WO2024101214A1 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
WO2024101214A1
WO2024101214A1 PCT/JP2023/039188 JP2023039188W WO2024101214A1 WO 2024101214 A1 WO2024101214 A1 WO 2024101214A1 JP 2023039188 W JP2023039188 W JP 2023039188W WO 2024101214 A1 WO2024101214 A1 WO 2024101214A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
molded body
resin molded
electrode
Prior art date
Application number
PCT/JP2023/039188
Other languages
French (fr)
Japanese (ja)
Inventor
克朋 有富
芳正 吉野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024101214A1 publication Critical patent/WO2024101214A1/en

Links

Images

Definitions

  • the present invention relates to an electrolytic capacitor.
  • Patent Document 1 discloses a method for manufacturing an electronic component, which includes a step of preparing an electronic component body having an internal electrode exposed from its outer surface, and a first electrode layer forming step of forming a first electrode layer by injecting and colliding metal particles onto the outer surface of the electronic component body under conditions below atmospheric pressure.
  • Patent document 1 claims to be able to provide a method for manufacturing electronic components that can suppress the occurrence of LC defects and has a simple manufacturing process.
  • the present invention has been made to solve the above problems, and aims to provide an electrolytic capacitor that can be manufactured efficiently.
  • the electrolytic capacitor of the present invention is an electrolytic capacitor comprising a resin molded body comprising a laminate including a capacitor element and a sealing resin that seals the periphery of the laminate, and an anode external electrode and a cathode external electrode provided on the outer surface of the resin molded body, wherein the capacitor element comprises a valve action metal base having a core portion and a porous portion formed along its surface, the end portion of which is exposed on the outer surface of the resin molded body, a dielectric layer formed on the porous portion, a solid electrolyte layer formed on the dielectric layer, and a conductive layer formed on the solid electrolyte layer, and the cathode external electrode is electrically connected to the conductive layer.
  • the capacitor element comprises a valve action metal base having a core portion and a porous portion formed along its surface, the end portion of which is exposed on the outer surface of the resin molded body, a dielectric layer formed on the porous portion, a solid electrolyte layer formed on the dielectric
  • the anode external electrode includes a first electrode layer that is in direct contact with the core of the valve metal base, and the first electrode layer is orthogonal to the outer surface of the resin molded body where the valve metal base is exposed and to the main surface of the valve metal base, and includes flat particles with an aspect ratio of 2 or more whose major axis direction is along the outer surface in a cross section including the first electrode layer, and the first electrode layer includes a metal, and in a Fourier transform infrared spectroscopy spectrum of the first electrode layer by a diffuse reflectance method, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal is 5% or less.
  • the Fourier transform infrared spectroscopy spectrum by a diffuse reflectance method may be abbreviated as a diffuse reflectance FT-IR spectrum.
  • the present invention provides an electrolytic capacitor that can be manufactured efficiently.
  • FIG. 1 is a perspective view illustrating an example of an electrolytic capacitor according to the present invention.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along line AA.
  • FIG. 3 is a cross-sectional view that typically shows the vicinity of the valve metal substrate on the first end surface of the resin molded body.
  • FIG. 4 is an enlarged cross-sectional view showing a schematic view of a region surrounded by a dotted line in the first electrode layer shown in FIG.
  • FIG. 5 is a cross-sectional view that illustrates the vicinity of the cathode lead layer on the second end surface of the resin molded body.
  • FIG. 6 is a cross-sectional view illustrating a schematic diagram of another example of the electrolytic capacitor of the present invention.
  • FIG. 1 is a perspective view illustrating an example of an electrolytic capacitor according to the present invention.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along line AA.
  • FIG. 7 is a cross-sectional view illustrating an example of a resin molded body.
  • FIG. 8 is a schematic diagram showing a process of forming a first electrode layer by an aerosol deposition method.
  • FIG. 9 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Example 1.
  • FIG. 10 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 1.
  • FIG. 11 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 2.
  • the present invention is not limited to the following configurations, and can be modified as appropriate within the scope of the present invention. Note that the present invention also includes a combination of two or more of the preferred configurations of each embodiment of the present invention described below.
  • FIG. 1 is a perspective view illustrating an example of an electrolytic capacitor according to the present invention.
  • FIG. 1 shows a resin molded body 9 that constitutes the electrolytic capacitor 1 .
  • the shape of the resin molded body constituting the electrolytic capacitor of the present invention is not particularly limited, and any three-dimensional shape can be adopted.
  • the shape of the resin molded body is preferably a rectangular parallelepiped.
  • the term "rectangular parallelepiped" does not mean that the resin molded body is a perfect rectangular parallelepiped, and the surface forming the resin molded body may be tapered and not perpendicular to other surfaces, and the corners may be chamfered.
  • FIG. 1 shows a rectangular parallelepiped resin molded body 9, which has a length direction (L direction), a width direction (W direction), and a thickness direction (T direction).
  • the resin molded body 9 has, as its outer surfaces, a first end face 9a and a second end face 9b facing each other in the longitudinal direction.
  • An anode external electrode 11 is formed on the first end face 9a
  • a cathode external electrode 13 is formed on the second end face 9b.
  • the resin molded body 9 has, as its outer surfaces, a bottom surface 9c and a top surface 9d which face each other in the thickness direction.
  • the resin molded body 9 has, as its outer surfaces, a first side surface 9e and a second side surface 9f which face each other in the width direction.
  • a surface extending along the length direction (L direction) and thickness direction (T direction) of an electrolytic capacitor or a resin molding is referred to as an LT surface
  • a surface extending along the length direction (L direction) and width direction (W direction) is referred to as an LW surface
  • a surface extending along the width direction (W direction) and thickness direction (T direction) is referred to as a WT surface.
  • the surface of the outer surface of the resin molded body on which the anode external electrode is provided will be referred to as a first end surface
  • the surface on which the cathode external electrode is provided will be referred to as a second end surface.
  • the anode external electrode and the cathode external electrode may be provided on the same surface of the outer surface of the resin molded body.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along line AA.
  • Capacitor element 20 includes an anode 3 having a dielectric layer 5 on its surface, and a cathode 7 facing anode 3 .
  • a plurality of capacitor elements 20 are stacked to form a laminate 30, and the periphery of the laminate 30 is sealed with a sealing resin 8 to form a resin molded body 9.
  • the stacked capacitor elements 20 may be bonded to each other via a conductive adhesive (not shown).
  • the laminate 30 may include only one capacitor element 20.
  • An external anode electrode 11 is formed on a first end surface 9a of the resin molded body 9, and the external anode electrode 11 is electrically connected to the anode 3 exposed from the first end surface 9a.
  • a cathode external electrode 13 is formed on the second end surface 9b of the resin molded body 9, and the cathode external electrode 13 is electrically connected to the cathode 7 exposed from the second end surface 9b. That is, the cathode external electrode 13 is also electrically connected to the conductive layer 7b.
  • the end of the valve metal base 4 constituting the capacitor element 20 on the side of the second end face 9b is sealed with a sealing resin 8, and the valve metal base 4 is not in direct contact with the solid electrolyte layer 7a or the conductive layer 7b.
  • the end of the valve metal base 4 on the side of the second end face 9b may be covered with the solid electrolyte layer 7a and the conductive layer 7b.
  • FIG. 3 is a cross-sectional view that typically shows the vicinity of the valve metal substrate on the first end surface of the resin molded body.
  • FIG. 3 is also a cross-sectional view that diagrammatically illustrates the area surrounded by the dotted line in the lower left portion of FIG.
  • the valve metal base 4 has a core 4a and a porous portion 4b formed along the surface of the core 4a. An end of the valve metal base 4 is exposed at a first end surface 9a of the resin molded body 9. A dielectric layer 5 is formed on the surface of the porous portion 4b.
  • the valve metal constituting the valve metal substrate may be, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, or an alloy containing these metals. Among these, aluminum or an aluminum alloy is preferred.
  • the shape of the valve metal substrate is not particularly limited, but is preferably a flat plate, more preferably a foil, and the porous portion is preferably an etching layer that has been etched with hydrochloric acid or the like.
  • the thickness of the valve metal base before etching is preferably 60 ⁇ m or more and 180 ⁇ m or less.
  • the thickness of the valve metal base (core portion) that is not etched after etching is preferably 10 ⁇ m or more and 70 ⁇ m or less.
  • the thickness of the porous portion is designed according to the withstand voltage and electrostatic capacitance required for the electrolytic capacitor, and the combined thickness of the porous portions on both sides of the valve metal base is preferably 10 ⁇ m or more and 120 ⁇ m or less.
  • the dielectric layer is preferably made of an oxide film of the valve metal.
  • an oxide film serving as the dielectric layer can be formed by anodizing in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or a sodium salt or ammonium salt thereof.
  • the dielectric layer is formed along the surface of the porous portion to form pores (recesses).
  • the thickness of the dielectric layer is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, but is preferably 3 nm or more and 200 nm or less.
  • the anode external electrode 11 is provided on a first end surface 9 a of the resin molded body 9 .
  • the anode external electrode 11 includes a first electrode layer 11 a in direct contact with the core portion 4 a of the valve metal substrate 4 .
  • the first electrode layer 11a is orthogonal to the first end face 9a of the resin molded body 9 and the main surface of the valve metal base 4, and contains flat particles with an aspect ratio of 2 or more whose major axis direction is along the first end face 9a of the resin molded body 9 in a cross section including the first electrode layer 11a. That is, the metal particles constituting the first electrode layer contain flat particles. This will be described with reference to the drawings.
  • FIG. 4 is an enlarged cross-sectional view showing a schematic view of a region surrounded by a dotted line in the first electrode layer shown in FIG.
  • the cross section shown in Figure 4 is perpendicular to the first end face 9a of the resin molding 9 and the main surface of the valve metal base 4, and includes the first electrode layer 11a, and is a cross section cut along the LT plane also shown in Figure 2.
  • This figure is a schematic diagram showing an image of a cross section including the first electrode layer taken by an electron microscope.
  • the first electrode layer 11a is an electrode layer in which a plurality of particles are laminated, and the first electrode layer 11a includes flat particles 15 having an aspect ratio of 2 or more.
  • the flat particle 15 is a particle whose major axis direction is along the first end surface 9 a of the resin molded body 9 .
  • the shape of the flat particles includes plate-like, strip-like, rod-like, etc. In other words, regardless of the shape, it is sufficient that the shape meets the above definition.
  • the aspect ratio of the particles contained in the first electrode layer is determined as follows. First, for each particle, the longest dimension is taken in the direction along the first end face of the resin molded body.
  • the direction along the first end face of the resin molded body does not mean a direction completely parallel to the first end face of the resin molded body, but means that a direction inclined from a direction parallel to the first end face of the resin molded body is also allowed. For example, it may be inclined at about 45° from the first end face, and it is sufficient that the direction is generally along the first end face when viewed macroscopically.
  • the longest dimension in this direction is taken as the dimension of the particle in the major axis direction (the dimension indicated by the double-headed arrow La in FIG.
  • the longest dimension in the direction perpendicular to the major axis is taken as the dimension of the particle in the minor axis direction (the dimension indicated by the double-headed arrow Lb in FIG. 4).
  • the aspect ratio is calculated by the ratio of the major axis dimension to the minor axis dimension. If the major axis dimension is twice or more the minor axis dimension, the particle is recognized as a flat particle with an aspect ratio of 2 or more.
  • the major axis is not a straight line, but is defined as the longest line passing only through the particle.
  • the major axis is the line along the bow shape. In Figure 4, the major axis along the bow shape is shown as Lc.
  • first electrode layer in which there are flat particles with an aspect ratio of 2 or more whose long axis direction is along the first end face of the resin molded body, the flat particles are stacked from the first end face of the resin molded body to form the first electrode layer.
  • the contact area between the particles constituting the first electrode layer is larger than in a form in which spherical particles are stacked, so the bond strength between the particles is stronger.
  • the contact area between the core of the valve metal base, which is the electrode exposed portion of the internal electrode, and the flat particles is also larger, so the bond strength between the core of the valve metal base and the first electrode layer is also stronger.
  • the anchor effect of the first electrode layer is large, resulting in an electrolytic capacitor with high adhesion between the electrode exposed portion of the internal electrode and the external electrode.
  • the particles constituting the first electrode layer do not all need to be flat particles.
  • the particles constituting the first electrode layer may contain both flat particles and non-flat particles.
  • Figure 4 also shows a schematic diagram of a particle 16 that is not a flat particle.
  • the first electrode layer preferably contains 30% or more flat particles by number.
  • the proportion of flat particles contained in the first electrode layer can be calculated by determining the outline of the particles contained within a specified observation area in the first electrode layer as shown in Figure 4, classifying each particle into flat particles and non-flat particles, and determining the proportion of flat particles to all particles.
  • the major axis dimension (average dimension) of the flat particles contained in the first electrode layer may be 0.3 ⁇ m or more, or 1.0 ⁇ m or more.
  • the upper limit of the major axis dimension (average dimension) of the flat particles may be 5.0 ⁇ m.
  • the aspect ratio (average value) of the flat particles is preferably 2 or more and 10 or less. These dimensions and aspect ratios can be calculated by extracting only the flat particles present within the observation area and averaging the dimensions in the major axis direction and the minor axis direction of each flat particle. It is preferable to use 30 or more flat particles to obtain these average values.
  • the first electrode layer contains a metal.
  • the first electrode layer preferably contains at least one type selected from the group consisting of Cu, Ni, and Cu-Ni alloys, and more preferably contains Cu.
  • the particles contained in the first electrode layer are preferably at least one type of particles selected from the group consisting of Cu, Ni, and Cu-Ni alloys, and more preferably Cu particles.
  • the flat particles contained in the first electrode layer are preferably at least one type of particles selected from the group consisting of Cu, Ni, and Cu-Ni alloys, and more preferably Cu particles.
  • the first electrode layer is preferably an electrode layer formed by an aerosol deposition method or a gas deposition method.
  • it is preferably an electrode layer formed by an aerosol deposition method.
  • the aerosol deposition method metal particles are aerosolized and collided with the first end surface of the resin molded body.
  • the fine particles were coated with boric acid on the surface to prevent oxidation.
  • components derived from boric acid were also included in the electrode layer formed by the aerosol deposition method.
  • boron compounds derived from boric acid were interposed between the metal fine particles, and the metal fine particles did not stack up well. As a result, the film formation efficiency in the electrode layer formation process was low, leaving room for improvement.
  • the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer is 5% or less. This makes it possible to prevent the boron compound from being present between the metal fine particles when the first electrode layer is formed, which makes it easier for the metal fine particles to pile up when the first electrode layer is formed by the aerosol deposition method, thereby improving the film formation efficiency of the first electrode layer. In addition, since the presence of compounds derived from boric acid between the metal fine particles can be suppressed in the formed first electrode layer, the bonding strength between the core of the valve metal base and the first electrode layer is also increased.
  • connection strength between the electrode exposed portion of the internal electrode and the first electrode layer is increased, when the second electrode layer is formed on the first electrode layer to serve as the anode external electrode, the anchor effect of the first electrode layer is increased, resulting in an electrolytic capacitor with high adhesion between the electrode exposed portion of the internal electrode and the external electrode.
  • the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer is preferably 3% or less, and more preferably 1% or less.
  • a peak derived from Cu appears near 1100 cm ⁇ 1 , that is, from 1050 cm ⁇ 1 to 1150 cm ⁇ 1 .
  • the peak derived from boric acid appears near 1400 cm -1 , that is, from 1350 cm -1 to 1500 cm -1 .
  • the intensity of the peak derived from the metal is determined by the maximum absorbance value of the peak derived from the metal (see the double-headed arrow A in FIGS. 10 and 11, which will be described later).
  • the intensity of the peak derived from boric acid is calculated by the following method. First, two points on the rising edge of the peak are connected by a straight line to form a baseline. In the description of the present invention, the baseline is set visually, but for example, a measuring device may calculate two points on the rising edge of the peak approximately and automatically connect them by a straight line.
  • the point at which the height from the baseline is maximum is set as the apex of the peak, and the height from the baseline at the apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) is calculated to form the intensity of the peak derived from boric acid (see double-headed arrow B in Figures 10 and 11 described later).
  • the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer can be made 5% or less, which is preferable.
  • Metal microparticles that do not contain boric acid but contain Cu can be obtained by forming metal microparticles using the atomization method (gas phase method) without using an antioxidant.
  • the intensity of the peak derived from boric acid in the diffuse reflectance FT-IR spectrum of the first electrode layer is preferably below the detection limit.
  • the first electrode layer contains very little boron compounds or does not contain any boron compounds. This can further improve the film formation efficiency of the first electrode layer.
  • the first electrode layer contains components derived from boric acid can also be confirmed by observing a cross section of the first electrode layer with a scanning electron microscope - energy dispersive X-ray spectroscopy (SEM-EDX). If the cross section of the first electrode layer is subjected to elemental analysis with SEM-EDX and boron is not confirmed, it can be considered that the first electrode layer does not contain components derived from boric acid.
  • SEM-EDX scanning electron microscope - energy dispersive X-ray spectroscopy
  • the ratio of the intensity of the highest peak among the peaks at 2800 cm ⁇ 1 or more and 3000 cm ⁇ 1 or less due to C—H bonds to the intensity of the peak attributable to the metal is 0.5% or less.
  • the ratio of the intensity of the highest peak among the peaks at 2800 cm or more and 3000 cm or less derived from C—H bonds to the intensity of the peak derived from the metal is more preferably 0.3% or less, and even more preferably 0.1% or less.
  • the peak at 2800 cm ⁇ 1 or more and 3000 cm ⁇ 1 or less derived from a C—H bond is preferably a peak derived from an organic acid.
  • the intensity of the peak derived from the C-H bond is calculated as follows. First, the two points at the beginning of the peak are connected by a straight line to form the baseline. In the explanation of the present invention, the baseline is set visually, but for example, the measuring device may calculate the two points at the beginning of the peak approximately and automatically connect them with a straight line. The point at which the height from the baseline is maximum is set as the apex of the peak, and the height from the baseline at this apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) is calculated to form the intensity of the peak derived from the C-H bond (see double-headed arrow C in Figure 11 described later).
  • the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from C-H bonds to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer is 0.5% or less, it is possible to suppress the presence of compounds derived from organic acids between metal fine particles when forming the first electrode layer by the aerosol deposition method, thereby improving the film formation efficiency of the first electrode layer.
  • organic acids examples include stearic acid, phosphoric acid compounds, etc.
  • the compound from which the C-H bond is derived may be something other than an organic acid.
  • the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from C-H bonds to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer can be made to be 0.5% or less, which is preferable.
  • Metal microparticles that do not contain organic acids and contain Cu can be obtained by forming metal microparticles using the atomization method without using an antioxidant.
  • the intensity of a peak at 2800 cm -1 or more and 3000 cm -1 or less derived from a C-H bond is preferably below the detection limit.
  • the first electrode layer contains an extremely small amount of organic acid or does not contain any organic acid. Therefore, the film formation efficiency of the first electrode layer can be further improved.
  • a Kubelka-Munk transformation may be performed on the diffuse reflectance FT-IR spectrum. This can reduce the effects of the background.
  • the thickness of the first electrode layer formed on the core of the valve metal base is preferably 0.2 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the first electrode layer formed on the core of the valve metal base is defined as the thickness of the first electrode layer formed on the core.
  • the thickness of the first electrode layer 11a formed on the core 4a of the valve metal base 4 is indicated by a double-headed arrow T1 .
  • the cross section of the first electrode layer is preferably wedge-shaped.
  • Fig. 3 shows a cross section of the first electrode layer 11a that is wedge-shaped.
  • the wedge shape means a shape having a bottom that contacts the valve metal base in the above-mentioned cross-sectional shape, and a width perpendicular to the direction away from the bottom (height direction) that gradually narrows.
  • the shape of the top of the wedge is not particularly limited, and may be pointed, rounded, or flat. In addition, the top of the wedge may appear roughly smooth, but may have irregularities when viewed microscopically.
  • the first electrode layer 11a may be in contact with the sealing resin 8.
  • the anode external electrode 11 further includes a second electrode layer 11b formed on the first electrode layer 11a.
  • the second electrode layer 11b is preferably a conductive resin electrode layer containing a conductive component and a resin component.
