram. Note that in such graphs, values with "-" may be shown on the vertical axis. In the explanation of the embodiment, explanations regarding the magnitude of Loss are given with Loss treated as a positive value, or the absolute value of Loss is mentioned.
 図中の線L1は複合フィルタ1の減衰特性を示している。図示の例では、複合フィルタ1として、バンドパスフィルタが想定されている。従って、Lossは、所定の通過帯域PB1において小さくなっている。また、通過帯域PB1の両側(低周波数側及び高周波数側)の阻止帯域EB1L又はEB1H(符号は図5)においてはLossが大きくなっている。複合フィルタ1の減衰特性において、通過帯域PB1から阻止帯域EB1L又はEB1Hへ向かってLossが徐々に大きくなる部分を減衰スロープSLPと称するものとする。 Line L1 in the figure indicates the attenuation characteristics of composite filter 1. In the illustrated example, a bandpass filter is assumed as the composite filter 1. Therefore, loss is small in a predetermined passband PB1. Furthermore, loss is large in the stopbands EB1L or EB1H (symbols in Figure 5) on both sides (low frequency side and high frequency side) of the passband PB1. In the attenuation characteristics of the composite filter 1, the portion where loss gradually increases from the passband PB1 to the stopband EB1L or EB1H is referred to as the attenuation slope SLP.
 そして、実施形態に係る複合フィルタ1においては、高周波数側及び低周波数側の減衰スロープSLPは、下記の式1を満たす。
   式1: Min.Loss(dB)≦a×Δf-b
 Min.Lossは、通過帯域PB1におけるLossの大きさを示す指標である。Δfは、減衰スロープSLPの急峻性を示す指標である。a及びbは、LCフィルタ7及び付加回路9のサイズ(より詳細には後述する段数)に応じて値が変動するパラメータである。これらの詳細については後述する。
In the composite filter 1 according to the embodiment, the attenuation slopes SLP on the high frequency side and the low frequency side satisfy the following formula 1.
Equation 1: Min. Loss (dB) ≦ a × Δf − b
Min. Loss is an index indicating the magnitude of Loss in the passband PB1. Δf is an index indicating the steepness of the attenuation slope SLP. a and b are parameters whose values vary depending on the size of the LC filter 7 and the additional circuit 9 (more specifically, the number of stages described later). These will be described in detail later.
 以上のような構成を有している複合フィルタ1は、例えば、以下の効果を奏する。 The composite filter 1 having the above configuration has the following effects, for example:
 LCフィルタ7は、一般に、通過帯域及び/又は阻止帯域を広く確保することが容易である。一方、弾性波フィルタ5は、一般に、減衰スロープの急峻性を高くすることが容易である。従って、両者が組み合わされることによって、通過帯域又は阻止帯域として広い帯域を確保しつつ、減衰スロープを急峻にすることが容易化される。 The LC filter 7 generally makes it easy to ensure a wide pass band and/or stop band. On the other hand, the elastic wave filter 5 generally makes it easy to increase the steepness of the attenuation slope. Therefore, by combining the two, it becomes easy to make the attenuation slope steep while ensuring a wide band as the pass band or stop band.
 また、第1端子3Aと弾性波フィルタ5との間にはLCフィルタ7が介在しており、かつ弾性波フィルタ5と第2端子3Bとの間には付加回路9が介在している。従って、入力側から複合フィルタ1を見たインピーダンスと、出力側から複合フィルタ1を見たインピーダンスとの双方をLCフィルタ7及び付加回路9の構成要素のインダクタンス及び/又はキャパシタンス等の調整によって調整できる。 Also, an LC filter 7 is interposed between the first terminal 3A and the elastic wave filter 5, and an additional circuit 9 is interposed between the elastic wave filter 5 and the second terminal 3B. Therefore, both the impedance of the composite filter 1 as viewed from the input side and the impedance of the composite filter 1 as viewed from the output side can be adjusted by adjusting the inductance and/or capacitance of the components of the LC filter 7 and the additional circuit 9.
 弾性波フィルタ5の第1端子3A側及び第2端子3B側の双方にインダクタL及び/又はキャパシタC(LCフィルタ7及び付加回路9)を組み合わせると、例えば、Lossが増加する。しかし、式1が満たされるように複合フィルタ1を構成すると、LCフィルタ7及び付加回路9のサイズが制限される。これにより、減衰スロープの急峻化と挿入損失の低減との両立が図られる。 When an inductor L and/or a capacitor C (LC filter 7 and additional circuit 9) are combined with both the first terminal 3A side and the second terminal 3B side of the elastic wave filter 5, for example, loss increases. However, when the composite filter 1 is configured so that formula 1 is satisfied, the size of the LC filter 7 and additional circuit 9 is limited. This makes it possible to achieve both a steeper attenuation slope and a reduced insertion loss.
 以上が実施形態に係る複合フィルタ1の概要である。以下では、概略、下記の順に説明を行う。
 1.式1(図3、図4A及び図4B)
  1.1.式1のパラメータの定義
  1.2.式1によって特定される構成
  1.3.式1を求めた方法
  1.4.orderの数え方
  1.5.他の式
 2.複合フィルタの構成全般(図1及び図2)
 3.弾性波フィルタの構成(図1及び図2)
 4.LCフィルタの構成(図1及び図2)
 5.付加回路の構成(図1及び図2)
 6.減衰特性の例
  6.1.通過帯域及び阻止帯域(図5)
  6.2.減衰極の例(図6A~図6C)
 7.複合フィルタの構造の例
  7.1.構造的な構成要素(図7)
  7.2.構造のバリエーション(図8A~図8D)
  7.3.構造について補足
 8.弾性波共振子の構成の具体例(図9)
 9.複合フィルタの利用例(図10)
 10.実施形態のまとめ
The above is an overview of the composite filter 1 according to the embodiment. The following will generally be described in the following order.
1. Formula 1 (FIGS. 3, 4A and 4B)
1.1. Definition of parameters in Equation 1 1.2. Configuration specified by Equation 1 1.3. Method for determining Equation 1 1.4. Counting of orders 1.5. Other equations 2. General configuration of composite filters (Figs. 1 and 2)
3. Structure of acoustic wave filter (Figures 1 and 2)
4. LC filter configuration (Figures 1 and 2)
5. Configuration of additional circuit (Fig. 1 and Fig. 2)
6. Examples of attenuation characteristics 6.1. Passband and stopband (Figure 5)
6.2. Examples of attenuation poles (FIGS. 6A to 6C)
7. Example of a composite filter structure 7.1. Structural components (Fig. 7)
7.2. Structural variations (FIGS. 8A to 8D)
7.3. Supplementary information on structure 8. Specific example of elastic wave resonator structure (Figure 9)
9. Example of using composite filters (Figure 10)
10. Summary of the embodiment
(1.式1)
(1.1.式1のパラメータの定義)
 図3に示すように、式1のMin.Lossは、通過帯域内におけるLossの最小値を指す。通常、Min.Lossが小さいほど、通過帯域の全体に亘って、Lossは小さくなる。すなわち、Min.Lossは、通過帯域のLossの代表値の一種である。
(1. Equation 1)
(1.1. Definition of parameters in formula 1)
3, the Min. Loss in Equation 1 refers to the minimum value of the loss in the passband. Usually, the smaller the Min. Loss, the smaller the loss is over the entire passband. In other words, the Min. Loss is a kind of representative value of the loss in the passband.
 式1のΔfは、図3に「Δf×f1.5」と表記した周波数差(Hz)の絶対値を周波数f1.5(Hz)で割って正規化した値を指す。「Δf×f1.5」は、周波数f1.5と周波数f30との周波数差(Hz)である。すなわち、Δfは、下記式で表される。
   Δf=|f1.5-f30|/f1.5
Δf in Equation 1 refers to a normalized value obtained by dividing the absolute value of the frequency difference (Hz) indicated as "Δf×f1.5" in FIG. 3 by the frequency f1.5 (Hz). "Δf×f1.5" is the frequency difference (Hz) between the frequency f1.5 and the frequency f30. That is, Δf is expressed by the following equation.
Δf=|f1.5−f30|/f1.5
 周波数f1.5は、LossがMin.Lossよりも1.5dBだけ大きい値を取るときの周波数f(Hz)である。周波数f30は、LossがMin.Lossよりも30dBだけ大きい値を取るときの周波数f(Hz)である。一般に、通過帯域は、Lossが3dB以下の帯域とされることが多い。従って、Δfは、通過帯域に比較的近い周波数帯における減衰スロープの急峻性を示している。Δfが小さいほど、急峻性が高い。 Frequency f1.5 is the frequency f (Hz) when the loss is 1.5 dB greater than the Min. Loss. Frequency f30 is the frequency f (Hz) when the loss is 30 dB greater than the Min. Loss. In general, the passband is often a band where the loss is 3 dB or less. Therefore, Δf indicates the steepness of the attenuation slope in a frequency band relatively close to the passband. The smaller Δf is, the steeper the slope is.
 式1のa及びbは、以下の式で表される。
 a=aa×(log10(order-1))-ab
 b=ba×(log10(order-1))bb
 aa=0.00079217×exp(0.055664×(order-1))
 ab=3.9180×exp(-0.0041245×(order-1))
 ba=2.8407×exp(0.0078456×(order-1))
 bb=0.54831×exp(0.0032121×(order-1))
 なお、便宜上、上記の式を上から順に、「aの式」、「bの式」、「aaの式」、「abの式」、「baの式」及び「bbの式」と称することがある。
a and b in formula 1 are represented by the following formulas.
a = aa × (log 10 (order-1)) - ab
b = b a × (log 10 (order-1)) bb
aa = 0.00079217 × exp (0.055664 × (order-1))
ab = 3.9180 x exp (-0.0041245 x (order-1))
ba = 2.8407 × exp (0.0078456 × (order-1))
bb = 0.54831 x exp (0.0032121 x (order-1))
For convenience, the above formulas may be referred to as "formula a", "formula b", "formula aa", "formula ab", "formula ba" and "formula bb" in that order.
 上記において、orderは、弾性波フィルタ5の両側に位置する直列腕17S及び並列腕17P(図1及び図2。以下、両者を区別せずに「腕17」(符号は図2)ということがある。)の数(段数)である。腕17の定義乃至は特定方法については後述する(1.4節)。ここでは、orderについて簡単に理解するために、図1及び図2を例にとってorderを数える。 In the above, order is the number (stages) of series arms 17S and parallel arms 17P (FIGS. 1 and 2; hereinafter, these are sometimes referred to as "arms 17" (reference numerals in FIG. 2) without distinction between the two) located on both sides of the acoustic wave filter 5. The definition and method of identifying the arms 17 will be described later (Section 1.4). Here, to easily understand the order, the order will be counted using FIGS. 1 and 2 as examples.
 図1を例に取ると、LCフィルタ7は、第1端子3A側から弾性波フィルタ5側へ順に、キャパシタCからなる直列腕17S、インダクタLからなる並列腕17P、及びキャパシタCからなる直列腕17Sを有している。従って、LCフィルタ7の段数は3である。付加回路9Aは、インダクタLからなる直列腕17Sを有している。従って、付加回路9Aの段数は1である。複合フィルタ1Aの全体としては、orderに係る段数は4である。 Take FIG. 1 as an example. LC filter 7 has, in order from first terminal 3A to acoustic wave filter 5, a series arm 17S consisting of a capacitor C, a parallel arm 17P consisting of an inductor L, and a series arm 17S consisting of a capacitor C. Therefore, the number of stages in LC filter 7 is 3. Additional circuit 9A has a series arm 17S consisting of an inductor L. Therefore, the number of stages in additional circuit 9A is 1. As a whole, the number of stages related to order for composite filter 1A is 4.
 図2を例に取ると、LCフィルタ7の段数は、図1と同様に、3である。図2の付加回路9Bの段数は、LCフィルタ7の段数と同様に3である。従って、複合フィルタ1Bの全体としては、orderに係る段数は6である。 Take FIG. 2 as an example. The number of stages in LC filter 7 is three, just like in FIG. 1. The number of stages in additional circuit 9B in FIG. 2 is three, just like the number of stages in LC filter 7. Therefore, the number of stages related to order for composite filter 1B as a whole is six.
 なお、複合フィルタ1は、第1端子3A側にLCフィルタ7を有し、第2端子3B側に付加回路9を有している。LCフィルタ7及び付加回路9それぞれは、少なくとも1つの腕17を有している。従って、実施形態の構成では、orderは、必然的に2以上である。ひいては、log100の演算は生じない。 The composite filter 1 has an LC filter 7 on the first terminal 3A side, and an additional circuit 9 on the second terminal 3B side. Each of the LC filter 7 and the additional circuit 9 has at least one arm 17. Therefore, in the configuration of the embodiment, the order is necessarily 2 or more. As a result, the calculation of log 10 0 does not occur.
(1.2.式1によって特定される構成)
 図4Aは、式1において不等号(≦)を等号(=)にした場合のΔfとMin.Lossとの関係を示す模式図である。
(1.2. Configuration specified by formula 1)
4A is a schematic diagram showing the relationship between Δf and Min. Loss when the inequality sign (≦) in Equation 1 is changed to an equal sign (=).
 この図において横軸はΔfを示す対数軸であり、図の右側ほど値が大きい(減衰スロープが緩やかになる。)。縦軸はMin.Loss(dB)を示す対数軸であり、図の上方ほどLossが大きい。図中の線L3は、orderが特定の値である場合のΔfとMin.Lossとの関係を示している。 In this diagram, the horizontal axis is a logarithmic axis showing Δf, with values increasing toward the right side of the diagram (the attenuation slope becomes gentler). The vertical axis is a logarithmic axis showing Min. Loss (dB), with loss increasing toward the top of the diagram. Line L3 in the diagram shows the relationship between Δf and Min. Loss when the order is a specific value.
 線L3によって示されているように、式1では、Δfが小さくなるほど、Min.Lossが大きくなる。すなわち、減衰スロープが急峻になるほど、Lossは大きくなる。従って、式1は、減衰スロープの急峻性とLossの低減とのトレードオフの関係を示している。 As shown by line L3, in Equation 1, the smaller Δf is, the larger Min. Loss is. In other words, the steeper the attenuation slope is, the larger the Loss is. Therefore, Equation 1 shows a trade-off between the steepness of the attenuation slope and the reduction of Loss.
 図4Bは、log10(order-1)と、a及びbとの関係を示す模式図である。 FIG. 4B is a schematic diagram showing the relationship between log 10 (order-1) and a and b.
 この図において横軸はlog10(order-1)を示す対数軸であり、図の右側ほど該パラメータの値が大きい。なお、図の右側ほど、orderが大きいと捉えられてもよい。左側の縦軸はaを示す対数軸であり、図の上方ほどaの値が大きい。右側の縦軸はbを示す対数軸であり、図の上方ほどbの値が大きい。なお、左側の縦軸の大きさと、右側の縦軸の大きさとは互いに異なる。図中の線Laは、log10(order-1)とaとの関係を示している。線Lbは、log10(order-1)とbとの関係を示している。 In this figure, the horizontal axis is a logarithmic axis showing log 10 (order-1), and the value of the parameter is larger toward the right side of the figure. It may be considered that the order is larger toward the right side of the figure. The vertical axis on the left side is a logarithmic axis showing a, and the value of a is larger toward the top of the figure. The vertical axis on the right side is a logarithmic axis showing b, and the value of b is larger toward the top of the figure. It should be noted that the size of the vertical axis on the left side and the size of the vertical axis on the right side are different from each other. Line La in the figure shows the relationship between log 10 (order-1) and a. Line Lb shows the relationship between log 10 (order-1) and b.
 線Laによって示されているように、orderが大きくなるほど、aの値は小さくなる。一方、aは、式1においてΔfに乗じられる正の値のパラメータである。従って、orderが大きくなるほど、式1の右辺(別の観点では図4Aに示されるMin.Loss)の値は大きくなる。 As shown by line La, the larger the order, the smaller the value of a. Meanwhile, a is a positive parameter that is multiplied by Δf in Equation 1. Therefore, the larger the order, the larger the value of the right hand side of Equation 1 (from another perspective, Min. Loss shown in Figure 4A).
 線Lbによって示されているように、orderが大きくなるほど、bの値は大きくなる。一方、bは、式1において、負の値にされてΔfのべき乗に係るべき指数として利用される。また、Δfは、通常、1未満である。従って、orderが大きくなるほど、式1の右辺(別の観点では図4Aに示されるMin.Loss)の値は大きくなる。 As shown by line Lb, the larger the order, the larger the value of b. On the other hand, b is made negative in Equation 1 and used as an exponent related to the power of Δf. Also, Δf is usually less than 1. Therefore, the larger the order, the larger the value of the right hand side of Equation 1 (from another perspective, Min.Loss shown in Figure 4A).
