WO2012057243A1 - Solar cell and solar cell module - Google Patents

Solar cell and solar cell module Download PDF

Info

Publication number
WO2012057243A1
WO2012057243A1 PCT/JP2011/074755 JP2011074755W WO2012057243A1 WO 2012057243 A1 WO2012057243 A1 WO 2012057243A1 JP 2011074755 W JP2011074755 W JP 2011074755W WO 2012057243 A1 WO2012057243 A1 WO 2012057243A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger electrode
length
solar cell
electrode portion
bus bar
Prior art date
Application number
PCT/JP2011/074755
Other languages
French (fr)
Japanese (ja)
Inventor
平 茂治
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012057243A1 publication Critical patent/WO2012057243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a solar cell module.
  • a solar cell has a photoelectric conversion unit that generates carriers such as electrons and holes by receiving light, and an electrode that collects carriers generated in the photoelectric conversion unit.
  • the electrode As an electrode for collecting the carriers, for example, as described in Patent Document 1 below, the electrode extends along one direction on the main surface of the photoelectric conversion unit and is perpendicular to the one direction.
  • An electrode including a plurality of linear finger electrode portions arranged along other directions and a bus bar portion electrically connecting the plurality of finger electrodes is widely used.
  • This invention is made
  • the objective is to provide the solar cell and solar cell module which have the improved photoelectric conversion efficiency.
  • the solar cell according to the present invention is a solar cell having a photoelectric conversion unit and an electrode disposed on a main surface of the photoelectric conversion unit, the electrode extending at a distance in a first direction, And it arrange
  • a second finger electrode portion extending in the first direction at an interval, and electrically connected to the first and second finger electrode portions, and the second finger electrode portion of the second finger electrode portion
  • the length spaced in the direction of 1 is shorter than the length of the first finger electrode portion spaced in the first direction.
  • the solar cell module includes a plurality of solar cells having a photoelectric conversion unit and electrodes arranged on a main surface of the photoelectric conversion unit, and a wiring material for electrically connecting the adjacent solar cells.
  • a plurality of the electrodes extending at intervals in a first direction and arranged at intervals in a second direction perpendicular to the first direction.
  • a first finger electrode portion, and a second finger electrode portion disposed between the adjacent first finger electrode portions and extending in the first direction with a gap therebetween, and the wiring member Is electrically connected to the first and second finger electrode portions, intersects with the first and second finger electrode portions, and is spaced in the first direction of the second finger electrode portion.
  • the length separated by the first finger electrode Shorter than the length of said spaced in a first direction.
  • a solar cell and a solar cell module having improved photoelectric conversion efficiency can be provided.
  • the solar cell module 1 includes a plurality of solar cells 10 arranged along the x direction.
  • the plurality of solar cells 10 are electrically connected by the wiring material 11.
  • a plurality of solar cells 10 are electrically connected in series or in parallel by electrically connecting adjacent solar cells 10 with the wiring material 11.
  • the wiring member 11 and the solar cell 10 are bonded by an adhesive 12.
  • the adhesive 12 solder or a resin adhesive can be used.
  • the resin adhesive may have an insulating property or may have an anisotropic conductivity.
  • the plurality of solar cells 10 arranged in the x direction are electrically connected to each other by the wiring material 11.
  • First and second protection members 14 and 15 are disposed on the light receiving surface side and the back surface side of the plurality of solar cells 10.
  • a sealing material 13 is provided between the solar cell 10 and the first protective member 14 and between the solar cell 10 and the second protective member 15. The plurality of solar cells 10 are sealed with the sealing material 13.
  • the sealing material 13 can be formed of a light-transmitting resin such as ethylene / vinyl acetate copolymer (EVA) or polyvinyl butyral (PVB).
  • EVA ethylene / vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the first and second protective members 14 and 15 can be formed of, for example, glass or resin.
  • the 1st protection member 14 is arrange
  • the 2nd protection member 15 is arrange
  • a metal frame such as Al is provided as necessary.
  • a body (not shown) is attached.
  • the terminal box for taking out the output of the solar cell 10 outside is provided in the surface of the 1st protection member 14 as needed.
  • the solar cell 10 has a photoelectric conversion unit 20.
  • the photoelectric conversion unit 20 is a member that generates carriers such as electrons and holes by receiving light.
  • the photoelectric conversion unit 20 may include a crystalline semiconductor substrate having one conductivity type, and may have a semiconductor junction such as a pn junction or a pin junction.
  • the photoelectric conversion unit 20 is disposed on one main surface of a crystalline semiconductor substrate having one conductivity type and the first amorphous semiconductor having another conductivity type. It may have a layer and a second amorphous semiconductor layer which is disposed on the other main surface of the crystalline semiconductor substrate and has one conductivity type.
  • the photoelectric conversion unit 20 may have a semiconductor substrate in which an n-type dopant diffusion region and a p-type dopant diffusion region are exposed on the surface.
  • An electrode 21 a is disposed on the light receiving surface 20 a of the photoelectric conversion unit 20.
  • an electrode 21b is disposed on the back surface 20b of the photoelectric conversion unit 20 shown in FIG.
  • the electrode 21b has substantially the same configuration as the electrode 21a.
  • arranged on the back surface of a photoelectric conversion part is not specifically limited.
  • the electrode arranged on the back surface of the photoelectric conversion unit may be, for example, a planar electrode provided so as to cover substantially the entire back surface.
  • the material of the electrodes 21a and 21b is not particularly limited as long as it is a conductive material.
  • Each of the electrodes 21a and 21b can be made of, for example, a metal such as silver, copper, aluminum, titanium, nickel, or chromium, or an alloy containing one or more of these metals.
  • the electrodes 21a and 21b may be configured by, for example, a stacked body of a plurality of conductive layers made of the above metals or alloys.
  • the formation method of the electrodes 21a and 21b is not particularly limited.
  • the electrodes 21a and 21b can be formed using a conductive paste such as an Ag paste, for example.
  • the electrodes 21a and 21b can be formed using, for example, a sputtering method, a vapor deposition method, a screen printing method, a plating method, or the like.
  • the electrode 21a includes a plurality of first finger electrode portions 22, a plurality of second finger electrode portions 24a, a plurality of third finger electrode portions 24b, and first and second bus bar portions 23a, 23b. Have.
  • Each of the plurality of first finger electrode portions 22 extends to the vicinity of the end portion of the photoelectric conversion portion 20 along the y direction perpendicular to the x direction.
  • Each of the plurality of first finger electrode portions 22 is linear. For this reason, the plurality of first finger electrode portions 22 are parallel to each other.
  • the plurality of first finger electrode portions 22 are arranged at predetermined intervals along the x direction.
  • the number of the first finger electrode portions 22 is not particularly limited, and can be set as appropriate according to the size and required characteristics of the solar cell 10.
  • the number of the first finger electrode portions 22 can be, for example, 30 to 60.
  • the distance L10 between the first finger electrode portions 22 (see FIG. 3) and the width W2 of the first finger electrode portion 22 can also be appropriately set according to the required characteristics of the solar cell 10.
  • An interval L10 between the first finger electrode portions 22 can be set to, for example, about 2 mm to 4 mm.
  • the width W2 of the first finger electrode portion 22 can be set to about 0.05 mm to 0.1 mm, for example.
  • the second finger electrode portion 24a is provided corresponding to the first bus bar portion 23a.
  • the second finger electrode portions 24a are disposed between the first finger electrode portions 22 adjacent in the x direction.
  • the 2nd finger electrode part 24a is distribute
  • the second finger electrode portion 24a extends along the y direction.
  • the 2nd finger electrode part 24a is linear. For this reason, the second finger electrode portion 24 a is parallel to the first finger electrode portion 22.
  • the third finger electrode portion 24b is provided corresponding to the second bus bar portion 23b. Similarly to the second finger electrode portion 24a, the third finger electrode portion 24b is also arranged between the first finger electrode portions 22 adjacent in the x direction.
  • the 3rd finger electrode part 24b is distribute
  • the third finger electrode portion 24b extends along the y direction.
  • the third finger electrode portion 24b is linear. For this reason, the third finger electrode part 24 b is parallel to the first finger electrode part 22.
  • Each of the 2nd and 3rd finger electrode parts 24a is arranged in the approximate center between the 1st finger electrode parts 22 which adjoin in the x direction. That is, a distance L11 between the center line of the second finger electrode portion 24a and the center line of the first finger electrode portion 22 disposed on one side in the x direction of the second finger electrode portion 24a (see FIG. 3) and the center line of the second finger electrode portion 24a and the center line of the first finger electrode portion 22 arranged on the other side in the x direction of the second finger electrode portion 24a
  • the distance L12 is substantially equal and is about 1 ⁇ 2 of the distance L10 between the center lines of the adjacent first finger electrode portions 22.
  • L14 A distance L14 between the center line of the third finger electrode portion 24b and the center line of the first finger electrode portion 22 disposed on one side in the x direction of the third finger electrode portion 24b (see FIG. 4).
  • Widths W3 and W6 of the second and third finger electrode portions 24a are not particularly limited.
  • the widths W3 and W6 of the second and third finger electrode portions 24a may be the same as or different from the width W2 of the first finger electrode portion 22, respectively.
  • the widths W3 and W6 of the second and third finger electrode portions 24a can be set to about 0.04 mm to 0.1 mm, for example.
  • Each of the first and second bus bar portions 23a, 23b is electrically connected to the first to third finger electrode portions 22, 24a, 24b.
  • the first bus bar portion 23a is electrically connected to the first and second finger electrode portions 22, 24a.
  • the second bus bar portion 23b is electrically connected to the first and third finger electrode portions 22, 24b.
  • Each of the first and second bus bar portions 23a, 23b intersects the first to third finger electrode portions 22, 24a, 24b.
  • the first bus bar portion 23a intersects the first and second finger electrode portions 22, 24a.
  • the second bus bar portion 23b intersects with the first and third finger electrode portions 22, 24b.
  • each of the first and second bus bar portions 23a and 23b is linear.
  • Each of the first and second bus bar portions 23a and 23b extends along the x direction.
  • the first bus bar portion 23a is relatively disposed on the y1 side
  • the second bus bar portion 23b is relatively disposed on the y2 side.
  • the widths W1 and W4 of the first and second bus bar portions 23a and 23b are made larger than the width W2 of the first finger electrode portion 22, respectively.
  • the widths W1 and W4 of the first and second bus bar portions 23a and 23b are substantially the same as or slightly larger than the width W2 of the first finger electrode portion 22, respectively.