  • the conductive component preferably contains Ag, Cu, Ni, Sn or the like as a main component, and the resin component preferably contains epoxy resin, phenol resin or the like as a main component.
  • the second electrode layer is a conductive resin electrode layer containing Ag.
  • the specific resistance of Ag is small, and therefore the ESR can be reduced.
  • the second electrode layer is preferably a printed resin electrode layer formed by screen printing an electrode paste.
  • the external electrodes can be made flatter than when an electrode paste is formed by dipping, that is, the film thickness uniformity of the external electrodes is improved.
  • the electrode paste may contain an organic solvent, and as the organic solvent, it is preferable to use a glycol ether-based solvent, such as diethylene glycol monobutyl ether or diethylene glycol monophenyl ether. If necessary, an additive may be used.
  • the additive is useful for adjusting the rheology of the electrode paste, particularly the thixotropy.
  • the content of the additive is preferably less than 5% by weight based on the weight of the electrode paste.
  • An outer plating layer may be provided on the surface of the second electrode layer 11b.
  • Fig. 2 shows a third electrode layer 11c which is an outer plating layer provided on the surface of the second electrode layer 11b.
  • the third electrode layer is preferably a Ni-plated layer or a Sn-plated layer.
  • the third electrode layer may have a first outer layer plating layer formed on the surface of the second electrode layer, and a second outer layer plating layer formed on the surface of the first outer layer plating layer.
  • the first outer plating layer is preferably a Ni plating layer
  • the second outer plating layer is preferably a Sn plating layer.
  • the cathode 7 constituting the capacitor element 20 is formed by laminating a solid electrolyte layer 7a formed on the dielectric layer 5, a conductive layer 7b formed on the solid electrolyte layer 7a, and a cathode extraction layer 7c formed on the conductive layer 7b.
  • An electrolytic capacitor in which a solid electrolyte layer is provided as part of the cathode can be said to be a solid electrolytic capacitor.
  • Materials constituting the solid electrolyte layer include, for example, conductive polymers with a skeleton of pyrroles, thiophenes, anilines, etc.
  • An example of a conductive polymer with a skeleton of thiophenes is PEDOT [poly(3,4-ethylenedioxythiophene)], which may be composited with polystyrene sulfonic acid (PSS) as a dopant to form PEDOT:PSS.
  • the solid electrolyte layer is formed, for example, by a method of forming a polymerized film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene, or a method of applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer and drying it, etc. It is preferable to form a solid electrolyte layer for an outer layer that covers the entire dielectric layer after forming a solid electrolyte layer for an inner layer that fills the pores (recesses).
  • the solid electrolyte layer can be formed in a predetermined region by applying the above-mentioned treatment liquid or dispersion onto the dielectric layer by sponge transfer, screen printing, spray application, dispenser, inkjet printing, etc.
  • the thickness of the solid electrolyte layer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the conductive layer is provided to electrically and mechanically connect the solid electrolyte layer and the cathode lead layer.
  • it is preferably a carbon layer, a graphene layer, a silver layer, a copper layer, a nickel layer, or the like, formed by applying a conductive paste such as carbon paste, graphene paste, silver paste, copper paste, nickel paste, or the like.
  • a conductive paste such as carbon paste, graphene paste, silver paste, copper paste, nickel paste, or the like.
  • It may also be a composite layer in which a silver layer, copper layer, or nickel layer is provided on a carbon layer or graphene layer, or a mixed layer formed by applying a mixed paste in which a carbon paste or graphene paste is mixed with a silver paste, copper paste, or nickel paste.
  • the conductive layer can be formed by applying a conductive paste such as carbon paste onto the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like. It is preferable to laminate the cathode lead layer in the next process while the conductive layer is still in a viscous state before drying.
  • the thickness of the conductive layer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the cathode extraction layer can be formed of a metal foil.
  • the metal foil is made of at least one metal selected from the group consisting of Al, Cu, Ag, and alloys mainly composed of these metals.
  • the resistance value of the metal foil can be reduced, and the ESR can be reduced.
  • the metal foil may be a metal foil whose surface is coated with carbon or titanium by a film forming method such as sputtering or vapor deposition. It is more preferable to use a carbon-coated Al foil.
  • the thickness of the metal foil is not particularly limited, but from the viewpoints of handling in the manufacturing process, miniaturization, and reducing ESR, it is preferably 20 ⁇ m or more and preferably 50 ⁇ m or less.
  • FIG. 5 is a cross-sectional view that illustrates the vicinity of the cathode lead layer on the second end surface of the resin molded body.
  • FIG. 5 is also a cross-sectional view that diagrammatically illustrates the area surrounded by the dotted line in the lower right portion of FIG. Cathode lead layer 7 c which is a metal foil is exposed at second end surface 9 b of resin molded body 9 .
  • the cathode external electrode 13 is provided on the second end surface 9 b which is the outer surface of the resin molded body 9 .
  • the cathode external electrode 13 may include a first electrode layer 13a in direct contact with the cathode lead layer 7c.
  • the first electrode layer 13a may have a configuration similar to that of the first electrode layer 11a formed on the first end surface 9a of the resin molded body 9.
  • the cross section of the first electrode layer is preferably wedge-shaped.
  • Fig. 5 shows a cross section of first electrode layer 13a that is wedge-shaped.
  • the first electrode layer 13a When observing an enlarged cross-sectional view of the first electrode layer 13a as in Figure 4, it is preferable that the first electrode layer contains flat particles with an aspect ratio of 2 or more whose major axis direction is along the second end face of the resin molding, which is the outer surface of the resin molding. Moreover, the first electrode layer 13a preferably contains Cu. In addition, in the diffuse reflectance FT-IR spectrum of the first electrode layer 13a, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal is preferably 5% or less.
  • the cathode external electrode 13 may include a second electrode layer 13b formed on a first electrode layer 13a, and may also include a third electrode layer 13c.
  • the second electrode layer 13b and the third electrode layer 13c may have the same configuration as the second electrode layer 11b and the third electrode layer 11c in the anode external electrode 11.
  • the sealing resin 8 constituting the resin molded body 9 includes at least a resin, and preferably includes a resin and a filler.
  • a resin it is preferable to use an insulating resin such as an epoxy resin, a phenol resin, a polyimide resin, a silicone resin, a polyamide resin, or a liquid crystal polymer.
  • the resin molded body 9 may be composed of two or more types of insulating resin.
  • the sealing resin 8 may be in the form of either a solid resin or a liquid resin.
  • the filler it is preferable to use inorganic particles such as silica particles, alumina particles, or metal particles. It is more preferable to use a material containing silica particles in a solid epoxy resin and a phenol resin.
  • a molding method of the resin molded body when a solid sealing material is used, it is preferable to use a resin mold such as a compression mold or a transfer mold, and it is more preferable to use a compression mold.
  • a molding method such as a dispensing method or a printing method. It is preferable to seal a laminate 30 of a capacitor element 20 consisting of an anode 3, a dielectric layer 5, and a cathode 7 with a sealing resin 8 by compression molding to form a resin molded body 9.
  • FIG. 6 is a cross-sectional view illustrating a schematic diagram of another example of the electrolytic capacitor of the present invention.
  • a cathode lead layer 7c and a cathode lead portion 7d are formed from an electrode paste, not from a metal foil.
  • the cathode lead layer can be formed in a predetermined region by applying the electrode paste onto the conductive layer by sponge transfer, screen printing, spray application, dispenser, inkjet printing, etc.
  • the electrode paste an electrode paste containing Ag, Cu, or Ni as a main component is preferable.
  • the thickness of the cathode lead layer can be made thinner than when a metal foil is used, and in the case of screen printing, the thickness can be made 2 ⁇ m or more and 20 ⁇ m or less.
  • the second electrode layer 13b can be formed by screen printing the electrode paste without providing a first electrode layer on the cathode side.
  • Cathode lead layers 7c of each capacitor element 20 are gathered together in the vicinity of second end face 9b as cathode lead portion 7d and exposed at second end face 9b.
  • Cathode lead portion 7d may be formed from the same electrode paste as cathode lead layer 7c, or the electrode pastes constituting cathode lead portion 7d and cathode lead layer 7c may have different compositions.
  • the adhesion to second electrode layer 13b formed by screen printing of the electrode paste is good.
  • an insulating mask may be provided on the anode side.
  • the insulating mask may be provided on the surface of the dielectric layer.
  • the aforementioned treatment liquid or dispersion liquid may be applied to the dielectric layer by dipping, thereby forming a solid electrolyte layer in a predetermined area.
  • a conductive paste such as carbon paste may be applied to the solid electrolyte layer by dipping, thereby forming a conductive layer.
  • the electrolytic capacitor of the present invention it is preferable to form the first electrode layer on the outer surface of the resin molded body by an aerosol deposition method, a gas deposition method, etc. In particular, it is preferable to form the first electrode layer on the outer surface of the resin molded body by an aerosol deposition method.
  • a method for manufacturing an electrolytic capacitor which includes a step of forming a first electrode layer on a first end face, which is an outer surface of a resin molded body, by an aerosol deposition method. The step of forming the first electrode layer will be referred to as a first electrode layer forming step.
  • FIG. 7 is a cross-sectional view illustrating an example of a resin molded body.
  • metal fine particles are sprayed onto the first end face of the resin molded body under a pressure less than atmospheric pressure, and are caused to collide with the first end face to form the first electrode layer.
  • the external electrodes can be formed without using a plating process that is prone to causing corrosion of the internal electrodes, thereby making it possible to suppress leakage current (LC) defects caused by plating solutions.
  • LC leakage current
  • FIG. 8 is a schematic diagram showing a process of forming a first electrode layer by an aerosol deposition method.
  • the aerosol deposition apparatus 51 has a cylinder containing a carrier gas 52, an aerosol generator 54 into which the carrier gas 52 and metal fine particles 53 are introduced to generate an aerosol, a chamber 55 into which the aerosol is introduced, and a stage 57 on which the resin molded bodies 9 are fixed and arranged with their first end faces 9a facing up.
  • metal particles 53 are sprayed from a nozzle 56 provided at the tip of an aerosol generator 54 and collide with the first end surface 9a of the resin molded body 9 to form the first electrode layer.
  • aerosolized metal particles are collided with the first end face of the resin molded body.
  • the metal particle crushes the metal particle.
  • the metal particles collide repeatedly the particles stretch and spread in the direction along the first end face of the resin molded body. As a result, the shape of the metal particle becomes flattened.
  • the thickness of the first electrode layer can be reduced and the adhesion between the resin molded body and the first electrode layer can be strengthened.
  • metal microparticles it is preferable to use at least one type of metal microparticle selected from the group consisting of Cu, Ni, and Cu-Ni alloys, it is more preferable to use metal microparticles containing Cu, and it is even more preferable to use metal microparticles of Cu.
  • the metal particles used do not contain boric acid. This prevents boron compounds from being present between the metal particles when forming the first electrode layer, which makes it easier for the metal particles to pile up when forming the first electrode layer by the aerosol deposition method, improving the film formation efficiency of the first electrode layer.
  • metal fine particles it is preferable to use metal fine particles that do not contain organic acids.
  • metal fine particles that do not contain organic acids.
  • when forming the first electrode layer it is possible to prevent compounds derived from organic acids from being present between the metal fine particles. This makes it easier for the metal fine particles to pile up when forming the first electrode layer by the aerosol deposition method, thereby improving the film formation efficiency of the first electrode layer.
  • the first electrode layer formation process is carried out under conditions of less than atmospheric pressure.
  • the pressure inside the chamber can be made less than atmospheric pressure by evacuating the chamber. It is preferable to set the pressure inside the chamber to 10 Pa or more and 1000 Pa or less.
  • the pressure inside the chamber can be adjusted by increasing or decreasing the gas flow rate. If the gas flow rate is increased so that the pressure inside the chamber is, for example, 100 Pa or more, the film formation speed can be increased, and as a result, the film formation cost can be reduced.
  • the first electrode layer forming step is preferably carried out at 100° C. or less, and more preferably at room temperature. Since it is not necessary to raise the temperature, damage to the resin molded body can be reduced, and by carrying out the step at room temperature, the equipment can be simplified.
  • the normal temperature may be the temperature of the working environment, and may be, for example, 10°C or higher and 30°C or lower.
  • the ratio of flat particles having an aspect ratio of 2 or more contained in the first electrode layer can be adjusted by changing the particle size of the metal microparticles, the nozzle scanning speed, and the amount of metal microparticles ejected per unit time.
  • the aspect ratio can also be controlled by the time for which the metal microparticles are ejected.
  • the aspect ratio can be increased by extending the ejection time, i.e., by ejecting repeatedly or for a long period of time.
  • the particle size of the metal fine particles is preferably D50 less than 5 ⁇ m, more preferably D50 less than 3 ⁇ m, and even more preferably D50 2 ⁇ m or less. Also, D50 may be 0.5 ⁇ m or more. D50 of the metal particles is the median diameter based on volume distribution measured by a laser diffraction/scattering method. As an apparatus for measuring D50 of metal particles, for example, MT3300 manufactured by Microtrac Bell Co., Ltd. can be used.
  • a second electrode layer forming step may be performed in which a second electrode layer containing a conductive component and a resin component is formed on the first electrode layer.
  • a printed resin electrode layer as the second electrode layer by screen printing an electrode paste.
  • the external electrodes can be made flatter than when the electrode paste is formed by dipping, that is, the film thickness uniformity of the external electrodes is improved.
  • a third electrode layer formation process may be performed in which a third electrode layer is formed on the second electrode layer by plating.
  • a third electrode layer forming step may be performed in which a third electrode layer is formed by plating on the first electrode layer without forming the second electrode layer. If the first electrode layer is formed in advance on the resin molded body, LC defects are less likely to occur even if the third electrode layer is subsequently formed by plating.
  • the second end surface of the resin molded body may also be subjected to the first electrode layer forming step in the same manner as the first end surface of the resin molded body, to form a first electrode layer on the second end surface.
  • a first electrode layer 13a as shown in FIG. 5 can be formed on the second end surface 9b of the resin molded body.
  • the second electrode layer 13b and the third electrode layer 13c can be formed in the same manner as on the first end surface side of the resin molded body.
  • the cathode lead layer is a metal foil
  • providing the first electrode layer in the first electrode layer forming step is effective because it can improve the adhesive strength between the metal foil and the first electrode layer.
  • Example 1 The laminate having the structure shown in FIG. 1 and FIG. 2 was sealed with a sealing resin containing an epoxy resin and silica particles to obtain a resin molded body.
  • a first electrode layer having a predetermined thickness was formed on a first end surface of the resin molded body by an aerosol deposition method (AD method).
  • AD method aerosol deposition method
  • Cu fine particles not containing an antioxidant were used as the metal fine particles.
  • the Cu fine particles not containing an antioxidant were obtained by preparing Cu fine particles by an atomization method without adding an antioxidant such as boric acid or an organic acid.
  • As the metal fine particles Cu fine particles having a D50 of 1 ⁇ m were used.
  • a first electrode layer was formed on a second end surface of the resin molded body in the same manner as on the first end surface.
  • an electrode paste containing Ag was applied by screen printing to the end faces (first end face and second end face) of the resin molded body, and the second electrode layer was formed by thermal curing. Furthermore, a third electrode layer, a Ni plating layer and a Sn plating layer, was formed on the surface of the second electrode layer to produce an electrolytic capacitor.
  • Example 2 An electrolytic capacitor was produced in the same manner as in Example 1, except that metal fine particles containing an organic acid, not containing boric acid, were used as the metal fine particles. At this time, the number of coatings in the AD method was adjusted so that the thickness of the first electrode layer in Example 2 was the same as that of the first electrode layer in Example 1. The metal fine particles used in Example 2 were obtained by adding stearic acid as an organic acid, without adding boric acid, when producing Cu fine particles by the atomization method.
  • Comparative Example 1 An electrolytic capacitor was produced in the same manner as in Example 1, except that metal fine particles containing boric acid but not organic acid were used as the metal fine particles. At this time, the number of coatings in the AD method was adjusted so that the thickness of the first electrode layer in Comparative Example 1 was the same as that of the first electrode layer in Example 1. The metal fine particles used in Comparative Example 1 are obtained by adding boric acid without adding an organic acid when producing Cu fine particles by an atomization method.
  • Comparative Example 2 An electrolytic capacitor was produced in the same manner as in Example 1, except that metal fine particles containing boric acid and an organic acid were used as the metal fine particles. At this time, the number of coatings in the AD method was adjusted so that the thickness of the first electrode layer in Comparative Example 2 was the same as that of the first electrode layer in Example 1. The metal fine particles used in Comparative Example 2 were obtained by adding boric acid when producing Cu fine particles by the atomization method, and further adding stearic acid as an organic acid.
  • FIG. 9 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Example 1.
  • FIG. 10 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 1.
  • FIG. 11 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 2.
  • Example 9 in Example 1, a peak derived from a metal was observed near 1100 cm ⁇ 1 .
  • a peak derived from boric acid and a peak derived from a C—H bond were not observed. This can also be said to mean that the peak derived from boric acid and the peak derived from a C—H bond were below the detection limit.
  • Example 2 the ratio of the intensity of the highest peak among the peaks attributable to C—H bonds between 2800 cm ⁇ 1 and 3000 cm ⁇ 1 to the intensity of the peak attributable to the metal was 2.4%.
  • a peak derived from a metal was observed near 1100 cm ⁇ 1 .
  • a peak derived from boric acid was observed near 1400 cm ⁇ 1 .
  • no peak derived from a C—H bond was observed.
  • the intensity of the peak derived from the metal is indicated by a double-headed arrow A.
  • the maximum absorbance value of the peak derived from the metal was used as the intensity of the peak derived from the metal.
  • the peak derived from boric acid is indicated by a double-headed arrow B.
  • the intensity of the peak derived from boric acid was calculated by the following method. First, two points at the rise of the peak were connected by a straight line to form a baseline.
  • the point at which the height from this baseline was maximum was defined as the apex of the peak, and the height from the baseline at the apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) was calculated to be the intensity of the peak derived from boric acid.
  • a peak derived from a metal was observed near 1100 cm ⁇ 1 .
  • a peak derived from boric acid was observed near 1400 cm ⁇ 1 .
  • a peak derived from a C—H bond was observed from 2800 cm ⁇ 1 to 3000 cm ⁇ 1 .
  • the intensity of the peak derived from the metal is indicated by a double-headed arrow A.
  • the maximum absorbance value of the peak derived from the metal was used as the intensity of the peak derived from the metal.
  • the intensity of the peak derived from boric acid is indicated by a double-headed arrow B.
  • the intensity of the peak derived from boric acid was calculated in the same manner as in Comparative Example 1. In Fig.
  • the intensity of the highest peak among the peaks derived from C-H bonds between 2800 cm -1 and 3000 cm -1 is indicated by a double-headed arrow C.
  • the intensity of the peak derived from C-H bonds was calculated by the following method. First, two points at the rise of the peak were connected by a straight line to form a baseline. The point at which the height from this baseline was maximum was defined as the apex of the peak, and the height from the baseline at this apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) was calculated to be the intensity of the peak derived from C-H bonds.
  • Comparative Example 2 the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal was 34%. In Comparative Example 2, the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from C--H bonds to the intensity of the peak derived from the metal was 2.4%.
  • Example 1 in which the first electrode layer does not contain components derived from boric acid, had a superior film-forming efficiency for the first electrode layer compared to Comparative Examples 1 and 2. Furthermore, Example 1, in which the first electrode layer does not contain components derived from organic acid, had an even superior film-forming efficiency for the first electrode layer compared to Example 2.
  • a resin molded body including a laminate including a capacitor element and a sealing resin that seals the periphery of the laminate; an electrolytic capacitor comprising an anode external electrode and a cathode external electrode provided on an outer surface of the resin molded body,
  • the capacitor element is a valve metal base having a core and a porous portion formed along the surface of the core, the end of which is exposed on the outer surface of the resin molded body; a dielectric layer formed on the porous portion; a solid electrolyte layer formed on the dielectric layer; a conductive layer formed on the solid electrolyte layer, the cathode external electrode is electrically connected to the conductive layer
  • the anode external electrode includes a first electrode layer in direct contact with the core portion of the valve metal substrate, the first electrode layer includes flat particles having an aspect ratio of 2 or more, the major axis of which is oriented along the outer surface in a cross section including the first electrode layer and perpendicular to the outer surface of the resin molded body where the valve
  • ⁇ 3> The electrolytic capacitor according to ⁇ 1> or ⁇ 2>, wherein in a Fourier transform infrared spectroscopy spectrum obtained by a diffuse reflectance method of the first electrode layer, a ratio of an intensity of the highest peak among peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from a C-H bond to an intensity of a peak derived from the metal is 0.5% or less.
  • ⁇ 5> The electrolytic capacitor according to ⁇ 3> or ⁇ 4>, wherein a peak at 2800 cm ⁇ 1 or more and 3000 cm ⁇ 1 or less derived from the C—H bond is below a detection limit.
  • ⁇ 6> The electrolytic capacitor according to any one of ⁇ 1> to ⁇ 5>, wherein the first electrode layer contains Cu.