 特に図示しないが、上記のorderに対するa及びbの変化から、orderが大きくなるほど、図4Aの線L3は、概略、図の右上側へシフトする。換言すれば、式1の不等号を等号にした場合において、orderが大きいほど、Δfの特定の値に対応するMin.Lossの値は大きくなる。 Although not shown in the figure, from the changes in a and b relative to the above order, the larger the order, the more the line L3 in Figure 4A shifts toward the upper right side of the figure. In other words, when the inequality sign in Equation 1 is changed to an equal sign, the larger the order, the larger the Min. Loss value corresponding to a specific value of Δf becomes.
 従って、実施形態の概要で述べたように、式1が満たされるように複合フィルタ1を構成する場合、LossがΔfとの関係において一定程度の関係に抑制されるようにLCフィルタ7及び付加回路9のorderを決定することができる。また、次に述べる式1を求めた方法から理解されるように、上記のLossに関する一定程度は、減衰スロープの急峻性が高いLCフィルタにおけるものである。従って、減衰スロープの急峻化と、挿入損失の低減とを両立できることになる。 Therefore, as described in the overview of the embodiment, when the composite filter 1 is configured so that Equation 1 is satisfied, the order of the LC filter 7 and the additional circuit 9 can be determined so that the loss is suppressed to a certain degree in relation to Δf. Furthermore, as can be understood from the method for determining Equation 1 described below, the certain degree of the above-mentioned loss is for an LC filter with a steep attenuation slope. Therefore, it is possible to achieve both a steep attenuation slope and a reduced insertion loss.
(1.3.式1を求めた方法)
 式1は、出願人によるシミュレーション計算に基づいて求められている。具体的には、以下のとおりである。
(1.3. Method for determining formula 1)
The formula 1 has been obtained based on simulation calculations performed by the applicant. Specifically, it is as follows.
 段数及び通過帯域の帯域幅が互いに異なる複数の楕円関数型(Cauer型)のLCフィルタを設計した。具体的には、段数のバリエーションは、3、4、5、6、7及び9とした。また、通過帯域は、いずれのLCフィルタについても、概略、低周波数側の減衰スロープにおいてLossが10dBとなる周波数が概ね5GHzとなるように設定した。そして、通過帯域のバリエーションは、Lossが10dB以下となる周波数帯の幅が、概ね、0.5GHz、1GHz、2GHz及び3GHzとなるように設定した。また、LCフィルタは、阻止帯域のLossが40dB以上となるように設計された。LCフィルタにおいて、インダクタLのインダクタンス及びキャパシタCのキャパシタンスは、上記の要件が満たされるように最適化された。 Several elliptic function type (Cauer type) LC filters were designed with different numbers of stages and passband bandwidths. Specifically, the variations in the number of stages were 3, 4, 5, 6, 7, and 9. The passbands for all LC filters were set so that the frequency at which the loss was 10 dB on the attenuation slope on the low frequency side was approximately 5 GHz. The passband variations were set so that the frequency band width at which the loss was 10 dB or less was approximately 0.5 GHz, 1 GHz, 2 GHz, and 3 GHz. The LC filters were designed so that the loss in the stopband was 40 dB or more. In the LC filters, the inductance of the inductor L and the capacitance of the capacitor C were optimized to satisfy the above requirements.
 上記のような種々のLCフィルタについて、Δf及びMin.Lossをシミュレーション計算によって算出した。そして、これらの値を段数別にプロットすると、図4Aの線L3に示されるような相関関係が示された。そこで、段数別にΔfとMin.Lossとの関係を近似する式を探査した。その結果、式1によって上記関係を近似できることを見出した。上記関係を式1によって近似した場合(回帰分析によってa及びbを算出した場合)の決定係数Rは0.996以上であった。 For the above-mentioned various LC filters, Δf and Min. Loss were calculated by simulation calculation. Then, when these values were plotted by the number of stages, a correlation was shown as shown by line L3 in FIG. 4A. Therefore, an equation that approximates the relationship between Δf and Min. Loss by the number of stages was searched for. As a result, it was found that the above relationship can be approximated by Equation 1. When the above relationship was approximated by Equation 1 (when a and b were calculated by regression analysis), the coefficient of determination R2 was 0.996 or more.
 次に、orderとa又はbとの関係を近似する式を探査した。その結果、既述のa又はbの式、すなわち、log10(order-1)をべき乗して係数を乗じる式によって上記関係を近似できることを見出した。上記関係を上記の式によって近似した場合(回帰分析によってaa、ab、ba及びbbを算出した場合)の決定係数Rは0.992以上であった。 Next, we searched for an equation that approximates the relationship between order and a or b. As a result, we found that the above relationship can be approximated by the above-mentioned equation for a or b, that is, an equation in which log 10 (order-1) is raised to the power and multiplied by a coefficient. When the above relationship was approximated by the above equation (when aa, ab, ba, and bb were calculated by regression analysis), the coefficient of determination R2 was 0.992 or more.
 さらに、出願人は、aa、ab、ba及びbbもorderの関数とすることによって、ΔfとMin.Lossとの関係を示す近似式の精度が向上することを見出した。より詳細には、鋭意検討の結果、既述の、aa、ab、ba又はbbの式、すなわち、(order-1)に第1の係数を乗じた値をべき指数としてネイピア数をべき乗し、さらに第2の係数を乗じる式によって、orderと、aa、ab、ba又はbbとの関係を近似できることを見出した。そして、回帰分析によって、第1の係数及び第2の係数を求めた結果、既述のaa、ab、ba又はbbの式が得られた。 Furthermore, the applicant found that the accuracy of the approximation formula showing the relationship between Δf and Min. Loss is improved by making aa, ab, ba, and bb functions of order as well. More specifically, as a result of intensive research, the applicant found that the relationship between order and aa, ab, ba, or bb can be approximated by the above-mentioned formula of aa, ab, ba, or bb, that is, the formula in which the Napier's number is raised to the power of the value obtained by multiplying (order-1) by a first coefficient as an exponent, and then multiplied by a second coefficient. Then, the applicant found the above-mentioned formula of aa, ab, ba, or bb by regression analysis to determine the first coefficient and the second coefficient.
 なお、出願人は、式1を求めたときの条件(段数等)とは異なる条件であっても、上記のように求めた式1によって、ΔfとMin.Lossとの関係を近似できることを確認している。 The applicant has confirmed that the relationship between Δf and Min. Loss can be approximated by Equation 1 obtained as above, even under conditions (number of stages, etc.) different from those used when Equation 1 was obtained.
(1.4.orderの数え方)
 上記のとおり、式1は、orderをパラメータとしている。そこで、以下では、orderの数え方に係る事項について説明する。
(1.4. How to count orders)
As described above, the formula 1 has an order as a parameter. Therefore, the following describes matters related to the counting of the order.
 腕(例えば腕17及び後述する腕21)は、例えば、ラダー型に構成されている回路の互いに交差する複数の部分を指す。図1及び図2の例では、第1端子3Aから弾性波フィルタ5を経由して第2端子3Bへ至る信号経路と、当該信号経路の複数の位置と基準電位部19とを接続する1以上の並列腕(例えば並列腕17P及び21P)と、が設けられていることによって、ラダー型の回路が構成されている。上記信号経路のうち、1以上の並列腕に対する1以上の接続位置によって区切られている各々は直列腕(例えば直列腕17S及び21S)である。 The arms (e.g., arm 17 and arm 21 described below) refer to, for example, multiple intersecting portions of a circuit configured in a ladder type. In the example of Figs. 1 and 2, a ladder type circuit is configured by providing a signal path from the first terminal 3A to the second terminal 3B via the acoustic wave filter 5, and one or more parallel arms (e.g., parallel arms 17P and 21P) that connect multiple positions on the signal path to the reference potential section 19. Of the above signal paths, each separated by one or more connection positions to one or more parallel arms is a series arm (e.g., series arms 17S and 21S).
 上記の説明から理解されるように、各腕は、1つの電気的要素(例えばインダクタL又はキャパシタC)を有しているだけであってもよいし、2以上の電気的要素を含んでいてもよい。例えば、後述する図6B及び図6Cでは、並列共振回路23P及び直列共振回路23Sが示されるが、このような共振回路が1つの腕に含まれていてもよい。さらに、より複雑な回路(例えば二重共振回路)が1つの腕に含まれていてもよい。 As can be understood from the above description, each arm may have only one electrical element (e.g., an inductor L or a capacitor C), or may include two or more electrical elements. For example, in Figures 6B and 6C described below, a parallel resonant circuit 23P and a series resonant circuit 23S are shown, and such resonant circuits may be included in one arm. Furthermore, a more complex circuit (e.g., a dual resonant circuit) may be included in one arm.
 なお、一見すると2つの並列腕に見えても、信号経路(直列腕)に対する電気的な観点の接続位置が実質的に同じものは、1つの並列腕として捉えられてよい。例えば、一見して2つの並列腕に見えても、信号経路に対する両者の接続位置の間(直列腕に相当するはずの部分)に電気的要素(例えばインダクタL又はキャパシタC)が存在しない場合は、当該2つの並列腕は、1つの並列腕として捉えられてよい。 Note that even if two parallel arms appear at first glance, if the connection positions from an electrical perspective to the signal path (series arm) are substantially the same, they may be regarded as one parallel arm. For example, even if two parallel arms appear at first glance, if there is no electrical element (e.g., inductor L or capacitor C) between the connection positions of the two to the signal path (the part that should correspond to the series arm), the two parallel arms may be regarded as one parallel arm.
 また、信号経路に対する並列腕の接続位置を跨いで信号経路に並列に電気的要素が接続されることがある。このような電気的要素は、直列腕の一種として捉えることもできる。しかし、上記のような電気的要素は特性の微調整に寄与するものである場合が多い。従って、上記の電気的要素は、orderを数えるときの直列腕に含められなくてよい。その他、上記のように特異的な部分は、ラダー型の回路に及ぼす影響を考慮して、適宜にorderを数えるときの腕から除外されてよい。 In addition, electrical elements may be connected in parallel to the signal path across the connection position of the parallel arm to the signal path. Such electrical elements can also be considered as a type of series arm. However, electrical elements such as those described above often contribute to fine-tuning the characteristics. Therefore, the above electrical elements do not need to be included in the series arm when counting the order. In addition, specific parts such as those described above may be appropriately excluded from the arms when counting the order, taking into account the impact they have on the ladder-type circuit.
 2つの並列腕が有するインダクタL同士において電界結合及び/又は磁界結合がなされてフィルタが構成されることがある。このような結合の有無は、orderを数えるときに無視されてよい。他の部位における結合についても同様とする。 A filter may be constructed by electric field coupling and/or magnetic field coupling between the inductors L of the two parallel arms. The presence or absence of such coupling may be ignored when counting the order. The same applies to couplings in other parts.
 orderに係る直列腕17S及び並列腕17Pは、複合フィルタ1が弾性波フィルタ5に対して第1端子3A側及び第2端子3B側に有しているものを指すものとする。換言すれば、orderは、第1端子3Aと弾性波フィルタ5との間及び弾性波フィルタ5と第2端子3Bとの間に介在する腕17の段数である。 The series arm 17S and parallel arm 17P related to the order refer to those that the composite filter 1 has on the first terminal 3A side and the second terminal 3B side with respect to the acoustic wave filter 5. In other words, the order is the number of stages of the arms 17 interposed between the first terminal 3A and the acoustic wave filter 5 and between the acoustic wave filter 5 and the second terminal 3B.
 なお、実施形態の説明では、第1端子3Aと弾性波フィルタ5との間にLCフィルタ7のみが介在する態様を想定する。そして、特に断り無く、第1端子3Aと弾性波フィルタ5との間の語と、LCフィルタ7の語とを同義の語として扱うことがある。同様に、弾性波フィルタ5と第2端子3Bとの間に付加回路9のみが介在する態様を想定し、両者の用語を同義の語として扱うことがある。 In the description of the embodiment, it is assumed that only the LC filter 7 is interposed between the first terminal 3A and the elastic wave filter 5. Furthermore, unless otherwise specified, the term "between the first terminal 3A and the elastic wave filter 5" and the term "LC filter 7" may be treated as synonymous terms. Similarly, it is assumed that only the additional circuit 9 is interposed between the elastic wave filter 5 and the second terminal 3B, and the two terms may be treated as synonymous terms.
 別の観点では、例えば、第1端子3Aと弾性波フィルタ5との間に、インピーダンスマッチングのための整合回路と、LCフィルタとが設けられている場合、整合回路とLCフィルタとの組み合わせがLCフィルタ7であると定義されてよい。すなわち、L及びCを有してフィルタ機能を発揮し、第1端子3A及び弾性波フィルタ5との間に位置する回路全体がLCフィルタ7として捉えられてよい。同様に、L及びCを有し、弾性波フィルタ5と第2端子3Bとの間に位置する回路全体が付加回路9として捉えられてよい。 From another perspective, for example, if a matching circuit for impedance matching and an LC filter are provided between the first terminal 3A and the acoustic wave filter 5, the combination of the matching circuit and the LC filter may be defined as the LC filter 7. In other words, the entire circuit having L and C and performing a filter function, and located between the first terminal 3A and the acoustic wave filter 5, may be regarded as the LC filter 7. Similarly, the entire circuit having L and C and located between the acoustic wave filter 5 and the second terminal 3B may be regarded as the additional circuit 9.
 図1及び図2の例では、LCフィルタ7の右側のCと、弾性波フィルタ5の最も左側の共振子11とは、並列腕によって区切られていないから、共に1つの直列腕を構成していると捉えることができる。ただし、上記のorderに係る腕17の定義に従えば、LCフィルタ7の右側の直列腕17Sは、上記右側のキャパシタCのみによって構成されている。ただし、上記右側の直列腕17Sが、上記最も左側の共振子11を含むと解釈したとしても、orderの値に影響はない。すなわち、orderを数えるときに、上記最も左側の共振子11が直列腕17Sに含まれるか否かの解釈は任意である。付加回路9においても同様である。 In the examples of Figures 1 and 2, the capacitor C on the right side of the LC filter 7 and the leftmost resonator 11 of the acoustic wave filter 5 are not separated by a parallel arm, and therefore can be considered to form one series arm. However, according to the definition of the arm 17 related to the order above, the series arm 17S on the right side of the LC filter 7 is composed only of the right-side capacitor C. However, even if the right-side series arm 17S is interpreted as including the leftmost resonator 11, this does not affect the value of the order. In other words, when counting the order, it is up to the user to interpret whether or not the leftmost resonator 11 is included in the series arm 17S. The same is true for the additional circuit 9.
 orderに係る直列腕17S及び並列腕17Pは、上記のとおり、LCフィルタ7又は付加回路9に含まれるものである。また、LCフィルタ7及び付加回路9それぞれは、インダクタL(特定配線15を含む。)又はキャパシタCを含む。従って、直列腕17S及び並列腕17Pは、インダクタL及びキャパシタCを少なくとも1つ有する腕である。直列腕17S及び並列腕17Pは、この他の電気的要素を含んでいてもよい。そのような電気的要素としては、例えば、抵抗体及び共振子が挙げられる。共振子は、弾性波共振子を含まないものとされてもよい。 As described above, the series arm 17S and the parallel arm 17P related to the order are included in the LC filter 7 or the additional circuit 9. Furthermore, the LC filter 7 and the additional circuit 9 each include an inductor L (including the specific wiring 15) or a capacitor C. Therefore, the series arm 17S and the parallel arm 17P are arms that have at least one inductor L and one capacitor C. The series arm 17S and the parallel arm 17P may include other electrical elements. Examples of such electrical elements include resistors and resonators. The resonators may not include elastic wave resonators.
