WO2024101250A1 - Method for producing microgel, and method for producing decorative microgel aggregate - Google Patents

Method for producing microgel, and method for producing decorative microgel aggregate Download PDF

Info

Publication number
WO2024101250A1
WO2024101250A1 PCT/JP2023/039495 JP2023039495W WO2024101250A1 WO 2024101250 A1 WO2024101250 A1 WO 2024101250A1 JP 2023039495 W JP2023039495 W JP 2023039495W WO 2024101250 A1 WO2024101250 A1 WO 2024101250A1
Authority
WO
WIPO (PCT)
Prior art keywords
microgel
polymer
producing
emulsion
decorative
Prior art date
Application number
PCT/JP2023/039495
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 山中
彰子 豊玉
透 奥薗
綾音 平井
麻菜 濱中
智彦 佐藤
亮太 中村
Original Assignee
公立大学法人名古屋市立大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学, 株式会社ダイセル filed Critical 公立大学法人名古屋市立大学
Publication of WO2024101250A1 publication Critical patent/WO2024101250A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions

Definitions

  • This disclosure relates to a method for producing a microgel and a method for producing a decorative microgel aggregate.
  • Patent Document 1 describes that fish egg-shaped spherical particles can be obtained by dropping an aqueous solution of sodium alginate into an aqueous solution of calcium and coagulating the solution.
  • the method of producing gel particles by dropping an aqueous polymer solution into an aqueous solution containing polyvalent cations it is difficult to reduce the particle size to approximately the wavelength of visible light.
  • Non-Patent Document 1 describes a method in which an aqueous solution of sodium alginate containing CaCO3 is dispersed in an oil phase to form an emulsion, and acetic acid is added to dissolve the CaCO3 and gel the alginic acid to form microparticles.
  • the diameter of the alginate gel particles is 200 to 1000 ⁇ m, and it is difficult to obtain gel particles smaller than this. Therefore, even if the gel particles obtained by this method are collected into an aggregate, they will not exhibit structural color due to light interference.
  • the present invention was made in consideration of the above-mentioned conventional situation, and aims to provide a gel (hereinafter referred to as a "microgel”) with a small enough diameter that, when assembled, it is capable of exhibiting structural color due to the interference of light, and to provide a decorative microgel assembly that exhibits structural color due to the interference of light.
  • a gel hereinafter referred to as a "microgel”
  • the microgel manufacturing method of the present invention is characterized by mixing a first W/O type emulsion in which an aqueous polymer solution is emulsified with an emulsifier in an oil phase with a second W/O type emulsion in which an aqueous polyvalent cation solution capable of gelling the aqueous polymer solution is emulsified with an emulsifier in an oil phase to produce a microgel dispersion.
  • a first W/O type emulsion in which an aqueous polymer solution is emulsified with an emulsifier in an oil phase is mixed with a second W/O type emulsion in which an aqueous polyvalent cation solution capable of gelling the aqueous polymer solution is emulsified with an emulsifier in an oil phase.
  • the decorative microgel manufacturing method of the present invention is characterized by comprising an emulsion mixing step of mixing a first W/O type emulsion obtained by emulsifying a polymer aqueous solution in an oil phase with an emulsifier with a second W/O type emulsion obtained by emulsifying a polyvalent cation aqueous solution capable of gelling the polymer aqueous solution in an oil phase with an emulsifier to obtain a microgel dispersion, and an emulsion breaking step of adding an emulsion breaker, which is a good solvent for the emulsifier and a poor solvent for the polymer, to the microgel dispersion to break the emulsion state.
  • an emulsion mixing step of mixing a first W/O type emulsion obtained by emulsifying a polymer aqueous solution in an oil phase with an emulsifier with a second W/O type emulsion obtained by emulsifying a
  • the micro-droplets of the emulsified polymer aqueous solution in the first W/O type emulsion are united with the micro-droplets of the emulsified polyvalent cation aqueous solution in the second W/O type emulsion to gel, forming a dispersion of microgels made of polymers with a size equal to or smaller than the wavelength of visible light.
  • the dispersion of microgels made of polymers is a good solvent for the emulsifier, and the emulsion is broken by an emulsion breaker that is a poor solvent for the polymers to form an aggregate of microgels.
  • the aggregate of microgels manufactured in this way is an aggregate of microgels with a particle size equal to or smaller than the wavelength of visible light, and therefore exhibits structural color due to the interference of light.
  • the average primary particle size of the microgel particles that make up the decorative microgel aggregate is preferably 10 nm or more and 1000 nm or less. This makes it possible to cause diffraction of visible light and produce structural colors through interference. More preferably, it is 20 nm or more and 830 nm or less, and most preferably, it is 100 nm or more and 500 nm or less.
  • the lower limit of the wavelength range of visible light is said to be 360 to 400 nm, but since there are cases where microgel particles undergo secondary aggregation, even colloidal particles with an average particle size below the lower limit can cause diffraction of visible light.
  • the decorative microgel aggregate has excellent biocompatibility. Therefore, it can be used favorably in areas that come into direct contact with the skin, such as cosmetics. In addition, by using a naturally derived water-soluble polymer, it is possible to produce a decorative microgel aggregate with low environmental impact.
  • FIG. 1 is a process diagram of a microgel production method.
  • FIG. 2 is a schematic diagram showing how emulsified particles of a W/O emulsion of an aqueous polymer solution and emulsified particles of a W/O emulsion of an aqueous polyvalent cation solution coalesce in the emulsion mixing step S1.
  • FIG. 2 is a process diagram of a method for producing a decorative microgel assembly.
  • 1A to 1C are schematic diagrams showing a manufacturing process of a decorative microgel assembly.
  • 1 is an optical microscope photograph of the alginate microgel dispersion of Example 1.
  • 1 is an optical microscope photograph of an alginate microgel particle aggregate of Example 1.
  • FIG. 1 is a graph showing the measurement of the reflectance spectrum of the alginate microgel aggregate of Example 1.
  • 1 is an optical microscope photograph of a gel particle aggregate of Comparative Example 1.
  • FIG. 1 is a schematic diagram showing a method for producing gel particles of Comparative Examples 2-1 to 2-4 (excerpted from the product catalog of SPG Techno Co., Ltd.). 1 shows optical microscope photographs of Comparative Example 2-1 to Comparative Example 2-4 (in the figure, (a) shows a sample in an emulsion state, (b) shows gel particles before washing, and (c) shows gel particles after washing).
  • FIG. 1 shows a process diagram of the microgel production method according to the embodiment.
  • the polymer aqueous solution and the emulsifier are added to the oil phase and mixed to obtain a W/O type emulsion 1 of the polymer aqueous solution.
  • the oil phase any solvent that becomes an immiscible phase when mixed with the polymer aqueous solution can be used.
  • low polarity solvents such as hydrocarbon solvents such as hexane and octane, and aromatic solvents such as benzene and alkylbenzene can be used.
  • Natural oils such as rapeseed oil can also be used.
  • the type of polymer is not particularly limited as long as it is a polymer that gels with polyvalent cations.
  • examples of such polymers include acidic polymer polysaccharides having carboxy groups, such as alginic acid, pectinic acid, colominic acid, and glucuronic acid, and alkali metal salts thereof, and proteins such as glycinin.
  • nonionic surfactants e.g., Tween 20, Tween 40, Tween 80, etc.
  • anionic surfactants e.g., anionic surfactants, cationic surfactants, betaine type surfactants, etc.
  • mixing method mixing by a stirrer, mixing by ultrasonic waves, mixing by a homogenizer, mixing by using a fine channel, and mixing by using a combination of these can be performed.
  • the polyvalent cation aqueous solution and the low polarity solvent are mixed with the addition of an emulsifier to obtain a W/O type emulsion 2 of a polyvalent cation aqueous solution.
  • polyvalent cations include calcium ions, magnesium ions, strontium ions, aluminum ions, iron ions, and copper ions.
  • the oil phase can be any solvent that is an immiscible phase when mixed with the polymer aqueous solution.
  • low polarity solvents such as hydrocarbon solvents such as hexane and octane, and aromatic solvents such as benzene and alkylbenzene can be used.
  • the oil phase can be the same as that used in the W/O type emulsion 1 of a polymer aqueous solution, or a different oil phase.
  • the emulsifier can be the same as that used in the W/O type emulsion 1 of a polymer aqueous solution, or a different emulsifier.
