WO2024101317A1 - Clad steel sheet and method for producing same - Google Patents

Clad steel sheet and method for producing same Download PDF

Info

Publication number
WO2024101317A1
WO2024101317A1 PCT/JP2023/039921 JP2023039921W WO2024101317A1 WO 2024101317 A1 WO2024101317 A1 WO 2024101317A1 JP 2023039921 W JP2023039921 W JP 2023039921W WO 2024101317 A1 WO2024101317 A1 WO 2024101317A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel plate
base material
clad
content
Prior art date
Application number
PCT/JP2023/039921
Other languages
French (fr)
Japanese (ja)
Inventor
恭野 安田
和彦 塩谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024101317A1 publication Critical patent/WO2024101317A1/en

Links

Definitions

  • the present invention relates to a clad steel plate and a manufacturing method thereof.
  • the present invention also relates to a high-strength clad steel plate with excellent low-temperature toughness and ammonia SCC resistance, which is particularly suitable for use as structural components for tanks and the like in low-temperature, liquid ammonia environments.
  • ammonia SCC liquid ammonia-induced stress corrosion cracking
  • ammonia SCC is known to be correlated with the strength and hardness of materials.
  • carbon steel it is considered desirable to use materials with a tensile strength of less than 600 MPa. Therefore, when using high-strength carbon steel (hereinafter also referred to as high-strength steel) in a liquid ammonia environment, measures such as adjusting the tensile strength by performing post-weld heat treatment through full annealing are necessary.
  • liquid ammonia does not generate CO2 when burned. Therefore, in recent years, liquid ammonia has been attracting attention as a clean energy source, and large-scale demand is expected. Accordingly, there is a demand for larger facilities for transporting and storing liquid ammonia. Generally, when making a tank larger, there is a preference to use thinner steel materials in order to reduce weight and construction costs, and therefore the use of high-strength steel is desirable.
  • these facilities may be used for both liquid ammonia and LPG.
  • Liquefied gases such as liquid ammonia and LPG are transported and stored at low temperatures. Therefore, the steel materials used for these applications require excellent low-temperature toughness.
  • Patent Documents 1 to 3 disclose technologies related to steel materials used for the above applications.
  • Patent Document 1 describes a method for softening the surface of steel materials.
  • Patent Documents 2 and 3 describe methods for manufacturing clad steel plates with a mild steel layer on one side.
  • Patent Document 1 requires a long period of heat treatment to uniformly and sufficiently soften the surface layer, making it difficult to control the strength of the center of the steel sheet. This causes problems in terms of strength.
  • Patent Documents 2 and 3 clads are manufactured by a casting method, a build-up welding method, and a continuous casting method.
  • the clad steel plates manufactured by the methods described in Patent Documents 2 and 3 simultaneously achieve excellent low-temperature toughness, excellent ammonia SCC resistance, and high strength.
  • the methods described in Patent Documents 2 and 3 have the economic problem of high costs for the equipment and energy required for their manufacture.
  • the present invention aims to solve the above problems and provide a high-strength clad steel plate with excellent ammonia SCC resistance and low-temperature toughness suitable for use in tanks for transporting and storing liquid ammonia, and a method for manufacturing the same.
  • the present inventors have conducted extensive research into various factors affecting the ammonia SCC resistance, low-temperature toughness, and tensile properties (strength properties) of steel plates, and have obtained the following findings. That is, since ammonia SCC occurs inside the product (tank), the characteristics of the surface layer of the steel plate on the inside are dominant in ammonia SCC resistance.
  • the inventors conceived of a clad steel plate in which a base material and a clad material are bonded together, that is, a clad steel plate in which a steel plate excellent in strength and low-temperature toughness is used as the base material and a steel plate with low hardness is used as the clad material from the viewpoint of improving ammonia SCC resistance.
  • the present inventors have found that such a clad steel plate is excellent in ammonia SCC resistance, low-temperature toughness and tensile properties.
  • the inventors have found that if the thickness of the clad steel plate's clad material is too thin, corrosion will cause wear and tear, deteriorating the ammonia SCC resistance of the clad steel plate. On the other hand, the inventors have found that if the thickness of the clad steel plate's clad material is too thick, the strength of the clad steel plate will decrease.
  • the clad steel plate of the present invention can significantly reduce alloy costs and manufacturing costs compared to clad steel plates that use stainless steel or non-ferrous alloys as cladding materials.
  • the composition of the base material is, in mass%, C: 0.010 to 0.200%, Si: 0.01 to 1.00%, Mn: 0.50 to 2.50%, Al: 0.001 to 0.060%, Contains P: 0.0200% or less and S: 0.0100% or less, with the balance being Fe and unavoidable impurities; CEB / CEC is 2.000 or more, where CEB and CEC are the carbon equivalents of the base material and the cladding material, respectively;
  • the volume fraction of bainite is 90% or more, and the average grain size of the bainite is 25 ⁇ m or less,
  • the Vickers hardness of the cladding material is 210HV10 or less, A clad steel plate, wherein tC1 is 2.0 mm or more,
  • the composition of the base material is further, in mass%, Cu: 1.00% or less, Ni: 2.00% or less, Cr: 1.00% or less, Mo: 1.00% or less, V: 0.500% or less, Ti: 0.100% or less, Nb: 0.100% or less, Ca: 0.0200% or less, 2.
  • the component composition of the cladding material is, in mass%, C: 0.100% or less and Mn: 0.01 to 1.50% and further comprising Cu: 0.01 to 0.50%, Cr: 0.01 to 0.50%, Sb: 0.01 to 0.50% and Sn: 0.01 to 0.50% and the balance being Fe and unavoidable impurities, 3.
  • CR value 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
  • [X] indicates the content (mass %) of element X in the component composition of the cladding material.
  • a method for manufacturing a clad steel plate having a cladding material that is carbon steel on at least one surface of a base material comprising the steps of: A clad material steel plate obtained by overlapping a base material steel plate having the composition of the base material described in 1 or 2 with a clad material steel plate of the carbon steel described in 1 is heated to 1000 to 1250 ° C., Next, the clad material steel plate is subjected to hot rolling at a cumulative rolling reduction rate of 20% or more in the non-recrystallization temperature range of the base material steel plate and at a rolling end temperature of the Ar3 transformation point or more to obtain a hot-rolled steel plate; The hot-rolled steel sheet is then cooled to a cooling start temperature of at least the Ar 3 transformation point, an average cooling rate of 20 to 120°C/s, and a cooling end temperature of 500°C or less.
  • the composition of the cladding material steel plate is, in mass%, C: 0.100% or less and Mn: 0.01 to 1.50% and further comprising Cu: 0.01 to 0.50%, Cr: 0.01 to 0.50%, Sb: 0.01 to 0.50% and Sn: 0.01 to 0.50% and the balance being Fe and unavoidable impurities, 5.
  • CR value 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
  • [X] indicates the content (mass %) of element X in the chemical composition of the base steel sheet for cladding.
  • the present invention provides a high-strength clad steel plate with excellent ammonia SCC resistance and low-temperature toughness, suitable for use in tanks for transporting and storing liquid ammonia.
  • the clad steel plate of the present invention does not use stainless steel or non-ferrous alloys as cladding materials and has a simple manufacturing process, making it extremely advantageous in terms of cost.
  • a clad steel plate according to one embodiment of the present invention has a cladding material, which is carbon steel, on at least one surface of a base material.
  • the clad steel plate according to one embodiment of the present invention has excellent ammonia SCC resistance and low-temperature toughness, and is therefore suitable for structural members such as tanks used in a liquid ammonia environment.
  • the usage environment is not limited to liquid ammonia, and may be liquefied gas such as LPG or liquefied CO2 .
  • LPG liquid ammonia
  • CO2 liquefied CO2
  • the surface having the cladding material may be on either side of the base material.
  • the cladding material is placed on the surface expected to come into contact with ammonia or the like (hereinafter also referred to as the first surface or inner surface of the base material). This is because ammonia SCC resistance and low-temperature toughness can be obtained as a tank (structure).
  • the cladding material placed on the first surface of the base material is also referred to as the first cladding material.
  • the other surface of the first surface of the base material is referred to as the second surface or outer surface of the base material.
  • the cladding material placed on the second surface of the base material is also referred to as the second cladding material.
  • the second cladding material is optional. That is, the clad steel plate according to one embodiment of the present invention includes a clad steel plate having a first cladding material on one surface of the base material and a clad steel plate having a first cladding material on one surface of the base material and a second cladding material on the other surface of the base material. Also, the thickness of the base material is t B , the thickness of the first cladding material is t C1 , and the thickness of the second cladding material is t C2 .
  • composition of the base material C 0.010-0.200% C is the most effective element for increasing the strength of the clad steel plate according to one embodiment of the present invention.
  • the C content is set to 0.010% or more.
  • the C content is preferably set to 0.030% or more.
  • the C content is set to 0.200% or less.
  • the C content is preferably set to 0.170% or less.
  • Si 0.01 to 1.00% Si is added for deoxidation. To obtain this effect, the Si content is set to 0.01% or more. Furthermore, the Si content is preferably set to 0.03% or more. On the other hand, if the Si content exceeds 1.00%, it leads to deterioration of toughness and weldability. Therefore, the Si content is set to 1.00% or less. Furthermore, from the viewpoint of toughness, the Si content is preferably set to 0.40% or less.
  • Mn 0.50 to 2.50%
  • Mn is an element that has the effect of increasing the hardenability of steel. That is, Mn is one of the important elements for obtaining high strength. In order to obtain such an effect, the Mn content is set to 0.50% or more. Furthermore, from the viewpoint of reducing the content of other alloy elements and manufacturing at a lower cost, the Mn content is preferably set to 0.70% or more. On the other hand, if the Mn content exceeds 2.50%, the toughness decreases. Therefore, the Mn content is set to 2.50% or less. Furthermore, from the viewpoint of suppressing the decrease in toughness, the Mn content is preferably set to 2.30% or less.
  • Al acts as a deoxidizer. To obtain this effect, the Al content is set to 0.001% or more. On the other hand, if the Al content exceeds 0.060%, oxide-based inclusions increase and cleanliness decreases. Furthermore, toughness decreases. Therefore, the Al content is set to 0.060% or less. Furthermore, from the viewpoint of suppressing the decrease in toughness, the Al content is preferably set to 0.050% or less.
  • P 0.0200% or less
  • P is an element contained as an inevitable impurity.
  • P has an adverse effect, such as reducing toughness and weldability by segregating at grain boundaries. Therefore, it is desirable to reduce the P content as much as possible.
  • the P content is acceptable if it is 0.0200% or less.
  • the lower limit of the P content is not particularly limited and may be 0%.
  • the P content may be more than 0% industrially.
  • excessive reduction of P leads to an increase in refining costs. Therefore, the P content is preferably 0.0005% or more.
  • S 0.0100% or less
  • S is an element contained as an inevitable impurity.
  • S is an element that exists in steel as sulfide-based inclusions such as MnS, and has an adverse effect such as becoming the origin of fracture and reducing toughness. Therefore, it is desirable to reduce the S content as much as possible.
  • the S content is acceptable if it is 0.0100% or less.
  • the lower limit of the S content is not particularly limited and may be 0%.
  • S since S is usually an element that is inevitably contained in steel as an impurity, the S content may be more than 0% industrially.
  • excessive reduction of S leads to an increase in refining costs. Therefore, from the viewpoint of cost, it is preferable to set the S content to 0.0005% or more.
  • composition of the base material of the clad steel plate according to one embodiment of the present invention may optionally contain the elements described below (hereinafter also referred to as optional added elements).
  • optional added elements the elements described below
  • the remainder other than the above elements and the following optional added elements is Fe and unavoidable impurities.
  • Cu 1.00% or less
  • Cu is an effective element for improving the strength of clad steel plate.
  • the Cu content is preferably 0.01% or more.
  • the Cu content exceeds 1.00%, the toughness deteriorates. Therefore, when Cu is contained, the Cu content is preferably 1.00% or less.
  • Ni 2.00% or less Ni is not only effective in improving the strength of the clad steel plate, but also has the effect of improving the toughness. However, if the Ni content is less than 0.01%, the effect is poor. Therefore, when Ni is contained, the Ni content is preferably 0.01% or more. On the other hand, if the Ni content exceeds 2.00%, the effect is saturated and the alloy cost increases. Therefore, when Ni is contained, the Ni content is preferably 2.00% or less.
  • Cr 1.00% or less Cr is an effective element for improving the strength of clad steel plate. However, if the Cr content is less than 0.01%, the effect is poor. Therefore, when Cr is contained, the Cr content is preferably 0.01% or more. On the other hand, if the Cr content exceeds 1.00%, the toughness deteriorates. Therefore, when Cr is contained, the Cr content is preferably 1.00% or less.
  • Mo 1.00% or less Mo is an effective element for improving the strength of clad steel plate. However, if the Mo content is less than 0.01%, the effect is poor. Therefore, when Mo is contained, the Mo content is preferably 0.01% or more. On the other hand, if the Mo content exceeds 1.00%, the toughness deteriorates. Therefore, when Mo is contained, the Mo content is preferably 1.00% or less.
  • V 0.500% or less
  • V is an element that has the effect of improving the strength of the clad steel plate.
  • the V content is preferably 0.005% or more.
  • the V content is preferably 0.500% or less. More preferably, the lower limit of the V content is 0.010%. More preferably, the upper limit of the V content is 0.100%.
  • Ti 0.100% or less
  • Ti is an element that has a strong tendency to form nitrides and has the effect of fixing N and reducing solute N. Therefore, the addition of Ti can improve the toughness of the base material and the welded part.
  • the Ti content is preferably 0.005% or more. Furthermore, the Ti content is more preferably 0.007% or more.
  • the Ti content exceeds 0.100%, the toughness is rather reduced. Therefore, when Ti is contained, the Ti content is preferably 0.100% or less. Furthermore, the Ti content is more preferably 0.090% or less.
  • Nb 0.100% or less
  • Nb is an element that has the effect of reducing the prior austenite grain size and improving toughness by precipitating as carbonitride.
  • the Nb content is preferably 0.005% or more.
  • the Nb content is more preferably 0.007% or more.
  • the Nb content exceeds 0.100%, a large amount of NbC precipitates, and the toughness decreases. Therefore, when Nb is contained, the Nb content is preferably 0.100% or less. Furthermore, the Nb content is more preferably 0.060% or less.
  • Ca 0.0200% or less
  • Ca is an element that combines with S and has the effect of suppressing the formation of MnS and the like that elongates in the rolling direction. That is, by including Ca, the morphology of the sulfide-based inclusions is controlled to be spherical, and the toughness of the welded portion and the like can be improved.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content exceeds 0.0200%, the cleanliness of the steel decreases. The decrease in cleanliness leads to a decrease in toughness. Therefore, when Ca is included, the Ca content is preferably 0.0200% or less.
  • the Ca content is more preferably 0.0020% or more.
  • the Ca content is more preferably 0.0100% or less.
  • Mg 0.0200% or less
  • Mg is an element that combines with S and has the effect of suppressing the formation of MnS and the like that elongates in the rolling direction. That is, by including Mg, the morphology of the sulfide-based inclusions is controlled to be spherical, and the toughness of the welded part and the like can be improved.
  • the Mg content is preferably 0.0005% or more.
  • the Mg content exceeds 0.0200%, the cleanliness of the steel decreases. The decrease in cleanliness leads to a decrease in toughness. Therefore, when Mg is included, the Mg content is preferably 0.0200% or less.
  • the Mg content is more preferably 0.0020% or more.
  • the Mg content is more preferably 0.0100% or less.
  • REM 0.0200% or less
  • REM rare earth metal
  • the REM content is preferably 0.0005% or more.
  • the REM content is more preferably 0.0020% or more.
  • the REM content is more preferably 0.0100% or less.
  • a carbon steel having a CE B /CE C ratio of 2.000 or more is used for the cladding material.
  • Carbon steel is an alloy of iron (Fe) and carbon (C) and has a composition in which the C content is 2.2 mass% or less, the total content of elements other than C and Fe (such as Si, Mn, P, and S, and also including elements corresponding to unavoidable impurities) is 5.0 mass% or less, and the balance is Fe.
  • CE B /CE C 2.000 or more
  • CE B /CE C is set to 2.000 or more.
  • CE B and CE C are the carbon equivalent of the base material and the carbon equivalent of the cladding material, respectively.
  • CE B /CE C is less than 2.000, the carbon equivalent of the cladding material becomes too large and the hardness of the clad steel plate increases too much, resulting in deterioration of ammonia SCC resistance.
  • CE B /CE C is preferably 2.050 or more, more preferably 2.100 or more.
  • CE B /CE C is preferably 5.000 or less, for example. It should be noted that CE B and CE C can be calculated by the following formulas.
  • CE B [C] B + [Mn] B /6 + [Si] B /24 + [Ni] B /40 + [Cr] B /5 + [Mo] B /4 + [V] B /14
  • [X] B represents the content (mass%) of element X in the composition of the base material. Note that elements that are not contained may be calculated as "0". The same applies to the following formulas.
  • CEC [C] + [Mn]/6 + [Si]/24 + [Ni]/40 + [Cr]/5 + [Mo]/4 + [V]/14
  • [X] indicates the content (mass %) of element X in the component composition of the cladding material.
  • the preferred composition of the clad steel plate according to one embodiment of the present invention is as follows: C: 0.100% or less
  • C is an element that increases the hardness of steel, and the higher the hardness, the higher the liquid ammonia SCC susceptibility. Therefore, the C content of the cladding material is preferably 0.100% or less.
  • the lower the C content of the cladding material the better, but excessive reduction of C leads to an increase in refining costs. Therefore, the C content is preferably 0.0005% or more.
  • Mn 0.01 to 1.50%
  • Mn is an element that has the effect of increasing the hardenability of steel. Therefore, if the Mn content is too high, the hardness of the cladding material will increase too much. If the hardness of the cladding material increases too much, it will lead to deterioration of ammonia SCC resistance. Therefore, it is preferable to set the Mn content to 1.50% or less.
  • the Mn content is more preferably 1.25% or less, and further preferably 1.00% or less. On the other hand, it requires a large cost to reduce Mn to less than 0.01%. Therefore, it is preferable to set the Mn content to 0.01% or more.
  • Cu, Cr, Sb and Sn can further improve the ammonia SCC resistance of the steel sheet. Therefore, it is preferable to contain one or more of these elements in the amounts described below and to set the CR value calculated by the following formula (1) to 0.30 or more.
  • the CR value is a formula devised for estimating ammonia SCC resistance from the content of each element, and the higher the CR value, the better the ammonia SCC resistance. Therefore, by making the CR value 0.30 or more, it becomes possible to effectively suppress stress corrosion cracking in a liquid ammonia environment.
  • CR value 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ...
  • [X] indicates the content (mass%) of element X in the composition of the cladding material. Since the composition of the cladding material and the composition of the cladding material steel plate are substantially the same, [X] can also be said to indicate the content (mass%) of element X in the composition of the cladding material steel plate. Similarly, the above-mentioned [X] B can also be said to indicate the content (mass%) of element X in the composition of the base material steel plate.
  • the CR value is preferably 0.30 or more.
  • the CR value is more preferably 0.32 or more, and even more preferably 0.35 or more.
  • there is no particular limit to the upper limit of the CR value for example, a CR value of 1.50 or less is preferable.
  • Cu, Cr, Sb and Sn have the effect of quickly forming protective corrosion products in a liquid ammonia environment and suppressing stress corrosion cracking.
  • the Cu content is preferably 0.01% or more.
  • the Cr content is preferably 0.01% or more.
  • Sb content is preferably 0.01% or more.
  • Sn content is preferably 0.01% or more.
  • the Cu content when Cu is contained, it is preferable that the Cu content be 0.50% or less.
  • Cr when Cr is contained, it is preferable that the Cr content be 0.50% or less.
  • Sb when Sb is contained, it is preferable that the Sb content be 0.50% or less.
  • Sn when Sn is contained, it is preferable that the Sn content be 0.50% or less. More preferably, the Cu content is 0.40% or less, the Cr content is 0.40% or less, the Sb content is 0.40% or less, and the Sn content is 0.40% or less.
  • the remainder other than the above elements is Fe and unavoidable impurities.
  • Base metal structure Volume fraction of bainite is 90% or more, and the average grain size of bainite is 25 ⁇ m or less
  • the volume fraction of bainite in the metal structure of the base material needs to be 90% or more. In other words, if the volume fraction of bainite is less than 90%, the volume fractions of other elements such as ferrite, island martensite, martensite, pearlite, and austenite will increase, and sufficient strength and low-temperature toughness will not be obtained.
  • the upper limit of the volume fraction of bainite is not particularly limited, and may be 100%.
  • bainite includes structures called bainitic ferrite and granular ferrite, as well as structures obtained by tempering these structures.
  • the structures called bainitic ferrite and granular ferrite are structures that contribute to transformation strengthening and are formed during or after cooling after hot rolling.
  • the remaining structure which has a volume fraction of 10% or less, may contain martensite in addition to ferrite, pearlite, and austenite.
  • the volume fraction of each structure in the remaining structure does not need to be particularly limited, but it is preferable that the remaining structure is pearlite.
  • the volume fraction of the remaining structure may be 0%.
  • the average grain size of bainite is set to 25 ⁇ m or less. That is, if the average grain size of bainite exceeds 25 ⁇ m, the crack propagation resistance decreases and sufficient low-temperature toughness cannot be obtained.
  • the average grain size of bainite is preferably 22 ⁇ m or less. Furthermore, there is no particular lower limit for the average grain size of bainite.
  • the average grain size of bainite is preferably 1 ⁇ m or more.
  • the volume fraction and average grain size of bainite can be measured by the method described in the examples below.
  • the metal structure of the cladding material is not particularly limited.
  • the metal structure of the cladding material may be, for example, a conventionally known metal structure of carbon steel, such as ferrite and bainite.
  • the Vickers hardness of the cladding material is 210HV10 or less. If a high hardness region exists in the surface layer of the clad steel plate, ammonia SCC is promoted. In other words, if the Vickers hardness of the cladding material exceeds 210HV10, the desired ammonia SCC resistance cannot be obtained.
  • the Vickers hardness of the cladding material is preferably 200HV10 or less.
  • the lower limit of the Vickers hardness of the cladding material is not particularly limited.
  • the Vickers hardness of the cladding material is preferably 100HV10 or more.
  • the Vickers hardness can be measured by the method described in the Examples section below.
  • the Vickers hardness of the base material is not particularly limited, and may be 210 HV10 or less, or may be more than 210 HV10.
  • tC1 is 2.0 mm or more, tC2 is 0.0 mm or more, and ( tC1 + tC2 )/( tB + tC1 + tC2 ) is 0.30 or less] tC1 is 2.0 mm or more, tC2 is 0.0 mm or more, and ( tC1 + tC2 )/( tB + tC1 + tC2 ) (hereinafter also referred to as the "cladding ratio”) is 0.30 or less, where tB (mm) is the thickness of the base material, tC1 (mm) is the thickness of the cladding material on one side of the base material, i.e., the thickness of the first cladding material, and tC2 (mm) is the thickness of the cladding material on the other side of the base material, i.e., the thickness of the second cladding material.
  • t C1 is less than 2.0 mm, the low hardness region is worn away by corrosion, and the ammonia SCC resistance is deteriorated.
  • t C1 is preferably 2.1 mm or more, more preferably 2.2 mm or more.
  • t C1 is preferably 5.0 mm or less.
  • the clad ratio exceeds 0.30, the ratio of the low hardness clad material to the base material that provides the strength becomes too large, and sufficient strength cannot be obtained.
  • the clad ratio is preferably 0.20 or less.
  • the clad ratio is preferably 0.05 or more.
  • t C2 may be 0.0 mm or more.
  • t C2 is preferably 0.5 mm or more, more preferably 1.0 mm or more. t C2 is preferably 5.0 mm or less.
  • the total thickness of the clad steel plate, typically t B +t C1 +t C2 is preferably 8 mm or more, more preferably 15 mm or more.
  • the total thickness of the clad steel plate is preferably 50 mm or less, more preferably 40 mm or less.
  • a manufacturing method of a clad steel plate will be described.
  • a base material steel plate having the composition of the base material described above and a clad material steel plate which is a carbon steel (with CE B /CE C of 2.000 or more) described above, preferably a clad material steel plate having the composition of the clad material described above, are stacked together to form a clad material steel plate.
  • the method of preparing the base material steel plate and the clad material steel plate is not particularly limited.
  • the base material steel plate and the clad material steel plate can be prepared using a conventionally known manufacturing method.
  • molten steel adjusted to a predetermined composition by a normal melting method is cast by a normal casting method (continuous casting method or ingot casting method) to form a slab material.
  • a normal melting method continuous casting method or ingot casting method
  • the obtained slab material is hot-rolled to form a base material steel plate.
  • a cladding material steel plate is superimposed on at least one surface of the base material steel plate, particularly on the surface expected to come into contact with ammonia, etc., to prepare a two-layer clad material steel plate.
  • a cladding material steel plate is superimposed on both surfaces of the base material steel plate to prepare a three-layer clad material steel plate (a clad material steel plate in the order of cladding material steel plate/base material steel plate/cladding material steel plate).
  • the clad steel plate is then pressure welded and heat treated under predetermined conditions to control the structure. That is, the clad steel plate is heated to 1000 to 1250°C, Next, the clad material steel plate is subjected to hot rolling at a cumulative rolling reduction rate of 20% or more in the non-recrystallization temperature range of the base material steel plate and at a rolling end temperature of the Ar3 transformation point or more to obtain a hot-rolled steel plate; Next, the hot-rolled steel sheet is cooled to a cooling start temperature of the Ar3 transformation point or higher, an average cooling rate of 20 to 120° C./s, and a cooling end temperature of 500° C. or lower. This allows the production of a clad steel sheet according to one embodiment of the present invention.
  • the hot-rolled steel sheet may be tempered at a temperature of 650° C. or lower.
  • the temperatures in each manufacturing condition are all temperatures at a 1/2 thickness position of the base material or base material steel plate.
  • the temperature at the position may be measured directly.
  • the temperature at the position may also be determined by performing a differential calculation using, for example, a process computer from the surface temperature of the clad steel plate or clad material steel plate measured by a radiation thermometer.
  • Heating temperature 1000 to 1250° C.
  • the heating temperature of the clad material steel plate (hereinafter also referred to as the heating temperature) is less than 1000°C, the solid solution of carbides is insufficient and the necessary strength cannot be obtained.
  • a high heating temperature is preferable. Therefore, the heating temperature is set to 1000°C or higher.
  • the heating temperature exceeds 1250°C, the crystal grains of the base material will become coarse, leading to a deterioration in toughness. Therefore, the heating temperature is set to 1250°C or lower.
  • the cumulative reduction is set to 20% or more.
  • the cumulative reduction is preferably 30% or more, more preferably 40% or more.
  • the cumulative reduction is preferably 85% or less, more preferably 80% or less.
  • the non-recrystallization temperature range of the base material steel sheet is a temperature range equal to or lower than Tnr (°C).
  • [X] B represents the content (mass%) of element X in the composition of the base material steel sheet
  • log is common logarithm.
  • the cumulative rolling reduction can be calculated by the following formula.
  • [Cumulative rolling reduction (%)] [Total thickness reduction (mm) of base material steel plate in the non-recrystallization temperature range of the base material steel plate] ⁇ [Thickness (mm) of base material steel plate in clad material steel plate before the start of hot rolling] ⁇ 100 Whether or not each pass of hot rolling is in the non-recrystallization temperature range of the base material steel plate (in other words, whether or not the plate thickness reduction amount of the base material steel plate in each pass of hot rolling is included in the total plate thickness reduction amount of the base material steel plate in the non-recrystallization temperature range of the base material steel plate) is determined based on the outlet temperature of each pass. The reason why the cumulative rolling reduction is based on the plate thickness of the base material steel plate among the clad material steel plates is that the toughness of the clad steel plate is particularly significantly affected by the toughness of the base material.
  • Rolling end temperature Ar 3 transformation point or higher
  • the rolling end temperature of the hot rolling is lower than the Ar3 transformation point, the generated ferrite is affected by processing, and the toughness is deteriorated. Therefore, the rolling end temperature is set to be equal to or higher than the Ar3 transformation point.
  • the upper limit of the rolling end temperature is not particularly limited.
  • the rolling end temperature is preferably equal to or lower than ( Ar3 transformation point + 90°C).
  • the Ar3 transformation point can be calculated by the following formula.
  • Ar 3 transformation point (°C) 910-310 [C] B - 80 [Mn] B - 20 [Cu] B - 15 [Cr] B - 55 [Ni] B - 80 [Mo] B
  • [X] B represents the content (mass%) of element X in the chemical composition of the base material steel sheet.
  • the hot-rolled steel sheet obtained after hot rolling is cooled from a temperature equal to or higher than the Ar3 transformation point. If the cooling start temperature is lower than the Ar3 transformation point, excessive ferrite is generated. The generated ferrite coexists with bainite and martensite, which have a large difference in strength from ferrite. As a result, insufficient strength and deterioration of toughness are caused. Therefore, the cooling start temperature after hot rolling is set to be equal to or higher than the Ar3 transformation point.
  • the upper limit of the cooling start temperature is not particularly limited.
  • the cooling start temperature is preferably equal to or lower than ( Ar3 transformation point + 70°C).
  • Average cooling rate 20 to 120 ° C./s
  • the average cooling rate is set to 20°C/s or more and 120°C/s or less.
  • the average cooling rate is the average value of the cooling rate from the cooling start temperature to the cooling stop temperature, and is based on the temperature at 1/2 the thickness of the base material.
  • the temperatures at 1/2 the thickness of the base material at the start and end of cooling are calculated by a process computer using the surface temperatures at the start and end of cooling measured by a radiation thermometer.
  • the cooling stop temperature is set to 500°C or less.
  • the lower limit of the cooling stop temperature is not particularly limited.
  • the cooling stop temperature may be, for example, room temperature, but is preferably 150°C or more from the viewpoint of production efficiency, etc.
  • Tempering can be performed optionally for the purpose of recovering the toughness of the base material.
  • the tempering temperature i.e., the temperature of the clad steel plate during reheating by tempering (the temperature at the 1/2 plate thickness position of the base material) exceeds 650°C, dislocations may be restored and the strength of the base material may decrease. Therefore, when tempering is performed, the tempering temperature is set to 650°C or less.
  • the lower limit of the tempering temperature is preferably 350°C from the viewpoint of recovering the toughness of the base material.
  • the clad steel plate according to the embodiment of the present invention can be manufactured.
  • the thus obtained clad steel plate according to the embodiment of the present invention has excellent tensile properties and toughness.
  • excellent tensile properties mean that the yield strength YS (yield point YP when there is a yield point, 0.2% proof stress ⁇ 0.2 when there is no yield point) measured by a tensile test conforming to JIS Z 2241 (2022) is 490 MPa or more, and the tensile strength (TS) is 610 MPa or more.
  • vTrs fracture transition temperature measured by a Charpy impact test conforming to JIS Z 2242 (2018) is -30 ° C. or less. Details are as described in the examples described later.
  • Table 1 shows the composition of the base metal (the balance being Fe and unavoidable impurities).
  • steel types A to P are suitable steels that satisfy the composition of the base metal of the clad steel plate according to one embodiment of the present invention.
  • steel types Q to X are comparative steels that fall outside the range of the composition of the base metal of the clad steel plate according to one embodiment of the present invention.
  • Clad material steel plates were prepared by overlapping a base material steel plate having the chemical composition shown in Table 1 with a clad material steel plate having the CE C shown in Table 2, and clad steel plates (Nos. 1 to 34) were manufactured under the conditions shown in Table 2.
  • the volume fraction of bainite in the metal structure of the base material and the average grain size of bainite were measured, the Vickers hardness of the clad material was measured, and the tensile properties and toughness of the clad material were evaluated, as well as the ammonia SCC resistance in a liquid ammonia environment was evaluated.
  • the test methods are as follows.
  • a region surrounded by grain boundaries in which the crystal orientation difference with adjacent grains is 15° or more was defined as one grain, and the circle-equivalent diameter of the grain determined to be bainite was calculated from the area of the grain.
  • the average circle-equivalent diameter of the grains determined to be bainite was defined as the average grain size of bainite.
  • crystal grains having elongated, lath-shaped ferrite were determined to be bainite.
  • ammonia SCC resistance was evaluated by a four-point bending anodic electrolysis test according to the following procedure. A 15 mm x 115 mm test piece with a thickness of 5 mm was taken from each clad steel plate so that the first surface (inner surface) of the clad steel plate was the evaluation surface. Next, ultrasonic degreasing was performed on the test piece in acetone for 5 minutes. Next, a stress equivalent to the yield strength of each test piece was applied to each test piece by four-point bending. Next, each test piece was placed in a test cell while the stress was applied.
  • all of the invention examples have a yield strength YS of 490 MPa or more and a tensile strength of 610 MPa or more.
  • all of the invention examples have a vTrs of -30°C or less.
  • all of the invention examples have excellent ammonia SCC resistance. In other words, all of the invention examples have excellent ammonia SCC resistance and low-temperature toughness, as well as high strength.
  • Comparative Example No. 17 the CEB / CEC and Vickers hardness of the clad material are outside the appropriate range.
  • Comparative Examples No. 18 and 19 the tC1 and clad ratio are outside the appropriate range, respectively.
  • Comparative Examples No. 20 to 26 some of the manufacturing conditions are outside the appropriate range, so the desired metal structure of the base material is not obtained. As a result, these Comparative Examples are inferior in any one of the yield strength YS, tensile strength TS, low temperature toughness, and ammonia SCC resistance.
  • Nos. 27 to 34 have inferior yield strength YS, tensile strength TS, low-temperature toughness, and ammonia SCC resistance because some of the base metal composition is outside the appropriate range.
  • Example 2 A base material steel plate having the composition shown in Table 1 (the balance being Fe and unavoidable impurities) and a clad material steel plate having the composition shown in Table 3 (the balance being Fe and unavoidable impurities) were overlapped to prepare a clad material steel plate, and clad steel plates (Nos. 1 to 17) were manufactured under the conditions shown in Table 4.
  • clad steel plates Nos. 1 to 17
  • Table 4 clad steel plates
  • the volume fraction of bainite in the metal structure of the base material and the average grain size of bainite were measured, the Vickers hardness of the clad material was measured, and the tensile properties and toughness were evaluated in the same manner as in Example 1.
  • an evaluation of ammonia SCC resistance in a liquid ammonia environment was performed in the following manner.
  • Example 2 As in Example 1, two test pieces measuring 15 mm x 115 mm and having a thickness of 5 mm were taken from each clad steel plate so that the first surface (inner surface) of the clad steel plate was the test surface. In one of the test pieces, a notch having a depth of 0.3 mm and a diameter of 0.2 mm was provided on the test surface of the test piece, assuming that a dent was present on the surface (first surface) of the clad steel plate.
  • the test piece without the notch is referred to as the first test piece
  • the test piece with the notch is referred to as the second test piece.
  • Example 2 a four-point bending anodic electrolysis test was performed using the first and second test pieces in the same manner as in Example 1.
  • the test pieces after the test were visually inspected, and the ammonia SCC resistance was evaluated according to the following criteria. Excellent (pass, particularly excellent): No cracks were observed in both the first test piece and the second test piece. Pass (Excellent): No cracks observed on the first test piece, but cracks observed on the second test piece. Poor: Cracks are observed in both the first and second test pieces.
  • all of the inventive examples have a yield strength YS of 490 MPa or more and a tensile strength of 610 MPa or more.
  • all of the inventive examples have a vTrs of -30°C or less.
  • all of the inventive examples have excellent ammonia SCC resistance.
  • all of the inventive examples have excellent ammonia SCC resistance and low-temperature toughness, as well as high strength.
  • the CR value of the cladding material was 0.30 or more, they had particularly excellent ammonia SCC resistance.