 図1及び図2の例のorderがそれぞれ4及び6であるという既述の説明から理解されるように、orderは、直列腕17Sの数(段数)と並列腕17Pの数(段数)との合計であるとともに、LCフィルタ7における段数と付加回路9における段数との合計である。ただし、例えば、LCフィルタ7における段数をorderの値として式1に代入してLCフィルタ7の段数を決定したり、付加回路9における段数をorderの値として式1に適用してLCフィルタ7の段数を決定したりしてもよい。この場合、式1は、orderの値が小さいほど右辺の値が小さくなるから、より特性が高い複合フィルタ1が得られる。また、例えば、LCフィルタ7における段数及び付加回路9における段数のうち、大きい方の段数をorderの値として式1に代入し、当該大きい方の段数の回路の段数を決定してもよい。 As can be understood from the above explanation that the order in the examples of Figures 1 and 2 is 4 and 6, respectively, the order is the sum of the number (number of stages) of the series arms 17S and the number (number of stages) of the parallel arms 17P, as well as the sum of the number of stages in the LC filter 7 and the number of stages in the additional circuit 9. However, for example, the number of stages in the LC filter 7 may be determined by substituting the number of stages in the LC filter 7 into Equation 1 as the value of order, or the number of stages in the additional circuit 9 may be applied to Equation 1 as the value of order to determine the number of stages in the LC filter 7. In this case, the smaller the value of the order in Equation 1, the smaller the value of the right side becomes, so that a composite filter 1 with better characteristics is obtained. Also, for example, the larger of the number of stages in the LC filter 7 and the number of stages in the additional circuit 9 may be substituted into Equation 1 as the value of order to determine the number of stages in the circuit with the larger number of stages.
(1.5.他の式)
 複合フィルタ1の構成によってはf30を特定することが困難な場合がある。そのような場合は、f20に基づいてΔfを求めてもよい。f20は、LossがMin.Lossよりも20dBだけ小さい値になる周波数fである。具体的には、以下の式により、f20からΔfを算出する。
  Δf=α×Δf20+β
  Δf20=|f1.5-f20|/f1.5
  α=0.985×exp(1.0309×0.61941order-1
  β=0.01009×exp(-19.04×0.3729order-1
(1.5. Other Formulas)
Depending on the configuration of the composite filter 1, it may be difficult to specify f30. In such a case, Δf may be calculated based on f20. f20 is the frequency f at which the loss is 20 dB smaller than the Min. Loss. Specifically, Δf is calculated from f20 by the following formula.
Δf=α×Δf20+β
Δf20=|f1.5−f20|/f1.5
α=0.985×exp(1.0309×0.61941 order−1 )
β = 0.01009 × exp (-19.04 × 0.3729 order-1 )
 上記の式は、シミュレーション計算に基づいて得られている。具体的には、式1を求めたときに用いた種々の条件下のシミュレーション計算結果に基づいて、f30、f20及びf1.5を特定した。次に、Δf=|f1.5-f30|/f1.5の式によってΔfを算出した。そして、f20とΔfとを近似する式を探査し、その結果、上式が得られた。 The above formula was obtained based on simulation calculations. Specifically, f30, f20, and f1.5 were identified based on the results of simulation calculations under the various conditions used when formula 1 was obtained. Next, Δf was calculated using the formula Δf = |f1.5 - f30|/f1.5. Then, a formula that approximates f20 and Δf was searched for, and the above formula was obtained as a result.
(2.複合フィルタの構成全般)
 図1及び図2に示す複合フィルタ1は、通過帯域及び阻止帯域のいずれに着目して構成されたものであってもよい。また、複合フィルタ1において、通過帯域又は阻止帯域は、下限(低周波数側の端部)の周波数及び上限(高周波数側の端部)の周波数の双方が規定されてもよいし、一方のみが規定されてもよい。別の観点では、複合フィルタ1は、例えば、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ及びバンドエリミネーションフィルタのいずれと捉えられるものであってもよい。本段落の説明は、弾性波フィルタ5、LCフィルタ7及び付加回路9(フィルタを構成する場合)のそれぞれにも援用されてよい。
(2. Overall configuration of composite filters)
The composite filter 1 shown in Fig. 1 and Fig. 2 may be configured with a focus on either the pass band or the stop band. In addition, in the composite filter 1, the pass band or the stop band may be specified by both the lower limit (low frequency end) frequency and the upper limit (high frequency end) frequency, or only one of them. From another perspective, the composite filter 1 may be regarded as, for example, any of a band pass filter, a high pass filter, a low pass filter, and a band elimination filter. The description in this paragraph may also be applied to each of the acoustic wave filter 5, the LC filter 7, and the additional circuit 9 (when a filter is configured).
 流通されている製品等において、通過帯域及び阻止帯域は、適宜に特定されてよい。例えば、仕様書によって特定されてもよいし、製品のフィルタ特性を計測することによって特定されてもよい。通過帯域及び阻止帯域に要求される減衰量は、複合フィルタ1が適用される機器等によって異なる。一例として、Lossが5dB以下又は3dB以下の周波数帯が通過帯域として特定されてよい。また、一例として、Lossが30dB以上又は40dB以上の周波数帯が阻止帯域として特定されてよい。f1.5は、通過帯域内に位置していてもよいし、通過帯域外に位置していてもよい。 In distributed products, the passband and stopband may be specified as appropriate. For example, they may be specified by a specification, or they may be specified by measuring the filter characteristics of the product. The attenuation required for the passband and stopband differs depending on the device to which the composite filter 1 is applied. As an example, a frequency band with a loss of 5 dB or less or 3 dB or less may be specified as the passband. Also, as an example, a frequency band with a loss of 30 dB or more or 40 dB or more may be specified as the stopband. f1.5 may be located within the passband or outside the passband.
 複合フィルタ1の構造的な観点からの構成は任意である。例えば、複合フィルタ1は、チップ型の電子部品として構成されて回路基板等に実装されるものであってもよいし、電子部品の一部であってもよいし、多層基板の一部であってもよいし、回路基板及び複数の電子部品からなるモジュールの一部であってもよい。なお、後に複合フィルタ1の構造の例を挙げる(第7節)。 The composite filter 1 may have any configuration from a structural standpoint. For example, the composite filter 1 may be configured as a chip-type electronic component and mounted on a circuit board or the like, or it may be part of an electronic component, part of a multilayer board, or part of a module consisting of a circuit board and multiple electronic components. Examples of the structure of the composite filter 1 will be given later (Section 7).
 複合フィルタ1(別の観点では弾性波フィルタ5、LCフィルタ7及び/又は付加回路9)が有する電気的要素(例えばインダクタL及びキャパシタC)の構造的な観点からの構成も任意である。例えば、電気的要素は、チップ型のものであってもよいし、多層基板に造り込まれたものであってもよい。また、チップ型の電気的要素は、多層基板に実装されてもよいし、多層基板に埋め込まれてもよい。また、電気的要素の特性(例えばインダクタンス及びキャパシタンス)は、複合フィルタ1に要求される特性に応じて適宜に設定されてよい。 The configuration of the electrical elements (e.g., inductor L and capacitor C) of the composite filter 1 (or, from another perspective, the acoustic wave filter 5, the LC filter 7, and/or the additional circuit 9) from a structural standpoint is also arbitrary. For example, the electrical elements may be chip-type, or may be built into a multilayer board. Furthermore, the chip-type electrical elements may be mounted on the multilayer board, or may be embedded in the multilayer board. Furthermore, the characteristics of the electrical elements (e.g., inductance and capacitance) may be set appropriately according to the characteristics required of the composite filter 1.
 複合フィルタ1において、通過帯域外の周波数を有する信号は、例えば、基準電位部19へ逃がされる。基準電位部19は、基準電位が付与される部分である。基準電位としては、代表的には0Vを例示できるが、これに限られない。基準電位部19の具体的な構成は任意である。例えば、基準電位部19は、端子3(図7)及び回路基板内のグランド層であってよい。 In the composite filter 1, signals having frequencies outside the passband are, for example, discharged to the reference potential section 19. The reference potential section 19 is a section to which a reference potential is applied. A representative example of the reference potential is 0 V, but is not limited to this. The specific configuration of the reference potential section 19 is arbitrary. For example, the reference potential section 19 may be the terminal 3 (Figure 7) and a ground layer in the circuit board.
 図面においては、複数位置に基準電位部19が示されている。複数位置に示された基準電位部19は、実際に互いに異なる部位であってもよいし、単に図示の便宜上、互いに別個に示されていると捉えられてもよい。また、互いに異なる部位としての2以上の基準電位部19は、複合フィルタ1内において互いに接続されていてもよいし、互いに接続されていなくてもよい。 In the drawings, the reference potential sections 19 are shown in multiple positions. The reference potential sections 19 shown in multiple positions may actually be different locations from each other, or may simply be considered to be shown separately from each other for convenience of illustration. Furthermore, two or more reference potential sections 19 as different locations from each other may or may not be connected to each other within the composite filter 1.
(3.弾性波フィルタの構成)
 弾性波フィルタ5(共振子11)は弾性波を利用して電気信号のフィルタリングを行う。利用される弾性波は、種々のものとされてよい。例えば、利用される弾性波は、SAW(Surface Acoustic Wave)、BAW(Bulk Acoustic Wave)、弾性境界波又は板波とされてよい。なお、これらの弾性波は必ずしも明確に区別できるわけではない。BAWは、圧電体層(後述するチップ基板41の説明を参照)が広がる方向に伝搬するものであってもよいし、圧電体層の厚み方向に伝搬するものであってもよい。
(3. Structure of Acoustic Wave Filter)
The acoustic wave filter 5 (resonator 11) filters electrical signals using acoustic waves. Various types of acoustic waves may be used. For example, the acoustic waves used may be surface acoustic waves (SAWs), bulk acoustic waves (BAWs), boundary acoustic waves, or plate waves. Note that these acoustic waves are not necessarily clearly distinguishable. BAWs may propagate in the direction in which the piezoelectric layer (see the description of the chip substrate 41 described later) expands, or may propagate in the thickness direction of the piezoelectric layer.
 弾性波フィルタ5は、弾性波を利用する限り、種々の構成とされてよい。弾性波フィルタの構成の典型例としては、例えば、複数の共振子11をラダー型に接続したラダー型フィルタ、及び複数の共振子11を弾性波の伝搬方向に配列した多重モード側フィルタ(2重モード型フィルタを含むものとする。)が挙げられる。これらのフィルタは、バンドパスフィルタである。弾性波フィルタ5も、そのような典型例と同じとされて構わない。 The elastic wave filter 5 may have various configurations as long as it utilizes elastic waves. Typical examples of elastic wave filter configurations include a ladder filter in which multiple resonators 11 are connected in a ladder configuration, and a multimode filter (including a dual mode filter) in which multiple resonators 11 are arranged in the propagation direction of the elastic waves. These filters are bandpass filters. The elastic wave filter 5 may also be the same as such typical examples.
 図1及び図2の例では、弾性波フィルタ5は、複数の腕21(直列腕21S及び並列腕21P)がラダー型に接続された構成(ただし、一般にラダー型フィルタと称される構成とは異なる。)を有している。より詳細には、弾性波フィルタ5は、複数(1つでも可)の直列腕21Sを有している。各直列腕21Sは、少なくとも1つの共振子11を含んでいる。また、弾性波フィルタ5は、複数(1つでも可)の並列腕21Pを有している。各並列腕21Pは、一般にラダー型フィルタと称される構成とは異なり、共振子11ではなく、インダクタLを含んでいる。 In the example of Figures 1 and 2, the elastic wave filter 5 has a configuration in which multiple arms 21 (series arms 21S and parallel arms 21P) are connected in a ladder shape (however, this differs from the configuration generally referred to as a ladder-type filter). More specifically, the elastic wave filter 5 has multiple (or one) series arms 21S. Each series arm 21S includes at least one resonator 11. The elastic wave filter 5 also has multiple (or one) parallel arms 21P. Each parallel arm 21P includes an inductor L rather than a resonator 11, which differs from the configuration generally referred to as a ladder-type filter.
 図示の例の弾性波フィルタ5は、例えば、バンドエリミネーションフィルタとして機能する。特に図示しないが、共振子11のインピーダンスの絶対値は、共振周波数において極小値となり、反共振周波数において極大値となる。そして、直列腕21Sの共振子11は、共振子11の反共振周波数において減衰極を形成し、ひいては、所定の阻止帯域内の周波数を有する信号を減衰する。複数の共振子11の反共振周波数(及び/又は共振周波数)は、互いに同一であってもよいし、互いに異なっていてもよい。 The elastic wave filter 5 in the illustrated example functions, for example, as a band elimination filter. Although not specifically illustrated, the absolute value of the impedance of the resonator 11 becomes a minimum value at the resonant frequency and a maximum value at the anti-resonant frequency. The resonator 11 in the series arm 21S forms an attenuation pole at the anti-resonant frequency of the resonator 11, and thus attenuates signals having frequencies within a predetermined stopband. The anti-resonant frequencies (and/or resonant frequencies) of the multiple resonators 11 may be the same as each other or may be different from each other.
 並列腕21Pは、例えば、複数の共振子11(複数の直列腕21S)の全体が、容量が大きいキャパシタとして機能する蓋然性を低減し、ひいては、阻止帯域内の周波数を有する信号が複数の直列腕21Sを通過する蓋然性を低減することに寄与する。また、並列腕21PのインダクタLは、共振子11(直列腕21S)と協働して、ハイパスフィルタを構成しても構わない。並列腕21Pは、図示の例とは異なり、キャパシタCを含むものとされたり、インダクタL及びキャパシタCを含むものとされたりしてもよい。2以上の並列腕21Pが含むインダクタLの電界及び/又は磁界の結合がフィルタリングに利用されてもよい。 The parallel arm 21P, for example, reduces the likelihood that the entire group of resonators 11 (series arms 21S) will function as a capacitor with a large capacitance, and thus contributes to reducing the likelihood that a signal having a frequency within the stopband will pass through the series arms 21S. The inductor L of the parallel arm 21P may cooperate with the resonator 11 (series arm 21S) to form a high-pass filter. Unlike the example shown in the figure, the parallel arm 21P may include a capacitor C, or may include an inductor L and a capacitor C. Coupling of the electric fields and/or magnetic fields of the inductors L included in two or more parallel arms 21P may be used for filtering.
 図示の例とは異なり、弾性波フィルタ5は、直列腕17Sに共振子11を有さず(例えばインダクタL又はキャパシタCを有し)、並列腕17Pに共振子11を有していてもよい。図示の例の弾性波フィルタ5又は通常のラダー型フィルタによって構成された弾性波フィルタ5において、複数の直列腕17Sの共振子11は、共振周波数(及び/又は反共振周波数)が互いに同一であってもよいし、互いに異なっていてもよい。同様に、並列腕17Pのみが共振子11を有する弾性波フィルタ5又は通常のラダー型フィルタによって構成された弾性波フィルタ5において、複数の並列腕17Pの共振子11は、共振周波数(及び/又は反共振周波数)が互いに同一であってもよいし、互いに異なっていてもよい。 Unlike the illustrated example, the elastic wave filter 5 may not have a resonator 11 in the series arm 17S (e.g., may have an inductor L or a capacitor C) and may have a resonator 11 in the parallel arm 17P. In the elastic wave filter 5 of the illustrated example or an elastic wave filter 5 configured with a normal ladder-type filter, the resonators 11 in the multiple series arms 17S may have the same resonance frequency (and/or anti-resonance frequency) as each other or may be different from each other. Similarly, in an elastic wave filter 5 in which only the parallel arm 17P has a resonator 11 or an elastic wave filter 5 configured with a normal ladder-type filter, the resonators 11 in the multiple parallel arms 17P may have the same resonance frequency (and/or anti-resonance frequency) as each other or may be different from each other.
(4.LCフィルタの構成)
 既に触れたように、LCフィルタ7は、L及びCを有し、フィルタ機能を発揮する限り、種々の構成とされてよく、例えば、公知の構成とされて構わない。また、既述のとおり、LCフィルタ7は、第1端子3Aと弾性波フィルタ5との間の回路全体として定義されてよく、整合回路を含んでいてよい。同様の理由から、LCフィルタ7は、構造及び/又は特性の観点から互いに異なるフィルタとして認識することが可能な2以上のフィルタを含んでいてもよい。上記に関連して、LCフィルタ7は、圧電体を含む圧電フィルタ、及び/又は誘電体内の電磁波を利用する誘電体フィルタを含んでいても構わない。2以上のインダクタLの電界及び/又は磁界の結合がフィルタリングに利用されてもよい。
(4. Configuration of LC Filter)
As already mentioned, the LC filter 7 may have various configurations, for example, a known configuration, as long as it has L and C and performs a filter function. Also, as already mentioned, the LC filter 7 may be defined as the entire circuit between the first terminal 3A and the acoustic wave filter 5, and may include a matching circuit. For the same reason, the LC filter 7 may include two or more filters that can be recognized as different filters from the viewpoint of structure and/or characteristics. In relation to the above, the LC filter 7 may include a piezoelectric filter including a piezoelectric body, and/or a dielectric filter that utilizes electromagnetic waves in a dielectric. Coupling of electric fields and/or magnetic fields of two or more inductors L may be used for filtering.