  • the type of emulsifier that can be used includes nonionic surfactants (e.g., Tween 20, Tween 40, Tween 80, etc.), anionic surfactants, cationic surfactants, betaine type surfactants, etc.
  • Mixing methods include mixing with a stirrer, mixing with ultrasonic waves, mixing with a homogenizer, mixing using a microchannel, and a combination of these.
  • the thus prepared W/O type emulsion 1 of the aqueous polymer solution and the W/O type emulsion 2 of the aqueous polyvalent cation solution are mixed (emulsion mixing step S1).
  • the mixing method can be agitator mixing, ultrasonic mixing, microchannel mixing, or a combination of these.
  • emulsion particles 6 made of the aqueous polymer solution emulsified by emulsifier 5 in oil phase 4 and emulsion particles 9 made of the aqueous polyvalent cation solution emulsified by emulsifier 8 in oil phase 7 are united and gelled to form microgel particles 10.
  • the particle diameter of the microgel particles 10 thus obtained can be approximately the same as or smaller than the wavelength of visible light.
  • Emulsion breaking step S2 An emulsion breaker, which is a good solvent for the emulsifier and a poor solvent for the polymer, is added to the microgel dispersion 3 obtained by carrying out the above-mentioned emulsion mixing step S1 to extract the emulsifier, thereby flocculating the microgel into a decorative microgel aggregate 11 (see FIG. 3).
  • emulsion breakers include alkyl alcohols such as ethanol and propanol.
  • the decorative microgel aggregate can be separated by filtration, decantation, or precipitating the decorative microgel aggregate using a centrifuge.
  • Example 1 Preparation of microgel dispersion (emulsion mixing step S1) A microgel dispersion was prepared using an aqueous sodium alginate solution (a commercially available product (Wako Pure Chemical Industries, Ltd.) with a viscosity of 300 to 400 cps for a 1% aqueous solution) by the method shown in FIG. 4.
  • aqueous sodium alginate solution a commercially available product (Wako Pure Chemical Industries, Ltd.) with a viscosity of 300 to 400 cps for a 1% aqueous solution
  • Liquid A a W/O type emulsion of the aqueous sodium alginate solution
  • Emulsion breaking step S2 0.1 mL of the alginate microgel dispersion obtained by the emulsion mixing step S1 was placed in a glass bottle, and 0.5 mL of ethanol was added as an emulsion breaker and mixed. The glass bottle was then heated with a dryer to volatilize hexane, which has a lower boiling point than ethanol. The ethanol phase was removed by centrifuging twice at 13,500 rpm for 10 minutes using a centrifuge to obtain a precipitate. When the precipitate was observed under an optical microscope, aggregates of orange and red alginate microgel particles were clearly observed, as shown in Figure 6.
  • Hexane and ethanol can be mixed in any ratio to form a homogeneous liquid, so the hexane in the alginate microgel dispersion is extracted into ethanol. Furthermore, since ethanol is a good solvent for SPAN80 (the solubility of SPAN80 in ethanol is approximately 5 wt%), SPAN80 is extracted into the ethanol-hexane phase. Furthermore, since ethanol is a poor solvent for sodium alginate, sodium alginate is not extracted into the ethanol-hexane phase. Furthermore, at least a part of the water migrates to the ethanol-hexane phase. As a result, the W/O emulsion is destroyed and aggregates of alginate microgel are precipitated.
  • Example 2 In Example 2, 1-propanol was used as the solvent added in the emulsion breaking step S2. The rest of the process was the same as in Example 1, and the description will be omitted. As a result, in Example 2 as well, as in Example 1, an alginate microgel aggregate emitting visible light was obtained.
  • Comparative Example 1 gel particles were prepared from an aqueous sodium alginate solution by a method described in the following literature, with some modifications: A.Tachaprutinun, P.Pan-In, and S.Wanichwecharungruang, “Mucosa-plate for direct evaluation of mucoadhesion of drug carriers”, Int. J. Pharmaceutics 441,(2013)801-808.
  • Sodium alginate was used as a commercially available product (Wako Pure Chemical Industries, Ltd.) with a viscosity of 300-400 cps for a 1% aqueous solution.
  • 15 mL of 2 wt% sodium alginate aqueous solution, 90 mL of rapeseed oil, 1.8 mL of ethanol, and 6 mL of nonionic surfactant Celmoris B044 (manufactured by Daicel Corporation) were placed in a 300 mL round-bottom flask and stirred at room temperature at 1500 rpm for 15 minutes using a magnetic stirrer to obtain a W/O type emulsion with the sodium alginate aqueous solution as the aqueous phase.
  • the aqueous dispersion of alginic acid gel thus obtained was filtered through a 5 ⁇ m, 1 ⁇ m, 0.45 ⁇ m, and 0.2 ⁇ m membrane filter in this order using a glass suction filter, and the gel particles remaining on the filter were finally collected. These gel particles were dispersed again in water, and ion exchange resin was added, followed by shaking to desalt. After purifying a 0.5 wt% aqueous solution of hydroxyethyl cellulose (SE900, Daicel Corporation) by adding an ion exchange resin, 200 ⁇ L was taken and mixed with 100 ⁇ L of desalted gel dispersion and 100 ⁇ L of water, and allowed to stand for 25 hours to obtain an aggregate.
  • SE900 hydroxyethyl cellulose
  • the gel particles formed an aggregate because the addition of hydroxyethyl cellulose caused a depletion attractive force between the gel particles.
  • this aggregate was observed under an optical microscope, as shown in Figure 8, an aggregate of gel particles was observed, and the particle size of this aggregate was about 3 to 5 ⁇ m. However, no coloring was observed. From these results, it was found that even if a W/O type emulsion in which an aqueous sodium alginate solution is used as the water phase is contacted with an aqueous calcium chloride solution, it is not possible to obtain a microgel with a particle size small enough to show structural color due to light interference.
  • the dispersion was then filled into a syringe (Hamilton Gastight Syringe 5 mL (Hamilton Company Inc.)) and a porous glass filter (SPG membrane) (SPG Techno Co., Ltd.) with uniform micron-sized pores was attached to the injection port of the syringe (the pore size of the filter was 10 ⁇ m in Comparative Examples 2-1 and 2-2, and 1 ⁇ m in Comparative Examples 2-3 and 2-4).
  • the filter part was then immersed in the sorbitan monooleate solution and the syringe was gradually pulled back to suck up the sorbitan monooleate solution, allowing the SPG membrane to be infiltrated with the sorbitan monooleate solution.
  • the disk holder was then removed and the sucked up sorbitan monooleate solution was completely pushed out. After the dispersion was extruded, approximately 2 mL of the dispersion was sucked up, the disk holder was reconnected, and it was fixed to a microsyringe pump (AS ONE Corporation). The filter portion was then again immersed in the sorbitan monooleate solution, and while stirring at 300 rpm, the syringe was gradually lowered to extrude the dispersion into the sorbitan monooleate solution, forming a W/O type emulsion.
  • the amount of each reagent and the preparation conditions for the gel particle dispersion are shown in Table 1.
  • the concentrations of CaCO3 and NaCl are shown with the total amount of the dispersion taken as 100%, and the concentration of sodium alginate is shown relative to the total weight of the dispersion.
  • the gel particles thus obtained and the emulsion before gelation were observed using an inverted optical microscope ECLIPSE Ti-S (Nikon Corporation).
  • the objective lenses used were ⁇ 20 and ⁇ 40 (both Plan Fluor, Nikon Corporation).
  • the particle diameters of the gel particles were all 1 ⁇ m or more and varied greatly from particle to particle, as shown in Figure 10.
  • no structural color due to light interference was observed ((a) in the figure shows the sample in an emulsion state, (b) shows the gel particles before washing, and (c) shows the gel particles after washing).
  • the decorative microgel aggregates disclosed herein exhibit structural colors due to the interference of light. Moreover, they can also be made into gel aggregates of naturally occurring water-soluble polymers. For this reason, they can be ideally used in cosmetics and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a method for producing: a gel having a particle size that is small enough to be capable of exhibiting structural colors due to light interference when formed into an aggregate; and a decorative microgel aggregate that exhibits structural colors due to light interference. A decorative microgel aggregate according to the present disclosure is obtained by mixing a W/O type emulsion in which a polymer aqueous solution has been emulsified with an emulsifier and a W/O type emulsion in which a polyvalent cation aqueous solution that can form the polymer aqueous solution into a gel has been emulsified with an emulsifier, and thereby forming a microgel dispersion (emulsion mixing step S1), and destroying the emulsion state by adding, to the microgel dispersion, an emulsion breaker which is a good solvent for the emulsifier and a poor solvent for the polymer (emulsion destruction step S2).