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

The present invention provides a high-strength clad steel sheet which has excellent ammonia SCC resistance and excellent toughness at low temperatures, and which is suitable for use for a tank that is used for transportation or storage of liquid ammonia, or the like. According to the present invention, CEB/CEC is 2.000 or more; with respect to the metal structure of the base material, the volume fraction of bainite is 90% or more and the average grain size of bainite is 25 µm or less; the cladding material has a Vickers hardness of 210 HV10 or less; tC1 is 2.0 mm or more; tC2 is 0.0 mm or more; and (tC1 + tC2)/(tB + tC1 + tC2) is 0.30 or less.

Description

クラッド鋼板およびその製造方法Clad steel plate and its manufacturing method
 本発明は、クラッド鋼板およびその製造方法に関するものである。また、本発明は、特に低温かつ液体アンモニア環境下で使用する、タンクなどの構造用部材として好適な、低温靱性および耐アンモニアSCC性に優れた高強度のクラッド鋼板に関するものである。 The present invention relates to a clad steel plate and a manufacturing method thereof. The present invention also relates to a high-strength clad steel plate with excellent low-temperature toughness and ammonia SCC resistance, which is particularly suitable for use as structural components for tanks and the like in low-temperature, liquid ammonia environments.
 液体アンモニア環境下において、炭素鋼は、液体アンモニアによる応力腐食割れ(以下、「アンモニアSCC」(Stress Corrosion Cracking)という)の発生が懸念される。そのため、液体アンモニアを取扱う炭素鋼製の配管や貯槽、タンク車、ラインパイプなどの構造物については、アンモニアSCC感受性の低い鋼材が適用されたり、アンモニアSCCを抑制する操業上の措置が講じられてきた。 In a liquid ammonia environment, there is concern that carbon steel may suffer from liquid ammonia-induced stress corrosion cracking (hereafter referred to as "ammonia SCC"). For this reason, steel materials with low ammonia SCC susceptibility have been used for carbon steel structures that handle liquid ammonia, such as piping, storage tanks, tank cars, and line pipes, and operational measures have been taken to suppress ammonia SCC.
 例えば、アンモニアSCCは、材料の強度および硬度と相関があることが知られている。すなわち、炭素鋼を使用するにあたっては、引張強さが600MPa未満の材料を使用することが望ましいとされている。そこで、液体アンモニア環境下で高強度の炭素鋼(以下、高強度鋼ともいう)を使用する場合は、全体焼鈍による溶接後熱処理を実施して引張強さを調節するなどの対策が必要である。 For example, ammonia SCC is known to be correlated with the strength and hardness of materials. In other words, when using carbon steel, it is considered desirable to use materials with a tensile strength of less than 600 MPa. Therefore, when using high-strength carbon steel (hereinafter also referred to as high-strength steel) in a liquid ammonia environment, measures such as adjusting the tensile strength by performing post-weld heat treatment through full annealing are necessary.
 ところで、液体アンモニアは、燃焼してもCOが発生しない。そのため、近年、液体アンモニアは、クリーンエネルギーとして注目されており、大規模な需要が見込まれている。これに伴い、液体アンモニアを輸送、貯蔵する設備の大型化が求められている。
 一般に、タンクを大型化する場合、軽量化、および、施工コスト削減の観点から使用する鋼材の薄肉化が指向されるため、高強度鋼の使用が望まれる。
Incidentally, liquid ammonia does not generate CO2 when burned. Therefore, in recent years, liquid ammonia has been attracting attention as a clean energy source, and large-scale demand is expected. Accordingly, there is a demand for larger facilities for transporting and storing liquid ammonia.
Generally, when making a tank larger, there is a preference to use thinner steel materials in order to reduce weight and construction costs, and therefore the use of high-strength steel is desirable.
 また、輸送設備および貯蔵設備の効率的な運用のため、これらの設備を液体アンモニアとLPGで兼用する場合がある。液体アンモニアやLPGといった液化ガスは、低温で輸送および貯蔵される。そのため、これらの用途に使用される鋼材には、優れた低温靱性が要求される。 Furthermore, to ensure efficient operation of transport and storage facilities, these facilities may be used for both liquid ammonia and LPG. Liquefied gases such as liquid ammonia and LPG are transported and stored at low temperatures. Therefore, the steel materials used for these applications require excellent low-temperature toughness.
 上記の用途に使用される鋼材に関する技術として、例えば、特許文献1~3が開示されている。このうち、特許文献1では、鋼材表面を軟化処理する方法が記載されている。また、特許文献2および3では、片面に軟鋼層を有するクラッド鋼板を製造する方法が記載されている。 For example, Patent Documents 1 to 3 disclose technologies related to steel materials used for the above applications. Of these, Patent Document 1 describes a method for softening the surface of steel materials. Patent Documents 2 and 3 describe methods for manufacturing clad steel plates with a mild steel layer on one side.
特公昭55-30062号公報Japanese Patent Publication No. 55-30062 特開昭57-139493号公報Japanese Patent Application Laid-Open No. 57-139493 特開平8-269537号公報Japanese Patent Application Laid-Open No. 8-269537
 しかしながら、上記の特許文献1に記載された方法では、表層を均質かつ十分に軟化させるために長時間の熱処理を行う必要があり、鋼板中心の強度の制御が難しい。よって、強度の点で問題がある。 However, the method described in Patent Document 1 requires a long period of heat treatment to uniformly and sufficiently soften the surface layer, making it difficult to control the strength of the center of the steel sheet. This causes problems in terms of strength.
 また、上記の特許文献2および3に記載された方法では、鋳込み法、肉盛り溶接法、連続鋳造法によりクラッドを製造している。しかし、特許文献2および3に記載された方法により製造したクラッド鋼板では、優れた低温靱性と、優れた耐アンモニアSCC性と、高強度とが同時に実現されているものとはいえない。また、上記の特許文献2および3に記載された方法では、その製造のための設備やエネルギーにかかるコストが大きいという経済的な問題もあった。 In addition, in the methods described in Patent Documents 2 and 3, clads are manufactured by a casting method, a build-up welding method, and a continuous casting method. However, it cannot be said that the clad steel plates manufactured by the methods described in Patent Documents 2 and 3 simultaneously achieve excellent low-temperature toughness, excellent ammonia SCC resistance, and high strength. In addition, the methods described in Patent Documents 2 and 3 have the economic problem of high costs for the equipment and energy required for their manufacture.
 本発明は、上記の問題を解決し、液体アンモニアの輸送や貯蔵用のタンク等に供して好適な、耐アンモニアSCC性および低温靭性に優れる、高強度のクラッド鋼板およびその製造方法を提供することを目的とする。 The present invention aims to solve the above problems and provide a high-strength clad steel plate with excellent ammonia SCC resistance and low-temperature toughness suitable for use in tanks for transporting and storing liquid ammonia, and a method for manufacturing the same.
 本発明者らは、上記目的を達成するために、鋼板の耐アンモニアSCC性、低温靱性および引張特性(強度特性)に対する各種要因について、鋭意検討を重ねた。その結果、以下の知見を得た。
 すなわち、アンモニアSCCが発生するのは製品(タンク)の内側であるため、耐アンモニアSCC性は、内側になる鋼板表層の特性が支配的である。そこで、本発明者らは、母材と合わせ材とを接合したクラッド鋼板、すなわち、強度および低温靭性に優れる鋼板を母材とし、耐アンモニアSCC性の向上の観点から、低硬度の鋼板を合せ材とするクラッド鋼板を想起した。
 そして、本発明者らは、かかるクラッド鋼板では、耐アンモニアSCC性、低温靱性および引張特性がいずれも優れることを見出した。
In order to achieve the above object, the present inventors have conducted extensive research into various factors affecting the ammonia SCC resistance, low-temperature toughness, and tensile properties (strength properties) of steel plates, and have obtained the following findings.
That is, since ammonia SCC occurs inside the product (tank), the characteristics of the surface layer of the steel plate on the inside are dominant in ammonia SCC resistance. Therefore, the inventors conceived of a clad steel plate in which a base material and a clad material are bonded together, that is, a clad steel plate in which a steel plate excellent in strength and low-temperature toughness is used as the base material and a steel plate with low hardness is used as the clad material from the viewpoint of improving ammonia SCC resistance.
The present inventors have found that such a clad steel plate is excellent in ammonia SCC resistance, low-temperature toughness and tensile properties.
 加えて、本発明者らは、クラッド鋼板の合せ材の板厚が薄すぎる場合は、腐食による減耗が生じて、クラッド鋼板の耐アンモニアSCC性が劣化することを知見した。一方、本発明者らは、クラッド鋼板の合せ材の板厚が厚すぎる場合は、クラッド鋼板の強度が低下することを知見した。 In addition, the inventors have found that if the thickness of the clad steel plate's clad material is too thin, corrosion will cause wear and tear, deteriorating the ammonia SCC resistance of the clad steel plate. On the other hand, the inventors have found that if the thickness of the clad steel plate's clad material is too thick, the strength of the clad steel plate will decrease.
 なお、本発明のクラッド鋼板は、ステンレス鋼や非鉄合金を合せ材に用いたクラッド鋼板に比べ、合金コストおよび製造コストを大幅に抑制することができる。 The clad steel plate of the present invention can significantly reduce alloy costs and manufacturing costs compared to clad steel plates that use stainless steel or non-ferrous alloys as cladding materials.
 本発明は、上記の知見に基づきなされたもので、すなわち、本発明の要旨は次のとおりである。
 1.母材の少なくとも片方の面に、炭素鋼である合せ材を有するクラッド鋼板であって、
 前記母材の成分組成が、質量%で、
 C:0.010~0.200%、
 Si:0.01~1.00%、
 Mn:0.50~2.50%、
 Al:0.001~0.060%、
 P:0.0200%以下および
 S:0.0100%以下
を含有し、残部がFeおよび不可避的不純物であり、
 CE/CEが2.000以上であり、ここで、CEおよびCEはそれぞれ前記母材の炭素当量および前記合せ材の炭素当量であり、
 前記母材の金属組織において、ベイナイトの体積分率が90%以上であり、前記ベイナイトの平均粒径が25μm以下であり、
 前記合せ材のビッカース硬さが210HV10以下であり、
 tC1が2.0mm以上であり、tC2が0.0mm以上であり、かつ、(tC1+tC2)/(t+tC1+tC2)が0.30以下であり、ここで、tは前記母材の板厚であり、tC1は、前記合せ材のうち、前記母材の片方の面の合せ材の板厚であり、tC2は、前記合せ材のうち、前記母材の他方の面の合せ材の板厚である、クラッド鋼板。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
1. A clad steel plate having a base material and a cladding material made of carbon steel on at least one side thereof,
The composition of the base material is, in mass%,
C: 0.010 to 0.200%,
Si: 0.01 to 1.00%,
Mn: 0.50 to 2.50%,
Al: 0.001 to 0.060%,
Contains P: 0.0200% or less and S: 0.0100% or less, with the balance being Fe and unavoidable impurities;
CEB / CEC is 2.000 or more, where CEB and CEC are the carbon equivalents of the base material and the cladding material, respectively;
In the metal structure of the base material, the volume fraction of bainite is 90% or more, and the average grain size of the bainite is 25 μm or less,
The Vickers hardness of the cladding material is 210HV10 or less,
A clad steel plate, wherein tC1 is 2.0 mm or more, tC2 is 0.0 mm or more, and ( tC1 + tC2 )/( tB + tC1 + tC2 ) is 0.30 or less, where tB is the plate thickness of the base material, tC1 is the plate thickness of the clad material on one side of the base material, and tC2 is the plate thickness of the clad material on the other side of the base material.
 2.前記母材の成分組成が、さらに質量%で、
 Cu:1.00%以下、
 Ni:2.00%以下、
 Cr:1.00%以下、
 Mo:1.00%以下、
 V:0.500%以下、
 Ti:0.100%以下、
 Nb:0.100%以下、
 Ca:0.0200%以下、
 Mg:0.0200%以下および
 REM:0.0200%以下
のうちから選ばれる1種または2種以上を含有する、前記1に記載のクラッド鋼板。
2. The composition of the base material is further, in mass%,
Cu: 1.00% or less,
Ni: 2.00% or less,
Cr: 1.00% or less,
Mo: 1.00% or less,
V: 0.500% or less,
Ti: 0.100% or less,
Nb: 0.100% or less,
Ca: 0.0200% or less,
2. The clad steel plate according to 1 above, containing one or more selected from Mg: 0.0200% or less and REM: 0.0200% or less.
 3.前記合せ材の成分組成が、質量%で、
 C:0.100%以下および
 Mn:0.01~1.50%
を含有し、さらに、
 Cu:0.01~0.50%、
 Cr:0.01~0.50%、
 Sb:0.01~0.50%および
 Sn:0.01~0.50%
のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物であり、
 以下の式(1)によって求められるCR値が0.30以上である、前記1または2に記載のクラッド鋼板。
CR値=2.3[Cu]+2.8[Cr]+7.3[Sb]+3.6[Sn]  ・・・(1)
 ここで、[X]は前記合せ材の成分組成における元素Xの含有量(質量%)を示す。
3. The component composition of the cladding material is, in mass%,
C: 0.100% or less and Mn: 0.01 to 1.50%
and further comprising
Cu: 0.01 to 0.50%,
Cr: 0.01 to 0.50%,
Sb: 0.01 to 0.50% and Sn: 0.01 to 0.50%
and the balance being Fe and unavoidable impurities,
3. The clad steel plate according to claim 1 or 2, wherein a CR value calculated by the following formula (1) is 0.30 or more.
CR value = 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
Here, [X] indicates the content (mass %) of element X in the component composition of the cladding material.
 4.母材の少なくとも片方の面に、炭素鋼である合せ材を有するクラッド鋼板を製造するための方法であって、
 前記1または2に記載の母材の成分組成を有する母材素材鋼板と、前記1に記載の炭素鋼の合せ材素材鋼板とを重ね合わせたクラッド素材鋼板を、1000~1250℃に加熱し、
 ついで、前記クラッド素材鋼板に、前記母材素材鋼板の未再結晶温度域での累積圧下率:20%以上、および、圧延終了温度:Ar変態点以上の熱間圧延を施して、熱延鋼板とし、
 ついで、前記熱延鋼板に、冷却開始温度:Ar変態点以上、平均冷却速度:20~120℃/s、冷却停止温度:500℃以下の冷却を施す、クラッド鋼板の製造方法。
4. A method for manufacturing a clad steel plate having a cladding material that is carbon steel on at least one surface of a base material, comprising the steps of:
A clad material steel plate obtained by overlapping a base material steel plate having the composition of the base material described in 1 or 2 with a clad material steel plate of the carbon steel described in 1 is heated to 1000 to 1250 ° C.,
Next, the clad material steel plate is subjected to hot rolling at a cumulative rolling reduction rate of 20% or more in the non-recrystallization temperature range of the base material steel plate and at a rolling end temperature of the Ar3 transformation point or more to obtain a hot-rolled steel plate;
The hot-rolled steel sheet is then cooled to a cooling start temperature of at least the Ar 3 transformation point, an average cooling rate of 20 to 120°C/s, and a cooling end temperature of 500°C or less.
 5.前記合せ材素材鋼板の成分組成が、質量%で、
 C:0.100%以下および
 Mn:0.01~1.50%
を含有し、さらに、
 Cu:0.01~0.50%、
 Cr:0.01~0.50%、
 Sb:0.01~0.50%および
 Sn:0.01~0.50%
のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物であり、
 以下の式(1)によって求められるCR値が0.30以上である、前記4に記載のクラッド鋼板の製造方法。
CR値=2.3[Cu]+2.8[Cr]+7.3[Sb]+3.6[Sn]  ・・・(1)
 ここで、[X]は前記合せ材素材鋼板の成分組成における元素Xの含有量(質量%)を示す。
5. The composition of the cladding material steel plate is, in mass%,
C: 0.100% or less and Mn: 0.01 to 1.50%
and further comprising
Cu: 0.01 to 0.50%,
Cr: 0.01 to 0.50%,
Sb: 0.01 to 0.50% and Sn: 0.01 to 0.50%
and the balance being Fe and unavoidable impurities,
5. The method for producing a clad steel plate according to 4 above, wherein a CR value calculated by the following formula (1) is 0.30 or more.
CR value = 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
Here, [X] indicates the content (mass %) of element X in the chemical composition of the base steel sheet for cladding.
 6.前記冷却後、前記熱延鋼板に650℃以下の温度域で焼戻しを施す、前記4または5に記載のクラッド鋼板の製造方法。 6. The method for manufacturing clad steel plate described in 4 or 5 above, in which the hot-rolled steel plate is tempered at a temperature of 650°C or less after the cooling.
 本発明によれば、液体アンモニアの輸送や貯蔵用のタンク等に供して好適な、耐アンモニアSCC性および低温靭性に優れる、高強度のクラッド鋼板が得られる。また、本発明のクラッド鋼板は、ステンレス鋼や非鉄合金を合せ材に用いず、製造工程も簡便であるため、コストの点でも極めて有利である。 The present invention provides a high-strength clad steel plate with excellent ammonia SCC resistance and low-temperature toughness, suitable for use in tanks for transporting and storing liquid ammonia. In addition, the clad steel plate of the present invention does not use stainless steel or non-ferrous alloys as cladding materials and has a simple manufacturing process, making it extremely advantageous in terms of cost.
 本発明の一実施形態に従うクラッド鋼板は、母材の少なくとも片方の面に、炭素鋼である合せ材を有する。
 ここで、本発明の一実施形態に従うクラッド鋼板は、耐アンモニアSCC性および低温靭性に優れているので、液体アンモニア環境下で使用されるタンクなどの構造用部材に好適である。なお、使用環境は、液体アンモニアに限定されず、LPGや液化CO等の他、液化ガスであってもよい。本開示において、アンモニア等といった場合は、液体アンモニアだけでなく、LPGや液化CO等の他、液化ガス全般を意味する。
 本発明の一実施形態に従うクラッド鋼板において、合せ材を有する片方の面は、母材のどちら側の面でも良い。ただし、タンクなどに使用される際には、アンモニア等に接することが想定される側の面(以下、母材の第1面または内面ともいう)に、合せ材を配置する。これにより、タンク(構造物)として耐アンモニアSCC性や低温靭性が得られるからである。なお、本開示において、母材の第1面に配置される合せ材を、第1の合せ材ともいう。また、母材の第1面の他方の面を、母材の第2面または外面という。母材の第2面に配置される合せ材を、第2の合せ材ともいう。ここで、第2の合せ材は任意である。すなわち、本発明の一実施形態に従うクラッド鋼板は、母材の一方の面に第1の合せ材を有するクラッド鋼板と、母材の一方の面に第1の合せ材を有し、母材の他方の面に第2の合せ材を有するクラッド鋼板とを包含する。また、母材の板厚をt、第1の合せ材の板厚をtC1、第2の合せ材の板厚をtC2とすればよい。
A clad steel plate according to one embodiment of the present invention has a cladding material, which is carbon steel, on at least one surface of a base material.