  • the widths W1 and W4 of the first and second bus bar portions 23a and 23b can be set to about 0.1 mm to 2.0 mm, for example.
  • the length L4 along the y direction of the outer portion 24a1 located on the y1 side in the y direction with respect to the first bus bar portion 23a of the second finger electrode portion 24a is the first finger electrode portion 22. It is shorter than the length L2 along the y direction of the outer portion 22b located on the y1 side in the y direction from the first bus bar portion 23a (L4 ⁇ L2). Specifically, the length L4 is 0.2 times or more and less than 1 time the length L2 (0.2L2 ⁇ L4 ⁇ L2).
  • the length L7 along the y direction of the outer portion 24b1 located on the y2 side in the y direction with respect to the second bus bar portion 23b of the third finger electrode portion 24b is the second bus bar of the first finger electrode portion 22. It is shorter than the length L3 along the y direction of the outer portion 22c located on the y2 side in the y direction from the portion 23b (L7 ⁇ L3). Specifically, the length L7 is 0.2 times or more and less than 1 time the length L3 (0.2L3 ⁇ L7 ⁇ L3).
  • a length L6 along the y direction of the inner portion 24b2 located on the y1 side in the y direction with respect to 23b is a portion 22a located between the first and second bus bar portions 23a, 23b of the first finger electrode portion 22. Shorter than 1/2 of the length L1 along the y direction (L5 ⁇ (1/2) L1, L6 ⁇ (1/2) L1).
  • the lengths L5 and L6 are 0.1 times or more and less than 1/2 times the length L1, that is, 0.2 times or more and less than 1 time 1/2 of the length L1 (0. 2 ((1/2) L1) ⁇ L5 ⁇ (1/2) L1, 0.2 ((1/2) L1) ⁇ L6 ⁇ (1/2) L1).
  • the finger electrode portion has a portion with a large amount of current flowing during power generation and a portion with a small amount.
  • the outer portion 22b of the first finger electrode portion 22 as shown in FIG. 6, carriers generated on both sides of the tip portion are collected at the tip portion of the outer portion 22b.
  • carriers generated on both sides of the base end portion are collected at the base end portion of the outer portion 22b, and carriers collected on the front end side of the base end portion flow toward the bus bar portion 23a. . Therefore, in the outer portion 22b, the amount of current flowing increases as it approaches the base end side (bus bar portion 23a) side.
  • the first finger electrode portion 22 As described above, a relatively small current flows in a portion of the first finger electrode portion 22 that is away from the bus bar portions 23a and 23b, whereas in a portion close to the bus bar portions 23a and 23b, a relatively small current flows. A large current flows. Therefore, in the solar cell in which only the first finger electrode portion 22 is provided as the finger electrode portion and the second and third finger electrode portions 24a and 24b are not provided, the first finger electrode portion 22 There is a problem that the resistance loss in the portion close to the bus bar portion becomes large and the photoelectric conversion efficiency is lowered.
  • One method of reducing the resistance loss in the portion of the first finger electrode portion close to the bus bar portion is to reduce the electrical resistance of the first finger electrode portion by increasing the width of the first finger electrode portion. Can be considered. However, in that case, the ratio of the portion covered with the electrode on the light receiving surface increases.
  • second and third finger electrode portions 24a and 24b are provided in addition to the first finger electrode portion 22 in addition to the first finger electrode portion 22. And these 2nd and 3rd finger electrode parts 24a and 24b are provided adjacent to the part close
  • the photoelectric conversion unit 20 carriers generated in the portions close to the bus bar portions 23 a and 23 b are collected not only by the first finger electrode unit 22 but also by the second and third finger electrode units 24 a and 24 b.
  • the concentration on the first finger electrode portion 22 is suppressed. Therefore, it is possible to reduce the amount of current flowing through the portions of the first finger electrode portion 22 close to the bus bar portions 23a and 23b. Therefore, the resistance loss in the first finger electrode portion 22 can be reduced.
  • the second and third finger electrode portions 24a and 24b are provided only in portions near the bus bar portions 23a and 23b in the y direction, and are not provided on the entire light receiving surface 20a. For this reason, instead of providing the second and third finger electrode portions, the ratio of the portion covered with the electrode 21a of the light receiving surface 20a is increased as compared with the case where the number of the first finger electrode portions is increased. Can be reduced. That is, the resistance loss in the first finger electrode portion 22 can be reduced while suppressing a decrease in the light receiving area. Therefore, the photoelectric conversion efficiency of the solar cell 10 and consequently the solar cell module 1 can be effectively increased.
  • 0.2L2 ⁇ L4 ⁇ L2, 0.2L3 ⁇ L7 ⁇ L3, 0.2 ((1/2) L1) ⁇ L5 ⁇ (1/2) L1,. 2 ((1/2) L1) ⁇ L6 ⁇ (1/2) L1 is preferable. If L4 to L7 are too small, the effect of improving the resistance loss in the first finger electrode portion 22 may not be sufficiently obtained, so it is considered that the photoelectric conversion efficiency may not be sufficiently increased. On the other hand, if L4 to L7 are too large, the light receiving area may become too small, and it is considered that the photoelectric conversion efficiency may not be sufficiently increased.
  • FIG. 1 is referred to in common with the first embodiment.
  • each of the bus bar portions 23a and 23b is linear
  • the bus bar portion does not necessarily have to be linear.
  • each of the bus bar portions 23a, 23b may extend in a zigzag shape along the x direction.
  • the wiring member 11 is preferably connected using a resin adhesive.
  • the width of the bus bar portions 23 a and 23 b is substantially equal to the width of the first finger electrode portion 22.
  • the second and third finger electrode portions 24 a and 24 b are provided symmetrically with respect to the wiring member 11.
  • the present invention is not limited to this configuration.
  • the plurality of first finger electrode portions 22 may be arranged along the y direction.
  • each of the plurality of first finger electrode portions 22 is divided into one side portion 22a1 and the other side portion 22a2.
  • the present invention is not limited to this configuration.
  • One or three or more bus bar portions may intersect the first finger electrode portion.
  • a finger electrode portion having a short length is provided between the adjacent first finger electrode portions.
  • the present invention is not limited to this configuration.
  • a plurality of second and third finger electrode portions 24 a and 24 b may be disposed between the first finger electrode portions 22 adjacent in the x direction.
  • each of L4 to L7 is preferably shorter as the second and third finger electrode portions 24a and 24b are closer to the center in the x direction between the adjacent first finger electrode portions 22.
  • the number of the second and third finger electrode portions 24a and 24b located between the first finger electrode portions 22 adjacent in the x direction is excessive, the distance between the adjacent first finger electrode portions 22 is increased. Tends to cause recombination of minority carriers. Therefore, the number of the second and third finger electrode portions 24a and 24b located between the first finger electrode portions 22 adjacent in the x direction is preferably 5 or less.
  • the bus bar portions 23a and 23b are provided, and the example in which the wiring member 11 is electrically connected to the electrode 21a mainly in the bus bar portions 23a and 23b has been described.
  • the present invention is not limited to this configuration.
  • the bus bar portions 23a and 23b may not be provided, and the electrode 21a may be configured by the first to third finger electrode portions 22, 24a and 24b.
  • the length L4 along the y direction of the outer portion 24a1 located on the y1 side in the y direction with respect to the wiring member 11a of the second finger electrode portion 24a. is preferably shorter than the length L2 along the y direction of the outer portion 22b located on the y1 side in the y direction with respect to the wiring member 11a of the first finger electrode portion 22 (L4 ⁇ L2).
  • the length L4 is more preferably 0.2 times or more and less than 1 time the length L2 (0.2L2 ⁇ L4 ⁇ L2).
  • the length L7 along the y direction of the outer portion 24b1 located on the y2 side in the y direction relative to the wiring material 11b of the third finger electrode portion 24b is larger than the wiring material 11b of the first finger electrode portion 22 in the y direction. It is preferable that the outer portion 22c located on the y2 side is shorter than the length L3 along the y direction (L7 ⁇ L3).
  • the length L7 is more preferably 0.2 times or more and less than 1 time the length L3 (0.2L3 ⁇ L7 ⁇ L3).
  • the length L6 along the y direction of the inner portion 24b2 located on the y1 side is 1 / of the length L1 along the y direction of the portion 22a located between the wiring members 11a and 11b of the first finger electrode portion 22. It is preferably shorter than 2 (L5 ⁇ (1/2) L1, L6 ⁇ (1/2) L1).
  • the lengths L5 and L6 are more preferably 0.1 times or more and less than 1/2 times the length L1 (0.1L1 ⁇ L5 ⁇ (1/2) L1,0.1L1 ⁇ L6 ⁇ (1 / 2) L1).
  • Example 1 A solar cell having substantially the same configuration as that of the solar cell 10 in the first embodiment is manufactured by changing the distance L10 between the first finger electrode portions 22 with various design parameters, and photoelectric conversion is performed. Efficiency was measured. The results are shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a solar cell and solar cell module having enhanced photoelectric conversion efficiency. [Solution] The length (L4) over which portion (24a1) of a second finger electrode part (24a) extends in a first direction (y) is less that the length (L2) over which portion (22b) of a first finger electrode part (22) extends in the first direction (y), portion (24a1) being the portion of the second finger electrode part (24a) located further to one side in the first (y) direction than a first busbar part (23a), and portion (22b) being the portion of the first finger electrode part (22) located further to one side in the first (y) direction than the first busbar part (23a).

Description

太陽電池及び太陽電池モジュールSolar cell and solar cell module
 本発明は太陽電池及び太陽電池モジュールに関する。 The present invention relates to a solar cell and a solar cell module.
 近年、環境負荷が低いエネルギー源として、太陽電池が大いに注目されている。太陽電池は、受光することにより電子や正孔などのキャリアを生成させる光電変換部と、光電変換部において生成したキャリアを収集する電極とを有している。このキャリアを収集するための電極としては、例えば、下記の特許文献1などに記載されているように、光電変換部の主面上において、一の方向に沿って延び、一の方向に垂直な他の方向に沿って配列された直線状の複数のフィンガー電極部と、それら複数のフィンガー電極を電気的に接続しているバスバー部とを含む電極が広く用いられている。 In recent years, solar cells have attracted a great deal of attention as an energy source with low environmental impact. A solar cell has a photoelectric conversion unit that generates carriers such as electrons and holes by receiving light, and an electrode that collects carriers generated in the photoelectric conversion unit. As an electrode for collecting the carriers, for example, as described in Patent Document 1 below, the electrode extends along one direction on the main surface of the photoelectric conversion unit and is perpendicular to the one direction. An electrode including a plurality of linear finger electrode portions arranged along other directions and a bus bar portion electrically connecting the plurality of finger electrodes is widely used.