Description

マイクロゲル製造方法、及び加飾性マイクロゲル集合体の製造方法Method for producing microgel and method for producing decorative microgel aggregate
 本開示は、マイクロゲル製造方法、及び加飾性マイクロゲル集合体の製造方法に関する。 This disclosure relates to a method for producing a microgel and a method for producing a decorative microgel aggregate.
 水溶性の高分子に、マグネシウムやカルシウムなどの多価陽イオンを含む水溶液を加えることにより、高分子がゲル化するという現象が知られている(例えば、豆乳にマグネシウム塩を含んだ「にがり」を添加すれば、凝固して豆腐となる等)。また、この現象を利用した、高分子ゲル粒子の製造方法も知られている。例えば、特許文献1には、アルギン酸ナトリウム水溶液をカルシウム水溶液中に滴下して凝固させることにより、魚卵状球形粒子が得られることが記載されている。
 しかし、多価陽イオンを含む水溶液に高分子水溶液を滴下してゲル粒子を製造する方法では、粒子径を可視光の波長程度までに小さくすることは困難である。
It is known that a water-soluble polymer gels when an aqueous solution containing multivalent cations such as magnesium or calcium is added to the polymer (for example, adding "bittern" containing magnesium salt to soy milk causes the polymer to coagulate and become tofu). A method for producing polymer gel particles utilizing this phenomenon is also known. For example, Patent Document 1 describes that fish egg-shaped spherical particles can be obtained by dropping an aqueous solution of sodium alginate into an aqueous solution of calcium and coagulating the solution.
However, in the method of producing gel particles by dropping an aqueous polymer solution into an aqueous solution containing polyvalent cations, it is difficult to reduce the particle size to approximately the wavelength of visible light.
 小さな径のゲル粒子を得る方法として、非特許文献1にはCaCO3を内包させたアルギン酸ナトリウム水溶液を油相に分散させてエマルションとし、酢酸を加えることによりCaCO3を溶解させてアルギン酸をゲル化させ、微小粒子とする方法が記載されている。
 しかし、この方法を用いたとしても、アルギン酸ゲル粒子の径は200~1000μmであり、それよりも小さい径のゲル粒子を得ることは困難である。したがって、この方法によって得られたゲル粒子を集めて集合体としても、光の干渉による構造色を呈することはない。
As a method for obtaining small-sized gel particles, Non-Patent Document 1 describes a method in which an aqueous solution of sodium alginate containing CaCO3 is dispersed in an oil phase to form an emulsion, and acetic acid is added to dissolve the CaCO3 and gel the alginic acid to form microparticles.
However, even if this method is used, the diameter of the alginate gel particles is 200 to 1000 μm, and it is difficult to obtain gel particles smaller than this. Therefore, even if the gel particles obtained by this method are collected into an aggregate, they will not exhibit structural color due to light interference.
特開昭59-159759号公報0JP 59-159759 A
 本発明は上記従来の実情に鑑みてなされたものであり、集合体とした場合、光の干渉による構造色を呈することが可能な程度に小さい径のゲル(以下「マイクロゲル」という)を提供すること、及び、光の干渉による構造色を呈する加飾性マイクロゲル集合体を提供することを解決すべき課題とする。 The present invention was made in consideration of the above-mentioned conventional situation, and aims to provide a gel (hereinafter referred to as a "microgel") with a small enough diameter that, when assembled, it is capable of exhibiting structural color due to the interference of light, and to provide a decorative microgel assembly that exhibits structural color due to the interference of light.
 本発明のマイクロゲル製造方法は、油相中で高分子水溶液を乳化剤で乳化させた第1のW/O型エマルションと、油相中で、該高分子水溶液をゲル化させることが可能な多価陽イオン水溶液を乳化剤で乳化させた第2のW/O型エマルションとを混合してマイクロゲル分散液とすることを特徴とする。 The microgel manufacturing method of the present invention is characterized by mixing a first W/O type emulsion in which an aqueous polymer solution is emulsified with an emulsifier in an oil phase with a second W/O type emulsion in which an aqueous polyvalent cation solution capable of gelling the aqueous polymer solution is emulsified with an emulsifier in an oil phase to produce a microgel dispersion.
 本発明のマイクロゲル製造方法では、油相中で高分子水溶液を乳化剤で乳化させた第1のW/O型エマルションと、油相中で、該高分子水溶液をゲル化させることが可能な多価陽イオン水溶液を乳化剤で乳化させた第2のW/O型エマルションとを混合させることにより、高分子水溶液が乳化された微小液滴が、多価陽イオン水溶液が乳化された微小液滴と合一してゲル化し、可視光の波長と同程度またはそれ以下の粒径のマイクロゲルの分散液となる。 In the microgel manufacturing method of the present invention, a first W/O type emulsion in which an aqueous polymer solution is emulsified with an emulsifier in an oil phase is mixed with a second W/O type emulsion in which an aqueous polyvalent cation solution capable of gelling the aqueous polymer solution is emulsified with an emulsifier in an oil phase. This causes the microdroplets of the emulsified aqueous polymer solution to merge with the microdroplets of the emulsified aqueous polyvalent cation solution and gel, forming a dispersion of microgels with particle sizes comparable to or smaller than the wavelength of visible light.
 本発明の加飾性マイクロゲル製造方法は、油相中で高分子水溶液を乳化剤で乳化させた第1のW/O型エマルションと、油相中で、該高分子水溶液をゲル化させることが可能な多価陽イオン水溶液を乳化剤で乳化させた第2のW/O型エマルションとを混合してマイクロゲル分散液とするエマルション混合工程と、前記乳化剤の良溶媒であり、且つ、前記高分子の貧溶媒であるエマルションブレーカーを前記マイクロゲル分散液に加えてエマルション状態を破壊するエマルション破壊工程とを備えることを特徴とする。 The decorative microgel manufacturing method of the present invention is characterized by comprising an emulsion mixing step of mixing a first W/O type emulsion obtained by emulsifying a polymer aqueous solution in an oil phase with an emulsifier with a second W/O type emulsion obtained by emulsifying a polyvalent cation aqueous solution capable of gelling the polymer aqueous solution in an oil phase with an emulsifier to obtain a microgel dispersion, and an emulsion breaking step of adding an emulsion breaker, which is a good solvent for the emulsifier and a poor solvent for the polymer, to the microgel dispersion to break the emulsion state.
 本発明の加飾性マイクロゲル製造方法では、エマルション混合工程において、第1のW/O型エマルションにおける高分子水溶液が乳化された微粒子液滴が、第2のW/O型エマルションにおける、多価陽イオン水溶液が乳化された微粒子液滴と合一してゲル化し、可視光の波長と同程度またはそれ以下のサイズの高分子からなるマイクロゲルの分散液となる。さらに、エマルション破壊工程において、高分子からなるマイクロゲルの分散液が乳化剤の良溶媒であり、且つ、前記高分子の貧溶媒であるエマルションブレーカーによってエマルションが破壊されてマイクロゲルの集合体となる。こうして製造されたマイクロゲルの集合体は、可視光の波長と同程度またはそれ以下の粒径のマイクロゲルが集まった集合体となるため、光の干渉による構造色を呈する。 In the decorative microgel manufacturing method of the present invention, in the emulsion mixing step, the micro-droplets of the emulsified polymer aqueous solution in the first W/O type emulsion are united with the micro-droplets of the emulsified polyvalent cation aqueous solution in the second W/O type emulsion to gel, forming a dispersion of microgels made of polymers with a size equal to or smaller than the wavelength of visible light. Furthermore, in the emulsion breaking step, the dispersion of microgels made of polymers is a good solvent for the emulsifier, and the emulsion is broken by an emulsion breaker that is a poor solvent for the polymers to form an aggregate of microgels. The aggregate of microgels manufactured in this way is an aggregate of microgels with a particle size equal to or smaller than the wavelength of visible light, and therefore exhibits structural color due to the interference of light.
 加飾性マイクロゲル集合体を構成しているマイクロゲル粒子の平均一次粒子径は10nm以上1000nm以下とされていることが好ましい。こうであれば、可視光線に対して回折現象を起こして干渉による構造色を呈することが可能となる。さらに好ましいのは20nm以上830nm以下であり、最も好ましいのは100nm以上500nmである。なお、可視光の波長範囲の下限は360~400nmといわれているが、マイクロゲル粒子が2次凝集している場合もあるので、下限以下の平均粒子径のコロイド粒子であっても可視光の回折現象は可能である。 The average primary particle size of the microgel particles that make up the decorative microgel aggregate is preferably 10 nm or more and 1000 nm or less. This makes it possible to cause diffraction of visible light and produce structural colors through interference. More preferably, it is 20 nm or more and 830 nm or less, and most preferably, it is 100 nm or more and 500 nm or less. The lower limit of the wavelength range of visible light is said to be 360 to 400 nm, but since there are cases where microgel particles undergo secondary aggregation, even colloidal particles with an average particle size below the lower limit can cause diffraction of visible light.