Here, the clad steel plate according to one embodiment of the present invention has excellent ammonia SCC resistance and low-temperature toughness, and is therefore suitable for structural members such as tanks used in a liquid ammonia environment. The usage environment is not limited to liquid ammonia, and may be liquefied gas such as LPG or liquefied CO2 . In this disclosure, when referring to ammonia, it means not only liquid ammonia but also LPG, liquefied CO2 , and other liquefied gases in general.
In the clad steel plate according to one embodiment of the present invention, the surface having the cladding material may be on either side of the base material. However, when used in a tank or the like, the cladding material is placed on the surface expected to come into contact with ammonia or the like (hereinafter also referred to as the first surface or inner surface of the base material). This is because ammonia SCC resistance and low-temperature toughness can be obtained as a tank (structure). In this disclosure, the cladding material placed on the first surface of the base material is also referred to as the first cladding material. Also, the other surface of the first surface of the base material is referred to as the second surface or outer surface of the base material. The cladding material placed on the second surface of the base material is also referred to as the second cladding material. Here, the second cladding material is optional. That is, the clad steel plate according to one embodiment of the present invention includes a clad steel plate having a first cladding material on one surface of the base material and a clad steel plate having a first cladding material on one surface of the base material and a second cladding material on the other surface of the base material. Also, the thickness of the base material is t B , the thickness of the first cladding material is t C1 , and the thickness of the second cladding material is t C2 .
 以下、さらに具体的に、本発明の一実施形態に従うクラッド鋼板を説明する。なお、以下の各元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
(1)母材の成分組成について
C:0.010~0.200%
 Cは、本発明の一実施形態に従うクラッド鋼板の強度を高めるために最も有効な元素である。かかる効果を得るため、C含有量を0.010%以上とする。さらに、他の合金元素の含有量を少なくし、より低コストで製造するという観点からは、C含有量は0.030%以上とすることが好ましい。一方、C含有量が0.200%を超えると、靭性および溶接性の劣化を招く。従って、C含有量を0.200%以下とする。さらに、靭性の観点から、C含有量は0.170%以下とすることが好ましい。
The clad steel plate according to one embodiment of the present invention will be described in more detail below. Note that "%" representing the content of each element below means "mass %" unless otherwise specified.
(1) Composition of the base material C: 0.010-0.200%
C is the most effective element for increasing the strength of the clad steel plate according to one embodiment of the present invention. To obtain this effect, the C content is set to 0.010% or more. Furthermore, from the viewpoint of reducing the content of other alloy elements and manufacturing at a lower cost, the C content is preferably set to 0.030% or more. On the other hand, if the C content exceeds 0.200%, it will lead to deterioration of toughness and weldability. Therefore, the C content is set to 0.200% or less. Furthermore, from the viewpoint of toughness, the C content is preferably set to 0.170% or less.
Si:0.01~1.00%
 Siは、脱酸のため添加する。かかる効果を得るため、Si含有量を0.01%以上とする。さらに、Si含有量は0.03%以上とすることが好ましい。一方、Si含有量が1.00%を超えると、靭性や溶接性の劣化を招く。従って、Si含有量を1.00%以下とする。さらに、靭性の観点から、Si含有量は0.40%以下とすることが好ましい。
Si: 0.01 to 1.00%
Si is added for deoxidation. To obtain this effect, the Si content is set to 0.01% or more. Furthermore, the Si content is preferably set to 0.03% or more. On the other hand, if the Si content exceeds 1.00%, it leads to deterioration of toughness and weldability. Therefore, the Si content is set to 1.00% or less. Furthermore, from the viewpoint of toughness, the Si content is preferably set to 0.40% or less.
Mn:0.50~2.50%
 Mnは、鋼の焼入れ性を増加させる作用を有する元素である。すなわち、Mnは、高い強度を得るための重要な元素の1つである。かかる効果を得るため、Mn含有量を0.50%以上とする。さらに、他の合金元素の含有量を少なくし、より低コストで製造するという観点から、Mn含有量は0.70%以上とすることが好ましい。一方、Mn含有量が2.50%を超えると、靭性が低下する。従って、Mn含有量を2.50%以下とする。さらに、靭性の低下を抑制する観点から、Mn含有量は2.30%以下とすることが好ましい。
Mn: 0.50 to 2.50%
Mn is an element that has the effect of increasing the hardenability of steel. That is, Mn is one of the important elements for obtaining high strength. In order to obtain such an effect, the Mn content is set to 0.50% or more. Furthermore, from the viewpoint of reducing the content of other alloy elements and manufacturing at a lower cost, the Mn content is preferably set to 0.70% or more. On the other hand, if the Mn content exceeds 2.50%, the toughness decreases. Therefore, the Mn content is set to 2.50% or less. Furthermore, from the viewpoint of suppressing the decrease in toughness, the Mn content is preferably set to 2.30% or less.
Al:0.001~0.060%
 Alは、脱酸剤として作用する。かかる効果を得るため、Al含有量を0.001%以上とする。一方、Al含有量が0.060%を超えると、酸化物系介在物が増加して清浄度が低下する。また、靭性が低下する。従って、Al含有量を0.060%以下とする。さらに、靭性の低下を抑制する観点から、Al含有量は0.050%以下とすることが好ましい。
Al: 0.001 to 0.060%
Al acts as a deoxidizer. To obtain this effect, the Al content is set to 0.001% or more. On the other hand, if the Al content exceeds 0.060%, oxide-based inclusions increase and cleanliness decreases. Furthermore, toughness decreases. Therefore, the Al content is set to 0.060% or less. Furthermore, from the viewpoint of suppressing the decrease in toughness, the Al content is preferably set to 0.050% or less.
P:0.0200%以下
 Pは、不可避的不純物として含有される元素である。また、Pは、粒界に偏析することによって靱性や溶接性を低下させるなど、悪影響を及ぼす。そのため、できる限りP含有量を低減することが望ましい。ただし、P含有量は、0.0200%以下であれば許容できる。なお、P含有量の下限は特に限定されず、0%であってよい。また、通常、Pは不純物として鋼中に不可避的に含有している元素であるため、P含有量は工業的には0%超であってよい。また、Pの過剰の低減は、精錬コストの高騰を招く。そのため、P含有量は0.0005%以上とすることが好ましい。
P: 0.0200% or less P is an element contained as an inevitable impurity. In addition, P has an adverse effect, such as reducing toughness and weldability by segregating at grain boundaries. Therefore, it is desirable to reduce the P content as much as possible. However, the P content is acceptable if it is 0.0200% or less. The lower limit of the P content is not particularly limited and may be 0%. In addition, since P is usually an element that is inevitably contained in steel as an impurity, the P content may be more than 0% industrially. In addition, excessive reduction of P leads to an increase in refining costs. Therefore, the P content is preferably 0.0005% or more.
S:0.0100%以下
 Sは、不可避的不純物として含有される元素である。また、Sは、MnS等の硫化物系介在物として鋼中に存在し、破壊の発生起点となって靭性を低下させるなどの悪影響を及ぼす元素である。そのため、できる限りS含有量を低減することが望ましい。ただし、S含有量は、0.0100%以下であれば許容できる。なお、S含有量の下限は特に限定されず、0%であってよい。また、通常、Sは不純物として鋼中に不可避的に含有している元素であるため、S含有量は工業的には0%超であってもよい。また、Sの過剰の低減は、精錬コストの高騰を招く。そのため、コストの観点からは、S含有量を0.0005%以上とすることが好ましい。
S: 0.0100% or less S is an element contained as an inevitable impurity. In addition, S is an element that exists in steel as sulfide-based inclusions such as MnS, and has an adverse effect such as becoming the origin of fracture and reducing toughness. Therefore, it is desirable to reduce the S content as much as possible. However, the S content is acceptable if it is 0.0100% or less. The lower limit of the S content is not particularly limited and may be 0%. In addition, since S is usually an element that is inevitably contained in steel as an impurity, the S content may be more than 0% industrially. In addition, excessive reduction of S leads to an increase in refining costs. Therefore, from the viewpoint of cost, it is preferable to set the S content to 0.0005% or more.
 また、本発明の一実施形態に従うクラッド鋼板の母材の成分組成では、任意に、以下に記載する元素(以下、任意添加元素ともいう)を含有させることができる。また、本発明の一実施形態に従うクラッド鋼板の母材の成分組成では、上記の元素および以下の任意添加元素以外の残部は、Feおよび不可避的不純物である。 In addition, the composition of the base material of the clad steel plate according to one embodiment of the present invention may optionally contain the elements described below (hereinafter also referred to as optional added elements). In addition, in the composition of the base material of the clad steel plate according to one embodiment of the present invention, the remainder other than the above elements and the following optional added elements is Fe and unavoidable impurities.
Cu:1.00%以下
 Cuは、クラッド鋼板の強度を向上するのに有効な元素である。しかしながら、Cu含有量が0.01%未満では、その効果に乏しい。そのため、Cuを含有させる場合には、Cu含有量は0.01%以上とするのが好ましい。一方、Cu含有量が1.00%を超えると、靭性が劣化する。従って、Cuを含有させる場合には、Cu含有量は1.00%以下とするのが好ましい。
Cu: 1.00% or less Cu is an effective element for improving the strength of clad steel plate. However, if the Cu content is less than 0.01%, the effect is poor. Therefore, when Cu is contained, the Cu content is preferably 0.01% or more. On the other hand, if the Cu content exceeds 1.00%, the toughness deteriorates. Therefore, when Cu is contained, the Cu content is preferably 1.00% or less.
Ni:2.00%以下
 Niは、クラッド鋼板の強度を向上させるのに有効なだけでなく、靭性も向上させる効果がある。しかしながら、Ni含有量が0.01%未満では、その効果に乏しい。そのため、Niを含有させる場合には、Ni含有量は0.01%以上とするのが好ましい。一方、Ni含有量が2.00%を超えると、その効果が飽和し、合金コストが上昇する。従って、Niを含有させる場合には、Ni含有量は2.00%以下とするのが好ましい。
Ni: 2.00% or less Ni is not only effective in improving the strength of the clad steel plate, but also has the effect of improving the toughness. However, if the Ni content is less than 0.01%, the effect is poor. Therefore, when Ni is contained, the Ni content is preferably 0.01% or more. On the other hand, if the Ni content exceeds 2.00%, the effect is saturated and the alloy cost increases. Therefore, when Ni is contained, the Ni content is preferably 2.00% or less.
Cr:1.00%以下
 Crは、クラッド鋼板の強度を向上するのに有効な元素である。しかしながら、Cr含有量が0.01%未満では、その効果に乏しい。そのため、Crを含有させる場合には、Cr含有量は0.01%以上とするのが好ましい。一方、Cr含有量が1.00%を超えると、靭性が劣化する。従って、Crを含有させる場合には、Cr含有量は1.00%以下とするのが好ましい。
Cr: 1.00% or less Cr is an effective element for improving the strength of clad steel plate. However, if the Cr content is less than 0.01%, the effect is poor. Therefore, when Cr is contained, the Cr content is preferably 0.01% or more. On the other hand, if the Cr content exceeds 1.00%, the toughness deteriorates. Therefore, when Cr is contained, the Cr content is preferably 1.00% or less.
Mo:1.00%以下
 Moは、クラッド鋼板の強度を向上するのに有効な元素である。しかしながら、Mo含有量が0.01%未満では、その効果に乏しい。そのため、Moを含有させる場合には、Mo含有量は0.01%以上とするのが好ましい。一方、Mo含有量が1.00%を超えると、靭性が劣化する。従って、Moを含有させる場合には、Mo含有量は1.00%以下とするのが好ましい。
Mo: 1.00% or less Mo is an effective element for improving the strength of clad steel plate. However, if the Mo content is less than 0.01%, the effect is poor. Therefore, when Mo is contained, the Mo content is preferably 0.01% or more. On the other hand, if the Mo content exceeds 1.00%, the toughness deteriorates. Therefore, when Mo is contained, the Mo content is preferably 1.00% or less.
V:0.500%以下
 Vは、クラッド鋼板の強度を向上させる効果を有する元素である。かかる効果を得るため、Vを含有させる場合には、V含有量を0.005%以上とするのが好ましい。一方、V含有量が0.500%を超えると、溶接性の劣化や合金コストの上昇を招く。従って、Vを含有させる場合には、V含有量は0.500%以下とするのが好ましい。より好ましくは、V含有量の下限は0.010%である。より好ましくは、V含有量の上限は0.100%である。
V: 0.500% or less V is an element that has the effect of improving the strength of the clad steel plate. In order to obtain such an effect, when V is contained, the V content is preferably 0.005% or more. On the other hand, if the V content exceeds 0.500%, it leads to deterioration of weldability and an increase in alloy cost. Therefore, when V is contained, the V content is preferably 0.500% or less. More preferably, the lower limit of the V content is 0.010%. More preferably, the upper limit of the V content is 0.100%.
Ti:0.100%以下
 Tiは、窒化物の形成傾向が強く、Nを固定して固溶Nを低減する作用を有する元素である。そのため、Tiの添加により、母材および溶接部の靭性を向上させることができる。かかる効果を得るため、Tiを含有させる場合には、Ti含有量は、0.005%以上とするのが好ましい。さらに、Ti含有量は0.007%以上とすることがより好ましい。一方、Ti含有量が0.100%を超えると、かえって靭性が低下する。従って、Tiを含有させる場合には、Ti含有量は0.100%以下とするのが好ましい。さらに、Ti含有量は0.090%以下とすることがより好ましい。
Ti: 0.100% or less Ti is an element that has a strong tendency to form nitrides and has the effect of fixing N and reducing solute N. Therefore, the addition of Ti can improve the toughness of the base material and the welded part. In order to obtain such an effect, when Ti is contained, the Ti content is preferably 0.005% or more. Furthermore, the Ti content is more preferably 0.007% or more. On the other hand, when the Ti content exceeds 0.100%, the toughness is rather reduced. Therefore, when Ti is contained, the Ti content is preferably 0.100% or less. Furthermore, the Ti content is more preferably 0.090% or less.
Nb:0.100%以下
 Nbは、炭窒化物として析出することで旧オーステナイト粒径を小さくし、靭性を向上させる効果を有する元素である。かかる効果を得るため、Nbを含有させる場合には、Nb含有量は0.005%以上とするのが好ましい。さらに、Nb含有量は0.007%以上とすることがより好ましい。一方、Nb含有量が0.100%を超えると、NbCが多量に析出し、靭性が低下する。従って、Nbを含有させる場合には、Nb含有量は0.100%以下とするのが好ましい。さらに、Nb含有量は0.060%以下とすることがより好ましい。
Nb: 0.100% or less Nb is an element that has the effect of reducing the prior austenite grain size and improving toughness by precipitating as carbonitride. In order to obtain such an effect, when Nb is contained, the Nb content is preferably 0.005% or more. Furthermore, the Nb content is more preferably 0.007% or more. On the other hand, when the Nb content exceeds 0.100%, a large amount of NbC precipitates, and the toughness decreases. Therefore, when Nb is contained, the Nb content is preferably 0.100% or less. Furthermore, the Nb content is more preferably 0.060% or less.
Ca:0.0200%以下
 Caは、Sと結合し、圧延方向に長く伸びるMnS等の形成を抑制する作用を有する元素である。すなわち、Caを含有させることにより、硫化物系介在物が球状を呈するように形態制御され、溶接部等の靭性を向上させることができる。かかる効果を得るために、Caを含有させる場合には、Ca含有量は0.0005%以上とするのが好ましい。一方、Ca含有量が0.0200%を超えると、鋼の清浄度が低下する。清浄度の低下は、靭性の低下を招く。従って、Caを含有させる場合には、Ca含有量は0.0200%以下とするのが好ましい。Ca含有量は、より好ましくは0.0020%以上である。Ca含有量は、より好ましくは0.0100%以下である。
Ca: 0.0200% or less Ca is an element that combines with S and has the effect of suppressing the formation of MnS and the like that elongates in the rolling direction. That is, by including Ca, the morphology of the sulfide-based inclusions is controlled to be spherical, and the toughness of the welded portion and the like can be improved. In order to obtain such an effect, when Ca is included, the Ca content is preferably 0.0005% or more. On the other hand, when the Ca content exceeds 0.0200%, the cleanliness of the steel decreases. The decrease in cleanliness leads to a decrease in toughness. Therefore, when Ca is included, the Ca content is preferably 0.0200% or less. The Ca content is more preferably 0.0020% or more. The Ca content is more preferably 0.0100% or less.
Mg:0.0200%以下
 Mgは、Caと同様、Sと結合し、圧延方向に長く伸びるMnS等の形成を抑制する作用を有する元素である。すなわち、Mgを含有させることにより、硫化物系介在物が球状を呈するように形態制御され、溶接部等の靭性を向上させることができる。かかる効果を得るために、Mgを含有させる場合には、Mg含有量は0.0005%以上とするのが好ましい。一方、Mg含有量が0.0200%を超えると、鋼の清浄度が低下する。清浄度の低下は、靭性の低下を招く。従って、Mgを含有させる場合には、Mg含有量は0.0200%以下とするのが好ましい。Mg含有量は、より好ましくは0.0020%以上である。Mg含有量は、より好ましくは0.0100%以下である。
Mg: 0.0200% or less Like Ca, Mg is an element that combines with S and has the effect of suppressing the formation of MnS and the like that elongates in the rolling direction. That is, by including Mg, the morphology of the sulfide-based inclusions is controlled to be spherical, and the toughness of the welded part and the like can be improved. In order to obtain such an effect, when Mg is included, the Mg content is preferably 0.0005% or more. On the other hand, when the Mg content exceeds 0.0200%, the cleanliness of the steel decreases. The decrease in cleanliness leads to a decrease in toughness. Therefore, when Mg is included, the Mg content is preferably 0.0200% or less. The Mg content is more preferably 0.0020% or more. The Mg content is more preferably 0.0100% or less.
REM:0.0200%以下