 LCフィルタ7は、ラダー型に構成されていてもよいし、ラダー型に構成されていなくてもよい。後者について換言すれば、LCフィルタ7は、1つの直列腕17Sのみ、又は1つの並列腕17Pのみから構成されてもよい。LCフィルタの典型例としては、例えば、第1端子3Aと第2端子3Bとを接続するLC直列共振回路若しくはLC並列共振回路、第1端子3Aと第2端子3Bとの間の信号経路と基準電位部19とを接続するLC直列共振回路若しくはLC並列共振回路、又はこれらのうちの2以上の組み合わせが挙げられる。LCフィルタ7は、例えば、このようなLCフィルタの典型例を適宜な数で有していてよい。 The LC filter 7 may or may not be configured as a ladder type. In other words, the LC filter 7 may be configured with only one series arm 17S or only one parallel arm 17P. Typical examples of LC filters include, for example, an LC series resonant circuit or an LC parallel resonant circuit that connects the first terminal 3A and the second terminal 3B, an LC series resonant circuit or an LC parallel resonant circuit that connects the signal path between the first terminal 3A and the second terminal 3B and the reference potential unit 19, or a combination of two or more of these. The LC filter 7 may have, for example, an appropriate number of such typical examples of LC filters.
 図1及び図2の例では、LCフィルタ7は、キャパシタCを含む1以上(図示の例では複数(2つ))の直列腕17Sと、インダクタLを含む1以上(図示の例では1つ)の並列腕17Pとを有している。このようなLCフィルタ7は、例えば、ハイパスフィルタとして機能する。なお、これまでの説明からも理解されるように、図示の例のLCフィルタ7は、一例に過ぎず、また、説明の便宜上、比較的簡素な構成とされている。図示の例に近い他の例としては、特に図示しないが、インダクタLを含む1以上の直列腕17Sと、キャパシタCを含む1以上の並列腕17Pとを有し、ローパスフィルタとして機能するものが挙げられる。 1 and 2, the LC filter 7 has one or more (multiple (two) in the illustrated example) series arms 17S including a capacitor C, and one or more (one in the illustrated example) parallel arms 17P including an inductor L. Such an LC filter 7 functions, for example, as a high-pass filter. As will be understood from the above explanation, the LC filter 7 in the illustrated example is merely one example, and for convenience of explanation, it has a relatively simple configuration. Another example close to the illustrated example, although not specifically shown, is one that has one or more series arms 17S including an inductor L and one or more parallel arms 17P including a capacitor C and functions as a low-pass filter.
 これまでの説明から理解されるように、LCフィルタ7は、少なくとも1つの直列腕17Sを有して第1端子3Aと弾性波フィルタ5とを接続していてよい。また、LCフィルタ7は、直列腕17Sを有さず、1つの並列腕17Pのみを有し、第1端子3Aと弾性波フィルタ5との間に接続されているだけであってもよい。本開示において、「電気的に介在」又は単に「介在」の語を用いて、第1端子3Aと弾性波フィルタ5との間にLCフィルタ7が電気的に介在するというとき、LCフィルタ7は、上記の2つの態様のいずれも含んでよい。付加回路9等についても同様に、「電気的に介在」又は単に「介在」の語を用いるものとする。 As can be understood from the above explanation, the LC filter 7 may have at least one series arm 17S connecting the first terminal 3A and the acoustic wave filter 5. Alternatively, the LC filter 7 may not have a series arm 17S, but may have only one parallel arm 17P, and may simply be connected between the first terminal 3A and the acoustic wave filter 5. In this disclosure, when the term "electrically intervening" or simply "intervening" is used to refer to the LC filter 7 being electrically intervened between the first terminal 3A and the acoustic wave filter 5, the LC filter 7 may include either of the above two aspects. Similarly, the term "electrically intervening" or simply "intervening" is used for the additional circuit 9, etc.
(5.付加回路の構成)
 既に触れたように、付加回路9は、L及びCを有し、弾性波フィルタ5と第2端子3Bとの間に電気的に介在する限り、種々の構成とされてよい。例えば、付加回路9は、整合回路としてのみ機能するものであってもよいし、フィルタとして機能するものであってもよいし、両者として機能するものであってもよい。整合回路は、公知の構成とされて構わない。LCフィルタも公知の構成とされてよく、また、既述のLCフィルタ7の説明は、付加回路9が有するLCフィルタに援用されてよい。
(5. Configuration of Additional Circuit)
As already mentioned, the additional circuit 9 may have various configurations as long as it has L and C and is electrically interposed between the acoustic wave filter 5 and the second terminal 3B. For example, the additional circuit 9 may function only as a matching circuit, may function as a filter, or may function as both. The matching circuit may have a known configuration. The LC filter may also have a known configuration, and the above description of the LC filter 7 may be applied to the LC filter included in the additional circuit 9.
 図1の例に係る付加回路9Aは、インダクタLのみ(別の観点では1つの直列腕17S)のみを有している。このようなインダクタLは、例えば、整合回路及び/又はローパスフィルタとして機能する。このような構成例と類似する構成例としては、例えば、特に図示しないが、直列腕17SとしてのキャパシタCのみ、又は並列腕17PとしてのキャパシタC若しくはインダクタLのみからなる付加回路9が挙げられる。図2の例に係る付加回路9Bは、LCフィルタ7と同様の構成(具体的な特性は異なっていてよい。)とされている。 The additional circuit 9A in the example of FIG. 1 has only an inductor L (or from another point of view, only one series arm 17S). Such an inductor L functions, for example, as a matching circuit and/or a low-pass filter. An example of a configuration similar to this example is, for example, an additional circuit 9 consisting of only a capacitor C as the series arm 17S, or only a capacitor C or an inductor L as the parallel arm 17P, although not shown in the figure. The additional circuit 9B in the example of FIG. 2 has a similar configuration to the LC filter 7 (although the specific characteristics may be different).
 これまでの説明からも理解されるように、図示の例の付加回路9A及び9Bそれぞれは、一例に過ぎず、また、説明の便宜上、比較的簡素な構成とされている。付加回路9は、より複雑な構成とされてよく、例えば、LCフィルタ7よりも複雑な構成を有していてもよいし、LCフィルタ7よりも段数が多くてもよい。 As can be understood from the above explanation, the additional circuits 9A and 9B in the illustrated example are merely examples, and for convenience of explanation, they have a relatively simple configuration. The additional circuit 9 may have a more complex configuration, for example, a more complex configuration than the LC filter 7, or may have more stages than the LC filter 7.
(6.減衰特性の例)
(6.1.通過帯域及び阻止帯域)
 第2節でも述べたように、複合フィルタ1、弾性波フィルタ5、LCフィルタ7及び付加回路9(フィルタの場合)のそれぞれは、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ及びバンドエリミネーションフィルタのいずれと捉えられるものであってもよい。以下に例を示す。
(6. Examples of attenuation characteristics)
(6.1. Passband and Stopband)
As described in Section 2, each of the composite filter 1, the acoustic wave filter 5, the LC filter 7, and the additional circuit 9 (if a filter) may be regarded as a band-pass filter, a high-pass filter, a low-pass filter, or a band elimination filter. Examples are shown below.
 図5は、複合フィルタ1の減衰特性の一例を示す図である。この図において、縦軸及び横軸は図3と同様である。 FIG. 5 shows an example of the attenuation characteristics of the composite filter 1. In this figure, the vertical and horizontal axes are the same as in FIG. 3.
 この図において、線LNBは、複合フィルタ1の特性を示しており、線LNH、LNL及びLNEは、複合フィルタ1を構成するフィルタの特性を示している。線LNHの特性は、ハイパスフィルタのものであり、所定の周波数よりも高い通過帯域においてLossが小さくなっている。線LNLの特性は、ローパスフィルタのものであり、所定の周波数よりも低い通過帯域においてLossが小さくなっている。線LNEの特性は、バンドエリミネーションフィルタのものであり、所定の阻止帯域においてLossが大きくなっている。 In this figure, line LNB shows the characteristics of composite filter 1, and lines LNH, LNL, and LNE show the characteristics of the filters that make up composite filter 1. The characteristics of line LNH are those of a high-pass filter, with small loss in the pass band higher than a specified frequency. The characteristics of line LNL are those of a low-pass filter, with small loss in the pass band lower than a specified frequency. The characteristics of line LNE are those of a band elimination filter, with large loss in a specified stop band.
 ハイパスフィルタ(線LNH)の通過帯域の下限(低周波数側の端)は、ローパスフィルタ(線LNL)の通過帯域の上限(高周波数側の端)よりも低い。従って、両者の通過帯域の互いに重複する帯域を通過帯域PB1とするバンドパスフィルタ(線LNB)が構成される。このバンドパスフィルタにおいて、低周波数側の減衰スロープは、ハイパスフィルタの減衰スロープによって構成される。高周波数側の減衰スロープは、ローパスフィルタの減衰スロープによって構成される。 The lower limit (low-frequency end) of the passband of the high-pass filter (line LNH) is lower than the upper limit (high-frequency end) of the passband of the low-pass filter (line LNL). Therefore, a band-pass filter (line LNB) is formed in which the overlapping band of both passbands is the passband PB1. In this band-pass filter, the attenuation slope on the low-frequency side is formed by the attenuation slope of the high-pass filter. The attenuation slope on the high-frequency side is formed by the attenuation slope of the low-pass filter.
 バンドエリミネーションフィルタ(線LNE)の高周波数側の減衰スロープは、ハイパスフィルタの減衰スロープよりも急峻である。そして、前者の減衰スロープは、後者の減衰スロープの少なくとも一部に重なって、バンドパスフィルタ(線LNB)の低周波数側の減衰スロープの少なくとも一部を構成する。これにより、減衰スロープが急峻で、かつ通過帯域PB1の帯域幅が広いバンドパスフィルタ(複合フィルタ1)が構成される。 The attenuation slope on the high frequency side of the band elimination filter (line LNE) is steeper than the attenuation slope of the high pass filter. The former attenuation slope overlaps at least part of the latter attenuation slope, forming at least part of the attenuation slope on the low frequency side of the band pass filter (line LNB). This results in a band pass filter (composite filter 1) with a steep attenuation slope and a wide bandwidth of the pass band PB1.
 なお、図示の例では、上記のように低周波数側の減衰スロープが急峻化されたことにより、低周波数側の減衰スロープは、高周波数側の減衰スロープ(ローパスフィルタの減衰スロープ)よりも急峻になっている。別の観点では、複合フィルタ1において、低周波数側の阻止帯域EB1Lと通過帯域PB1との間の遷移帯域(符号省略)は、高周波数側の阻止帯域EB1Hと通過帯域PB1との間の遷移帯域(符号省略)よりも狭くなっている。 In the illustrated example, by making the attenuation slope on the low frequency side steeper as described above, the attenuation slope on the low frequency side is steeper than the attenuation slope on the high frequency side (the attenuation slope of the low pass filter). From another perspective, in the composite filter 1, the transition band (symbol omitted) between the stop band EB1L on the low frequency side and the pass band PB1 is narrower than the transition band (symbol omitted) between the stop band EB1H on the high frequency side and the pass band PB1.
 バンドエリミネーションフィルタ(線LNE)は、例えば、弾性波フィルタ5(その一部又は全部)によって構成される。ハイパスフィルタ(線LNH)は、例えば、LCフィルタ7及び付加回路9の一方によって構成される。ローパスフィルタ(線LNL)は、例えば、LCフィルタ7及び付加回路9の他方によって構成される。ただし、LCフィルタ7がハイパスフィルタ及びローパスフィルタを含んでいてもよい。 The band elimination filter (line LNE) is, for example, composed of an elastic wave filter 5 (part or all of it). The high-pass filter (line LNH) is, for example, composed of one of an LC filter 7 and an additional circuit 9. The low-pass filter (line LNL) is, for example, composed of the other of an LC filter 7 and an additional circuit 9. However, the LC filter 7 may include both a high-pass filter and a low-pass filter.
 図示の例以外のフィルタの組み合わせの例を挙げる。 Here are some examples of filter combinations other than those shown.
 図示の例において、通過帯域PB1の低周波数側に阻止帯域を有するバンドエリミネーションフィルタ(線LNE)に代えて、又は加えて、通過帯域PB1の高周波数側に阻止帯域を有するバンドエリミネーションフィルタ(別の観点では弾性波フィルタ5)が設けられてよい。そして、バンドエリミネーションの低周波数側の減衰スロープによって、バンドパスフィルタ(複合フィルタ1)の高周波数側の減衰スロープの急峻化が図られてよい。 In the illustrated example, instead of or in addition to the band elimination filter (line LNE) having a stop band on the low frequency side of the pass band PB1, a band elimination filter (from another perspective, elastic wave filter 5) having a stop band on the high frequency side of the pass band PB1 may be provided. Then, the attenuation slope on the low frequency side of the band elimination may be made steeper on the high frequency side of the band pass filter (composite filter 1).
 図示の例において、ローパスフィルタ(線LNL)にかえて、バンドパスフィルタ(LCフィルタ7又は付加回路9によるもの)が設けられてよい。このバンドパスフィルタは、通過帯域が通過帯域PB1を含み、高周波数側の減衰スロープが、図示の例のローパスフィルタに代わって、通過帯域PB1に隣接する高周波数側の減衰スロープを構成する。そして、複合フィルタ1(バンドパスフィルタ)の低周波数側及び/又は高周波数側の減衰スロープは、これまでと同様に、バンドエリミネーションフィルタ(弾性波フィルタ5)の減衰スロープによって急峻化されてよい。 In the illustrated example, a bandpass filter (LC filter 7 or additional circuit 9) may be provided instead of the lowpass filter (line LNL). The passband of this bandpass filter includes the passband PB1, and the attenuation slope on the high frequency side constitutes an attenuation slope on the high frequency side adjacent to the passband PB1, instead of the lowpass filter in the illustrated example. And, the attenuation slope on the low frequency side and/or high frequency side of the composite filter 1 (bandpass filter) may be made steeper by the attenuation slope of the band elimination filter (elastic wave filter 5) as before.
 バンドパスフィルタ(LCフィルタ7又は付加回路9によるもの)と、バンドエリミネーションフィルタ(弾性波フィルタ5)との2種類のみが組み合わされてもよい。そして、複合フィルタ1(バンドパスフィルタ)の低周波数側及び/又は高周波数側の減衰スロープは、これまでと同様に、バンドエリミネーションフィルタ(弾性波フィルタ5)の減衰スロープによって急峻化されてよい。 Only two types of filters may be combined: a bandpass filter (LC filter 7 or additional circuit 9) and a band elimination filter (elastic wave filter 5). The attenuation slope on the low frequency side and/or high frequency side of the composite filter 1 (bandpass filter) may be made steeper by the attenuation slope of the band elimination filter (elastic wave filter 5), as in the past.
 ローパスフィルタ(LCフィルタ7又は付加回路9によるもの)の通過帯域よりもハイパスフィルタ(LCフィルタ7又は付加回路9によるもの)の通過帯域を高くしてバンドエリミネーションフィルタが構成されてよい。そして、このバンドエリミネーションフィルタの減衰スロープを弾性波フィルタ5(バンドエリミネーションフィルタ)の減衰スロープによって急峻化してよい。 A band elimination filter may be constructed by making the pass band of the high pass filter (LC filter 7 or additional circuit 9) higher than the pass band of the low pass filter (LC filter 7 or additional circuit 9). The attenuation slope of this band elimination filter may be made steeper by the attenuation slope of the acoustic wave filter 5 (band elimination filter).
 なお、図5は、あくまで模式図である。実際の特性は、通常、曲線及び/又は複雑な線で表される。また、模式図とは異なり、各フィルタの通過帯域及び阻止帯域において特性は変動してよい。阻止帯域に減衰極(極小値)が現れてよい。弾性波フィルタ5(バンドエリミネーションフィルタ)の特性を示す線LNEは、図示の例のように逆さにした台形状ではなく、1つの減衰極を頂点とする逆さにした三角形状をなしてもよいし、複数の減衰極が現れた波形状をなしてもよい。これらのことは、他の特性を示す図においても同様である。 Note that FIG. 5 is merely a schematic diagram. Actual characteristics are usually represented by curves and/or complex lines. Also, unlike the schematic diagram, the characteristics may vary in the passband and stopband of each filter. An attenuation pole (minimum value) may appear in the stopband. The line LNE showing the characteristics of the elastic wave filter 5 (band elimination filter) may be an inverted triangle with one attenuation pole as its apex, rather than an inverted trapezoid as in the illustrated example, or may be a wave shape with multiple attenuation poles. The same applies to other diagrams showing characteristics.