特開2010-186862号公報JP 2010-186862 A
 近年、太陽電池の光電変換効率をさらに高めたいという要望が高まってきている。 In recent years, there has been an increasing demand to further increase the photoelectric conversion efficiency of solar cells.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、向上された光電変換効率を有する太陽電池及び太陽電池モジュールを提供することにある。 This invention is made | formed in view of this point, The objective is to provide the solar cell and solar cell module which have the improved photoelectric conversion efficiency.
 本発明に係る太陽電池は、光電変換部と、前記光電変換部の主面上に配された電極とを有する太陽電池であって、前記電極は、第1の方向に間隔を隔てて延び、かつ、前記第1の方向に対して垂直な第2の方向に間隔を隔てて配列されている複数の第1のフィンガー電極部と、隣り合う前記第1のフィンガー電極部の間に配置されており、前記第1の方向に間隔を隔てて延びる第2のフィンガー電極部と、前記第1及び第2のフィンガー電極部に電気的に接続されており、前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さよりも短い。 The solar cell according to the present invention is a solar cell having a photoelectric conversion unit and an electrode disposed on a main surface of the photoelectric conversion unit, the electrode extending at a distance in a first direction, And it arrange | positions between the several 1st finger electrode part arranged at intervals in the 2nd direction perpendicular | vertical with respect to the said 1st direction, and the said 1st finger electrode part which adjoins. A second finger electrode portion extending in the first direction at an interval, and electrically connected to the first and second finger electrode portions, and the second finger electrode portion of the second finger electrode portion The length spaced in the direction of 1 is shorter than the length of the first finger electrode portion spaced in the first direction.
 本発明に係る太陽電池モジュールは、光電変換部と、前記光電変換部の主面上に配された電極とを有する複数の太陽電池と、隣り合う前記太陽電池を電気的に接続する配線材とを備える太陽電池モジュールであって、前記電極は、第1の方向に間隔を隔てて延び、かつ、前記第1の方向に対して垂直な第2の方向に間隔を隔てて配列されている複数の第1のフィンガー電極部と、隣り合う前記第1のフィンガー電極部の間に配置され、前記第1の方向に間隔を隔てて延びる第2のフィンガー電極部と、を有し、前記配線材は、前記第1及び第2のフィンガー電極部に電気的に接続され、前記第1及び第2のフィンガー電極部と交差しており、前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さよりも短い。 The solar cell module according to the present invention includes a plurality of solar cells having a photoelectric conversion unit and electrodes arranged on a main surface of the photoelectric conversion unit, and a wiring material for electrically connecting the adjacent solar cells. A plurality of the electrodes extending at intervals in a first direction and arranged at intervals in a second direction perpendicular to the first direction. A first finger electrode portion, and a second finger electrode portion disposed between the adjacent first finger electrode portions and extending in the first direction with a gap therebetween, and the wiring member Is electrically connected to the first and second finger electrode portions, intersects with the first and second finger electrode portions, and is spaced in the first direction of the second finger electrode portion. The length separated by the first finger electrode Shorter than the length of said spaced in a first direction.
 本発明によれば、向上された光電変換効率を有する太陽電池及び太陽電池モジュールを提供することができる。 According to the present invention, a solar cell and a solar cell module having improved photoelectric conversion efficiency can be provided.
第1の実施形態における太陽電池モジュールの略図的断面図である。It is a schematic sectional drawing of the solar cell module in 1st Embodiment. 第1の実施形態における太陽電池の受光面の略図的平面図である。It is a schematic plan view of the light receiving surface of the solar cell in the first embodiment. 第1の実施形態における太陽電池の受光面の一部分を拡大した略図的拡大平面図である。It is the schematic-drawing enlarged plan view which expanded a part of light-receiving surface of the solar cell in 1st Embodiment. 第1の実施形態における太陽電池の受光面の一部分を拡大した略図的拡大平面図である。It is the schematic-drawing enlarged plan view which expanded a part of light-receiving surface of the solar cell in 1st Embodiment. 第1の実施形態における太陽電池の裏面の略図的平面図である。It is a schematic plan view of the back surface of the solar cell in the first embodiment. 第1のフィンガー電極部を流れる電流を説明するための模式図である。It is a schematic diagram for demonstrating the electric current which flows through a 1st finger electrode part. 第1の変形例における太陽電池の受光面の略図的平面図である。It is a schematic plan view of the light receiving surface of the solar cell in the first modification. 第2の変形例における太陽電池の受光面の略図的平面図である。It is a schematic plan view of a light receiving surface of a solar cell in a second modification. 第3の変形例における太陽電池の電極の一部分を拡大した略図的拡大平面図である。It is the schematic expanded plan view which expanded a part of electrode of the solar cell in a 3rd modification. 第2の実施形態における太陽電池の受光面の略図的平面図である。It is a schematic plan view of the light receiving surface of the solar cell in the second embodiment. 第2の実施形態における太陽電池の受光面の一部分を拡大した略図的拡大平面図である。It is the schematic expanded plan view which expanded a part of light-receiving surface of the solar cell in 2nd Embodiment. 第2の実施形態における太陽電池の受光面の一部分を拡大した略図的拡大平面図である。It is the schematic expanded plan view which expanded a part of light-receiving surface of the solar cell in 2nd Embodiment. 実験例1,2における隣り合う第1のフィンガー電極部間の距離と、光電変換効率との関係を表すグラフである。It is a graph showing the relationship between the distance between the 1st finger electrode parts which adjoin in Experimental examples 1 and 2, and photoelectric conversion efficiency. L4/L2に対する光電変換効率の改善率を表すグラフである。It is a graph showing the improvement rate of the photoelectric conversion efficiency with respect to L4 / L2.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は、単なる例示である。本発明は、以下の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiments are merely examples. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 (太陽電池モジュール1の概略構成)
 図1に示すように、太陽電池モジュール1は、x方向に沿って配列された複数の太陽電池10を備えている。複数の太陽電池10は、配線材11によって電気的に接続されている。具体的には、隣接する太陽電池10間が配線材11によって電気的に接続されることによって、複数の太陽電池10が直列または並列に電気的に接続されている。なお、配線材11と太陽電池10とは、接着剤12によって接着されている。接着剤12としては、半田または樹脂接着剤を用いることができる。接着剤12として樹脂接着剤を用いる場合には、樹脂接着剤は絶縁性を有するものであってもよいし、異方導電性を有するものであってもよい。
(First embodiment)
(Schematic configuration of solar cell module 1)
As shown in FIG. 1, the solar cell module 1 includes a plurality of solar cells 10 arranged along the x direction. The plurality of solar cells 10 are electrically connected by the wiring material 11. Specifically, a plurality of solar cells 10 are electrically connected in series or in parallel by electrically connecting adjacent solar cells 10 with the wiring material 11. The wiring member 11 and the solar cell 10 are bonded by an adhesive 12. As the adhesive 12, solder or a resin adhesive can be used. When a resin adhesive is used as the adhesive 12, the resin adhesive may have an insulating property or may have an anisotropic conductivity.
 x方向に配列された複数の太陽電池10は、配線材11によって互いに電気的に接続されている。複数の太陽電池10の受光面側及び裏面側には、第1及び第2の保護部材14,15が配置されている。太陽電池10と第1の保護部材14との間及び太陽電池10と第2の保護部材15との間には、封止材13が設けられている。複数の太陽電池10は、この封止材13により封止されている。 The plurality of solar cells 10 arranged in the x direction are electrically connected to each other by the wiring material 11. First and second protection members 14 and 15 are disposed on the light receiving surface side and the back surface side of the plurality of solar cells 10. A sealing material 13 is provided between the solar cell 10 and the first protective member 14 and between the solar cell 10 and the second protective member 15. The plurality of solar cells 10 are sealed with the sealing material 13.
 なお、封止材13並びに第1及び第2の保護部材14,15の材料は、特に限定されない。封止材13は、例えば、エチレン・酢酸ビニル共重合体(EVA)やポリビニルブチラール(PVB)等の透光性を有する樹脂により形成することができる。 In addition, the material of the sealing material 13 and the 1st and 2nd protection members 14 and 15 is not specifically limited. The sealing material 13 can be formed of a light-transmitting resin such as ethylene / vinyl acetate copolymer (EVA) or polyvinyl butyral (PVB).
 第1及び第2の保護部材14,15は、例えば、ガラス、樹脂などにより形成することができる。また、例えば、第1及び第2の保護部材14,15のうちの一方を、アルミニウム箔などの金属箔を介在させた樹脂フィルムにより構成してもよい。本実施形態では、第1の保護部材14は、太陽電池10の裏面側に配置されており、アルミニウム箔などの金属箔を介在させた樹脂フィルムにより構成されている。第2の保護部材15は、太陽電池10の受光面側に配置されており、ガラスまたは透光性樹脂からなる。 The first and second protective members 14 and 15 can be formed of, for example, glass or resin. For example, you may comprise one of the 1st and 2nd protection members 14 and 15 by the resin film which interposed metal foil, such as aluminum foil. In this embodiment, the 1st protection member 14 is arrange | positioned at the back surface side of the solar cell 10, and is comprised by the resin film which interposed metal foil, such as aluminum foil. The 2nd protection member 15 is arrange | positioned at the light-receiving surface side of the solar cell 10, and consists of glass or translucent resin.
 第1の保護部材14、封止材13、複数の太陽電池10、封止材13、第2の保護部材15を有する積層体の外周には、必要に応じて、Al等の金属製の枠体(図示しない)が取り付けられる。また、第1の保護部材14の表面には、必要に応じて、太陽電池10の出力を外部に取り出すための端子ボックスが設けられる。 On the outer periphery of the laminate having the first protective member 14, the sealing material 13, the plurality of solar cells 10, the sealing material 13, and the second protective member 15, a metal frame such as Al is provided as necessary. A body (not shown) is attached. Moreover, the terminal box for taking out the output of the solar cell 10 outside is provided in the surface of the 1st protection member 14 as needed.