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

An electrolytic capacitor 1 according to the present invention is provided with: a resin molded body 9 which is provided with a multilayer body 30 that comprises a capacitor element 20 and a sealing resin 8 that seals the periphery of the multilayer body; and a positive external electrode 11 and a negative external electrode 13, which are provided on outer surfaces 9a, 9b of the resin molded body 9. The capacitor element 20 comprises: a valve-acting metal substrate 4 which has a core part 4a and a porous part 4b that is formed along the surface of the core part, and an end of which is exposed in the outer surface 9a of the resin molded body 9; a dielectric layer 5 which is formed on the porous part 4b; a solid electrolyte layer 7a which is formed on the dielectric layer 5; and a conductive layer 7b which is formed on the solid electrolyte layer 7a. The negative external electrode 13 is electrically connected to the conductive layer 7b. The positive external electrode 11 comprises a first electrode layer 11a which is in direct contact with the core part 4a of the valve-acting metal substrate 4. The first electrode layer 11a contains flattened particles, each of which has an aspect ratio of 2 or more, and the major axis direction of which is along the outer surface 9a in a cross-section that contains the first electrode layer 11a, while being perpendicular to the main surface of the valve-acting metal substrate 4 and to the outer surface 9a, in which the valve-acting metal substrate 4 is exposed, among the outer surfaces of the resin molded body 9. The first electrode layer 11a contains a metal; and the ratio of the intensity of a peak associated with boric acid to the intensity of a peak associated with the metal in the Fourier transform infrared spectroscopy spectrum of the first electrode layer 11a as obtained by a diffuse reflection method is 5% or less.