 REM(希土類金属)は、CaやMgと同様、Sと結合し、圧延方向に長く伸びるMnS等の形成を抑制する作用を有する元素である。すなわち、REMを含有させることにより、硫化物系介在物が球状を呈するように形態制御され、溶接部等の靭性を向上させることができる。かかる効果を得るために、REMを含有させる場合には、REM含有量は0.0005%以上が好ましい。一方、REM含有量が0.0200%を超えると、鋼の清浄度が低下する。清浄度の低下は、靭性の低下を招く。従って、REMを含有させる場合には、REM含有量は0.0200%以下が好ましい。REM含有量は、より好ましくは0.0020%以上である。REM含有量は、より好ましくは0.0100%以下である。
REM: 0.0200% or less Like Ca and Mg, REM (rare earth metal) is an element that combines with S and suppresses the formation of MnS, etc., which elongates in the rolling direction. That is, by containing REM, the morphology of sulfide-based inclusions is controlled to be spherical, and the toughness of welds, etc. can be improved. In order to obtain such an effect, when REM is contained, the REM content is preferably 0.0005% or more. On the other hand, if the REM content exceeds 0.0200%, the cleanliness of the steel decreases. The decrease in cleanliness leads to a decrease in toughness. Therefore, when REM is contained, the REM content is preferably 0.0200% or less. The REM content is more preferably 0.0020% or more. The REM content is more preferably 0.0100% or less.
(2)合せ材の成分組成について
 本発明の一実施形態に従うクラッド鋼板では、合せ材に、CE/CEが2.000以上となる炭素鋼を使用する。
 なお、炭素鋼とは、鉄(Fe)と炭素(C)の合金であり、C含有量が2.2質量%以下であり、CおよびFe以外の元素(Si、Mn、PおよびSなど。また、不可避的不純物に相当する元素も含む。)の合計含有量が5.0質量%以下であり、残部がFeである成分組成を有する鋼である。
CE/CE:2.000以上
 CE/CEを2.000以上とする。ここで、CEおよびCEはそれぞれ、母材の炭素当量および合せ材の炭素当量である。CE/CEが2.000未満であると、合せ材の炭素当量が過大となってクラッド鋼板の硬さが上昇し過ぎるため、耐アンモニアSCC性の劣化を招く。CE/CEは、好ましくは2.050以上、より好ましくは2.100以上である。また、CE/CEの上限は特に限定されない。CE/CEは、例えば、5.000以下が好適である。
 なお、CEおよびCEはそれぞれ、以下の式で求めることができる。
 CE=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14
 ここで、[X]は母材の成分組成における元素Xの含有量(質量%)を示す。なお、含有されない元素は「0」として計算すればよい。以下の各式においても同様である。
 CE=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14
 ここで、[X]は合せ材の成分組成における元素Xの含有量(質量%)を示す。
(2) Composition of Cladding Material In a clad steel plate according to one embodiment of the present invention, a carbon steel having a CE B /CE C ratio of 2.000 or more is used for the cladding material.
Carbon steel is an alloy of iron (Fe) and carbon (C) and has a composition in which the C content is 2.2 mass% or less, the total content of elements other than C and Fe (such as Si, Mn, P, and S, and also including elements corresponding to unavoidable impurities) is 5.0 mass% or less, and the balance is Fe.
CE B /CE C : 2.000 or more CE B /CE C is set to 2.000 or more. Here, CE B and CE C are the carbon equivalent of the base material and the carbon equivalent of the cladding material, respectively. If CE B /CE C is less than 2.000, the carbon equivalent of the cladding material becomes too large and the hardness of the clad steel plate increases too much, resulting in deterioration of ammonia SCC resistance. CE B /CE C is preferably 2.050 or more, more preferably 2.100 or more. In addition, there is no particular upper limit for CE B /CE C. CE B /CE C is preferably 5.000 or less, for example.
It should be noted that CE B and CE C can be calculated by the following formulas.
CE B = [C] B + [Mn] B /6 + [Si] B /24 + [Ni] B /40 + [Cr] B /5 + [Mo] B /4 + [V] B /14
Here, [X] B represents the content (mass%) of element X in the composition of the base material. Note that elements that are not contained may be calculated as "0". The same applies to the following formulas.
CEC = [C] + [Mn]/6 + [Si]/24 + [Ni]/40 + [Cr]/5 + [Mo]/4 + [V]/14
Here, [X] indicates the content (mass %) of element X in the component composition of the cladding material.
 また、本発明の一実施形態に従うクラッド鋼板の合せ材の好適な成分組成は以下のとおりである。
C:0.100%以下
 Cは、鋼の硬度を高める元素であり、硬度が高いほど液体アンモニアSCC感受性が高くなる。そのため、合せ材のC含有量は0.100%以下が好ましい。一方、合せ材のC含有量は低いほど好ましいが、Cの過剰の低減は精錬コストの高騰を招く。そのため、C含有量は0.0005%以上とすることが好ましい。
The preferred composition of the clad steel plate according to one embodiment of the present invention is as follows:
C: 0.100% or less C is an element that increases the hardness of steel, and the higher the hardness, the higher the liquid ammonia SCC susceptibility. Therefore, the C content of the cladding material is preferably 0.100% or less. On the other hand, the lower the C content of the cladding material, the better, but excessive reduction of C leads to an increase in refining costs. Therefore, the C content is preferably 0.0005% or more.
Mn:0.01~1.50%
 Mnは、鋼の焼入れ性を増加させる作用を有する元素である。そのため、Mnの含有量が増えすぎると、合せ材の硬度が上昇し過ぎることになる。合せ材の硬度が上昇し過ぎると、耐アンモニアSCC性の劣化を招く。従って、Mn含有量を1.50%以下とすることが好ましい。Mn含有量は、より好ましくは1.25%以下、さらに好ましくは1.00%以下である。一方、Mnを0.01%未満まで低減させるには、多大なコストを要する。そのため、Mn含有量を0.01%以上とすることが好ましい。
Mn: 0.01 to 1.50%
Mn is an element that has the effect of increasing the hardenability of steel. Therefore, if the Mn content is too high, the hardness of the cladding material will increase too much. If the hardness of the cladding material increases too much, it will lead to deterioration of ammonia SCC resistance. Therefore, it is preferable to set the Mn content to 1.50% or less. The Mn content is more preferably 1.25% or less, and further preferably 1.00% or less. On the other hand, it requires a large cost to reduce Mn to less than 0.01%. Therefore, it is preferable to set the Mn content to 0.01% or more.
 Cu、Cr、SbおよびSnは、鋼板の耐アンモニアSCC性をさらに向上させることができる。そのため、このうちの1種または2種以上を後述の量で含有し、かつ以下の式(1)によって求められるCR値を0.30以上とすることが好ましい。
 なお、CR値は、各元素の含有量から、耐アンモニアSCC性を推定するために考案された式であり、CR値が高いほど耐アンモニアSCC性が向上する。従って、CR値を0.30以上とすることにより、液体アンモニア環境下において応力腐食割れを効果的に抑制することが可能となる。
 CR値=2.3[Cu]+2.8[Cr]+7.3[Sb]+3.6[Sn]  ・・・(1)
ここで、[X]は合せ材の成分組成における元素Xの含有量(質量%)を示す。なお、合せ材の成分組成と合せ材素材鋼板の成分組成は実質的に同じものなので、[X]は合せ材素材鋼板の成分組成における元素Xの含有量(質量%)を示すものということもできる。同様に、上述した[X]も、母材素材鋼板の成分組成における元素Xの含有量(質量%)を示すものということもできる。
Cu, Cr, Sb and Sn can further improve the ammonia SCC resistance of the steel sheet. Therefore, it is preferable to contain one or more of these elements in the amounts described below and to set the CR value calculated by the following formula (1) to 0.30 or more.
The CR value is a formula devised for estimating ammonia SCC resistance from the content of each element, and the higher the CR value, the better the ammonia SCC resistance. Therefore, by making the CR value 0.30 or more, it becomes possible to effectively suppress stress corrosion cracking in a liquid ammonia environment.
CR value = 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
Here, [X] indicates the content (mass%) of element X in the composition of the cladding material. Since the composition of the cladding material and the composition of the cladding material steel plate are substantially the same, [X] can also be said to indicate the content (mass%) of element X in the composition of the cladding material steel plate. Similarly, the above-mentioned [X] B can also be said to indicate the content (mass%) of element X in the composition of the base material steel plate.
 ここで、合せ材を低硬度の鋼板とすることで、アンモニアSCCを抑制することが可能である。しかし、合せ材の表面に凹みや傷が存在すると、かかる凹みや傷の存在箇所に応力集中が発生し、耐アンモニアSCC性が劣化することが懸念される。この点、CR値を0.30以上とすることにより、合せ材の表面に凹みや傷が存在する場合にも、耐アンモニアSCC性が劣化することを抑止できる。そのため、CR値は0.30以上が好ましい。CR値は、より好ましくは0.32以上、さらに好ましくは0.35以上である。また、CR値の上限は特に限定されない。CR値は、例えば、1.50以下が好適である。 Here, by using a low-hardness steel plate as the cladding material, it is possible to suppress ammonia SCC. However, if there are dents or scratches on the surface of the cladding material, stress concentration occurs at the location of the dents or scratches, and there is a concern that the ammonia SCC resistance will deteriorate. In this regard, by setting the CR value to 0.30 or more, it is possible to prevent the ammonia SCC resistance from deteriorating even if there are dents or scratches on the surface of the cladding material. Therefore, the CR value is preferably 0.30 or more. The CR value is more preferably 0.32 or more, and even more preferably 0.35 or more. Furthermore, there is no particular limit to the upper limit of the CR value. For example, a CR value of 1.50 or less is preferable.
 また、Cu、Cr、SbおよびSnは、液体アンモニア環境下において、速やかに保護性のある腐食生成物を形成し、応力腐食割れを抑制する効果を有する。かかる効果を得るため、Cuを含有させる場合には、Cu含有量を0.01%以上にすることが好ましい。Crを含有させる場合には、Cr含有量を0.01%以上にすることが好ましい。Sbを含有させる場合には、Sb含有量を0.01%以上にすることが好ましい。Snを含有させる場合には、Sn含有量を0.01%以上にすることが好ましい。 In addition, Cu, Cr, Sb and Sn have the effect of quickly forming protective corrosion products in a liquid ammonia environment and suppressing stress corrosion cracking. In order to obtain such an effect, when Cu is contained, the Cu content is preferably 0.01% or more. When Cr is contained, the Cr content is preferably 0.01% or more. When Sb is contained, the Sb content is preferably 0.01% or more. When Sn is contained, the Sn content is preferably 0.01% or more.
 一方、Cu、Cr、SbおよびSnを過剰に添加すると、溶接性や靱性が劣化する。また、合金コストの観点からも不利になる。従って、Cuを含有させる場合には、Cu含有量を0.50%以下にすることが好ましい。Crを含有させる場合には、Cr含有量を0.50%以下にすることが好ましい。また、Sbを含有させる場合には、Sb含有量を0.50%以下にすることが好ましい。Snを含有させる場合には、Sn含有量を0.50%以下とすることが好ましい。より好ましくは、Cu含有量は0.40%以下、Cr含有量は0.40%以下、Sb含有量は0.40%以下、Sn含有量は0.40%以下である。 On the other hand, excessive addition of Cu, Cr, Sb, and Sn deteriorates weldability and toughness. It is also disadvantageous from the viewpoint of alloy cost. Therefore, when Cu is contained, it is preferable that the Cu content be 0.50% or less. When Cr is contained, it is preferable that the Cr content be 0.50% or less. When Sb is contained, it is preferable that the Sb content be 0.50% or less. When Sn is contained, it is preferable that the Sn content be 0.50% or less. More preferably, the Cu content is 0.40% or less, the Cr content is 0.40% or less, the Sb content is 0.40% or less, and the Sn content is 0.40% or less.
 本発明の一実施形態に従うクラッド鋼板の合せ材の好適な成分組成では、上記の元素以外の残部は、Feおよび不可避的不純物である。 In the preferred composition of the clad steel plate composite material according to one embodiment of the present invention, the remainder other than the above elements is Fe and unavoidable impurities.
(3)金属組織について
[母材の金属組織:ベイナイトの体積分率が90%以上であり、ベイナイトの平均粒径が25μm以下]
 母材の引張特性や低温靭性を満足させるためには、母材の金属組織において、ベイナイトの体積分率を90%以上とする必要がある。すなわち、ベイナイトの体積分率が90%未満であると、これ以外のフェライト、島状マルテンサイト、マルテンサイト、パーライト、オーステナイトの体積分率が増加することになり、十分な強度および低温靭性が得られない。ベイナイトの体積分率の上限は特に限定されず、100%であってもよい。
(3) Metal structure [Base metal structure: Volume fraction of bainite is 90% or more, and the average grain size of bainite is 25 μm or less]
In order to satisfy the tensile properties and low-temperature toughness of the base material, the volume fraction of bainite in the metal structure of the base material needs to be 90% or more. In other words, if the volume fraction of bainite is less than 90%, the volume fractions of other elements such as ferrite, island martensite, martensite, pearlite, and austenite will increase, and sufficient strength and low-temperature toughness will not be obtained. The upper limit of the volume fraction of bainite is not particularly limited, and may be 100%.
 ここで、ベイナイトは、ベイニティックフェライトおよびグラニュラーフェライトと称される組織、ならびに、それらが焼戻された組織を含むものとする。ここで、ベイニティックフェライトおよびグラニュラーフェライトと称される組織は、変態強化に寄与する熱間圧延後の冷却時または当該冷却後に生成する組織である。
 なお、体積分率で10%以下の残部組織は、フェライト、パーライトおよびオーステナイトの他、マルテンサイトが含まれていてもよい。残部組織における各組織の体積分率はとくに限定する必要はないが、残部組織はパーライトであることが好ましい。残部組織の体積分率は0%であってもよい。
Here, bainite includes structures called bainitic ferrite and granular ferrite, as well as structures obtained by tempering these structures. Here, the structures called bainitic ferrite and granular ferrite are structures that contribute to transformation strengthening and are formed during or after cooling after hot rolling.
The remaining structure, which has a volume fraction of 10% or less, may contain martensite in addition to ferrite, pearlite, and austenite. The volume fraction of each structure in the remaining structure does not need to be particularly limited, but it is preferable that the remaining structure is pearlite. The volume fraction of the remaining structure may be 0%.
 また、優れた低温靭性を得るため、ベイナイトの平均粒径を25μm以下とする。すなわち、ベイナイトの平均粒径が25μmを超えると、き裂伝播抵抗が低下し、十分な低温靭性が得られない。ベイナイトの平均粒径は、好ましくは22μm以下である。また、ベイナイトの平均粒径の下限は特に限定されない。ベイナイトの平均粒径は、例えば、1μm以上が好適である。
 ここで、ベイナイトの体積分率および平均粒径は、後述の実施例に記載した方法で測定することができる。
Furthermore, in order to obtain excellent low-temperature toughness, the average grain size of bainite is set to 25 μm or less. That is, if the average grain size of bainite exceeds 25 μm, the crack propagation resistance decreases and sufficient low-temperature toughness cannot be obtained. The average grain size of bainite is preferably 22 μm or less. Furthermore, there is no particular lower limit for the average grain size of bainite. For example, the average grain size of bainite is preferably 1 μm or more.
Here, the volume fraction and average grain size of bainite can be measured by the method described in the examples below.
 なお、合せ材の金属組織は、特に限定されない。合せ材の金属組織は、例えば、フェライトおよびベイナイト等、従来公知の炭素鋼の金属組織であって良い。 The metal structure of the cladding material is not particularly limited. The metal structure of the cladding material may be, for example, a conventionally known metal structure of carbon steel, such as ferrite and bainite.
[合せ材のビッカース硬さ:210HV10以下]
 合せ材のビッカース硬さは、210HV10以下とする。クラッド鋼板の表層部に高硬度領域が存在すると、アンモニアSCCが助長されてしまう。すなわち、合せ材のビッカース硬さが210HV10を超えると、所期した耐アンモニアSCC性を得ることができない。合せ材のビッカース硬さは、好ましくは200HV10以下である。合せ材のビッカース硬さの下限は特に限定されない。合せ材のビッカース硬さは、例えば、100HV10以上が好適である。
 なお、ビッカース硬さは、後述の実施例に記載した方法で測定することができる。
 また、母材のビッカース硬さは特に限定されず、210HV10以下であっても、210HV10超であっても良い。
[Vickers hardness of cladding material: 210HV10 or less]
The Vickers hardness of the cladding material is 210HV10 or less. If a high hardness region exists in the surface layer of the clad steel plate, ammonia SCC is promoted. In other words, if the Vickers hardness of the cladding material exceeds 210HV10, the desired ammonia SCC resistance cannot be obtained. The Vickers hardness of the cladding material is preferably 200HV10 or less. The lower limit of the Vickers hardness of the cladding material is not particularly limited. For example, the Vickers hardness of the cladding material is preferably 100HV10 or more.
The Vickers hardness can be measured by the method described in the Examples section below.
Furthermore, the Vickers hardness of the base material is not particularly limited, and may be 210 HV10 or less, or may be more than 210 HV10.
(4)母材および合せ材の板厚
[tC1が2.0mm以上、tC2が0.0mm以上、かつ、(tC1+tC2)/(t+tC1+tC2)が0.30以下]
 tC1を2.0mm以上、tC2を0.0mm以上、かつ、(tC1+tC2)/(t+tC1+tC2)(以下、「クラッド比」ともいう)を0.30以下とする。ここで、t(mm)は母材の板厚であり、tC1(mm)は、合せ材のうち、母材の片方の面の合せ材の板厚、つまり、第1の合せ材の板厚であり、tC2(mm)は、合せ材のうち、母材の他方の面の合せ材の板厚、つまり第2の合せ材の板厚である。
 tC1が2.0mm未満の場合、腐食により低硬度領域が減耗し、耐アンモニアSCC性が劣化する。tC1は、好ましくは2.1mm以上、より好ましくは2.2mm以上である。tC1は、好ましくは5.0mm以下である。
 また、クラッド比が0.30を超えると、強度を担う母材に対して、低硬度の合せ材の占める割合が大きくなり過ぎて、十分な強度が得られない。クラッド比は、好ましくは0.20以下である。クラッド比は、好ましくは0.05以上である。
 なお、第2の合せ材はなくてもよい(換言すれば、第2の合せ材は任意である)ので、tC2は0.0mm以上でよい。tC2は、好ましくは0.5mm以上、より好ましくは1.0mm以上である。tC2は、好ましくは5.0mm以下である。
 また、クラッド鋼板の全厚、通常、t+tC1+tC2は、好ましくは8mm以上、より好ましくは15mm以上である。クラッド鋼板の全厚は、好ましくは50mm以下、より好ましくは40mm以下である。
(4) Plate thickness of base material and cladding material [ tC1 is 2.0 mm or more, tC2 is 0.0 mm or more, and ( tC1 + tC2 )/( tB + tC1 + tC2 ) is 0.30 or less]
tC1 is 2.0 mm or more, tC2 is 0.0 mm or more, and ( tC1 + tC2 )/( tB + tC1 + tC2 ) (hereinafter also referred to as the "cladding ratio") is 0.30 or less, where tB (mm) is the thickness of the base material, tC1 (mm) is the thickness of the cladding material on one side of the base material, i.e., the thickness of the first cladding material, and tC2 (mm) is the thickness of the cladding material on the other side of the base material, i.e., the thickness of the second cladding material.