 通過帯域PB1の帯域幅及び中心周波数等の具体的な値は任意である。例えば、通過帯域PB1は、その一部又は全体が3GHz以上10GHz以下の範囲に収まってよい。また、通過帯域PB1は、適宜な通信規格に従って設定されてよい。この場合において、通過帯域PB1は、規格で定められた1つの帯域にのみ対応していてもよいし、規格で定められた2以上の帯域を含んでいてもよい。また、例えば、弾性波フィルタ5の比帯域幅は、複合フィルタ1の比帯域幅より小さくされてよい。 The specific values of the bandwidth and center frequency of the passband PB1 are arbitrary. For example, the passband PB1 may be partially or entirely within the range of 3 GHz to 10 GHz. The passband PB1 may be set in accordance with an appropriate communication standard. In this case, the passband PB1 may correspond to only one band defined by the standard, or may include two or more bands defined by the standard. For example, the fractional bandwidth of the acoustic wave filter 5 may be smaller than the fractional bandwidth of the composite filter 1.
(6.2.減衰極の例)
 LCフィルタ7及び/又は付加回路9は、通過帯域PB1の2倍及び/又は3倍高調波帯域に減衰極を有してよい。
(6.2. Examples of attenuation poles)
The LC filter 7 and/or the additional circuit 9 may have an attenuation pole in the second and/or third harmonic band of the passband PB1.
 図6Aは、そのような態様の特性を模式的に示す図である。この図において、横軸及び左側の縦軸は、図5と同様である。右側の縦軸は、LCフィルタ7及び/又は付加回路9のインピーダンスの絶対値|Z|(Ω)を示しており、図の上方ほど値が大きい。 FIG. 6A is a diagram showing the characteristics of such an embodiment. In this diagram, the horizontal axis and the vertical axis on the left side are the same as those in FIG. 5. The vertical axis on the right side shows the absolute value |Z| (Ω) of the impedance of the LC filter 7 and/or the additional circuit 9, with the value increasing toward the top of the diagram.
 この図では、周波数faにおいて|Z|が極大値となる減衰極が現れている。周波数faは、通過帯域PB1の2倍高調波帯域に位置している。2倍高調波帯域は、通過帯域PB1の低周波数側の端の周波数を2倍した周波数から、通過帯域PB1の高周波数側の端の周波数を2倍した周波数までの帯域とされてよい。2倍高調波帯域に位置する減衰極に代えて、又は加えて、3倍高調波帯域に減衰極が形成されてもよい。3倍高調波帯域は、上記の2倍高調波帯域の定義において、「2倍」を「3倍」に置換したものとされてよい。 In this figure, an attenuation pole appears at frequency fa where |Z| is a maximum value. Frequency fa is located in the double harmonic band of passband PB1. The double harmonic band may be a band ranging from twice the frequency of the low-frequency end of passband PB1 to twice the frequency of the high-frequency end of passband PB1. Instead of or in addition to the attenuation pole located in the double harmonic band, an attenuation pole may be formed in the triple harmonic band. The triple harmonic band may be defined as the above double harmonic band, with "double" replaced by "triple".
 上記のような減衰極を形成するための構成は任意である。図6B及び図6Cは、その典型例を示す。図6Bでは、1つの直列腕17S(その一部又は全部)を構成する並列共振回路23Pが例示されている。並列共振回路23Pの共振周波数は、周波数faである。図6Cでは、1つの並列腕17P(その一部又は全部)を構成する直列共振回路23Sが例示されている。直列共振回路23Sの共振周波数は、周波数faである。 The configuration for forming the attenuation pole as described above is arbitrary. Figures 6B and 6C show typical examples. Figure 6B illustrates a parallel resonant circuit 23P that constitutes one series arm 17S (all or part of it). The resonant frequency of the parallel resonant circuit 23P is frequency fa. Figure 6C illustrates a series resonant circuit 23S that constitutes one parallel arm 17P (all or part of it). The resonant frequency of the series resonant circuit 23S is frequency fa.
(7.複合フィルタの構造の例)
 既述のとおり、複合フィルタ1の構造的な観点の構成は種々の態様とされてよい。以下に例を示す。以下の説明では、まず、複合フィルタ1の構造の一例について説明する(7.1節)。この説明では、LCフィルタ7及び付加回路9の構造の説明は省略し、複合フィルタ1の構造的な構成要素について説明する。次に、LCフィルタ7及び付加回路9の構造も含め、複合フィルタ1の構造のバリエーションについて説明を行う(7.2節)。
(7. Example of Composite Filter Structure)
As described above, the configuration of the composite filter 1 from a structural standpoint may take various forms. Examples are shown below. In the following description, first, an example of the structure of the composite filter 1 will be described (Section 7.1). In this description, the structures of the LC filter 7 and the additional circuit 9 will be omitted, and the structural components of the composite filter 1 will be described. Next, variations in the structure of the composite filter 1 will be described, including the structures of the LC filter 7 and the additional circuit 9 (Section 7.2).
(7.1.構造的な構成要素)
 図7は、複合フィルタ1の構造の一例を示す模式的な断面図である。複合フィルタ1は、いずれの方向が上方とされてもよいが、便宜上、図7の説明においては、図の上方(紙面に沿う上方)を上方とし、上面及び下面等の語を用いることがある。
(7.1. Structural Components)
Fig. 7 is a schematic cross-sectional view showing an example of the structure of the composite filter 1. Any direction of the composite filter 1 may be regarded as the upper side, but for convenience, in the description of Fig. 7, the upper side of the figure (the upper side along the paper surface) is regarded as the upper side, and terms such as the upper surface and the lower surface may be used.
 複合フィルタ1は、例えば、表面実装型のチップ部品として構成されている。その全体形状は、例えば、概略、上下方向を厚さ方向とする薄型の直方体状(厚みが平面視の短辺の長さよりも短い形状)である。複合フィルタ1の下面には、複合フィルタ1を実装するために複数の端子3(外部端子)が設けられている。複数の端子3は、例えば、既述の第1端子3A、第2端子3B及び基準電位部19(端子からなるもの)含む。複合フィルタ1は、複数の端子3が回路基板の複数のパッドに対して複数の導電性のバンプ(例えばはんだ)によって接合されることによって上記回路基板に実装される。 The composite filter 1 is configured, for example, as a surface-mounted chip component. Its overall shape is, for example, roughly a thin rectangular parallelepiped (with the thickness being shorter than the length of the short side in a plan view) with the thickness direction being in the vertical direction. A plurality of terminals 3 (external terminals) are provided on the underside of the composite filter 1 for mounting the composite filter 1. The plurality of terminals 3 include, for example, the first terminal 3A, the second terminal 3B, and the reference potential portion 19 (consisting of terminals) already described. The composite filter 1 is mounted on the circuit board by joining the plurality of terminals 3 to a plurality of pads on the circuit board with a plurality of conductive bumps (for example, solder).
 複合フィルタ1は、例えば、回路基板31と、回路基板31に実装されているチップ33と、チップ33を封止している封止部35とを有している。弾性波フィルタ5が有している複数の共振子11は、チップ33に設けられていてよい。弾性波フィルタ5が有している他の構成要素(図1の例では並列腕21Pを構成するインダクタL)の一部又は全部は、チップ33に設けられていてもよいし、回路基板31に設けられていてもよい。 The composite filter 1 has, for example, a circuit board 31, a chip 33 mounted on the circuit board 31, and a sealing portion 35 that seals the chip 33. The multiple resonators 11 of the acoustic wave filter 5 may be provided on the chip 33. Some or all of the other components of the acoustic wave filter 5 (inductor L constituting the parallel arm 21P in the example of FIG. 1) may be provided on the chip 33 or on the circuit board 31.
 回路基板31は、例えば、概略、上下方向を厚さ方向とする薄型の直方体状に形成されている。回路基板31の基本的な構造及び材料(複合フィルタ1を構成するための具体的な導体のパターン及び寸法等を除いた構成)は、公知の種々のプリント基板の構造及び材料と同様とされてよい。例えば、回路基板31は、LTCC(Low Temperature Co-fired Ceramics)基板、HTCC(High Temperature Co-Fired Ceramic)基板、IPD(Integrated Passive Device)基板又は有機多層基板とされてよい。 The circuit board 31 is formed, for example, in a generally thin rectangular parallelepiped shape with its thickness direction extending in the vertical direction. The basic structure and materials of the circuit board 31 (excluding the specific conductor patterns and dimensions, etc., for forming the composite filter 1) may be similar to the structures and materials of various known printed circuit boards. For example, the circuit board 31 may be a Low Temperature Co-fired Ceramics (LTCC) board, a High Temperature Co-fired Ceramic (HTCC) board, an Integrated Passive Device (IPD) board, or an organic multilayer board.
 LTCC基板としては、例えば、アルミナにガラス系材料を加えて低温(例えば900℃前後)での焼成を可能としたものが挙げられる。LTCC基板において、導電材料としては、例えば、Cu又はAgが用いられてよい。HTCC基板としては、アルミナ又は窒化アルミニウムを主成分としたセラミックスを用いたものが挙げられる。HTCC基板において、導電材料としては、例えば、タングステン又はモリブデンが用いられてよい。IPD基板としては、例えば、Si基板に受動素子を形成したものが挙げられる。有機多層基板としては、ガラス等からなる基材に樹脂を含侵させたプリプレグを積層したものが挙げられる。 An example of an LTCC substrate is one in which a glass-based material is added to alumina, allowing firing at low temperatures (e.g., around 900°C). In an LTCC substrate, for example, Cu or Ag may be used as the conductive material. An example of an HTCC substrate is one that uses ceramics whose main component is alumina or aluminum nitride. In an HTCC substrate, for example, tungsten or molybdenum may be used as the conductive material. An example of an IPD substrate is one in which passive elements are formed on a Si substrate. An example of an organic multilayer substrate is one in which a prepreg impregnated with resin is laminated on a base material made of glass or the like.
 回路基板31は、例えば、実質的に絶縁性の板状の基体37と、基体37の内部及び/又は表面に位置している導体39を有している。基体37は、例えば、互いに積層された複数の絶縁層37aを有してよい。導体39は、例えば、絶縁層37aの主面に位置している導体層39aと、絶縁層37aを貫通するビア導体39bとを有してよい。 The circuit board 31 has, for example, a substantially insulating plate-like base 37 and a conductor 39 located inside and/or on the surface of the base 37. The base 37 may have, for example, a plurality of insulating layers 37a stacked on top of each other. The conductor 39 may have, for example, a conductor layer 39a located on the main surface of the insulating layer 37a and a via conductor 39b penetrating the insulating layer 37a.
 チップ33は、例えば、表面実装型のチップ部品として構成されている。その全体形状は、例えば、概略、上下方向を厚さ方向とする薄型の直方体状である。チップ33の基本的な構造及び材料(複合フィルタ1を構成するための具体的な導体のパターン及び寸法等を除いた構成)は、公知の種々の弾性波デバイスを構成するチップの構造及び材料と同様とされてよい。例えば、チップ33は、ベアチップであってもよいし、ベアチップの回路基板31側の面を覆うカバーを有するWLP(Wafer level Package)型のものであってもよいし、ベアチップの側面を覆うモールド部を有するFO(Fan Out)-WLP型のものであってもよい。ここでは、チップ33がベアチップである態様を例に取る。チップ33は、例えば、チップ基板41と、チップ基板41の回路基板31側の面(一方の主面)に位置している導体層43とを有している。 The chip 33 is configured as, for example, a surface-mounted chip component. Its overall shape is, for example, roughly a thin rectangular parallelepiped with the thickness direction being in the vertical direction. The basic structure and material of the chip 33 (excluding the specific conductor pattern and dimensions for configuring the composite filter 1) may be similar to the structure and material of chips that configure various known acoustic wave devices. For example, the chip 33 may be a bare chip, a WLP (Wafer level Package) type having a cover that covers the surface of the bare chip facing the circuit board 31, or a FO (Fan Out)-WLP type having a molded part that covers the side of the bare chip. Here, an example is taken in which the chip 33 is a bare chip. The chip 33 has, for example, a chip substrate 41 and a conductor layer 43 located on the surface (one of the main surfaces) of the chip substrate 41 facing the circuit board 31.
 チップ基板41は、例えば、少なくとも、回路基板31側の面のうちの所定領域が圧電体によって構成されている。圧電体は、例えば、圧電性を有する単結晶からなる。単結晶は、例えば、水晶(SiO)、ニオブ酸リチウム(LiNbO)単結晶またはタンタル酸リチウム(LiTaO)単結晶である。カット角は、利用する弾性波の種類等に応じて適宜に設定されてよい。チップ基板41は、例えば、その全体が圧電体によって構成されていてもよいし(圧電基板であってもよいし)、圧電基板と支持基板とが貼り合わされたものであってもよいし、支持基板上に複数の膜を積層してその上に圧電体層を重ねたものであってもよいし、圧電体層と支持基板との間に空洞を有するものであってもよい。導体層43の材料は、Al等の適宜な金属とされてよい。 For example, at least a predetermined region of the surface of the chip substrate 41 on the circuit substrate 31 side is made of a piezoelectric material. The piezoelectric material is made of a single crystal having piezoelectricity. The single crystal is, for example, quartz (SiO 2 ), lithium niobate (LiNbO 3 ) single crystal, or lithium tantalate (LiTaO 3 ) single crystal. The cut angle may be set appropriately according to the type of elastic wave to be used. For example, the chip substrate 41 may be entirely made of a piezoelectric material (may be a piezoelectric substrate), may be a piezoelectric substrate and a support substrate bonded together, may be a substrate in which a plurality of films are laminated on a support substrate and a piezoelectric layer is laminated thereon, or may have a cavity between the piezoelectric layer and the support substrate. The material of the conductor layer 43 may be an appropriate metal such as Al.
 特に図示しないが、チップ33は、上記の他、チップ33の端子を露出させつつ、導体層43及びチップ基板41の回路基板31側の面を覆う絶縁層を有していてもよい。このような絶縁層は、単に導体層43の腐食を低減するためのものであってもよいし、音響的に有利な作用を奏するものであってもよい。このような絶縁層の材料は、適宜なものとされてよく、例えば、SiOである。また、チップ基板41の側面及び下面は、チップ基板41の厚さに比較して薄い絶縁層等によって被覆されていてもよい。 Although not shown in particular, the chip 33 may have an insulating layer that covers the conductor layer 43 and the surface of the chip substrate 41 facing the circuit substrate 31 while exposing the terminals of the chip 33. Such an insulating layer may simply serve to reduce corrosion of the conductor layer 43, or may have an acoustically advantageous effect. The material of such an insulating layer may be any appropriate material, such as SiO2 . The side and bottom surfaces of the chip substrate 41 may be covered with an insulating layer or the like that is thinner than the thickness of the chip substrate 41.
 チップ33の導体層43は、例えば、チップ33の端子43aを有している。また、回路基板31の上面に位置する導体層39aは、端子43aに対向するパッド39cを有している。端子43aとパッド39cとが導電性のバンプ45によって接合されることによって、チップ33は、回路基板31に実装される。すなわち、チップ33は、バンプ45によって、回路基板31に固定されるとともに、電気的に接続される。バンプ45の材料は、例えば、はんだである。はんだは、鉛フリーはんだを含む。 The conductor layer 43 of the chip 33 has, for example, a terminal 43a of the chip 33. Furthermore, the conductor layer 39a located on the upper surface of the circuit board 31 has a pad 39c facing the terminal 43a. The terminal 43a and the pad 39c are joined by conductive bumps 45, and the chip 33 is mounted on the circuit board 31. That is, the chip 33 is fixed to and electrically connected to the circuit board 31 by the bumps 45. The material of the bumps 45 is, for example, solder. The solder includes lead-free solder.
 封止部35は、例えば、チップ33の上から回路基板31の上面を覆っている。チップ33と回路基板31との間には、端子43a、バンプ45及びパッド39cの厚みで隙間が構成されている。封止部35は、この隙間には充填されておらず、当該隙間は、封止部35によって封止された密閉空間とされている。密閉空間は、真空状態とされていてもよいし、適宜な不活性ガス(例えば窒素)が充填されていてもよい。封止部35の材料は、有機材料であってもよいし、無機材料であってもよいし、両者の組み合わせであってもよい。より詳細には、例えば、封止部35は、樹脂とされたり、無機材料からなる粒子(フィラー)を含んでいる樹脂とされたりしてよい。 The sealing portion 35, for example, covers the upper surface of the circuit board 31 from above the chip 33. A gap is formed between the chip 33 and the circuit board 31 by the thickness of the terminals 43a, the bumps 45, and the pads 39c. The sealing portion 35 is not filled in this gap, and the gap is made into an airtight space sealed by the sealing portion 35. The airtight space may be in a vacuum state or may be filled with an appropriate inert gas (e.g., nitrogen). The material of the sealing portion 35 may be an organic material, an inorganic material, or a combination of both. More specifically, for example, the sealing portion 35 may be made of a resin, or a resin containing particles (filler) made of an inorganic material.