Description

電解コンデンサElectrolytic capacitor
 本発明は、電解コンデンサに関する。 The present invention relates to an electrolytic capacitor.
 特許文献1には、内部電極を有し、上記内部電極が外表面から露出する電子部品素体を準備する工程と、上記電子部品素体の上記外表面に、大気圧未満の状態で、金属微粒子を噴射し、衝突させることにより第1電極層を形成する第1電極層形成工程と、を備える電子部品の製造方法が開示されている。 Patent Document 1 discloses a method for manufacturing an electronic component, which includes a step of preparing an electronic component body having an internal electrode exposed from its outer surface, and a first electrode layer forming step of forming a first electrode layer by injecting and colliding metal particles onto the outer surface of the electronic component body under conditions below atmospheric pressure.
国際公開第2022/168768号International Publication No. 2022/168768
 特許文献1では、LC不良の発生を抑制することができ、製造プロセスが簡便である、電子部品の製造方法を提供することができるとしている。 Patent document 1 claims to be able to provide a method for manufacturing electronic components that can suppress the occurrence of LC defects and has a simple manufacturing process.
 しかしながら、大気圧未満の状態で、金属微粒子を噴射し、衝突させることにより電極層を形成する際の電極層の成膜効率を向上させるという点では改善の余地がある。 However, there is room for improvement in terms of improving the film formation efficiency of the electrode layer when forming the electrode layer by spraying and colliding metal particles under conditions of less than atmospheric pressure.
 本発明は上記の問題を解決するためになされたものであり、効率的に製造することができる電解コンデンサを提供することを目的とする。 The present invention has been made to solve the above problems, and aims to provide an electrolytic capacitor that can be manufactured efficiently.
 本発明の電解コンデンサは、コンデンサ素子を含む積層体と上記積層体の周囲を封止する封止樹脂とを備える樹脂成形体と、上記樹脂成形体の外表面に設けられた陽極外部電極及び陰極外部電極と、を備える電解コンデンサであって、上記コンデンサ素子は、芯部とその表面に沿って形成される多孔質部とを有し、その端部が樹脂成形体の上記外表面に露出している弁作用金属基体と、上記多孔質部上に形成された誘電体層と、上記誘電体層上に形成された固体電解質層と、上記固体電解質層上に形成された導電層と、を含み、上記陰極外部電極は上記導電層と電気的に接続されており、上記陽極外部電極は、上記弁作用金属基体の上記芯部と直接接する第1電極層を含み、上記第1電極層は、上記樹脂成形体の上記外表面のうち上記弁作用金属基体が露出している外表面、及び、上記弁作用金属基体の主面にそれぞれ直交し、上記第1電極層を含む断面において、長軸方向が上記外表面に沿った方向となるアスペクト比が2以上の扁平状粒子を含み、上記第1電極層は、金属を含み、上記第1電極層の拡散反射法によるフーリエ変換赤外分光スペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合が5%以下である。なお、本明細書では、拡散反射法によるフーリエ変換赤外分光スペクトルを、以後、拡散反射FT-IRスペクトルと略称することがある。 The electrolytic capacitor of the present invention is an electrolytic capacitor comprising a resin molded body comprising a laminate including a capacitor element and a sealing resin that seals the periphery of the laminate, and an anode external electrode and a cathode external electrode provided on the outer surface of the resin molded body, wherein the capacitor element comprises a valve action metal base having a core portion and a porous portion formed along its surface, the end portion of which is exposed on the outer surface of the resin molded body, a dielectric layer formed on the porous portion, a solid electrolyte layer formed on the dielectric layer, and a conductive layer formed on the solid electrolyte layer, and the cathode external electrode is electrically connected to the conductive layer. The anode external electrode includes a first electrode layer that is in direct contact with the core of the valve metal base, and the first electrode layer is orthogonal to the outer surface of the resin molded body where the valve metal base is exposed and to the main surface of the valve metal base, and includes flat particles with an aspect ratio of 2 or more whose major axis direction is along the outer surface in a cross section including the first electrode layer, and the first electrode layer includes a metal, and in a Fourier transform infrared spectroscopy spectrum of the first electrode layer by a diffuse reflectance method, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal is 5% or less. In this specification, the Fourier transform infrared spectroscopy spectrum by a diffuse reflectance method may be abbreviated as a diffuse reflectance FT-IR spectrum.
 本発明によれば、効率的に製造することができる電解コンデンサを提供することができる。 The present invention provides an electrolytic capacitor that can be manufactured efficiently.
図1は、本発明の電解コンデンサの一例を模式的に示す斜視図である。FIG. 1 is a perspective view illustrating an example of an electrolytic capacitor according to the present invention. 図2は、図1に示す電解コンデンサのA-A線断面図である。FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along line AA. 図3は、樹脂成形体の第1端面における弁作用金属基体の近傍を模式的に示す断面図である。FIG. 3 is a cross-sectional view that typically shows the vicinity of the valve metal substrate on the first end surface of the resin molded body. 図4は、図3に示す第1電極層の点線で囲んだ領域を模式的に示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing a schematic view of a region surrounded by a dotted line in the first electrode layer shown in FIG. 図5は、樹脂成形体の第2端面における陰極引き出し層の近傍を模式的に示す断面図である。FIG. 5 is a cross-sectional view that illustrates the vicinity of the cathode lead layer on the second end surface of the resin molded body. 図6は、本発明の電解コンデンサの別の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view illustrating a schematic diagram of another example of the electrolytic capacitor of the present invention. 図7は、樹脂成形体の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view illustrating an example of a resin molded body. 図8は、エアロゾルデポジション法により第1電極層を形成する工程を示す模式図である。FIG. 8 is a schematic diagram showing a process of forming a first electrode layer by an aerosol deposition method. 図9は、実施例1の第1電極層の拡散反射FT-IRスペクトルを測定した結果である。FIG. 9 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Example 1. 図10は、比較例1の第1電極層の拡散反射FT-IRスペクトルを測定した結果である。FIG. 10 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 1. 図11は、比較例2の第1電極層の拡散反射FT-IRスペクトルを測定した結果である。FIG. 11 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 2.
 以下、本発明の電解コンデンサについて説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の各実施形態の望ましい構成を2つ以上組み合わせたものもまた本発明である。
The electrolytic capacitor of the present invention will now be described.
However, the present invention is not limited to the following configurations, and can be modified as appropriate within the scope of the present invention. Note that the present invention also includes a combination of two or more of the preferred configurations of each embodiment of the present invention described below.
 図1は、本発明の電解コンデンサの一例を模式的に示す斜視図である。
 図1には電解コンデンサ1を構成する樹脂成形体9を示している。
 本発明の電解コンデンサを構成する樹脂成形体の形状は特に限定されるものではなく、任意の立体形状を採用することができる。樹脂成形体の形状は直方体状であることが好ましい。また、直方体状とは完全な直方体であることを意味する語ではなく、樹脂成形体を形成する面が他の面と直交せずにテーパーを有していてもよく、また、角が面取りされている形状であってもよい。
FIG. 1 is a perspective view illustrating an example of an electrolytic capacitor according to the present invention.
FIG. 1 shows a resin molded body 9 that constitutes the electrolytic capacitor 1 .
The shape of the resin molded body constituting the electrolytic capacitor of the present invention is not particularly limited, and any three-dimensional shape can be adopted. The shape of the resin molded body is preferably a rectangular parallelepiped. Moreover, the term "rectangular parallelepiped" does not mean that the resin molded body is a perfect rectangular parallelepiped, and the surface forming the resin molded body may be tapered and not perpendicular to other surfaces, and the corners may be chamfered.
 図1には、直方体状の樹脂成形体9を示しており、樹脂成形体9は、長さ方向(L方向)、幅方向(W方向)、厚さ方向(T方向)を有している。
 樹脂成形体9はその外表面として、長さ方向に対向する第1端面9a及び第2端面9bを備えている。第1端面9aには陽極外部電極11が形成され、第2端面9bには陰極外部電極13が形成されている。
 樹脂成形体9はその外表面として、厚さ方向に対向する底面9c及び上面9dを備えている。
 また、樹脂成形体9はその外表面として、幅方向に対向する第1側面9e及び第2側面9fを備えている。
FIG. 1 shows a rectangular parallelepiped resin molded body 9, which has a length direction (L direction), a width direction (W direction), and a thickness direction (T direction).
The resin molded body 9 has, as its outer surfaces, a first end face 9a and a second end face 9b facing each other in the longitudinal direction. An anode external electrode 11 is formed on the first end face 9a, and a cathode external electrode 13 is formed on the second end face 9b.
The resin molded body 9 has, as its outer surfaces, a bottom surface 9c and a top surface 9d which face each other in the thickness direction.
Further, the resin molded body 9 has, as its outer surfaces, a first side surface 9e and a second side surface 9f which face each other in the width direction.
 なお、本明細書においては、電解コンデンサ又は樹脂成形体の長さ方向(L方向)及び厚さ方向(T方向)に沿う面をLT面といい、長さ方向(L方向)及び幅方向(W方向)に沿う面をLW面といい、幅方向(W方向)及び厚さ方向(T方向)に沿う面をWT面という。
 また、以下の説明においては、樹脂成形体の外表面のうち陽極外部電極が設けられる面を第1端面、陰極外部電極が設けられる面を第2端面として説明する。なお、樹脂成形体の外表面において陽極外部電極と陰極外部電極が同一の面に設けられていてもよい。
In this specification, a surface extending along the length direction (L direction) and thickness direction (T direction) of an electrolytic capacitor or a resin molding is referred to as an LT surface, a surface extending along the length direction (L direction) and width direction (W direction) is referred to as an LW surface, and a surface extending along the width direction (W direction) and thickness direction (T direction) is referred to as a WT surface.
In the following description, the surface of the outer surface of the resin molded body on which the anode external electrode is provided will be referred to as a first end surface, and the surface on which the cathode external electrode is provided will be referred to as a second end surface. Note that the anode external electrode and the cathode external electrode may be provided on the same surface of the outer surface of the resin molded body.
 図2は、図1に示す電解コンデンサのA-A線断面図である。
 コンデンサ素子20は、表面に誘電体層5を有する陽極3と、陽極3と対向する陰極7とを含む。
 コンデンサ素子20が複数積層されて積層体30となり、積層体30の周囲が封止樹脂8で封止されて樹脂成形体9となっている。積層体30において、積層されたコンデンサ素子20の間は、導電性接着剤(図示しない)を介して互いに接合されていてもよい。積層体30に含まれるコンデンサ素子20は1つでもよい。
 樹脂成形体9の第1端面9aに陽極外部電極11が形成されていて、陽極外部電極11は第1端面9aから露出する陽極3と電気的に接続されている。
 樹脂成形体9の第2端面9bに陰極外部電極13が形成されていて、陰極外部電極13は第2端面9bから露出する陰極7と電気的に接続されている。すなわち、陰極外部電極13は、導電層7bとも電気的に接続されている。
 コンデンサ素子20を構成する弁作用金属基体4の第2端面9b側の端部は、封止樹脂8により封止されており、弁作用金属基体4と、固体電解質層7a又は導電層7bとは直接接触していない。一方、弁作用金属基体4の第2端面9b側の端部が誘電体層5で覆われているなど、絶縁処理が施されている場合には、弁作用金属基体4の第2端面9b側の端部が、固体電解質層7a及び導電層7bで覆われていてもよい。
FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along line AA.
Capacitor element 20 includes an anode 3 having a dielectric layer 5 on its surface, and a cathode 7 facing anode 3 .
A plurality of capacitor elements 20 are stacked to form a laminate 30, and the periphery of the laminate 30 is sealed with a sealing resin 8 to form a resin molded body 9. In the laminate 30, the stacked capacitor elements 20 may be bonded to each other via a conductive adhesive (not shown). The laminate 30 may include only one capacitor element 20.
An external anode electrode 11 is formed on a first end surface 9a of the resin molded body 9, and the external anode electrode 11 is electrically connected to the anode 3 exposed from the first end surface 9a.
A cathode external electrode 13 is formed on the second end surface 9b of the resin molded body 9, and the cathode external electrode 13 is electrically connected to the cathode 7 exposed from the second end surface 9b. That is, the cathode external electrode 13 is also electrically connected to the conductive layer 7b.
The end of the valve metal base 4 constituting the capacitor element 20 on the side of the second end face 9b is sealed with a sealing resin 8, and the valve metal base 4 is not in direct contact with the solid electrolyte layer 7a or the conductive layer 7b. On the other hand, if the end of the valve metal base 4 on the side of the second end face 9b is covered with a dielectric layer 5 or otherwise insulated, the end of the valve metal base 4 on the side of the second end face 9b may be covered with the solid electrolyte layer 7a and the conductive layer 7b.
 図3は、樹脂成形体の第1端面における弁作用金属基体の近傍を模式的に示す断面図である。
 図3は、図2の左下部分に点線で囲った領域を模式的に示す断面図でもある。
 弁作用金属基体4は、芯部4aと芯部4aの表面に沿って形成される多孔質部4bとを有している。弁作用金属基体4の端部は樹脂成形体9の第1端面9aに露出している。
 多孔質部4bの表面に誘電体層5が形成されている。
FIG. 3 is a cross-sectional view that typically shows the vicinity of the valve metal substrate on the first end surface of the resin molded body.
FIG. 3 is also a cross-sectional view that diagrammatically illustrates the area surrounded by the dotted line in the lower left portion of FIG.
The valve metal base 4 has a core 4a and a porous portion 4b formed along the surface of the core 4a. An end of the valve metal base 4 is exposed at a first end surface 9a of the resin molded body 9.
A dielectric layer 5 is formed on the surface of the porous portion 4b.
 弁作用金属基体を構成する弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、又は、これらの金属を含む合金等が挙げられる。これらの中では、アルミニウム又はアルミニウム合金が好ましい。 The valve metal constituting the valve metal substrate may be, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, or an alloy containing these metals. Among these, aluminum or an aluminum alloy is preferred.
 弁作用金属基体の形状は特に限定されないが、平板状であることが好ましく、箔状であることがより好ましい。また、多孔質部は塩酸等によりエッチング処理されたエッチング層であることが好ましい。
 エッチング前の弁作用金属基体の厚さが60μm以上であることが好ましく、180μm以下であることが好ましい。また、エッチング処理後にエッチングされていない弁作用金属基体(芯部)の厚さが10μm以上であることが好ましく、70μm以下であることが好ましい。多孔質部の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、弁作用金属基体の両側の多孔質部を合わせて10μm以上であることが好ましく、120μm以下であることが好ましい。
The shape of the valve metal substrate is not particularly limited, but is preferably a flat plate, more preferably a foil, and the porous portion is preferably an etching layer that has been etched with hydrochloric acid or the like.
The thickness of the valve metal base before etching is preferably 60 μm or more and 180 μm or less. Also, the thickness of the valve metal base (core portion) that is not etched after etching is preferably 10 μm or more and 70 μm or less. The thickness of the porous portion is designed according to the withstand voltage and electrostatic capacitance required for the electrolytic capacitor, and the combined thickness of the porous portions on both sides of the valve metal base is preferably 10 μm or more and 120 μm or less.
 誘電体層は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、弁作用金属基体としてアルミニウム箔が用いられる場合、ホウ酸、リン酸、アジピン酸、又は、それらのナトリウム塩、アンモニウム塩等を含む水溶液中で陽極酸化することにより、誘電体層となる酸化皮膜を形成することができる。
 誘電体層は多孔質部の表面に沿って形成されることにより細孔(凹部)が形成されている。誘電体層の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、3nm以上であることが好ましく、200nm以下であることが好ましい。
The dielectric layer is preferably made of an oxide film of the valve metal. For example, when an aluminum foil is used as the valve metal substrate, an oxide film serving as the dielectric layer can be formed by anodizing in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or a sodium salt or ammonium salt thereof.
The dielectric layer is formed along the surface of the porous portion to form pores (recesses). The thickness of the dielectric layer is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, but is preferably 3 nm or more and 200 nm or less.
 陽極外部電極11は、樹脂成形体9の第1端面9aに設けられる。
 陽極外部電極11は、弁作用金属基体4の芯部4aと直接接する第1電極層11aを含む。
 第1電極層11aは、樹脂成形体9の第1端面9a及び弁作用金属基体4の主面にそれぞれ直交し、第1電極層11aを含む断面において、長軸方向が樹脂成形体9の第1端面9aに沿った方向となるアスペクト比が2以上の扁平状粒子を含んでいる。すなわち、第1電極層を構成する金属粒子が扁平状粒子を含んでいる。
 このことについて図面を参照して説明する。
The anode external electrode 11 is provided on a first end surface 9 a of the resin molded body 9 .
The anode external electrode 11 includes a first electrode layer 11 a in direct contact with the core portion 4 a of the valve metal substrate 4 .
The first electrode layer 11a is orthogonal to the first end face 9a of the resin molded body 9 and the main surface of the valve metal base 4, and contains flat particles with an aspect ratio of 2 or more whose major axis direction is along the first end face 9a of the resin molded body 9 in a cross section including the first electrode layer 11a. That is, the metal particles constituting the first electrode layer contain flat particles.
This will be described with reference to the drawings.
 図4は、図3に示す第1電極層の点線で囲んだ領域を模式的に示す拡大断面図である。
 図4に示す断面は樹脂成形体9の第1端面9a及び弁作用金属基体4の主面にそれぞれ直交し、第1電極層11aを含む断面であるが、これは図2にも示すLT面で切断した断面図である。
 この図は、第1電極層を含む断面を電子顕微鏡で撮影した画像を模式的に示した図面である。
 第1電極層11aは複数の粒子が積層されている電極層であり、第1電極層11aはアスペクト比が2以上の扁平状粒子15を含む。
 この扁平状粒子15は長軸方向が樹脂成形体9の第1端面9aに沿った方向である粒子である。
 扁平状粒子の形態は、板状、帯状、棒状などが含まれる。すなわち、形態によらず、上記の定義に合致していればよい。
FIG. 4 is an enlarged cross-sectional view showing a schematic view of a region surrounded by a dotted line in the first electrode layer shown in FIG.
The cross section shown in Figure 4 is perpendicular to the first end face 9a of the resin molding 9 and the main surface of the valve metal base 4, and includes the first electrode layer 11a, and is a cross section cut along the LT plane also shown in Figure 2.
This figure is a schematic diagram showing an image of a cross section including the first electrode layer taken by an electron microscope.
The first electrode layer 11a is an electrode layer in which a plurality of particles are laminated, and the first electrode layer 11a includes flat particles 15 having an aspect ratio of 2 or more.
The flat particle 15 is a particle whose major axis direction is along the first end surface 9 a of the resin molded body 9 .
The shape of the flat particles includes plate-like, strip-like, rod-like, etc. In other words, regardless of the shape, it is sufficient that the shape meets the above definition.
 第1電極層に含まれる粒子のアスペクト比は、以下のように定める。まず各粒子につき、樹脂成形体の第1端面に沿った方向に、最も長くなる寸法を取る。ここで「樹脂成形体の第1端面に沿った方向」とは、樹脂成形体の第1端面に完全に平行な方向を意味するものではなく、樹脂成形体の第1端面に平行な方向から傾きを持った方向も許容する意味である。例えば第1端面から45°程度傾いていてもよく、巨視的に見て概ね第1端面に沿った方向であればよい。
 当該方向において最も長くなる寸法を粒子の長軸方向の寸法(図4中で両矢印Laで示す寸法)とする。そして、当該長軸に対して直交する方向の寸法であって、最も長くなる寸法を取り、この寸法を粒子の短軸方向の寸法(図4中で両矢印Lbで示す寸法)とする。
 そして、長軸方向の寸法/短軸方向の寸法の比を取ってアスペクト比とする。長軸方向の寸法が短軸方向の寸法の2倍以上であれば、アスペクト比が2以上の扁平状粒子と認定する。
 また、長軸の取り方は、粒子の形状が弓なりになっているような粒子の場合は直線ではなく、その粒子内だけを通る線の長さとして一番長くなるような線として定める。粒子の形状が弓なりになっているような粒子の場合は、弓なり形状に沿った線を長軸とする。図4には弓なり形状に沿った長軸をLcとして示している。
The aspect ratio of the particles contained in the first electrode layer is determined as follows. First, for each particle, the longest dimension is taken in the direction along the first end face of the resin molded body. Here, "the direction along the first end face of the resin molded body" does not mean a direction completely parallel to the first end face of the resin molded body, but means that a direction inclined from a direction parallel to the first end face of the resin molded body is also allowed. For example, it may be inclined at about 45° from the first end face, and it is sufficient that the direction is generally along the first end face when viewed macroscopically.
The longest dimension in this direction is taken as the dimension of the particle in the major axis direction (the dimension indicated by the double-headed arrow La in FIG. 4).The longest dimension in the direction perpendicular to the major axis is taken as the dimension of the particle in the minor axis direction (the dimension indicated by the double-headed arrow Lb in FIG. 4).
The aspect ratio is calculated by the ratio of the major axis dimension to the minor axis dimension. If the major axis dimension is twice or more the minor axis dimension, the particle is recognized as a flat particle with an aspect ratio of 2 or more.
In addition, when the particle has a bow-shaped shape, the major axis is not a straight line, but is defined as the longest line passing only through the particle. When the particle has a bow-shaped shape, the major axis is the line along the bow shape. In Figure 4, the major axis along the bow shape is shown as Lc.
 長軸方向が樹脂成形体の第1端面に沿った方向となるアスペクト比が2以上の扁平状粒子が存在するような第1電極層では、扁平状粒子が樹脂成形体の第1端面から積み重なって第1電極層を形成している。このような形状の第1電極層では、第1電極層を構成する粒子同士の接触面積が、球形の粒子が積層されたような形態に比べて大きくなるので、粒子同士の結合強度が強くなる。また、内部電極の電極露出部である弁作用金属基体の芯部と扁平状粒子との接触面積も大きくなるので、弁作用金属基体の芯部と第1電極層との結合強度も強くなる。そのため、内部電極の電極露出部と第1電極層との接続強度が高く、第1電極層の上に第2電極層を形成して陽極外部電極とした場合、第1電極層のアンカー効果が大きくなり、内部電極の電極露出部と外部電極の密着力が高い電解コンデンサとなる。 In a first electrode layer in which there are flat particles with an aspect ratio of 2 or more whose long axis direction is along the first end face of the resin molded body, the flat particles are stacked from the first end face of the resin molded body to form the first electrode layer. In a first electrode layer of this shape, the contact area between the particles constituting the first electrode layer is larger than in a form in which spherical particles are stacked, so the bond strength between the particles is stronger. In addition, the contact area between the core of the valve metal base, which is the electrode exposed portion of the internal electrode, and the flat particles is also larger, so the bond strength between the core of the valve metal base and the first electrode layer is also stronger. Therefore, when the connection strength between the electrode exposed portion of the internal electrode and the first electrode layer is high and a second electrode layer is formed on the first electrode layer to form an anode external electrode, the anchor effect of the first electrode layer is large, resulting in an electrolytic capacitor with high adhesion between the electrode exposed portion of the internal electrode and the external electrode.