 前記高分子を天然由来の水溶性高分子とすることにより、生体適合性に優れた加飾性マイクロゲル集合体となる。このため、化粧品等の皮膚に直接接触する部位にも好適に用いることができる。また、天然由来の水溶性高分子を用いることにより、環境負荷の低い加飾性マイクロゲル集合体を作製することができる。 By using a naturally derived water-soluble polymer as the polymer, the decorative microgel aggregate has excellent biocompatibility. Therefore, it can be used favorably in areas that come into direct contact with the skin, such as cosmetics. In addition, by using a naturally derived water-soluble polymer, it is possible to produce a decorative microgel aggregate with low environmental impact.
マイクロゲル製造方法の工程図である。FIG. 1 is a process diagram of a microgel production method. エマルション混合工程S1において、高分子水溶液のW/Oエマルションの乳化粒子と、多価陽イオン水溶液のW/Oエマルションの乳化粒子とが合一する様子を示す模式図である。FIG. 2 is a schematic diagram showing how emulsified particles of a W/O emulsion of an aqueous polymer solution and emulsified particles of a W/O emulsion of an aqueous polyvalent cation solution coalesce in the emulsion mixing step S1. 加飾性マイクロゲル集合体の製造方法の工程図である。FIG. 2 is a process diagram of a method for producing a decorative microgel assembly. 加飾性マイクロゲル集合体の製造工程を示す模式図である。1A to 1C are schematic diagrams showing a manufacturing process of a decorative microgel assembly. 実施例1のアルギン酸マイクロゲル分散液の光学顕微鏡写真である。1 is an optical microscope photograph of the alginate microgel dispersion of Example 1. 実施例1のアルギン酸マイクロゲル粒子集合体の光学顕微鏡写真である。1 is an optical microscope photograph of an alginate microgel particle aggregate of Example 1. 実施例1のアルギン酸マイクロゲル集合体の反射スペクトルの測定を示すグラフである。1 is a graph showing the measurement of the reflectance spectrum of the alginate microgel aggregate of Example 1. 比較例1のゲル粒子集合体の光学顕微鏡写真である。1 is an optical microscope photograph of a gel particle aggregate of Comparative Example 1. 比較例2-1~2-4のゲル粒子の製造方法を示す模式図である(エス・ピー・ジーテクノ株式会社の製品カタログより抜粋)。FIG. 1 is a schematic diagram showing a method for producing gel particles of Comparative Examples 2-1 to 2-4 (excerpted from the product catalog of SPG Techno Co., Ltd.). 比較例2-1~比較例2-4の光学顕微鏡写真である(図中の(a)はエマルション状態の試料、(b)は洗浄前のゲル粒子、(c)は洗浄後のゲル粒子を示す)。1 shows optical microscope photographs of Comparative Example 2-1 to Comparative Example 2-4 (in the figure, (a) shows a sample in an emulsion state, (b) shows gel particles before washing, and (c) shows gel particles after washing).
(マイクロゲル製造方法)
・エマルション混合工程S1
 実施形態のマイクロゲル製造方法の工程図を図1に示す。
 油相中に高分子水溶液と乳化剤とを加えて混合し、高分子水溶液のW/O型エマルション1とする。油相としては、高分子水溶液と混合した場合に混じり合わない相となる溶媒であれば用いることができる。例えば、ヘキサン、オクタン等の炭化水素系溶媒、ベンゼン、アルキルベンゼン等の芳香族系溶媒といった低極性溶媒を用いることができる。また、ナタネ油などの天然の油を用いることができる。また、高分子の種類としては、多価陽イオンによってゲル化する高分子であれば、特に限定は無い。このような高分子として、例えば、アルギン酸、ペクチン酸、コロミン酸、グルクロン酸をはじめとする、カルボキシ基を有する酸性高分子多糖類、およびそれらのアルカリ金属塩、グリシニンなどのタンパク質などが挙げられる。乳化剤としては、ノニオン界面活性剤(例えばTween20、Tween40、Tween80等)、アニオン界面活性剤、カチオン界面活性剤、ベタイン型界面活性剤などを用いることができる。混合方法については、撹拌機による混合、超音波による混合、ホモジナイザーによる混合、微細流路を用いた混合、それらの併用による混合を行うことができる。
(Microgel Manufacturing Method)
Emulsion mixing step S1
FIG. 1 shows a process diagram of the microgel production method according to the embodiment.
The polymer aqueous solution and the emulsifier are added to the oil phase and mixed to obtain a W/O type emulsion 1 of the polymer aqueous solution. As the oil phase, any solvent that becomes an immiscible phase when mixed with the polymer aqueous solution can be used. For example, low polarity solvents such as hydrocarbon solvents such as hexane and octane, and aromatic solvents such as benzene and alkylbenzene can be used. Natural oils such as rapeseed oil can also be used. In addition, the type of polymer is not particularly limited as long as it is a polymer that gels with polyvalent cations. Examples of such polymers include acidic polymer polysaccharides having carboxy groups, such as alginic acid, pectinic acid, colominic acid, and glucuronic acid, and alkali metal salts thereof, and proteins such as glycinin. As the emulsifier, nonionic surfactants (e.g., Tween 20, Tween 40, Tween 80, etc.), anionic surfactants, cationic surfactants, betaine type surfactants, etc. can be used. As for the mixing method, mixing by a stirrer, mixing by ultrasonic waves, mixing by a homogenizer, mixing by using a fine channel, and mixing by using a combination of these can be performed.
 さらに、別の容器を用意し、多価陽イオン水溶液と低極性溶媒とを乳化剤を加えて混合し、多価陽イオン水溶液のW/O型エマルション2とする。多価陽イオンとしては、カルシウムイオン、マグネシウムイオン、ストロンチウムイオン、アルミニウムイオン、鉄イオン、銅イオンなどが挙げられる。また、油相としては、高分子水溶液と混合した場合に混じり合わない相となる溶媒であれば用いることができる。例えば、ヘキサン、オクタン等の炭化水素系溶媒、ベンゼン、アルキルベンゼン等の芳香族系溶媒といった低極性溶媒を用いることができる。高分子水溶液のW/O型エマルション1で用いた油相と同じ油相を用いることもできるが、異なる油相であってもよい。また、乳化剤としては、高分子水溶液のW/O型エマルション1で用いた乳化剤を用いてもよいが、異なる乳化剤であってもよい。乳化剤の種類としては、ノニオン界面活性剤(例えばTween20、Tween40、Tween80等)、アニオン界面活性剤、カチオン界面活性剤、ベタイン型界面活性剤などを用いることができる。混合方法については、撹拌機による混合、超音波による混合、ホモジナイザーによる混合、微細流路を用いた混合、それらの併用による混合を行うことができる。 Furthermore, another container is prepared, and the polyvalent cation aqueous solution and the low polarity solvent are mixed with the addition of an emulsifier to obtain a W/O type emulsion 2 of a polyvalent cation aqueous solution. Examples of polyvalent cations include calcium ions, magnesium ions, strontium ions, aluminum ions, iron ions, and copper ions. In addition, the oil phase can be any solvent that is an immiscible phase when mixed with the polymer aqueous solution. For example, low polarity solvents such as hydrocarbon solvents such as hexane and octane, and aromatic solvents such as benzene and alkylbenzene can be used. The oil phase can be the same as that used in the W/O type emulsion 1 of a polymer aqueous solution, or a different oil phase. In addition, the emulsifier can be the same as that used in the W/O type emulsion 1 of a polymer aqueous solution, or a different emulsifier. The type of emulsifier that can be used includes nonionic surfactants (e.g., Tween 20, Tween 40, Tween 80, etc.), anionic surfactants, cationic surfactants, betaine type surfactants, etc. Mixing methods include mixing with a stirrer, mixing with ultrasonic waves, mixing with a homogenizer, mixing using a microchannel, and a combination of these.
 こうして準備された高分子水溶液のW/O型エマルション1と、多価陽イオン水溶液のW/O型エマルション2を混合する(エマルション混合工程S1)。混合方法については、撹拌機による混合、超音波による混合、微細流路を用いた混合、それらの併用による混合等によって行うことができる。このエマルション混合工程S1を行うことにより、図2に示すように、油相4中において乳化剤5によって乳化された高分子水溶液からなる乳化粒子6と、油相7中において乳化剤8によって乳化された多価陽イオン水溶液からなる乳化粒子9とが合一し、ゲル化してマイクロゲル粒子10となる。こうして得られたマイクロゲル粒子10の粒子径は、可視光の波長と同程度またはそれ以下の粒子径とすることができる。 The thus prepared W/O type emulsion 1 of the aqueous polymer solution and the W/O type emulsion 2 of the aqueous polyvalent cation solution are mixed (emulsion mixing step S1). The mixing method can be agitator mixing, ultrasonic mixing, microchannel mixing, or a combination of these. By carrying out this emulsion mixing step S1, as shown in FIG. 2, emulsion particles 6 made of the aqueous polymer solution emulsified by emulsifier 5 in oil phase 4 and emulsion particles 9 made of the aqueous polyvalent cation solution emulsified by emulsifier 8 in oil phase 7 are united and gelled to form microgel particles 10. The particle diameter of the microgel particles 10 thus obtained can be approximately the same as or smaller than the wavelength of visible light.
(加飾性マイクロゲル集合体の製造方法)
・エマルション破壊工程S2
 前述したエマルション混合工程S1を行うことによって得られたマイクロゲル分散液3に、乳化剤の良溶媒であり、且つ、前記高分子の貧溶媒であるエマルションブレーカーを加えて乳化剤を抽出することにより、マイクロゲルを凝集させて加飾性マイクロゲル集合体11とする(図3参照)。このようなエマルションブレーカーとしては、例えばエタノール、プロパノール等のアルキルアルコールが挙げられる。加飾性マイクロゲル集合体の分離方法としては、ろ過やデカンテーションや遠心分離機によって加飾性マイクロゲル集合体を沈殿させたりして行うことができる。
(Method for producing decorative microgel aggregate)
Emulsion breaking step S2
An emulsion breaker, which is a good solvent for the emulsifier and a poor solvent for the polymer, is added to the microgel dispersion 3 obtained by carrying out the above-mentioned emulsion mixing step S1 to extract the emulsifier, thereby flocculating the microgel into a decorative microgel aggregate 11 (see FIG. 3). Examples of such emulsion breakers include alkyl alcohols such as ethanol and propanol. The decorative microgel aggregate can be separated by filtration, decantation, or precipitating the decorative microgel aggregate using a centrifuge.
