WO2024101216A1 - Solar battery cell and solar battery module - Google Patents

Solar battery cell and solar battery module Download PDF

Info

Publication number
WO2024101216A1
WO2024101216A1 PCT/JP2023/039204 JP2023039204W WO2024101216A1 WO 2024101216 A1 WO2024101216 A1 WO 2024101216A1 JP 2023039204 W JP2023039204 W JP 2023039204W WO 2024101216 A1 WO2024101216 A1 WO 2024101216A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
current collecting
collecting wiring
wiring portion
power generation
Prior art date
Application number
PCT/JP2023/039204
Other languages
French (fr)
Japanese (ja)
Inventor
徹 澤田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024101216A1 publication Critical patent/WO2024101216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to solar cells and solar modules.
  • see-through solar cell modules that are used as window glass and transmit light in a thickness direction have become known (see, for example, Patent Document 1).
  • a plurality of solar cells divided into rectangular shapes are arranged at intervals in a checkerboard pattern, and adjacent solar cells in the vertical direction are connected by interconnectors, allowing light to pass through the gaps between the solar cells in the horizontal direction in the thickness direction.
  • the solar cell module of Patent Document 1 involves cutting a work-in-progress solar cell panel into small pieces and connecting the solar cells with interconnectors, which results in a complicated process for cutting the solar cells, low yields, and high costs. Furthermore, in the solar cell module of Patent Document 1, each solar cell is small and there are a large number of solar cells, so that the solar cells may be misaligned when sealed. Therefore, some ingenuity is required for aligning the solar cells. Thus, the solar cell module of Patent Document 1 has room for further improvement.
  • the present invention aims to provide a solar cell and solar module that can reduce the number of parts and improve yields compared to conventional methods.
  • One aspect of the present invention for solving the above problem is a solar cell having a first power generation region, a second power generation region, a first current collecting wiring section capable of electrical conduction with the first power generation region, a second current collecting wiring section capable of electrical conduction with the second power generation region, and a through-hole, the first current collecting wiring section being provided independently of the second current collecting wiring section without being connected to the second current collecting wiring section, and being spaced apart from the second current collecting wiring section across the through-hole, the through-hole including one or more through holes, extending in the extension direction of the first current collecting wiring section to separate the first power generation region from the second power generation region, and limiting electrical conduction between the first power generation region and the second power generation region.
  • the first power generation area and the second power generation area are divided by the penetration portion, and a small piece of a solar cell is formed virtually within a single solar cell, thereby reducing the number of parts and improving yields and reducing costs compared to cutting a work-in-progress solar cell panel as in Patent Document 1.
  • the through-holes allow light to pass through in the thickness direction, making the device suitable for use in a see-through solar cell module.
  • the preferred aspect is that the opening rate of the penetration is 10% or more and 90% or less.
  • the first current collecting wiring section and the second current collecting wiring section each have a plurality of finger electrode sections extending in the extension direction of the through-hole section and a busbar electrode section connecting one end side of the plurality of finger electrode sections, and a part of the through-hole section is located between the busbar electrode section of the first current collecting wiring section and the busbar electrode section of the second current collecting wiring section.
  • the penetrations are formed up to the busbar electrode portions closer to the ends, which increases the aperture ratio and limits the conduction between the first and second power generation regions.
  • the see-through solar cell module of Patent Document 1 generates power from the entire solar cell, so if any of the solar cell constituting the solar cell string becomes unable to generate power due to a hot spot or the like, the entire string to which that solar cell belongs becomes unable to generate power.
  • Patent Document 1 since each solar cell is extremely small, even if a solar cell string in one row becomes unable to generate power, the reduction in the power generation area is small.
  • the solar cell since the solar cell has a certain size, if one solar cell becomes unable to generate power, the power generation area of the solar cell module is significantly reduced.
  • one aspect of the present invention is a solar cell module having a plurality of the above solar cells, the solar cells being connected directly or via a conductive member, the solar cells including a first solar cell and a second solar cell, the first solar cell being connected at its first current collecting wiring portion to the first current collecting wiring portion of the second solar cell, and the second current collecting wiring portion being connected at its second current collecting wiring portion to the second solar cell.
  • the first power generation region of the first solar cell and the first power generation region of the second solar cell, and the second power generation region of the first solar cell and the second power generation region of the second solar cell can be substantially independently conductive, so even if the first power generation region of the first solar cell shorts out and becomes unable to generate power, power can still be generated on the second power generation region side of the first solar cell. Therefore, the reduction in the power generation area can be suppressed compared to when the entire solar cell is used for power generation.
  • Another aspect of the present invention is a solar cell module having a plurality of the above-mentioned solar cells, and a solar cell group in which the plurality of solar cells are connected in series directly or via a conductive member, and the solar cell group is a solar cell module in which the first current collecting wiring portion of a solar cell between the most upstream solar cell and the most downstream solar cell in the direction of electrical flow is connected to the first current collecting wiring portion of an adjacent solar cell, and the second current collecting wiring is connected to the second current collecting wiring portion of the adjacent solar cell.
  • the first power generation area and the second power generation area of the adjacent solar cell can be individually and electrically connected. Therefore, even if the first power generation area of the solar cell shorts out and becomes unable to generate power, power can still be generated on the second power generation area side, and the reduction in the power generation area can be suppressed compared to when the entire solar cell is used for power generation.
  • the gaps between adjacent solar cells are wider than the distance between the finger electrode portions within the solar cell, so if a colored metal layer is used for the finger electrode portions, light is reflected by each finger electrode portion in the solar cell, but not in the gaps between the solar cell.
  • the gaps between the solar cell become noticeable, the solar cell module does not look uniform, and may give an unpleasant impression when used as window glass.
  • One aspect of the present invention is a solar cell having a plurality of the solar cells described above, the solar cells being connected directly or via a conductive member, the solar cells including a first solar cell and a second solar cell, the first solar cell having a first side, the first current collecting wiring portion extending along the first side, the second current collecting wiring portion extending in the extension direction of the first current collecting wiring portion with a gap therebetween, the first solar cell having the through portion located between the first current collecting wiring portion and the second current collecting wiring portion,
  • the second solar cell has a second side extending substantially parallel to the first side of the first solar cell and a third collector wiring section extending along the second side, and is disposed at a distance from the first solar cell, the distance between the first collector wiring section and the second collector wiring section is 0.9 to 1.1 times the distance between the first collector wiring section and the third collector wiring section, and the distance between the first side of the first solar cell and the second side of the second solar cell is 0.9 to 1.1 times the width of the through portion.
  • a second side extending approximately parallel to a first side means a second side that has an inclination angle of less than 3 degrees relative to the first side, and also includes the case where the second side is parallel to the first side.
  • the distance between the first and second current collecting wiring parts in the first solar cell and the distance between the first and third current collecting wiring parts of the second solar cell are approximately equal, and the distance between the gap between the first and second solar cell is approximately equal to the width of the through-hole, allowing light to pass through evenly.
  • the solar cell module as a whole appears approximately uniform, making it less likely to cause discomfort when used as window glass.
  • One aspect of the present invention is a solar cell module having a plurality of solar cells, the plurality of solar cells being connected directly or via a conductive member, the plurality of solar cells each having a first power generation region, a second power generation region, a first current collecting wiring section capable of electrical conduction with the first power generation region, a second current collecting wiring section capable of electrical conduction with the second power generation region, and a conduction limiting section that divides the first power generation region from the second power generation region and limits electrical conduction between the first power generation region and the second power generation region, the plurality of solar cells including a first solar cell and a second solar cell, the first current collecting wiring section of the first solar cell being connected to the first current collecting wiring section of the second solar cell independently of the second current collecting wiring section, and the second current collecting wiring section being connected to the second current collecting wiring section of the second solar cell.
  • the solar cell is provided with a conduction limiting portion that limits conduction between the first and second power generating regions, the first and second power generating regions can generate electricity substantially independently. Therefore, compared to the case of cutting a work-in-progress solar cell panel as in Patent Document 1, the number of parts can be reduced, the yield can be improved, and costs can be reduced.
  • the first power generation region of the first solar cell and the first power generation region of the second solar cell, and the second power generation region of the first solar cell and the second power generation region of the second solar cell can be substantially independently conductive, so that even if the first power generation region of the first solar cell becomes unable to generate power due to a hot spot or the like, power can be generated on the second power generation region side of the first solar cell. Therefore, the reduction in the power generation area can be suppressed compared to when the entire solar cell is used for power generation.
  • One aspect of the present invention is a solar cell having a first solar cell and a second solar cell, the first solar cell having a first side and a first current collecting wiring section extending along the first side, a second current collecting wiring section extending in the extension direction of the first current collecting wiring section at a distance from the first current collecting wiring section, and one or more through holes are located between the first current collecting wiring section and the second current collecting wiring section and extend in the extension direction of the first current collecting wiring section, the through portion being a conduction limiting portion that limits conduction between the first current collecting wiring section side and the second current collecting wiring section side in the first solar cell,
  • the second solar cell is arranged at a distance from the first solar cell, the second solar cell has a second side extending substantially parallel to the first side of the first solar cell and a third current collecting wiring section extending along the second side, the distance between the first current collecting wiring section and the second current collecting wiring section is 0.9 to 1.1 times the distance between the first current collecting wiring section and the third current collecting wiring section, and the distance between the
  • the distance between the first and second current collecting wiring parts of the first solar cell and the distance between the first and third current collecting wiring parts of the second solar cell are approximately equal, and the distance between the gap between the first and second solar cells is approximately equal to the width of the conduction limiting part formed by the through hole, so that light can be transmitted evenly.
  • the solar cell module as a whole looks approximately uniform, and does not cause discomfort when used as window glass.
  • the first current collecting wiring part side and the second current collecting wiring part side can generate power substantially independently. Therefore, compared to the case of cutting a work-in-progress solar cell panel as in Patent Document 1, the number of parts can be reduced, the yield can be improved, and costs can be reduced.
  • the solar cell and solar module of the present invention reduce the number of parts compared to conventional methods, improving yields.
  • FIG. 1 is a perspective view of a solar cell module according to a first embodiment of the present invention
  • FIG. 2 is a plan view of the solar cell module of FIG. 1, with the first light-transmitting substrate and the first sealing material omitted for ease of understanding
  • 2A and 2B are cross-sectional views of the solar cell module of Fig. 1, where (a) is a cross-sectional view taken along line A-A in Fig. 2, and (b) is a cross-sectional view taken along line B-B in Fig. 2. In both (a) and (b), hatching of the sealing material has been omitted for ease of understanding.
  • 3A is an explanatory diagram of the solar cell in FIG. 2, where FIG.
  • FIG. 3A is a perspective view seen from the first light-transmissive substrate side
  • FIG. 3B is a perspective view of the solar cell in FIG. 2 rotated in the direction of arrow C and seen from the second light-transmissive substrate side.
  • 3A is a plan view showing the relationship between the power generating regions of each solar cell
  • FIG. 3B is a plan view showing the relationship between the collector electrodes of each solar cell
  • 3 is a plan view showing the relationship between adjacent solar cells in the vertical direction in FIG. 2 .
  • FIG. 11 is a perspective view of a solar cell according to another embodiment of the present invention.
  • FIG. 11 is a plan view of a solar cell module according to another embodiment of the present invention.
  • FIGS. 1A and 1B are explanatory diagrams of a solar cell group of another embodiment of the present invention, in which (a) is a plan view of a solar cell group in which through holes are arranged at the vertices of an equilateral triangle, and (b) is a plan view of a solar cell group in which through holes are arranged at the vertices of a square.
  • the solar cell module 1 is a see-through solar cell module that is suitable for use mainly as window glass and allows light to pass through in the thickness direction.
  • the solar cell module 1 is also a bifacial solar cell module that is capable of converting light energy incident from both main surfaces into electrical energy.
  • the solar cell module 1 is preferably installed on a window frame or the like in a vertical position, with the up-down direction being the vertical direction Y and the left-right direction being the horizontal direction X. Therefore, in the following explanation, unless otherwise specified, the explanation will be given based on the position in FIG.
  • the solar cell module 1 includes light-transmitting substrates 2 and 3, a solar cell group 5 (5a to 5d), a first output wiring 6 (6a to 6d), a second output wiring 7 (7a to 7d), a first sealing material 8, and a second sealing material 9.
  • a plurality of solar cells 5 and output wiring 6, 7 are arranged between two light-transmitting substrates 2, 3, and the gap between the light-transmitting substrates 2, 3 is filled and sealed with sealing materials 8, 9.
  • the light-transmitting substrates 2 and 3 are both light-transmitting members that have a planar extent and are capable of transmitting light in the thickness direction.
  • the light-transmitting substrates 2 and 3 of this embodiment are rectangular plate-like bodies extending in the horizontal direction X and the vertical direction Y, as shown in FIG.
  • the light-transmitting substrates 2 and 3 are members having light-transmitting and insulating properties, and for example, light-transmitting insulating substrates such as glass substrates can be used.
  • the solar cell group 5 (Solar cell group 5) As shown in Figures 1 to 3, the solar cell group 5 (5a to 5d) comprises a plurality of solar cell cells 20 and a conductive adhesive 21, and is a series-connected group in which the plurality of solar cell cells 20 are connected in series via the conductive adhesive 21.
  • the solar cell 20 includes a photoelectric conversion substrate 30, a first collector electrode 31 (31a to 31h), a second collector electrode 32 (32a to 32h), a through portion 33 (33a to 33g), and a power generation region 35 (35a to 35h).
  • the solar cell 20 has a quadrangular shape when viewed in a plan view, and includes horizontal sides 36 and 37 extending in the horizontal direction X and vertical sides 38 and 39 extending in the vertical direction Y.
  • the solar cell 20 of this embodiment has a square shape, with horizontal sides 36, 37 parallel to each other and vertical sides 38, 39 parallel to each other.
  • the photoelectric conversion substrate 30 is a plate-like substrate having a first main surface 45 and a second main surface 46 as its two main surfaces, and is a portion that converts light energy into electrical energy.
  • the photoelectric conversion substrate 30 has a semiconductor layer laminated on a semiconductor substrate, and has a PN junction between the semiconductor substrate and the semiconductor layer.
  • the solar cell 20 of this embodiment is a crystalline type solar cell that uses a crystalline silicon substrate as a semiconductor substrate.
  • the first collector electrode 31 is a conductive layer provided on the first main surface 45 side and partially laminated on the photoelectric conversion substrate 30 .
  • the first collector electrode 31 is composed of a first bus bar electrode portion 50 and a plurality of first finger electrode portions 51 (51a, 51b).
  • the first collector electrode 31 is not particularly limited as long as it has electrical conductivity, and can be made of, for example, a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof.
  • the first collector electrodes 31a to 31h are provided independently and individually, and are not directly connected to each other.
  • the first busbar electrode portion 50 is provided at one end (the end on the vertical side 38 side) in the horizontal direction X when viewed in a plane, and is a connection portion that connects the ends of the first finger electrode portions 51 a, 51 b, and extends in the vertical direction Y.
  • the first bus bar electrode portion 50 is a portion that functions as a land to which the second bus bar electrode portion 60 of the adjacent solar cell 20 is connected via the conductive adhesive material 21 .
  • the width (length in the vertical direction Y) of the first bus bar electrode portion 50 is not particularly limited, but is preferably 1 mm or more and 8 mm or less.
  • the first finger electrode portions 51a, 51b are linear electrode portions extending parallel to the horizontal sides 36, 37 from the middle portion in the vertical direction Y of the first bus bar electrode portion 50 toward the other end portion in the horizontal direction X (the end portion on the vertical side 39 side).