 チップ33は、複合フィルタ1(弾性波フィルタ5)に加えて、他のフィルタを構成していてもよい。例えば、複合フィルタ1とは別の弾性波フィルタのための共振子11がチップ33に設けられていてもよい。より詳細には、例えば、図示されたチップ部品は、送信フィルタ及び受信フィルタを有する分波器(例えばデュプレクサ)を構成してよい。この場合において、複合フィルタ1が送信フィルタ及び受信フィルタの一方を構成し、他のフィルタが送信フィルタ及び受信フィルタの他方を構成してよい。 The chip 33 may constitute another filter in addition to the composite filter 1 (elastic wave filter 5). For example, a resonator 11 for an elastic wave filter other than the composite filter 1 may be provided on the chip 33. More specifically, for example, the illustrated chip components may constitute a splitter (e.g., a duplexer) having a transmit filter and a receive filter. In this case, the composite filter 1 may constitute one of the transmit filter and the receive filter, and the other filter may constitute the other of the transmit filter and the receive filter.
 チップ33以外の他の弾性波チップが回路基板31に実装されていてもよい。より詳細には、例えば、チップ33及び他の弾性波チップを含むチップ部品は、分波器(例えばデュプレクサ)を構成してよい。そして、複合フィルタ1は、送信フィルタ及び受信フィルタの一方を構成し、他の弾性波チップによって構成されるフィルタは、送信フィルタ及び受信フィルタの他方を構成してよい。 An acoustic wave chip other than chip 33 may be mounted on circuit board 31. More specifically, for example, chip components including chip 33 and another acoustic wave chip may form a splitter (e.g., a duplexer). Then, composite filter 1 may form one of the transmit filter and the receive filter, and a filter formed by another acoustic wave chip may form the other of the transmit filter and the receive filter.
 チップ33等の電子部品の回路基板31に対する実装は、バンプ45によるものに限定されない。例えば、電子部品は、回路基板31に絶縁性の接着剤によって固定されるとともに、ボンディングワイヤによって回路基板31に電気的に接続されてもよい。 The mounting of electronic components such as chips 33 on circuit board 31 is not limited to using bumps 45. For example, electronic components may be fixed to circuit board 31 with an insulating adhesive and electrically connected to circuit board 31 with bonding wires.
(7.2.構造のバリエーション)
 図8A~図8Dは、構造のバリエーションを示す模式図である。これらの図は、回路基板31及びチップ33を図7よりも模式的に示している。なお、後に説明される構造例については、基本的に、先に説明された構造例との相違点についてのみ述べる。特に言及が無い事項は、先に説明された構造例と同様とされたり、先に説明された構造例から類推されたりしてよい。
(7.2. Structural Variations)
8A to 8D are schematic diagrams showing variations of the structure. These diagrams show the circuit board 31 and the chip 33 more typically than FIG. 7. Note that for the structural examples described later, only the differences from the structural examples described earlier will basically be described. Items that are not specifically mentioned may be considered to be the same as the structural examples described earlier, or may be inferred from the structural examples described earlier.
 図8Aの例に係る複合フィルタ1(1E)では、LCフィルタ7及び付加回路9は、回路基板31に内蔵されている。内蔵は、LCフィルタ7及び付加回路9が回路基板31に造り込まれることによって実現されてもよいし、LCフィルタ7及び付加回路9を構成するチップが回路基板31に埋め込まれることによって実現されてもよい。LCフィルタ7及び付加回路9が回路基板31に造り込まれる場合、例えば、回路基板31の導体39によって、インダクタL及びキャパシタCが構成される。基体37は、キャパシタCの電極間の誘電体として機能してよい。 In the composite filter 1 (1E) in the example of FIG. 8A, the LC filter 7 and the additional circuit 9 are built into the circuit board 31. The incorporation may be achieved by building the LC filter 7 and the additional circuit 9 into the circuit board 31, or by embedding chips that constitute the LC filter 7 and the additional circuit 9 into the circuit board 31. When the LC filter 7 and the additional circuit 9 are built into the circuit board 31, for example, the inductor L and the capacitor C are formed by the conductor 39 of the circuit board 31. The base 37 may function as a dielectric between the electrodes of the capacitor C.
 回路基板31(多層基板)に造り込まれるインダクタL及びキャパシタCの具体的な構成は任意である。例えば、インダクタLは、導体層39aが含むミアンダ状又は渦巻き状の導体パターンによって構成されていてもよいし、導体層39a及びビア導体39bを適宜に組み合わせて構成された螺旋状の導体によって構成されていてもよい。また、例えば、キャパシタCの1対の電極は、同一の導体層39aによって構成されていてもよいし、互いに異なる導体層39aによって構成されていてもよい。前者としては、平面視において互いに対向する1対のストリップ状の電極、及び平面視において互いに噛み合う1対の櫛歯電極(共振子11の後述する櫛歯電極を参照)を挙げることができる。後者としては、絶縁層37aの厚さ方向において絶縁層37aを挟んで互いに対向する平板電極を挙げることができる。 The specific configuration of the inductor L and capacitor C built into the circuit board 31 (multilayer board) is arbitrary. For example, the inductor L may be configured with a meandering or spiral conductor pattern included in the conductor layer 39a, or may be configured with a spiral conductor formed by appropriately combining the conductor layer 39a and the via conductor 39b. Also, for example, a pair of electrodes of the capacitor C may be configured with the same conductor layer 39a, or may be configured with different conductor layers 39a. Examples of the former include a pair of strip-shaped electrodes facing each other in a planar view, and a pair of comb-tooth electrodes that mesh with each other in a planar view (see the comb-tooth electrodes of the resonator 11 described later). Examples of the latter include flat plate electrodes facing each other across the insulating layer 37a in the thickness direction of the insulating layer 37a.
 図8Bの例に係る複合フィルタ1(1F)では、付加回路9は、既述の特定配線15(0.3nH以上のインダクタンスを有する配線)によって構成されている。特定配線15は、例えば、ビア導体39bのみによって構成されるのではなく、導体層39aを含むことによって長さが確保され、インダクタンスが大きくされている。もちろん、特定配線15は、ビア導体39bのみによって構成されていても構わない。なお、比較的小型のデバイスにおいて、多層基板のうち50μm~100μmの厚さ部分を貫通するビア導体のインダクタンスは0.1nH程度である。従って、例えば、特定配線15の長さは、上記の長さの3倍以上とされてよい。また、特定配線15は、ここでの説明とは異なり、0.5nH以上のインダクタンスを有する配線とされてもよい。 In the composite filter 1 (1F) in the example of FIG. 8B, the additional circuit 9 is composed of the specific wiring 15 (a wiring having an inductance of 0.3 nH or more) already described. The specific wiring 15 is not composed of only via conductors 39b, but includes a conductor layer 39a, for example, to ensure its length and increase its inductance. Of course, the specific wiring 15 may be composed of only via conductors 39b. In a relatively small device, the inductance of a via conductor that penetrates a 50 μm to 100 μm thick portion of a multilayer substrate is about 0.1 nH. Therefore, for example, the length of the specific wiring 15 may be three times or more the above length. Also, the specific wiring 15 may be a wiring having an inductance of 0.5 nH or more, unlike the description here.
 図8Cの例に係る複合フィルタ1(1G)では、付加回路9は、回路基板31の上面に実装される電子部品によって構成されている。当該電子部品の具体的な構成は種々のものとされてよく、例えば、公知のものとされても構わない。上記電子部品は、例えば、チップインダクタ、チップキャパシタ、又はチップ型のフィルタであってよい。上記電子部品の実装方式も任意である。例えば、上記電子部品は、チップ33と同様にパッドを有して表面実装されるものであってもよいし、スルーホール実装されるものであってもよいし、パッドに代えてリードを有して表面実装されるものであってもよい。 In the composite filter 1 (1G) in the example of FIG. 8C, the additional circuit 9 is configured by electronic components mounted on the upper surface of the circuit board 31. The specific configuration of the electronic components may be various, for example, they may be publicly known. The electronic components may be, for example, chip inductors, chip capacitors, or chip-type filters. The mounting method of the electronic components is also arbitrary. For example, the electronic components may be surface-mounted with pads like the chip 33, may be through-hole mounted, or may be surface-mounted with leads instead of pads.
 図8Dの例に係る複合フィルタ1(1H)は、チップ部品ではなく、モジュール51の一部とされている。より詳細には、図示の例では、モジュール基板47に2つの回路基板31が実装されている。一の回路基板31は、LCフィルタ7を内蔵しているとともに、チップ33が実装されている。他の回路基板31は、付加回路9を内蔵している。モジュール51は、例えば、チップ型の部品として構成され、端子49が不図示の回路基板に接合されて実装される。あるいは、モジュール51は、マザーボードのように機能するものであってもよい。この図の例から理解されるように、第1端子3A及び第2端子3Bは、互いに異なる回路基板31に位置してよい。 The composite filter 1 (1H) in the example of FIG. 8D is not a chip component, but is part of a module 51. More specifically, in the illustrated example, two circuit boards 31 are mounted on a module board 47. One circuit board 31 has an LC filter 7 built in and a chip 33 mounted thereon. The other circuit board 31 has an additional circuit 9 built in. The module 51 is, for example, configured as a chip-type component, and is mounted by joining the terminals 49 to a circuit board (not shown). Alternatively, the module 51 may function like a motherboard. As can be understood from the example of this figure, the first terminal 3A and the second terminal 3B may be located on different circuit boards 31.
 なお、図示の例では、第1端子3A及び第2端子3Bは、配線によって端子49に接続されているだけであるから、端子49が図1に示す第1端子3A及び第2端子3Bとして捉えられ、モジュール51は複合フィルタ1として捉えられても構わない。また、図示の例とは異なり、第1端子3A及び第2端子3Bは、モジュール51が含む他の回路(例えばIC(Integrated Circuit))に接続されていてよい。他の回路は、モジュール基板47の表面に実装されているものであってもよいし、モジュール基板47に内蔵されているものであってもよい。 In the illustrated example, the first terminal 3A and the second terminal 3B are simply connected to the terminal 49 by wiring, so the terminal 49 may be regarded as the first terminal 3A and the second terminal 3B shown in FIG. 1, and the module 51 may be regarded as the composite filter 1. Also, unlike the illustrated example, the first terminal 3A and the second terminal 3B may be connected to another circuit (e.g., an IC (Integrated Circuit)) included in the module 51. The other circuit may be mounted on the surface of the module substrate 47, or may be built into the module substrate 47.
 以上に述べたバリエーションは、適宜に組み合わされたり、変更されたりしてよい。例えば、図8Cの付加回路9に加えて、又は代えて、LCフィルタ7(一部又は全部)が回路基板31に実装される電子部品(チップ)によって構成されてもよい。また、例えば、図8Dの付加回路9に代えて、LCフィルタ7(一部又は全部)が、チップ33が実装されている回路基板31とは別の回路基板31に内蔵されていてもよい。LCフィルタ7及び付加回路9の一部又は全部は、チップ33に設けられてもよい。 The above-mentioned variations may be combined or modified as appropriate. For example, in addition to or instead of the additional circuit 9 in FIG. 8C, the LC filter 7 (part or all) may be configured with an electronic component (chip) mounted on the circuit board 31. Also, for example, instead of the additional circuit 9 in FIG. 8D, the LC filter 7 (part or all) may be built into a circuit board 31 other than the circuit board 31 on which the chip 33 is mounted. The LC filter 7 and part or all of the additional circuit 9 may be provided on the chip 33.
(7.3.構造について補足)
 図8A~図8Cに例示したように共振子11を有するチップ33は、バンプ45によって付加回路9(その一部又は全部)を有する回路基板31に実装されてよい。このとき、平面視において、バンプ45の中心と第2端子3Bの中心とは重なっていなくてよい(ずれていてよい。)。さらに、第2端子3Bの少なくとも一部は、バンプ45に対して重なっていなくよい。及び/又は、バンプ45の少なくとも一部は、第2端子3Bに重なっていなくてよい。さらに、バンプ45との全部と第2端子3Bの全部とが互いに重なっていなくてよい。もちろん、上記とは異なり、バンプ45の中心と第2端子3Bの中心とは重なっていてもよい。なお、本段落のバンプ45についての説明は、端子43a及びパッド39cに援用されてもよい。
(7.3. Supplementary information on structure)
As illustrated in FIGS. 8A to 8C, the chip 33 having the resonator 11 may be mounted on the circuit board 31 having the additional circuit 9 (part or all of it) by the bump 45. In this case, in a plan view, the center of the bump 45 and the center of the second terminal 3B may not overlap (may be shifted). Furthermore, at least a part of the second terminal 3B may not overlap the bump 45. And/or at least a part of the bump 45 may not overlap the second terminal 3B. Furthermore, the entire bump 45 and the entire second terminal 3B may not overlap each other. Of course, unlike the above, the center of the bump 45 and the center of the second terminal 3B may overlap. The description of the bump 45 in this paragraph may be applied to the terminal 43a and the pad 39c.
(8.弾性波共振子の構成の具体例)
 弾性波フィルタ5が有する共振子11の構成は種々のものとされてよい。例えば、共振子11は、SAW共振子とされてもよいし、SAW共振子と同様の電極を有しつつ、BAWを利用するBAW共振子とされてもよいし、キャビティ上で圧電薄膜を振動させる圧電薄膜共振器(FBAR(Film Bulk Acoustic Resonator)と呼称されることもある。)とされてもよい。以下、共振子11の一例として、SAW共振子について説明する。
(8. Specific Examples of Elastic Wave Resonator Configurations)
The resonator 11 of the acoustic wave filter 5 may have various configurations. For example, the resonator 11 may be a SAW resonator, a BAW resonator that has electrodes similar to those of a SAW resonator and uses a BAW, or a film bulk acoustic resonator (also called an FBAR (Film Bulk Acoustic Resonator)) that vibrates a piezoelectric thin film on a cavity. A SAW resonator will be described below as an example of the resonator 11.
 図9は、共振子11としてのSAW共振子の構成を模式的に示す平面図である。この図は、チップ33のうち、回路基板31側の面の一部領域を示している。 FIG. 9 is a plan view showing a schematic configuration of a SAW resonator as the resonator 11. This figure shows a partial area of the surface of the chip 33 that faces the circuit board 31.
 図9には、便宜的に、D1軸、D2軸及びD3軸からなる直交座標系を付す。共振子11は、いずれの方向が上方又は下方とされてもよい。ただし、以下の説明では、便宜上、D3軸の正側を上方として、上面又は下面等の用語を用いることがある。なお、D1軸は、チップ基板41の回路基板31側の面(上面41a)に沿って伝搬する弾性波の伝搬方向に平行になるように定義されている。D2軸は、上面41aに平行かつD1軸に直交するように定義されている。D3軸は、上面41aに直交するように定義されている。 For convenience, FIG. 9 shows an orthogonal coordinate system consisting of the D1 axis, the D2 axis, and the D3 axis. Either direction of the resonator 11 may be considered to be upward or downward. However, in the following description, for convenience, the positive side of the D3 axis may be considered to be upward, and terms such as upper surface and lower surface may be used. Note that the D1 axis is defined to be parallel to the propagation direction of the elastic wave propagating along the surface (upper surface 41a) of the chip substrate 41 facing the circuit substrate 31. The D2 axis is defined to be parallel to the upper surface 41a and perpendicular to the D1 axis. The D3 axis is defined to be perpendicular to the upper surface 41a.
 共振子11は、いわゆる1ポート弾性波共振子によって構成されている。共振子11は、例えば、図の両側に示された2つの配線55の一方から入力された信号を2つの配線55の他方から出力する。この際、共振子11は、電気信号から弾性波への変換及び弾性波から電気信号への変換を行う。 The resonator 11 is configured as a so-called one-port elastic wave resonator. For example, the resonator 11 outputs a signal input from one of the two wirings 55 shown on both sides of the figure from the other of the two wirings 55. At this time, the resonator 11 converts the electrical signal to an elastic wave and converts the elastic wave back to an electrical signal.