 (太陽電池10の構造)
 図2に示すように、太陽電池10は、光電変換部20を有する。光電変換部20は、受光することによって電子や正孔などのキャリアを生成させる部材である。光電変換部20は、例えば、一の導電型を有する結晶性半導体基板を有し、pn接合、pin接合等の半導体接合を有するものであってもよい。また、光電変換部20は、一の導電型を有する結晶性半導体基板と、その結晶性半導体基板の一の主面上に配されており、他の導電型を有する第1の非晶質半導体層と、結晶性半導体基板の他の主面上に配されており、一の導電型を有する第2の非晶質半導体層とを有するものであってもよい。また、光電変換部20は、n型ドーパント拡散領域とp型ドーパント拡散領域とが表面に露出している半導体基板を有するものであってもよい。
(Structure of solar cell 10)
As shown in FIG. 2, the solar cell 10 has a photoelectric conversion unit 20. The photoelectric conversion unit 20 is a member that generates carriers such as electrons and holes by receiving light. For example, the photoelectric conversion unit 20 may include a crystalline semiconductor substrate having one conductivity type, and may have a semiconductor junction such as a pn junction or a pin junction. In addition, the photoelectric conversion unit 20 is disposed on one main surface of a crystalline semiconductor substrate having one conductivity type and the first amorphous semiconductor having another conductivity type. It may have a layer and a second amorphous semiconductor layer which is disposed on the other main surface of the crystalline semiconductor substrate and has one conductivity type. Further, the photoelectric conversion unit 20 may have a semiconductor substrate in which an n-type dopant diffusion region and a p-type dopant diffusion region are exposed on the surface.
 光電変換部20の受光面20aの上には、電極21aが配されている。一方、図5に示す光電変換部20の裏面20bの上には、電極21bが配されている。本実施形態においては、電極21bは、電極21aと実質的に同様の構成を有する。但し、本発明において、光電変換部の裏面の上に配された電極の構成は特に限定されない。光電変換部の裏面の上に配された電極は、例えば、裏面の略全面を覆うように設けられた面状電極であってもよい。 An electrode 21 a is disposed on the light receiving surface 20 a of the photoelectric conversion unit 20. On the other hand, an electrode 21b is disposed on the back surface 20b of the photoelectric conversion unit 20 shown in FIG. In the present embodiment, the electrode 21b has substantially the same configuration as the electrode 21a. However, in this invention, the structure of the electrode distribute | arranged on the back surface of a photoelectric conversion part is not specifically limited. The electrode arranged on the back surface of the photoelectric conversion unit may be, for example, a planar electrode provided so as to cover substantially the entire back surface.
 電極21a、21bの材質は、導電材料である限りにおいて特に限定されない。電極21a、21bのそれぞれは、例えば、銀、銅、アルミニウム、チタン、ニッケル、クロムなどの金属や、それらの金属のうちの一種以上を含む合金により構成することができる。また、電極21a、21bは、例えば、上記金属や合金からなる複数の導電層の積層体により構成されていてもよい。電極21a、21bの形成方法は、特に限定されない。電極21a,21bは、例えば、Agペースト等の導電性ペーストを用いて形成することができる。また、電極21a,21bは、例えば、スパッタ法、蒸着法、スクリーン印刷法或いはメッキ法等を用いて形成することができる。 The material of the electrodes 21a and 21b is not particularly limited as long as it is a conductive material. Each of the electrodes 21a and 21b can be made of, for example, a metal such as silver, copper, aluminum, titanium, nickel, or chromium, or an alloy containing one or more of these metals. In addition, the electrodes 21a and 21b may be configured by, for example, a stacked body of a plurality of conductive layers made of the above metals or alloys. The formation method of the electrodes 21a and 21b is not particularly limited. The electrodes 21a and 21b can be formed using a conductive paste such as an Ag paste, for example. The electrodes 21a and 21b can be formed using, for example, a sputtering method, a vapor deposition method, a screen printing method, a plating method, or the like.
 電極21aは、複数の第1のフィンガー電極部22と、複数の第2のフィンガー電極部24aと、複数の第3のフィンガー電極部24bと、第1及び第2のバスバー部23a、23bとを有する。 The electrode 21a includes a plurality of first finger electrode portions 22, a plurality of second finger electrode portions 24a, a plurality of third finger electrode portions 24b, and first and second bus bar portions 23a, 23b. Have.
 複数の第1のフィンガー電極部22のそれぞれは、x方向に垂直なy方向に沿って、光電変換部20の端部近傍まで延びている。複数の第1のフィンガー電極部22のそれぞれは、線状である。このため、複数の第1のフィンガー電極部22は、相互に平行である。複数の第1のフィンガー電極部22は、x方向に沿って所定の間隔を隔てて配列されている。 Each of the plurality of first finger electrode portions 22 extends to the vicinity of the end portion of the photoelectric conversion portion 20 along the y direction perpendicular to the x direction. Each of the plurality of first finger electrode portions 22 is linear. For this reason, the plurality of first finger electrode portions 22 are parallel to each other. The plurality of first finger electrode portions 22 are arranged at predetermined intervals along the x direction.
 なお、第1のフィンガー電極部22の本数は、特に限定されず、太陽電池10の大きさや要求特性などに応じて適宜設定することができる。第1のフィンガー電極部22の本数は、例えば、30本~60本とすることができる。第1のフィンガー電極部22の間隔L10(図3を参照)や、第1のフィンガー電極部22の幅W2も、太陽電池10の要求特性などに応じて適宜設定することができる。第1のフィンガー電極部22の間隔L10は、例えば、2mm~4mm程度とすることができる。第1のフィンガー電極部22の幅W2は、例えば、0.05mm~0.1mm程度とすることができる。 Note that the number of the first finger electrode portions 22 is not particularly limited, and can be set as appropriate according to the size and required characteristics of the solar cell 10. The number of the first finger electrode portions 22 can be, for example, 30 to 60. The distance L10 between the first finger electrode portions 22 (see FIG. 3) and the width W2 of the first finger electrode portion 22 can also be appropriately set according to the required characteristics of the solar cell 10. An interval L10 between the first finger electrode portions 22 can be set to, for example, about 2 mm to 4 mm. The width W2 of the first finger electrode portion 22 can be set to about 0.05 mm to 0.1 mm, for example.
 第2のフィンガー電極部24aは、第1のバスバー部23aに対応して設けられている。第2のフィンガー電極部24aは、x方向において隣り合う第1のフィンガー電極部22の間のそれぞれに配置されている。第2のフィンガー電極部24aは、受光面20aの中央よりもy1側部分に配されている。第2のフィンガー電極部24aは、y方向に沿って延びている。第2のフィンガー電極部24aは、線状である。このため、第2のフィンガー電極部24aは、第1のフィンガー電極部22と平行である。 The second finger electrode portion 24a is provided corresponding to the first bus bar portion 23a. The second finger electrode portions 24a are disposed between the first finger electrode portions 22 adjacent in the x direction. The 2nd finger electrode part 24a is distribute | arranged to the y1 side part rather than the center of the light-receiving surface 20a. The second finger electrode portion 24a extends along the y direction. The 2nd finger electrode part 24a is linear. For this reason, the second finger electrode portion 24 a is parallel to the first finger electrode portion 22.
 第3のフィンガー電極部24bは、第2のバスバー部23bに対応して設けられている。第3のフィンガー電極部24bも、第2のフィンガー電極部24aと同様に、x方向において隣り合う第1のフィンガー電極部22の間のそれぞれに配置されている。第3のフィンガー電極部24bは、受光面20aの中央よりもy2側部分に配されている。第3のフィンガー電極部24bは、y方向に沿って延びている。第3のフィンガー電極部24bは、線状である。このため、第3のフィンガー電極部24bは、第1のフィンガー電極部22と平行である。 The third finger electrode portion 24b is provided corresponding to the second bus bar portion 23b. Similarly to the second finger electrode portion 24a, the third finger electrode portion 24b is also arranged between the first finger electrode portions 22 adjacent in the x direction. The 3rd finger electrode part 24b is distribute | arranged to the y2 side part rather than the center of the light-receiving surface 20a. The third finger electrode portion 24b extends along the y direction. The third finger electrode portion 24b is linear. For this reason, the third finger electrode part 24 b is parallel to the first finger electrode part 22.
 第2及び第3のフィンガー電極部24aのそれぞれは、x方向において、隣り合う第1のフィンガー電極部22間の略中央に配置されている。すなわち、第2のフィンガー電極部24aの中心線と、その第2のフィンガー電極部24aのx方向の一方側に配された第1のフィンガー電極部22の中心線との間の距離L11(図3を参照)と、第2のフィンガー電極部24aの中心線と、その第2のフィンガー電極部24aのx方向の他方側に配された第1のフィンガー電極部22の中心線との間の距離L12とは、略等しく、隣接する第1のフィンガー電極部22の中心線間の距離L10の約1/2である。第3のフィンガー電極部24bの中心線と、その第3のフィンガー電極部24bのx方向の一方側に配された第1のフィンガー電極部22の中心線との間の距離L14(図4を参照)と、第3のフィンガー電極部24bの中心線と、その第3のフィンガー電極部24bのx方向の他方側に配された第1のフィンガー電極部22の中心線との間の距離L15とは、略等しく、隣接する第1のフィンガー電極部22の中心線間の距離L10の約1/2である。従って、本実施形態では、L11=L12=L14=L15≒(1/2)・L10となっている。 Each of the 2nd and 3rd finger electrode parts 24a is arranged in the approximate center between the 1st finger electrode parts 22 which adjoin in the x direction. That is, a distance L11 between the center line of the second finger electrode portion 24a and the center line of the first finger electrode portion 22 disposed on one side in the x direction of the second finger electrode portion 24a (see FIG. 3) and the center line of the second finger electrode portion 24a and the center line of the first finger electrode portion 22 arranged on the other side in the x direction of the second finger electrode portion 24a The distance L12 is substantially equal and is about ½ of the distance L10 between the center lines of the adjacent first finger electrode portions 22. A distance L14 between the center line of the third finger electrode portion 24b and the center line of the first finger electrode portion 22 disposed on one side in the x direction of the third finger electrode portion 24b (see FIG. 4). L15 between the center line of the third finger electrode portion 24b and the center line of the first finger electrode portion 22 disposed on the other side in the x direction of the third finger electrode portion 24b. Is approximately equal to about ½ of the distance L10 between the center lines of the adjacent first finger electrode portions 22. Therefore, in this embodiment, L11 = L12 = L14 = L15≈ (1/2) · L10.
 第2及び第3のフィンガー電極部24aのそれぞれの幅W3,W6は、特に限定されない。第2及び第3のフィンガー電極部24aのそれぞれの幅W3,W6は、第1のフィンガー電極部22の幅W2と同じであってもよいし、異なっていてもよい。第2及び第3のフィンガー電極部24aのそれぞれの幅W3,W6は、例えば、0.04mm~0.1mm程度とすることができる。 Widths W3 and W6 of the second and third finger electrode portions 24a are not particularly limited. The widths W3 and W6 of the second and third finger electrode portions 24a may be the same as or different from the width W2 of the first finger electrode portion 22, respectively. The widths W3 and W6 of the second and third finger electrode portions 24a can be set to about 0.04 mm to 0.1 mm, for example.