  • the first finger electrode portions 51a, 51b are arranged side by side at an interval in the vertical direction Y, and each extends from the first bus bar electrode portion 50 near one end (the end on the vertical side 38 side) in the horizontal direction X to the vicinity of the other end (the end on the vertical side 39 side).
  • the first finger electrode portions 51a, 51b extend across the photoelectric conversion substrate 30 in the horizontal direction X when viewed in a plan view.
  • the width of the first finger electrode portions 51a, 51b is narrower than the width of the first bus bar electrode portion 50, and is preferably 30 ⁇ m or more and 70 ⁇ m or less.
  • the second collecting electrode 32 is provided on the second main surface 46 side, and is a conductive layer partially laminated on the photoelectric conversion substrate 30 .
  • the second collector electrode 32 is composed of a second bus bar electrode portion 60 and a plurality of second finger electrode portions 61 (61a, 61b).
  • the second collector electrode 32 is not particularly limited as long as it is conductive, and can be made of, for example, a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof.
  • the second collector electrodes 32a to 32h are provided independently and are not directly connected to each other.
  • the second busbar electrode portion 60 is provided on the other end side in the horizontal direction X (the end side on the vertical side 39 side) and is a connection portion that connects the ends of the second finger electrode portions 61a, 61b.
  • the second bus bar electrode portion 60 is a portion that functions as a land to which the first bus bar electrode portion 50 of the adjacent solar cell 20 is connected via the conductive adhesive material 21 .
  • the width (length in the vertical direction Y) of the second bus bar electrode portion 60 is not particularly limited, but is preferably 1 mm or more and 8 mm or less.
  • the second finger electrode portions 61a, 61b are linear electrode portions extending parallel to the horizontal sides 36, 37 from a middle portion in the vertical direction Y of the second bus bar electrode portion 60 toward one end portion (the end portion on the vertical side 38 side) in the horizontal direction X.
  • the second finger electrode portions 61a, 61b extend in the opposite direction to the first finger electrode portion 51a provided on the first main surface 45 side.
  • the second finger electrode portions 61a, 61b are arranged side by side at a distance in the vertical direction Y, and each extends from the second busbar electrode portion 60 near the other end in the horizontal direction X (the end on the vertical side 39 side) to near one end (the end on the vertical side 38 side).
  • the second finger electrode portions 61a and 61b extend across the photoelectric conversion substrate 30 in the lateral direction X, similar to the first finger electrode portions 51a and 51b.
  • the width of the second finger electrode portions 61a, 61b is narrower than the width of the second bus bar electrode portion 60, and is preferably not less than 30 ⁇ m and not more than 70 ⁇ m.
  • the through portion 33 is a conduction limiting portion (conduction limiting portion) that extends in the horizontal direction X, separates the power generation regions 35, 35 adjacent to each other in the vertical direction Y, and limits the conduction between the power generation regions 35, 35.
  • the through portion 33 is a portion that penetrates the photoelectric conversion substrate 30 in the thickness direction and allows light to pass through in the thickness direction of the solar cell 20, and is a group of through holes 70 arranged in a row in the horizontal direction X and spaced equally apart.
  • the opening shape of the through-hole 70 is not particularly limited, and may be a polygonal shape such as a triangle, a rectangle, a pentagon, or a hexagon, or may be a circle, an oval, or a groove shape. In this embodiment, the opening shape of the through hole 70 is circular.
  • the shortest distance d1 between adjacent through holes 70, 70 in the lateral direction X shown in FIG. 6 is preferably 0.1 mm or more and 2 mm or less. It is preferable that the through portion 33 has a portion between the through holes 70, 70 where adjacent power generation regions 35, 35 in the vertical direction Y are connected.
  • the "minimum inclusive diameter” here refers to the smallest circle that includes all parts inside, and the minimum inclusive diameter of the through hole 70 refers to the smallest circle that includes the entire opening of the through hole 70 inside.
  • the intervals d2 between adjacent through holes 70, 70 in the vertical direction Y are equal.
  • the opening ratio of the solar cell 20 due to the through portion 33 be 10% or more and 90% or less.
  • the term "opening ratio” used here refers to the ratio of the area of the openings to the total area when viewed from above.
  • the power generating region 35 is a region capable of generating electricity by receiving light, and is a region in which no through holes 70 are formed.
  • the power generation regions 35 are regions arranged side by side in the vertical direction Y and separated by the through-holes 33, and extend in the horizontal direction X.
  • the power generation regions 35a, 35h located at both ends in the vertical direction Y shown in Figure 5 (a) are regions outside the through-hole 33 in the vertical direction Y, and the remaining power generation regions 35b to 35g are regions between the through-holes 33, 33 arranged side by side in the vertical direction Y.
  • the power generation regions 35a to 35h are provided corresponding to the collector electrodes 31, 32, respectively, and are capable of electrical continuity with the collector electrodes 31, 32, respectively.
  • the conductive adhesive 21 is a conductive member having electrical conductivity, and is an adhesive that connects the bus bar electrode portions 50, 60 of the solar cells 20, 20 adjacent to each other in the lateral direction X.
  • the conductive adhesive 21 of this embodiment is a conductive adhesive film in which a conductive adhesive material is provided on both sides of a conductive film.
  • the output wirings 6 and 7 extend from between the light-transmitting substrates 2 and 3 to the inside and outside, and are wirings for extracting the electric power generated from each solar cell group 5 to the outside.
  • the first output wiring 6 has a comb-like shape and can be adhered to each of the first bus bar electrode portions 50 of the solar cell 20 directly or via a conductive adhesive. That is, the first output wiring 6 is connected to each of the first bus bar electrode portions 50 of the solar cell 20 , thereby making it possible to set each of the first bus bar electrode portions 50 at the same potential.
  • the first output wirings 6a to 6d are provided independently of one another and are individually connected to terminal boxes (not shown).
  • the second output wiring 7 has a comb-like shape, and can be adhered to each second bus bar electrode portion 60 of the solar cell 20 directly or via a conductive adhesive. That is, the second output wiring 7 is connected to each of the second bus bar electrode portions 60 of the solar cell 20 , thereby making it possible to set each of the second bus bar electrode portions 60 at the same potential.
  • the second output wirings 7a to 7d are provided independently of one another and are individually connected to terminal boxes (not shown).
  • the sealing materials 8 and 9 have sealing properties and are members that seal the solar cell group 5 together with the light-transmitting substrates 2 and 3, and also serve as adhesives that bond the light-transmitting substrates 2 and 3 together.
  • the solar cell module 1 has a plurality of solar cell groups 5 arranged side by side at intervals in the vertical direction Y (up and down direction), with gaps being formed between adjacent solar cell groups 5, 5 in the vertical direction Y.
  • the spacing D1 shortest distance between the horizontal sides 37, 36
  • the diameter d3 width of the through portion 33
  • the diameter d3 width of the through portion 33
  • the distance D2 between the busbar electrode portions 50, 50 (60, 60) adjacent to each other in the vertical direction Y of each solar cell 20A, 20B shown in FIG. 6 is preferably 0.9 to 1.1 times the distance D3 between the busbar electrode portion 50A (60A) closest to the horizontal side 37 in the solar cell 20A and the busbar electrode portion 50B (60B) closest to the horizontal side 36 in the solar cell 20B, and is more preferably equal to the distance D3.
  • the aperture ratio due to the penetration parts 33 of each solar cell 20 and the gaps between the solar cell groups 5, 5 is 10% or more and 90% or less.
  • each collecting electrode 32 of the solar cell 20a is not connected to other collecting electrodes 32 adjacent to it in the vertical direction Y, but is connected to each collecting electrode 31 of the adjacent solar cell 20b, and each collecting electrode 32 of the solar cell 20b is not connected to other collecting electrodes 32 adjacent to it in the vertical direction Y, but is connected to each collecting electrode 31 of the adjacent solar cell 20c.
  • each of the power generating regions 35a to 35h of the solar cell 20b is electrically connected to each of the power generating regions 35a to 35h of the solar cell 20a adjacent thereto in the lateral direction X, and is also electrically connected to each of the power generating regions 35a to 35h of the solar cell 20c. That is, the power generation regions 35, 35, 35 of the solar cells 20a to 20c that make up the solar cell group 5 are electrically connected in series to form respective power generation region groups, and these power generation region groups are electrically connected in parallel.
  • the collector electrode 31a (first collector wiring portion) is provided independently of the collector electrode 31b (second collector wiring portion) adjacent to it in the vertical direction Y, and is arranged at a distance from the collector electrode 31b across the through portion 33.
  • the through portion 33 extends in the extension direction of the collector electrode 31a to separate the first power generation region 35a and the second power generation region 35b, and limits the electrical conduction between the first power generation region 35a and the second power generation region 35b.
  • the through-hole 33 physically divides the solar cell into a first power generation region 35a on the collector electrode 31a side and a second power generation region 35b on the collector electrode 31b side, and a small piece of a solar cell is formed in one solar cell 20, so that the number of parts can be reduced compared to the conventional method, the yield can be improved, and costs can be reduced.
  • the number of parts can be reduced, it is easy to maintain a constant interval between the solar cell groups 5, and the through-hole 33 and the gaps between the solar cell groups 5, 5 can be made to have the same tone when viewed from a distance.
  • the solar cell module 1 of the first embodiment allows light to pass through in the thickness direction due to the penetration portions 33 of each solar cell 20 and the gaps between adjacent solar cells 20, 20 in the vertical direction Y, so it can function as a see-through solar cell module.
  • a portion of the through hole 70 of the penetration portion 33 is located between the busbar electrode portion 50 (60) of the collector electrode 31a (first collector wiring portion) and the busbar electrode portion 50 (60) of the collector electrode 31b (second collector wiring portion). Therefore, it is possible to provide the penetration portion 33 up to the vicinity of the vertical sides 38, 39 in the horizontal direction X, and the conduction between the first power generation region 35a and the second power generation region 35b can be further restricted.
  • the first solar cell 20b located between the most upstream solar cell 20a and the most downstream solar cell 20c in the direction of electrical flow has the collector 31a on the first main surface 45 side connected to the collector 32a on the second main surface 46 side of the second solar cell 20a without being connected to the collector 31b adjacent to it in the vertical direction Y, and the collector 31b on the first main surface 45 side connected to the collector 32b on the second main surface 46 side of the second solar cell 20a.
  • the first solar cell 20b has the collector 32a on the second main surface 46 side connected to the collector 31a on the first main surface 45 side of the third solar cell 20c without being connected to the collector 32b adjacent to it in the vertical direction Y, and the collector 32b on the second main surface 46 side connected to the collector 31b on the first main surface 45 side of the third solar cell 20c.
  • the first power generation region 35a of the second solar cell 20a, the first power generation region 35a of the first solar cell 20b, and the first power generation region 35a of the third solar cell 20c are electrically connected in series, and the second power generation region 35b of the second solar cell 20a, the second power generation region 35b of the first solar cell 20b, and the second power generation region 35b of the third solar cell 20c are electrically connected in series.
  • the first power generation region 35a of each of the solar cells 20a to 20c and the second power generation region 35b of each of the solar cells 20a to 20c can be electrically connected substantially independently, so that even if the first power generation region 35a of the first solar cell 20b is shorted and cannot generate power, power can be generated on the second power generation region 35b side of the first solar cell 20b. Therefore, the reduction in the power generation area can be suppressed compared to when the entire solar cell 20 is used for power generation.
  • the distance D2 between the collecting electrode 31 (first collecting wiring portion) and the collecting electrode 31 (second collecting wiring portion) adjacent to each other in the vertical direction Y in the solar cell 20A (20B) is 0.9 to 1.1 times the distance D3 between the collecting electrode 31 (first collecting wiring portion) closest to the horizontal side 37 in the solar cell 20A and the collecting electrode 31 (third collecting wiring portion) closest to the horizontal side 36 in the solar cell 20B.
  • the solar cell module 1 of the first embodiment when viewed in a plane, the horizontal side 37 (first side) of the solar cell 20A and the horizontal side 36 (second side) of the solar cell 20B are parallel to each other, and the distance D1 between the horizontal side 37 of the first solar cell 20A and the horizontal side 36 of the second solar cell 20B is 0.9 to 1.1 times the width d3 of the through portion 33. That is, in the solar cell module 1, adjacent collector electrodes 31 in the vertical direction Y are spaced at equal intervals, and the spacing between the solar cell 20A and the solar cell 20B is equal to the width of the through-section 33 formed by the through-hole 70, so that light can be transmitted evenly. As a result, the solar cell module 1 as a whole appears generally uniform, and does not give a sense of incongruity when used as window glass.
  • the first collector 31 has two first finger electrode portions 51a, 51b, but the present invention is not limited to this.
  • the number of first finger electrode portions 51 constituting the first collector 31 is not particularly limited.
  • the first collector 31 may have three or more first finger electrode portions 51 as shown in FIG. 7.
  • the second collector 32 has two second finger electrode portions 61a, 61b, but the present invention is not limited to this.
  • the number of second finger electrode portions 61 constituting the second collector 32 is not particularly limited.
  • the second collector 32 may have three or more second finger electrode portions 61.
  • the power generating region 35 is divided into eight regions by seven through-holes 33, but the present invention is not limited to this.
  • the power generating region 35 may be divided by one to six through-holes 33, or the power generating region 35 may be divided by eight or more through-holes 33. In this manner, by changing the number of through portions 33 or the number of through holes 70 that constitute the through portions 33, the aperture ratio of the solar cell module 1 can be adjusted.
  • each solar cell group 5a-5d is connected in parallel to a terminal box (not shown) connected to an external load, but the present invention is not limited to this.
  • each solar cell group 5a-5d may be connected by connection wiring 80a-80c to form a series-connected group, and the solar cell group 5a on the most upstream side and the solar cell group 5c on the most downstream side of the series-connected group may be connected to the output wiring 6, 7 and connected in series to the terminal box.
  • the solar cell groups 5, 5 adjacent in the vertical direction Y (for example, solar cell groups 5a, 5b) are arranged with the front and back reversed. In other words, the solar cell groups 5, 5 adjacent in the vertical direction Y have alternating positive and negative orientations.
  • the through-hole 33 is configured with the through-holes 70 arranged in a row, but the present invention is not limited to this.
  • the through-hole 33 may be configured with the through-holes 70 arranged in a plurality of rows.
  • the through holes 70, 70 adjacent in the vertical direction Y may be offset in the horizontal direction X as shown in FIG. 9(a), or may be aligned in a straight line in the vertical direction Y as shown in FIG. 9(b). It is preferable that the through-holes 33 are configured so that a figure formed by connecting the centers of adjacent through-holes 70 forms a plane tessellation.
  • the through portion 33 may be such that the figure obtained by connecting the centers of the most adjacent through holes 70 forms an equilateral triangle as shown in Figure 9 (a), or such that the figure obtained by connecting the centers of the most adjacent through holes 70 forms a square as shown in Figure 9 (b).
  • each solar cell group 5 is composed of three solar cell cells 20a to 20c, but the present invention is not limited to this. As long as the number of solar cell cells 20 constituting any one solar cell group 5 is two or more, there is no particular limit to the number of solar cell cells 20 constituting the other solar cell groups 5.
  • the solar cell module 1 is composed of four solar cell groups 5a to 5d, but the present invention is not limited to this.
  • the solar cell module 1 may be composed of one to three solar cell groups 5, or may be composed of five or more solar cell groups 5.
  • the through portion 33 is composed of multiple through holes 70, but the present invention is not limited to this.
  • the through portion 33 may be composed of a single through hole 70.
  • adjacent power generation regions 35, 35 are partially connected, and the end of the extension direction of the through portion 33 may be composed of a notch.
  • the through portion 33 may be a notch that extends in the horizontal direction X from the end that constitutes the vertical sides 38, 39.
  • the solar cell 20 is a crystalline solar cell, but the present invention is not limited to this.
  • the solar cell 20 may be another type of solar cell.
  • the solar cell module 1 has the solar cell groups 5 arranged in the vertical direction Y (up-down direction), but the present invention is not limited to this.
  • the solar cell groups 5 may also be arranged in the horizontal direction X (left-right direction). In this case, it is preferable to rotate the solar cell module 1 by 90 degrees to reverse the vertical and horizontal orientation.
  • the solar cells 20, 20 that belong to the solar cell group 5 and are adjacent in the horizontal direction X are connected by a conductive adhesive 21, but the present invention is not limited to this. They may be connected by other conductive members such as wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a solar battery cell and a solar battery module which can exhibit a higher yield with less components than before. The present invention is provided with: a first power generation region; a second power generation region; a first current collector wiring part that is electrically conductive to the first power generation region; a second current collector wiring part that is electrically conductive to the second power generation region; and a penetration part. The first current collector wiring part is independently provided without being contiguous to the second current collector wiring part and is disposed apart from the second current collector wiring part with the penetration part therebetween. The penetration part has one or more penetration holes, extends in the extension direction of the first current collector wiring part to divide the first power generation region and the second power generation region, and limits electrical conduction between the first power generation region and the second power generation region.