 以下、本開示をさらに具体化した実施例について説明する。
(実施例1)
・マイクロゲル分散液の調製(エマルション混合工程S1)
 アルギン酸ナトリウム水溶液(1%水溶液の粘度が300~400cpsであるグレードの市販品(和光純薬工業株式会社))を用い、図4に示す方法でマイクロゲル分散液を調製した。
 ヘキサン30mLを100mLナス型フラスコに取り、非イオン性界面活性剤としてSPAN80(ソルビタンモノオレエート)1mLを加え、マグネチックスターラーを用いて1500rpmで撹拌して非イオン性界面活性剤のヘキサン溶液とした。さらに、撹拌を続けながら2w%アルギン酸ナトリウム水溶液1.25mLを少量ずつ滴下した。さらに一晩撹拌を行い、アルギン酸ナトリウム水溶液のW/O型エマルション(以下「A液」と略す)を得た。
 ヘキサン30mLを100mLビーカーに取り、SPAN80を1mL加え、マグネチックスターラーで溶解した。さらに、0.2M塩化カルシウム水溶液1.25mLを加えた後、超音波処理によって分散させて、塩化カルシウム水溶液のW/O型エマルション(以下「B液」と略す)を得た。
 B液を撹拌しながらA液を少量ずつ滴下した。A液の添加が終了後、さらに撹拌を続けることにより、アルギン酸マイクロゲル分散液を得た。このアルギン酸マイクロゲル分散液の光学顕微鏡写真を図5に示す。その結果、比較的粒子径のそろった1μm程度のアルギン酸マイクロゲル粒子が、均一に分散していることが観察された。
Hereinafter, further specific examples of the present disclosure will be described.
Example 1
・Preparation of microgel dispersion (emulsion mixing step S1)
A microgel dispersion was prepared using an aqueous sodium alginate solution (a commercially available product (Wako Pure Chemical Industries, Ltd.) with a viscosity of 300 to 400 cps for a 1% aqueous solution) by the method shown in FIG. 4.
30 mL of hexane was placed in a 100 mL eggplant flask, 1 mL of SPAN80 (sorbitan monooleate) was added as a nonionic surfactant, and the mixture was stirred at 1500 rpm using a magnetic stirrer to obtain a hexane solution of the nonionic surfactant. Furthermore, 1.25 mL of a 2 wt% aqueous sodium alginate solution was added dropwise while continuing to stir. Stirring was continued overnight to obtain a W/O type emulsion of the aqueous sodium alginate solution (hereinafter referred to as "Liquid A").
30 mL of hexane was placed in a 100 mL beaker, 1 mL of SPAN80 was added, and dissolved using a magnetic stirrer. 1.25 mL of 0.2 M calcium chloride aqueous solution was then added, and the mixture was dispersed using ultrasonic treatment to obtain a W/O type emulsion of calcium chloride aqueous solution (hereinafter referred to as "liquid B").
While stirring Liquid B, Liquid A was added dropwise in small amounts. After the addition of Liquid A was completed, stirring was continued to obtain an alginate microgel dispersion. An optical microscope image of this alginate microgel dispersion is shown in Figure 5. As a result, it was observed that alginate microgel particles with a relatively uniform particle size of about 1 μm were uniformly dispersed.
・エマルション破壊工程S2
 エマルション混合工程S1によって得られたアルギン酸マイクロゲル分散液0.1mLをガラス瓶に入れ、エマルションブレーカーとしてのエタノール0.5mLを加えて混合した。そしてガラス瓶をドライヤーで加熱し、エタノールよりも沸点の低いヘキサンを揮発させた。さらに遠心分離機を用いて13,500rpmで10分間の遠心分離を2回行ってエタノール相を除いて、沈殿を得た。この沈殿物を光学顕微鏡で観察したところ、図6に示すように、オレンジ色や赤色のアルギン酸マイクロゲル粒子の集合体が明瞭に観察された。
Emulsion breaking step S2
0.1 mL of the alginate microgel dispersion obtained by the emulsion mixing step S1 was placed in a glass bottle, and 0.5 mL of ethanol was added as an emulsion breaker and mixed. The glass bottle was then heated with a dryer to volatilize hexane, which has a lower boiling point than ethanol. The ethanol phase was removed by centrifuging twice at 13,500 rpm for 10 minutes using a centrifuge to obtain a precipitate. When the precipitate was observed under an optical microscope, aggregates of orange and red alginate microgel particles were clearly observed, as shown in Figure 6.
 以上の結果は、次のように説明することができる。
 ヘキサンとエタノールは任意の割合で混和して均一な液となるため、アルギン酸マイクロゲル分散液中のヘキサンはエタノールに抽出される。また、エタノールはSPAN80の良溶媒であるため(エタノールに対するSPAN80の溶解度=約5wt%である)、SPAN80はエタノール-ヘキサン相に抽出される。また、エタノールはアルギン酸ナトリウムの貧溶媒であるため、アルギン酸ナトリウムはエタノール-ヘキサン相に抽出されない。さらに、水の少なくとも一部はエタノール-ヘキサン相に移行する。その結果、W/O型エマルションが破壊され、アルギン酸マイクロゲルの集合体が沈殿する。
The above results can be explained as follows.
Hexane and ethanol can be mixed in any ratio to form a homogeneous liquid, so the hexane in the alginate microgel dispersion is extracted into ethanol. Furthermore, since ethanol is a good solvent for SPAN80 (the solubility of SPAN80 in ethanol is approximately 5 wt%), SPAN80 is extracted into the ethanol-hexane phase. Furthermore, since ethanol is a poor solvent for sodium alginate, sodium alginate is not extracted into the ethanol-hexane phase. Furthermore, at least a part of the water migrates to the ethanol-hexane phase. As a result, the W/O emulsion is destroyed and aggregates of alginate microgel are precipitated.
 顕微分光法によってアルギン酸マイクロゲル集合体の反射スペクトルを測定した結果、オレンジから赤色の領域に反射光のピークが認められた(図7参照)。さらに、動的光散乱法によって、アルギン酸マイクロゲル集合体におけるマイクロゲルのサイズ分布を測定したところ、直径350nm程度のマイクロゲルが生成していることが明らかになった。以上の結果から、アルギン酸マイクロゲル集合体において観察された可視光は、光の干渉による構造色であることが分かった。 When the reflectance spectrum of the alginate microgel aggregates was measured using microspectroscopy, a reflected light peak was observed in the orange to red region (see Figure 7). Furthermore, when the size distribution of the microgels in the alginate microgel aggregates was measured using dynamic light scattering, it was revealed that microgels with a diameter of approximately 350 nm were formed. These results demonstrated that the visible light observed in the alginate microgel aggregates is a structural color caused by light interference.
(実施例2)
 実施例2では、エマルション破壊工程S2において添加する溶媒として、1-プロパノールを用いた。その他については実施例1と同様であり、説明を省略する。
 その結果、実施例2においても実施例1と同様、可視光線を発するアルギン酸マイクロゲル集合体が得られた。
Example 2
In Example 2, 1-propanol was used as the solvent added in the emulsion breaking step S2. The rest of the process was the same as in Example 1, and the description will be omitted.
As a result, in Example 2 as well, as in Example 1, an alginate microgel aggregate emitting visible light was obtained.
(比較例1)
 比較例1では、次の文献に記載の方法を参考にしつつ、一部修正した方法によって、アルギン酸ナトリウム水溶液からゲル粒子を調製した。
A.Tachaprutinun, P.Pan-In, and S.Wanichwecharungruang, “Mucosa-plate for direct evaluation of mucoadhesion of drug carriers”, Int. J. Pharmaceutics 441,(2013)801-808.
(Comparative Example 1)
In Comparative Example 1, gel particles were prepared from an aqueous sodium alginate solution by a method described in the following literature, with some modifications:
A.Tachaprutinun, P.Pan-In, and S.Wanichwecharungruang, “Mucosa-plate for direct evaluation of mucoadhesion of drug carriers”, Int. J. Pharmaceutics 441,(2013)801-808.
 アルギン酸ナトリウムとして、1%水溶液の粘度が300~400cpsの市販品(和光純薬工業株式会社)を用いた。2wt%アルギン酸ナトリウム水溶液15mL、ナタネ油90mL、エタノール1.8mL、および非イオン界面活性剤セルモリスB044(株式会社ダイセル製)6mLを300mLの丸底フラスコに入れ、室温下、マグネチックスターラーを用いて1500rpmで15分間撹拌して、アルギン酸ナトリウム水溶液を水相とするW/O型エマルションを得た。そして、このW/O型エマルションに0.05M CaCl2水溶液75mLを滴下し、さらに3.5時間撹拌した。その後、分液ロートに入れて一晩静置した後、ゲル粒子が含まれる水層を取り出した。ろ紙を用いて水層をろ過し、アルギン酸ゲルの水分散液を得た。 Sodium alginate was used as a commercially available product (Wako Pure Chemical Industries, Ltd.) with a viscosity of 300-400 cps for a 1% aqueous solution. 15 mL of 2 wt% sodium alginate aqueous solution, 90 mL of rapeseed oil, 1.8 mL of ethanol, and 6 mL of nonionic surfactant Celmoris B044 (manufactured by Daicel Corporation) were placed in a 300 mL round-bottom flask and stirred at room temperature at 1500 rpm for 15 minutes using a magnetic stirrer to obtain a W/O type emulsion with the sodium alginate aqueous solution as the aqueous phase. Then, 75 mL of 0.05 M CaCl2 aqueous solution was dropped into this W/O type emulsion and stirred for an additional 3.5 hours. After that, the mixture was placed in a separatory funnel and left to stand overnight, and the aqueous layer containing the gel particles was taken out. The aqueous layer was filtered using filter paper to obtain an aqueous dispersion of alginate gel.
 こうして得られたアルギン酸ゲルの水分散液を、ガラス製の吸引ろ過器を用い、5μm、1μm、0.45μm,0.2μmのメンブレンフィルターの順でろ過を行い、最終的にフィルター上に残ったゲル粒子を集めた。このゲル粒子を再び水中に分散してイオン交換樹脂を加えて振とうし、脱塩した。