 第1電極層を構成する粒子は、全てが扁平状粒子である必要はない。第1電極層を構成する粒子には扁平状粒子と扁平状粒子ではない粒子が共に含まれていてもよい。図4には扁平状粒子ではない粒子16も模式的に示している。
 この場合、第1電極層は扁平状粒子を個数割合で30%以上含んでいることが好ましい。第1電極層が扁平状粒子を個数割合で30%以上含んでいると、内部電極の電極露出部と外部電極の密着力をより高くすることができる。
 第1電極層に含まれる扁平状粒子の個数割合は、図4に示すように第1電極層における所定の観察領域内に含まれる粒子の輪郭を定めて、各粒子を扁平状粒子と扁平状粒子ではない粒子に分類し、全ての粒子に対する扁平状粒子の個数割合を求めることで算出することができる。
The particles constituting the first electrode layer do not all need to be flat particles. The particles constituting the first electrode layer may contain both flat particles and non-flat particles. Figure 4 also shows a schematic diagram of a particle 16 that is not a flat particle.
In this case, the first electrode layer preferably contains 30% or more flat particles by number. When the first electrode layer contains 30% or more flat particles by number, the adhesive strength between the electrode exposed portion of the internal electrode and the external electrode can be further increased.
The proportion of flat particles contained in the first electrode layer can be calculated by determining the outline of the particles contained within a specified observation area in the first electrode layer as shown in Figure 4, classifying each particle into flat particles and non-flat particles, and determining the proportion of flat particles to all particles.
 第1電極層に含まれる扁平状粒子の長軸方向の寸法(平均寸法)は0.3μm以上であってもよく、1.0μm以上であってもよい。また、扁平状粒子の長軸方向の寸法(平均寸法)の上限値が5.0μmであってもよい。
 また、扁平状粒子のアスペクト比(平均値)は2以上であり、10以下であることが好ましい。
 これらの寸法及びアスペクト比は、観察領域内に存在する扁平状粒子だけを抽出し、各扁平状粒子の長軸方向の寸法及び短軸方向の寸法の平均値をとることで算出することができる。
 なお、これらの平均値をとるために使用する扁平状粒子の個数を30個以上とすることが好ましい。
The major axis dimension (average dimension) of the flat particles contained in the first electrode layer may be 0.3 μm or more, or 1.0 μm or more. The upper limit of the major axis dimension (average dimension) of the flat particles may be 5.0 μm.
The aspect ratio (average value) of the flat particles is preferably 2 or more and 10 or less.
These dimensions and aspect ratios can be calculated by extracting only the flat particles present within the observation area and averaging the dimensions in the major axis direction and the minor axis direction of each flat particle.
It is preferable to use 30 or more flat particles to obtain these average values.
 第1電極層は金属を含む。第1電極層は、Cu、Ni、Cu-Ni合金からなる群から選ばれる少なくとも1種を含むことが好ましく、Cuを含むことがより好ましい。第1電極層に含まれる粒子はCu、Ni、Cu-Ni合金からなる群から選ばれる少なくとも1種の粒子であることが好ましく、Cu粒子であることがより好ましい。また、第1電極層に含まれる扁平状粒子はCu、Ni、Cu-Ni合金からなる群から選ばれる少なくとも1種の粒子であることが好ましく、Cu粒子であることがより好ましい。 The first electrode layer contains a metal. The first electrode layer preferably contains at least one type selected from the group consisting of Cu, Ni, and Cu-Ni alloys, and more preferably contains Cu. The particles contained in the first electrode layer are preferably at least one type of particles selected from the group consisting of Cu, Ni, and Cu-Ni alloys, and more preferably Cu particles. In addition, the flat particles contained in the first electrode layer are preferably at least one type of particles selected from the group consisting of Cu, Ni, and Cu-Ni alloys, and more preferably Cu particles.
 第1電極層は、エアロゾルデポジション法、又はガスデポジション法などにより形成された電極層であることが好ましい。特に、エアロゾルデポジション法により形成された電極層であることが好ましい。エアロゾルデポジション法では、金属微粒子をエアロゾル化させて樹脂成形体の第1端面に衝突させる。 The first electrode layer is preferably an electrode layer formed by an aerosol deposition method or a gas deposition method. In particular, it is preferably an electrode layer formed by an aerosol deposition method. In the aerosol deposition method, metal particles are aerosolized and collided with the first end surface of the resin molded body.
 ところで、従来、エアロゾルデポジション法でCuの微粒子又はCuを含む合金の微粒子を用いる場合、酸化を防止するために表面をホウ酸でコーティングした微粒子を用いていた。この場合、エアロゾルデポジション法で形成された後の電極層中にもホウ酸由来の成分が含まれる。しかしながら、このように形成される電極層では金属微粒子間にホウ酸に由来するホウ素化合物が介在することとなるため、金属微粒子が上手く積みあがらなかった。そのため、電極層の形成過程での成膜効率が低く、改善の余地があった。 In the past, when using fine particles of Cu or fine particles of an alloy containing Cu in the aerosol deposition method, the fine particles were coated with boric acid on the surface to prevent oxidation. In this case, components derived from boric acid were also included in the electrode layer formed by the aerosol deposition method. However, in the electrode layer formed in this way, boron compounds derived from boric acid were interposed between the metal fine particles, and the metal fine particles did not stack up well. As a result, the film formation efficiency in the electrode layer formation process was low, leaving room for improvement.
 本発明の電解コンデンサでは、第1電極層の拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合は、5%以下である。これによって、第1電極層を形成する際に、金属微粒子間にホウ素化合物が介在することを抑制できるため、エアロゾルデポジション法で第1電極層を形成する際に金属微粒子が積み上がりやすくなり、第1電極層の成膜効率を向上することができる。
 また、形成された第1電極層において、金属微粒子間にホウ酸に由来する化合物が介在することを抑制できるので、弁作用金属基体の芯部と第1電極層との結合強度も強くなる。そのため、内部電極の電極露出部と第1電極層との接続強度が高くなるため、第1電極層の上に第2電極層を形成して陽極外部電極とした場合、第1電極層のアンカー効果が大きくなり、内部電極の電極露出部と外部電極の密着力が高い電解コンデンサとなる。
In the electrolytic capacitor of the present invention, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer is 5% or less. This makes it possible to prevent the boron compound from being present between the metal fine particles when the first electrode layer is formed, which makes it easier for the metal fine particles to pile up when the first electrode layer is formed by the aerosol deposition method, thereby improving the film formation efficiency of the first electrode layer.
In addition, since the presence of compounds derived from boric acid between the metal fine particles can be suppressed in the formed first electrode layer, the bonding strength between the core of the valve metal base and the first electrode layer is also increased. Therefore, since the connection strength between the electrode exposed portion of the internal electrode and the first electrode layer is increased, when the second electrode layer is formed on the first electrode layer to serve as the anode external electrode, the anchor effect of the first electrode layer is increased, resulting in an electrolytic capacitor with high adhesion between the electrode exposed portion of the internal electrode and the external electrode.
 本発明の電解コンデンサでは、第1電極層の拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合は、3%以下であることが好ましく、1%以下であることがより好ましい。 In the electrolytic capacitor of the present invention, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer is preferably 3% or less, and more preferably 1% or less.
 拡散反射FT-IRスペクトルにおいて、Cuに由来するピークは、1100cm-1付近、すなわち1050cm-1以上1150cm-1以下に現れる。
 ホウ酸に由来するピークは、1400cm-1付近、すなわち1350cm-1以上1500cm-1以下に現れる。
In the diffuse reflectance FT-IR spectrum, a peak derived from Cu appears near 1100 cm −1 , that is, from 1050 cm −1 to 1150 cm −1 .
The peak derived from boric acid appears near 1400 cm -1 , that is, from 1350 cm -1 to 1500 cm -1 .
 金属に由来するピークの強度は、金属に由来するピークでの吸光度の最大値を用いる(後述する図10、図11の両矢印A参照)。
 ホウ酸に由来するピークの強度は下記の方法で算出する。まず、ピークの立ち上がりの2点を直線で結びベースラインとする。本発明の説明においては、ベースラインの設定は、目視で行った場合について述べたが、例えば測定機器が近似的にピークの立ち上がりの2点を算出し、それらを直線で結ぶ処理を自動的に行なうようにしてもよい。このベースラインからの高さが最大となる地点をピークの頂点とし、このピークの頂点でのベースラインからの高さ(ピークの頂点での吸光度-ベースラインでの吸光度)を算出し、ホウ酸に由来するピークの強度とする(後述する図10、図11の両矢印B参照)。
The intensity of the peak derived from the metal is determined by the maximum absorbance value of the peak derived from the metal (see the double-headed arrow A in FIGS. 10 and 11, which will be described later).
The intensity of the peak derived from boric acid is calculated by the following method. First, two points on the rising edge of the peak are connected by a straight line to form a baseline. In the description of the present invention, the baseline is set visually, but for example, a measuring device may calculate two points on the rising edge of the peak approximately and automatically connect them by a straight line. The point at which the height from the baseline is maximum is set as the apex of the peak, and the height from the baseline at the apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) is calculated to form the intensity of the peak derived from boric acid (see double-headed arrow B in Figures 10 and 11 described later).
 ホウ酸を含まず、Cuを含む金属微粒子を用いてエアロゾルデポジション法を行うことで、第1電極層の拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合を5%以下とすることができるため好ましい。 By performing the aerosol deposition method using metal particles that do not contain boric acid but contain Cu, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer can be made 5% or less, which is preferable.
 ホウ酸を含まず、Cuを含む金属微粒子は、アトマイズ法(気相法)で酸化防止剤を用いずに金属微粒子を形成することで得られる。 Metal microparticles that do not contain boric acid but contain Cu can be obtained by forming metal microparticles using the atomization method (gas phase method) without using an antioxidant.
 第1電極層の拡散反射FT-IRスペクトルにおける、ホウ酸に由来するピークの強度は検出限界以下であることが好ましい。この場合、第1電極層に含まれるホウ素化合物が極めて少ない、又は、第1電極層がホウ素化合物を含まないこととなる。そのため、第1電極層の成膜効率をさらに向上することができる。 The intensity of the peak derived from boric acid in the diffuse reflectance FT-IR spectrum of the first electrode layer is preferably below the detection limit. In this case, the first electrode layer contains very little boron compounds or does not contain any boron compounds. This can further improve the film formation efficiency of the first electrode layer.
 第1電極層がホウ酸に由来する成分を含むかは、第1電極層の断面を走査電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)で観察することによっても確認することができる。第1電極層の断面をSEM-EDXで元素分析し、ホウ素が確認されない場合は、第1電極層はホウ酸に由来する成分を含まないとみなすことができる。 Whether the first electrode layer contains components derived from boric acid can also be confirmed by observing a cross section of the first electrode layer with a scanning electron microscope - energy dispersive X-ray spectroscopy (SEM-EDX). If the cross section of the first electrode layer is subjected to elemental analysis with SEM-EDX and boron is not confirmed, it can be considered that the first electrode layer does not contain components derived from boric acid.
 第1電極層の拡散反射T-IRスペクトルにおける、金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合が0.5%以下であることが好ましい。
 第1電極層の拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合は、0.3%以下であることがより好ましく、0.1%以下であることがさらに好ましい。
In the diffuse reflectance T-IR spectrum of the first electrode layer, it is preferable that the ratio of the intensity of the highest peak among the peaks at 2800 cm −1 or more and 3000 cm −1 or less due to C—H bonds to the intensity of the peak attributable to the metal is 0.5% or less.
In the diffuse reflectance FT-IR spectrum of the first electrode layer, the ratio of the intensity of the highest peak among the peaks at 2800 cm or more and 3000 cm or less derived from C—H bonds to the intensity of the peak derived from the metal is more preferably 0.3% or less, and even more preferably 0.1% or less.
 C-H結合に由来する2800cm-1以上3000cm-1以下のピークは、有機酸に由来するピークであることが好ましい。 The peak at 2800 cm −1 or more and 3000 cm −1 or less derived from a C—H bond is preferably a peak derived from an organic acid.
 エアロゾルデポジション法でCuを含む金属微粒子を用いる場合、酸化防止剤として有機酸を含む金属微粒子を用いることが多い。そのため、2800cm-1以上3000cm-1以下にピークがみられる場合、そのピークは、有機酸に由来するピークだと考えられる。 When Cu-containing metal particles are used in the aerosol deposition method, metal particles containing an organic acid as an antioxidant are often used. Therefore, when a peak is observed between 2800 cm and 3000 cm , the peak is considered to be derived from the organic acid.
 C-H結合に由来するピークの強度は下記の方法で算出する。まず、ピークの立ち上がりの2点を直線で結びベースラインとする。本発明の説明においては、ベースラインの設定は、目視で行った場合について述べたが、例えば測定機器が近似的にピークの立ち上がりの2点を算出し、それらを直線で結ぶ処理を自動的に行なうようにしてもよい。このベースラインからの高さが最大となる地点をピークの頂点とし、このピークの頂点でのベースラインからの高さ(ピークの頂点での吸光度-ベースラインでの吸光度)を算出し、C-H結合に由来するピークの強度とする(後述する図11の両矢印C参照)。 The intensity of the peak derived from the C-H bond is calculated as follows. First, the two points at the beginning of the peak are connected by a straight line to form the baseline. In the explanation of the present invention, the baseline is set visually, but for example, the measuring device may calculate the two points at the beginning of the peak approximately and automatically connect them with a straight line. The point at which the height from the baseline is maximum is set as the apex of the peak, and the height from the baseline at this apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) is calculated to form the intensity of the peak derived from the C-H bond (see double-headed arrow C in Figure 11 described later).
 第1電極層の拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合が0.5%以下であると、エアロゾルデポジション法で第1電極層を形成する際に、金属微粒子間に有機酸に由来する化合物が介在することを抑制できるため、第1電極層の成膜効率を向上することができる。 When the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from C-H bonds to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer is 0.5% or less, it is possible to suppress the presence of compounds derived from organic acids between metal fine particles when forming the first electrode layer by the aerosol deposition method, thereby improving the film formation efficiency of the first electrode layer.
 有機酸としては、ステアリン酸、リン酸化合物、等が挙げられる。また、C-H結合の由来となる化合物は、有機酸以外であってもよい。 Examples of organic acids include stearic acid, phosphoric acid compounds, etc. In addition, the compound from which the C-H bond is derived may be something other than an organic acid.
 有機酸を含まず、Cuを含む金属微粒子を用いてエアロゾルデポジション法を行うことで、第1電極層の拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合を0.5%以下とすることができるため好ましい。 By performing the aerosol deposition method using metal fine particles containing Cu without containing an organic acid, the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from C-H bonds to the intensity of the peak derived from the metal in the diffuse reflectance FT-IR spectrum of the first electrode layer can be made to be 0.5% or less, which is preferable.
 有機酸を含まず、Cuを含む金属微粒子は、アトマイズ法で酸化防止剤を用いずに金属微粒子を形成することで得られる。 Metal microparticles that do not contain organic acids and contain Cu can be obtained by forming metal microparticles using the atomization method without using an antioxidant.
 第1電極層の拡散反射FT-IRスペクトルにおける、C-H結合に由来する2800cm-1以上3000cm-1以下のピークの強度は検出限界以下であることが好ましい。この場合、第1電極層に含まれる有機酸が極めて少ない、又は、第1電極層が有機酸を含まないこととなる。そのため、第1電極層の成膜効率をさらに向上することができる。 In the diffuse reflectance FT-IR spectrum of the first electrode layer, the intensity of a peak at 2800 cm -1 or more and 3000 cm -1 or less derived from a C-H bond is preferably below the detection limit. In this case, the first electrode layer contains an extremely small amount of organic acid or does not contain any organic acid. Therefore, the film formation efficiency of the first electrode layer can be further improved.
 拡散反射FT-IRスペクトルにおいて、クベルカ-ムンク変換を行ってもよい。クベルカ-ムンク変換を行うと、バックグラウンドの影響を抑えることができる。  A Kubelka-Munk transformation may be performed on the diffuse reflectance FT-IR spectrum. This can reduce the effects of the background.
 弁作用金属基体の芯部に形成された第1電極層の厚さは、0.2μm以上、30μm以下であることが好ましい。
 弁作用金属基体の芯部に形成された第1電極層の厚さは、芯部に形成された第1電極層において最も厚いところでの厚さとして定める。図3において、弁作用金属基体4の芯部4aに形成された第1電極層11aの厚さを両矢印Tで示している。
 第1電極層の厚さが上記範囲であると、ESR(等価直列抵抗)を低くすることができ、第1電極層とその上に形成する第2電極層との密着力を高くすることができる。
The thickness of the first electrode layer formed on the core of the valve metal base is preferably 0.2 μm or more and 30 μm or less.
The thickness of the first electrode layer formed on the core of the valve metal base is defined as the thickness of the first electrode layer formed on the core. In Fig. 3, the thickness of the first electrode layer 11a formed on the core 4a of the valve metal base 4 is indicated by a double-headed arrow T1 .
When the thickness of the first electrode layer is within the above range, the ESR (equivalent series resistance) can be reduced, and the adhesion between the first electrode layer and the second electrode layer formed thereon can be increased.
 樹脂成形体の外表面のうち弁作用金属基体が露出している外表面(樹脂成形体の第1端面)、及び、弁作用金属基体の主面にそれぞれ直交し、第1電極層を含む断面において、第1電極層の断面形状が楔形であることが好ましい。図3には第1電極層11aの断面形状が楔形である形状を示している。
 第1電極層の断面形状が楔形であると、第1電極層の上に形成する第2電極層との密着力がアンカー効果により向上するので、端子固着強度が向上する。
 本明細書における楔形とは、上記の断面形状において、弁作用金属基体に接する底部を有し、底部から離れる方向(高さ方向)に沿って当該方向に直交する幅が次第に狭くなる形状を意味する。楔形の頂部の形状は特に限定されるものではなく、尖っていてもよく、丸みを帯びていてもよく、平坦であってもよい。また、楔形の頂部は、概略としては平滑に見えても微視的に見た場合に凹凸を有していてもよい。
In a cross section including the first electrode layer, which is perpendicular to the outer surface of the resin molded body where the valve metal base is exposed (the first end face of the resin molded body) and the main surface of the valve metal base, the cross section of the first electrode layer is preferably wedge-shaped. Fig. 3 shows a cross section of the first electrode layer 11a that is wedge-shaped.
When the first electrode layer has a wedge-shaped cross section, the adhesive strength with the second electrode layer formed on the first electrode layer is improved due to the anchor effect, thereby improving the terminal fixing strength.
In this specification, the wedge shape means a shape having a bottom that contacts the valve metal base in the above-mentioned cross-sectional shape, and a width perpendicular to the direction away from the bottom (height direction) that gradually narrows. The shape of the top of the wedge is not particularly limited, and may be pointed, rounded, or flat. In addition, the top of the wedge may appear roughly smooth, but may have irregularities when viewed microscopically.
 図3に示すように、第1電極層11aは封止樹脂8に接していてもよい。 As shown in FIG. 3, the first electrode layer 11a may be in contact with the sealing resin 8.
 陽極外部電極11は、第1電極層11aの上に形成された第2電極層11bをさらに含むことが好ましい。
 第2電極層11bは、導電成分と樹脂成分とを含む導電性樹脂電極層であることが好ましい。
 導電成分としてはAg、Cu、Ni、Snなどを主成分として含むことが好ましく、樹脂成分としては、エポキシ樹脂、フェノール樹脂などを主成分として含むことが好ましい。
 特に、第2電極層がAgを含む導電性樹脂電極層であることが好ましい。Agを含む導電性樹脂電極層であるとAgの比抵抗が小さいためESRを低減させることができる。
It is preferable that the anode external electrode 11 further includes a second electrode layer 11b formed on the first electrode layer 11a.
The second electrode layer 11b is preferably a conductive resin electrode layer containing a conductive component and a resin component.
The conductive component preferably contains Ag, Cu, Ni, Sn or the like as a main component, and the resin component preferably contains epoxy resin, phenol resin or the like as a main component.
In particular, it is preferable that the second electrode layer is a conductive resin electrode layer containing Ag. When the second electrode layer is a conductive resin electrode layer containing Ag, the specific resistance of Ag is small, and therefore the ESR can be reduced.
 また、第2電極層は電極ペーストのスクリーン印刷により形成された印刷樹脂電極層であることが好ましい。
 第2電極層が印刷樹脂電極層であると、電極ペーストをディップで形成する場合と比べて、外部電極を平坦にすることができる。すなわち、外部電極の膜厚均一性が向上する。
Moreover, the second electrode layer is preferably a printed resin electrode layer formed by screen printing an electrode paste.
When the second electrode layer is a printed resin electrode layer, the external electrodes can be made flatter than when an electrode paste is formed by dipping, that is, the film thickness uniformity of the external electrodes is improved.
 電極ペーストは有機溶媒を含んでいてもよく、有機溶媒としてはグリコールエーテル系の溶媒を使用することが好ましい。例えばジエチレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテル等が挙げられる。
 また、必要に応じて添加剤を用いてもよい。添加剤は電極ペーストのレオロジー、特にチクソ性の調整に有用である。添加剤の含有量は、電極ペーストの重量に対して5重量%未満であることが好ましい。
The electrode paste may contain an organic solvent, and as the organic solvent, it is preferable to use a glycol ether-based solvent, such as diethylene glycol monobutyl ether or diethylene glycol monophenyl ether.
If necessary, an additive may be used. The additive is useful for adjusting the rheology of the electrode paste, particularly the thixotropy. The content of the additive is preferably less than 5% by weight based on the weight of the electrode paste.
 第2電極層の表面には、外層めっき層が設けられていてもよい。図2には、第2電極層11bの表面に設けられた外層めっき層である第3電極層11cを示している。
 第3電極層としては、Niめっき層又はSnめっき層であることが好ましい。
 第3電極層が2層の場合、第3電極層は、第2電極層の表面に形成される第1外層めっき層と、第1外層めっき層の表面に形成される第2外層めっき層とを有していてもよい。
 第1外層めっき層は、Niめっき層であることが好ましく、第2外層めっき層は、Snめっき層であることが好ましい。
An outer plating layer may be provided on the surface of the second electrode layer 11b. Fig. 2 shows a third electrode layer 11c which is an outer plating layer provided on the surface of the second electrode layer 11b.
The third electrode layer is preferably a Ni-plated layer or a Sn-plated layer.