 第1及び第2のバスバー部23a、23bのそれぞれは、第1~第3のフィンガー電極部22,24a、24bに電気的に接続されている。具体的には、第1のバスバー部23aは、第1及び第2のフィンガー電極部22,24aに電気的に接続されている。第2のバスバー部23bは、第1及び第3のフィンガー電極部22,24bに電気的に接続されている。第1及び第2のバスバー部23a、23bのそれぞれは、第1~第3のフィンガー電極部22,24a、24bと交差している。具体的には、第1のバスバー部23aは、第1及び第2のフィンガー電極部22,24aと交差している。第2のバスバー部23bは、第1及び第3のフィンガー電極部22,24bと交差している。本実施形態では、具体的には、第1及び第2のバスバー部23a、23bのそれぞれは、線状である。第1及び第2のバスバー部23a、23bのそれぞれは、x方向に沿って延びている。第1のバスバー部23aは、相対的にy1側に配されており、第2のバスバー部23bは、相対的にy2側に配されている。 Each of the first and second bus bar portions 23a, 23b is electrically connected to the first to third finger electrode portions 22, 24a, 24b. Specifically, the first bus bar portion 23a is electrically connected to the first and second finger electrode portions 22, 24a. The second bus bar portion 23b is electrically connected to the first and third finger electrode portions 22, 24b. Each of the first and second bus bar portions 23a, 23b intersects the first to third finger electrode portions 22, 24a, 24b. Specifically, the first bus bar portion 23a intersects the first and second finger electrode portions 22, 24a. The second bus bar portion 23b intersects with the first and third finger electrode portions 22, 24b. In the present embodiment, specifically, each of the first and second bus bar portions 23a and 23b is linear. Each of the first and second bus bar portions 23a and 23b extends along the x direction. The first bus bar portion 23a is relatively disposed on the y1 side, and the second bus bar portion 23b is relatively disposed on the y2 side.
 配線材11を半田により接着する場合、第1及び第2のバスバー部23a、23bの幅W1,W4のそれぞれは、第1フィンガー電極部22の幅W2よりも大きくされる。配線材11を樹脂接着剤により接着する場合、第1及び第2のバスバー部23a、23bの幅W1,W4のそれぞれは、第1フィンガー電極部22の幅W2と略同等か、若干大きい。第1及び第2のバスバー部23a、23bの幅W1,W4のそれぞれは、例えば、0.1mm~2.0mm程度とすることができる。 When the wiring member 11 is bonded by solder, the widths W1 and W4 of the first and second bus bar portions 23a and 23b are made larger than the width W2 of the first finger electrode portion 22, respectively. When the wiring member 11 is bonded with a resin adhesive, the widths W1 and W4 of the first and second bus bar portions 23a and 23b are substantially the same as or slightly larger than the width W2 of the first finger electrode portion 22, respectively. The widths W1 and W4 of the first and second bus bar portions 23a and 23b can be set to about 0.1 mm to 2.0 mm, for example.
 本実施形態では、第2のフィンガー電極部24aの第1のバスバー部23aよりもy方向のy1側に位置する外側部分24a1のy方向に沿った長さL4は、第1のフィンガー電極部22の第1のバスバー部23aよりもy方向のy1側に位置する外側部分22bのy方向に沿った長さL2よりも短い(L4<L2)。具体的には、長さL4は、長さL2の0.2倍以上1倍未満である(0.2L2≦L4<L2)。 In the present embodiment, the length L4 along the y direction of the outer portion 24a1 located on the y1 side in the y direction with respect to the first bus bar portion 23a of the second finger electrode portion 24a is the first finger electrode portion 22. It is shorter than the length L2 along the y direction of the outer portion 22b located on the y1 side in the y direction from the first bus bar portion 23a (L4 <L2). Specifically, the length L4 is 0.2 times or more and less than 1 time the length L2 (0.2L2 ≦ L4 <L2).
 第3のフィンガー電極部24bの第2のバスバー部23bよりもy方向のy2側に位置する外側部分24b1のy方向に沿った長さL7は、第1のフィンガー電極部22の第2のバスバー部23bよりもy方向のy2側に位置する外側部分22cのy方向に沿った長さL3よりも短い(L7<L3)。具体的には、長さL7は、長さL3の0.2倍以上1倍未満である(0.2L3≦L7<L3)。 The length L7 along the y direction of the outer portion 24b1 located on the y2 side in the y direction with respect to the second bus bar portion 23b of the third finger electrode portion 24b is the second bus bar of the first finger electrode portion 22. It is shorter than the length L3 along the y direction of the outer portion 22c located on the y2 side in the y direction from the portion 23b (L7 <L3). Specifically, the length L7 is 0.2 times or more and less than 1 time the length L3 (0.2L3 ≦ L7 <L3).
 第2のフィンガー電極部24aの第1のバスバー部23aよりもy方向のy2側に位置する内側部分24a2のy方向に沿った長さL5及び第3のフィンガー電極部24bの第2のバスバー部23bよりもy方向のy1側に位置する内側部分24b2のy方向に沿った長さL6は、第1のフィンガー電極部22の第1及び第2のバスバー部23a、23b間に位置する部分22aのy方向に沿った長さL1の1/2よりも短い(L5<(1/2)L1,L6<(1/2)L1)。具体的には、長さL5,L6は、長さL1の0.1倍以上1/2倍未満、すなわち、長さL1の1/2の0.2倍以上1倍未満である(0.2((1/2)L1)≦L5<(1/2)L1,0.2((1/2)L1)≦L6<(1/2)L1)。 The length L5 along the y direction of the inner portion 24a2 located on the y2 side in the y direction from the first bus bar portion 23a of the second finger electrode portion 24a and the second bus bar portion of the third finger electrode portion 24b A length L6 along the y direction of the inner portion 24b2 located on the y1 side in the y direction with respect to 23b is a portion 22a located between the first and second bus bar portions 23a, 23b of the first finger electrode portion 22. Shorter than 1/2 of the length L1 along the y direction (L5 <(1/2) L1, L6 <(1/2) L1). Specifically, the lengths L5 and L6 are 0.1 times or more and less than 1/2 times the length L1, that is, 0.2 times or more and less than 1 time 1/2 of the length L1 (0. 2 ((1/2) L1) ≦ L5 <(1/2) L1, 0.2 ((1/2) L1) ≦ L6 <(1/2) L1).
 なお、本実施形態においては、L1=2L2=2L3、L4=L5=L6=L7とされている。 In this embodiment, L1 = 2L2 = 2L3 and L4 = L5 = L6 = L7.
 ところで、複数のフィンガー電極部とバスバー部とを有する電極が配された太陽電池においては、フィンガー電極部に、発電時に流れる電流量が多い部分と少ない部分とがある。例えば、第1のフィンガー電極部22の外側部分22bに着目すると、図6に示すように、外側部分22bの先端部には、その先端部の両側で発生したキャリアが収集される。それに対して、外側部分22bの基端部には、その基端部の両側で発生したキャリアが収集されると共に、基端部よりも先端側で収集されたキャリアがバスバー部23aに向かって流れる。従って、外側部分22bにおいては、基端側(バスバー部23a)側に近づくに従って流れる電流量が多くなる。このように、第1のフィンガー電極部22のうち、バスバー部23a、23bから離れている部分には比較的小さな電流が流れるのに対して、バスバー部23a、23bに近い部分には、比較的大きな電流が流れる。従って、フィンガー電極部として第1のフィンガー電極部22のみが設けられており、第2及び第3のフィンガー電極部24a,24bが設けられていない太陽電池においては、第1のフィンガー電極部22のバスバー部に近い部分における抵抗損が大きくなり、光電変換効率が低くなってしまうという問題がある。 By the way, in a solar cell in which an electrode having a plurality of finger electrode portions and a bus bar portion is arranged, the finger electrode portion has a portion with a large amount of current flowing during power generation and a portion with a small amount. For example, focusing on the outer portion 22b of the first finger electrode portion 22, as shown in FIG. 6, carriers generated on both sides of the tip portion are collected at the tip portion of the outer portion 22b. On the other hand, carriers generated on both sides of the base end portion are collected at the base end portion of the outer portion 22b, and carriers collected on the front end side of the base end portion flow toward the bus bar portion 23a. . Therefore, in the outer portion 22b, the amount of current flowing increases as it approaches the base end side (bus bar portion 23a) side. As described above, a relatively small current flows in a portion of the first finger electrode portion 22 that is away from the bus bar portions 23a and 23b, whereas in a portion close to the bus bar portions 23a and 23b, a relatively small current flows. A large current flows. Therefore, in the solar cell in which only the first finger electrode portion 22 is provided as the finger electrode portion and the second and third finger electrode portions 24a and 24b are not provided, the first finger electrode portion 22 There is a problem that the resistance loss in the portion close to the bus bar portion becomes large and the photoelectric conversion efficiency is lowered.
 第1のフィンガー電極部のバスバー部に近い部分における抵抗損を小さくする方法のひとつとしては、第1のフィンガー電極部の幅を大きくすることにより第1のフィンガー電極部の電気抵抗を小さくすることが考えられる。しかしながら、その場合は、受光面の電極に覆われている部分が占める割合が大きくなってしまう。 One method of reducing the resistance loss in the portion of the first finger electrode portion close to the bus bar portion is to reduce the electrical resistance of the first finger electrode portion by increasing the width of the first finger electrode portion. Can be considered. However, in that case, the ratio of the portion covered with the electrode on the light receiving surface increases.
 また、第1のフィンガー電極部のバスバー部に近い部分における抵抗損を小さくする他の方法としては、第1のフィンガー電極部のピッチを小さくすることが考えられる。この場合、各第1のフィンガー電極部に流れる電流量を小さくできるため、抵抗損を小さくすることができる。しかしながら、この場合においても、受光面の電極に覆われている部分が占める割合が大きくなってしまう。 Further, as another method for reducing the resistance loss in the portion of the first finger electrode portion close to the bus bar portion, it is conceivable to reduce the pitch of the first finger electrode portion. In this case, since the amount of current flowing through each first finger electrode portion can be reduced, the resistance loss can be reduced. However, even in this case, the ratio of the portion covered with the electrode on the light receiving surface increases.