 0.5wt%のヒドロキシエチルセルロース(株式会社ダイセル製SE900)水溶液にイオン交換樹脂を加えて精製した後、200μLを採取し、脱塩したゲル分散液100μLおよび水100μLと混合して、25時間静置することにより、凝集物を得た。ゲル粒子が集合体を形成したのは、ヒドロキシエチルセルロースの添加によって、ゲル粒子同士に枯渇引力が働いたからである。
 この凝集物を光学顕微鏡で観察したところ、図8に示すように、ゲル粒子の集合体が観察され、この集合体の粒子径は3~5μm程度であった。しかしながら、発色は認められなかった。以上の結果から、アルギン酸ナトリウム水溶液を水相とするW/O型エマルションを塩化カルシウム水溶液に接触させても、光の干渉による構造色が現れるほど粒径の小さなマイクロゲルは得られないことが分かった。
The aqueous dispersion of alginic acid gel thus obtained was filtered through a 5 μm, 1 μm, 0.45 μm, and 0.2 μm membrane filter in this order using a glass suction filter, and the gel particles remaining on the filter were finally collected. These gel particles were dispersed again in water, and ion exchange resin was added, followed by shaking to desalt.
After purifying a 0.5 wt% aqueous solution of hydroxyethyl cellulose (SE900, Daicel Corporation) by adding an ion exchange resin, 200 μL was taken and mixed with 100 μL of desalted gel dispersion and 100 μL of water, and allowed to stand for 25 hours to obtain an aggregate. The gel particles formed an aggregate because the addition of hydroxyethyl cellulose caused a depletion attractive force between the gel particles.
When this aggregate was observed under an optical microscope, as shown in Figure 8, an aggregate of gel particles was observed, and the particle size of this aggregate was about 3 to 5 μm. However, no coloring was observed. From these results, it was found that even if a W/O type emulsion in which an aqueous sodium alginate solution is used as the water phase is contacted with an aqueous calcium chloride solution, it is not possible to obtain a microgel with a particle size small enough to show structural color due to light interference.
(比較例2-1~比較例2-4)
 比較例2-1~比較例2-4では、高分子水溶液をフィルターから押し出してゲル化剤水溶液に接触させる方法によってゲル粒子を調製した(図9参照)。
 アルギン酸ナトリウム水溶液(300~400 cps, 和光純薬工業株式会社)と、NaCl(和光純薬工業株式会社)と、乳鉢で細かくすり潰した炭酸カルシウム(CaCO3)(和光純薬工業株式会社)とを水に入れて混合して分散液とした(ただし、比較例2-3及び比較例2-4では炭酸カルシウムを加えなかった)。
 また、n-ヘキサン(和光純薬工業株式会社)にソルビタンモノオレエート(Span80)(和光純薬工業株式会社)、を溶解したソルビタンモノオレエート溶液を調製した。
(Comparative Example 2-1 to Comparative Example 2-4)
In Comparative Examples 2-1 to 2-4, gel particles were prepared by a method in which the aqueous polymer solution was extruded through a filter and brought into contact with the aqueous gelling agent solution (see FIG. 9).
A sodium alginate solution (300-400 cps, Wako Pure Chemical Industries, Ltd.), NaCl (Wako Pure Chemical Industries, Ltd.), and calcium carbonate (CaCO3) (Wako Pure Chemical Industries, Ltd.) finely ground in a mortar were added to water and mixed to prepare a dispersion (however, calcium carbonate was not added in Comparative Examples 2-3 and 2-4).
In addition, a sorbitan monooleate solution was prepared by dissolving sorbitan monooleate (Span 80) (Wako Pure Chemical Industries, Ltd.) in n-hexane (Wako Pure Chemical Industries, Ltd.).
 そして、分散液を注射器(ハミルトンガスタイトシリンジ5mL(Hamilton Company Inc.)に充填し、注射器の射出口にミクロンサイズの均一な細孔を持つ多孔質ガラスフィルター(SPG膜)(エス・ピー・ジーテクノ株式会社)を取り付けた(フィルターの細孔径は、比較例2-1及び比較例2-2では10μm、比較例2-3及び比較例2-4では1μmとした)。さらに、フィルター部分をソルビタンモノオレエート溶液中に浸漬し、シリンジを徐々に引いてソルビタンモノオレエート溶液を吸いあげ、SPG膜をソルビタンモノオレエート溶液によって浸潤させた。そして、ディスクホルダを外し、吸い上げたソルビタンモノオレエート溶液を完全に押し出した後、分散液を約2mL吸いあげ、再度ディスクホルダを接続し、マイクロシリンジポンプ(アズワン株式会社)に固定した。そして、再びフィルター部分をソルビタンモノオレエート溶液に浸漬し、300rpmの回転数で攪拌しながらシリンジを徐々に下げて分散液をソルビタンモノオレエート溶液中に押し出し、W/O型エマルションとした。こうして1.5mL程度の分散液を押し出した後、シリンジを外して300rpmの回転数で攪拌しながら、氷酢酸4μLを加えてゲル化させ、ゲル粒子分散液を得た。なお、実験に用いた水は、全てMilli-Qシステム (Millipore, MA, U.S.A.) により得た(電気伝導度0.6 μS/cm以下)。 The dispersion was then filled into a syringe (Hamilton Gastight Syringe 5 mL (Hamilton Company Inc.)) and a porous glass filter (SPG membrane) (SPG Techno Co., Ltd.) with uniform micron-sized pores was attached to the injection port of the syringe (the pore size of the filter was 10 μm in Comparative Examples 2-1 and 2-2, and 1 μm in Comparative Examples 2-3 and 2-4). The filter part was then immersed in the sorbitan monooleate solution and the syringe was gradually pulled back to suck up the sorbitan monooleate solution, allowing the SPG membrane to be infiltrated with the sorbitan monooleate solution. The disk holder was then removed and the sucked up sorbitan monooleate solution was completely pushed out. After the dispersion was extruded, approximately 2 mL of the dispersion was sucked up, the disk holder was reconnected, and it was fixed to a microsyringe pump (AS ONE Corporation). The filter portion was then again immersed in the sorbitan monooleate solution, and while stirring at 300 rpm, the syringe was gradually lowered to extrude the dispersion into the sorbitan monooleate solution, forming a W/O type emulsion. After extruding approximately 1.5 mL of the dispersion in this way, the syringe was removed, and while stirring at 300 rpm, 4 μL of glacial acetic acid was added to gel the solution, yielding a gel particle dispersion. All water used in the experiments was obtained using a Milli-Q system (Millipore, MA, U.S.A.) (electrical conductivity 0.6 μS/cm or less).
 ゲル化開始から30分後、ソルビタンモノオレエート溶液と同体積の0.1M塩化カルシウム(CaCl)水溶液(和光純薬工業株式会社)を加え、ゲル粒子とした。その後、1% Tween80溶液(東京化成工業株式会社)とMilli-Q水(Millipore, MA, U.S. A.)で順次洗浄し、Milli-Q水中で保存した。 Thirty minutes after the start of gelation, the same volume of 0.1 M calcium chloride (CaCl 2 ) aqueous solution (Wako Pure Chemical Industries, Ltd.) as that of the sorbitan monooleate solution was added to form gel particles, which were then washed with 1% Tween 80 solution (Tokyo Chemical Industry Co., Ltd.) and Milli-Q water (Millipore, MA, USA) and stored in Milli-Q water.
 各試薬の量及びゲル粒子分散液の調製条件を表1に示す。CaCO3 およびNaClは分散液の全量を100%とした濃度で記載する。また、アルギン酸ナトリウムは分散液の総重量に対する濃度で示す。 The amount of each reagent and the preparation conditions for the gel particle dispersion are shown in Table 1. The concentrations of CaCO3 and NaCl are shown with the total amount of the dispersion taken as 100%, and the concentration of sodium alginate is shown relative to the total weight of the dispersion.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 こうして得られたゲル粒子及びゲル化する前のエマルションについて、倒立型光学顕微鏡ECLIPSE Ti-S ((株) ニコン) を用いて観察した。対物レンズには× 20レンズ、および× 40レンズ (いずれもPlan Fluor、(株) ニコン) を用いた。
 その結果、図10に示すように、ゲル粒子の粒子径は、いずれも1μm以上であり、粒子ごとに大きく異なっていた。また、光の干渉による構造色は観察されなかった(図中の(a)はエマルション状態の試料、(b)は洗浄前のゲル粒子、(c)が洗浄後のゲル粒子を示す)。
The gel particles thus obtained and the emulsion before gelation were observed using an inverted optical microscope ECLIPSE Ti-S (Nikon Corporation). The objective lenses used were ×20 and ×40 (both Plan Fluor, Nikon Corporation).
As a result, the particle diameters of the gel particles were all 1 μm or more and varied greatly from particle to particle, as shown in Figure 10. In addition, no structural color due to light interference was observed ((a) in the figure shows the sample in an emulsion state, (b) shows the gel particles before washing, and (c) shows the gel particles after washing).
 本開示の加飾性マイクロゲル集合体は、光の干渉による構造色を示す。しかも、天然由来の水溶性高分子のゲル集合体とすることもできる。このため、化粧品等に好適に利用することができる。 The decorative microgel aggregates disclosed herein exhibit structural colors due to the interference of light. Moreover, they can also be made into gel aggregates of naturally occurring water-soluble polymers. For this reason, they can be ideally used in cosmetics and the like.
1…高分子水溶液のW/O型エマルション、
2…多価陽イオン水溶液のW/O型エマルション,3…マイクロゲル分散液,
4,7…油相、5,8…乳化剤、6,9…乳化粒子、10…マイクロゲル粒子、11…加飾性マイクロゲル集合体
S1…エマルション混合工程,S2…エマルション破壊工程
1...W/O type emulsion of aqueous polymer solution,
2...W/O type emulsion of polyvalent cation aqueous solution, 3...Microgel dispersion,
4, 7: oil phase, 5, 8: emulsifier, 6, 9: emulsified particles, 10: microgel particles, 11: decorative microgel aggregates S1: emulsion mixing step, S2: emulsion breaking step