 共振子11は、例えば、チップ基板41(その少なくとも上面41a側の一部)と、上面41a上に位置する励振電極57と、励振電極57の両側に位置する1対の反射器59とを含んでいる。励振電極57及び反射器59は、当該領域に設けられた層状導体によって構成されている。1つのチップ基板41上には、複数の共振子11が構成されてよい。すなわち、チップ基板41は、複数の共振子11に共用されてよい。 The resonator 11 includes, for example, a chip substrate 41 (at least a part of its upper surface 41a), an excitation electrode 57 located on the upper surface 41a, and a pair of reflectors 59 located on either side of the excitation electrode 57. The excitation electrode 57 and the reflectors 59 are formed of layered conductors provided in the region. A plurality of resonators 11 may be formed on one chip substrate 41. In other words, the chip substrate 41 may be shared by a plurality of resonators 11.
 励振電極57は、いわゆるIDT(Interdigital Transducer)電極によって構成されており、1対の櫛歯電極61(一方には視認性をよくする便宜上ハッチングを付す)を有している。各櫛歯電極61は、例えば、バスバー63と、バスバー63から互いに並列に延びる複数の電極指65と、複数の電極指65の間においてバスバー63から突出する複数のダミー電極67とを有している。そして、1対の櫛歯電極61は、複数の電極指65が互いに噛み合うように(交差するように)配置されている。 The excitation electrode 57 is composed of a so-called IDT (Interdigital Transducer) electrode, and has a pair of comb-tooth electrodes 61 (one of which is hatched for ease of visibility). Each comb-tooth electrode 61 has, for example, a bus bar 63, a number of electrode fingers 65 extending in parallel from the bus bar 63, and a number of dummy electrodes 67 protruding from the bus bar 63 between the electrode fingers 65. The pair of comb-tooth electrodes 61 are arranged so that the electrode fingers 65 interdigitate with (intersect with) each other.
 1対の反射器59は、弾性波の伝搬方向において複数の励振電極57の両側に位置している。各反射器59は、例えば、電気的に浮遊状態とされてもよいし、基準電位が付与されてもよい。各反射器59は、例えば、格子状に形成されている。すなわち、反射器59は、互いに対向する1対のバスバー69と、1対のバスバー69間において延びる複数のストリップ電極71とを含んでいる。 The pair of reflectors 59 are located on both sides of the multiple excitation electrodes 57 in the propagation direction of the elastic wave. Each reflector 59 may be, for example, electrically floating or may be applied with a reference potential. Each reflector 59 is formed, for example, in a lattice shape. That is, the reflector 59 includes a pair of bus bars 69 facing each other and multiple strip electrodes 71 extending between the pair of bus bars 69.
 1対の櫛歯電極61に電圧が印加されると、複数の電極指65によって上面41a(圧電体)に電圧が印加され、圧電体が振動する。すなわち、弾性波が励振される。種々の方向に伝搬する種々の波長の弾性波のうち、複数の電極指65のピッチpを概ね半波長(λ/2)として複数の電極指65の配列方向に伝搬する弾性波は、複数の電極指65によって励振された複数の波が同相で重なり合うことから振幅が大きくなりやすい。 When a voltage is applied to a pair of comb-tooth electrodes 61, the voltage is applied to the upper surface 41a (piezoelectric body) by the multiple electrode fingers 65, causing the piezoelectric body to vibrate. In other words, elastic waves are excited. Of the elastic waves of various wavelengths that propagate in various directions, the elastic waves that propagate in the arrangement direction of the multiple electrode fingers 65 with the pitch p of the multiple electrode fingers 65 being approximately half the wavelength (λ/2) tend to have large amplitudes because the multiple waves excited by the multiple electrode fingers 65 overlap in phase.
 また、圧電体を伝搬する弾性波は、複数の電極指65によって電気信号に変換される。このとき、弾性波が励振されるときと同様に、複数の電極指65のピッチpを概ね半波長(λ/2)として複数の電極指65の配列方向に伝搬する弾性波が変換された電気信号の強度が強くなりやすい。 In addition, the elastic waves propagating through the piezoelectric body are converted into an electrical signal by the multiple electrode fingers 65. At this time, similar to when an elastic wave is excited, the strength of the electrical signal converted from the elastic wave propagating in the arrangement direction of the multiple electrode fingers 65, with the pitch p of the multiple electrode fingers 65 being approximately half the wavelength (λ/2), tends to be strong.
 上記のような作用(及びここでは説明を省略する他の作用)により、共振子11は、ピッチpを概ね半波長(λ/2)とする弾性波の周波数を共振周波数とする共振子として機能する。反共振周波数は、共振周波数及び励振電極57の容量等によって規定される。1対の反射器59は、弾性波を閉じ込めることに寄与する。 Due to the above-mentioned action (and other actions not described here), the resonator 11 functions as a resonator whose resonant frequency is the frequency of elastic waves whose pitch p is approximately half the wavelength (λ/2). The anti-resonant frequency is determined by the resonant frequency and the capacitance of the excitation electrode 57, etc. The pair of reflectors 59 contribute to confining the elastic waves.
 なお、励振電極57と同様の電極を用いるBAW共振子は、例えば、上記と同様の作用によってD1方向に伝搬するBAWを生じるものであってもよいし、上記とは異なる作用によって厚みすべり振動を生じるものであってもよい。後者の場合においては、共振周波数は、圧電体層の厚みに対する依存性が相対的に大きく、ピッチpに対する依存性は相対的に小さい。また、反射器59は不要である。 Note that a BAW resonator using an electrode similar to excitation electrode 57 may, for example, generate a BAW that propagates in the D1 direction by a similar action as described above, or may generate thickness-shear vibration by a different action than described above. In the latter case, the resonant frequency is relatively highly dependent on the thickness of the piezoelectric layer and relatively less dependent on the pitch p. Also, reflector 59 is not required.
(9.複合フィルタの利用例)
 図10は、複合フィルタ1の利用例としての通信装置151の要部を示すブロック図である。通信装置151は、モジュール171と、モジュール171を収容する筐体173とを有している。モジュール171は、電波を利用した無線通信を行うものであり、複合フィルタ1(1C及び1D)を含んでいる。より詳細には、図示の例では、ダイプレクサ154を構成する2つのフィルタに複合フィルタ1C及び1Dが用いられている。
(9. Example of using composite filters)
10 is a block diagram showing a main part of a communication device 151 as an example of the use of the composite filter 1. The communication device 151 has a module 171 and a housing 173 that houses the module 171. The module 171 performs wireless communication using radio waves and includes the composite filters 1 (1C and 1D). More specifically, in the illustrated example, the composite filters 1C and 1D are used as the two filters that make up the diplexer 154.
 ダイプレクサ154において、2つの複合フィルタ1は、例えば、第1端子3Aを共用し、第2端子3Bを互いに別個に有している。ただし、ここでの説明とは逆に、共用される端子は、第2端子3Bであってもよい。又は、一方の複合フィルタ1にとっての第1端子3Aと、他方の複合フィルタ1にとっての第2端子3Bとが共用されてもよい。また、ここでの説明とは異なり、ダイプレクサ154の2つのフィルタのうち一方は複合フィルタ1でなくてもよい。複合フィルタ1は、ダイプレクサ154を構成するフィルタの一部であってもよい。 In the diplexer 154, the two composite filters 1, for example, share the first terminal 3A and have separate second terminals 3B. However, contrary to the description here, the shared terminal may be the second terminal 3B. Or, the first terminal 3A of one composite filter 1 and the second terminal 3B of the other composite filter 1 may be shared. Also, contrary to the description here, one of the two filters of the diplexer 154 does not have to be a composite filter 1. The composite filter 1 may be part of the filter that constitutes the diplexer 154.
 モジュール171において、アンテナ159によって受信された無線信号(電波)は、アンテナ159によって電気信号に変換されてダイプレクサ154(より詳細には2つの複合フィルタ1に共用される第1端子3A)に入力される。入力された受信信号のうち、複合フィルタ1Cの通過帯域の周波数を有する受信信号RS1は、複合フィルタ1C(より詳細には複合フィルタ1Cの第2端子3B)から出力される。また、入力された受信信号のうち、複合フィルタ1Dの通過帯域の周波数を有する受信信号RS2は、複合フィルタ1D(複合フィルタ1Dの第2端子3B)から出力される。 In module 171, the radio signal (radio wave) received by antenna 159 is converted to an electrical signal by antenna 159 and input to diplexer 154 (more specifically, first terminal 3A shared by two composite filters 1). Of the input received signals, received signal RS1 having a frequency in the pass band of composite filter 1C is output from composite filter 1C (more specifically, second terminal 3B of composite filter 1C). Also, of the input received signals, received signal RS2 having a frequency in the pass band of composite filter 1D is output from composite filter 1D (second terminal 3B of composite filter 1D).
 複合フィルタ1Cから出力された受信信号RS1は、増幅器155Aによって増幅され、バンドパスフィルタ157Aによって所定の通過帯域以外の不要成分が除去される。そして、受信信号RS1は、RF(Radio Frequency)-IC153によって周波数の引き下げおよび復調がなされて受信情報信号RIS1とされる。 The received signal RS1 output from the composite filter 1C is amplified by the amplifier 155A, and unnecessary components outside a predetermined passband are removed by the bandpass filter 157A. The received signal RS1 is then frequency-downshifted and demodulated by the RF (Radio Frequency)-IC 153 to become the received information signal RIS1.
 同様に、複合フィルタ1Dから出力された受信信号RS2は、増幅器155Bによって増幅され、バンドパスフィルタ157Bによって所定の通過帯域以外の不要成分が除去される。そして、受信信号RS2は、RF-IC153によって周波数の引き下げおよび復調がなされて受信情報信号RIS2とされる。 Similarly, the received signal RS2 output from the composite filter 1D is amplified by the amplifier 155B, and unnecessary components outside the specified passband are removed by the bandpass filter 157B. The received signal RS2 is then frequency-downshifted and demodulated by the RF-IC 153 to become the received information signal RIS2.
 受信情報信号RIS1及びRIS2は、適宜な情報を含む低周波信号(ベースバンド信号)であってよい。例えば、これらの信号は、アナログの音声信号、デジタル化された音声信号、又は衛星測位システムを利用する信号であってよい。変調方式は、例えば、位相変調、振幅変調若しくは周波数変調又はこれらの2つ以上の組み合わせであってよい。回路方式は、ダイレクトコンバージョン方式を図示したが、それ以外の適宜なものとされてよく、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図10は、要部のみを模式的に示すものであり、適宜な位置にフィルタやアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。 The received information signals RIS1 and RIS2 may be low-frequency signals (baseband signals) containing appropriate information. For example, these signals may be analog audio signals, digitized audio signals, or signals using a satellite positioning system. The modulation method may be, for example, phase modulation, amplitude modulation, or frequency modulation, or a combination of two or more of these. Although a direct conversion method is illustrated as the circuit method, other appropriate methods may be used, for example, a double superheterodyne method. Also, FIG. 10 shows only the essential parts in a schematic manner, and filters, isolators, etc. may be added in appropriate positions, and the positions of amplifiers, etc. may be changed.
 モジュール171は、例えば、RF-IC153からアンテナ159までの構成要素を同一の回路基板に有している(内蔵及び実装のいずれであってもよい。)。すなわち、複合フィルタ1は、他の構成要素と組み合わされてモジュール化されている。この回路基板は、回路基板31であってもよいし、回路基板31が実装されるものであってもよいし、モジュール基板47であってもよい。なお、複合フィルタ1は、モジュール化されずに、通信装置151に含まれていても構わない。また、モジュール171の構成要素として例示した構成要素は、モジュールの外部に位置していたり、筐体173に収容されていなかったりしてもよい。例えば、アンテナ159は、筐体173の外部に露出するものであってもよい。 The module 171 has, for example, components from the RF-IC 153 to the antenna 159 on the same circuit board (they may be either built-in or mounted). That is, the composite filter 1 is combined with other components to be modularized. This circuit board may be the circuit board 31, a board on which the circuit board 31 is mounted, or a module board 47. The composite filter 1 may not be modularized and may be included in the communication device 151. The components exemplified as components of the module 171 may be located outside the module or may not be housed in the housing 173. For example, the antenna 159 may be exposed to the outside of the housing 173.
(10.実施形態のまとめ)
 以上のとおり、実施形態に係る複合フィルタ1は、弾性波フィルタ5と、LCフィルタ7と、電気的要素13(付加回路9が有するもの)とを有している。弾性波フィルタ5は、少なくとも1つの弾性波共振子11を有する。LCフィルタ7は、弾性波フィルタ5と第1端子3Aとの間に電気的に介在する。電気的要素13は、弾性波フィルタ5と第2端子3Bとの間に電気的に介在する。電気的要素13は、インダクタL、0.3nH以上のインダクタンスを有する配線(特定配線15)、もしくはキャパシタCである。複合フィルタ1の通過帯域PB1の高周波側及び低周波側の少なくとも一方の減衰スロープSPが既述の式1を満たす。
(10. Summary of the embodiment)
As described above, the composite filter 1 according to the embodiment includes the acoustic wave filter 5, the LC filter 7, and the electric element 13 (included in the additional circuit 9). The acoustic wave filter 5 includes at least one acoustic wave resonator 11. The LC filter 7 is electrically interposed between the acoustic wave filter 5 and the first terminal 3A. The electric element 13 is electrically interposed between the acoustic wave filter 5 and the second terminal 3B. The electric element 13 is an inductor L, a wiring (specific wiring 15) having an inductance of 0.3 nH or more, or a capacitor C. At least one of the attenuation slopes SP on the high frequency side and the low frequency side of the pass band PB1 of the composite filter 1 satisfies the above-described formula 1.
 従って、例えば、実施形態の概要の説明で述べたとおり、減衰スロープの急峻化と挿入損失の低減とを両立させることができ、かつLCフィルタ7及び電気的要素13を整合回路に利用できることから複合フィルタ1の小型化が図られる。LCフィルタ7及び電気的要素13によって複合フィルタ1のインピーダンス調整を行うことができることから、弾性波フィルタ5の設計の自由度が向上し、弾性波フィルタ5の減衰スロープを急峻化させることが容易化される。 Therefore, for example, as described in the description of the outline of the embodiment, it is possible to achieve both a steeper attenuation slope and a reduced insertion loss, and the LC filter 7 and the electrical element 13 can be used in the matching circuit, which allows the composite filter 1 to be made smaller. Since the impedance of the composite filter 1 can be adjusted by the LC filter 7 and the electrical element 13, the design freedom of the elastic wave filter 5 is improved, and it is easier to steepen the attenuation slope of the elastic wave filter 5.
 電気的要素13は、弾性波フィルタ5と第2端子3Bとの間に電気的に介在する第2LCフィルタ(LCフィルタを構成する付加回路9)の一部であってよい。 The electrical element 13 may be part of a second LC filter (additional circuit 9 constituting an LC filter) electrically interposed between the acoustic wave filter 5 and the second terminal 3B.
 この場合、例えば、LCフィルタ7だけでなく、付加回路9もフィルタと整合回路とに兼用可能となり、小型化が図られる。 In this case, for example, not only the LC filter 7 but also the additional circuit 9 can be used as both a filter and a matching circuit, which allows for miniaturization.
 複合フィルタ1は、弾性波共振子11を有しているチップ33と、チップ33が実装されている多層基板(回路基板31)と、チップ33と回路基板31とを接合している導電性の接合部(バンプ45)と、を有していてよい。電気的要素13は、回路基板31内又は回路基板31上に位置してよい。バンプ45は、共振子11と電気的要素13とを電気的に接続していてよい。回路基板31を平面視したとき、バンプ45の中心と第2端子3Bの中心とは重なっていなくてよい。 The composite filter 1 may have a chip 33 having an elastic wave resonator 11, a multilayer substrate (circuit board 31) on which the chip 33 is mounted, and a conductive joint (bump 45) joining the chip 33 to the circuit board 31. The electrical element 13 may be located in or on the circuit board 31. The bump 45 may electrically connect the resonator 11 to the electrical element 13. When the circuit board 31 is viewed in a plane, the center of the bump 45 and the center of the second terminal 3B do not have to overlap.
 この場合、例えば、第2端子3Bが出力端子である場合において、付加回路9によって減衰される予定の周波数成分がバンプ45からの放射によって第2端子3Bへ混入する蓋然性が低減される。また、例えば、第2端子3Bが入力端子である場合において、付加回路9によって減衰される予定の周波数成分が第2端子3Bからバンプ45への放射によって弾性波フィルタ5へ混入される蓋然性が低減される。別の観点では、上記のような放射を考慮して回路基板31の内部にシールド層を設ける必要性が低減される。 In this case, for example, when the second terminal 3B is an output terminal, the likelihood that the frequency components to be attenuated by the additional circuit 9 will be mixed into the second terminal 3B due to radiation from the bump 45 is reduced. Also, for example, when the second terminal 3B is an input terminal, the likelihood that the frequency components to be attenuated by the additional circuit 9 will be mixed into the acoustic wave filter 5 due to radiation from the second terminal 3B to the bump 45 is reduced. From another perspective, the need to provide a shielding layer inside the circuit board 31 in consideration of the above-mentioned radiation is reduced.