If t C1 is less than 2.0 mm, the low hardness region is worn away by corrosion, and the ammonia SCC resistance is deteriorated. t C1 is preferably 2.1 mm or more, more preferably 2.2 mm or more. t C1 is preferably 5.0 mm or less.
Also, if the clad ratio exceeds 0.30, the ratio of the low hardness clad material to the base material that provides the strength becomes too large, and sufficient strength cannot be obtained. The clad ratio is preferably 0.20 or less. The clad ratio is preferably 0.05 or more.
In addition, since the second cladding material may not be used (in other words, the second cladding material is optional), t C2 may be 0.0 mm or more. t C2 is preferably 0.5 mm or more, more preferably 1.0 mm or more. t C2 is preferably 5.0 mm or less.
The total thickness of the clad steel plate, typically t B +t C1 +t C2 , is preferably 8 mm or more, more preferably 15 mm or more. The total thickness of the clad steel plate is preferably 50 mm or less, more preferably 40 mm or less.
(5)製造方法
 次に、本発明の一実施形態に従うクラッド鋼板の製造方法について、説明する。まず、例えば、前述した母材の成分組成を有する母材素材鋼板と、前述した(CE/CEが2.000以上となる)炭素鋼である合せ材素材鋼板、好適には、前述した合せ材の成分組成を有する合せ材素材鋼板とを重ね合わせてクラッド素材鋼板とする。母材素材鋼板および合せ材素材鋼板の準備方法は、特に限定されない。例えば、従来公知の製造方法を用いて、母材素材鋼板および合せ材素材鋼板を準備することができる。具体的には、通常の溶製法(転炉法、電気炉法等)により、所定の成分組成に調整した溶鋼を、通常の鋳造法(連続鋳造法や造塊法)により鋳造して鋳片素材とする。ついで、得られた鋳片素材を熱間圧延するなどして母材素材鋼板とする。ついで、母材素材鋼板の少なくとも片方の面、特には、アンモニア等と接することが想定される面に合せ材素材鋼板を重ね合わせて二層のクラッド素材鋼板を準備する。または、母材素材鋼板の両面に合せ材素材鋼板を重ね合わせて三層のクラッド素材鋼板(合せ材素材鋼板/母材素材鋼板/合せ材素材鋼板の順になるクラッド素材鋼板)を準備する。
(5) Manufacturing method Next, a manufacturing method of a clad steel plate according to one embodiment of the present invention will be described. First, for example, a base material steel plate having the composition of the base material described above and a clad material steel plate which is a carbon steel (with CE B /CE C of 2.000 or more) described above, preferably a clad material steel plate having the composition of the clad material described above, are stacked together to form a clad material steel plate. The method of preparing the base material steel plate and the clad material steel plate is not particularly limited. For example, the base material steel plate and the clad material steel plate can be prepared using a conventionally known manufacturing method. Specifically, molten steel adjusted to a predetermined composition by a normal melting method (converter method, electric furnace method, etc.) is cast by a normal casting method (continuous casting method or ingot casting method) to form a slab material. Next, the obtained slab material is hot-rolled to form a base material steel plate. Next, a cladding material steel plate is superimposed on at least one surface of the base material steel plate, particularly on the surface expected to come into contact with ammonia, etc., to prepare a two-layer clad material steel plate. Alternatively, a cladding material steel plate is superimposed on both surfaces of the base material steel plate to prepare a three-layer clad material steel plate (a clad material steel plate in the order of cladding material steel plate/base material steel plate/cladding material steel plate).
 そして、クラッド素材鋼板を、圧接接合すると共に、所定条件の熱処理を施して組織制御を行う。
 すなわち、クラッド素材鋼板を1000~1250℃に加熱し、
 ついで、前記クラッド素材鋼板に、前記母材素材鋼板の未再結晶温度域での累積圧下率:20%以上、および、圧延終了温度:Ar変態点以上の熱間圧延を施して、熱延鋼板とし、
 ついで、前記熱延鋼板に、冷却開始温度:Ar変態点以上、平均冷却速度:20~120℃/s、冷却停止温度:500℃以下の冷却を施す。これにより、上記した本発明の一実施形態に従うクラッド鋼板を製造することができる。
 また、前記冷却後、前記熱延鋼板に650℃以下の温度域で焼戻しを行ってもよい。
 なお、各製造条件における温度は、いずれも母材または母材素材鋼板の板厚1/2位置での温度である。また、当該位置での温度は、直接測定してもよい。また、当該位置での温度は、放射温度計にて測定されたクラッド鋼板またはクラッド素材鋼板の表面の温度から、例えば、プロセスコンピューターを用いて差分計算を行うことにより求めてもよい。
The clad steel plate is then pressure welded and heat treated under predetermined conditions to control the structure.
That is, the clad steel plate is heated to 1000 to 1250°C,
Next, the clad material steel plate is subjected to hot rolling at a cumulative rolling reduction rate of 20% or more in the non-recrystallization temperature range of the base material steel plate and at a rolling end temperature of the Ar3 transformation point or more to obtain a hot-rolled steel plate;
Next, the hot-rolled steel sheet is cooled to a cooling start temperature of the Ar3 transformation point or higher, an average cooling rate of 20 to 120° C./s, and a cooling end temperature of 500° C. or lower. This allows the production of a clad steel sheet according to one embodiment of the present invention.
After the cooling, the hot-rolled steel sheet may be tempered at a temperature of 650° C. or lower.
The temperatures in each manufacturing condition are all temperatures at a 1/2 thickness position of the base material or base material steel plate. The temperature at the position may be measured directly. The temperature at the position may also be determined by performing a differential calculation using, for example, a process computer from the surface temperature of the clad steel plate or clad material steel plate measured by a radiation thermometer.
[加熱温度:1000~1250℃]
 クラッド素材鋼板の加熱温度(以下、加熱温度ともいう。)が1000℃未満では、炭化物の固溶が不十分で必要な強度が得られない。加えて、母材素材鋼板と合せ材素材鋼板との接合性の観点からは、加熱温度は高温である方が好ましい。よって、加熱温度は1000℃以上とする。一方、加熱温度が1250℃を超えると、母材の結晶粒の粗大化によって靭性劣化を招く。そのため、加熱温度は1250℃以下とする。
[Heating temperature: 1000 to 1250° C.]
If the heating temperature of the clad material steel plate (hereinafter also referred to as the heating temperature) is less than 1000°C, the solid solution of carbides is insufficient and the necessary strength cannot be obtained. In addition, from the viewpoint of the bondability between the base material steel plate and the cladding material steel plate, a high heating temperature is preferable. Therefore, the heating temperature is set to 1000°C or higher. On the other hand, if the heating temperature exceeds 1250°C, the crystal grains of the base material will become coarse, leading to a deterioration in toughness. Therefore, the heating temperature is set to 1250°C or lower.
[母材素材鋼板の未再結晶温度域での累積圧下率:20%以上]
 母材素材鋼板の未再結晶温度域での累積圧下率(以下、単に累積圧下率ともいう)を20%以上とすることにより、母材素材鋼板のオーステナイト粒内に核生成サイトとなる変形帯が導入される。これにより、熱間圧延後の冷却時に変態生成するベイナイトが微細化し、クラッド鋼板の靱性が向上する。そのため、累積圧下率は20%以上とする。累積圧下率は、好ましくは30%以上、より好ましくは40%以上である。また、累積圧下率は、好ましくは85%以下、より好ましくは80%以下である。
 ここで、母材素材鋼板の未再結晶温度域は、Tnr(℃)以下の温度域である。また、Tnr(℃)は、次式により求めることができる。
 Tnr(℃)=174×log([Nb]×([C]+12/14[N]))+1444
 ここで、[X]は母材素材鋼板の成分組成における元素Xの含有量(質量%)を示す。また、logは常用対数である。
 また、累積圧下率は、次式により求めることができる。
 [累積圧下率(%)]=[母材素材鋼板の未再結晶温度域での母材素材鋼板の合計の板厚減少量(mm)]÷[熱間圧延開始前のクラッド素材鋼板における母材素材鋼板の板厚(mm)]×100
 なお、熱間圧延の各パスが母材素材鋼板の未再結晶温度域であるか否か(換言すれば、熱間圧延の各パスでの母材素材鋼板の板厚減少量が母材素材鋼板の未再結晶温度域での母材素材鋼板の合計の板厚減少量に含まれるか否か)は、各パスの出側温度により判断する。
 また、累積圧下率が、クラッド素材鋼板のうち、母材素材鋼板の板厚を基準としているのは、クラッド鋼板の靭性が、母材の靭性に特に大きく影響されるためである。
[Cumulative rolling reduction in the non-recrystallization temperature range of base steel sheet: 20% or more]
By setting the cumulative reduction in the non-recrystallization temperature range of the base material steel plate (hereinafter also simply referred to as the cumulative reduction) to 20% or more, deformation bands that become nucleation sites are introduced into the austenite grains of the base material steel plate. This refines the bainite that is transformed and generated during cooling after hot rolling, improving the toughness of the clad steel plate. For this reason, the cumulative reduction is set to 20% or more. The cumulative reduction is preferably 30% or more, more preferably 40% or more. Moreover, the cumulative reduction is preferably 85% or less, more preferably 80% or less.
Here, the non-recrystallization temperature range of the base material steel sheet is a temperature range equal to or lower than Tnr (°C). Tnr (°C) can be calculated by the following formula.
Tnr(°C)=174×log([Nb] B ×([C] B +12/14[N] B ))+1444
Here, [X] B represents the content (mass%) of element X in the composition of the base material steel sheet, and log is common logarithm.
The cumulative rolling reduction can be calculated by the following formula.
[Cumulative rolling reduction (%)] = [Total thickness reduction (mm) of base material steel plate in the non-recrystallization temperature range of the base material steel plate] ÷ [Thickness (mm) of base material steel plate in clad material steel plate before the start of hot rolling] × 100
Whether or not each pass of hot rolling is in the non-recrystallization temperature range of the base material steel plate (in other words, whether or not the plate thickness reduction amount of the base material steel plate in each pass of hot rolling is included in the total plate thickness reduction amount of the base material steel plate in the non-recrystallization temperature range of the base material steel plate) is determined based on the outlet temperature of each pass.
The reason why the cumulative rolling reduction is based on the plate thickness of the base material steel plate among the clad material steel plates is that the toughness of the clad steel plate is particularly significantly affected by the toughness of the base material.
[圧延終了温度:Ar変態点以上]
 熱間圧延の圧延終了温度がAr3変態点未満になると、生成したフェライトが加工の影響を受けるため、靭性が劣化する。よって、圧延終了温度はAr3変態点以上とする。圧延終了温度の上限は特に限定されない。例えば、圧延終了温度は、(Ar3変態点+90℃)以下が好ましい。
 Ar変態点は、次式により求めることができる。
 Ar変態点(℃)=910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]
 ここで、[X]は母材素材鋼板の成分組成における元素Xの含有量(質量%)を示す。
[Rolling end temperature: Ar 3 transformation point or higher]
If the rolling end temperature of the hot rolling is lower than the Ar3 transformation point, the generated ferrite is affected by processing, and the toughness is deteriorated. Therefore, the rolling end temperature is set to be equal to or higher than the Ar3 transformation point. The upper limit of the rolling end temperature is not particularly limited. For example, the rolling end temperature is preferably equal to or lower than ( Ar3 transformation point + 90°C).
The Ar3 transformation point can be calculated by the following formula.
Ar 3 transformation point (℃) = 910-310 [C] B - 80 [Mn] B - 20 [Cu] B - 15 [Cr] B - 55 [Ni] B - 80 [Mo] B
Here, [X] B represents the content (mass%) of element X in the chemical composition of the base material steel sheet.
[冷却開始温度:Ar変態点以上]
 熱間圧延後に得られる熱延鋼板に、Ar3変態点以上の温度から冷却を行う。冷却開始温度がAr3変態点未満では、フェライトが過剰に生成する。生成したフェライトは、フェライトと強度差が大きいベイナイトやマルテンサイトと共存することになる。その結果、強度不足と靭性の劣化を招く。よって、熱間圧延後の冷却開始温度はAr3変態点以上とする。冷却開始温度の上限は特に限定されない。例えば、冷却開始温度は、(Ar変態点+70℃)以下が好ましい。
[Cooling start temperature: Ar 3 transformation point or higher]
The hot-rolled steel sheet obtained after hot rolling is cooled from a temperature equal to or higher than the Ar3 transformation point. If the cooling start temperature is lower than the Ar3 transformation point, excessive ferrite is generated. The generated ferrite coexists with bainite and martensite, which have a large difference in strength from ferrite. As a result, insufficient strength and deterioration of toughness are caused. Therefore, the cooling start temperature after hot rolling is set to be equal to or higher than the Ar3 transformation point. The upper limit of the cooling start temperature is not particularly limited. For example, the cooling start temperature is preferably equal to or lower than ( Ar3 transformation point + 70°C).
[平均冷却速度:20~120℃/s]
 平均冷却速度を20℃/s以上とすることにより、高強度で高靱性のクラッド鋼板が得られる。特に、速い速度で冷却することによって、変態強化による強度上昇効果が得られる。すなわち、平均冷却速度が20℃/s未満では、ベイナイトの粒径が大きくなる。また、フェライトやパーライトが生成し、強度不足や靭性の劣化を招くおそれがある。一方、平均冷却速度が120℃/sを超えると、マルテンサイトの体積分率が多くなりすぎてしまい、靭性が低下する。従って、平均冷却速度は、20℃/s以上120℃/s以下とする。
 なお、ここでいう平均冷却速度は、上記の冷却開始温度から冷却停止温度までの冷却速度の平均値であり、母材の板厚1/2位置での温度を基準とするものである。例えば、放射温度計にて測定された冷却開始時の表面温度および冷却停止時の表面温度を基に、プロセスコンピューターを用いて差分計算を行うことにより、冷却開始時および冷却停止時の母材の板厚1/2位置の温度をそれぞれ求める。そして、次式により、平均冷却速度を求めることができる。
[平均冷却速度(℃/s)]=([冷却開始時の母材の板厚1/2位置の温度(℃)]-[冷却停止時の母材の板厚1/2位置の温度(℃)])÷[冷却時間(s)]
[Average cooling rate: 20 to 120 ° C./s]
By setting the average cooling rate to 20°C/s or more, a clad steel plate with high strength and high toughness can be obtained. In particular, by cooling at a high rate, the effect of increasing strength due to transformation strengthening can be obtained. That is, if the average cooling rate is less than 20°C/s, the grain size of bainite becomes large. In addition, ferrite and pearlite are generated, which may lead to insufficient strength and deterioration of toughness. On the other hand, if the average cooling rate exceeds 120°C/s, the volume fraction of martensite becomes too large, and toughness decreases. Therefore, the average cooling rate is set to 20°C/s or more and 120°C/s or less.
The average cooling rate here is the average value of the cooling rate from the cooling start temperature to the cooling stop temperature, and is based on the temperature at 1/2 the thickness of the base material. For example, the temperatures at 1/2 the thickness of the base material at the start and end of cooling are calculated by a process computer using the surface temperatures at the start and end of cooling measured by a radiation thermometer. The average cooling rate can then be calculated by the following formula:
[Average cooling rate (℃/s)] = ([Temperature of base material at 1/2 thickness when cooling starts (℃)] - [Temperature of base material at 1/2 thickness when cooling stops (℃)]) ÷ [Cooling time (s)]
[冷却停止温度:500℃以下]
 冷却停止温度を500℃以下とすることにより、母材の金属組織においてベイナイトを所定の体積分率にすることができる。冷却停止温度が500℃を超えると、フェライトやパーライトが過剰に生成して、強度不足や靭性の劣化を招く。従って、冷却停止温度は500℃以下とする。一方、冷却停止温度の下限は、特に限定されない。冷却停止温度は、例えば、室温でも良いが、生産効率等の観点から150℃以上が好ましい。
[Cooling stop temperature: 500°C or less]
By setting the cooling stop temperature at 500°C or less, it is possible to obtain a predetermined volume fraction of bainite in the metal structure of the base material. If the cooling stop temperature exceeds 500°C, ferrite and pearlite are excessively generated, resulting in insufficient strength and deterioration of toughness. Therefore, the cooling stop temperature is set to 500°C or less. On the other hand, the lower limit of the cooling stop temperature is not particularly limited. The cooling stop temperature may be, for example, room temperature, but is preferably 150°C or more from the viewpoint of production efficiency, etc.
[焼戻し温度:650℃以下]
 母材の靭性回復を目的として、任意に、焼戻しを行うことができる。ここで、焼戻し温度、すなわち、焼戻しによる再加熱時のクラッド鋼板の温度(母材の板厚1/2位置での温度)が650℃を超えると、転位が回復し、母材の強度が低下するおそれがある。従って、焼戻しを行う場合は、焼戻し温度は650℃以下とする。一方、焼戻し温度の下限は、母材の靭性回復の観点から、350℃が好ましい。
[Tempering temperature: 650°C or less]
Tempering can be performed optionally for the purpose of recovering the toughness of the base material. Here, if the tempering temperature, i.e., the temperature of the clad steel plate during reheating by tempering (the temperature at the 1/2 plate thickness position of the base material) exceeds 650°C, dislocations may be restored and the strength of the base material may decrease. Therefore, when tempering is performed, the tempering temperature is set to 650°C or less. On the other hand, the lower limit of the tempering temperature is preferably 350°C from the viewpoint of recovering the toughness of the base material.