Description

太陽電池セル及び太陽電池モジュールSolar Cells and Modules
 本発明は、太陽電池セル及び太陽電池モジュールに関する。 The present invention relates to solar cells and solar modules.
 近年、窓ガラスとして使用され、厚み方向に光を透過するシースルー太陽電池モジュールが知られている(例えば、特許文献1)。
 例えば、特許文献1のシースルー太陽電池モジュールでは、短冊状に分割された複数の太陽電池セルを碁盤状に間隔を空けて並べ、上下方向に隣接する太陽電池セル間をインターコネクタで接続している。こうすることで、左右方向における太陽電池セル間の隙間から光を厚み方向に透過可能となっている。
2. Description of the Related Art In recent years, see-through solar cell modules that are used as window glass and transmit light in a thickness direction have become known (see, for example, Patent Document 1).
For example, in the see-through solar cell module of Patent Document 1, a plurality of solar cells divided into rectangular shapes are arranged at intervals in a checkerboard pattern, and adjacent solar cells in the vertical direction are connected by interconnectors, allowing light to pass through the gaps between the solar cells in the horizontal direction in the thickness direction.
国際公開第2020/189240号International Publication No. 2020/189240
 ところで、特許文献1の太陽電池モジュールは、仕掛太陽電池パネルを小片状に切断して太陽電池セルをインターコネクタでつなぎ合わせるため、太陽電池セルの切断加工の工程が煩雑となり、歩留まりが低く、コストが嵩む問題がある。
 また、特許文献1の太陽電池モジュールは、各太陽電池セルが小さく、その枚数も多いので、封止する際に太陽電池セルに位置ずれが発生することがある。そのため、太陽電池セルの位置合わせに工夫が必要であった。
 このように、特許文献1の太陽電池モジュールは、更なる改善の余地があった。
However, the solar cell module of Patent Document 1 involves cutting a work-in-progress solar cell panel into small pieces and connecting the solar cells with interconnectors, which results in a complicated process for cutting the solar cells, low yields, and high costs.
Furthermore, in the solar cell module of Patent Document 1, each solar cell is small and there are a large number of solar cells, so that the solar cells may be misaligned when sealed. Therefore, some ingenuity is required for aligning the solar cells.
Thus, the solar cell module of Patent Document 1 has room for further improvement.
 そこで、本発明は、従来に比べて部品点数を減らし、歩留まりを向上できる太陽電池セル及び太陽電池モジュールを提供することを目的とする。 The present invention aims to provide a solar cell and solar module that can reduce the number of parts and improve yields compared to conventional methods.
 上記した課題を解決するための本発明の一つの様相は、第1発電領域と、第2発電領域と、前記第1発電領域と導通可能な第1集電配線部と、前記第2発電領域と導通可能な第2集電配線部と、貫通部を有し、前記第1集電配線部は、前記第2集電配線部とは接続されずに独立して設けられ、前記貫通部を挟んで前記第2集電配線部と間隔を空けて配されており、前記貫通部は、一又は複数の貫通孔を含み、前記第1集電配線部の延び方向に延びて前記第1発電領域と前記第2発電領域を区画し、前記第1発電領域と前記第2発電領域との間の導通を制限する、太陽電池セルである。 One aspect of the present invention for solving the above problem is a solar cell having a first power generation region, a second power generation region, a first current collecting wiring section capable of electrical conduction with the first power generation region, a second current collecting wiring section capable of electrical conduction with the second power generation region, and a through-hole, the first current collecting wiring section being provided independently of the second current collecting wiring section without being connected to the second current collecting wiring section, and being spaced apart from the second current collecting wiring section across the through-hole, the through-hole including one or more through holes, extending in the extension direction of the first current collecting wiring section to separate the first power generation region from the second power generation region, and limiting electrical conduction between the first power generation region and the second power generation region.
 本様相によれば、貫通部によって第1発電領域と第2発電領域とに区画し、1つの太陽電池セルの中に疑似的に太陽電池の小片を形成するので、部品点数を少なくできるとともに、特許文献1のような仕掛太陽電池パネルを切断する場合に比べて歩留まりを向上でき、コストを低減できる。
 本様相によれば、貫通部によって厚み方向に光を透過可能であるため、シースルー太陽電池モジュールに好適に使用できる。
According to this aspect, the first power generation area and the second power generation area are divided by the penetration portion, and a small piece of a solar cell is formed virtually within a single solar cell, thereby reducing the number of parts and improving yields and reducing costs compared to cutting a work-in-progress solar cell panel as in Patent Document 1.
According to this aspect, the through-holes allow light to pass through in the thickness direction, making the device suitable for use in a see-through solar cell module.
 好ましい様相は、前記貫通部による開口率が10%以上90%以下である。 The preferred aspect is that the opening rate of the penetration is 10% or more and 90% or less.
 好ましい様相は、前記第1集電配線部及び前記第2集電配線部は、前記貫通部の延び方向に延びる複数のフィンガー電極部と、前記複数のフィンガー電極部の一方の端部側を接続するバスバー電極部をそれぞれ有し、前記第1集電配線部のバスバー電極部と、前記第2集電配線部のバスバー電極部との間に、前記貫通部の一部が位置している。 In a preferred aspect, the first current collecting wiring section and the second current collecting wiring section each have a plurality of finger electrode sections extending in the extension direction of the through-hole section and a busbar electrode section connecting one end side of the plurality of finger electrode sections, and a part of the through-hole section is located between the busbar electrode section of the first current collecting wiring section and the busbar electrode section of the second current collecting wiring section.
 本様相によれば、より端部に近いバスバー電極部の間まで貫通部が形成されており、開口率を大きくできるとともに第1発電領域と第2発電領域間の導通を制限できる。 In this aspect, the penetrations are formed up to the busbar electrode portions closer to the ends, which increases the aperture ratio and limits the conduction between the first and second power generation regions.
 ところで、特許文献1のシースルー太陽電池モジュールは、太陽電池セル全体で発電するため、太陽電池ストリングを構成する太陽電池セルのいずれかでホットスポット等により発電不能となった場合、その太陽電池セルが属するストリング全体が発電不能になる。特許文献1の場合は、各太陽電池セルが極めて小さいため、一列の太陽電池ストリングが発電不能になっても発電面積の低下は小さい。
 しかしながら、通常の太陽電池モジュールの場合、太陽電池セルがある程度の大きさがあるため、一枚の太陽電池セルが発電不能となると、太陽電池モジュールの発電面積が大きく低下する。
Incidentally, the see-through solar cell module of Patent Document 1 generates power from the entire solar cell, so if any of the solar cell constituting the solar cell string becomes unable to generate power due to a hot spot or the like, the entire string to which that solar cell belongs becomes unable to generate power. In the case of Patent Document 1, since each solar cell is extremely small, even if a solar cell string in one row becomes unable to generate power, the reduction in the power generation area is small.
However, in the case of a typical solar cell module, since the solar cell has a certain size, if one solar cell becomes unable to generate power, the power generation area of the solar cell module is significantly reduced.
 そこで、本発明の一つの様相は、上記の太陽電池セルを複数有し、前記太陽電池セルが直接又は導電部材を介して接続されており、前記太陽電池セルの中には、第1太陽電池セルと、第2太陽電池セルがあり、前記第1太陽電池セルは、前記第1集電配線部が前記第2太陽電池セルの第1集電配線部と接続されており、前記第2集電配線部が前記第2太陽電池セルの第2集電配線部と接続されている、太陽電池モジュールである。 Therefore, one aspect of the present invention is a solar cell module having a plurality of the above solar cells, the solar cells being connected directly or via a conductive member, the solar cells including a first solar cell and a second solar cell, the first solar cell being connected at its first current collecting wiring portion to the first current collecting wiring portion of the second solar cell, and the second current collecting wiring portion being connected at its second current collecting wiring portion to the second solar cell.
 本様相によれば、第1太陽電池セルの第1発電領域と第2太陽電池セルの第1発電領域、第1太陽電池セルの第2発電領域と第2太陽電池セルの第2発電領域が、それぞれ実質的に独立して導通できるので、仮に第1太陽電池セルの第1発電領域がショートして発電不能となっても、第1太陽電池セルの第2発電領域側で発電できる。そのため、太陽電池セル全体を使用して発電する場合に比べて、発電面積の低下を抑制できる。 In this aspect, the first power generation region of the first solar cell and the first power generation region of the second solar cell, and the second power generation region of the first solar cell and the second power generation region of the second solar cell can be substantially independently conductive, so even if the first power generation region of the first solar cell shorts out and becomes unable to generate power, power can still be generated on the second power generation region side of the first solar cell. Therefore, the reduction in the power generation area can be suppressed compared to when the entire solar cell is used for power generation.
 また、本発明の一つの様相は、上記の太陽電池セルを複数有する太陽電池モジュールであって、複数の前記太陽電池セルが直接又は導電部材を介して直列接続された太陽電池群を有し、前記太陽電池群は、電気の流れ方向における最も上流側の太陽電池セルと最も下流側の太陽電池セルの間の太陽電池セルの第1集電配線部は、隣接する太陽電池セルの第1集電配線部と接続され、第2集電配線が前記隣接する太陽電池セルの第2集電配線部と接続されている、太陽電池モジュールである。 Another aspect of the present invention is a solar cell module having a plurality of the above-mentioned solar cells, and a solar cell group in which the plurality of solar cells are connected in series directly or via a conductive member, and the solar cell group is a solar cell module in which the first current collecting wiring portion of a solar cell between the most upstream solar cell and the most downstream solar cell in the direction of electrical flow is connected to the first current collecting wiring portion of an adjacent solar cell, and the second current collecting wiring is connected to the second current collecting wiring portion of the adjacent solar cell.
 本様相によれば、電気の流れ方向における最も上流側の太陽電池セルと最も下流側の太陽電池セルの間の太陽電池セルにおいて、隣接する太陽電池セルの第1発電領域と第2発電領域を個別に電気的に接続できる。そのため、太陽電池セルにおいて第1発電領域がショートして発電不能となっても、第2発電領域側で発電でき、太陽電池セル全体を使用して発電する場合に比べて、発電面積の低下を抑制できる。 According to this aspect, in the solar cell between the most upstream solar cell and the most downstream solar cell in the direction of electrical flow, the first power generation area and the second power generation area of the adjacent solar cell can be individually and electrically connected. Therefore, even if the first power generation area of the solar cell shorts out and becomes unable to generate power, power can still be generated on the second power generation area side, and the reduction in the power generation area can be suppressed compared to when the entire solar cell is used for power generation.
 ところで、特許文献1のシースルー太陽電池モジュールは、隣接する太陽電池セル間の隙間が太陽電池セル内のフィンガー電極部間の間隔に比べて広いので、フィンガー電極部に有色の金属層を使用した場合、太陽電池セルでは各フィンガー電極部で光が反射し、太陽電池セル間の隙間では光が反射しない。そのため、太陽電池セル間の隙間が目立ってしまい、太陽電池モジュールが均一に見えず、窓ガラスとして使用した場合に、違和感を与える場合がある。 Incidentally, in the see-through solar cell module of Patent Document 1, the gaps between adjacent solar cells are wider than the distance between the finger electrode portions within the solar cell, so if a colored metal layer is used for the finger electrode portions, light is reflected by each finger electrode portion in the solar cell, but not in the gaps between the solar cell. As a result, the gaps between the solar cell become noticeable, the solar cell module does not look uniform, and may give an unpleasant impression when used as window glass.
 本発明の一つの様相は、上記した太陽電池セルを複数有し、前記太陽電池セルが直接又は導電部材を介して接続されており、前記太陽電池セルの中には、第1太陽電池セルと、第2太陽電池セルがあり、前記第1太陽電池セルは、第1辺を有し、前記第1集電配線部が前記第1辺に沿って延び、前記第2集電配線部が前記第1集電配線部と間隔を空けて前記第1集電配線部の延び方向に延びており、前記第1太陽電池セルは、前記貫通部が前記第1集電配線部と前記第2集電配線部の間に位置し、前記第1集電配線部の延び方向に延びており、前記第2太陽電池セルは、前記第1太陽電池セルの第1辺と略平行に延びる第2辺と、前記第2辺に沿って延びる第3集電配線部を有し、前記第1太陽電池セルと間隔を空けて配されており、前記第1集電配線部と前記第2集電配線部の間隔は、前記第1集電配線部と前記第3集電配線部との間隔の0.9倍以上1.1倍以下であり、前記第1太陽電池セルの前記第1辺と、前記第2太陽電池セルの前記第2辺の距離は、前記貫通部の幅の0.9倍以上1.1倍以下である、太陽電池モジュールである。 One aspect of the present invention is a solar cell having a plurality of the solar cells described above, the solar cells being connected directly or via a conductive member, the solar cells including a first solar cell and a second solar cell, the first solar cell having a first side, the first current collecting wiring portion extending along the first side, the second current collecting wiring portion extending in the extension direction of the first current collecting wiring portion with a gap therebetween, the first solar cell having the through portion located between the first current collecting wiring portion and the second current collecting wiring portion, The second solar cell has a second side extending substantially parallel to the first side of the first solar cell and a third collector wiring section extending along the second side, and is disposed at a distance from the first solar cell, the distance between the first collector wiring section and the second collector wiring section is 0.9 to 1.1 times the distance between the first collector wiring section and the third collector wiring section, and the distance between the first side of the first solar cell and the second side of the second solar cell is 0.9 to 1.1 times the width of the through portion.
 ここでいう「略平行」とは、実質的に平行であることをいい、一方に対する他方の傾斜角度3度未満であることをいう。すなわち、「第1辺と略平行に延びる第2辺」とは、第1辺に対する傾斜角度が3度未満の第2辺をいい、第2辺が第1辺と平行である場合も含む。 The term "approximately parallel" here means that one side is substantially parallel, and that the inclination angle of one side relative to the other side is less than 3 degrees. In other words, "a second side extending approximately parallel to a first side" means a second side that has an inclination angle of less than 3 degrees relative to the first side, and also includes the case where the second side is parallel to the first side.
 本様相によれば、第1太陽電池セルにおける第1集電配線部と第2集電配線部の間隔と、第1太陽電池セルの第1集電配線部と第2太陽電池セルの第3集電配線部の間隔が概ね等間隔にあり、第1太陽電池セルと第2太陽電池セルとの隙間の間隔が貫通孔で構成される貫通部の幅と概ね等しいので、均等に光を透過できる。その結果、太陽電池モジュール全体の見え方が概ね均一に見え、窓ガラスとして使用したときに違和感を与えにくい。 In this aspect, the distance between the first and second current collecting wiring parts in the first solar cell and the distance between the first and third current collecting wiring parts of the second solar cell are approximately equal, and the distance between the gap between the first and second solar cell is approximately equal to the width of the through-hole, allowing light to pass through evenly. As a result, the solar cell module as a whole appears approximately uniform, making it less likely to cause discomfort when used as window glass.
 本発明の一つの様相は、複数の太陽電池セルを有し、前記複数の太陽電池セルが直接又は導電部材を介して接続された太陽電池モジュールであって、前記複数の太陽電池セルは、第1発電領域と、第2発電領域と、前記第1発電領域と導通可能な第1集電配線部と、前記第2発電領域と導通可能な第2集電配線部と、前記第1発電領域と前記第2発電領域を区画し、前記第1発電領域と前記第2発電領域との間の導通を制限する導通制限部をそれぞれ有し、前記複数の太陽電池セルの中には、第1太陽電池セルと、第2太陽電池セルがあり、前記第1太陽電池セルは、前記第1集電配線部が前記第2集電配線部とは独立して前記第2太陽電池セルの第1集電配線部と接続されており、前記第2集電配線部が前記第2太陽電池セルの第2集電配線部と接続されている、太陽電池モジュールである。 One aspect of the present invention is a solar cell module having a plurality of solar cells, the plurality of solar cells being connected directly or via a conductive member, the plurality of solar cells each having a first power generation region, a second power generation region, a first current collecting wiring section capable of electrical conduction with the first power generation region, a second current collecting wiring section capable of electrical conduction with the second power generation region, and a conduction limiting section that divides the first power generation region from the second power generation region and limits electrical conduction between the first power generation region and the second power generation region, the plurality of solar cells including a first solar cell and a second solar cell, the first current collecting wiring section of the first solar cell being connected to the first current collecting wiring section of the second solar cell independently of the second current collecting wiring section, and the second current collecting wiring section being connected to the second current collecting wiring section of the second solar cell.
 本様相によれば、太陽電池セル内で第1発電領域と第2発電領域を区画して導通を制限する導通制限部を備えるので、第1発電領域と第2発電領域が実質的に独立して発電できる。そのため、特許文献1のような仕掛太陽電池パネルを切断する場合に比べて、部品点数を少なくできるとともに歩留まりを向上でき、コストを低減できる。