When the third electrode layer is two layers, the third electrode layer may have a first outer layer plating layer formed on the surface of the second electrode layer, and a second outer layer plating layer formed on the surface of the first outer layer plating layer.
The first outer plating layer is preferably a Ni plating layer, and the second outer plating layer is preferably a Sn plating layer.
 ここまで陽極3に関連する構成を説明したが、続いて陰極7に関連する構成及び樹脂成形体を構成するその他の構成について図2を参照して説明する。 So far, we have explained the configuration related to the anode 3. Next, we will explain the configuration related to the cathode 7 and other components that make up the resin molded body with reference to Figure 2.
 コンデンサ素子20を構成する陰極7は、誘電体層5上に形成される固体電解質層7aと、固体電解質層7a上に形成される導電層7bと、導電層7b上に形成される陰極引き出し層7cとを積層してなる。
 陰極の一部として固体電解質層が設けられている電解コンデンサは、固体電解コンデンサであるといえる。
The cathode 7 constituting the capacitor element 20 is formed by laminating a solid electrolyte layer 7a formed on the dielectric layer 5, a conductive layer 7b formed on the solid electrolyte layer 7a, and a cathode extraction layer 7c formed on the conductive layer 7b.
An electrolytic capacitor in which a solid electrolyte layer is provided as part of the cathode can be said to be a solid electrolytic capacitor.
 固体電解質層を構成する材料としては、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子等が挙げられる。チオフェン類を骨格とする導電性高分子としては、例えば、PEDOT[ポリ(3,4-エチレンジオキシチオフェン)]が挙げられ、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSであってもよい。 Materials constituting the solid electrolyte layer include, for example, conductive polymers with a skeleton of pyrroles, thiophenes, anilines, etc. An example of a conductive polymer with a skeleton of thiophenes is PEDOT [poly(3,4-ethylenedioxythiophene)], which may be composited with polystyrene sulfonic acid (PSS) as a dopant to form PEDOT:PSS.
 固体電解質層は、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体層の表面に塗布して乾燥させる方法等によって形成される。なお、細孔(凹部)を充填する内層用の固体電解質層を形成した後、誘電体層全体を被覆する外層用の固体電解質層を形成することが好ましい。
 固体電解質層は、上記の処理液又は分散液を、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって誘電体層上に塗布することにより、所定の領域に形成することができる。固体電解質層の厚さは2μm以上であることが好ましく、20μm以下であることが好ましい。
The solid electrolyte layer is formed, for example, by a method of forming a polymerized film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene, or a method of applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer and drying it, etc. It is preferable to form a solid electrolyte layer for an outer layer that covers the entire dielectric layer after forming a solid electrolyte layer for an inner layer that fills the pores (recesses).
The solid electrolyte layer can be formed in a predetermined region by applying the above-mentioned treatment liquid or dispersion onto the dielectric layer by sponge transfer, screen printing, spray application, dispenser, inkjet printing, etc. The thickness of the solid electrolyte layer is preferably 2 μm or more and 20 μm or less.
 導電層は、固体電解質層と陰極引き出し層とを電気的に及び機械的に接続させるために設けられている。例えば、カーボンペースト、グラフェンペースト、銀ペースト、銅ペースト、ニッケルペーストなどのような導電性ペーストを付与することによって形成されてなるカーボン層、グラフェン層、銀層、銅層、ニッケル層などであることが好ましい。また、例えばカーボン層やグラフェン層の上に銀層、銅層又はニッケル層が設けられた複合層や、カーボンペーストやグラフェンペーストと、銀ペースト、銅ペースト又はニッケルペーストとが混合された混合ペーストを付与することによって形成されてなる混合層であってもよい。 The conductive layer is provided to electrically and mechanically connect the solid electrolyte layer and the cathode lead layer. For example, it is preferably a carbon layer, a graphene layer, a silver layer, a copper layer, a nickel layer, or the like, formed by applying a conductive paste such as carbon paste, graphene paste, silver paste, copper paste, nickel paste, or the like. It may also be a composite layer in which a silver layer, copper layer, or nickel layer is provided on a carbon layer or graphene layer, or a mixed layer formed by applying a mixed paste in which a carbon paste or graphene paste is mixed with a silver paste, copper paste, or nickel paste.
 導電層は、カーボンペースト等の導電性ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって固体電解質層上に形成することにより形成することができる。なお、導電層が乾燥前の粘性のある状態で、次工程の陰極引き出し層を積層することが好ましい。導電層の厚みは2μm以上であることが好ましく、20μm以下であることが好ましい。 The conductive layer can be formed by applying a conductive paste such as carbon paste onto the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like. It is preferable to laminate the cathode lead layer in the next process while the conductive layer is still in a viscous state before drying. The thickness of the conductive layer is preferably 2 μm or more and 20 μm or less.
 陰極引き出し層は、金属箔により形成することができる。
 金属箔の場合は、Al、Cu、Ag及びこれらの金属を主成分とする合金からなる群より選択される少なくとも一種の金属からなることが好ましい。金属箔が上記の金属からなると、金属箔の抵抗値を低減させることができ、ESRを低減させることができる。
 また、金属箔として、表面にスパッタや蒸着等の成膜方法によりカーボンコートやチタンコートがされた金属箔を用いてもよい。カーボンコートされたAl箔を用いることがより好ましい。金属箔の厚みは特に限定されないが、製造工程でのハンドリング、小型化及びESRを低減させる観点からは、20μm以上であることが好ましく、50μm以下であることが好ましい。
The cathode extraction layer can be formed of a metal foil.
In the case of a metal foil, it is preferable that the metal foil is made of at least one metal selected from the group consisting of Al, Cu, Ag, and alloys mainly composed of these metals. When the metal foil is made of the above metal, the resistance value of the metal foil can be reduced, and the ESR can be reduced.
In addition, the metal foil may be a metal foil whose surface is coated with carbon or titanium by a film forming method such as sputtering or vapor deposition. It is more preferable to use a carbon-coated Al foil. The thickness of the metal foil is not particularly limited, but from the viewpoints of handling in the manufacturing process, miniaturization, and reducing ESR, it is preferably 20 μm or more and preferably 50 μm or less.
 図5は、樹脂成形体の第2端面における陰極引き出し層の近傍を模式的に示す断面図である。
 図5は、図2の右下部分に点線で囲った領域を模式的に示す断面図でもある。
 金属箔である陰極引き出し層7cは樹脂成形体9の第2端面9bに露出している。
FIG. 5 is a cross-sectional view that illustrates the vicinity of the cathode lead layer on the second end surface of the resin molded body.
FIG. 5 is also a cross-sectional view that diagrammatically illustrates the area surrounded by the dotted line in the lower right portion of FIG.
Cathode lead layer 7 c which is a metal foil is exposed at second end surface 9 b of resin molded body 9 .
 陰極外部電極13は、樹脂成形体9の外表面である第2端面9bに設けられる。
 陰極外部電極13は、陰極引き出し層7cと直接接する第1電極層13aを含んでいてもよい。この第1電極層13aとしては、樹脂成形体9の第1端面9aに形成する第1電極層11aと同様の構成のものを使用することができる。
 樹脂成形体の外表面のうち陰極引き出し層が露出している外表面(樹脂成形体の第2端面)、及び、陰極引き出し層の主面にそれぞれ直交し、第1電極層を含む断面において、第1電極層の断面形状が楔形であることが好ましい。図5には第1電極層13aの断面形状が楔形である形状を示している。
The cathode external electrode 13 is provided on the second end surface 9 b which is the outer surface of the resin molded body 9 .
The cathode external electrode 13 may include a first electrode layer 13a in direct contact with the cathode lead layer 7c. The first electrode layer 13a may have a configuration similar to that of the first electrode layer 11a formed on the first end surface 9a of the resin molded body 9.
In a cross section including the first electrode layer, which is perpendicular to an outer surface of the resin molded body where the cathode extraction layer is exposed (a second end face of the resin molded body) and to a main surface of the cathode extraction layer, the cross section of the first electrode layer is preferably wedge-shaped. Fig. 5 shows a cross section of first electrode layer 13a that is wedge-shaped.
 図4と同様に第1電極層13aの拡大断面図を観察したときに、第1電極層が、長軸方向が樹脂成形体の外表面である樹脂成形体の第2端面に沿った方向となるアスペクト比が2以上の扁平状粒子を含んでいることが好ましい。
 また、第1電極層13aは、Cuを含むことが好ましい。
 また、第1電極層13aの拡散反射FT-IRスペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合が5%以下であることが好ましい。
When observing an enlarged cross-sectional view of the first electrode layer 13a as in Figure 4, it is preferable that the first electrode layer contains flat particles with an aspect ratio of 2 or more whose major axis direction is along the second end face of the resin molding, which is the outer surface of the resin molding.
Moreover, the first electrode layer 13a preferably contains Cu.
In addition, in the diffuse reflectance FT-IR spectrum of the first electrode layer 13a, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal is preferably 5% or less.
 陰極外部電極13は、陽極外部電極11と同様に、第1電極層13aの上に形成された第2電極層13bを含んでいてもよく、第3電極層13cを含んでいてもよい。
 第2電極層13bと第3電極層13cの構成も、陽極外部電極11における第2電極層11bと第3電極層11cの構成と同様の構成のものを使用することができる。
Similar to the anode external electrode 11, the cathode external electrode 13 may include a second electrode layer 13b formed on a first electrode layer 13a, and may also include a third electrode layer 13c.
The second electrode layer 13b and the third electrode layer 13c may have the same configuration as the second electrode layer 11b and the third electrode layer 11c in the anode external electrode 11.
 樹脂成形体9を構成する封止樹脂8は、少なくとも樹脂を含み、好ましくは樹脂及びフィラーを含む。樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等の絶縁性樹脂を用いることが好ましい。また、樹脂成形体9は、2種類以上の絶縁性樹脂により構成されてもよい。封止樹脂8の形態は、固形樹脂、液状樹脂いずれも使用可能である。また、フィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等の無機粒子を用いることが好ましい。固形エポキシ樹脂とフェノール樹脂にシリカ粒子を含む材料を用いることがより好ましい。
 樹脂成形体の成形方法としては、固形封止材を用いる場合は、コンプレッションモールド、トランスファーモールド等の樹脂モールドを用いることが好ましく、コンプレッションモールドを用いることがより好ましい。また、液状封止材を用いる場合は、ディスペンス法や印刷法等の成形方法を用いることが好ましい。コンプレッションモールドで陽極3、誘電体層5及び陰極7からなるコンデンサ素子20の積層体30を封止樹脂8で封止して樹脂成形体9とすることが好ましい。
The sealing resin 8 constituting the resin molded body 9 includes at least a resin, and preferably includes a resin and a filler. As the resin, it is preferable to use an insulating resin such as an epoxy resin, a phenol resin, a polyimide resin, a silicone resin, a polyamide resin, or a liquid crystal polymer. The resin molded body 9 may be composed of two or more types of insulating resin. The sealing resin 8 may be in the form of either a solid resin or a liquid resin. As the filler, it is preferable to use inorganic particles such as silica particles, alumina particles, or metal particles. It is more preferable to use a material containing silica particles in a solid epoxy resin and a phenol resin.
As a molding method of the resin molded body, when a solid sealing material is used, it is preferable to use a resin mold such as a compression mold or a transfer mold, and it is more preferable to use a compression mold. When a liquid sealing material is used, it is preferable to use a molding method such as a dispensing method or a printing method. It is preferable to seal a laminate 30 of a capacitor element 20 consisting of an anode 3, a dielectric layer 5, and a cathode 7 with a sealing resin 8 by compression molding to form a resin molded body 9.
 図6は、本発明の電解コンデンサの別の一例を模式的に示す断面図である。
 図6に示す電解コンデンサ2では、陰極引き出し層7c及び陰極引き出し部7dを金属箔ではなく電極ペーストにより形成している。
 この場合は、電極ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって導電層上に塗布することにより、所定の領域に陰極引き出し層を形成することができる。電極ペーストとしては、Ag、Cu、又はNiを主成分とする電極ペーストが好ましい。陰極引き出し層を電極ペーストにより形成する場合、陰極引き出し層の厚さは金属箔を用いる場合よりも薄くすることが可能であり、スクリーン印刷の場合、2μm以上、20μm以下の厚さとすることも可能である。
FIG. 6 is a cross-sectional view illustrating a schematic diagram of another example of the electrolytic capacitor of the present invention.
In the electrolytic capacitor 2 shown in FIG. 6, a cathode lead layer 7c and a cathode lead portion 7d are formed from an electrode paste, not from a metal foil.
In this case, the cathode lead layer can be formed in a predetermined region by applying the electrode paste onto the conductive layer by sponge transfer, screen printing, spray application, dispenser, inkjet printing, etc. As the electrode paste, an electrode paste containing Ag, Cu, or Ni as a main component is preferable. When the cathode lead layer is formed by the electrode paste, the thickness of the cathode lead layer can be made thinner than when a metal foil is used, and in the case of screen printing, the thickness can be made 2 μm or more and 20 μm or less.
 陰極引き出し層7c及び陰極引き出し部7dを電極ペーストにより形成する場合は、陰極側に第1電極層を設けることなく、第2電極層13bを電極ペーストのスクリーン印刷により形成することができる。 When the cathode lead layer 7c and the cathode lead portion 7d are formed using electrode paste, the second electrode layer 13b can be formed by screen printing the electrode paste without providing a first electrode layer on the cathode side.
 各コンデンサ素子20の陰極引き出し層7cは、第2端面9b近傍において陰極引き出し部7dとしてまとめられて第2端面9bに露出する。
 陰極引き出し部7dも、陰極引き出し層7cと同様の電極ペーストにより形成することができる。また、陰極引き出し部7dと陰極引き出し層7cをそれぞれ構成する電極ペーストが異なる組成であってもよい。
 陰極引き出し層7c及び陰極引き出し部7dが電極ペーストにより形成されている場合、電極ペーストのスクリーン印刷で形成した第2電極層13bとの密着力が良好となる。
Cathode lead layers 7c of each capacitor element 20 are gathered together in the vicinity of second end face 9b as cathode lead portion 7d and exposed at second end face 9b.
Cathode lead portion 7d may be formed from the same electrode paste as cathode lead layer 7c, or the electrode pastes constituting cathode lead portion 7d and cathode lead layer 7c may have different compositions.
When cathode lead layer 7c and cathode lead portion 7d are formed from electrode paste, the adhesion to second electrode layer 13b formed by screen printing of the electrode paste is good.
 また、図6には明示されていないが、陽極側に絶縁マスクを備えていてもよい。その場合、絶縁マスクは誘電体層の表面に設けられていてもよい。 Although not shown in FIG. 6, an insulating mask may be provided on the anode side. In that case, the insulating mask may be provided on the surface of the dielectric layer.
 なお、図6に示された本発明の電解コンデンサの別の一例では、ディッピングによって前述の処理液又は分散液を誘電体層上に塗布することにより、所定の領域に固体電解質層が形成されるようにしてもよい。また、同様にディッピングによってカーボンペースト等の導電性ペーストを固体電解質層上に塗布することにより、導電層が形成されるようにしてもよい。 In another example of the electrolytic capacitor of the present invention shown in FIG. 6, the aforementioned treatment liquid or dispersion liquid may be applied to the dielectric layer by dipping, thereby forming a solid electrolyte layer in a predetermined area. Similarly, a conductive paste such as carbon paste may be applied to the solid electrolyte layer by dipping, thereby forming a conductive layer.
 続いて、本発明の電解コンデンサを製造する方法の一例について説明する。
 本発明の電解コンデンサを製造する場合、樹脂成形体の外表面にエアロゾルデポジション法、又はガスデポジション法などにより第1電極層を形成することが好ましい。特に、樹脂成形体の外表面にエアロゾルデポジション法により第1電極層を形成することが好ましい。
 以下、樹脂成形体の外表面である第1端面にエアロゾルデポジション法により第1電極層を形成する工程を含む電解コンデンサの製造方法について説明する。また、第1電極層を形成する工程を第1電極層形成工程と呼ぶ。
Next, an example of a method for producing the electrolytic capacitor of the present invention will be described.
When manufacturing the electrolytic capacitor of the present invention, it is preferable to form the first electrode layer on the outer surface of the resin molded body by an aerosol deposition method, a gas deposition method, etc. In particular, it is preferable to form the first electrode layer on the outer surface of the resin molded body by an aerosol deposition method.
Hereinafter, a method for manufacturing an electrolytic capacitor will be described, which includes a step of forming a first electrode layer on a first end face, which is an outer surface of a resin molded body, by an aerosol deposition method. The step of forming the first electrode layer will be referred to as a first electrode layer forming step.
 まず、弁作用金属基体が第1端面から露出する樹脂成形体を準備する。
 図7は、樹脂成形体の一例を模式的に示す断面図である。
 第1電極層形成工程では、樹脂成形体の第1端面に、大気圧未満の状態で、金属微粒子を噴射し、衝突させることにより第1電極層を形成する。
 この工程により第1電極層を形成すると、内部電極に腐食の生じやすいめっきプロセスを用いずに外部電極を形成できるので、めっき液による漏れ電流(LC)不良を抑制することができる。
First, a resin molded body is prepared in which the valve metal substrate is exposed from a first end surface.
FIG. 7 is a cross-sectional view illustrating an example of a resin molded body.
In the first electrode layer forming step, metal fine particles are sprayed onto the first end face of the resin molded body under a pressure less than atmospheric pressure, and are caused to collide with the first end face to form the first electrode layer.
By forming the first electrode layer by this process, the external electrodes can be formed without using a plating process that is prone to causing corrosion of the internal electrodes, thereby making it possible to suppress leakage current (LC) defects caused by plating solutions.
 図8は、エアロゾルデポジション法により第1電極層を形成する工程を示す模式図である。
 図8にはエアロゾルデポジション装置51を示している。エアロゾルデポジション装置51は、キャリアガス52が入ったボンベと、キャリアガス52及び金属微粒子53が導入されてエアロゾルが発生するエアロゾル発生器54と、エアロゾルが導入されるチャンバー55と、樹脂成形体9が第1端面9aを上にして固定されて並べられるステージ57を有する。
 エアロゾルデポジション法では、金属微粒子53はエアロゾル発生器54の先端に設けられたノズル56から噴射され、樹脂成形体9の第1端面9aに衝突することにより第1電極層となる。
FIG. 8 is a schematic diagram showing a process of forming a first electrode layer by an aerosol deposition method.
8 shows an aerosol deposition apparatus 51. The aerosol deposition apparatus 51 has a cylinder containing a carrier gas 52, an aerosol generator 54 into which the carrier gas 52 and metal fine particles 53 are introduced to generate an aerosol, a chamber 55 into which the aerosol is introduced, and a stage 57 on which the resin molded bodies 9 are fixed and arranged with their first end faces 9a facing up.
In the aerosol deposition method, metal particles 53 are sprayed from a nozzle 56 provided at the tip of an aerosol generator 54 and collide with the first end surface 9a of the resin molded body 9 to form the first electrode layer.
 エアロゾルデポジション法では、エアロゾル化させた金属微粒子を樹脂成形体の第1端面に衝突させる。金属微粒子に別の金属微粒子が衝突すると、金属微粒子によって金属微粒子が潰される。金属微粒子が繰り返し衝突すると、樹脂成形体の第1端面に沿った方向に粒子が延びて拡がっていく。その結果、金属微粒子の形状が扁平状粒子となる。 In the aerosol deposition method, aerosolized metal particles are collided with the first end face of the resin molded body. When a metal particle collides with another metal particle, the metal particle crushes the metal particle. When the metal particles collide repeatedly, the particles stretch and spread in the direction along the first end face of the resin molded body. As a result, the shape of the metal particle becomes flattened.
 また、エアロゾルデポジション法により第1電極層を形成すると、第1電極層の厚さを薄くすることができるとともに、樹脂成形体と第1電極層との密着力を強くすることができる。 In addition, by forming the first electrode layer by the aerosol deposition method, the thickness of the first electrode layer can be reduced and the adhesion between the resin molded body and the first electrode layer can be strengthened.
 金属微粒子としては、Cu、Ni、Cu-Ni合金からなる群から選ばれる少なくとも1種の金属微粒子を用いることが好ましく、Cuを含む金属微粒子を用いることがより好ましく、Cuの金属微粒子を用いることがさらに好ましい。 As the metal microparticles, it is preferable to use at least one type of metal microparticle selected from the group consisting of Cu, Ni, and Cu-Ni alloys, it is more preferable to use metal microparticles containing Cu, and it is even more preferable to use metal microparticles of Cu.
 金属微粒子としては、ホウ酸を含まない金属微粒子を用いる。そのため、第1電極層を形成する際に、金属微粒子間にホウ素化合物が介在することを抑制できるため、エアロゾルデポジション法で第1電極層を形成する際に金属微粒子が積み上がりやすくなり、第1電極層の成膜効率を向上することができる。 The metal particles used do not contain boric acid. This prevents boron compounds from being present between the metal particles when forming the first electrode layer, which makes it easier for the metal particles to pile up when forming the first electrode layer by the aerosol deposition method, improving the film formation efficiency of the first electrode layer.
 金属微粒子としては、有機酸を含まない金属微粒子を用いることが好ましい。この場合、第1電極層を形成する際に、金属微粒子間に有機酸に由来する化合物が介在することを抑制できるため、エアロゾルデポジション法で第1電極層を形成する際に金属微粒子が積み上がりやすくなり、第1電極層の成膜効率を向上することができる。 As the metal fine particles, it is preferable to use metal fine particles that do not contain organic acids. In this case, when forming the first electrode layer, it is possible to prevent compounds derived from organic acids from being present between the metal fine particles. This makes it easier for the metal fine particles to pile up when forming the first electrode layer by the aerosol deposition method, thereby improving the film formation efficiency of the first electrode layer.
 第1電極層形成工程は、大気圧未満の状態で行われる。チャンバー内を真空引きすることにより、チャンバー内を大気圧未満とすることができる。チャンバー内の圧力を10Pa以上1000Pa以下とすることが好ましい。チャンバー内の圧力は、ガス流量の増減により調整することができる。チャンバー内の圧力が例えば100Pa以上となるようにガス流量を増やした場合、成膜速度を早くすることができ、その結果、成膜コストを下げることができる。 The first electrode layer formation process is carried out under conditions of less than atmospheric pressure. The pressure inside the chamber can be made less than atmospheric pressure by evacuating the chamber. It is preferable to set the pressure inside the chamber to 10 Pa or more and 1000 Pa or less. The pressure inside the chamber can be adjusted by increasing or decreasing the gas flow rate. If the gas flow rate is increased so that the pressure inside the chamber is, for example, 100 Pa or more, the film formation speed can be increased, and as a result, the film formation cost can be reduced.
 第1電極層形成工程は、100℃以下で実施されることが好ましく、常温で実施されることがより好ましい。温度を高くする必要がないので、樹脂成形体に与えるダメージを少なくすることができ、常温で実施することにより装置も簡便にすることができる。
 常温とは、作業環境の温度であればよいが例えば10℃以上、30℃以下とすることができる。
 金属微粒子の粒径、ノズルの走査スピード、単位時間当たりの金属微粒子の噴射量を変化させることにより、第1電極層に含まれるアスペクト比2以上の扁平状粒子の割合を調整することができる。また、金属微粒子を噴射する時間によってアスペクト比を制御することができる。噴射する時間を延ばす、すなわち繰り返し噴射する、あるいは長時間噴射することで、アスペクト比を高くすることができる。