 上記のようにして、本発明の一実施形態に従うクラッド鋼板を製造することができる。かくして得られた本発明の一実施形態に従うクラッド鋼板は、優れた引張特性および靭性を具える。
 ここで、優れた引張特性とは、JIS Z 2241(2022)に準拠する引張試験により測定される降伏強さYS(降伏点があるときは降伏点YP、ないときは0.2%耐力σ0.2):490MPa以上、引張強さ(TS):610MPa以上であることを意味する。また、優れた靭性とは、JIS Z 2242(2018)に準拠するシャルピー衝撃試験により測定される破面遷移温度(以下、vTrsともいう)が-30℃以下であることを意味する。詳細は後述する実施例に記載したとおりである。
In the manner described above, the clad steel plate according to the embodiment of the present invention can be manufactured. The thus obtained clad steel plate according to the embodiment of the present invention has excellent tensile properties and toughness.
Here, excellent tensile properties mean that the yield strength YS (yield point YP when there is a yield point, 0.2% proof stress σ0.2 when there is no yield point) measured by a tensile test conforming to JIS Z 2241 (2022) is 490 MPa or more, and the tensile strength (TS) is 610 MPa or more. In addition, excellent toughness means that the fracture transition temperature (hereinafter also referred to as vTrs) measured by a Charpy impact test conforming to JIS Z 2242 (2018) is -30 ° C. or less. Details are as described in the examples described later.
 なお、上記以外の条件については特に限定されず、常法に従えばよい。  In addition, there are no particular restrictions on conditions other than those mentioned above, and standard procedures should be followed.
[実施例1]
 表1に、母材の成分組成(残部はFeおよび不可避的不純物)を示す。表中、鋼種A~Pは、本発明の一実施形態に従うクラッド鋼板の母材の成分組成を満足する適合鋼である。一方、鋼種Q~Xは、本発明の一実施形態に従うクラッド鋼板の母材の成分組成の範囲外となる比較鋼である。
 表1に示す成分組成を有する母材素材鋼板と、表2に示すCEを有する合せ材素材鋼板とを重ね合わせてクラッド素材鋼板を準備し、表2に示す条件で、クラッド鋼板(No.1~34)を製造した。得られたクラッド鋼板について、母材の金属組織におけるベイナイトの体積分率およびベイナイトの平均粒径の測定、合せ材のビッカース硬さの測定、引張特性および靭性の評価、ならびに、液体アンモニア環境下における耐アンモニアSCC性の評価を、それぞれ実施した。各試験方法は次のとおりである。
[Example 1]
Table 1 shows the composition of the base metal (the balance being Fe and unavoidable impurities). In the table, steel types A to P are suitable steels that satisfy the composition of the base metal of the clad steel plate according to one embodiment of the present invention. On the other hand, steel types Q to X are comparative steels that fall outside the range of the composition of the base metal of the clad steel plate according to one embodiment of the present invention.
Clad material steel plates were prepared by overlapping a base material steel plate having the chemical composition shown in Table 1 with a clad material steel plate having the CE C shown in Table 2, and clad steel plates (Nos. 1 to 34) were manufactured under the conditions shown in Table 2. For the obtained clad steel plates, the volume fraction of bainite in the metal structure of the base material and the average grain size of bainite were measured, the Vickers hardness of the clad material was measured, and the tensile properties and toughness of the clad material were evaluated, as well as the ammonia SCC resistance in a liquid ammonia environment was evaluated. The test methods are as follows.
[母材の金属組織におけるベイナイトの体積分率の測定]
 クラッド鋼板の母材の板厚中心(板厚1/2位置)が観察面となるように、サンプルを採取した。ついで、採取したサンプルを鏡面研磨し、さらにナイタール腐食した。ついで、走査型電子顕微鏡(SEM)を用いて、サンプルの10mm×10mmの範囲を倍率:500~3000倍で撮影した。撮影した像を、画像解析装置を用いて解析することにより、母材の金属組織におけるベイナイトの体積分率を求めた。なお、母材の金属組織の異方性が小さい場合には、面積分率は体積分率に相当するため、ここでは面積分率を体積分率とみなした。
[Measurement of the volume fraction of bainite in the metal structure of the base material]
A sample was taken so that the center of the plate thickness (1/2 position of the plate thickness) of the base material of the clad steel plate was the observation surface. The taken sample was then mirror-polished and further subjected to nital etching. Next, a scanning electron microscope (SEM) was used to photograph an area of 10 mm x 10 mm of the sample at a magnification of 500 to 3000 times. The photographed image was analyzed using an image analyzer to determine the volume fraction of bainite in the metal structure of the base material. Note that when the anisotropy of the metal structure of the base material is small, the area fraction corresponds to the volume fraction, so here the area fraction was considered to be the volume fraction.
[母材の金属組織におけるベイナイトの平均粒径の測定]
 ベイナイトの平均粒径の測定でも、上記の母材の金属組織におけるベイナイトの体積分率の測定と同じサンプルを用いた。まず、上記のサンプルの表面を鏡面研磨した。ついで、SEMに付帯するElectron Back-Scattering Pattern(EBSP)装置を用いて、電子線後方散乱回折像から結晶方位を測定した。具体的には、サンプルの200μm四方の領域内で結晶方位を0.3μm間隔で測定した。次いで、隣り合う結晶粒との結晶方位差が15°以上である粒界に囲まれた領域を1の結晶粒とし、ベイナイトと判断した結晶粒について、当該結晶粒の面積から、当該結晶粒の円相当径を求めた。そして、ベイナイトと判断した結晶粒の円相当径の平均値を、ベイナイトの平均粒径とした。
 なお、結晶粒のうち、細長く成長したラス状のフェライトを有した結晶粒を、ベイナイトと判断した。
[Measurement of average grain size of bainite in metal structure of base material]
The same sample was used for measuring the average grain size of bainite as for measuring the volume fraction of bainite in the metal structure of the base material. First, the surface of the sample was mirror-polished. Next, an Electron Back-Scattering Pattern (EBSP) device attached to the SEM was used to measure the crystal orientation from an electron beam backscatter diffraction image. Specifically, the crystal orientation was measured at intervals of 0.3 μm within a 200 μm square region of the sample. Next, a region surrounded by grain boundaries in which the crystal orientation difference with adjacent grains is 15° or more was defined as one grain, and the circle-equivalent diameter of the grain determined to be bainite was calculated from the area of the grain. The average circle-equivalent diameter of the grains determined to be bainite was defined as the average grain size of bainite.
Among the crystal grains, crystal grains having elongated, lath-shaped ferrite were determined to be bainite.
[合せ材のビッカース硬さの測定]
 圧延方向に直角な断面、いわゆるT断面が測定面となるように、クラッド鋼板からサンプルを採取した。次いで、サンプルを鏡面研磨した。次いで、JIS Z 2244(2020)に準拠して、合せ材の板厚1/2位置において、圧延直角方向(圧延方向および板厚方向に直角の方向)に1mm間隔で20点のビッカース硬さ(HV10、測定荷重:10kgf)を測定した。そして、これらの平均値を、合せ材のビッカース硬さとした。なお、例えば、測定荷重:10kgfの条件で測定されるビッカース硬さが210である場合、通常、210HV10と表記される。
[Measurement of Vickers hardness of cladding material]
A sample was taken from the clad steel plate so that a cross section perpendicular to the rolling direction, that is, a so-called T-section, was the measurement surface. The sample was then mirror-polished. Next, in accordance with JIS Z 2244 (2020), the Vickers hardness (HV10, measurement load: 10 kgf) was measured at 20 points at 1 mm intervals in the direction perpendicular to the rolling (direction perpendicular to the rolling direction and the plate thickness direction) at the plate thickness 1/2 position of the clad material. The average value of these values was taken as the Vickers hardness of the clad material. For example, when the Vickers hardness measured under the condition of a measurement load of 10 kgf is 210, it is usually expressed as 210HV10.
[引張特性]
 クラッド鋼板から、圧延直角方向が長手方向となるように、JIS Z 2241(2022)の1B号試験片を採取して、JIS Z 2241(2022)に記載の要領で引張試験を行い、降伏強さYS(降伏点があるときは降伏点YP、ないときは0.2%耐力σ0.2)および引張強さ(TS)を測定した。そして、降伏強さが490MPa以上、かつ引張強さが610MPa以上のものを引張特性に優れると評価した。初期ひずみ速度は1×10―3/sとした。
[Tensile properties]
A JIS Z 2241 (2022) No. 1B test piece was taken from the clad steel plate so that the direction perpendicular to the rolling was the longitudinal direction, and a tensile test was performed as described in JIS Z 2241 (2022) to measure the yield strength YS (yield point YP when there is a yield point, 0.2% proof stress σ0.2 when there is no yield point) and tensile strength (TS). Then, those with a yield strength of 490 MPa or more and a tensile strength of 610 MPa or more were evaluated as having excellent tensile properties. The initial strain rate was 1 × 10 -3 /s.
[靭性]
 クラッド鋼板の母材から、圧延方向が長手方向となるように、JIS Z 2242(2018)のVノッチ試験片を採取して、JIS Z 2242(2018)の要領でシャルピー衝撃試験を行い、vTrsを測定した。そして、vTrsが-30℃以下のものを靭性に優れると評価した。
[Toughness]
A V-notch test piece according to JIS Z 2242 (2018) was taken from the base material of the clad steel plate so that the rolling direction was the longitudinal direction, and a Charpy impact test was performed according to the procedure of JIS Z 2242 (2018) to measure vTrs. Then, those with a vTrs of -30°C or less were evaluated as having excellent toughness.
[耐アンモニアSCC性]
 耐アンモニアSCC性は、以下の手順に従う4点曲げアノード電解試験により評価した。
 クラッド鋼板の第1面(内面)が評価面となるように、各クラッド鋼板から、厚さ:5mmの15mm×115mmの試験片を採取した。次いで、試験片に対して、アセトン中での超音波脱脂を5分間行った。次いで、4点曲げにより、各試験片に、各試験片の降伏強さに相当する応力を負荷した。次いで、応力を負荷した状態のまま、各試験片を試験セルに設置した。次いで、試験セルに、カルバミン酸アンモニウム12.5gと液体アンモニア1Lとを混合した試験溶液を充填した。次いで、ポテンショスタットにより参照電極との電位差が+2.0V vs Ptとなるように制御して、定電位アノード電解を行った。試験雰囲気の温度は、室温(25℃)とした。そして、この状態で、浸漬(通電)開始から720時間保持した。そして、保持後の試験片を目視により確認し、試験片に割れが認められない場合を、耐アンモニアSCC性が優れる(合格)と判定した。一方、試験片に割れが発生していた場合は、不良と判定した。
 評価結果を表2に併記する。
[Ammonia SCC resistance]
The ammonia SCC resistance was evaluated by a four-point bending anodic electrolysis test according to the following procedure.
A 15 mm x 115 mm test piece with a thickness of 5 mm was taken from each clad steel plate so that the first surface (inner surface) of the clad steel plate was the evaluation surface. Next, ultrasonic degreasing was performed on the test piece in acetone for 5 minutes. Next, a stress equivalent to the yield strength of each test piece was applied to each test piece by four-point bending. Next, each test piece was placed in a test cell while the stress was applied. Next, a test solution in which 12.5 g of ammonium carbamate and 1 L of liquid ammonia were mixed was filled in the test cell. Next, the potential difference with the reference electrode was controlled by a potentiostat to +2.0 V vs Pt, and constant potential anodic electrolysis was performed. The temperature of the test atmosphere was set to room temperature (25°C). Then, in this state, it was held for 720 hours from the start of immersion (current application). Then, the test piece after holding was visually confirmed, and if no cracks were found in the test piece, it was judged to have excellent ammonia SCC resistance (passed). On the other hand, if a crack occurred in the test piece, it was judged as defective.
The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、発明例はいずれも、490MPa以上の降伏強さYSと610MPa以上の引張強さとを有している。また、発明例はいずれも、vTrsが-30℃以下である。さらに、発明例はいずれも、耐アンモニアSCC性に優れている。すなわち、発明例はいずれも、耐アンモニアSCC性および低温靭性に優れると共に、高い強度を有している。 As can be seen from Table 2, all of the invention examples have a yield strength YS of 490 MPa or more and a tensile strength of 610 MPa or more. In addition, all of the invention examples have a vTrs of -30°C or less. Furthermore, all of the invention examples have excellent ammonia SCC resistance. In other words, all of the invention examples have excellent ammonia SCC resistance and low-temperature toughness, as well as high strength.
 これに対し、比較例であるNo.17は、CE/CEおよび合せ材のビッカース硬さが適正範囲外である。No.18および19はそれぞれ、tC1およびクラッド比が適正範囲外である。また、No.20~26は、製造条件の一部が適正範囲外であるため、所望の母材の金属組織が得られていない。その結果、これらの比較例では、降伏強さYS、引張強さTS、低温靱性および耐アンモニアSCC性のいずれかが劣っている。 In contrast, in Comparative Example No. 17, the CEB / CEC and Vickers hardness of the clad material are outside the appropriate range. In Comparative Examples No. 18 and 19, the tC1 and clad ratio are outside the appropriate range, respectively. In addition, in Comparative Examples No. 20 to 26, some of the manufacturing conditions are outside the appropriate range, so the desired metal structure of the base material is not obtained. As a result, these Comparative Examples are inferior in any one of the yield strength YS, tensile strength TS, low temperature toughness, and ammonia SCC resistance.
 また、No.27~34は母材の成分組成の一部が適正範囲外であるため、降伏強さYS、引張強さTS、低温靱性および耐アンモニアSCC性のいずれかが劣っている。 In addition, Nos. 27 to 34 have inferior yield strength YS, tensile strength TS, low-temperature toughness, and ammonia SCC resistance because some of the base metal composition is outside the appropriate range.
[実施例2]
 表1に示す成分組成(残部はFeおよび不可避的不純物)を有する母材素材鋼板と、表3に示す成分組成(残部はFeおよび不可避的不純物)を有する合せ材素材鋼板とを重ね合わせてクラッド素材鋼板を準備し、表4に示す条件で、クラッド鋼板(No.1~17)を製造した。得られたクラッド鋼板について、実施例1と同じ要領で、母材の金属組織におけるベイナイトの体積分率およびベイナイトの平均粒径の測定、合せ材のビッカース硬さの測定、ならびに、引張特性および靭性の評価を、それぞれ実施した。また、以下の要領で、液体アンモニア環境下における耐アンモニアSCC性の評価を実施した。
[Example 2]
A base material steel plate having the composition shown in Table 1 (the balance being Fe and unavoidable impurities) and a clad material steel plate having the composition shown in Table 3 (the balance being Fe and unavoidable impurities) were overlapped to prepare a clad material steel plate, and clad steel plates (Nos. 1 to 17) were manufactured under the conditions shown in Table 4. For the obtained clad steel plates, the volume fraction of bainite in the metal structure of the base material and the average grain size of bainite were measured, the Vickers hardness of the clad material was measured, and the tensile properties and toughness were evaluated in the same manner as in Example 1. In addition, an evaluation of ammonia SCC resistance in a liquid ammonia environment was performed in the following manner.
[耐アンモニアSCC性]
 実施例1と同様に、クラッド鋼板の第1面(内面)が試験面となるように、各クラッド鋼板から、厚さ:5mmの15mm×115mmの2枚の試験片を採取した。そして、一方の試験片には、クラッド鋼板の表面(第1面)に凹みが存在した場合を想定し、試験片の試験面に、深さ:0.3mm、直径:0.2mmのノッチを設けた。以下、ノッチなしの試験片を第1の試験片、ノッチ付きの試験片を第2の試験片という。ついで、第1の試験片および第2の試験片を用いて、実施例1と同じ要領で、4点曲げアノード電解試験を行った。そして、試験後の試験片を目視により確認し、以下の基準で、耐アンモニアSCC性を評価した。
 優(合格、特に優れる):第1の試験片および第2の試験片両方に割れが認められない。
 合格(優れる):第1の試験片では割れが認められないが、第2の試験片では割れが認められる。
 不良:第1の試験片および第2の試験片両方で割れが認められる。
[Ammonia SCC resistance]
As in Example 1, two test pieces measuring 15 mm x 115 mm and having a thickness of 5 mm were taken from each clad steel plate so that the first surface (inner surface) of the clad steel plate was the test surface. In one of the test pieces, a notch having a depth of 0.3 mm and a diameter of 0.2 mm was provided on the test surface of the test piece, assuming that a dent was present on the surface (first surface) of the clad steel plate. Hereinafter, the test piece without the notch is referred to as the first test piece, and the test piece with the notch is referred to as the second test piece. Next, a four-point bending anodic electrolysis test was performed using the first and second test pieces in the same manner as in Example 1. The test pieces after the test were visually inspected, and the ammonia SCC resistance was evaluated according to the following criteria.
Excellent (pass, particularly excellent): No cracks were observed in both the first test piece and the second test piece.
Pass (Excellent): No cracks observed on the first test piece, but cracks observed on the second test piece.
Poor: Cracks are observed in both the first and second test pieces.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、発明例はいずれも、490MPa以上の降伏強さYSと610MPa以上の引張強さとを有している。また、発明例はいずれも、vTrsが-30℃以下である。さらに、発明例はいずれも、耐アンモニアSCC性に優れている。すなわち、発明例はいずれも、耐アンモニアSCC性および低温靭性に優れると共に、高い強度を有している。特に、合せ材のCR値が0.30以上の場合には、特に優れた耐アンモニアSCC性を有していた。 As can be seen from Table 4, all of the inventive examples have a yield strength YS of 490 MPa or more and a tensile strength of 610 MPa or more. In addition, all of the inventive examples have a vTrs of -30°C or less. Furthermore, all of the inventive examples have excellent ammonia SCC resistance. In other words, all of the inventive examples have excellent ammonia SCC resistance and low-temperature toughness, as well as high strength. In particular, when the CR value of the cladding material was 0.30 or more, they had particularly excellent ammonia SCC resistance.