 本様相によれば、第1太陽電池セルの第1発電領域と第2太陽電池セルの第1発電領域、第1太陽電池セルの第2発電領域と第2太陽電池セルの第2発電領域をそれぞれ実質的に独立して導通できるので、仮に第1太陽電池セルの第1発電領域がホットスポット等によって発電不能となっても、第1太陽電池セルの第2発電領域側で発電できる。そのため、太陽電池セル全体を使用して発電する場合に比べて、発電面積の低下を抑制できる。
According to this aspect, since the solar cell is provided with a conduction limiting portion that limits conduction between the first and second power generating regions, the first and second power generating regions can generate electricity substantially independently. Therefore, compared to the case of cutting a work-in-progress solar cell panel as in Patent Document 1, the number of parts can be reduced, the yield can be improved, and costs can be reduced.
According to this aspect, the first power generation region of the first solar cell and the first power generation region of the second solar cell, and the second power generation region of the first solar cell and the second power generation region of the second solar cell can be substantially independently conductive, so that even if the first power generation region of the first solar cell becomes unable to generate power due to a hot spot or the like, power can be generated on the second power generation region side of the first solar cell. Therefore, the reduction in the power generation area can be suppressed compared to when the entire solar cell is used for power generation.
 本発明の一つの様相は、第1太陽電池セルと、第2太陽電池セルを有し、前記第1太陽電池セルは、第1辺を有し、前記第1辺に沿って延びる第1集電配線部と、前記第1集電配線部と間隔を空けて前記第1集電配線部の延び方向に延びる第2集電配線部と、前記第1集電配線部と前記第2集電配線部の間に位置し、一又は複数の貫通孔が前記第1集電配線部の延び方向に延びて貫通部を有し、前記貫通部は、前記第1太陽電池セルにおいて、前記第1集電配線部側と前記第2集電配線部側の導通を制限する導通制限部であり、前記第2太陽電池セルは、前記第1太陽電池セルと間隔を空けて配されており、前記第2太陽電池セルは、前記第1太陽電池セルの第1辺と略平行に延びる第2辺と、前記第2辺に沿って延びる第3集電配線部を有し、前記第1集電配線部と前記第2集電配線部の間隔は、前記第1集電配線部と前記第3集電配線部との間隔の0.9倍以上1.1倍以下であり、前記第1太陽電池セルの前記第1辺と、前記第2太陽電池セルの前記第2辺の距離は、前記貫通部の幅の0.9倍以上1.1倍以下である、太陽電池モジュールである。 One aspect of the present invention is a solar cell having a first solar cell and a second solar cell, the first solar cell having a first side and a first current collecting wiring section extending along the first side, a second current collecting wiring section extending in the extension direction of the first current collecting wiring section at a distance from the first current collecting wiring section, and one or more through holes are located between the first current collecting wiring section and the second current collecting wiring section and extend in the extension direction of the first current collecting wiring section, the through portion being a conduction limiting portion that limits conduction between the first current collecting wiring section side and the second current collecting wiring section side in the first solar cell, The second solar cell is arranged at a distance from the first solar cell, the second solar cell has a second side extending substantially parallel to the first side of the first solar cell and a third current collecting wiring section extending along the second side, the distance between the first current collecting wiring section and the second current collecting wiring section is 0.9 to 1.1 times the distance between the first current collecting wiring section and the third current collecting wiring section, and the distance between the first side of the first solar cell and the second side of the second solar cell is 0.9 to 1.1 times the width of the through portion. This is a solar cell module.
 本様相によれば、第1太陽電池セルにおける第1集電配線部と第2集電配線部の間隔と、第1太陽電池セルの第1集電配線部と第2太陽電池セルの第3集電配線部の間隔が概ね等間隔にあり、第1太陽電池セルと第2太陽電池セルとの隙間の間隔が貫通孔で構成される導通制限部の幅と概ね等しいので、均等に光を透過できる。その結果、太陽電池モジュール全体の見え方が概ね均一に見え、窓ガラスとして使用したときに違和感を与えにくい。
 本様相によれば、第1太陽電池セルにおいて、第1集電配線部側と第2集電配線部側が実質的に独立して発電できる。そのため、特許文献1のような仕掛太陽電池パネルを切断する場合に比べて、部品点数を少なくできるとともに歩留まりを向上でき、コストを低減できる。
According to this aspect, the distance between the first and second current collecting wiring parts of the first solar cell and the distance between the first and third current collecting wiring parts of the second solar cell are approximately equal, and the distance between the gap between the first and second solar cells is approximately equal to the width of the conduction limiting part formed by the through hole, so that light can be transmitted evenly. As a result, the solar cell module as a whole looks approximately uniform, and does not cause discomfort when used as window glass.
According to this aspect, in the first solar cell, the first current collecting wiring part side and the second current collecting wiring part side can generate power substantially independently. Therefore, compared to the case of cutting a work-in-progress solar cell panel as in Patent Document 1, the number of parts can be reduced, the yield can be improved, and costs can be reduced.
 上記した様相は、本発明の技術的範囲に含まれる限り、各様相間で、相互に従属させたり、一部の構成を引用したり、一部の構成を置換することができる。 The above aspects may be made dependent on each other, may quote some components, or may be substituted for other components, as long as they fall within the technical scope of the present invention.
 本発明の太陽電池セル及び太陽電池モジュールによれば、従来に比べて部品点数を少なく、歩留まりを向上できる。 The solar cell and solar module of the present invention reduce the number of parts compared to conventional methods, improving yields.
本発明の第1実施形態の太陽電池モジュールの斜視図である。1 is a perspective view of a solar cell module according to a first embodiment of the present invention; 図1の太陽電池モジュールの平面図であり、理解を容易にするために第1透光性基板と第1封止材を省略している。FIG. 2 is a plan view of the solar cell module of FIG. 1, with the first light-transmitting substrate and the first sealing material omitted for ease of understanding. 図1の太陽電池モジュールの断面図であり、(a)は図2のA-A断面図であり、(b)は図2のB-B断面図である。(a),(b)はいずれも理解を容易にするために封止材のハッチングを省略している。2A and 2B are cross-sectional views of the solar cell module of Fig. 1, where (a) is a cross-sectional view taken along line A-A in Fig. 2, and (b) is a cross-sectional view taken along line B-B in Fig. 2. In both (a) and (b), hatching of the sealing material has been omitted for ease of understanding. 図2の太陽電池セルの説明図であり、(a)は第1透光性基板側から視た斜視図であり、(b)は(a)の太陽電池セルを矢印Cの方向に回転させて第2透光性基板側から視た斜視図である。3A is an explanatory diagram of the solar cell in FIG. 2, where FIG. 3A is a perspective view seen from the first light-transmissive substrate side, and FIG. 3B is a perspective view of the solar cell in FIG. 2 rotated in the direction of arrow C and seen from the second light-transmissive substrate side. 図2の太陽電池群の説明図であり、(a)は各太陽電池セルの発電領域の関係を示す平面図であり、(b)は各太陽電池セルの集電極の関係を示す平面図である。3A is a plan view showing the relationship between the power generating regions of each solar cell, and FIG. 3B is a plan view showing the relationship between the collector electrodes of each solar cell; 図2の縦方向に隣接する太陽電池セルの関係を示す平面図である。3 is a plan view showing the relationship between adjacent solar cells in the vertical direction in FIG. 2 . 本発明の他の実施形態の太陽電池セルの斜視図である。FIG. 11 is a perspective view of a solar cell according to another embodiment of the present invention. 本発明の他の実施形態の太陽電池モジュールの平面図である。FIG. 11 is a plan view of a solar cell module according to another embodiment of the present invention. 本発明の他の実施形態の太陽電池群の説明図であり、(a)は貫通孔が正三角形の頂点の位置に並んだ太陽電池群の平面図であり、(b)は貫通孔が正方形の頂点の位置に並んだ太陽電池群の平面図である。1A and 1B are explanatory diagrams of a solar cell group of another embodiment of the present invention, in which (a) is a plan view of a solar cell group in which through holes are arranged at the vertices of an equilateral triangle, and (b) is a plan view of a solar cell group in which through holes are arranged at the vertices of a square.
 以下、本発明の実施形態について詳細に説明する。 The following describes in detail an embodiment of the present invention.
 本発明の第1実施形態の太陽電池モジュール1は、主に窓ガラスとしての用途で好適に使用されるものであり、厚み方向に光を透過可能なシースルー太陽電池モジュールである。また、太陽電池モジュール1は、両主面側から入射した光エネルギーを電気エネルギーに変換可能な両面受光型の太陽電池モジュールである。
 太陽電池モジュール1は、図1のように主に水平面に対して立設され、上下方向が縦方向Yになり左右方向が横方向Xとなる縦姿勢で窓枠等に好適に取り付けられるものである。そこで、以下の説明においては、特に断りのない限り、図1の姿勢を基準として説明する。
The solar cell module 1 according to the first embodiment of the present invention is a see-through solar cell module that is suitable for use mainly as window glass and allows light to pass through in the thickness direction. The solar cell module 1 is also a bifacial solar cell module that is capable of converting light energy incident from both main surfaces into electrical energy.
1, the solar cell module 1 is preferably installed on a window frame or the like in a vertical position, with the up-down direction being the vertical direction Y and the left-right direction being the horizontal direction X. Therefore, in the following explanation, unless otherwise specified, the explanation will be given based on the position in FIG.
 太陽電池モジュール1は、図1のように、透光性基板2,3と、太陽電池群5(5a~5d)と、第1取出配線6(6a~6d)と、第2取出配線7(7a~7d)と、第1封止材8と、第2封止材9を備えている。
 太陽電池モジュール1は、2枚の透光性基板2,3の間に複数の太陽電池群5及び取出配線6,7が配され、透光性基板2,3の間の隙間が封止材8,9で充填されて封止されている。
As shown in FIG. 1, the solar cell module 1 includes light-transmitting substrates 2 and 3, a solar cell group 5 (5a to 5d), a first output wiring 6 (6a to 6d), a second output wiring 7 (7a to 7d), a first sealing material 8, and a second sealing material 9.
In the solar cell module 1, a plurality of solar cells 5 and output wiring 6, 7 are arranged between two light-transmitting substrates 2, 3, and the gap between the light-transmitting substrates 2, 3 is filled and sealed with sealing materials 8, 9.
(透光性基板2,3)
 透光性基板2,3は、ともに面状に広がりをもち、厚み方向に光を透過可能な透光性部材である。
 本実施形態の透光性基板2,3は、図1のように、横方向X及び縦方向Yに延びた四角形状の板状体である。
 透光性基板2,3は、透光性及び絶縁性を有する部材であり、例えば、ガラス基板等の透光性絶縁基板が使用できる。
(Light-transmitting substrates 2 and 3)
The light-transmitting substrates 2 and 3 are both light-transmitting members that have a planar extent and are capable of transmitting light in the thickness direction.
The light-transmitting substrates 2 and 3 of this embodiment are rectangular plate-like bodies extending in the horizontal direction X and the vertical direction Y, as shown in FIG.
The light-transmitting substrates 2 and 3 are members having light-transmitting and insulating properties, and for example, light-transmitting insulating substrates such as glass substrates can be used.
(太陽電池群5)
 太陽電池群5(5a~5d)は、図1~図3のように、複数の太陽電池セル20と、導電性接着材21を備え、導電性接着材21を介して複数の太陽電池セル20が直列接続された直列接続群である。
(Solar cell group 5)
As shown in Figures 1 to 3, the solar cell group 5 (5a to 5d) comprises a plurality of solar cell cells 20 and a conductive adhesive 21, and is a series-connected group in which the plurality of solar cell cells 20 are connected in series via the conductive adhesive 21.
(太陽電池セル20)
 太陽電池セル20は、図4,図5のように、光電変換基板30と、第1集電極31(31a~31h)と、第2集電極32(32a~32h)と、貫通部33(33a~33g)と、発電領域35(35a~35h)を備えている。
 太陽電池セル20は、図4のように、平面視したときに四角形状をしており、横方向Xに延びる横辺36,37と、縦方向Yに延びる縦辺38,39を備えている。
 本実施形態の太陽電池セル20は、正方形状であり、横辺36,37が互いに平行となっており、縦辺38,39が互いに平行となっている。
(Solar cell 20)
As shown in Figures 4 and 5, the solar cell 20 includes a photoelectric conversion substrate 30, a first collector electrode 31 (31a to 31h), a second collector electrode 32 (32a to 32h), a through portion 33 (33a to 33g), and a power generation region 35 (35a to 35h).
As shown in FIG. 4 , the solar cell 20 has a quadrangular shape when viewed in a plan view, and includes horizontal sides 36 and 37 extending in the horizontal direction X and vertical sides 38 and 39 extending in the vertical direction Y.
The solar cell 20 of this embodiment has a square shape, with horizontal sides 36, 37 parallel to each other and vertical sides 38, 39 parallel to each other.
 光電変換基板30は、図4のように、第1主面45と第2主面46を両主面とする板状基板であり、光エネルギーを電気エネルギーに変換する部位である。
 光電変換基板30は、半導体基板上に半導体層が積層されたものであり、半導体基板と半導体層の間でPN接合を有している。
 本実施形態の太陽電池セル20は、結晶シリコン基板を半導体基板とする結晶型の太陽電池セルである。
As shown in FIG. 4, the photoelectric conversion substrate 30 is a plate-like substrate having a first main surface 45 and a second main surface 46 as its two main surfaces, and is a portion that converts light energy into electrical energy.
The photoelectric conversion substrate 30 has a semiconductor layer laminated on a semiconductor substrate, and has a PN junction between the semiconductor substrate and the semiconductor layer.
The solar cell 20 of this embodiment is a crystalline type solar cell that uses a crystalline silicon substrate as a semiconductor substrate.
 第1集電極31は、図4(a)のように、第1主面45側に設けられ、光電変換基板30上に部分的に積層された導電層である。
 第1集電極31は、第1バスバー電極部50と、複数の第1フィンガー電極部51(51a,51b)で構成されている。
 第1集電極31は、導電性を有するものであれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、パラジウム等の金属又はその金属合金で構成できる。
 各第1集電極31a~31hは、図4(a)のように、それぞれ独立して個別に設けられており、互いに直接接続されていない。
As shown in FIG. 4A , the first collector electrode 31 is a conductive layer provided on the first main surface 45 side and partially laminated on the photoelectric conversion substrate 30 .
The first collector electrode 31 is composed of a first bus bar electrode portion 50 and a plurality of first finger electrode portions 51 (51a, 51b).
The first collector electrode 31 is not particularly limited as long as it has electrical conductivity, and can be made of, for example, a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof.
As shown in FIG. 4A, the first collector electrodes 31a to 31h are provided independently and individually, and are not directly connected to each other.
 第1バスバー電極部50は、平面視したときに、横方向Xの一方の端部(縦辺38側の端部)側に設けられ、第1フィンガー電極部51a,51bの端部間を接続する接続部であり、縦方向Yに延びている。
 第1バスバー電極部50は、導電性接着材21を介して隣接する太陽電池セル20の第2バスバー電極部60が接続されるランドとして機能する部位である。
 第1バスバー電極部50の幅(縦方向Yの長さ)は、特に限定されるものではないが、1mm以上8mm以下であることが好ましい。
The first busbar electrode portion 50 is provided at one end (the end on the vertical side 38 side) in the horizontal direction X when viewed in a plane, and is a connection portion that connects the ends of the first finger electrode portions 51 a, 51 b, and extends in the vertical direction Y.
The first bus bar electrode portion 50 is a portion that functions as a land to which the second bus bar electrode portion 60 of the adjacent solar cell 20 is connected via the conductive adhesive material 21 .
The width (length in the vertical direction Y) of the first bus bar electrode portion 50 is not particularly limited, but is preferably 1 mm or more and 8 mm or less.
 第1フィンガー電極部51a,51bは、第1バスバー電極部50の縦方向Yの中間部から横方向Xの他方の端部(縦辺39側の端部)側に向けて横辺36,37と平行に延びる線状電極部である。
 第1フィンガー電極部51a,51bは、縦方向Yに間隔を空けて並設されており、いずれも横方向Xの一方の端部(縦辺38側の端部)近傍にある第1バスバー電極部50から他方の端部(縦辺39側の端部)近傍まで至っている。すなわち、第1フィンガー電極部51a,51bは、平面視したときに、光電変換基板30を横方向Xに横切るように延びている。
 第1フィンガー電極部51a,51bの幅は、第1バスバー電極部50の幅よりも狭くなっており、30μm以上70μm以下であることが好ましい。
The first finger electrode portions 51a, 51b are linear electrode portions extending parallel to the horizontal sides 36, 37 from the middle portion in the vertical direction Y of the first bus bar electrode portion 50 toward the other end portion in the horizontal direction X (the end portion on the vertical side 39 side).
The first finger electrode portions 51a, 51b are arranged side by side at an interval in the vertical direction Y, and each extends from the first bus bar electrode portion 50 near one end (the end on the vertical side 38 side) in the horizontal direction X to the vicinity of the other end (the end on the vertical side 39 side). In other words, the first finger electrode portions 51a, 51b extend across the photoelectric conversion substrate 30 in the horizontal direction X when viewed in a plan view.