The first electrode layer forming step is preferably carried out at 100° C. or less, and more preferably at room temperature. Since it is not necessary to raise the temperature, damage to the resin molded body can be reduced, and by carrying out the step at room temperature, the equipment can be simplified.
The normal temperature may be the temperature of the working environment, and may be, for example, 10°C or higher and 30°C or lower.
The ratio of flat particles having an aspect ratio of 2 or more contained in the first electrode layer can be adjusted by changing the particle size of the metal microparticles, the nozzle scanning speed, and the amount of metal microparticles ejected per unit time. The aspect ratio can also be controlled by the time for which the metal microparticles are ejected. The aspect ratio can be increased by extending the ejection time, i.e., by ejecting repeatedly or for a long period of time.
 扁平状粒子を形成しやすくする観点、又は、成膜効率を向上させる観点から、金属微粒子の粒径は、D50が5μm未満であることが好ましく、D50が3μm未満であることがより好ましく、D50が2μm以下であることがさらに好ましい。また、D50が0.5μm以上であってもよい。
 金属微粒子のD50は、レーザー回折/散乱法で測定される体積分布基準のメジアン径である。
 金属微粒子のD50の測定装置として、例えばマイクロトラック・ベル株式会社製MT3300を使用することができる。
From the viewpoint of facilitating the formation of flat particles or improving the efficiency of film formation, the particle size of the metal fine particles is preferably D50 less than 5 μm, more preferably D50 less than 3 μm, and even more preferably D50 2 μm or less. Also, D50 may be 0.5 μm or more.
D50 of the metal particles is the median diameter based on volume distribution measured by a laser diffraction/scattering method.
As an apparatus for measuring D50 of metal particles, for example, MT3300 manufactured by Microtrac Bell Co., Ltd. can be used.
 第1電極層を形成した後に、第1電極層の上に、導電成分と樹脂成分を含む第2電極層を形成する第2電極層形成工程を行ってもよい。
 第2電極層形成工程では、電極ペーストのスクリーン印刷を行って、第2電極層として印刷樹脂電極層を形成することが好ましい。
 第2電極層を電極ペーストのスクリーン印刷により行うと、電極ペーストをディップで形成する場合と比べて、外部電極を平坦にすることができる。すなわち、外部電極の膜厚均一性が向上する。
After the first electrode layer is formed, a second electrode layer forming step may be performed in which a second electrode layer containing a conductive component and a resin component is formed on the first electrode layer.
In the second electrode layer forming step, it is preferable to form a printed resin electrode layer as the second electrode layer by screen printing an electrode paste.
When the second electrode layer is formed by screen printing of the electrode paste, the external electrodes can be made flatter than when the electrode paste is formed by dipping, that is, the film thickness uniformity of the external electrodes is improved.
 第2電極層を形成した後に、第2電極層の上に、めっきにより第3電極層を形成する第3電極層形成工程を行ってもよい。 After forming the second electrode layer, a third electrode layer formation process may be performed in which a third electrode layer is formed on the second electrode layer by plating.
 また、第2電極層を形成することなく、第1電極層の上に、めっきにより第3電極層を形成する第3電極層形成工程を行ってもよい。
 樹脂成形体に第1電極層を予め形成しておくと、その後にめっきによる第3電極層の形成を行ったとしてもLC不良を生じにくくすることができる。
Alternatively, a third electrode layer forming step may be performed in which a third electrode layer is formed by plating on the first electrode layer without forming the second electrode layer.
If the first electrode layer is formed in advance on the resin molded body, LC defects are less likely to occur even if the third electrode layer is subsequently formed by plating.
 樹脂成形体の第2端面に対しても、樹脂成形体の第1端面と同様に第1電極層形成工程を行って、第2端面に第1電極層を形成してもよい。
 当該工程により、図5に示すような第1電極層13aを樹脂成形体の第2端面9bに形成することができる。
 その後、第2電極層13b、第3電極層13cを樹脂成形体の第1端面側と同様に形成することができる。
 特に陰極引き出し層が金属箔である場合に、第1電極層形成工程により第1電極層を設けると金属箔と第1電極層の密着力を向上させることができるので有効である。
The second end surface of the resin molded body may also be subjected to the first electrode layer forming step in the same manner as the first end surface of the resin molded body, to form a first electrode layer on the second end surface.
By this process, a first electrode layer 13a as shown in FIG. 5 can be formed on the second end surface 9b of the resin molded body.
Thereafter, the second electrode layer 13b and the third electrode layer 13c can be formed in the same manner as on the first end surface side of the resin molded body.
In particular, when the cathode lead layer is a metal foil, providing the first electrode layer in the first electrode layer forming step is effective because it can improve the adhesive strength between the metal foil and the first electrode layer.
 以下、本発明の電解コンデンサについて、第1電極層の成膜効率を評価した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Below, examples are presented that evaluate the film formation efficiency of the first electrode layer for the electrolytic capacitor of the present invention. Note that the present invention is not limited to these examples.
(実施例1)
 図1及び図2に示す構成の積層体をエポキシ樹脂とシリカ粒子を含む封止樹脂で封止して樹脂成形体を得た。
 樹脂成形体の第1端面に対してエアロゾルデポジション法(AD法)により、所定の厚さの第1電極層を形成した。金属微粒子として、酸化防止剤を含まないCu微粒子を用いた。酸化防止剤を含まないCu微粒子は、ホウ酸や有機酸等の酸化防止剤を添加せずに、アトマイズ法によってCu微粒子を作製することで得られる。
 金属微粒子としてD50が1μmであるCu微粒子を使用した。
 樹脂成形体の第2端面に対しても第1端面と同様に第1電極層を形成した。
Example 1
The laminate having the structure shown in FIG. 1 and FIG. 2 was sealed with a sealing resin containing an epoxy resin and silica particles to obtain a resin molded body.
A first electrode layer having a predetermined thickness was formed on a first end surface of the resin molded body by an aerosol deposition method (AD method). Cu fine particles not containing an antioxidant were used as the metal fine particles. The Cu fine particles not containing an antioxidant were obtained by preparing Cu fine particles by an atomization method without adding an antioxidant such as boric acid or an organic acid.
As the metal fine particles, Cu fine particles having a D50 of 1 μm were used.
A first electrode layer was formed on a second end surface of the resin molded body in the same manner as on the first end surface.
 その後、樹脂成形体の端面(第1端面及び第2端面)にAgを含む電極ペーストをスクリーン印刷により塗布し、熱硬化することで第2電極層を形成した。さらに、第2電極層の表面に第3電極層であるNiめっき層及びSnめっき層を形成して電解コンデンサを作製した。  Then, an electrode paste containing Ag was applied by screen printing to the end faces (first end face and second end face) of the resin molded body, and the second electrode layer was formed by thermal curing. Furthermore, a third electrode layer, a Ni plating layer and a Sn plating layer, was formed on the surface of the second electrode layer to produce an electrolytic capacitor.
(実施例2)
 金属微粒子としてホウ酸を含まず、有機酸を含む金属微粒子を用いた点以外は、実施例1と同様の方法で、電解コンデンサを作製した。この際、実施例2における第1電極層の厚さが、実施例1における第1電極層の厚さと同じとなるように、AD法における塗布回数を調節した。実施例2で用いる金属微粒子は、アトマイズ法によってCu微粒子を作製する際に、ホウ酸を添加せず、有機酸としてのステアリン酸を添加することで得られる。
Example 2
An electrolytic capacitor was produced in the same manner as in Example 1, except that metal fine particles containing an organic acid, not containing boric acid, were used as the metal fine particles. At this time, the number of coatings in the AD method was adjusted so that the thickness of the first electrode layer in Example 2 was the same as that of the first electrode layer in Example 1. The metal fine particles used in Example 2 were obtained by adding stearic acid as an organic acid, without adding boric acid, when producing Cu fine particles by the atomization method.
(比較例1)
 金属微粒子として有機酸を含まず、ホウ酸を含む金属微粒子を用いた点以外は、実施例1と同様の方法で、電解コンデンサを作製した。この際、比較例1における第1電極層の厚さが、実施例1における第1電極層の厚さと同じとなるように、AD法における塗布回数を調節した。比較例1で用いる金属微粒子は、アトマイズ法によってCu微粒子を作製する際に、有機酸を添加せず、ホウ酸を添加することで得られる。
(Comparative Example 1)
An electrolytic capacitor was produced in the same manner as in Example 1, except that metal fine particles containing boric acid but not organic acid were used as the metal fine particles. At this time, the number of coatings in the AD method was adjusted so that the thickness of the first electrode layer in Comparative Example 1 was the same as that of the first electrode layer in Example 1. The metal fine particles used in Comparative Example 1 are obtained by adding boric acid without adding an organic acid when producing Cu fine particles by an atomization method.
(比較例2)
 金属微粒子としてホウ酸及び有機酸を含む金属微粒子を用いた点以外は実施例1と同様の方法で、電解コンデンサを作製した。この際、比較例2における第1電極層の厚さが、実施例1における第1電極層の厚さと同じとなるように、AD法における塗布回数を調節した。比較例2で用いる金属微粒子は、アトマイズ法によってCu微粒子を作製する際に、ホウ酸を添加し、さらに有機酸としてのステアリン酸を添加することで得られる。
(Comparative Example 2)
An electrolytic capacitor was produced in the same manner as in Example 1, except that metal fine particles containing boric acid and an organic acid were used as the metal fine particles. At this time, the number of coatings in the AD method was adjusted so that the thickness of the first electrode layer in Comparative Example 2 was the same as that of the first electrode layer in Example 1. The metal fine particles used in Comparative Example 2 were obtained by adding boric acid when producing Cu fine particles by the atomization method, and further adding stearic acid as an organic acid.
[拡散反射FT-IRスペクトル分析]
 実施例1~2及び比較例1~2の電解コンデンサにおいて、第1電極層の拡散反射FT-IRスペクトルを測定した。
[Diffuse Reflectance FT-IR Spectroscopic Analysis]
In the electrolytic capacitors of Examples 1 and 2 and Comparative Examples 1 and 2, the diffuse reflectance FT-IR spectrum of the first electrode layer was measured.
 図9は、実施例1の第1電極層の拡散反射FT-IRスペクトルを測定した結果である。
 図10は、比較例1の第1電極層の拡散反射FT-IRスペクトルを測定した結果である。
 図11は、比較例2の第1電極層の拡散反射FT-IRスペクトルを測定した結果である。
FIG. 9 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Example 1.
FIG. 10 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 1.
FIG. 11 shows the results of measuring the diffuse reflectance FT-IR spectrum of the first electrode layer of Comparative Example 2.
 図9に示す通り、実施例1では、1100cm-1付近に金属に由来するピークが確認された。一方で、ホウ酸に由来するピーク及びC-H結合に由来するピークは確認されなかった。これは、ホウ酸に由来するピーク及びC-H結合に由来するピークが検出限界以下であったともいえる。 9, in Example 1, a peak derived from a metal was observed near 1100 cm −1 . On the other hand, a peak derived from boric acid and a peak derived from a C—H bond were not observed. This can also be said to mean that the peak derived from boric acid and the peak derived from a C—H bond were below the detection limit.
 拡散反射FT-IRスペクトルの結果について、特に図示していないが、実施例2では、金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合が2.4%であった。 Although the results of the diffuse reflectance FT-IR spectrum are not shown in the figures, in Example 2, the ratio of the intensity of the highest peak among the peaks attributable to C—H bonds between 2800 cm −1 and 3000 cm −1 to the intensity of the peak attributable to the metal was 2.4%.
 図10に示す通り、比較例1では、1100cm-1付近に金属に由来するピークが確認された。また、1400cm-1付近にホウ酸に由来するピークが確認された。一方で、C-H結合に由来するピークは確認されなかった。
 図10での、金属に由来するピークの強度を両矢印Aで示した。金属に由来するピークの強度は、金属に由来するピークでの吸光度の最大値をそのまま用いた。
 図10での、ホウ酸に由来するピークを両矢印Bで示した。ホウ酸に由来するピークの強度は下記の方法で算出した。まず、ピークの立ち上がりの2点を直線で結びベースラインとした。このベースラインからの高さが最大となる地点をピークの頂点とし、このピークの頂点でのベースラインからの高さ(ピークの頂点での吸光度-ベースラインでの吸光度)を算出し、ホウ酸に由来するピークの強度とした。
10, in Comparative Example 1, a peak derived from a metal was observed near 1100 cm −1 . Also, a peak derived from boric acid was observed near 1400 cm −1 . On the other hand, no peak derived from a C—H bond was observed.
10, the intensity of the peak derived from the metal is indicated by a double-headed arrow A. The maximum absorbance value of the peak derived from the metal was used as the intensity of the peak derived from the metal.
In Fig. 10, the peak derived from boric acid is indicated by a double-headed arrow B. The intensity of the peak derived from boric acid was calculated by the following method. First, two points at the rise of the peak were connected by a straight line to form a baseline. The point at which the height from this baseline was maximum was defined as the apex of the peak, and the height from the baseline at the apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) was calculated to be the intensity of the peak derived from boric acid.
 比較例1では、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合が33%であった。 In Comparative Example 1, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal was 33%.
 図11に示す通り、比較例2では、1100cm-1付近に金属に由来するピークが確認された。また、1400cm-1付近にホウ酸に由来するピークが確認された。また、2800cm-1以上3000cm-1以下にC-H結合に由来するピークが確認された。
 図11では、金属に由来するピークの強度を両矢印Aで示した。金属に由来するピークの強度は、金属に由来するピークでの吸光度の最大値をそのまま用いた。
 図11では、ホウ酸に由来するピークの強度を両矢印Bで示した。ホウ酸に由来するピークの強度は比較例1と同様に算出した。
 図11では、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度を両矢印Cで示した。C-H結合に由来するピークの強度は下記の方法で算出した。まず、ピークの立ち上がりの2点を直線で結びベースラインとした。このベースラインからの高さが最大となる地点をピークの頂点とし、このピークの頂点でのベースラインからの高さ(ピークの頂点での吸光度-ベースラインでの吸光度)を算出し、C-H結合に由来するピークの強度とした。
11, in Comparative Example 2, a peak derived from a metal was observed near 1100 cm −1 . In addition, a peak derived from boric acid was observed near 1400 cm −1 . In addition, a peak derived from a C—H bond was observed from 2800 cm −1 to 3000 cm −1 .
11, the intensity of the peak derived from the metal is indicated by a double-headed arrow A. The maximum absorbance value of the peak derived from the metal was used as the intensity of the peak derived from the metal.
11, the intensity of the peak derived from boric acid is indicated by a double-headed arrow B. The intensity of the peak derived from boric acid was calculated in the same manner as in Comparative Example 1.
In Fig. 11, the intensity of the highest peak among the peaks derived from C-H bonds between 2800 cm -1 and 3000 cm -1 is indicated by a double-headed arrow C. The intensity of the peak derived from C-H bonds was calculated by the following method. First, two points at the rise of the peak were connected by a straight line to form a baseline. The point at which the height from this baseline was maximum was defined as the apex of the peak, and the height from the baseline at this apex of the peak (absorbance at the apex of the peak - absorbance at the baseline) was calculated to be the intensity of the peak derived from C-H bonds.
 比較例2では、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合が34%であった。
 比較例2では、金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合が2.4%であった。
In Comparative Example 2, the ratio of the intensity of the peak derived from boric acid to the intensity of the peak derived from the metal was 34%.
In Comparative Example 2, the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from C--H bonds to the intensity of the peak derived from the metal was 2.4%.
[第1電極層の成膜効率]
 実施例1~2及び比較例1~2において、所定の厚さの第1電極層を形成する際のAD法における塗布回数を計測し、塗布回数の逆数をとることによって、第1電極層の成膜効率を算出した。結果を表1に示す。なお、第1電極層の成膜効率は、比較例2での成膜効率を1としたときの相対値として示す。
[Deposition efficiency of first electrode layer]
In Examples 1 and 2 and Comparative Examples 1 and 2, the number of coatings in the AD method when forming a first electrode layer of a predetermined thickness was measured, and the film-forming efficiency of the first electrode layer was calculated by taking the reciprocal of the number of coatings. The results are shown in Table 1. The film-forming efficiency of the first electrode layer is shown as a relative value when the film-forming efficiency in Comparative Example 2 is set to 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、第1電極層がホウ酸に由来する成分を含まない実施例1~2は、比較例1~2に比べて第1電極層の成膜効率が優れていた。また、第1電極層が有機酸に由来する成分を含まない実施例1は、実施例2と比較しても、第1電極層の成膜効率がさらに優れていた。 As shown in Table 1, Examples 1 and 2, in which the first electrode layer does not contain components derived from boric acid, had a superior film-forming efficiency for the first electrode layer compared to Comparative Examples 1 and 2. Furthermore, Example 1, in which the first electrode layer does not contain components derived from organic acid, had an even superior film-forming efficiency for the first electrode layer compared to Example 2.
 本明細書には以下の事項が開示されている。 The following items are disclosed in this specification:
<1>
 コンデンサ素子を含む積層体と上記積層体の周囲を封止する封止樹脂とを備える樹脂成形体と、
 上記樹脂成形体の外表面に設けられた陽極外部電極及び陰極外部電極と、を備える電解コンデンサであって、
 上記コンデンサ素子は、
 芯部とその表面に沿って形成される多孔質部とを有し、その端部が上記樹脂成形体の上記外表面に露出している弁作用金属基体と、
 上記多孔質部上に形成された誘電体層と、
 上記誘電体層上に形成された固体電解質層と、
 上記固体電解質層上に形成された導電層と、を含み、
 上記陰極外部電極は上記導電層と電気的に接続されており、
 上記陽極外部電極は、上記弁作用金属基体の上記芯部と直接接する第1電極層を含み、
 上記第1電極層は、上記樹脂成形体の上記外表面のうち上記弁作用金属基体が露出している外表面、及び、上記弁作用金属基体の主面にそれぞれ直交し、上記第1電極層を含む断面において、長軸方向が上記外表面に沿った方向となるアスペクト比が2以上の扁平状粒子を含み、
 上記第1電極層は、金属を含み、
 上記第1電極層の拡散反射法によるフーリエ変換赤外分光スペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合が5%以下であることを特徴とする電解コンデンサ。
<1>
a resin molded body including a laminate including a capacitor element and a sealing resin that seals the periphery of the laminate;
an electrolytic capacitor comprising an anode external electrode and a cathode external electrode provided on an outer surface of the resin molded body,
The capacitor element is
a valve metal base having a core and a porous portion formed along the surface of the core, the end of which is exposed on the outer surface of the resin molded body;
a dielectric layer formed on the porous portion;
a solid electrolyte layer formed on the dielectric layer;
a conductive layer formed on the solid electrolyte layer,
the cathode external electrode is electrically connected to the conductive layer,
the anode external electrode includes a first electrode layer in direct contact with the core portion of the valve metal substrate,
the first electrode layer includes flat particles having an aspect ratio of 2 or more, the major axis of which is oriented along the outer surface in a cross section including the first electrode layer and perpendicular to the outer surface of the resin molded body where the valve metal base is exposed and to a main surface of the valve metal base,
the first electrode layer includes a metal;
An electrolytic capacitor characterized in that in a Fourier transform infrared spectrum measured by a diffuse reflectance method of the first electrode layer, the ratio of the intensity of the peak attributable to boric acid to the intensity of the peak attributable to a metal is 5% or less.
<2>
 上記ホウ酸に由来するピークが検出限界以下である、<1>に記載の電解コンデンサ。
<2>
The electrolytic capacitor according to <1>, wherein the peak derived from the boric acid is below the detection limit.
<3>
 上記第1電極層の拡散反射法によるフーリエ変換赤外分光スペクトルにおける、上記金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合が0.5%以下である、<1>又は<2>に記載の電解コンデンサ。
<3>
The electrolytic capacitor according to <1> or <2>, wherein in a Fourier transform infrared spectroscopy spectrum obtained by a diffuse reflectance method of the first electrode layer, a ratio of an intensity of the highest peak among peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from a C-H bond to an intensity of a peak derived from the metal is 0.5% or less.
<4>
 上記C-H結合に由来する2800cm-1以上3000cm-1以下のピークは、有機酸に由来するピークである、<3>に記載の電解コンデンサ。
<4>
The electrolytic capacitor according to <3>, wherein the peak at 2800 cm −1 or more and 3000 cm −1 or less derived from the C—H bond is a peak derived from an organic acid.
<5>
 上記C-H結合に由来する2800cm-1以上3000cm-1以下のピークが検出限界以下である、<3>又は<4>に記載の電解コンデンサ。
<5>
The electrolytic capacitor according to <3> or <4>, wherein a peak at 2800 cm −1 or more and 3000 cm −1 or less derived from the C—H bond is below a detection limit.
<6>
 上記第1電極層は、Cuを含む、<1>~<5>のいずれか1つに記載の電解コンデンサ。
<6>
The electrolytic capacitor according to any one of <1> to <5>, wherein the first electrode layer contains Cu.
1、2 電解コンデンサ
3 陽極
4 弁作用金属基体
4a 芯部
4b 多孔質部
5 誘電体層
7 陰極
7a 固体電解質層
7b 導電層
7c 陰極引き出し層
7d 陰極引き出し部
8 封止樹脂
9 樹脂成形体
9a 樹脂成形体の第1端面(樹脂成形体の外表面)
9b 樹脂成形体の第2端面(樹脂成形体の外表面)
9c 樹脂成形体の底面(樹脂成形体の外表面)
9d 樹脂成形体の上面(樹脂成形体の外表面)
9e 樹脂成形体の第1側面(樹脂成形体の外表面)
9f 樹脂成形体の第2側面(樹脂成形体の外表面)
11 陽極外部電極
11a、13a 第1電極層
11b、13b 第2電極層
11c、13c 第3電極層
13 陰極外部電極
15 扁平状粒子
16 扁平状粒子ではない粒子
20 コンデンサ素子
30 積層体
51 エアロゾルデポジション装置
52 キャリアガス
53 金属微粒子
54 エアロゾル発生器
55 チャンバー
56 ノズル
57 ステージ
Reference Signs List 1, 2 Electrolytic capacitor 3 Anode 4 Valve metal base 4a Core portion 4b Porous portion 5 Dielectric layer 7 Cathode 7a Solid electrolyte layer 7b Conductive layer 7c Cathode lead layer 7d Cathode lead portion 8 Sealing resin 9 Resin molded body 9a First end surface of resin molded body (outer surface of resin molded body)
9b: second end surface of resin molded body (outer surface of resin molded body)
9c Bottom surface of resin molded body (outer surface of resin molded body)
9d Upper surface of resin molded body (outer surface of resin molded body)
9e: First side surface of resin molded body (outer surface of resin molded body)
9f: second side surface of resin molded body (outer surface of resin molded body)
11 Anode external electrode 11a, 13a First electrode layer 11b, 13b Second electrode layer 11c, 13c Third electrode layer 13 Cathode external electrode 15 Flat particle 16 Particle other than flat particle 20 Capacitor element 30 Laminate 51 Aerosol deposition device 52 Carrier gas 53 Metal fine particles 54 Aerosol generator 55 Chamber 56 Nozzle 57 Stage