Claims (12)

  1.  油相中で高分子水溶液を乳化剤で乳化させた第1のW/O型エマルションと、油相中で、該高分子水溶液をゲル化させることが可能な多価陽イオン水溶液を乳化剤で乳化させた第2のW/O型エマルションと、
    を混合してマイクロゲル分散液を得ることを特徴とするマイクロゲル製造方法。
    a first W/O type emulsion obtained by emulsifying an aqueous polymer solution in an oil phase with an emulsifier; and a second W/O type emulsion obtained by emulsifying an aqueous polyvalent cation solution capable of gelling the aqueous polymer solution in an oil phase with an emulsifier.
    A method for producing a microgel, comprising: mixing the above components to obtain a microgel dispersion.
  2.  前記高分子は天然由来の水溶性高分子である請求項1に記載のマイクロゲル製造方法。 The method for producing a microgel according to claim 1, wherein the polymer is a naturally occurring water-soluble polymer.
  3.  前記高分子はカルボキシ基を有する酸性高分子多糖類又はそのアルカリ金属塩、タンパク質のいずれかである請求項1又は2に記載のマイクロゲル製造方法。 The method for producing a microgel according to claim 1 or 2, wherein the polymer is either an acidic polymer polysaccharide having a carboxy group or an alkali metal salt thereof, or a protein.
  4.  前記高分子はアルギン酸、ペクチン酸、コロミン酸、グルクロン酸及びそれらのアルカリ金属塩、グリシニンのいずれかである請求項3に記載のマイクロゲル製造方法。 The method for producing a microgel according to claim 3, wherein the polymer is any one of alginic acid, pectinic acid, colominic acid, glucuronic acid and their alkali metal salts, and glycinin.
  5.  前記多価陽イオンはカルシウムイオン、マグネシウムイオン、ストロンチウムイオン、アルミニウムイオン、鉄イオン及び銅イオンの少なくとも1種である請求項1又は2に記載のマイクロゲル製造方法。 The method for producing a microgel according to claim 1 or 2, wherein the polyvalent cation is at least one of calcium ions, magnesium ions, strontium ions, aluminum ions, iron ions, and copper ions.
  6.  油相中で高分子水溶液を乳化剤で乳化させた第1のW/O型エマルションと、油相中で、該高分子水溶液をゲル化させることが可能な多価陽イオン水溶液を乳化剤で乳化させた第2のW/O型エマルションと、
    を混合してマイクロゲル分散液とするエマルション混合工程と、
     前記乳化剤の良溶媒であり、且つ、前記高分子の貧溶媒であるエマルションブレーカーを前記マイクロゲル分散液に加えてエマルション状態を破壊するエマルション破壊工程と、を備える加飾性マイクロゲル集合体の製造方法。
    a first W/O type emulsion obtained by emulsifying an aqueous polymer solution in an oil phase with an emulsifier; and a second W/O type emulsion obtained by emulsifying an aqueous polyvalent cation solution capable of gelling the aqueous polymer solution in an oil phase with an emulsifier.
    an emulsion mixing step of mixing the above to obtain a microgel dispersion;
    and an emulsion breaking step of adding an emulsion breaker, which is a good solvent for the emulsifier and a poor solvent for the polymer, to the microgel dispersion to break the emulsion state.
  7.  前記高分子は天然由来の水溶性高分子である請求項6に記載の加飾性マイクロゲル集合体の製造方法。 The method for producing a decorative microgel assembly according to claim 6, wherein the polymer is a naturally occurring water-soluble polymer.
  8.  前記高分子はカルボキシ基を有する酸性高分子多糖類又はそのアルカリ金属塩、タンパク質のいずれかである請求項6又は7に記載の加飾性マイクロゲル集合体の製造方法。 The method for producing a decorative microgel assembly according to claim 6 or 7, wherein the polymer is either an acidic polymer polysaccharide having a carboxy group or an alkali metal salt thereof, or a protein.
  9.  前記高分子はアルギン酸、ペクチン酸、コロミン酸、グルクロン酸及びそれらのアルカリ金属塩、グリシニンのいずれかである請求項8に記載の加飾性マイクロゲル集合体の製造方法。 The method for producing a decorative microgel aggregate according to claim 8, wherein the polymer is any one of alginic acid, pectinic acid, colominic acid, glucuronic acid and their alkali metal salts, and glycinin.
  10.  前記多価陽イオンはカルシウムイオン、マグネシウムイオン、ストロンチウムイオン、アルミニウムイオン、鉄イオン及び銅イオンの少なくとも1種である請求項6又は7に記載の加飾性マイクロゲル集合体の製造方法。 The method for producing a decorative microgel aggregate according to claim 6 or 7, wherein the polyvalent cation is at least one of calcium ions, magnesium ions, strontium ions, aluminum ions, iron ions, and copper ions.
  11.  請求項6又は7に記載の製造方法で製造した加飾性マイクロゲル集合体。 A decorative microgel assembly produced by the method of claim 6 or 7.
  12.  マイクロゲルの平均一次粒子径が10nm以上1000nm以下である請求項11に記載の加飾性マイクロゲル集合体。 The decorative microgel aggregate according to claim 11, wherein the average primary particle diameter of the microgel is 10 nm or more and 1000 nm or less.
PCT/JP2023/039495 2022-11-11 2023-11-01 Method for producing microgel, and method for producing decorative microgel aggregate WO2024101250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022181344 2022-11-11
JP2022-181344 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101250A1 true WO2024101250A1 (en) 2024-05-16