The width of the first finger electrode portions 51a, 51b is narrower than the width of the first bus bar electrode portion 50, and is preferably 30 μm or more and 70 μm or less.
 第2集電極32は、図4(b)のように、第2主面46側に設けられ、光電変換基板30上に部分的に積層された導電層である。
 第2集電極32は、第2バスバー電極部60と、複数の第2フィンガー電極部61(61a,61b)で構成されている。
 第2集電極32は、導電性を有するものであれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、パラジウム等の金属又はその金属合金で構成できる。
 各第2集電極32a~32hは、それぞれ独立して個別に設けられており、互いに直接接続されていない。
As shown in FIG. 4B , the second collecting electrode 32 is provided on the second main surface 46 side, and is a conductive layer partially laminated on the photoelectric conversion substrate 30 .
The second collector electrode 32 is composed of a second bus bar electrode portion 60 and a plurality of second finger electrode portions 61 (61a, 61b).
The second collector electrode 32 is not particularly limited as long as it is conductive, and can be made of, for example, a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof.
The second collector electrodes 32a to 32h are provided independently and are not directly connected to each other.
 第2バスバー電極部60は、横方向Xの他方の端部(縦辺39側の端部)側に設けられ、第2フィンガー電極部61a,61bの端部間を接続する接続部であり、縦方向Yに延びている。
 第2バスバー電極部60は、導電性接着材21を介して隣接する太陽電池セル20の第1バスバー電極部50が接続されるランドとして機能する部位である。
 第2バスバー電極部60の幅(縦方向Yの長さ)は、特に限定されるものではないが、1mm以上8mm以下であることが好ましい。
The second busbar electrode portion 60 is provided on the other end side in the horizontal direction X (the end side on the vertical side 39 side) and is a connection portion that connects the ends of the second finger electrode portions 61a, 61b.
The second bus bar electrode portion 60 is a portion that functions as a land to which the first bus bar electrode portion 50 of the adjacent solar cell 20 is connected via the conductive adhesive material 21 .
The width (length in the vertical direction Y) of the second bus bar electrode portion 60 is not particularly limited, but is preferably 1 mm or more and 8 mm or less.
 第2フィンガー電極部61a,61bは、第2バスバー電極部60の縦方向Yの中間部から横方向Xの一方の端部(縦辺38側の端部)側に向けて横辺36,37と平行に延びる線状電極部である。すなわち、第2フィンガー電極部61a,61bは、第1主面45側に設けられた第1フィンガー電極部51aとは逆方向に延びている。
 第2フィンガー電極部61a,61bは、縦方向Yに間隔を空けて並設されており、いずれも横方向Xの他方の端部(縦辺39側の端部)近傍にある第2バスバー電極部60から一方の端部(縦辺38側の端部)近傍まで至っている。
 すなわち、第2フィンガー電極部61a,61bは、第1フィンガー電極部51a,51bと同様、光電変換基板30を横方向Xに横切るように延びている。
 第2フィンガー電極部61a,61bの幅は、第2バスバー電極部60の幅よりも狭くなっており、30μm以上70μm以下であることが好ましい。
The second finger electrode portions 61a, 61b are linear electrode portions extending parallel to the horizontal sides 36, 37 from a middle portion in the vertical direction Y of the second bus bar electrode portion 60 toward one end portion (the end portion on the vertical side 38 side) in the horizontal direction X. In other words, the second finger electrode portions 61a, 61b extend in the opposite direction to the first finger electrode portion 51a provided on the first main surface 45 side.
The second finger electrode portions 61a, 61b are arranged side by side at a distance in the vertical direction Y, and each extends from the second busbar electrode portion 60 near the other end in the horizontal direction X (the end on the vertical side 39 side) to near one end (the end on the vertical side 38 side).
That is, the second finger electrode portions 61a and 61b extend across the photoelectric conversion substrate 30 in the lateral direction X, similar to the first finger electrode portions 51a and 51b.
The width of the second finger electrode portions 61a, 61b is narrower than the width of the second bus bar electrode portion 60, and is preferably not less than 30 μm and not more than 70 μm.
 貫通部33は、図5のように、横方向Xに延びて縦方向Yに隣接する発電領域35,35間を区画し、発電領域35,35間の導電を制限する導通制限部(導電制限部)である。
 貫通部33は、厚み方向に光電変換基板30を貫通し、太陽電池セル20の厚み方向において光を通過可能にする部位であり、複数の貫通孔70が横方向Xに列状に並び、等間隔に並設された貫通孔群である。
 貫通孔70の開口形状は、特に限定されるものではなく、三角形、四角形、五角形、六角形等の多角形状であってもよいし、円形状やオーバル状、溝状であってもよい。
 本実施形態の貫通孔70の開口形状は、円形状となっている。
 貫通部33は、図6に示される横方向Xに隣接する貫通孔70,70の最短距離d1が0.1mm以上2mm以下であることが好ましい。
 貫通部33には、貫通孔70,70間に縦方向Yに隣接する発電領域35,35がつながっている部分があることが好ましい。
 図6に示される貫通孔70の最小包含円径たる直径d3は、0.1mm以上2mm以下が好ましい。
 ここでいう「最小包含円径」とは、全ての部分を内側に含む最小の円をいい、貫通孔70の最小包含円径とは貫通孔70の開口全体を内側に含む最小の円をいう。
 貫通部33は、縦方向Yに隣接する貫通孔70,70の間隔d2が等間隔であることが好ましい。
 太陽電池セル20は、貫通部33による開口率が10%以上90%以下であることが好ましい。
 ここでいう「開口率」とは、平面視したときの全体の面積に占める開口の面積の割合をいう。
As shown in FIG. 5 , the through portion 33 is a conduction limiting portion (conduction limiting portion) that extends in the horizontal direction X, separates the power generation regions 35, 35 adjacent to each other in the vertical direction Y, and limits the conduction between the power generation regions 35, 35.
The through portion 33 is a portion that penetrates the photoelectric conversion substrate 30 in the thickness direction and allows light to pass through in the thickness direction of the solar cell 20, and is a group of through holes 70 arranged in a row in the horizontal direction X and spaced equally apart.
The opening shape of the through-hole 70 is not particularly limited, and may be a polygonal shape such as a triangle, a rectangle, a pentagon, or a hexagon, or may be a circle, an oval, or a groove shape.
In this embodiment, the opening shape of the through hole 70 is circular.
In the through portion 33, the shortest distance d1 between adjacent through holes 70, 70 in the lateral direction X shown in FIG. 6 is preferably 0.1 mm or more and 2 mm or less.
It is preferable that the through portion 33 has a portion between the through holes 70, 70 where adjacent power generation regions 35, 35 in the vertical direction Y are connected.
A diameter d3, which is the minimum inclusive circle diameter of the through hole 70 shown in FIG. 6, is preferably 0.1 mm or more and 2 mm or less.
The "minimum inclusive diameter" here refers to the smallest circle that includes all parts inside, and the minimum inclusive diameter of the through hole 70 refers to the smallest circle that includes the entire opening of the through hole 70 inside.
In the through portion 33, it is preferable that the intervals d2 between adjacent through holes 70, 70 in the vertical direction Y are equal.
It is preferable that the opening ratio of the solar cell 20 due to the through portion 33 be 10% or more and 90% or less.
The term "opening ratio" used here refers to the ratio of the area of the openings to the total area when viewed from above.
 発電領域35は、受光することで発電可能な発電可能領域であり、貫通孔70が形成されていない領域である。
 発電領域35は、貫通部33によって区切られて縦方向Yに並設された領域であり、横方向Xに延びている。
 図5(a)に示される縦方向Yの両端部に位置する発電領域35a,35hは、縦方向Yにおいて貫通部33の外側の領域であり、残りの発電領域35b~35gは、縦方向Yに並設された貫通部33,33の間の領域である。
 各発電領域35a~35hは、図5のように、各集電極31,32に対応して設けられており、それぞれ各集電極31,32と導通可能となっている。
The power generating region 35 is a region capable of generating electricity by receiving light, and is a region in which no through holes 70 are formed.
The power generation regions 35 are regions arranged side by side in the vertical direction Y and separated by the through-holes 33, and extend in the horizontal direction X.
The power generation regions 35a, 35h located at both ends in the vertical direction Y shown in Figure 5 (a) are regions outside the through-hole 33 in the vertical direction Y, and the remaining power generation regions 35b to 35g are regions between the through- holes 33, 33 arranged side by side in the vertical direction Y.
As shown in FIG. 5, the power generation regions 35a to 35h are provided corresponding to the collector electrodes 31, 32, respectively, and are capable of electrical continuity with the collector electrodes 31, 32, respectively.
(導電性接着材21)
 導電性接着材21は、導電性を有した導電部材であり、横方向Xに隣接する太陽電池セル20,20のバスバー電極部50,60間を接続する接着材である。
 本実施形態の導電性接着材21は、導電性フィルムの両面に導電性粘着材が設けられた導電性接着フィルムである。
(Conductive adhesive 21)
The conductive adhesive 21 is a conductive member having electrical conductivity, and is an adhesive that connects the bus bar electrode portions 50, 60 of the solar cells 20, 20 adjacent to each other in the lateral direction X.
The conductive adhesive 21 of this embodiment is a conductive adhesive film in which a conductive adhesive material is provided on both sides of a conductive film.
 (取出配線6,7)
 取出配線6,7は、図1,図2のように、透光性基板2,3の間から内外に延び、各太陽電池群5から発電した電力を外部に取り出す配線である。
 第1取出配線6は、櫛歯状となっており、太陽電池セル20の各第1バスバー電極部50と直接又は導電性接着材を介して接着可能となっている。
 すなわち、第1取出配線6は、太陽電池セル20の各第1バスバー電極部50と接続することで各第1バスバー電極部50を同電位にすることが可能となっている。
 各第1取出配線6a~6dは、それぞれ独立して設けられており、それぞれ図示しない端子ボックスに個別に接続されている。
(Exit wiring 6, 7)
As shown in Figs. 1 and 2, the output wirings 6 and 7 extend from between the light-transmitting substrates 2 and 3 to the inside and outside, and are wirings for extracting the electric power generated from each solar cell group 5 to the outside.
The first output wiring 6 has a comb-like shape and can be adhered to each of the first bus bar electrode portions 50 of the solar cell 20 directly or via a conductive adhesive.
That is, the first output wiring 6 is connected to each of the first bus bar electrode portions 50 of the solar cell 20 , thereby making it possible to set each of the first bus bar electrode portions 50 at the same potential.
The first output wirings 6a to 6d are provided independently of one another and are individually connected to terminal boxes (not shown).
 第2取出配線7は、櫛歯状となっており、太陽電池セル20の各第2バスバー電極部60と直接又は導電性接着材を介して接着可能となっている。
 すなわち、第2取出配線7は、太陽電池セル20の各第2バスバー電極部60と接続することで各第2バスバー電極部60を同電位にすることが可能となっている。
 各第2取出配線7a~7dは、それぞれ独立して設けられており、それぞれ図示しない端子ボックスに個別に接続されている。
The second output wiring 7 has a comb-like shape, and can be adhered to each second bus bar electrode portion 60 of the solar cell 20 directly or via a conductive adhesive.
That is, the second output wiring 7 is connected to each of the second bus bar electrode portions 60 of the solar cell 20 , thereby making it possible to set each of the second bus bar electrode portions 60 at the same potential.
The second output wirings 7a to 7d are provided independently of one another and are individually connected to terminal boxes (not shown).
 (封止材8,9)
 封止材8,9は、封止性を有し、透光性基板2,3とともに太陽電池群5を封止する部材であり、透光性基板2,3間を接着する接着材でもある。
(Sealing materials 8, 9)
The sealing materials 8 and 9 have sealing properties and are members that seal the solar cell group 5 together with the light-transmitting substrates 2 and 3, and also serve as adhesives that bond the light-transmitting substrates 2 and 3 together.
 続いて、本実施形態の太陽電池モジュール1の各部位の位置関係について説明する。 Next, we will explain the positional relationship of each part of the solar cell module 1 of this embodiment.
 太陽電池モジュール1は、図1,図2のように、複数の太陽電池群5が縦方向Y(上下方向)に間隔を空けて並設されており、縦方向Yに隣接する太陽電池群5,5間に隙間が形成されている。
 太陽電池モジュール1は、図6に示される縦方向Yに隣接する太陽電池群5,5の太陽電池セル20A,20Bの間隔D1(横辺37,36の最短距離)が、貫通孔70の最小包含円径たる直径d3(貫通部33の幅)の0.9倍以上1.1倍以下であることが好ましく、直径d3と等しいことがより好ましい。
 太陽電池モジュール1は、図6に示される各太陽電池セル20A,20Bの縦方向Yに隣接するバスバー電極部50,50(60,60)の間隔D2が、太陽電池セル20Aにおいて最も横辺37側のバスバー電極部50A(60A)と、太陽電池セル20Bにおいて最も横辺36側のバスバー電極部50B(60B)の間隔D3の0.9倍以上1.1倍以下であることが好ましく、間隔D3と等しいことがより好ましい。
 太陽電池モジュール1は、各太陽電池セル20の貫通部33や太陽電池群5,5間の隙間による開口率が10%以上90%以下であることが好ましい。
As shown in Figures 1 and 2, the solar cell module 1 has a plurality of solar cell groups 5 arranged side by side at intervals in the vertical direction Y (up and down direction), with gaps being formed between adjacent solar cell groups 5, 5 in the vertical direction Y.
In the solar cell module 1, the spacing D1 (shortest distance between the horizontal sides 37, 36) between the solar cell cells 20A, 20B of adjacent solar cell groups 5, 5 in the vertical direction Y shown in Figure 6 is preferably 0.9 to 1.1 times the diameter d3 (width of the through portion 33), which is the minimum inclusive circle diameter of the through hole 70, and more preferably equal to the diameter d3.
In the solar cell module 1, the distance D2 between the busbar electrode portions 50, 50 (60, 60) adjacent to each other in the vertical direction Y of each solar cell 20A, 20B shown in FIG. 6 is preferably 0.9 to 1.1 times the distance D3 between the busbar electrode portion 50A (60A) closest to the horizontal side 37 in the solar cell 20A and the busbar electrode portion 50B (60B) closest to the horizontal side 36 in the solar cell 20B, and is more preferably equal to the distance D3.
In the solar cell module 1, it is preferable that the aperture ratio due to the penetration parts 33 of each solar cell 20 and the gaps between the solar cell groups 5, 5 is 10% or more and 90% or less.
 太陽電池セル20aは、図3(a),図5(b)のように各集電極32が縦方向Yに隣接する他の集電極32と接続されずに、隣接する太陽電池セル20bの各集電極31に接続されており、太陽電池セル20bは、各集電極32が縦方向Yに隣接する他の集電極32と接続されずに、隣接する太陽電池セル20cの各集電極31に接続されている。
 太陽電池セル20bの各発電領域35a~35hは、図5(a)のように横方向Xに隣接する太陽電池セル20aの各発電領域35a~35hと導通しており、太陽電池セル20cの各発電領域35a~35hと導通している。
 すなわち、太陽電池群5を構成する太陽電池セル20a~20cの各発電領域35,35,35は、電気的に直列接続されて発電領域群をそれぞれ形成しており、これらの発電領域群は電気的に並列接続されている。
As shown in Figures 3(a) and 5(b), each collecting electrode 32 of the solar cell 20a is not connected to other collecting electrodes 32 adjacent to it in the vertical direction Y, but is connected to each collecting electrode 31 of the adjacent solar cell 20b, and each collecting electrode 32 of the solar cell 20b is not connected to other collecting electrodes 32 adjacent to it in the vertical direction Y, but is connected to each collecting electrode 31 of the adjacent solar cell 20c.
As shown in FIG. 5A, each of the power generating regions 35a to 35h of the solar cell 20b is electrically connected to each of the power generating regions 35a to 35h of the solar cell 20a adjacent thereto in the lateral direction X, and is also electrically connected to each of the power generating regions 35a to 35h of the solar cell 20c.
That is, the power generation regions 35, 35, 35 of the solar cells 20a to 20c that make up the solar cell group 5 are electrically connected in series to form respective power generation region groups, and these power generation region groups are electrically connected in parallel.
 第1実施形態の太陽電池モジュール1によれば、集電極31a(第1集電配線部)は、縦方向Yに隣接する集電極31b(第2集電配線部)とは接続されずに独立して設けられ、貫通部33を挟んで集電極31bと間隔を空けて配されており、貫通部33が集電極31aの延び方向に延びて第1発電領域35aと第2発電領域35bを区画し、第1発電領域35aと第2発電領域35bとの間の導通を制限している。
 すなわち、貫通部33によって集電極31a側の第1発電領域35aと集電極31b側の第2発電領域35bとに物理的に区画し、1つの太陽電池セル20の中に疑似的に太陽電池の小片を形成するので、従来に比べて部品点数を少なくできるとともに、歩留まりを向上でき、コストを低減できる。また、部品点数を少なくできるので、太陽電池群5の間隔を一定に保持しやすく、遠目には貫通部33と太陽電池群5,5の隙間を同一基調とすることができる。
According to the solar cell module 1 of the first embodiment, the collector electrode 31a (first collector wiring portion) is provided independently of the collector electrode 31b (second collector wiring portion) adjacent to it in the vertical direction Y, and is arranged at a distance from the collector electrode 31b across the through portion 33. The through portion 33 extends in the extension direction of the collector electrode 31a to separate the first power generation region 35a and the second power generation region 35b, and limits the electrical conduction between the first power generation region 35a and the second power generation region 35b.