Claims (6)

  1.  コンデンサ素子を含む積層体と前記積層体の周囲を封止する封止樹脂とを備える樹脂成形体と、
     前記樹脂成形体の外表面に設けられた陽極外部電極及び陰極外部電極と、を備える電解コンデンサであって、
     前記コンデンサ素子は、
     芯部とその表面に沿って形成される多孔質部とを有し、その端部が前記樹脂成形体の前記外表面に露出している弁作用金属基体と、
     前記多孔質部上に形成された誘電体層と、
     前記誘電体層上に形成された固体電解質層と、
     前記固体電解質層上に形成された導電層と、を含み、
     前記陰極外部電極は前記導電層と電気的に接続されており、
     前記陽極外部電極は、前記弁作用金属基体の前記芯部と直接接する第1電極層を含み、
     前記第1電極層は、前記樹脂成形体の前記外表面のうち前記弁作用金属基体が露出している外表面、及び、前記弁作用金属基体の主面にそれぞれ直交し、前記第1電極層を含む断面において、長軸方向が前記外表面に沿った方向となるアスペクト比が2以上の扁平状粒子を含み、
     前記第1電極層は、金属を含み、
     前記第1電極層の拡散反射法によるフーリエ変換赤外分光スペクトルにおける、金属に由来するピークの強度に対する、ホウ酸に由来するピークの強度の割合が5%以下であることを特徴とする電解コンデンサ。
    a resin molded body including a laminate including a capacitor element and a sealing resin that seals the periphery of the laminate;
    an electrolytic capacitor comprising an anode external electrode and a cathode external electrode provided on an outer surface of the resin molded body,
    The capacitor element is
    a valve metal base having a core and a porous portion formed along the surface of the core, the end of which is exposed on the outer surface of the resin molded body;
    a dielectric layer formed on the porous portion;
    a solid electrolyte layer formed on the dielectric layer;
    a conductive layer formed on the solid electrolyte layer,
    the cathode external electrode is electrically connected to the conductive layer,
    the anode external electrode includes a first electrode layer in direct contact with the core portion of the valve metal substrate,
    the first electrode layer includes flat particles having an aspect ratio of 2 or more, the major axis of which is oriented along the outer surface of the resin molded body, in a cross section perpendicular to the outer surface where the valve metal base is exposed and perpendicular to a main surface of the valve metal base and including the first electrode layer;
    the first electrode layer includes a metal;
    An electrolytic capacitor, characterized in that in a Fourier transform infrared spectrum measured by a diffuse reflectance method of the first electrode layer, the ratio of the intensity of a peak derived from boric acid to the intensity of a peak derived from a metal is 5% or less.
  2.  前記ホウ酸に由来するピークが検出限界以下である、請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, in which the peak derived from the boric acid is below the detection limit.
  3.  前記第1電極層の拡散反射法によるフーリエ変換赤外分光スペクトルにおける、前記金属に由来するピークの強度に対する、C-H結合に由来する2800cm-1以上3000cm-1以下のピークのうち最も強度の高いピークの強度の割合が0.5%以下である、請求項1又は2に記載の電解コンデンサ。 3. The electrolytic capacitor according to claim 1, wherein the ratio of the intensity of the highest peak among the peaks at 2800 cm -1 or more and 3000 cm -1 or less derived from a C-H bond to the intensity of the peak derived from the metal in a Fourier transform infrared spectrum measured by a diffuse reflectance method of the first electrode layer is 0.5% or less.
  4.  前記C-H結合に由来する2800cm-1以上3000cm-1以下のピークは、有機酸に由来するピークである、請求項3に記載の電解コンデンサ。 4. The electrolytic capacitor according to claim 3, wherein the peak at 2800 cm −1 or more and 3000 cm −1 or less derived from the C—H bond is a peak derived from an organic acid.
  5.  前記C-H結合に由来する2800cm-1以上3000cm-1以下のピークが検出限界以下である、請求項3又は4に記載の電解コンデンサ。 5. The electrolytic capacitor according to claim 3, wherein a peak at 2800 cm −1 or more and 3000 cm −1 or less derived from the C—H bond is below a detection limit.
  6.  前記第1電極層は、Cuを含む、請求項1~5のいずれか1項に記載の電解コンデンサ。

     
    The electrolytic capacitor according to claim 1 , wherein the first electrode layer contains Cu.

PCT/JP2023/039188 2022-11-11 2023-10-31 Electrolytic capacitor WO2024101214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-181090 2022-11-11
JP2022181090 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101214A1 true WO2024101214A1 (en) 2024-05-16

Family

ID=91032302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039188 WO2024101214A1 (en) 2022-11-11 2023-10-31 Electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2024101214A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168768A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Method for manufacturing electronic component
WO2022168770A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Electrolytic capacitor
WO2022168769A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Electrolytic capacitor and method for manufacturing electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168768A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Method for manufacturing electronic component
WO2022168770A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Electrolytic capacitor
WO2022168769A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Electrolytic capacitor and method for manufacturing electrolytic capacitor

Similar Documents

Publication Publication Date Title
WO2022168769A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
US20230368979A1 (en) Electrolytic capacitor
WO2010058534A1 (en) Electrode body for capacitor, capacitor, method for producing electrode body for capacitor, and method for manufacturing capacitor
US20230368978A1 (en) Method for manufacturing electronic component
US11881360B2 (en) Electrolytic capacitor
US8574319B2 (en) Solid electrolytic capacitor and method of manufacturing the same
WO2024101214A1 (en) Electrolytic capacitor
US20230119320A1 (en) Electronic component and method for manufacturing electronic component
US20220344102A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
WO2018088574A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and method for producing solid electrolytic capacitor element
JP7427014B2 (en) Electrolytic capacitor
WO2021066091A1 (en) Electrolytic capacitor, and method for manufacturing electrolytic capacitor
WO2021125045A1 (en) Solid electrolytic capacitor
WO2012066853A1 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
WO2023153436A1 (en) Electrolyte capacitor element
CN113228211B (en) Electrolytic capacitor and method for manufacturing the same
WO2023090141A1 (en) Electrolytic capacitor element
JP7375710B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2023098301A (en) Electronic component and manufacturing method of electronic component