 該複合フィルタ1の通過帯域PB1の少なくとも一部は3GHz以上に存在してよい。 At least a portion of the passband PB1 of the composite filter 1 may be above 3 GHz.
 この場合、例えば、複合フィルタ1は、比較的高い周波数に対応しているといえる。高い周波数帯においては、通過帯域が広帯域化され、また通過帯域同士の間の周波数帯が狭いことが多い。通過帯域が広帯域化されると、減衰スロープを急峻化することが困難になる。従って、実施形態の減衰スロープの急峻化と挿入損失の低減とを両立する効果が有効である。 In this case, for example, the composite filter 1 can be said to be compatible with relatively high frequencies. In high frequency bands, the passband is widened and the frequency band between the passbands is often narrow. When the passband is widened, it becomes difficult to make the attenuation slope steep. Therefore, the effect of achieving both a steeper attenuation slope and a reduced insertion loss in the embodiment is effective.
 弾性波フィルタ5の比帯域幅は、複合フィルタ1の比帯域幅より小さくされてよい。 The fractional bandwidth of the elastic wave filter 5 may be smaller than the fractional bandwidth of the composite filter 1.
 この場合、例えば、比帯域幅が狭いほど、減衰スロープを急峻化することが容易であることから、弾性波フィルタ5の減衰スロープを急峻化することが容易化される。ひいては、複合フィルタ1の広帯域化を図りつつ、複合フィルタ1の減衰スロープを急峻化することができる。 In this case, for example, the narrower the relative bandwidth, the easier it is to make the attenuation slope steeper, and therefore it becomes easier to make the attenuation slope of the elastic wave filter 5 steeper. As a result, it is possible to make the attenuation slope of the composite filter 1 steeper while widening the bandwidth of the composite filter 1.
 LCフィルタ7及び第2LCフィルタ(付加回路9)は、一方がハイパスフィルタ、他方がローパスフィルタであってよい。 One of the LC filter 7 and the second LC filter (additional circuit 9) may be a high-pass filter and the other a low-pass filter.
 この場合、例えば、通過帯域が広いバンドパスフィルタ又は阻止帯域が広いバンドエリミネーションフィルタを構成することが容易である。また、両者の間に位置する弾性波フィルタ5によって両者のアイソレーションが向上する。 In this case, for example, it is easy to configure a bandpass filter with a wide passband or a band elimination filter with a wide stopband. In addition, the acoustic wave filter 5 located between the two improves isolation between them.
 LCフィルタ7及び第2LCフィルタ(付加回路9)は、複合フィルタ1の通過帯域PB1の2倍または3倍高調波帯域に減衰極を有してよい。 The LC filter 7 and the second LC filter (additional circuit 9) may have an attenuation pole in the second or third harmonic band of the passband PB1 of the composite filter 1.
 減衰スロープを急峻化させるための弾性波フィルタ5は、通過帯域PB1から離れた周波数に減衰極を形成することが難しい。一方、LCフィルタであれば、任意の周波数に簡単に減衰極を形成することができる。そして、高調波帯域に減衰極を形成することによって、高調波に起因するノイズを低減することができる。 In the elastic wave filter 5, which is used to make the attenuation slope steeper, it is difficult to form an attenuation pole at a frequency far from the passband PB1. On the other hand, an LC filter can easily form an attenuation pole at any frequency. And by forming an attenuation pole in the harmonic band, it is possible to reduce noise caused by harmonics.
 実施形態に係るモジュール171は、実施形態に係る複合フィルタ1(例えば1C)と、第1端子3A及び第2端子3Bの少なくとも一方に接続されており、複合フィルタ1の通過帯域PB1とは異なる通過帯域を有している第2フィルタ(例えば複合フィルタ1D)と、を有している。 The module 171 according to the embodiment includes a composite filter 1 (e.g., 1C) according to the embodiment, and a second filter (e.g., composite filter 1D) that is connected to at least one of the first terminal 3A and the second terminal 3B and has a passband different from the passband PB1 of the composite filter 1.
 この場合、例えば、複合フィルタ1は、既述のとおり、減衰スロープを急峻化させることができるから、複合フィルタ1と、第2フィルタとが干渉する蓋然性が低減される。 In this case, for example, as described above, the composite filter 1 can make the attenuation slope steeper, thereby reducing the likelihood of interference between the composite filter 1 and the second filter.
 実施形態に係る通信装置151は、実施形態に係る複合フィルタ1と、第1端子3A及び第2端子3Bの一方に接続されているアンテナ153と、第1端子3A及び第2端子3Bの他方に接続されている集積回路素子(RF-IC159)と、を有している。 The communication device 151 according to the embodiment includes the composite filter 1 according to the embodiment, an antenna 153 connected to one of the first terminal 3A and the second terminal 3B, and an integrated circuit element (RF-IC 159) connected to the other of the first terminal 3A and the second terminal 3B.
 この場合、例えば、複合フィルタ1の挿入損失が低減されることから、通信の品質を向上させることができる。 In this case, for example, the insertion loss of the composite filter 1 is reduced, thereby improving the quality of communication.
 なお、以上の実施形態において、付加回路9は、LCフィルタを構成する場合、第2LCフィルタの一例である。バンプ45は接合部の一例である。RF-IC159は集積回路素子の一例である。 In the above embodiment, when the additional circuit 9 forms an LC filter, it is an example of a second LC filter. The bump 45 is an example of a joint. The RF-IC 159 is an example of an integrated circuit element.
 本開示に係る技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The technology disclosed herein is not limited to the above embodiments and may be implemented in various forms.
 例えば、複合フィルタを含む分波器は、デュプレクサ又はダイプレクサに限定されない。例えば、トリプレクサ又はクアッドプレクサであってもよい。また、少なくとも1つの複合フィルタを含み、通過帯域が異なる2以上のフィルタを有するモジュールは、分波器に限定されない。例えば、2つのフィルタの間において、第1端子と第2端子との双方が共用されてよい。そして、モジュールは、2つのフィルタの通過帯域外の成分を減衰させるフィルタとして機能してよい。 For example, a splitter including a composite filter is not limited to a duplexer or diplexer. For example, it may be a triplexer or quadplexer. Also, a module including at least one composite filter and having two or more filters with different passbands is not limited to a splitter. For example, both the first terminal and the second terminal may be shared between two filters. And the module may function as a filter that attenuates components outside the passbands of the two filters.
 1…複合フィルタ、3A…第1端子、3B…第2端子、5…弾性波フィルタ、7…LCフィルタ、9…付加回路(第2LCフィルタ)、11…弾性波共振子、13…電気的要素、15…特定配線、L…インダクタ、C…キャパシタ。 1...composite filter, 3A...first terminal, 3B...second terminal, 5...elastic wave filter, 7...LC filter, 9...additional circuit (second LC filter), 11...elastic wave resonator, 13...electrical element, 15...specific wiring, L...inductor, C...capacitor.

Claims (9)

  1.  複合フィルタであって、
     少なくとも1つの弾性波共振子を有する弾性波フィルタと、
     前記弾性波フィルタと第1端子との間に電気的に介在するLCフィルタと、
     前記弾性波フィルタと第2端子との間に電気的に介在する電気的要素と、を有し、
     前記電気的要素は、インダクタ、0.3nH以上のインダクタンスを有する配線、もしくはキャパシタであり、
     該複合フィルタの通過帯域の高周波側及び低周波側の少なくとも一方の減衰スロープが下記の式1を満たす、
     複合フィルタ。
       式1: Min.Loss(dB)≦a×Δf-b
     ただし、上記式1の各パラメータについては、以下のとおりとする。
     Min.Loss(dB): 前記通過帯域における前記複合フィルタの挿入損失の最小値
     Δf=|f1.5-f30|/f1.5
     f1.5: 前記複合フィルタの挿入損失がMin.Loss(dB)よりも1.5dBだけ大きくなる周波数
     f30: 前記複合フィルタの挿入損失がMin.Loss(dB)よりも30dBだけ大きくなる周波数
     a=aa×(log10(order-1))-ab
     b=ba×(log10(order-1))bb
     aa=0.00079217×exp(0.055664×(order-1))
     ab=3.9180×exp(-0.0041245×(order-1))
     ba=2.8407×exp(0.0078456×(order-1))
     bb=0.54831×exp(0.0032121×(order-1))
     order: 前記第1端子と前記弾性波フィルタとの間及び前記弾性波フィルタと前記第2端子との間に電気的に介在する、インダクタ及びキャパシタの少なくとも一方を有し、弾性波共振子を有しない直列腕及び並列腕の数
    1. A composite filter comprising:
    an acoustic wave filter having at least one acoustic wave resonator;
    an LC filter electrically interposed between the acoustic wave filter and a first terminal;
    an electrical element electrically interposed between the acoustic wave filter and a second terminal;
    the electrical element is an inductor, a wiring having an inductance of 0.3 nH or more, or a capacitor;
    At least one of the attenuation slopes on the high-frequency side and the low-frequency side of the passband of the composite filter satisfies the following formula 1:
    Compound filters.
    Equation 1: Min. Loss (dB) ≦ a × Δf − b
    However, the parameters in the above formula 1 are as follows:
    Min. Loss (dB): The minimum insertion loss of the composite filter in the pass band Δf=|f1.5−f30|/f1.5
    f1.5: The frequency at which the insertion loss of the composite filter is 1.5 dB larger than the Min. Loss (dB). f30: The frequency at which the insertion loss of the composite filter is 30 dB larger than the Min. Loss (dB). a=aa×(log 10 (order-1)) −ab
    b = b a × (log 10 (order-1)) bb
    aa = 0.00079217 × exp (0.055664 × (order-1))
    ab = 3.9180 x exp (-0.0041245 x (order-1))
    ba = 2.8407 × exp (0.0078456 × (order-1))
    bb = 0.54831 x exp (0.0032121 x (order-1))
    order: the number of series arms and parallel arms that have at least one of an inductor and a capacitor and do not have an acoustic wave resonator, electrically interposed between the first terminal and the acoustic wave filter and between the acoustic wave filter and the second terminal
  2. 前記電気的要素は、前記弾性波フィルタと前記第2端子との間に電気的に介在する第2LCフィルタの一部である、
     請求項1に記載の複合フィルタ。
    the electrical element is a part of a second LC filter electrically interposed between the acoustic wave filter and the second terminal;
    2. The composite filter of claim 1.
  3.  前記弾性波共振子を有しているチップと、
     前記チップが実装されている多層基板と、
     前記チップと前記多層基板とを接合している導電性の接合部と、
     を有しており、
     前記電気的要素は、前記多層基板内又は多層基板上に位置し、
     前記接合部は、前記弾性波共振子と前記電気的要素とを電気的に接続しており、
     前記多層基板を平面視したとき、前記接合部の中心と前記第2端子の中心とが重ならない、
     請求項1又は2に記載の複合フィルタ。
    a chip having the acoustic wave resonator;
    a multilayer substrate on which the chip is mounted;
    a conductive joint that joins the chip and the multilayer substrate;
    It has
    the electrical components are located within or on the multi-layer substrate;
    the joint portion electrically connects the elastic wave resonator and the electrical element,
    When the multilayer substrate is viewed in a plan view, a center of the joint portion and a center of the second terminal do not overlap with each other.
    A composite filter according to claim 1 or 2.
  4.  前記通過帯域の少なくとも一部が3GHz以上に存在する、請求項1~3のいずれか1項に記載の複合フィルタ。 The composite filter according to any one of claims 1 to 3, wherein at least a portion of the passband is at or above 3 GHz.
  5.  前記弾性波フィルタの比帯域幅は、前記複合フィルタの比帯域幅より小さい、請求項1~4のいずれか1項に記載の複合フィルタ。 The composite filter according to any one of claims 1 to 4, wherein the fractional bandwidth of the acoustic wave filter is smaller than the fractional bandwidth of the composite filter.
  6.  前記LCフィルタ及び前記第2LCフィルタは、一方がハイパスフィルタ、他方がローパスフィルタである、請求項2、又は請求項2を直接又は間接に引用する請求項3~5のいずれか1項に記載の複合フィルタ。 The composite filter according to claim 2 or any one of claims 3 to 5 which directly or indirectly cites claim 2, in which one of the LC filter and the second LC filter is a high-pass filter and the other is a low-pass filter.
  7.  前記LCフィルタ及び前記第2LCフィルタが、前記通過帯域の2倍または3倍高調波帯域に減衰極を有する、請求項6に記載の複合フィルタ。 The composite filter of claim 6, wherein the LC filter and the second LC filter have attenuation poles in the second or third harmonic band of the passband.
  8.  請求項1~7のいずれか1項に記載の複合フィルタと、
     前記第1端子及び前記第2端子の少なくとも一方に接続されており、前記複合フィルタの前記通過帯域とは異なる通過帯域を有している第2フィルタと、
     を有しているモジュール。
    A composite filter according to any one of claims 1 to 7;
    a second filter connected to at least one of the first terminal and the second terminal and having a pass band different from the pass band of the composite filter;
    A module having the following:
  9.  請求項1~7のいずれか1項に記載の複合フィルタと、
     前記第1端子及び前記第2端子の一方に接続されているアンテナと、
     前記第1端子及び前記第2端子の他方に接続されている集積回路素子と、
     を有している通信装置。
    A composite filter according to any one of claims 1 to 7;
    an antenna connected to one of the first terminal and the second terminal;
    an integrated circuit element connected to the other of the first terminal and the second terminal;
    A communication device having the above configuration.
PCT/JP2023/040028 2022-11-11 2023-11-07 Composite filter, module, and communication device WO2024101346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022180909 2022-11-11
JP2022-180909 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101346A1 true WO2024101346A1 (en) 2024-05-16

Family

ID=91032438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040028 WO2024101346A1 (en) 2022-11-11 2023-11-07 Composite filter, module, and communication device

Country Status (1)

Country Link
WO (1) WO2024101346A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254257A (en) * 2002-12-26 2004-09-09 Kyocera Corp Wiring board with built-in low-pass filter
WO2009082012A1 (en) * 2007-12-26 2009-07-02 Kyocera Corporation Filter and communication device
JP2020115616A (en) * 2019-01-17 2020-07-30 太陽誘電株式会社 Filter and multiplexer
WO2022209757A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 High-frequency module and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254257A (en) * 2002-12-26 2004-09-09 Kyocera Corp Wiring board with built-in low-pass filter
WO2009082012A1 (en) * 2007-12-26 2009-07-02 Kyocera Corporation Filter and communication device
JP2020115616A (en) * 2019-01-17 2020-07-30 太陽誘電株式会社 Filter and multiplexer
WO2022209757A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 High-frequency module and communication device

Similar Documents

Publication Publication Date Title
JP6573851B2 (en) Multiplexer
JP6651643B2 (en) Elastic wave filter, duplexer and communication device
US20090147707A1 (en) Demultiplexer and communication device
JP3498204B2 (en) Surface acoustic wave filter and communication device using the same
KR20180009354A (en) Multiplexer, high-frequency front-end circuit and communication device
JP2010011300A (en) Resonator device, filter including the same, and duplexer
JP7132944B2 (en) Acoustic wave filters, demultiplexers and communication devices
WO2016129662A1 (en) Elastic wave device, duplexer, and communication device
CN113497636B (en) High-frequency module and communication device
JP2020053876A (en) Acoustic wave device, demultiplexer, and communication device
JP2018133800A (en) Multiplexer, transmitter and receiver
JP7386741B2 (en) Filters, duplexers and communication equipment
JP2023134855A (en) Acoustic wave filter and communication device
US10651822B2 (en) Multiplexer
JPH0832402A (en) Surface acoustic wave device, branching filter for mobile radio equipment and mobile radio equipment
WO2024101346A1 (en) Composite filter, module, and communication device
JP2020115616A (en) Filter and multiplexer
JPWO2019124316A1 (en) SAW filters, demultiplexers and communication devices
JP7352638B2 (en) Filter devices and communication equipment
US11558072B2 (en) Multiplexer
JP2021190908A (en) Band rejection filter, composite filter, and communication device
WO2020105589A1 (en) Extractor
WO2024106269A1 (en) Filter, module, and communication device
WO2023234405A1 (en) Composite filter, multiplexer, and communication device
WO2023248824A1 (en) Duplexer and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888693

Country of ref document: EP

Kind code of ref document: A1