That is, the through-hole 33 physically divides the solar cell into a first power generation region 35a on the collector electrode 31a side and a second power generation region 35b on the collector electrode 31b side, and a small piece of a solar cell is formed in one solar cell 20, so that the number of parts can be reduced compared to the conventional method, the yield can be improved, and costs can be reduced. In addition, since the number of parts can be reduced, it is easy to maintain a constant interval between the solar cell groups 5, and the through-hole 33 and the gaps between the solar cell groups 5, 5 can be made to have the same tone when viewed from a distance.
 第1実施形態の太陽電池モジュール1によれば、各太陽電池セル20の貫通部33と、縦方向Yに隣接する太陽電池セル20,20間の隙間によって、厚み方向に光を透過可能であるため、シースルー太陽電池モジュールとして機能できる。 The solar cell module 1 of the first embodiment allows light to pass through in the thickness direction due to the penetration portions 33 of each solar cell 20 and the gaps between adjacent solar cells 20, 20 in the vertical direction Y, so it can function as a see-through solar cell module.
 第1実施形態の太陽電池モジュール1によれば、図6のように、集電極31a(第1集電配線部)のバスバー電極部50(60)と、集電極31b(第2集電配線部)のバスバー電極部50(60)との間に、貫通部33の貫通孔70の一部が位置している。そのため、横方向Xにおいて縦辺38,39の近傍まで貫通部33を設けることが可能であり、第1発電領域35aと第2発電領域35b間の導通をより制限できる。 According to the solar cell module 1 of the first embodiment, as shown in FIG. 6, a portion of the through hole 70 of the penetration portion 33 is located between the busbar electrode portion 50 (60) of the collector electrode 31a (first collector wiring portion) and the busbar electrode portion 50 (60) of the collector electrode 31b (second collector wiring portion). Therefore, it is possible to provide the penetration portion 33 up to the vicinity of the vertical sides 38, 39 in the horizontal direction X, and the conduction between the first power generation region 35a and the second power generation region 35b can be further restricted.
 第1実施形態の太陽電池モジュール1によれば、図5のように、電気の流れ方向における最も上流側の太陽電池セル20aと最も下流側の太陽電池セル20cの間に位置する第1太陽電池セル20bは、第1主面45側の集電極31aが縦方向Yに隣接する集電極31bと接続されずに第2太陽電池セル20aの第2主面46側の集電極32aと接続されており、第1主面45側の集電極31bが前記第2太陽電池セル20aの第2主面46側の集電極32bと接続されている。
 また、第1太陽電池セル20bは、第2主面46側の集電極32aが縦方向Yに隣接する集電極32bと接続されずに第3太陽電池セル20cの第1主面45側の集電極31aと接続されており、第2主面46側の集電極32bが前記第3太陽電池セル20cの第1主面45側の集電極31bと接続されている。
 すなわち、第2太陽電池セル20aの第1発電領域35aと、第1太陽電池セル20bの第1発電領域35aと、第3太陽電池セル20cの第1発電領域35aが電気的に直列接続され、第2太陽電池セル20aの第2発電領域35bと、第1太陽電池セル20bの第2発電領域35bと、第3太陽電池セル20cの第2発電領域35bが電気的に直列接続されている。
 よって、第1実施形態の太陽電池モジュール1によれば、各太陽電池セル20a~20cの第1発電領域35a、各太陽電池セル20a~20cの第2発電領域35bをそれぞれ実質的に独立して導通できるので、仮に第1太陽電池セル20bの第1発電領域35aがショートして発電不能となっても、第1太陽電池セル20bの第2発電領域35b側で発電できる。そのため、太陽電池セル20全体を使用して発電する場合に比べて、発電面積の低下を抑制できる。
According to the solar cell module 1 of the first embodiment, as shown in FIG. 5 , the first solar cell 20b located between the most upstream solar cell 20a and the most downstream solar cell 20c in the direction of electrical flow has the collector 31a on the first main surface 45 side connected to the collector 32a on the second main surface 46 side of the second solar cell 20a without being connected to the collector 31b adjacent to it in the vertical direction Y, and the collector 31b on the first main surface 45 side connected to the collector 32b on the second main surface 46 side of the second solar cell 20a.
In addition, the first solar cell 20b has the collector 32a on the second main surface 46 side connected to the collector 31a on the first main surface 45 side of the third solar cell 20c without being connected to the collector 32b adjacent to it in the vertical direction Y, and the collector 32b on the second main surface 46 side connected to the collector 31b on the first main surface 45 side of the third solar cell 20c.
That is, the first power generation region 35a of the second solar cell 20a, the first power generation region 35a of the first solar cell 20b, and the first power generation region 35a of the third solar cell 20c are electrically connected in series, and the second power generation region 35b of the second solar cell 20a, the second power generation region 35b of the first solar cell 20b, and the second power generation region 35b of the third solar cell 20c are electrically connected in series.
Therefore, according to the solar cell module 1 of the first embodiment, the first power generation region 35a of each of the solar cells 20a to 20c and the second power generation region 35b of each of the solar cells 20a to 20c can be electrically connected substantially independently, so that even if the first power generation region 35a of the first solar cell 20b is shorted and cannot generate power, power can be generated on the second power generation region 35b side of the first solar cell 20b. Therefore, the reduction in the power generation area can be suppressed compared to when the entire solar cell 20 is used for power generation.
 第1実施形態の太陽電池モジュール1によれば、図6のように、太陽電池セル20A(20B)において縦方向Yに隣接する集電極31(第1集電配線部)と集電極31(第2集電配線部)の間隔D2が、太陽電池セル20Aにおいて最も横辺37側の集電極31(第1集電配線部)と、太陽電池セル20Bにおいて最も横辺36側の集電極31(第3集電配線部)の間隔D3の0.9倍以上1.1倍以下となっている。
 また、第1実施形態の太陽電池モジュール1によれば、平面視したときに太陽電池セル20Aの横辺37(第1辺)と太陽電池セル20Bの横辺36(第2辺)が平行となっており、第1太陽電池セル20Aの横辺37と、第2太陽電池セル20Bの横辺36の距離D1が、貫通部33の幅d3の0.9倍以上1.1倍以下となっている。
 すなわち、太陽電池モジュール1は、縦方向Yに隣接する集電極31の間隔がそれぞれ等間隔となっており、太陽電池セル20Aと太陽電池セル20Bとの隙間の間隔が貫通孔70で構成される貫通部33の幅と等しいので、均等に光を透過できる。その結果、太陽電池モジュール1全体の見え方が概ね均一に見え、窓ガラスとして使用したときに違和感を与えにくい。
According to the solar cell module 1 of the first embodiment, as shown in FIG. 6 , the distance D2 between the collecting electrode 31 (first collecting wiring portion) and the collecting electrode 31 (second collecting wiring portion) adjacent to each other in the vertical direction Y in the solar cell 20A (20B) is 0.9 to 1.1 times the distance D3 between the collecting electrode 31 (first collecting wiring portion) closest to the horizontal side 37 in the solar cell 20A and the collecting electrode 31 (third collecting wiring portion) closest to the horizontal side 36 in the solar cell 20B.
Furthermore, according to the solar cell module 1 of the first embodiment, when viewed in a plane, the horizontal side 37 (first side) of the solar cell 20A and the horizontal side 36 (second side) of the solar cell 20B are parallel to each other, and the distance D1 between the horizontal side 37 of the first solar cell 20A and the horizontal side 36 of the second solar cell 20B is 0.9 to 1.1 times the width d3 of the through portion 33.
That is, in the solar cell module 1, adjacent collector electrodes 31 in the vertical direction Y are spaced at equal intervals, and the spacing between the solar cell 20A and the solar cell 20B is equal to the width of the through-section 33 formed by the through-hole 70, so that light can be transmitted evenly. As a result, the solar cell module 1 as a whole appears generally uniform, and does not give a sense of incongruity when used as window glass.
 上記した実施形態では、第1集電極31は、2本の第1フィンガー電極部51a,51bを備えていたが、本発明はこれに限定されるものではない。第1集電極31を構成する第1フィンガー電極部51の数は特に限定されない。第1集電極31は、図7のように3本以上の第1フィンガー電極部51を備えていてもよい。同様に第2集電極32は、2本の第2フィンガー電極部61a,61bを備えていたが、本発明はこれに限定されるものではない。第2集電極32を構成する第2フィンガー電極部61の数は特に限定されない。第2集電極32は、3本以上の第2フィンガー電極部61を備えていてもよい。 In the above embodiment, the first collector 31 has two first finger electrode portions 51a, 51b, but the present invention is not limited to this. The number of first finger electrode portions 51 constituting the first collector 31 is not particularly limited. The first collector 31 may have three or more first finger electrode portions 51 as shown in FIG. 7. Similarly, the second collector 32 has two second finger electrode portions 61a, 61b, but the present invention is not limited to this. The number of second finger electrode portions 61 constituting the second collector 32 is not particularly limited. The second collector 32 may have three or more second finger electrode portions 61.
 上記した実施形態では、7つの貫通部33によって8つの発電領域35に区画されていたが、本発明はこれに限定されるものではない。1つ以上6つ以下の貫通部33によって発電領域35が区画されていてもよいし、8つ以上の貫通部33によって発電領域35が区画されていてもよい。
 このように貫通部33の数を変更したり、貫通部33を構成する貫通孔70の数を変更したりすることで太陽電池モジュール1の開口率を調整できる。
In the embodiment described above, the power generating region 35 is divided into eight regions by seven through-holes 33, but the present invention is not limited to this. The power generating region 35 may be divided by one to six through-holes 33, or the power generating region 35 may be divided by eight or more through-holes 33.
In this manner, by changing the number of through portions 33 or the number of through holes 70 that constitute the through portions 33, the aperture ratio of the solar cell module 1 can be adjusted.
 上記した実施形態では、各太陽電池群5a~5dは、外部負荷に接続された端子ボックス(図示せず)に対して並列接続されていたが、本発明はこれに限定されるものではない。図8のように、各太陽電池群5a~5dを接続配線80a~80cによって接続して直列接続群を構成し、直列接続群の最も上流側の太陽電池群5aと下流側の太陽電池群5cを取出配線6,7に接続して端子ボックスに対して直列接続してもよい。この場合、縦方向Yに隣接する太陽電池群5,5(例えば、太陽電池群5a,5b)は、表裏逆転の配置となる。すなわち、縦方向Yに隣接する太陽電池群5,5は、プラスマイナスの向きが互い違いとなる。 In the above embodiment, each solar cell group 5a-5d is connected in parallel to a terminal box (not shown) connected to an external load, but the present invention is not limited to this. As shown in FIG. 8, each solar cell group 5a-5d may be connected by connection wiring 80a-80c to form a series-connected group, and the solar cell group 5a on the most upstream side and the solar cell group 5c on the most downstream side of the series-connected group may be connected to the output wiring 6, 7 and connected in series to the terminal box. In this case, the solar cell groups 5, 5 adjacent in the vertical direction Y (for example, solar cell groups 5a, 5b) are arranged with the front and back reversed. In other words, the solar cell groups 5, 5 adjacent in the vertical direction Y have alternating positive and negative orientations.
 上記した実施形態では、貫通部33は、貫通孔70が一列に並んで構成されていたが、本発明はこれに限定されるものではない。貫通部33は、貫通孔70が複数列に並んで構成されていてもよい。
 この場合、縦方向Yに隣接する貫通孔70,70は、図9(a)のように、横方向Xにずれていてもよいし、図9(b)のように縦方向Yに直線状に並んでいてもよい。
 貫通部33は、隣接する各貫通孔70の中心間を結んで構成される図形が平面充填となるように構成されることが好ましい。
 貫通部33は、図9(a)のように最も隣接する貫通孔70の中心を結んだ図形が正三角形状となっていてもよいし、図9(b)のように最も隣接する貫通孔70の中心を結んだ図形が正方形状となっていてもよい。
In the above embodiment, the through-hole 33 is configured with the through-holes 70 arranged in a row, but the present invention is not limited to this. The through-hole 33 may be configured with the through-holes 70 arranged in a plurality of rows.
In this case, the through holes 70, 70 adjacent in the vertical direction Y may be offset in the horizontal direction X as shown in FIG. 9(a), or may be aligned in a straight line in the vertical direction Y as shown in FIG. 9(b).
It is preferable that the through-holes 33 are configured so that a figure formed by connecting the centers of adjacent through-holes 70 forms a plane tessellation.
The through portion 33 may be such that the figure obtained by connecting the centers of the most adjacent through holes 70 forms an equilateral triangle as shown in Figure 9 (a), or such that the figure obtained by connecting the centers of the most adjacent through holes 70 forms a square as shown in Figure 9 (b).
 上記した実施形態では、各太陽電池群5は、3つの太陽電池セル20a~20cによって構成されていたが、本発明はこれに限定されるものではない。いずれかの太陽電池群5を構成する太陽電池セル20の数が2以上であれば、他の太陽電池群5を構成する太陽電池セル20の数は特に限定されない。 In the above embodiment, each solar cell group 5 is composed of three solar cell cells 20a to 20c, but the present invention is not limited to this. As long as the number of solar cell cells 20 constituting any one solar cell group 5 is two or more, there is no particular limit to the number of solar cell cells 20 constituting the other solar cell groups 5.
 上記した実施形態では、太陽電池モジュール1は、4つの太陽電池群5a~5dによって構成されていたが、本発明はこれに限定されるものではない。太陽電池モジュール1は、1つ以上3つ以下の太陽電池群5によって構成されていてもよいし、5つ以上の太陽電池群5によって構成されていてもよい。 In the above embodiment, the solar cell module 1 is composed of four solar cell groups 5a to 5d, but the present invention is not limited to this. The solar cell module 1 may be composed of one to three solar cell groups 5, or may be composed of five or more solar cell groups 5.
 上記した実施形態では、貫通部33は複数の貫通孔70で構成されていたが、本発明はこれに限定されるものではない。貫通部33は一つの貫通孔70で構成されていてもよい。また、太陽電池セル20において、隣接する発電領域35,35が一部でつながっていればよく、貫通部33の延び方向の端部は、切り欠き部で構成されていてもよい。すなわち、貫通部33は、一部が縦辺38,39を構成する端部から横方向Xに延びた切り欠き部となっていてもよい。 In the above embodiment, the through portion 33 is composed of multiple through holes 70, but the present invention is not limited to this. The through portion 33 may be composed of a single through hole 70. Also, in the solar cell 20, it is sufficient that adjacent power generation regions 35, 35 are partially connected, and the end of the extension direction of the through portion 33 may be composed of a notch. In other words, the through portion 33 may be a notch that extends in the horizontal direction X from the end that constitutes the vertical sides 38, 39.
 上記した実施形態では、太陽電池セル20が結晶型の太陽電池セルの場合について説明したが、本発明はこれに限定されるものではない。太陽電池セル20は他の種類の太陽電池セルであってもよい。 In the above embodiment, the solar cell 20 is a crystalline solar cell, but the present invention is not limited to this. The solar cell 20 may be another type of solar cell.
 上記した実施形態では、太陽電池モジュール1は、太陽電池群5が縦方向Y(上下方向)に並んでいたが、本発明はこれに限定されるものではない。太陽電池群5は、横方向X(左右方向)に並んでいてもよい。この場合、太陽電池モジュール1を90度回転させて縦横逆転させることが好ましい。 In the above embodiment, the solar cell module 1 has the solar cell groups 5 arranged in the vertical direction Y (up-down direction), but the present invention is not limited to this. The solar cell groups 5 may also be arranged in the horizontal direction X (left-right direction). In this case, it is preferable to rotate the solar cell module 1 by 90 degrees to reverse the vertical and horizontal orientation.
 上記した実施形態では、太陽電池群5に属し、横方向Xに隣接する太陽電池セル20,20は、導電性接着材21によって接続されていたが、本発明はこれに限定されるものではない。配線等の他の導電部材で接続されていてもよい。 In the above embodiment, the solar cells 20, 20 that belong to the solar cell group 5 and are adjacent in the horizontal direction X are connected by a conductive adhesive 21, but the present invention is not limited to this. They may be connected by other conductive members such as wiring.
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 The above-described embodiments can be freely substituted or added to each component as long as they fall within the technical scope of the present invention.
  1 太陽電池モジュール
 20,20a~20c,20A,20B 太陽電池セル(第1太陽電池セル、第2太陽電池セル)
 21 導電性接着材
 31,31a~31h 第1集電極(第1集電配線部、第2集電配線部、第3集電配線部)
 32,32a~32h 第2集電極(第1集電配線部、第2集電配線部、第3集電配線部)
 33 貫通部(導通制限部)
 35,35a~35h 発電領域(第1発電領域、第2発電領域)
 36 横辺(第2辺)
 37 横辺(第1辺)
 50,50A,50B 第1バスバー電極部
 51,51a,51b 第1フィンガー電極部
 60,60A,60B 第2バスバー電極部
 61,61a,61b 第2フィンガー電極部
 70 貫通孔
1 Solar cell module 20, 20a to 20c, 20A, 20B Solar cell (first solar cell, second solar cell)
21 Conductive adhesive 31, 31a to 31h First collector electrodes (first collector wiring portion, second collector wiring portion, third collector wiring portion)
32, 32a to 32h: second collector electrodes (first collector wiring portion, second collector wiring portion, third collector wiring portion)
33 Penetration portion (conductivity limiting portion)
35, 35a to 35h Power generation region (first power generation region, second power generation region)
36 Horizontal side (second side)
37 Horizontal side (first side)
50, 50A, 50B First bus bar electrode portion 51, 51a, 51b First finger electrode portion 60, 60A, 60B Second bus bar electrode portion 61, 61a, 61b Second finger electrode portion 70 Through hole

Claims (7)

  1.  第1発電領域と、第2発電領域と、前記第1発電領域と導通可能な第1集電配線部と、前記第2発電領域と導通可能な第2集電配線部と、貫通部を有し、
     前記第1集電配線部は、前記第2集電配線部とは連続せずに独立して設けられ、前記貫通部を挟んで前記第2集電配線部と間隔を空けて配されており、
     前記貫通部は、一又は複数の貫通孔を含み、前記第1集電配線部の延び方向に延びて前記第1発電領域と前記第2発電領域を区画し、前記第1発電領域と前記第2発電領域との間の導通を制限する、太陽電池セル。
    a first power generating region, a second power generating region, a first current collecting wiring part capable of electrical connection with the first power generating region, a second current collecting wiring part capable of electrical connection with the second power generating region, and a through portion;
    the first current collecting wiring portion is provided independently of the second current collecting wiring portion and is not continuous with the second current collecting wiring portion, and is disposed at a distance from the second current collecting wiring portion across the through portion,
    The through portion includes one or more through holes, extends in the extension direction of the first collecting wiring portion, partitions the first power generation region and the second power generation region, and limits electrical conduction between the first power generation region and the second power generation region.
  2.  前記貫通部による開口率が10%以上90%以下である、請求項1に記載の太陽電池セル。 The solar cell according to claim 1, wherein the opening rate of the through-hole is 10% or more and 90% or less.
  3.  前記第1集電配線部及び前記第2集電配線部は、前記貫通部の延び方向に延びる複数のフィンガー電極部と、前記複数のフィンガー電極部の一方の端部側を接続するバスバー電極部をそれぞれ有し、
     前記第1集電配線部のバスバー電極部と、前記第2集電配線部のバスバー電極部との間に、前記貫通部の一部が位置している、請求項1又は2に記載の太陽電池セル。
    the first current collecting wiring portion and the second current collecting wiring portion each have a plurality of finger electrode portions extending in an extension direction of the through portion and a bus bar electrode portion connecting one end side of the plurality of finger electrode portions,
    The solar cell according to claim 1 , wherein a part of the through portion is located between a bus bar electrode portion of the first current collecting wiring portion and a bus bar electrode portion of the second current collecting wiring portion.
  4.  請求項1又は2に記載の太陽電池セルを複数有する太陽電池モジュールであって、
     複数の前記太陽電池セルが直接又は導電部材を介して直列接続された太陽電池群を有し、
     前記太陽電池群は、電気の流れ方向における最も上流側の太陽電池セルと最も下流側の太陽電池セルの間の太陽電池セルの第1集電配線部は、隣接する太陽電池セルの第1集電配線部と接続され、第2集電配線が前記隣接する太陽電池セルの第2集電配線部と接続されている、太陽電池モジュール。
    A solar cell module comprising a plurality of solar cells according to claim 1 or 2,
    a solar cell group in which a plurality of the solar cells are connected in series directly or via a conductive member;
    The solar cell group is a solar cell module in which a first collector wiring portion of a solar cell between the most upstream solar cell and the most downstream solar cell in the direction of electrical flow is connected to the first collector wiring portion of an adjacent solar cell, and a second collector wiring is connected to the second collector wiring portion of the adjacent solar cell.
  5.  請求項1又は2に記載の太陽電池セルを複数有し、前記太陽電池セルが直接又は導電部材を介して接続されており、
     前記太陽電池セルの中には、第1太陽電池セルと、第2太陽電池セルがあり、
     前記第1太陽電池セルは、第1辺を有し、前記第1集電配線部が前記第1辺に沿って延び、前記第2集電配線部が前記第1集電配線部と間隔を空けて前記第1集電配線部の延び方向に延びており、
     前記第1太陽電池セルは、前記貫通部が前記第1集電配線部と前記第2集電配線部の間に位置し、前記第1集電配線部の延び方向に延びており、
     前記第2太陽電池セルは、前記第1太陽電池セルの第1辺と略平行に延びる第2辺と、前記第2辺に沿って延びる第3集電配線部を有し、前記第1太陽電池セルと間隔を空けて配されており、
     前記第1集電配線部と前記第2集電配線部の間隔は、前記第1集電配線部と前記第3集電配線部との間隔の0.9倍以上1.1倍以下であり、
     前記第1太陽電池セルの前記第1辺と、前記第2太陽電池セルの前記第2辺の距離は、前記貫通部の幅の0.9倍以上1.1倍以下である、太陽電池モジュール。
    A solar cell according to claim 1 or 2, the solar cells being connected to each other directly or via a conductive member.
    The solar cells include a first solar cell and a second solar cell,
    the first solar cell has a first side, the first current collecting wiring portion extends along the first side, and the second current collecting wiring portion extends in an extension direction of the first current collecting wiring portion with a gap therebetween,
    The first solar cell has the through portion located between the first collector wiring portion and the second collector wiring portion and extending in an extension direction of the first collector wiring portion,
    the second solar cell has a second side extending substantially parallel to a first side of the first solar cell and a third current collecting wiring portion extending along the second side, and is disposed at a distance from the first solar cell;
    a distance between the first current collecting wiring part and the second current collecting wiring part is 0.9 times or more and 1.1 times or less the distance between the first current collecting wiring part and the third current collecting wiring part,
    A solar cell module, wherein the distance between the first side of the first solar cell and the second side of the second solar cell is 0.9 to 1.1 times the width of the through portion.
  6.  複数の太陽電池セルを有し、前記複数の太陽電池セルが直接又は導電部材を介して接続された太陽電池モジュールであって、
     前記複数の太陽電池セルは、第1発電領域と、第2発電領域と、前記第1発電領域と導通可能な第1集電配線部と、前記第2発電領域と導通可能な第2集電配線部と、前記第1発電領域と前記第2発電領域を区画し、前記第1発電領域と前記第2発電領域との間の導通を制限する導通制限部をそれぞれ有し、
     前記複数の太陽電池セルの中には、第1太陽電池セルと、第2太陽電池セルがあり、
     前記第1太陽電池セルは、前記第1集電配線部が前記第2集電配線部とは独立して前記第2太陽電池セルの第1集電配線部と接続されており、前記第2集電配線部が前記第2太陽電池セルの第2集電配線部と接続されている、太陽電池モジュール。
    A solar cell module having a plurality of solar cells, the plurality of solar cells being connected directly or via a conductive member,
    each of the plurality of solar cells includes a first power generating region, a second power generating region, a first current collecting wiring part capable of electrical connection with the first power generating region, a second current collecting wiring part capable of electrical connection with the second power generating region, and a conduction limiting part that separates the first power generating region from the second power generating region and limits electrical connection between the first power generating region and the second power generating region;
    The plurality of solar cells include a first solar cell and a second solar cell,
    A solar cell module, wherein the first solar cell has a first current collecting wiring portion connected to a first current collecting wiring portion of the second solar cell independent of the second current collecting wiring portion, and the second current collecting wiring portion is connected to a second current collecting wiring portion of the second solar cell.
  7.  第1太陽電池セルと、第2太陽電池セルを有し、
     前記第1太陽電池セルは、第1辺を有し、前記第1辺に沿って延びる第1集電配線部と、前記第1集電配線部と間隔を空けて前記第1集電配線部の延び方向に延びる第2集電配線部と、前記第1集電配線部と前記第2集電配線部の間に位置し、一又は複数の貫通孔が前記第1集電配線部の延び方向に延びて貫通部を有し、
     前記貫通部は、前記第1太陽電池セルにおいて、前記第1集電配線部側と前記第2集電配線部側の導通を制限する導通制限部であり、
     前記第2太陽電池セルは、前記第1太陽電池セルと間隔を空けて配されており、
     前記第2太陽電池セルは、前記第1太陽電池セルの第1辺と略平行に延びる第2辺と、前記第2辺に沿って延びる第3集電配線部を有し、
     前記第1集電配線部と前記第2集電配線部の間隔は、前記第1集電配線部と前記第3集電配線部との間隔の0.9倍以上1.1倍以下であり、
     前記第1太陽電池セルの前記第1辺と、前記第2太陽電池セルの前記第2辺の距離は、前記貫通部の幅の0.9倍以上1.1倍以下である、太陽電池モジュール。
    A first solar cell and a second solar cell are included.
    the first solar cell has a first side, a first current collecting wiring portion extending along the first side, a second current collecting wiring portion extending in an extension direction of the first current collecting wiring portion at a distance from the first current collecting wiring portion, and one or more through holes are positioned between the first current collecting wiring portion and the second current collecting wiring portion and extend in the extension direction of the first current collecting wiring portion,
    the through portion is a conduction limiting portion that limits conduction between the first current collecting wiring portion side and the second current collecting wiring portion side in the first solar cell,
    the second solar cell is disposed at an interval from the first solar cell,
    the second solar cell has a second side extending substantially parallel to the first side of the first solar cell and a third current collecting wiring portion extending along the second side,
    a distance between the first current collecting wiring part and the second current collecting wiring part is 0.9 times or more and 1.1 times or less the distance between the first current collecting wiring part and the third current collecting wiring part,
    A solar cell module, wherein the distance between the first side of the first solar cell and the second side of the second solar cell is 0.9 to 1.1 times the width of the through portion.
PCT/JP2023/039204 2022-11-10 2023-10-31 Solar battery cell and solar battery module WO2024101216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-180481 2022-11-10
JP2022180481 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101216A1 true WO2024101216A1 (en) 2024-05-16

Family

ID=91032946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039204 WO2024101216A1 (en) 2022-11-10 2023-10-31 Solar battery cell and solar battery module

Country Status (1)

Country Link
WO (1) WO2024101216A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196116A (en) * 1998-12-28 2000-07-14 Sony Corp Integrated thin-film element and its manufacture
JP2000223727A (en) * 1999-01-28 2000-08-11 Fuji Electric Co Ltd Thin film solar battery and its manufacture
JP2010109207A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Photovoltaic device and vehicle using the same
JP2011171542A (en) * 2010-02-19 2011-09-01 Toray Eng Co Ltd Solar cell module
US20110214731A1 (en) * 2010-03-05 2011-09-08 Won Seok Park Solar Cell and Method for Manufacturing the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196116A (en) * 1998-12-28 2000-07-14 Sony Corp Integrated thin-film element and its manufacture
JP2000223727A (en) * 1999-01-28 2000-08-11 Fuji Electric Co Ltd Thin film solar battery and its manufacture
JP2010109207A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Photovoltaic device and vehicle using the same
JP2011171542A (en) * 2010-02-19 2011-09-01 Toray Eng Co Ltd Solar cell module
US20110214731A1 (en) * 2010-03-05 2011-09-08 Won Seok Park Solar Cell and Method for Manufacturing the Same

Similar Documents

Publication Publication Date Title
US8253213B2 (en) Photoelectric conversion element, photoelectric conversion element assembly and photoelectric conversion module
US8148627B2 (en) Solar cell interconnect with multiple current paths
EP1990839A2 (en) Solar cell module
JP4989549B2 (en) Solar cell and solar cell module
US9728658B2 (en) Solar cell module
US20090050190A1 (en) Solar cell and solar cell module
WO2012001815A1 (en) Solar cell module and method for manufacturing same
WO2018176527A1 (en) Solar shingle assembly employing center-converging fingers converging toward electrode
US20160284895A1 (en) Photovoltaic apparatus
CN109673172B (en) Overlapping solar cell along non-linear edge overlap
JP2022537499A (en) Back-contact solar cell module and manufacturing method
JP2014033240A (en) Solar cell module
WO2012057243A1 (en) Solar cell and solar cell module
WO2019172258A1 (en) Solar cell module, glass building material, and method for producing solar cell module
WO2024101216A1 (en) Solar battery cell and solar battery module
WO2011058653A1 (en) Solar cell
CN214477494U (en) Photovoltaic module
US20210313479A1 (en) High Power Density Solar Module and Methods of Fabrication
CN213093208U (en) MWT solar cell back electrode structure and battery pack
JP2008270619A (en) Solar battery module
JP2007103536A (en) Solar battery module
CN209981238U (en) Solar cell module
TW202008607A (en) Solar cell module
JP2012532445A (en) Solar power plant
CN219917187U (en) Back contact battery pack and photovoltaic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888564

Country of ref document: EP

Kind code of ref document: A1