Claims (7)

  1.  母材の少なくとも片方の面に、炭素鋼である合せ材を有するクラッド鋼板であって、
     前記母材の成分組成が、質量%で、
     C:0.010~0.200%、
     Si:0.01~1.00%、
     Mn:0.50~2.50%、
     Al:0.001~0.060%、
     P:0.0200%以下および
     S:0.0100%以下
    を含有し、残部がFeおよび不可避的不純物であり、
     CE/CEが2.000以上であり、ここで、CEおよびCEはそれぞれ前記母材の炭素当量および前記合せ材の炭素当量であり、
     前記母材の金属組織において、ベイナイトの体積分率が90%以上であり、前記ベイナイトの平均粒径が25μm以下であり、
     前記合せ材のビッカース硬さが210HV10以下であり、
     tC1が2.0mm以上であり、tC2が0.0mm以上であり、かつ、(tC1+tC2)/(t+tC1+tC2)が0.30以下であり、ここで、tは前記母材の板厚であり、tC1は、前記合せ材のうち、前記母材の片方の面の合せ材の板厚であり、tC2は、前記合せ材のうち、前記母材の他方の面の合せ材の板厚である、クラッド鋼板。
    A clad steel plate having a cladding material which is carbon steel on at least one surface of a base material,
    The composition of the base material is, in mass%,
    C: 0.010 to 0.200%,
    Si: 0.01 to 1.00%,
    Mn: 0.50 to 2.50%,
    Al: 0.001 to 0.060%,
    Contains P: 0.0200% or less and S: 0.0100% or less, with the balance being Fe and unavoidable impurities;
    CEB / CEC is 2.000 or more, where CEB and CEC are the carbon equivalents of the base material and the cladding material, respectively;
    In the metal structure of the base material, the volume fraction of bainite is 90% or more, and the average grain size of the bainite is 25 μm or less,
    The Vickers hardness of the cladding material is 210HV10 or less,
    A clad steel plate, wherein tC1 is 2.0 mm or more, tC2 is 0.0 mm or more, and ( tC1 + tC2 )/( tB + tC1 + tC2 ) is 0.30 or less, where tB is the plate thickness of the base material, tC1 is the plate thickness of the clad material on one side of the base material, and tC2 is the plate thickness of the clad material on the other side of the base material.
  2.  前記母材の成分組成が、さらに質量%で、
     Cu:1.00%以下、
     Ni:2.00%以下、
     Cr:1.00%以下、
     Mo:1.00%以下、
     V:0.500%以下、
     Ti:0.100%以下、
     Nb:0.100%以下、
     Ca:0.0200%以下、
     Mg:0.0200%以下および
     REM:0.0200%以下
    のうちから選ばれる1種または2種以上を含有する、請求項1に記載のクラッド鋼板。
    The composition of the base material is further expressed in mass% as follows:
    Cu: 1.00% or less,
    Ni: 2.00% or less,
    Cr: 1.00% or less,
    Mo: 1.00% or less,
    V: 0.500% or less,
    Ti: 0.100% or less,
    Nb: 0.100% or less,
    Ca: 0.0200% or less,
    The clad steel plate according to claim 1, containing one or more selected from the group consisting of Mg: 0.0200% or less and REM: 0.0200% or less.
  3.  前記合せ材の成分組成が、質量%で、
     C:0.100%以下および
     Mn:0.01~1.50%
    を含有し、さらに、
     Cu:0.01~0.50%、
     Cr:0.01~0.50%、
     Sb:0.01~0.50%および
     Sn:0.01~0.50%
    のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物であり、
     以下の式(1)によって求められるCR値が0.30以上である、請求項1または2に記載のクラッド鋼板。
    CR値=2.3[Cu]+2.8[Cr]+7.3[Sb]+3.6[Sn]  ・・・(1)
     ここで、[X]は前記合せ材の成分組成における元素Xの含有量(質量%)を示す。
    The component composition of the composite material is, in mass%,
    C: 0.100% or less and Mn: 0.01 to 1.50%
    and further comprising
    Cu: 0.01 to 0.50%,
    Cr: 0.01 to 0.50%,
    Sb: 0.01 to 0.50% and Sn: 0.01 to 0.50%
    and the balance being Fe and unavoidable impurities,
    The clad steel plate according to claim 1 or 2, wherein a CR value calculated by the following formula (1) is 0.30 or more.
    CR value = 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
    Here, [X] indicates the content (mass %) of element X in the component composition of the cladding material.
  4.  母材の少なくとも片方の面に、炭素鋼である合せ材を有するクラッド鋼板を製造するための方法であって、
     請求項1または2に記載の母材の成分組成を有する母材素材鋼板と、請求項1に記載の炭素鋼の合せ材素材鋼板とを重ね合わせたクラッド素材鋼板を、1000~1250℃に加熱し、
     ついで、前記クラッド素材鋼板に、前記母材素材鋼板の未再結晶温度域での累積圧下率:20%以上、および、圧延終了温度:Ar変態点以上の熱間圧延を施して、熱延鋼板とし、
     ついで、前記熱延鋼板に、冷却開始温度:Ar変態点以上、平均冷却速度:20~120℃/s、冷却停止温度:500℃以下の冷却を施す、クラッド鋼板の製造方法。
    A method for manufacturing a clad steel plate having a base material and a cladding material which is carbon steel on at least one surface of the base material, comprising the steps of:
    A clad material steel plate obtained by overlapping a base material steel plate having the composition of the base material according to claim 1 or 2 with a clad material steel plate of the carbon steel according to claim 1 is heated to 1000 to 1250 ° C.,
    Next, the clad material steel plate is subjected to hot rolling at a cumulative rolling reduction rate of 20% or more in the non-recrystallization temperature range of the base material steel plate and at a rolling end temperature of the Ar3 transformation point or more to obtain a hot-rolled steel plate;
    The hot-rolled steel sheet is then cooled to a cooling start temperature of at least the Ar 3 transformation point, an average cooling rate of 20 to 120°C/s, and a cooling end temperature of 500°C or less.
  5.  前記合せ材素材鋼板の成分組成が、質量%で、
     C:0.100%以下および
     Mn:0.01~1.50%
    を含有し、さらに、
     Cu:0.01~0.50%、
     Cr:0.01~0.50%、
     Sb:0.01~0.50%および
     Sn:0.01~0.50%
    のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物であり、
     以下の式(1)によって求められるCR値が0.30以上である、請求項4に記載のクラッド鋼板の製造方法。
    CR値=2.3[Cu]+2.8[Cr]+7.3[Sb]+3.6[Sn]  ・・・(1)
     ここで、[X]は前記合せ材素材鋼板の成分組成における元素Xの含有量(質量%)を示す。
    The composition of the cladding material steel plate is, in mass%,
    C: 0.100% or less and Mn: 0.01 to 1.50%
    and further comprising
    Cu: 0.01 to 0.50%,
    Cr: 0.01 to 0.50%,
    Sb: 0.01 to 0.50% and Sn: 0.01 to 0.50%
    and the balance being Fe and unavoidable impurities,
    The method for producing a clad steel plate according to claim 4, wherein a CR value calculated by the following formula (1) is 0.30 or more.
    CR value = 2.3 [Cu] + 2.8 [Cr] + 7.3 [Sb] + 3.6 [Sn] ... (1)
    Here, [X] indicates the content (mass %) of element X in the chemical composition of the base steel sheet for cladding.
  6.  前記冷却後、前記熱延鋼板に650℃以下の温度域で焼戻しを施す、請求項4に記載のクラッド鋼板の製造方法。 The method for manufacturing clad steel plate according to claim 4, wherein after the cooling, the hot-rolled steel plate is tempered at a temperature range of 650°C or less.
  7.  前記冷却後、前記熱延鋼板に650℃以下の温度域で焼戻しを施す、請求項5に記載のクラッド鋼板の製造方法。
     