 従って、フィンガー電極部として第1のフィンガー電極部のみが設けられている場合は、光電変換効率を十分に高めることが困難である。それに対して本実施形態では、第1のフィンガー電極部22に加えて、第2及び第3のフィンガー電極部24a、24bが設けられている。そして、これら第2及び第3のフィンガー電極部24a、24bは、隣接する第1のフィンガー電極部22、22の間の領域のうち、バスバー部23a、23bに近い部分に近接して設けられている。このため、光電変換部20のうち、バスバー部23a、23bに近い部分で生じたキャリアは、第1のフィンガー電極部22のみならず、第2及び第3のフィンガー電極部24a、24bによっても収集され、第1のフィンガー電極部22に集中することが抑制されている。よって、第1のフィンガー電極部22のバスバー部23a、23bに近い部分を流れる電流量を小さくすることができる。従って、第1のフィンガー電極部22における抵抗損を小さくすることができる。 Therefore, when only the first finger electrode portion is provided as the finger electrode portion, it is difficult to sufficiently increase the photoelectric conversion efficiency. On the other hand, in this embodiment, in addition to the first finger electrode portion 22, second and third finger electrode portions 24a and 24b are provided. And these 2nd and 3rd finger electrode parts 24a and 24b are provided adjacent to the part close | similar to the bus- bar parts 23a and 23b among the area | regions between the adjacent 1st finger electrode parts 22 and 22. Yes. For this reason, in the photoelectric conversion unit 20, carriers generated in the portions close to the bus bar portions 23 a and 23 b are collected not only by the first finger electrode unit 22 but also by the second and third finger electrode units 24 a and 24 b. Thus, the concentration on the first finger electrode portion 22 is suppressed. Therefore, it is possible to reduce the amount of current flowing through the portions of the first finger electrode portion 22 close to the bus bar portions 23a and 23b. Therefore, the resistance loss in the first finger electrode portion 22 can be reduced.
 また、第2及び第3のフィンガー電極部24a、24bは、y方向において、バスバー部23a、23bに近い部分にのみ設けられており、受光面20aの全体に設けられていない。このため、第2及び第3のフィンガー電極部を設ける代わりに、第1のフィンガー電極部の本数を増やす場合と比較して、受光面20aの電極21aに覆われている部分が占める割合の増大を小さくすることができる。すなわち、受光面積の減少を抑制しつつ、第1のフィンガー電極部22における抵抗損を小さくすることができる。従って、太陽電池10、ひいては太陽電池モジュール1の光電変換効率を効果的に高めることができる。 In addition, the second and third finger electrode portions 24a and 24b are provided only in portions near the bus bar portions 23a and 23b in the y direction, and are not provided on the entire light receiving surface 20a. For this reason, instead of providing the second and third finger electrode portions, the ratio of the portion covered with the electrode 21a of the light receiving surface 20a is increased as compared with the case where the number of the first finger electrode portions is increased. Can be reduced. That is, the resistance loss in the first finger electrode portion 22 can be reduced while suppressing a decrease in the light receiving area. Therefore, the photoelectric conversion efficiency of the solar cell 10 and consequently the solar cell module 1 can be effectively increased.
 光電変換効率をさらに改善する観点からは、0.2L2≦L4<L2、0.2L3≦L7<L3、0.2((1/2)L1)≦L5<(1/2)L1、0.2((1/2)L1)≦L6<(1/2)L1であることが好ましい。L4~L7が小さすぎると、第1のフィンガー電極部22における抵抗損の改善効果が十分に得られない場合があるため、光電変換効率を十分に高めることができない場合があるものと考えられる。一方、L4~L7が大きすぎると、受光面積が小さくなりすぎる場合があるため、光電変換効率を十分に高めることができない場合があるものと考えられる。 From the viewpoint of further improving the photoelectric conversion efficiency, 0.2L2 ≦ L4 <L2, 0.2L3 ≦ L7 <L3, 0.2 ((1/2) L1) ≦ L5 <(1/2) L1,. 2 ((1/2) L1) ≦ L6 <(1/2) L1 is preferable. If L4 to L7 are too small, the effect of improving the resistance loss in the first finger electrode portion 22 may not be sufficiently obtained, so it is considered that the photoelectric conversion efficiency may not be sufficiently increased. On the other hand, if L4 to L7 are too large, the light receiving area may become too small, and it is considered that the photoelectric conversion efficiency may not be sufficiently increased.
 以下、上記第1の実施形態の変形例や、本発明を実施した好ましい形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。また、第2の実施形態においては、図1を上記第1の実施形態と共通に参照する。 Hereinafter, modified examples of the first embodiment and other examples of preferable embodiments in which the present invention is implemented will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted. In the second embodiment, FIG. 1 is referred to in common with the first embodiment.
 (第1の変形例)
 上記第1の実施形態では、バスバー部23a、23bのそれぞれが直線状である例について説明した。但し、本発明において、バスバー部は直線状である必要は必ずしもない。例えば、図7に示すように、バスバー部23a、23bのそれぞれは、x方向に沿ってジグザグ状に延びていてもよい。なお、この場合配線材11は樹脂接着剤を用いて接続することが好ましい。バスバー部23a,23bの幅は、第1のフィンガー電極部22の幅と略等しい。
(First modification)
In the first embodiment, the example in which each of the bus bar portions 23a and 23b is linear has been described. However, in the present invention, the bus bar portion does not necessarily have to be linear. For example, as shown in FIG. 7, each of the bus bar portions 23a, 23b may extend in a zigzag shape along the x direction. In this case, the wiring member 11 is preferably connected using a resin adhesive. The width of the bus bar portions 23 a and 23 b is substantially equal to the width of the first finger electrode portion 22.
 図7に示す、ジグザグ状のバスバー部23a、23bを有する太陽電池10では、第2及び第3のフィンガー電極部24a、24bは、配線材11に対して対称に設けられている。 7, in the solar cell 10 having the zigzag bus bar portions 23 a and 23 b, the second and third finger electrode portions 24 a and 24 b are provided symmetrically with respect to the wiring member 11.
 なお、上記第1の実施形態及び本変形例においては、一主面上にバスバー部が2つずつ配されている例について説明した。但し、本発明は、この構成に限定されない。バスバー部は、例えば、3本、4本または5本以上配されていてもよい。 In addition, in the said 1st Embodiment and this modification, the example with which two bus-bar parts were distribute | arranged on one main surface was demonstrated. However, the present invention is not limited to this configuration. For example, three, four, or five or more bus bar portions may be arranged.
 (第2の変形例)
 上記第1の実施形態では、第1のフィンガー電極部22が受光面20aのy1側端部からy2側端部に至るように形成されている例について説明した。但し、本発明は、この構成に限定されない。例えば、複数の第1のフィンガー電極部22がy方向に沿って配列されていてもよい。例えば本変形例では、図8に示すように、複数の第1のフィンガー電極部22のそれぞれは、一方側部分22a1と他方側部分22a2とに分割されている。
(Second modification)
In the first embodiment, the example in which the first finger electrode portion 22 is formed so as to extend from the y1 side end portion of the light receiving surface 20a to the y2 side end portion has been described. However, the present invention is not limited to this configuration. For example, the plurality of first finger electrode portions 22 may be arranged along the y direction. For example, in this modification, as shown in FIG. 8, each of the plurality of first finger electrode portions 22 is divided into one side portion 22a1 and the other side portion 22a2.
 また、上記第1の実施形態では、第1のフィンガー電極部22に2本のバスバー部23a、23bが交差している例について説明した。但し、本発明は、この構成に限定されない。第1のフィンガー電極部に1本または3本以上のバスバー部が交差するようにしてもよい。この場合、バスバー部のそれぞれに対して、隣接する第1のフィンガー電極部の間に、短い長さのフィンガー電極部を設ける。 In the first embodiment, the example in which the two bus bar portions 23a and 23b intersect the first finger electrode portion 22 has been described. However, the present invention is not limited to this configuration. One or three or more bus bar portions may intersect the first finger electrode portion. In this case, for each of the bus bar portions, a finger electrode portion having a short length is provided between the adjacent first finger electrode portions.
 なお、図8に示す例では、電気的に接続されたバスバー部、相対的に長いフィンガー電極部及び相対的に短いフィンガー電極部が2組設けられている例について説明したが、3組、4組または5組以上設けられていてもよい。 In the example shown in FIG. 8, an example is described in which two sets of electrically connected bus bar portions, relatively long finger electrode portions, and relatively short finger electrode portions are provided. A set or 5 or more sets may be provided.
 (第3の変形例)
 上記第1の実施形態では、x方向において隣接する第1のフィンガー電極部22間に1本の第2のフィンガー電極部24a及び1本の第3のフィンガー電極部24bが配されている例について説明した。但し、本発明は、この構成に限定されない。例えば、図9に示すように、x方向において隣接する第1のフィンガー電極部22間に第2及び第3のフィンガー電極部24a、24bを複数配してもよい。その場合、L4~L7のそれぞれは、隣り合う第1のフィンガー電極部22間のx方向における中央に近い第2及び第3のフィンガー電極部24a、24bほど短いことが好ましい。そうすることにより、受光面積の減少を抑制しつつ、第1のフィンガー電極部22における抵抗損を小さくすることができる。
(Third Modification)
In the first embodiment, an example in which one second finger electrode portion 24a and one third finger electrode portion 24b are arranged between the first finger electrode portions 22 adjacent in the x direction. explained. However, the present invention is not limited to this configuration. For example, as shown in FIG. 9, a plurality of second and third finger electrode portions 24 a and 24 b may be disposed between the first finger electrode portions 22 adjacent in the x direction. In this case, each of L4 to L7 is preferably shorter as the second and third finger electrode portions 24a and 24b are closer to the center in the x direction between the adjacent first finger electrode portions 22. By doing so, the resistance loss in the 1st finger electrode part 22 can be made small, suppressing the reduction | decrease of a light-receiving area.
 但し、x方向において隣接する第1のフィンガー電極部22間に位置している第2及び第3のフィンガー電極部24a、24bの本数が多くなりすぎると、隣接する第1のフィンガー電極部22間の距離が長くなりすぎ、少数キャリアの再結合が生じやすくなる傾向にある。従って、x方向において隣接する第1のフィンガー電極部22間に位置している第2及び第3のフィンガー電極部24a、24bの本数は、5本以下であることが好ましい。 However, if the number of the second and third finger electrode portions 24a and 24b located between the first finger electrode portions 22 adjacent in the x direction is excessive, the distance between the adjacent first finger electrode portions 22 is increased. Tends to cause recombination of minority carriers. Therefore, the number of the second and third finger electrode portions 24a and 24b located between the first finger electrode portions 22 adjacent in the x direction is preferably 5 or less.