Family

ID=91032939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039495 WO2024101250A1 (en) 2022-11-11 2023-11-01 Method for producing microgel, and method for producing decorative microgel aggregate

Country Status (1)

Country Link
WO (1) WO2024101250A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744337A (en) * 1995-12-26 1998-04-28 The United States Of America As Represented By The Secretary Of The Navy Internal gelation method for forming multilayer microspheres and product thereof
JP2009017861A (en) * 2007-07-13 2009-01-29 Kagoshima Univ Method for producing microorganism-including polymeric gel beads, and soil-modifying material
US20100019403A1 (en) * 2006-05-10 2010-01-28 Ana Catarina Beco Pinto Reis Production and recovery of polymeric micro- and nanoparticles containing bioactive macromolecules
JP2014087786A (en) * 2012-10-04 2014-05-15 Sekisui Chem Co Ltd Method for manufacturing microcapsule and microcapsule
US20160287521A1 (en) * 2013-11-13 2016-10-06 Tillotts Pharma Ag Multi-particulate drug delivery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744337A (en) * 1995-12-26 1998-04-28 The United States Of America As Represented By The Secretary Of The Navy Internal gelation method for forming multilayer microspheres and product thereof
US20100019403A1 (en) * 2006-05-10 2010-01-28 Ana Catarina Beco Pinto Reis Production and recovery of polymeric micro- and nanoparticles containing bioactive macromolecules
JP2009017861A (en) * 2007-07-13 2009-01-29 Kagoshima Univ Method for producing microorganism-including polymeric gel beads, and soil-modifying material
JP2014087786A (en) * 2012-10-04 2014-05-15 Sekisui Chem Co Ltd Method for manufacturing microcapsule and microcapsule
US20160287521A1 (en) * 2013-11-13 2016-10-06 Tillotts Pharma Ag Multi-particulate drug delivery system

Similar Documents

Publication Publication Date Title
Midmore Effect of aqueous phase composition on the properties of a silica-stabilized W/O emulsion
CN110917064B (en) Preparation method of pumpkin seed protein nanoparticles, pumpkin seed protein nanoparticles and application of pumpkin seed protein nanoparticles
EP0309527B1 (en) Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase and process for preparing a dispersion of the powdered polymer
CN109233173B (en) Hydrogel-solid amphiphilic particles for stabilizing emulsion and preparation method thereof
JP5478824B2 (en) Polymer particles
Thongkaew et al. Sequential modulation of pH and ionic strength in phase separated whey protein isolate–Pectin dispersions: Effect on structural organization
JPH058128B2 (en)
CN114269816B (en) Porous cellulose microparticles and process for producing the same
CN103788402B (en) A kind of carbon quantum dot/hectorite emulsion-stabilizing system and prepare the method for paraffin wax emulsions
NO314944B1 (en) Flocculating and viscosity-increasing compositions, their preparation, their use together
FR2974312A1 (en) PROCESS FOR OBTAINING EMULSIONS AT HIGH INTERNAL PHASE
CN112108075B (en) Pickering emulsifier and preparation method and application thereof
JP6681918B2 (en) Capsule manufacturing method
JPH0522646B2 (en)
WO2024101250A1 (en) Method for producing microgel, and method for producing decorative microgel aggregate
US5112612A (en) Spheroidal silica
Kirilov et al. A new type of colloidal dispersions based on nanoparticles of gelled oil
JP3235283B2 (en) Method for producing spherical chitosan fine particles
CA2688203A1 (en) Composition and method for encapsulating benefit agents
Olteanu et al. The aqueous liquid/liquid interphases formed by chitosan-anionic surfactant complexes
WO2023032801A1 (en) Method for producing cellulose beads
JP3111584B2 (en) Method for producing spherical cellulose fine particles
WO2023032800A1 (en) Method for producing cellulose beads
KR101520642B1 (en) Aloe gel microcapsule suspension, preparation thereof and cosmetic composition comprising same
US12053754B2 (en) Method of producing capsules and related capsules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888598

Country of ref document: EP

Kind code of ref document: A1