     
    The method for producing a clad steel plate according to claim 5, wherein after the cooling, the hot-rolled steel plate is tempered in a temperature range of 650°C or less.

PCT/JP2023/039921 2022-11-08 2023-11-06 Clad steel sheet and method for producing same WO2024101317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179160 2022-11-08
JP2022-179160 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024101317A1 true WO2024101317A1 (en) 2024-05-16

Family

ID=91032391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039921 WO2024101317A1 (en) 2022-11-08 2023-11-06 Clad steel sheet and method for producing same

Country Status (1)

Country Link
WO (1) WO2024101317A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269537A (en) * 1995-04-03 1996-10-15 Nippon Steel Corp Production of high tensile strength steel plate for liquefied ammonia tank
WO2019130914A1 (en) * 2017-12-28 2019-07-04 Jfeスチール株式会社 Cladded steel plate
WO2020004410A1 (en) * 2018-06-27 2020-01-02 Jfeスチール株式会社 Clad steel sheet and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269537A (en) * 1995-04-03 1996-10-15 Nippon Steel Corp Production of high tensile strength steel plate for liquefied ammonia tank
WO2019130914A1 (en) * 2017-12-28 2019-07-04 Jfeスチール株式会社 Cladded steel plate
WO2020004410A1 (en) * 2018-06-27 2020-01-02 Jfeスチール株式会社 Clad steel sheet and production method thereof

Similar Documents

Publication Publication Date Title
US9493865B2 (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
KR101686257B1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
US8801874B2 (en) Steel plate and steel pipe for line pipes
JP7147960B2 (en) Steel plate and its manufacturing method
EP2743363B1 (en) Nickel steel plate and manufacturing process therefor
JP6380712B1 (en) Low temperature nickel-containing steel and low temperature tank
US11628512B2 (en) Clad steel plate and method of producing the same
KR20190077470A (en) High Mn steel sheet and manufacturing method thereof
JP6394835B1 (en) Low temperature nickel-containing steel sheet and low temperature tank using the same
JP6834550B2 (en) Steel materials for tanks and their manufacturing methods
EP2990498A1 (en) H-shaped steel and method for producing same
JP2021036077A (en) HIGH-Mn STEEL
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
CN115210400B (en) Steel material, method for producing same, and tank
JP5428999B2 (en) LPG / ammonia mixed steel manufacturing method
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
WO2024101317A1 (en) Clad steel sheet and method for producing same
JP7323088B1 (en) Steel plate and its manufacturing method
TWI836897B (en) Steel plate and its manufacturing method
JP2018123416A (en) Nickel-containing steel material for low temperatures and tank for low temperatures therewith
JP2018123418A (en) Nickel-containing steel material for low temperatures and tank for low temperatures therewith
WO2023162507A1 (en) Steel sheet and method for producing same
WO2023162571A1 (en) Steel plate and method for manufacturing same