 (第2の実施形態)
 上記第1の実施形態では、バスバー部23a、23bが設けられており、主としてバスバー部23a、23bにおいて、配線材11が電極21aと電気的に接続されている例について説明した。但し、本発明は、この構成に限定されない。
(Second Embodiment)
In the first embodiment, the bus bar portions 23a and 23b are provided, and the example in which the wiring member 11 is electrically connected to the electrode 21a mainly in the bus bar portions 23a and 23b has been described. However, the present invention is not limited to this configuration.
 例えば、図10~図12に示すように、バスバー部23a、23bを設けず、第1~第3のフィンガー電極部22,24a、24bにより電極21aを構成してもよい。その場合は、太陽電池モジュール1の光電変換効率を高める観点から、第2のフィンガー電極部24aの配線材11aよりもy方向のy1側に位置する外側部分24a1のy方向に沿った長さL4は、第1のフィンガー電極部22の配線材11aよりもy方向のy1側に位置する外側部分22bのy方向に沿った長さL2よりも短いことが好ましい(L4<L2)。長さL4は、長さL2の0.2倍以上1倍未満であることがより好ましい(0.2L2≦L4<L2)。 For example, as shown in FIGS. 10 to 12, the bus bar portions 23a and 23b may not be provided, and the electrode 21a may be configured by the first to third finger electrode portions 22, 24a and 24b. In that case, from the viewpoint of increasing the photoelectric conversion efficiency of the solar cell module 1, the length L4 along the y direction of the outer portion 24a1 located on the y1 side in the y direction with respect to the wiring member 11a of the second finger electrode portion 24a. Is preferably shorter than the length L2 along the y direction of the outer portion 22b located on the y1 side in the y direction with respect to the wiring member 11a of the first finger electrode portion 22 (L4 <L2). The length L4 is more preferably 0.2 times or more and less than 1 time the length L2 (0.2L2 ≦ L4 <L2).
 第3のフィンガー電極部24bの配線材11bよりもy方向のy2側に位置する外側部分24b1のy方向に沿った長さL7は、第1のフィンガー電極部22の配線材11bよりもy方向のy2側に位置する外側部分22cのy方向に沿った長さL3よりも短いことが好ましい(L7<L3)。長さL7は、長さL3の0.2倍以上1倍未満であることがより好ましい(0.2L3≦L7<L3)。 The length L7 along the y direction of the outer portion 24b1 located on the y2 side in the y direction relative to the wiring material 11b of the third finger electrode portion 24b is larger than the wiring material 11b of the first finger electrode portion 22 in the y direction. It is preferable that the outer portion 22c located on the y2 side is shorter than the length L3 along the y direction (L7 <L3). The length L7 is more preferably 0.2 times or more and less than 1 time the length L3 (0.2L3 ≦ L7 <L3).
 第2のフィンガー電極部24aの配線材11aよりもy方向のy2側に位置する内側部分24a2のy方向に沿った長さL5及び第3のフィンガー電極部24bの配線材11bよりもy方向のy1側に位置する内側部分24b2のy方向に沿った長さL6は、第1のフィンガー電極部22の配線材11a、11b間に位置する部分22aのy方向に沿った長さL1の1/2よりも短いことが好ましい(L5<(1/2)L1,L6<(1/2)L1)。長さL5,L6は、長さL1の0.1倍以上1/2倍未満であることがより好ましい(0.1L1≦L5<(1/2)L1,0.1L1≦L6<(1/2)L1)。 The length L5 along the y direction of the inner portion 24a2 located on the y2 side in the y direction relative to the wiring material 11a of the second finger electrode portion 24a and the y direction relative to the wiring material 11b of the third finger electrode portion 24b. The length L6 along the y direction of the inner portion 24b2 located on the y1 side is 1 / of the length L1 along the y direction of the portion 22a located between the wiring members 11a and 11b of the first finger electrode portion 22. It is preferably shorter than 2 (L5 <(1/2) L1, L6 <(1/2) L1). The lengths L5 and L6 are more preferably 0.1 times or more and less than 1/2 times the length L1 (0.1L1 ≦ L5 <(1/2) L1,0.1L1 ≦ L6 <(1 / 2) L1).
 なお、バスバー部23a、23bを設けない所謂バスバーレス構造の電極を用いる場合には、異方導電性を有する樹脂接着剤を用いて配線材11をフィンガー電極部に接続することが好ましい。 In addition, when using an electrode having a so-called bus bar-less structure in which the bus bar portions 23a and 23b are not provided, it is preferable to connect the wiring member 11 to the finger electrode portion using a resin adhesive having anisotropic conductivity.
 (実験例1)
 上記第1の実施形態における太陽電池10と実質的に同様の構成を有する太陽電池を、第1のフィンガー電極部22間の距離L10を種々変化させて、以下の設計パラメータで作製し、光電変換効率を測定した。結果を図13に示す。
(Experimental example 1)
A solar cell having substantially the same configuration as that of the solar cell 10 in the first embodiment is manufactured by changing the distance L10 between the first finger electrode portions 22 with various design parameters, and photoelectric conversion is performed. Efficiency was measured. The results are shown in FIG.
 (実験例1において作製した太陽電池の設計パラメータ)
 光電変換部:四隅が面取りされた125mm四方の正方形
 L1:60mm
 L2=L3:30mm
 L4=L5:16mm
 L6=L7:16mm
 W3=W6:45μm
 L11=L12=L14=L15
 (実験例2)
 第2及び第3のフィンガー電極部が設けられていないこと以外は、上記実験例1において作製した太陽電池と実質的に同様の構成を有する太陽電池を、第1のフィンガー電極部間の距離を種々変化させて作製し、光電変換効率を測定した。結果を図13に示す。
(Design parameters of solar cell fabricated in Experimental Example 1)
Photoelectric conversion part: 125mm square with chamfered corners L1: 60mm
L2 = L3: 30mm
L4 = L5: 16mm
L6 = L7: 16mm
W3 = W6: 45 μm
L11 = L12 = L14 = L15
(Experimental example 2)
Except that the second and third finger electrode portions are not provided, a solar cell having a configuration substantially similar to that of the solar cell fabricated in Experimental Example 1 is set to a distance between the first finger electrode portions. Various changes were made, and the photoelectric conversion efficiency was measured. The results are shown in FIG.
 図13のグラフから、実験例1では、第1のフィンガー電極部間の距離L10が3.1mmのときに光電変換効率が最大となった。一方、実験例2では、距離L10が1.8mmのときに光電変換効率が最大となった。実験例1における最大光電変換効率は、実験例2における光電変換効率よりも0.21%高かった。この結果から、第1のフィンガー電極部に加えて、第2,第3のフィンガー電極部を設けることにより、光電変換効率を高めることができることが分かる。 From the graph of FIG. 13, in Experimental Example 1, the photoelectric conversion efficiency was maximized when the distance L10 between the first finger electrode portions was 3.1 mm. On the other hand, in Experimental Example 2, the photoelectric conversion efficiency was maximized when the distance L10 was 1.8 mm. The maximum photoelectric conversion efficiency in Experimental Example 1 was 0.21% higher than the photoelectric conversion efficiency in Experimental Example 2. From this result, it can be seen that the photoelectric conversion efficiency can be increased by providing the second and third finger electrode portions in addition to the first finger electrode portion.
 (実験例3)
 距離L10を、光電変換効率が最大となった3.1mmとしたこと以外は、上記実験例1において作製した太陽電池と実質的に同様の構成を有する太陽電池を、L4/L2、L7/L3、L5/((1/2)L1)、L6/((1/2)L1)を種々変化させて作製し、光電変換効率を作製した。なお、実験例3においては、L4/L2=L7/L3=L5/((1/2)L1)=L6/((1/2)L1)とした。そして、L4/L2=0、すなわち、第2及び第3のフィンガー電極部が設けられていないときの光電変換効率を基準として、その基準値を得られた光電変換効率から減算した値を改善率として計算した。結果を図14に示す。図14に示す結果から、L4/L2、L7/L3、L5/((1/2)L1)、L6/((1/2)L1)を、0.2以上1未満とすることにより、光電変換効率をさらに高めることができることが分かる。
(Experimental example 3)
Except that the distance L10 is 3.1 mm at which the photoelectric conversion efficiency is maximized, solar cells having substantially the same configuration as the solar cell manufactured in Experimental Example 1 are L4 / L2, L7 / L3. , L5 / ((1/2) L1), L6 / ((1/2) L1) were variously changed to produce photoelectric conversion efficiency. In Experimental Example 3, L4 / L2 = L7 / L3 = L5 / ((1/2) L1) = L6 / ((1/2) L1). Then, L4 / L2 = 0, that is, the improvement rate obtained by subtracting the reference value from the obtained photoelectric conversion efficiency on the basis of the photoelectric conversion efficiency when the second and third finger electrode portions are not provided. As calculated. The results are shown in FIG. From the results shown in FIG. 14, by setting L4 / L2, L7 / L3, L5 / ((1/2) L1), and L6 / ((1/2) L1) to 0.2 or more and less than 1, It can be seen that the conversion efficiency can be further increased.
1…太陽電池モジュール
10…太陽電池
11…配線材
20…光電変換部
20a…受光面
20b…裏面
21a、21b…電極
22…第1のフィンガー電極部
23a…第1のバスバー部
23b…第2のバスバー部
24a…第2のフィンガー電極部
24b…第3のフィンガー電極部
DESCRIPTION OF SYMBOLS 1 ... Solar cell module 10 ... Solar cell 11 ... Wiring material 20 ... Photoelectric conversion part 20a ... Light-receiving surface 20b ... Back surface 21a, 21b ... Electrode 22 ... 1st finger electrode part 23a ... 1st bus-bar part 23b ... 2nd Bus bar portion 24a ... second finger electrode portion 24b ... third finger electrode portion

Claims (11)

  1.  光電変換部と、前記光電変換部の主面上に配された電極とを有する太陽電池であって、
     前記電極は、
     第1の方向に間隔を隔てて延び、かつ、前記第1の方向に対して垂直な第2の方向に間隔を隔てて配列されている複数の第1のフィンガー電極部と、
     隣り合う前記第1のフィンガー電極部の間に配置されており、前記第1の方向に間隔を隔てて延びる第2のフィンガー電極部と、
     前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さよりも短い、太陽電池。
    A solar cell having a photoelectric conversion part and an electrode arranged on the main surface of the photoelectric conversion part,
    The electrode is
    A plurality of first finger electrode portions extending at intervals in a first direction and arranged at intervals in a second direction perpendicular to the first direction;
    A second finger electrode portion disposed between the adjacent first finger electrode portions and extending at an interval in the first direction;
    The length of the second finger electrode portion spaced in the first direction is shorter than the length of the first finger electrode portion spaced in the first direction.
  2.  前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さの0.2倍以上である、請求項1に記載の太陽電池。 The length of the second finger electrode portion spaced in the first direction is 0.2 times or more the length of the first finger electrode portion spaced in the first direction. The solar cell according to claim 1.
  3.  前記電極は、
     隣り合う前記第1のフィンガー電極部の間に配置されており、前記第1の方向に間隔を隔てて延びる第3のフィンガー電極部と、
     前記第1及び第2のフィンガー電極部に電気的に接続されており、前記第1及び第2のフィンガー電極部と交差する第1のバスバー部と、
     前記第1及び第3のフィンガー電極部に電気的に接続されており、前記第1及び第3のフィンガー電極部と交差する第2のバスバー部と、
    をさらに有し、
     前記第3のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さよりも短い、請求項1または2に記載の太陽電池。
    The electrode is
    A third finger electrode portion disposed between the adjacent first finger electrode portions and extending at an interval in the first direction;
    A first bus bar portion that is electrically connected to the first and second finger electrode portions and intersects the first and second finger electrode portions;
    A second bus bar portion that is electrically connected to the first and third finger electrode portions and intersects with the first and third finger electrode portions;
    Further comprising
    The length of the third finger electrode portion spaced in the first direction is shorter than the length of the first finger electrode portion spaced in the first direction. The solar cell as described in.
  4.  前記第3のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さの0.2倍以上である、請求項3に記載の太陽電池。 The length of the third finger electrode portion spaced in the first direction is 0.2 times or more the length of the first finger electrode portion spaced in the first direction. The solar cell according to claim 3.
  5.  前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1のバスバー部と前記第2のバスバー部との間に位置する部分の前記第1の方向に間隔を隔てた長さの1/2よりも短く、
     前記第3のフィンガー電極部の前記第1のバスバーよりも前記第1の方向の一方側に位置する部分の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1のバスバー部と前記第2のバスバー部との間に位置する部分の前記第1の方向に間隔を隔てた長さの1/2よりも短い、請求項3または4に記載の太陽電池。
    The length of the second finger electrode portion spaced in the first direction is a portion located between the first bus bar portion and the second bus bar portion of the first finger electrode portion. Less than half of the length spaced in the first direction of
    The length of the portion of the third finger electrode portion that is located on one side in the first direction with respect to the first bus bar is spaced from the first finger electrode portion. 5. The sun according to claim 3, wherein the sun is shorter than ½ of a length spaced in the first direction of a portion located between the first bus bar portion and the second bus bar portion. battery.
  6.  前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1のバスバー部と前記第2のバスバー部との間に位置する部分の前記第1の方向に間隔を隔てた長さの0.1倍以上であり、
     前記第3のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1のバスバー部と前記第2のバスバー部との間に位置する部分の前記第1の方向に間隔を隔てた長さの0.1倍以上である、請求項5に記載の太陽電池。
    The length of the second finger electrode portion spaced in the first direction is a portion located between the first bus bar portion and the second bus bar portion of the first finger electrode portion. More than 0.1 times the length spaced in the first direction,
    The length of the third finger electrode portion spaced in the first direction is a portion located between the first bus bar portion and the second bus bar portion of the first finger electrode portion. The solar cell according to claim 5, which is 0.1 times or more of a length spaced in the first direction.
  7.  前記第2のフィンガー電極部は、隣り合う前記第1のフィンガー電極部の間に前記第2の方向に間隔を隔てて複数配されており、
     前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記隣り合う第1のフィンガー電極部間の前記第2の方向における中央に近いものほど短い、請求項1~6のいずれか一項に記載の太陽電池。
    A plurality of the second finger electrode portions are arranged with an interval in the second direction between the adjacent first finger electrode portions,
    The length of the second finger electrode portion that is spaced in the first direction is shorter as it is closer to the center in the second direction between the adjacent first finger electrode portions. The solar cell according to any one of 6.
  8.  前記複数の第1のフィンガー電極部及び前記第2のフィンガー電極部は、互いに平行である、請求項1~7のいずれか一項に記載の太陽電池。 The solar cell according to any one of claims 1 to 7, wherein the plurality of first finger electrode portions and the second finger electrode portion are parallel to each other.
  9.  前記第1の主面は受光面である、請求項1~8のいずれか一項に記載の太陽電池。 The solar cell according to any one of claims 1 to 8, wherein the first main surface is a light receiving surface.
  10.  光電変換部と、前記光電変換部の主面上に配された電極とを有する複数の太陽電池と、隣り合う前記太陽電池を電気的に接続する配線材とを備える太陽電池モジュールであって、
     前記電極は、
     第1の方向に間隔を隔てて延び、かつ、前記第1の方向に対して垂直な第2の方向に間隔を隔てて配列されている複数の第1のフィンガー電極部と、
     隣り合う前記第1のフィンガー電極部の間に配置され、前記第1の方向に間隔を隔てて延びる第2のフィンガー電極部と、
    を有し、
     前記配線材は、前記第1及び第2のフィンガー電極部に電気的に接続され、前記第1及び第2のフィンガー電極部と交差しており、
     前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さよりも短い、太陽電池モジュール。
    A solar cell module comprising a plurality of solar cells having a photoelectric conversion unit and electrodes arranged on a main surface of the photoelectric conversion unit, and a wiring material for electrically connecting the adjacent solar cells,
    The electrode is
    A plurality of first finger electrode portions extending at intervals in a first direction and arranged at intervals in a second direction perpendicular to the first direction;
    A second finger electrode portion disposed between the adjacent first finger electrode portions and extending at an interval in the first direction;
    Have
    The wiring member is electrically connected to the first and second finger electrode portions, and intersects the first and second finger electrode portions,
    The length of the second finger electrode portion spaced in the first direction is shorter than the length of the first finger electrode portion spaced in the first direction.
  11.  前記第2のフィンガー電極部の前記第1の方向に間隔を隔てた長さは、前記第1のフィンガー電極部の前記第1の方向に間隔を隔てた長さの0.2倍以上である、請求項10に記載の太陽電池モジュール。 The length of the second finger electrode portion spaced in the first direction is 0.2 times or more the length of the first finger electrode portion spaced in the first direction. The solar cell module according to claim 10.
PCT/JP2011/074755 2010-10-27 2011-10-27 Solar cell and solar cell module WO2012057243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240969A JP2014017277A (en) 2010-10-27 2010-10-27 Solar cell and solar cell module
JP2010-240969 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012057243A1 true WO2012057243A1 (en) 2012-05-03

Family

ID=45993947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074755 WO2012057243A1 (en) 2010-10-27 2011-10-27 Solar cell and solar cell module

Country Status (2)

Country Link
JP (1) JP2014017277A (en)
WO (1) WO2012057243A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029014A (en) * 2013-07-30 2015-02-12 京セラ株式会社 Solar cell element and solar cell module
WO2018116553A1 (en) * 2016-12-22 2018-06-28 パナソニックIpマネジメント株式会社 Solar battery module and solar battery cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573151B2 (en) * 2014-09-29 2019-09-11 パナソニックIpマネジメント株式会社 Manufacturing method of solar cell
KR20160038694A (en) * 2014-09-30 2016-04-07 엘지전자 주식회사 Solar cell and solar cell panel including the same
JP6365960B2 (en) * 2015-03-31 2018-08-01 パナソニックIpマネジメント株式会社 Solar cell module
KR101744535B1 (en) * 2015-07-21 2017-06-20 엘지전자 주식회사 Solar cell and solar cell panel including the same
KR101630130B1 (en) * 2015-08-20 2016-06-13 엘지전자 주식회사 Solar cell and solar cell module
WO2018056043A1 (en) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 Solar battery module
JP7053202B2 (en) * 2017-09-15 2022-04-12 出光興産株式会社 Photoelectric conversion module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115878A (en) * 1981-01-12 1982-07-19 Hoxan Corp Solar battery
JPH07135333A (en) * 1993-11-10 1995-05-23 Sharp Corp Fabrication of solar cell
JP2000332272A (en) * 1999-05-24 2000-11-30 Kyocera Corp Method of forming solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115878A (en) * 1981-01-12 1982-07-19 Hoxan Corp Solar battery
JPH07135333A (en) * 1993-11-10 1995-05-23 Sharp Corp Fabrication of solar cell
JP2000332272A (en) * 1999-05-24 2000-11-30 Kyocera Corp Method of forming solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029014A (en) * 2013-07-30 2015-02-12 京セラ株式会社 Solar cell element and solar cell module
WO2018116553A1 (en) * 2016-12-22 2018-06-28 パナソニックIpマネジメント株式会社 Solar battery module and solar battery cell
JPWO2018116553A1 (en) * 2016-12-22 2019-10-24 パナソニックIpマネジメント株式会社 Solar cell module and solar cell

Also Published As

Publication number Publication date
JP2014017277A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2012057243A1 (en) Solar cell and solar cell module
US8835744B2 (en) Solar cell module
JP5687506B2 (en) Solar cell and solar cell module
JP5874011B2 (en) Solar cell and solar cell module
WO2012073801A1 (en) Solar battery cell and solar battery module
WO2012043516A1 (en) Solar-cell module and manufacturing method therefor
JP2008159895A (en) Solar cell and solar cell module
KR20150088784A (en) Photovoltaic apparatus
JP2017126805A (en) Solar battery module
JP2012138545A (en) Solar cell and solar cell module
JP2014103300A (en) Photovoltaic generator
JP5799255B2 (en) Solar cell and solar cell module
JP3198451U (en) 4 busbar solar cells
JP6172461B2 (en) Solar cell module and solar cell
JP5916605B2 (en) Solar power plant
JP2017069442A (en) Solar battery module
JP6709981B2 (en) Solar battery cell, solar battery module, and method for manufacturing solar battery cell
JP5906422B2 (en) Solar cell and solar cell module
JP2012160768A (en) Solar cell
JP2013229359A (en) Solar battery panel, solar battery module and photovoltaic power generation system
JP2017069291A (en) Solar battery module
JP6048837B2 (en) Solar cell module
JP2014146697A (en) Photovoltaic apparatus
JP5535891B2 (en) Solar cell
JP2012134247A (en) Solar cell module and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP