WO2024101174A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2024101174A1
WO2024101174A1 PCT/JP2023/038769 JP2023038769W WO2024101174A1 WO 2024101174 A1 WO2024101174 A1 WO 2024101174A1 JP 2023038769 W JP2023038769 W JP 2023038769W WO 2024101174 A1 WO2024101174 A1 WO 2024101174A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
dummy
layer
substrate
wiring
Prior art date
Application number
PCT/JP2023/038769
Other languages
French (fr)
Japanese (ja)
Inventor
弘招 松原
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024101174A1 publication Critical patent/WO2024101174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates

Definitions

  • This disclosure relates to a semiconductor device.
  • Patent Document 1 discloses an example of a semiconductor device having a multi-layered substrate.
  • multiple semiconductor elements are mounted on the substrate.
  • a wiring pattern is provided on one side of the substrate.
  • a back electrode is provided on the other side of the substrate.
  • An intermediate layer that provides electrical conductivity between the wiring pattern and the back electrode is provided inside the substrate.
  • Each of the multiple semiconductor elements is electrically connected to the wiring pattern by wire bonding.
  • the back electrode when viewed in the thickness direction of the substrate, the back electrode is located away from the periphery of the substrate. Therefore, when the semiconductor device is mounted on a wiring substrate, the volume of solder adhering to the back electrode is relatively small. This poses the problem that the bonding strength of the semiconductor device to the wiring substrate is insufficient.
  • One of the objectives of this disclosure is to provide a semiconductor device that is an improvement over conventional semiconductor devices.
  • one of the objectives of this disclosure is to provide a semiconductor device that can improve the bonding strength of the device to the wiring board.
  • a semiconductor device includes a substrate having a main surface and a back surface facing opposite each other in a first direction, a wiring layer disposed on the main surface, a terminal disposed on the back surface, a redistribution layer housed in the substrate and connected to the wiring layer and the terminal, and a semiconductor element conducting to the wiring layer.
  • the substrate has an end surface facing a direction perpendicular to the first direction, and further includes a dummy wiring, at least a portion of which is housed in the substrate. The dummy wiring is connected to the terminal and is exposed from the end surface.
  • the above configuration makes it possible to improve the bonding strength of the semiconductor device to the wiring board.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a bottom view of the semiconductor device shown in FIG.
  • FIG. 3 is a right side view of the semiconductor device shown in FIG.
  • FIG. 4 is a front view of the semiconductor device shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a partially enlarged plan view of the semiconductor device shown in FIG. 1, with the sealing resin not shown.
  • FIG. 9 is a partially enlarged view of FIG. 4 and corresponds to FIG. FIG.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 is a partially enlarged plan view of the semiconductor device according to the second embodiment of the present disclosure, with the sealing resin not shown.
  • FIG. 13 is a partially enlarged front view of the semiconductor device shown in FIG. 12 and corresponds to FIG.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a plan view of a semiconductor device according to a third embodiment of the present disclosure.
  • 16 is a bottom view of the semiconductor device shown in FIG.
  • FIG. 17 is a cross-sectional view taken along line XVII-XVII in FIG.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
  • FIG. 19 is a partially enlarged view of FIG. 20A to 20C are cross-sectional views for explaining the manufacturing process of the semiconductor device shown in FIG. 21A to 21C are cross-sectional views for explaining the manufacturing process of the semiconductor device shown in FIG. 22A to 22C are cross-sectional views illustrating a manufacturing process of the semiconductor device shown in FIG. 23A to 23C are cross-sectional views illustrating a manufacturing process of the semiconductor device shown in FIG.
  • the semiconductor device A10 includes a base material 10, a wiring layer 21, a plurality of terminals 22, a rewiring layer 23, a plurality of dummy wirings 30, a semiconductor element 41, a plurality of passive elements 42, a sealing resin 50, an insulating layer 61, and a plurality of heat dissipation layers 62.
  • the semiconductor device A10 is in a resin package format that is surface-mounted on a wiring board.
  • the resin package format is a QFN (quad flat non-leaded package) in which a plurality of leads do not protrude from the sealing resin 50.
  • FIG. 8 omits the sealing resin 50 for ease of understanding.
  • the semiconductor device A10 for convenience, an example of the normal direction of the main surface 11 of the substrate 10 described below is referred to as the "first direction z.” An example of a direction perpendicular to the first direction z is referred to as the "second direction x.” An example of a direction perpendicular to the first direction z and the second direction x is referred to as the "third direction y.” As shown in FIG. 1, the semiconductor device A10 is rectangular when viewed in the first direction z.
  • the substrate 10 supports the wiring layer 21 and the sealing resin 50.
  • the substrate 10 has electrical insulation properties.
  • An example of the material of the substrate 10 is black epoxy resin.
  • the substrate 10 has a main surface 11, a back surface 12, and multiple end surfaces 13.
  • the main surface 11 and the back surface 12 face opposite each other in the first direction z.
  • the main surface 11 faces the wiring layer 21.
  • the back surface 12 faces the wiring board.
  • the multiple end surfaces 13 face in a direction perpendicular to the first direction z.
  • Each of the multiple end surfaces 13 is connected to the main surface 11 and the back surface 12.
  • the multiple end surfaces 13 include two first end surfaces 131 facing the second direction x and two second end surfaces 132 facing the third direction y.
  • the substrate 10 has a first substrate 101, a second substrate 102, and a third substrate 103.
  • the first substrate 101 includes a back surface 12.
  • the second substrate 102 includes a main surface 11. When viewed in the first direction z, the second substrate 102 overlaps the first substrate 101.
  • the third substrate 103 is located between the first substrate 101 and the second substrate 102 in the first direction z.
  • the third substrate 103 is in contact with each of the first substrate 101 and the second substrate 102.
  • the third substrate 103 is stacked on the first substrate 101.
  • the second substrate 102 is stacked on the third substrate 103.
  • the substrate 10 has a multi-layer structure made up of the first substrate 101, the second substrate 102, and the third substrate 103.
  • Each of the first substrate 101, the second substrate 102, and the third substrate 103 includes a plurality of end surfaces 13.
  • the wiring layer 21 is disposed on the main surface 11 of the substrate 10, as shown in Figs. 5 to 7.
  • the wiring layer 21 contains, for example, copper (Cu).
  • the wiring layer 21 is separated from the periphery 111 of the main surface 11 of the substrate 10.
  • the multiple terminals 22 are arranged on the rear surface 12 of the substrate 10 as shown in FIG. 2 and FIG. 5 to FIG. 7. When viewed in the first direction z, each of the multiple terminals 22 overlaps the peripheral edge 121 of the rear surface 12.
  • the multiple terminals 22 include, for example, copper.
  • the multiple terminals 22 include multiple first terminals 221 and four second terminals 222.
  • the multiple first terminals 221 include multiple first terminals 221 arranged along the second direction x and multiple first terminals 221 arranged along the third direction y.
  • Each of the multiple first terminals 221 is rectangular.
  • the four second terminals 222 are individually arranged at the four corners of the rear surface 12 of the substrate 10.
  • Each of the four second terminals 222 is square. When viewed in the first direction z, the dimensions of each of the four second terminals 222 in the second direction x and the third direction y are smaller than the dimensions of each of the multiple first terminals 221 in the long side direction.
  • the redistribution layer 23 is housed in the substrate 10, as shown in Figs. 5 to 7.
  • the redistribution layer 23 is connected to the wiring layer 21.
  • the redistribution layer 23 is connected to at least some of the first terminals 221 of the terminals 22.
  • at least some of the first terminals 221 are electrically connected to the wiring layer 21.
  • the redistribution layer 23 may be connected to each of the four second terminals 222 of the terminals 22.
  • the redistribution layer 23 contains, for example, copper.
  • the redistribution layer 23 has a plurality of vias 231.
  • Each of the plurality of vias 231 is connected to at least one of the wiring layer 21 and each of the plurality of first terminals 221.
  • Each of the plurality of vias 231 is spaced apart from the plurality of end faces 13 of the substrate 10.
  • the plurality of vias 231 include a plurality of first vias 231A and a plurality of second vias 231B.
  • the plurality of first vias 231A are accommodated in the first substrate 101.
  • Each of the plurality of first vias 231A is connected to one of the plurality of first terminals 221 among the plurality of terminals 22.
  • the plurality of second vias 231B are accommodated in the second substrate 102.
  • Each of the plurality of second vias 231B is connected to the wiring layer 21.
  • the redistribution layer 23 has an intermediate layer 232.
  • the intermediate layer 232 is connected to each of the multiple first vias 231A and each of the multiple second vias 231B.
  • the intermediate layer 232 has a first intermediate wiring 232A, a second intermediate wiring 232B, and multiple intermediate vias 232C.
  • the first intermediate wiring 232A is sandwiched between the third substrate 103 and the first substrate 101, and is connected to each of the multiple first vias 231A.
  • the second intermediate wiring 232B is sandwiched between the third substrate 103 and the second substrate 102, and is connected to each of the multiple second vias 231B.
  • the multiple intermediate vias 232C are housed in the third substrate 103.
  • Each of the multiple intermediate vias 232C is connected to the first intermediate wiring 232A and the second intermediate wiring 232B.
  • the semiconductor element 41 is electrically connected to the wiring layer 21.
  • the semiconductor element 41 is an LSI (Large Scale Integration).
  • the semiconductor element 41 has a plurality of electrodes 411 facing the wiring layer 21.
  • Each of the plurality of electrodes 411 is conductively joined to the wiring layer 21 via a bonding layer 49.
  • the bonding layer 49 is, for example, solder.
  • the bonding layer 49 may be a sintered metal containing silver (Ag) or the like.
  • Each of the multiple passive elements 42 is electrically connected to the wiring layer 21. As shown in FIG. 1, the multiple passive elements 42 are located on one side of the semiconductor element 41 in the second direction x. The multiple passive elements 42 are arranged along the third direction y. Each of the multiple passive elements 42 is a resistor, a capacitor, or an inductor. Each of the multiple passive elements 42 has two electrodes 421 that are spaced apart from each other in a direction perpendicular to the first direction z. Each of the two electrodes 421 is electrically conductively connected to the wiring layer 21 via a bonding layer 49.
  • the sealing resin 50 covers the wiring layer 21, the semiconductor element 41, and the multiple passive elements 42.
  • the sealing resin 50 is in contact with the main surface 11 of the substrate 10.
  • the sealing resin 50 has a top surface 51 and multiple side surfaces 52.
  • the top surface 51 faces the same side as the main surface 11 of the substrate 10 in the first direction z.
  • Each of the multiple side surfaces 52 faces in a direction perpendicular to the first direction z and is connected to the top surface 51.
  • Each of the multiple side surfaces 52 is flush with each of the multiple end surfaces 13 of the substrate 10.
  • the sealing resin 50 has electrical insulation properties.
  • One example of a material for the sealing resin 50 is a black epoxy resin.
  • each of the multiple dummy wirings 30 is housed in the substrate 10. As shown in Figures 3 to 6, the multiple dummy wirings 30 are individually connected to multiple terminals 22. Each of the multiple dummy wirings 30 is exposed from one of the multiple end faces 13 of the substrate 10.
  • the multiple dummy wirings 30 include, for example, copper.
  • each of the multiple dummy wirings 30 has a first dummy via portion 31, a top portion 34, and multiple relay portions 35.
  • the first dummy via portion 31 is housed in the substrate 10 and is connected to one of the multiple terminals 22.
  • the first dummy via portion 31 is exposed from one of the multiple end faces 13 of the substrate 10.
  • the first dummy via portion 31 is separated from the multiple vias 231 of the redistribution layer 23.
  • the minimum dimension of the first dummy via portion 31 is greater than the dimension of each of the multiple vias 231 when viewed in the first direction z.
  • the first dummy via portion 31 has a first portion 311, a second portion 312, and a third portion 313.
  • the first portion 311 is housed in the first substrate 101 and is connected to one of the multiple terminals 22.
  • the second portion 312 is housed in the second substrate 102.
  • the third portion 313 is housed in the third substrate 103.
  • the first portion 311, the second portion 312, and the third portion 313 are separated from each other in the first direction z. When viewed in the first direction z, the second portion 312 overlaps each of the first portion 311 and the third portion 313.
  • the top 34 is disposed on the main surface 11 of the substrate 10.
  • the top 34 is connected to the second portion 312 of the first dummy via portion 31.
  • the top 34 overlaps the periphery 111 of the main surface 11 and the entire first dummy via portion 31.
  • the top 34 is spaced apart from the wiring layer 21.
  • a portion of the top 34 is covered by the sealing resin 50.
  • the top 34 is exposed from one of the multiple side surfaces 52 of the sealing resin 50.
  • the multiple relay parts 35 are located between the first substrate 101 and the second substrate 102.
  • the multiple relay parts 35 are housed in the substrate 10.
  • Each of the multiple relay parts 35 is exposed from one of the multiple end faces 13 of the substrate 10.
  • the apex 34 overlaps each of the multiple relay parts 35.
  • Each of the multiple relay parts 35 includes a portion that overlaps the first dummy via part 31 when viewed in the first direction z, and a portion that protrudes further than the first dummy via part 31 in a direction perpendicular to the first direction z.
  • the multiple relay portions 35 include a first relay portion 351 and a second relay portion 352.
  • the first relay portion 351 is sandwiched between the third substrate 103 and the first substrate 101, and is connected to the third portion 313 and the first portion 311 of the first dummy via portion 31.
  • the second relay portion 352 is sandwiched between the third substrate 103 and the second substrate 102, and is connected to the third portion 313 and the second portion 312 of the first dummy via portion 31.
  • the top portion 34 is electrically connected to one of the multiple terminals 22 via the first dummy via portion 31 and the multiple relay portions 35.
  • the dummy wiring 30 connected to four of the second terminals 222 among the multiple terminals 22 is exposed from either of the two first end faces 131 and either of the two second end faces 132.
  • the dummy wiring 30 may have a configuration that does not include multiple relay portions 35, but instead includes an integrated first dummy via portion 31 that reaches the top portion 34 from one of the multiple terminals 22.
  • the insulating layer 61 covers the rear surface 12 of the substrate 10. When viewed in the first direction z, the insulating layer 61 overlaps the peripheral edge 121 of the rear surface 12. Each of the multiple terminals 22 is exposed from the insulating layer 61.
  • the insulating layer 61 is, for example, a solder resist.
  • the dimension of the insulating layer 61 in the first direction z is smaller than the dimension of each of the first substrate 101, the second substrate 102, and the third substrate 103 in the first direction z.
  • the multiple heat dissipation layers 62 are disposed on the rear surface 12 of the substrate 10, as shown in FIG. 2 and FIG. 5 to FIG. 7.
  • the multiple heat dissipation layers 62 are surrounded by multiple terminals 22.
  • Each of the multiple heat dissipation layers 62 is exposed from the insulating layer 61.
  • the semiconductor element 41 overlaps each of the multiple heat dissipation layers 62.
  • the multiple heat dissipation layers 62 contain, for example, copper.
  • Each of the multiple heat dissipation layers 62 is separated from the redistribution layer 23.
  • the semiconductor device A10 includes a substrate 10, a wiring layer 21 disposed on the main surface 11 of the substrate 10, a terminal 22 disposed on the rear surface 12 of the substrate 10, a rewiring layer 23 housed in the substrate 10, and a semiconductor element 41 that is conductive to the wiring layer 21.
  • the rewiring layer 23 is connected to the wiring layer 21 and the terminal 22.
  • the semiconductor device A10 further includes a dummy wiring 30 at least a part of which is housed in the substrate 10.
  • the dummy wiring 30 is connected to the terminal 22 and is exposed from the end surface 13 of the substrate 10.
  • solder fillet is exposed to the outside of both the semiconductor device A10 and the wiring board.
  • the mounting state of the semiconductor device A10 on the wiring board can be easily confirmed by visual inspection of the appearance.
  • the redistribution layer 23 has a via 231 connected to at least one of the wiring layer 21 and the terminal 22.
  • the dummy wiring 30 has a first dummy via portion 31 connected to the terminal 22.
  • the via 231 is spaced apart from the end face 13 of the substrate 10.
  • the first dummy via portion 31 is exposed from the end face 13 and is spaced apart from the via 231.
  • the dummy wiring 30 is disposed on the main surface 11 of the substrate 10 and has a top 34 that is connected to the first dummy via portion 31.
  • the top 34 overlaps the periphery 111 of the main surface 11.
  • the top 34 can be used as a conductive path when the dummy wiring 30 is formed by electrolytic plating.
  • the surface of the top 34 that faces a direction perpendicular to the first direction z can be exposed from the end surface 13 of the substrate 10 together with the first dummy via portion 31. This allows the volume of the solder fillet in contact with the dummy wiring 30 to be further increased.
  • the top 34 When viewed in the first direction z, the top 34 overlaps the entire first dummy via portion 31. This configuration makes it possible to prevent damage to the first dummy via portion 31 when the dummy wiring 30 is formed by electrolytic plating.
  • the minimum dimension of the first dummy via portion 31 is larger than the dimension of the via 231 of the redistribution layer 23 when viewed in the first direction z. This configuration is effective when it is possible to form a first dummy via portion 31 that is larger than the via 231.
  • the wiring layer 21 When viewed in the first direction z, the wiring layer 21 is spaced apart from the main surface 11 of the substrate 10. This configuration can prevent the wiring layer 21 from coming into contact with a dicing blade or the like when the semiconductor device A10 is diced into individual pieces during the manufacturing process of the semiconductor device A10. This prevents metal burrs from being generated on the wiring layer 21, thereby preventing short circuits between the wiring layer 21 and the dummy wiring 30 caused by the metal burrs.
  • the top 34 is separated from the wiring layer 21. This configuration makes it possible to prevent a short circuit between the wiring layer 21 and the dummy wiring 30.
  • the semiconductor device A10 further includes an insulating layer 61 that covers the rear surface 12 of the substrate 10.
  • the terminals 22 are exposed from the insulating layer 61. This configuration makes it possible to prevent short circuits in the conductive paths of the semiconductor device A10 caused by solder when the semiconductor device A10 is mounted on a wiring board.
  • the semiconductor device A10 further includes a heat dissipation layer 62 disposed on the rear surface 12 of the substrate 10.
  • the heat dissipation layer 62 is exposed from the insulating layer 61.
  • the semiconductor element 41 overlaps the heat dissipation layer 62. With this configuration, heat generated from the semiconductor element 41 can be efficiently dissipated to the outside via the substrate 10 and the heat dissipation layer 62.
  • the semiconductor device A10 includes a plurality of terminals 22.
  • the plurality of terminals 22 include a plurality of first terminals 221 that are electrically connected to the wiring layer 21, and four second terminals 222 that are arranged at the four corners of the rear surface 12 of the substrate 10. Dummy wiring 30 is connected to each of the four second terminals 222. Unlike the plurality of first terminals 221, the four second terminals 222 are not electrically connected to the wiring layer 21. With this configuration, when thermal stress occurs at the interface between the wiring board and the plurality of terminals 22, the thermal stress can be concentrated on the four second terminals 222. This reduces the thermal stress that occurs at the interface between the wiring board and the plurality of first terminals 221, and thus suppresses the occurrence of cracks in the solder at the interface.
  • FIG. 12 A semiconductor device A20 according to a second embodiment of the present disclosure will be described with reference to Figures 12 to 14.
  • elements that are the same as or similar to those of the semiconductor device A10 described above are given the same reference numerals, and duplicated descriptions will be omitted.
  • Figure 12 omits the illustration of the sealing resin 50.
  • Figure 13 corresponds to Figure 9 showing the semiconductor device A10.
  • semiconductor device A20 the configuration of the multiple dummy wirings 30 differs from that of semiconductor device A10.
  • the dummy wiring 30 connected to one of the first terminals 221 among the terminals 22 will be described.
  • the dummy wiring 30 has a first dummy via portion 31, a second dummy via portion 32, a third dummy via portion 33, a top portion 34, and a number of relay portions 35.
  • the configuration of the top portion 34 and each of the multiple relay portions 35 is the same as that of the semiconductor device A10.
  • the second dummy via portion 32 is located next to the first dummy via portion 31 in either the second direction x or the third direction y.
  • the second dummy via portion 32 is housed in the substrate 10 and is connected to one of the multiple first terminals 221 and the top 34.
  • the second dummy via portion 32 is exposed from one of the multiple end faces 13 of the substrate 10.
  • the second dummy via portion 32 is separated from the multiple vias 231 of the redistribution layer 23 and the first dummy via portion 31.
  • the top 34 overlaps the entire second dummy via portion 32.
  • the second dummy via portion 32 has a fourth portion 321, a fifth portion 322, and a sixth portion 323.
  • the fourth portion 321 is housed in the first substrate 101 and is connected to one of the plurality of first terminals 221 and the first relay portion 351.
  • the fifth portion 322 is housed in the second substrate 102 and is connected to the top portion 34 and the second relay portion 352.
  • the sixth portion 323 is housed in the third substrate 103 and is connected to the first relay portion 351 and the second relay portion 352.
  • the fourth portion 321, the fifth portion 322, and the sixth portion 323 are separated from each other in the first direction z. When viewed in the first direction z, the fifth portion 322 overlaps with each of the fourth portion 321 and the sixth portion 323.
  • the third dummy via portion 33 is located on the opposite side to the first dummy via portion 31 with respect to the second dummy via portion 32.
  • the third dummy via portion 33 is housed in the substrate 10 and is connected to one of the multiple first terminals 221 and the top portion 34.
  • the third dummy via portion 33 is exposed from one of the multiple end faces 13 of the substrate 10.
  • the third dummy via portion 33 is separated from the multiple vias 231 of the redistribution layer 23 and from the first dummy via portion 31 and the second dummy via portion 32.
  • the top portion 34 overlaps the entire third dummy via portion 33.
  • the third dummy via portion 33 has a seventh portion 331, an eighth portion 332, and a ninth portion 333.
  • the seventh portion 331 is housed in the first substrate 101 and is connected to one of the plurality of first terminals 221 and the first relay portion 351.
  • the eighth portion 332 is housed in the second substrate 102 and is connected to the top portion 34 and the second relay portion 352.
  • the ninth portion 333 is housed in the third substrate 103 and is connected to the first relay portion 351 and the second relay portion 352.
  • the seventh portion 331, the eighth portion 332, and the ninth portion 333 are separated from each other in the first direction z. When viewed in the first direction z, the eighth portion 332 overlaps with each of the seventh portion 331 and the ninth portion 333.
  • the maximum dimension of each of the first dummy via portion 31, the second dummy via portion 32, and the third dummy via portion 33 is approximately equal to the maximum dimension of each of the multiple vias 231 in the redistribution layer 23.
  • each of the multiple relay sections 35 is connected to a first dummy via section 31, a second dummy via section 32, and a third dummy via section 33.
  • the dummy wiring 30 connected to one of the four second terminals 222 out of the multiple terminals 22 will be described.
  • the dummy wiring 30 has a first dummy via portion 31, two second dummy via portions 32, two third dummy via portions 33, a top portion 34, and multiple relay portions 35. Except for the arrangement of the first dummy via portion 31, the two second dummy via portions 32, and the two third dummy via portions 33, the configuration of the dummy wiring 30 connected to one of the multiple first terminals 221 described above is the same.
  • one of the two second dummy via portions 32 is located next to the first dummy via portion 31 in the second direction x.
  • the other second dummy via portion 32 is located next to the first dummy via portion 31 in the third direction y.
  • One of the two third dummy via portions 33 is located on the opposite side to the first dummy via portion 31 with respect to the one second dummy via portion 32 mentioned above.
  • the other third dummy via portion 33 is located on the opposite side to the first dummy via portion 31 with respect to the other second dummy via portion 32 mentioned above.
  • the two second dummy via portions 32 are individually exposed from one of the two first end faces 131 and one of the two second end faces 132.
  • the two third dummy via portions 33 are individually exposed from one of the two first end faces 131 and one of the two second end faces 132.
  • the semiconductor device A20 includes a substrate 10, a wiring layer 21 disposed on the main surface 11 of the substrate 10, a terminal 22 disposed on the rear surface 12 of the substrate 10, a rewiring layer 23 housed in the substrate 10, and a semiconductor element 41 that is conductive to the wiring layer 21.
  • the rewiring layer 23 is connected to the wiring layer 21 and the terminal 22.
  • the semiconductor device A20 further includes a dummy wiring 30 at least a part of which is housed in the substrate 10.
  • the dummy wiring 30 is connected to the terminal 22 and is exposed from the end surface 13 of the substrate 10. Therefore, according to this configuration, the semiconductor device A20 can also improve the bonding strength of the semiconductor device A20 to the wiring board.
  • the semiconductor device A20 has a configuration common to the semiconductor device A10, and thereby achieves the same effects as the semiconductor device A10.
  • the first dummy via portion 31 has a second dummy via portion 32 that is connected to the terminal 22 and the top portion 34.
  • the second dummy via portion 32 is exposed from the end face 13 of the substrate 10, and is separated from both the via 231 of the redistribution layer 23 and the first dummy via portion 31.
  • This configuration is effective when there is a constraint that the maximum dimension of the first dummy via portion 31 must be approximately equal to the maximum dimension of the via 231 when viewed in the first direction z. This makes it possible to prevent the area of the dummy wiring 30 exposed from the end face 13 from being excessively reduced.
  • the first dummy via portion 31 has a relay portion 35 located between the first substrate 101 and the second substrate 102.
  • the relay portion 35 is exposed from the end face 13 of the substrate 10 and is connected to the first dummy via portion 31 and the second dummy via portion 32.
  • the apex 34 overlaps the entire first dummy via portion 31 and the entire second dummy via portion 32. This configuration makes it possible to prevent damage to the first dummy via portion 31 and the second dummy via portion 32 when the dummy wiring 30 is formed by electrolytic plating.
  • a semiconductor device A30 according to a third embodiment of the present disclosure will be described with reference to Fig. 15 to Fig. 19.
  • elements that are the same as or similar to those of the semiconductor device A10 described above are given the same reference numerals, and duplicated descriptions will be omitted.
  • the semiconductor device A30 differs from the semiconductor device A10 in the configuration of the sealing resin 50 and in the additional inclusion of multiple coating layers 70.
  • each of the multiple side surfaces 52 of the sealing resin 50 includes a first region 521 and a second region 522.
  • the first region 521 is connected to the top surface 51 and faces a direction perpendicular to the first direction z.
  • the second region 522 is located on the opposite side of the top surface 51 in the first direction z with the first region 521 as a reference, and is connected to the first region 521. When viewed in the first direction z, the first region 521 overlaps the top surface 51.
  • the multiple coating layers 70 are exposed to the outside, as shown in Figures 16 to 18. Any of the multiple coating layers 70 covers any of the multiple terminals 22 and an area of the dummy wiring 30 connected thereto that is exposed from any of the multiple end faces 13 of the substrate 10. Additionally, any of the multiple coating layers 70 covers the top 34 of any of the multiple dummy wirings 30 that is exposed from any of the multiple side faces 52 of the sealing resin 50. Furthermore, some of the multiple coating layers 70 individually cover the multiple heat dissipation layers 62.
  • the multiple coating layers 70 are conductors containing gold (Au).
  • the multiple coating layers 70 are conductively bonded to the wiring board via solder, thereby mounting the semiconductor device A10 on the wiring board.
  • Each of the multiple coating layers 70 includes multiple metal layers.
  • the multiple metal layers are stacked in the order of a nickel (Ni) layer and a gold layer, starting from the side closer to one of the multiple terminals 22 or the multiple heat dissipation layers 62.
  • the multiple metal layers may be stacked in the order of a nickel layer, a palladium (Pd) layer and a gold layer, starting from the side closer to one of the multiple terminals 22 or the multiple heat dissipation layers 62.
  • the sealing resin 50 is formed and an insulating layer 61 is placed on the back surface 12 of the substrate 10, and then a support member 80 is attached to the top surface 51 of the sealing resin 50.
  • the support member 80 is, for example, a dicing tape.
  • a first blade 81 having a width b1 is used to remove a portion of each of the base material 10, the sealing resin 50, and the insulating layer 61, a portion of each of the multiple terminals 22, and a portion of each of the multiple dummy wirings 30, thereby forming a plurality of grooves 83 recessed in the first direction z.
  • the multiple grooves 83 are formed in a lattice pattern along each of the second direction x and the third direction y.
  • multiple coating layers 70 are formed to individually cover the multiple terminals 22 and each area of the multiple heat dissipation layers 62 exposed to the outside from the insulating layer 61, and the multiple dummy wirings 30 exposed to the outside from the substrate 10 and the sealing resin 50.
  • the multiple coating layers 70 are formed by electroless plating.
  • the sealing resin 50 is cut using a second blade 82 having a width b2.
  • the width b2 is smaller than the width b1 of the first blade 81.
  • the second blade 82 is passed through each of the multiple grooves 83, and then moved in the first direction z until the second blade 82 contacts the support member 80.
  • the semiconductor device A30 is obtained.
  • the semiconductor device A30 includes a substrate 10, a wiring layer 21 disposed on the main surface 11 of the substrate 10, a terminal 22 disposed on the rear surface 12 of the substrate 10, a rewiring layer 23 housed in the substrate 10, and a semiconductor element 41 that is conductive to the wiring layer 21.
  • the rewiring layer 23 is connected to the wiring layer 21 and the terminal 22.
  • the semiconductor device A30 further includes dummy wiring 30, at least a portion of which is housed in the substrate 10.
  • the dummy wiring 30 is connected to the terminal 22 and is exposed from the end surface 13 of the substrate 10. Therefore, according to this configuration, the semiconductor device A30 can also improve the bonding strength of the semiconductor device A30 to the wiring board.
  • the semiconductor device A30 has a configuration common to the semiconductor device A10, and thereby achieves the same effects as the semiconductor device A10.
  • the semiconductor device A30 further includes a coating layer 70 that covers the terminals 22 and the areas of the dummy wiring 30 exposed from the end surface 13 of the substrate 10.
  • the coating layer 70 is a conductor that contains gold.
  • the configuration of the multiple dummy wirings 30 can be changed from that of the semiconductor device A10 to that of the semiconductor device A20.
  • Appendix 1 A substrate having a main surface and a back surface facing in opposite directions in a first direction; A wiring layer disposed on the main surface; A terminal disposed on the back surface; a rewiring layer that is accommodated in the base material and is connected to the wiring layer and the terminal; a semiconductor element electrically connected to the wiring layer;
  • the base material has an end surface facing a direction perpendicular to the first direction, At least a portion of the dummy wiring is accommodated in the base material, The dummy wiring is connected to the terminal and exposed from the end surface.
  • the semiconductor element has an electrode facing the wiring layer, 2. The semiconductor device according to claim 1, wherein the electrode is conductively connected to the wiring layer.
  • the redistribution layer has a via connected to at least one of the wiring layer and the terminal; the dummy wiring has a first dummy via portion connected to the terminal, the via is spaced from the end face; 3.
  • the first dummy via portion is exposed from the end face and is spaced apart from the via.
  • the dummy wiring is disposed on the main surface and has a top portion connected to the first dummy via portion, 4.
  • Appendix 5. 5 The semiconductor device according to claim 4, wherein, when viewed in the first direction, the top portion overlaps the entire first dummy via portion.
  • Appendix 6 The semiconductor device according to claim 5, wherein a minimum dimension of the first dummy via portion is greater than a dimension of the via when viewed in the first direction.
  • Appendix 7. the dummy wiring has a second dummy via portion connected to the terminal and the top portion, 6.
  • Appendix 8. 8.
  • the base material includes a first base material including the back surface and a second base material overlapping the first base material when viewed in the first direction and including the main surface;
  • the dummy wiring has a relay portion located between the first base material and the second base material, 9.
  • the relay portion is exposed from the end face and is connected to the first dummy via portion and the second dummy via portion.
  • the vias include a first via that is accommodated in the first base material and connected to the terminal, and a second via that is accommodated in the second base material and connected to the wiring layer;
  • the redistribution layer has an intermediate layer located between the first substrate and the second substrate; 10.
  • Appendix 11 The semiconductor device according to claim 4, wherein the wiring layer is spaced apart from a periphery of the main surface when viewed in the first direction.
  • Appendix 12. The semiconductor device of claim 11, wherein the top is spaced from the wiring layer.
  • Appendix 13. a sealing resin for covering the wiring layer and the semiconductor element, 13. The semiconductor device according to claim 12, wherein the top portion is exposed from the sealing resin.
  • Appendix 14. a covering layer that covers the terminals and the areas of the dummy wiring exposed from the end faces, The semiconductor device described in Appendix 13, wherein the coating layer is a conductor containing gold.
  • Appendix 15. Further comprising an insulating layer covering the back surface, 15. The semiconductor device according to claim 14, wherein the terminal is exposed from the insulating layer.
  • Appendix 16 a passive element conductively connected to the wiring layer; 16. The semiconductor device according to claim 15, wherein the passive element is covered with the sealing resin. Appendix 17. Further comprising a heat dissipation layer disposed on the back surface, the heat dissipation layer is exposed from the insulating layer, 17. The semiconductor device according to claim 16, wherein, when viewed in the first direction, the semiconductor element overlaps the heat dissipation layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

This semiconductor device comprises: a substrate having a principal surface and a back surface that face opposite directions from one another in a first direction; a wiring layer disposed on the principal surface; terminals disposed on the back surface; a redistribution layer accommodated in the substrate and connected to the wiring layer and the terminals; and a semiconductor element that is electrically connected to the wiring layer. The substrate has end surfaces that each face a direction orthogonal to the first direction. The semiconductor device additionally comprises dummy wiring that is at least partially accommodated in the substrate. The dummy wiring connects to the terminals and is exposed on the end surfaces.

Description

半導体装置Semiconductor Device
 本開示は、半導体装置に関する。 This disclosure relates to a semiconductor device.
 特許文献1には、多層構成の基板を具備する半導体装置の一例が開示されている。当該半導体装置においては、基板に複数の半導体素子が搭載されている。基板の一方側には、配線パターンが設けられている。基板の他方側には、裏面電極が設けられている。基板の内部には、配線パターンと裏面電極とを導通する中間層が設けられている。複数の半導体素子の各々は、ワイヤボンディングにより配線パターンに導通している。 Patent Document 1 discloses an example of a semiconductor device having a multi-layered substrate. In this semiconductor device, multiple semiconductor elements are mounted on the substrate. A wiring pattern is provided on one side of the substrate. A back electrode is provided on the other side of the substrate. An intermediate layer that provides electrical conductivity between the wiring pattern and the back electrode is provided inside the substrate. Each of the multiple semiconductor elements is electrically connected to the wiring pattern by wire bonding.
 特許文献1に開示されている半導体装置においては、基板の厚さ方向に視て、裏面電極は、基板の周縁から離れて位置する。したがって、当該半導体装置を配線基板に実装する際、裏面電極に付着するハンダの体積が比較的小さいものとなる。したがって、配線基板に対する当該半導体装置の接合強度が十分に得られないという課題がある。 In the semiconductor device disclosed in Patent Document 1, when viewed in the thickness direction of the substrate, the back electrode is located away from the periphery of the substrate. Therefore, when the semiconductor device is mounted on a wiring substrate, the volume of solder adhering to the back electrode is relatively small. This poses the problem that the bonding strength of the semiconductor device to the wiring substrate is insufficient.
特開2015-53465号公報JP 2015-53465 A
 本開示は、従来より改良が施された半導体装置を提供することを一の課題とする。特に本開示は、上記事情に鑑み、配線基板に対する装置の接合強度を向上させることが可能な半導体装置を提供することをその一の課題とする。 One of the objectives of this disclosure is to provide a semiconductor device that is an improvement over conventional semiconductor devices. In particular, in view of the above circumstances, one of the objectives of this disclosure is to provide a semiconductor device that can improve the bonding strength of the device to the wiring board.
 本開示の一の側面によって提供される半導体装置は、第1方向において互いに反対側を向く主面および裏面を有する基材と、前記主面に配置された配線層と、前記裏面に配置された端子と、前記基材に収容されるとともに、前記配線層および前記端子につながる再配線層と、前記配線層に導通する半導体素子と、を備える。前記基材は、前記第1方向に対して直交する方向を向く端面を有し、少なくとも一部が前記基材に収容されたダミー配線をさらに備える。前記ダミー配線は、前記端子につながっており、かつ前記端面から露出している。 A semiconductor device provided by one aspect of the present disclosure includes a substrate having a main surface and a back surface facing opposite each other in a first direction, a wiring layer disposed on the main surface, a terminal disposed on the back surface, a redistribution layer housed in the substrate and connected to the wiring layer and the terminal, and a semiconductor element conducting to the wiring layer. The substrate has an end surface facing a direction perpendicular to the first direction, and further includes a dummy wiring, at least a portion of which is housed in the substrate. The dummy wiring is connected to the terminal and is exposed from the end surface.
 上記構成によれば、配線基板に対する当該半導体装置の接合強度を向上させることが可能となる。 The above configuration makes it possible to improve the bonding strength of the semiconductor device to the wiring board.
 本開示のその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.
図1は、本開示の第1実施形態にかかる半導体装置の平面図である。FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present disclosure. 図2は、図1に示す半導体装置の底面図である。FIG. 2 is a bottom view of the semiconductor device shown in FIG. 図3は、図1に示す半導体装置の右側面図である。FIG. 3 is a right side view of the semiconductor device shown in FIG. 図4は、図1に示す半導体装置の正面図である。FIG. 4 is a front view of the semiconductor device shown in FIG. 図5は、図2のV-V線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 図6は、図2のVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、図2のVII-VII線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、図1に示す半導体装置の部分拡大平面図であり、封止樹脂の図示を省略している。FIG. 8 is a partially enlarged plan view of the semiconductor device shown in FIG. 1, with the sealing resin not shown. 図9は、図4の部分拡大図であり、図8に対応している。FIG. 9 is a partially enlarged view of FIG. 4 and corresponds to FIG. 図10は、図8のX-X線に沿う断面図である。FIG. 10 is a cross-sectional view taken along line XX in FIG. 図11は、図8のXI-XI線に沿う断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、本開示の第2実施形態にかかる半導体装置の部分拡大平面図であり、封止樹脂の図示を省略している。FIG. 12 is a partially enlarged plan view of the semiconductor device according to the second embodiment of the present disclosure, with the sealing resin not shown. 図13は、図12に示す半導体装置の部分拡大正面図であり、図12に対応している。FIG. 13 is a partially enlarged front view of the semiconductor device shown in FIG. 12 and corresponds to FIG. 図14は、図12のXIV-XIV線に沿う断面図である。FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 図15は、本開示の第3実施形態にかかる半導体装置の平面図である。FIG. 15 is a plan view of a semiconductor device according to a third embodiment of the present disclosure. 図16は、図15に示す半導体装置の底面図である。16 is a bottom view of the semiconductor device shown in FIG. 図17は、図16のXVII-XVII線に沿う断面図である。FIG. 17 is a cross-sectional view taken along line XVII-XVII in FIG. 図18は、図16のXVIII-XVIII線に沿う断面図である。FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG. 図19は、図17の部分拡大図である。FIG. 19 is a partially enlarged view of FIG. 図20は、図15に示す半導体装置の製造工程を説明する断面図である。20A to 20C are cross-sectional views for explaining the manufacturing process of the semiconductor device shown in FIG. 図21は、図15に示す半導体装置の製造工程を説明する断面図である。21A to 21C are cross-sectional views for explaining the manufacturing process of the semiconductor device shown in FIG. 図22は、図15に示す半導体装置の製造工程を説明する断面図である。22A to 22C are cross-sectional views illustrating a manufacturing process of the semiconductor device shown in FIG. 図23は、図15に示す半導体装置の製造工程を説明する断面図である。23A to 23C are cross-sectional views illustrating a manufacturing process of the semiconductor device shown in FIG.
 本開示を実施するための形態について、添付図面に基づいて説明する。 The form for implementing this disclosure will be explained with reference to the attached drawings.
 第1実施形態:
 図1~図11に基づき、本開示の第1実施形態にかかる半導体装置A10について説明する。半導体装置A10は、基材10、配線層21、複数の端子22、再配線層23、複数のダミー配線30、半導体素子41、複数の受動素子42、封止樹脂50、絶縁層61、および複数の放熱層62を備える。半導体装置A10は、配線基板に表面実装される樹脂パッケージ形式によるものである。当該樹脂パッケージ形式は、封止樹脂50から複数のリードが突出しないQFN(quad flat non-leaded package)である。ここで、図8は、理解の便宜上、封止樹脂50の図示を省略している。
First embodiment:
A semiconductor device A10 according to a first embodiment of the present disclosure will be described with reference to Figures 1 to 11. The semiconductor device A10 includes a base material 10, a wiring layer 21, a plurality of terminals 22, a rewiring layer 23, a plurality of dummy wirings 30, a semiconductor element 41, a plurality of passive elements 42, a sealing resin 50, an insulating layer 61, and a plurality of heat dissipation layers 62. The semiconductor device A10 is in a resin package format that is surface-mounted on a wiring board. The resin package format is a QFN (quad flat non-leaded package) in which a plurality of leads do not protrude from the sealing resin 50. Here, FIG. 8 omits the sealing resin 50 for ease of understanding.
 半導体装置A10の説明においては、便宜上、例えば後述する基材10の主面11の法線方向の一例を「第1方向z」と呼ぶ。第1方向zに対して直交する方向の一例を「第2方向x」と呼ぶ。第1方向zおよび第2方向xに対して直交する方向の一例を「第3方向y」と呼ぶ。図1に示すように、半導体装置A10は、第1方向zに視て矩形状である。 In describing the semiconductor device A10, for convenience, an example of the normal direction of the main surface 11 of the substrate 10 described below is referred to as the "first direction z." An example of a direction perpendicular to the first direction z is referred to as the "second direction x." An example of a direction perpendicular to the first direction z and the second direction x is referred to as the "third direction y." As shown in FIG. 1, the semiconductor device A10 is rectangular when viewed in the first direction z.
 基材10は、図5~図7に示すように、配線層21および封止樹脂50を支持している。基材10は、電気絶縁性を有する。基材10の材料の一例として、黒色のエポキシ樹脂が挙げられる。基材10は、主面11、裏面12、および複数の端面13を有する。主面11および裏面12は、第1方向zにおいて互いに反対側を向く。主面11は、配線層21に対向している。半導体装置A10を配線基板に実装した際、裏面12は、当該配線基板に対向する。複数の端面13は、第1方向zに対して直交する方向を向く。複数の端面13はの各々は、主面11および裏面12につながっている。複数の端面13は、第2方向xを向く2つの第1端面131と、第3方向yを向く2つの第2端面132とを含む。 As shown in Figures 5 to 7, the substrate 10 supports the wiring layer 21 and the sealing resin 50. The substrate 10 has electrical insulation properties. An example of the material of the substrate 10 is black epoxy resin. The substrate 10 has a main surface 11, a back surface 12, and multiple end surfaces 13. The main surface 11 and the back surface 12 face opposite each other in the first direction z. The main surface 11 faces the wiring layer 21. When the semiconductor device A10 is mounted on a wiring board, the back surface 12 faces the wiring board. The multiple end surfaces 13 face in a direction perpendicular to the first direction z. Each of the multiple end surfaces 13 is connected to the main surface 11 and the back surface 12. The multiple end surfaces 13 include two first end surfaces 131 facing the second direction x and two second end surfaces 132 facing the third direction y.
 図3~図7に示すように、基材10は、第1基材101、第2基材102および第3基材103を有する。第1基材101は、裏面12を含む。第2基材102は、主面11を含む。第1方向zに視て、第2基材102は、第1基材101に重なっている。第3基材103は、第1方向zにおいて第1基材101と第2基材102との間に位置する。第3基材103は、第1基材101および第2基材102の各々に接している。第3基材103は、第1基材101に積層されている。第2基材102は、第3基材103に積層されている。これにより、半導体装置A10においては、基材10は、第1基材101、第2基材102および第3基材103による多層構成とされている。第1基材101、第2基材102および第3基材103の各々は、複数の端面13を含む。 3 to 7, the substrate 10 has a first substrate 101, a second substrate 102, and a third substrate 103. The first substrate 101 includes a back surface 12. The second substrate 102 includes a main surface 11. When viewed in the first direction z, the second substrate 102 overlaps the first substrate 101. The third substrate 103 is located between the first substrate 101 and the second substrate 102 in the first direction z. The third substrate 103 is in contact with each of the first substrate 101 and the second substrate 102. The third substrate 103 is stacked on the first substrate 101. The second substrate 102 is stacked on the third substrate 103. As a result, in the semiconductor device A10, the substrate 10 has a multi-layer structure made up of the first substrate 101, the second substrate 102, and the third substrate 103. Each of the first substrate 101, the second substrate 102, and the third substrate 103 includes a plurality of end surfaces 13.
 配線層21は、図5~図7に示すように、基材10の主面11に配置されている。配線層21は、複数の端子22、および再配線層23とともに、半導体素子41、および複数の受動素子42と、半導体装置A10が実装される配線基板との導電経路を構成している。配線層21は、たとえば銅(Cu)を含む。 The wiring layer 21 is disposed on the main surface 11 of the substrate 10, as shown in Figs. 5 to 7. The wiring layer 21, together with the multiple terminals 22 and the rewiring layer 23, constitutes a conductive path between the semiconductor element 41 and the multiple passive elements 42 and the wiring board on which the semiconductor device A10 is mounted. The wiring layer 21 contains, for example, copper (Cu).
 図5~図7に示すように、第1方向zに視て、配線層21は、基材10の主面11の周縁111から離れている。 As shown in Figures 5 to 7, when viewed in the first direction z, the wiring layer 21 is separated from the periphery 111 of the main surface 11 of the substrate 10.
 複数の端子22は、図2、および図5~図7に示すように、基材10の裏面12に配置されている。第1方向zに視て、複数の端子22の各々は、裏面12の周縁121に重なっている。複数の端子22は、たとえば銅を含む。 The multiple terminals 22 are arranged on the rear surface 12 of the substrate 10 as shown in FIG. 2 and FIG. 5 to FIG. 7. When viewed in the first direction z, each of the multiple terminals 22 overlaps the peripheral edge 121 of the rear surface 12. The multiple terminals 22 include, for example, copper.
 図2に示すように、複数の端子22は、複数の第1端子221と、4つの第2端子222とを含む。複数の第1端子221は、第2方向xに沿って配列された複数の第1端子221と、第3方向yに沿って配列された複数の第1端子221とを含む。複数の第1端子221の各々は、長方形状である。4つの第2端子222は、基材10の裏面12の四隅に個別に配置されている。4つの第2端子222の各々は、正方形状である。第1方向zに視て、4つの第2端子222の各々において、第2端子222の第2方向xおよび第3方向yの各々の寸法は、複数の第1端子221の各々の長辺方向の寸法よりも小さい。 As shown in FIG. 2, the multiple terminals 22 include multiple first terminals 221 and four second terminals 222. The multiple first terminals 221 include multiple first terminals 221 arranged along the second direction x and multiple first terminals 221 arranged along the third direction y. Each of the multiple first terminals 221 is rectangular. The four second terminals 222 are individually arranged at the four corners of the rear surface 12 of the substrate 10. Each of the four second terminals 222 is square. When viewed in the first direction z, the dimensions of each of the four second terminals 222 in the second direction x and the third direction y are smaller than the dimensions of each of the multiple first terminals 221 in the long side direction.
 再配線層23は、図5~図7に示すように、基材10に収容されている。再配線層23は、配線層21につながっている。さらに再配線層23は、複数の端子22のうち複数の第1端子221の少なくともいくつかにつながっている。これにより、複数の第1端子221の少なくともいくつかは、配線層21に導通している。この他、再配線層23は、複数の端子22のうち4つの第2端子222の各々につながっている場合でもよい。再配線層23は、たとえば銅を含む。 The redistribution layer 23 is housed in the substrate 10, as shown in Figs. 5 to 7. The redistribution layer 23 is connected to the wiring layer 21. Furthermore, the redistribution layer 23 is connected to at least some of the first terminals 221 of the terminals 22. As a result, at least some of the first terminals 221 are electrically connected to the wiring layer 21. Alternatively, the redistribution layer 23 may be connected to each of the four second terminals 222 of the terminals 22. The redistribution layer 23 contains, for example, copper.
 図5~図7に示すように、再配線層23は、複数のビア231を有する。複数のビア231の各々は、配線層21と、複数の第1端子221の各々との少なくともいずれかにつながっている。複数のビア231の各々は、基材10の複数の端面13から離れている。複数のビア231は、複数の第1ビア231A、および複数の第2ビア231Bを含む。複数の第1ビア231Aは、第1基材101に収容されている。複数の第1ビア231Aの各々は、複数の端子22のうち複数の第1端子221のいずれかにつながっている。複数の第2ビア231Bは、第2基材102に収容されている。複数の第2ビア231Bの各々は、配線層21につながっている。 As shown in Figures 5 to 7, the redistribution layer 23 has a plurality of vias 231. Each of the plurality of vias 231 is connected to at least one of the wiring layer 21 and each of the plurality of first terminals 221. Each of the plurality of vias 231 is spaced apart from the plurality of end faces 13 of the substrate 10. The plurality of vias 231 include a plurality of first vias 231A and a plurality of second vias 231B. The plurality of first vias 231A are accommodated in the first substrate 101. Each of the plurality of first vias 231A is connected to one of the plurality of first terminals 221 among the plurality of terminals 22. The plurality of second vias 231B are accommodated in the second substrate 102. Each of the plurality of second vias 231B is connected to the wiring layer 21.
 図5~図7に示すように、再配線層23は、中間層232を有する。中間層232は、複数の第1ビア231Aの各々と、複数の第2ビア231Bの各々とにつながっている。中間層232は、第1中間配線232A、第2中間配線232B、および複数の中間ビア232Cを有する。第1中間配線232Aは、第3基材103と第1基材101との間に挟まれており、かつ複数の第1ビア231Aの各々につながっている。第2中間配線232Bは、第3基材103と第2基材102との間に挟まれており、かつ複数の第2ビア231Bの各々につながっている。複数の中間ビア232Cは、第3基材103に収容されている。複数の中間ビア232Cの各々は、第1中間配線232Aおよび第2中間配線232Bにつながっている。 As shown in Figures 5 to 7, the redistribution layer 23 has an intermediate layer 232. The intermediate layer 232 is connected to each of the multiple first vias 231A and each of the multiple second vias 231B. The intermediate layer 232 has a first intermediate wiring 232A, a second intermediate wiring 232B, and multiple intermediate vias 232C. The first intermediate wiring 232A is sandwiched between the third substrate 103 and the first substrate 101, and is connected to each of the multiple first vias 231A. The second intermediate wiring 232B is sandwiched between the third substrate 103 and the second substrate 102, and is connected to each of the multiple second vias 231B. The multiple intermediate vias 232C are housed in the third substrate 103. Each of the multiple intermediate vias 232C is connected to the first intermediate wiring 232A and the second intermediate wiring 232B.
 半導体素子41は、配線層21に導通している。半導体装置A10においては、半導体素子41は、LSI(Large Scale Integration)である。図5および図6に示すように、半導体素子41は、配線層21に対向する複数の電極411を有する。複数の電極411の各々は、接合層49を介して配線層21に導電接合されている。接合層49は、たとえばハンダである。この他、接合層49は、銀(Ag)などを含む焼結金属でもよい。 The semiconductor element 41 is electrically connected to the wiring layer 21. In the semiconductor device A10, the semiconductor element 41 is an LSI (Large Scale Integration). As shown in Figures 5 and 6, the semiconductor element 41 has a plurality of electrodes 411 facing the wiring layer 21. Each of the plurality of electrodes 411 is conductively joined to the wiring layer 21 via a bonding layer 49. The bonding layer 49 is, for example, solder. Alternatively, the bonding layer 49 may be a sintered metal containing silver (Ag) or the like.
 複数の受動素子42の各々は、配線層21に導通している。図1に示すように、複数の受動素子42は、半導体素子41の第2方向xの一方側に位置する。複数の受動素子42は、第3方向yに沿って配列されている。複数の受動素子42の各々は、抵抗器、コンデンサおよびインダクタのいずれかである。複数の受動素子42の各々は、第1方向zに対して直交する方向において互いに離れた2つの電極421を有する。2つの電極421の各々は、接合層49を介して配線層21に導電接合されている。 Each of the multiple passive elements 42 is electrically connected to the wiring layer 21. As shown in FIG. 1, the multiple passive elements 42 are located on one side of the semiconductor element 41 in the second direction x. The multiple passive elements 42 are arranged along the third direction y. Each of the multiple passive elements 42 is a resistor, a capacitor, or an inductor. Each of the multiple passive elements 42 has two electrodes 421 that are spaced apart from each other in a direction perpendicular to the first direction z. Each of the two electrodes 421 is electrically conductively connected to the wiring layer 21 via a bonding layer 49.
 封止樹脂50は、図5~図7に示すように、配線層21、半導体素子41、および複数の受動素子42を覆っている。封止樹脂50は、基材10の主面11に接している。 As shown in Figures 5 to 7, the sealing resin 50 covers the wiring layer 21, the semiconductor element 41, and the multiple passive elements 42. The sealing resin 50 is in contact with the main surface 11 of the substrate 10.
 図3~図7に示すように、封止樹脂50は、頂面51、および複数の側面52を有する。頂面51は、第1方向zにおいて基材10の主面11と同じ側を向く。複数の側面52の各々は、第1方向zに対して直交する方向を向き、かつ頂面51につながっている。複数の側面52の各々は、基材10の複数の端面13の各々と面一である。封止樹脂50は、電気絶縁性を有する。封止樹脂50の材料の一例として、黒色のエポキシ樹脂が挙げられる。 As shown in Figures 3 to 7, the sealing resin 50 has a top surface 51 and multiple side surfaces 52. The top surface 51 faces the same side as the main surface 11 of the substrate 10 in the first direction z. Each of the multiple side surfaces 52 faces in a direction perpendicular to the first direction z and is connected to the top surface 51. Each of the multiple side surfaces 52 is flush with each of the multiple end surfaces 13 of the substrate 10. The sealing resin 50 has electrical insulation properties. One example of a material for the sealing resin 50 is a black epoxy resin.
 複数のダミー配線30の各々は、図5および図6に示すように、少なくとも一部が基材10に収容されている。図3~図6に示すように、複数のダミー配線30は、複数の端子22に個別につながっている。複数のダミー配線30の各々は、基材10の複数の端面13のいずれかから露出している。複数のダミー配線30は、たとえば銅を含む。 As shown in Figures 5 and 6, at least a portion of each of the multiple dummy wirings 30 is housed in the substrate 10. As shown in Figures 3 to 6, the multiple dummy wirings 30 are individually connected to multiple terminals 22. Each of the multiple dummy wirings 30 is exposed from one of the multiple end faces 13 of the substrate 10. The multiple dummy wirings 30 include, for example, copper.
 図9~図11に示すように、複数のダミー配線30の各々は、第1ダミービア部31、頂部34、および複数の中継部35を有する。第1ダミービア部31は、基材10に収容されており、かつ複数の端子22のいずれかにつながっている。第1ダミービア部31は、基材10の複数の端面13のいずれかから露出している。第1ダミービア部31は、再配線層23の複数のビア231から離れている。半導体装置A10においては、第1方向zに視て、第1ダミービア部31の最小寸法は、複数のビア231の各々の寸法よりも大きい。 As shown in Figures 9 to 11, each of the multiple dummy wirings 30 has a first dummy via portion 31, a top portion 34, and multiple relay portions 35. The first dummy via portion 31 is housed in the substrate 10 and is connected to one of the multiple terminals 22. The first dummy via portion 31 is exposed from one of the multiple end faces 13 of the substrate 10. The first dummy via portion 31 is separated from the multiple vias 231 of the redistribution layer 23. In the semiconductor device A10, the minimum dimension of the first dummy via portion 31 is greater than the dimension of each of the multiple vias 231 when viewed in the first direction z.
 図9~図11に示すように、第1ダミービア部31は、第1部311、第2部312および第3部313を有する。第1部311は、第1基材101に収容されており、かつ複数の端子22のいずれかにつながっている。第2部312は、第2基材102に収容されている。第3部313は、第3基材103に収容されている。第1部311、第2部312および第3部313は、第1方向zにおいて互いに離れている。第1方向zに視て、第2部312は、第1部311および第3部313の各々に重なっている。 As shown in Figures 9 to 11, the first dummy via portion 31 has a first portion 311, a second portion 312, and a third portion 313. The first portion 311 is housed in the first substrate 101 and is connected to one of the multiple terminals 22. The second portion 312 is housed in the second substrate 102. The third portion 313 is housed in the third substrate 103. The first portion 311, the second portion 312, and the third portion 313 are separated from each other in the first direction z. When viewed in the first direction z, the second portion 312 overlaps each of the first portion 311 and the third portion 313.
 図8、図10および図11に示すように、頂部34は、基材10の主面11に配置されている。頂部34は、第1ダミービア部31の第2部312につながっている。第1方向zに視て、頂部34は、主面11の周縁111と、第1ダミービア部31の全体とに重なっている。頂部34は、配線層21から離れている。頂部34の一部は、封止樹脂50に覆われている。頂部34は、封止樹脂50の複数の側面52のいずれかから露出している。 As shown in Figures 8, 10 and 11, the top 34 is disposed on the main surface 11 of the substrate 10. The top 34 is connected to the second portion 312 of the first dummy via portion 31. When viewed in the first direction z, the top 34 overlaps the periphery 111 of the main surface 11 and the entire first dummy via portion 31. The top 34 is spaced apart from the wiring layer 21. A portion of the top 34 is covered by the sealing resin 50. The top 34 is exposed from one of the multiple side surfaces 52 of the sealing resin 50.
 図9~図11に示すように、複数の中継部35は、第1基材101と第2基材102との間に位置する。複数の中継部35は、基材10に収容されている。複数の中継部35の各々は、基材10の複数の端面13のいずれかから露出している。第1方向zに視て、頂部34は、複数の中継部35の各々に重なっている。複数の中継部35の各々は、第1方向zに視て第1ダミービア部31に重なる部分と、第1ダミービア部31よりも第1方向zに対して直交する方向に張り出した部分とを含む。 As shown in Figures 9 to 11, the multiple relay parts 35 are located between the first substrate 101 and the second substrate 102. The multiple relay parts 35 are housed in the substrate 10. Each of the multiple relay parts 35 is exposed from one of the multiple end faces 13 of the substrate 10. When viewed in the first direction z, the apex 34 overlaps each of the multiple relay parts 35. Each of the multiple relay parts 35 includes a portion that overlaps the first dummy via part 31 when viewed in the first direction z, and a portion that protrudes further than the first dummy via part 31 in a direction perpendicular to the first direction z.
 図9~図11に示すように、複数の中継部35は、第1中継部351および第2中継部352を含む。第1中継部351は、第3基材103と第1基材101との間に挟まれており、かつ第1ダミービア部31の第3部313および第1部311につながっている。第2中継部352は、第3基材103と第2基材102との間に挟まれており、かつ第1ダミービア部31の第3部313および第2部312につながっている。これにより、頂部34は、第1ダミービア部31、および複数の中継部35を介して複数の端子22のいずれかに導通している。 As shown in Figures 9 to 11, the multiple relay portions 35 include a first relay portion 351 and a second relay portion 352. The first relay portion 351 is sandwiched between the third substrate 103 and the first substrate 101, and is connected to the third portion 313 and the first portion 311 of the first dummy via portion 31. The second relay portion 352 is sandwiched between the third substrate 103 and the second substrate 102, and is connected to the third portion 313 and the second portion 312 of the first dummy via portion 31. As a result, the top portion 34 is electrically connected to one of the multiple terminals 22 via the first dummy via portion 31 and the multiple relay portions 35.
 図8に示すように、複数の端子22のうち4つの第2端子222につながるダミー配線30は、2つの第1端面131のいずれかと、2つの第2端面132のいずれかとの各々から露出している。 As shown in FIG. 8, the dummy wiring 30 connected to four of the second terminals 222 among the multiple terminals 22 is exposed from either of the two first end faces 131 and either of the two second end faces 132.
 ダミー配線30は、先述した構成の他、複数の中継部35を具備せず、かつ複数の端子22のいずれかから頂部34に到達する一体の第1ダミービア部31を具備する構成でもよい。 In addition to the configuration described above, the dummy wiring 30 may have a configuration that does not include multiple relay portions 35, but instead includes an integrated first dummy via portion 31 that reaches the top portion 34 from one of the multiple terminals 22.
 絶縁層61は、図2、および図5~図7に示すように、基材10の裏面12を覆っている。第1方向zに視て、絶縁層61は、裏面12の周縁121に重なっている。複数の端子22の各々は、絶縁層61から露出している。絶縁層61は、たとえばソルダーレジストである。絶縁層61の第1方向zの寸法は、第1基材101、第2基材102および第3基材103の各々の第1方向zの寸法よりも小さい。 As shown in FIG. 2 and FIG. 5 to FIG. 7, the insulating layer 61 covers the rear surface 12 of the substrate 10. When viewed in the first direction z, the insulating layer 61 overlaps the peripheral edge 121 of the rear surface 12. Each of the multiple terminals 22 is exposed from the insulating layer 61. The insulating layer 61 is, for example, a solder resist. The dimension of the insulating layer 61 in the first direction z is smaller than the dimension of each of the first substrate 101, the second substrate 102, and the third substrate 103 in the first direction z.
 複数の放熱層62は、図2、および図5~図7に示すように、基材10の裏面12に配置されている。複数の放熱層62は、複数の端子22に囲まれている。複数の放熱層62の各々は、絶縁層61から露出している。第1方向zに視て、半導体素子41は、複数の放熱層62の各々に重なっている。複数の放熱層62は、たとえば銅を含む。複数の放熱層62の各々は、再配線層23から離れている。 The multiple heat dissipation layers 62 are disposed on the rear surface 12 of the substrate 10, as shown in FIG. 2 and FIG. 5 to FIG. 7. The multiple heat dissipation layers 62 are surrounded by multiple terminals 22. Each of the multiple heat dissipation layers 62 is exposed from the insulating layer 61. When viewed in the first direction z, the semiconductor element 41 overlaps each of the multiple heat dissipation layers 62. The multiple heat dissipation layers 62 contain, for example, copper. Each of the multiple heat dissipation layers 62 is separated from the redistribution layer 23.
 次に、半導体装置A10の作用効果について説明する。 Next, the effects of the semiconductor device A10 will be explained.
 半導体装置A10は、基材10と、基材10の主面11に配置された配線層21と、基材10の裏面12に配置された端子22と、基材10に収容された再配線層23と、配線層21に導通する半導体素子41とを備える。再配線層23は、配線層21および端子22につながっている。半導体装置A10は、少なくとも一部が基材10に収容されたダミー配線30をさらに備える。ダミー配線30は、端子22につながっており、かつ基材10の端面13から露出している。本構成をとることにより、半導体装置A10を配線基板に実装する際、溶融したハンダが端子22およびダミー配線30に付着する。これにより、ダミー配線30に接するハンダフィレットが形成される。したがって、本構成によれば、半導体装置A10においては、配線基板に対する半導体装置A10の接合強度を向上させることが可能となる。 The semiconductor device A10 includes a substrate 10, a wiring layer 21 disposed on the main surface 11 of the substrate 10, a terminal 22 disposed on the rear surface 12 of the substrate 10, a rewiring layer 23 housed in the substrate 10, and a semiconductor element 41 that is conductive to the wiring layer 21. The rewiring layer 23 is connected to the wiring layer 21 and the terminal 22. The semiconductor device A10 further includes a dummy wiring 30 at least a part of which is housed in the substrate 10. The dummy wiring 30 is connected to the terminal 22 and is exposed from the end surface 13 of the substrate 10. With this configuration, when the semiconductor device A10 is mounted on a wiring board, molten solder adheres to the terminal 22 and the dummy wiring 30. As a result, a solder fillet is formed in contact with the dummy wiring 30. Therefore, with this configuration, the semiconductor device A10 can improve the bonding strength of the semiconductor device A10 to the wiring board.
 さらにハンダフィレットは、半導体装置A10および配線基板の各々に対して外部に露出する。これにより、半導体装置A10を配線基板に実装した後、当該配線基板に対する半導体装置A10の実装状態を外観目視により容易に確認することができる。 Furthermore, the solder fillet is exposed to the outside of both the semiconductor device A10 and the wiring board. As a result, after the semiconductor device A10 is mounted on the wiring board, the mounting state of the semiconductor device A10 on the wiring board can be easily confirmed by visual inspection of the appearance.
 再配線層23は、配線層21および端子22の少なくともいずれかにつながるビア231を有する。ダミー配線30は、端子22につながる第1ダミービア部31を有する。ビア231は、基材10の端面13から離れている。第1ダミービア部31は、端面13から露出しており、かつビア231から離れている。本構成をとることにより、ダミー配線30の一部をなす第1ダミービア部31の形成を、再配線層23の一部をなすビア231の形成と同時に(あるいは略同時に)行うことができる。 The redistribution layer 23 has a via 231 connected to at least one of the wiring layer 21 and the terminal 22. The dummy wiring 30 has a first dummy via portion 31 connected to the terminal 22. The via 231 is spaced apart from the end face 13 of the substrate 10. The first dummy via portion 31 is exposed from the end face 13 and is spaced apart from the via 231. With this configuration, the first dummy via portion 31, which is part of the dummy wiring 30, can be formed simultaneously (or approximately simultaneously) with the formation of the via 231, which is part of the redistribution layer 23.
 ダミー配線30は、基材10の主面11に配置され、かつ第1ダミービア部31につながる頂部34を有する。第1方向zに視て、頂部34は、主面11の周縁111に重なっている。本構成をとることにより、ダミー配線30を電解めっきで形成する際、頂部34を導電経路として活用できる。さらに、頂部34の第1方向zに対して直交する方向を向く表面を、第1ダミービア部31とともに基材10の端面13から露出させることができる。これにより、ダミー配線30に接するハンダフィレットの体積をより拡大することができる。 The dummy wiring 30 is disposed on the main surface 11 of the substrate 10 and has a top 34 that is connected to the first dummy via portion 31. When viewed in the first direction z, the top 34 overlaps the periphery 111 of the main surface 11. With this configuration, the top 34 can be used as a conductive path when the dummy wiring 30 is formed by electrolytic plating. Furthermore, the surface of the top 34 that faces a direction perpendicular to the first direction z can be exposed from the end surface 13 of the substrate 10 together with the first dummy via portion 31. This allows the volume of the solder fillet in contact with the dummy wiring 30 to be further increased.
 第1方向zに視て、頂部34は、第1ダミービア部31の全体に重なっている。本構成をとることにより、ダミー配線30を電解めっきで形成する際、第1ダミービア部31の欠損を防止できる。 When viewed in the first direction z, the top 34 overlaps the entire first dummy via portion 31. This configuration makes it possible to prevent damage to the first dummy via portion 31 when the dummy wiring 30 is formed by electrolytic plating.
 半導体装置A10においては、第1方向zに視て、第1ダミービア部31の最小寸法は、再配線層23のビア231の寸法よりも大きい。本構成は、ビア231に対してより大型の第1ダミービア部31を形成することが可能である場合に有効である。 In the semiconductor device A10, the minimum dimension of the first dummy via portion 31 is larger than the dimension of the via 231 of the redistribution layer 23 when viewed in the first direction z. This configuration is effective when it is possible to form a first dummy via portion 31 that is larger than the via 231.
 第1方向zに視て、配線層21は、基材10の主面11から離れている。本構成をとることにより、半導体装置A10の製造工程において半導体装置A10を個片化する際、ダイシングブレードなどに配線層21が接触することを防止できる。これにより、配線層21に金属バリが発生しないため、当該金属バリに起因した配線層21とダミー配線30との短絡を防止できる。 When viewed in the first direction z, the wiring layer 21 is spaced apart from the main surface 11 of the substrate 10. This configuration can prevent the wiring layer 21 from coming into contact with a dicing blade or the like when the semiconductor device A10 is diced into individual pieces during the manufacturing process of the semiconductor device A10. This prevents metal burrs from being generated on the wiring layer 21, thereby preventing short circuits between the wiring layer 21 and the dummy wiring 30 caused by the metal burrs.
 頂部34は、配線層21から離れている。本構成をとることにより、配線層21とダミー配線30との短絡を防止できる。 The top 34 is separated from the wiring layer 21. This configuration makes it possible to prevent a short circuit between the wiring layer 21 and the dummy wiring 30.
 半導体装置A10は、基材10の裏面12を覆う絶縁層61をさらに備える。端子22は、絶縁層61から露出している。本構成をとることにより、半導体装置A10を配線基板に実装する際、ハンダに起因した半導体装置A10の導電経路の短絡を防止できる。 The semiconductor device A10 further includes an insulating layer 61 that covers the rear surface 12 of the substrate 10. The terminals 22 are exposed from the insulating layer 61. This configuration makes it possible to prevent short circuits in the conductive paths of the semiconductor device A10 caused by solder when the semiconductor device A10 is mounted on a wiring board.
 半導体装置A10は、基材10の裏面12に配置された放熱層62をさらに備える。放熱層62は、絶縁層61から露出している。第1方向zに視て、半導体素子41は、放熱層62に重なっている。本構成をとることにより、半導体素子41から発生した熱を基材10および放熱層62を介して外部に効率よく放出することができる。 The semiconductor device A10 further includes a heat dissipation layer 62 disposed on the rear surface 12 of the substrate 10. The heat dissipation layer 62 is exposed from the insulating layer 61. When viewed in the first direction z, the semiconductor element 41 overlaps the heat dissipation layer 62. With this configuration, heat generated from the semiconductor element 41 can be efficiently dissipated to the outside via the substrate 10 and the heat dissipation layer 62.
 半導体装置A10においては、複数の端子22を具備する。複数の端子22は、配線層21に導通する複数の第1端子221と、基材10の裏面12の四隅に配置された4つの第2端子222を含む。4つの第2端子222の各々に、ダミー配線30がつながっている。4つの第2端子222は、複数の第1端子221と異なり、配線層21に導通していない。本構成をとることにより、配線基板と複数の端子22との界面に熱応力が発生した際、当該熱応力を4つの第2端子222に集中させることができる。これにより、配線基板と複数の第1端子221との界面に発生する熱応力が低減されるため、当該界面におけるハンダに亀裂が発生することを抑制できる。 The semiconductor device A10 includes a plurality of terminals 22. The plurality of terminals 22 include a plurality of first terminals 221 that are electrically connected to the wiring layer 21, and four second terminals 222 that are arranged at the four corners of the rear surface 12 of the substrate 10. Dummy wiring 30 is connected to each of the four second terminals 222. Unlike the plurality of first terminals 221, the four second terminals 222 are not electrically connected to the wiring layer 21. With this configuration, when thermal stress occurs at the interface between the wiring board and the plurality of terminals 22, the thermal stress can be concentrated on the four second terminals 222. This reduces the thermal stress that occurs at the interface between the wiring board and the plurality of first terminals 221, and thus suppresses the occurrence of cracks in the solder at the interface.
 第2実施形態:
 図12~図14に基づき、本開示の第2実施形態にかかる半導体装置A20について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図12は、理解の便宜上、封止樹脂50の図示を省略している。図13は、半導体装置A10を示す図9に対応している。
Second embodiment:
A semiconductor device A20 according to a second embodiment of the present disclosure will be described with reference to Figures 12 to 14. In these figures, elements that are the same as or similar to those of the semiconductor device A10 described above are given the same reference numerals, and duplicated descriptions will be omitted. Here, for ease of understanding, Figure 12 omits the illustration of the sealing resin 50. Figure 13 corresponds to Figure 9 showing the semiconductor device A10.
 半導体装置A20においては、複数のダミー配線30の構成が半導体装置A10の当該構成と異なる。 In semiconductor device A20, the configuration of the multiple dummy wirings 30 differs from that of semiconductor device A10.
 まず、複数の端子22のうち複数の第1端子221のいずれかにつながるダミー配線30について説明する。図13に示すように、ダミー配線30は、第1ダミービア部31、第2ダミービア部32、第3ダミービア部33、頂部34、および複数の中継部35を有する。これらのうち、頂部34、および複数の中継部35の各々の構成は、半導体装置A10の当該構成と同様である。 First, the dummy wiring 30 connected to one of the first terminals 221 among the terminals 22 will be described. As shown in FIG. 13, the dummy wiring 30 has a first dummy via portion 31, a second dummy via portion 32, a third dummy via portion 33, a top portion 34, and a number of relay portions 35. Of these, the configuration of the top portion 34 and each of the multiple relay portions 35 is the same as that of the semiconductor device A10.
 図12および図13に示すように、第2ダミービア部32は、第2方向xおよび第3方向yのいずれかにおいて第1ダミービア部31の隣に位置する。第2ダミービア部32は、基材10に収容されているとともに、複数の第1端子221のいずれかと、頂部34とにつながっている。第2ダミービア部32は、基材10の複数の端面13のいずれかから露出している。第2ダミービア部32は、再配線層23の複数のビア231と、第1ダミービア部31とから離れている。第1方向zに視て、頂部34は、第2ダミービア部32の全体に重なっている。 As shown in Figures 12 and 13, the second dummy via portion 32 is located next to the first dummy via portion 31 in either the second direction x or the third direction y. The second dummy via portion 32 is housed in the substrate 10 and is connected to one of the multiple first terminals 221 and the top 34. The second dummy via portion 32 is exposed from one of the multiple end faces 13 of the substrate 10. The second dummy via portion 32 is separated from the multiple vias 231 of the redistribution layer 23 and the first dummy via portion 31. When viewed in the first direction z, the top 34 overlaps the entire second dummy via portion 32.
 図13および図14に示すように、第2ダミービア部32は、第4部321、第5部322および第6部323を有する。第4部321は、第1基材101に収容されているとともに、複数の第1端子221のいずれかと、第1中継部351とにつながっている。第5部322は、第2基材102に収容されているとともに、頂部34および第2中継部352につながっている。第6部323は、第3基材103に収容されているとともに、第1中継部351および第2中継部352につながっている。第4部321、第5部322および第6部323は、第1方向zにおいて互いに離れている。第1方向zに視て、第5部322は、第4部321および第6部323の各々に重なっている。 13 and 14, the second dummy via portion 32 has a fourth portion 321, a fifth portion 322, and a sixth portion 323. The fourth portion 321 is housed in the first substrate 101 and is connected to one of the plurality of first terminals 221 and the first relay portion 351. The fifth portion 322 is housed in the second substrate 102 and is connected to the top portion 34 and the second relay portion 352. The sixth portion 323 is housed in the third substrate 103 and is connected to the first relay portion 351 and the second relay portion 352. The fourth portion 321, the fifth portion 322, and the sixth portion 323 are separated from each other in the first direction z. When viewed in the first direction z, the fifth portion 322 overlaps with each of the fourth portion 321 and the sixth portion 323.
 図12および図13に示すように、第3ダミービア部33は、第2ダミービア部32を基準として第1ダミービア部31とは反対側に位置する。第3ダミービア部33は、基材10に収容されているとともに、複数の第1端子221のいずれかと、頂部34とにつながっている。第3ダミービア部33は、基材10の複数の端面13のいずれかから露出している。第3ダミービア部33は、再配線層23の複数のビア231と、第1ダミービア部31および第2ダミービア部32とから離れている。第1方向zに視て、頂部34は、第3ダミービア部33の全体に重なっている。 As shown in Figures 12 and 13, the third dummy via portion 33 is located on the opposite side to the first dummy via portion 31 with respect to the second dummy via portion 32. The third dummy via portion 33 is housed in the substrate 10 and is connected to one of the multiple first terminals 221 and the top portion 34. The third dummy via portion 33 is exposed from one of the multiple end faces 13 of the substrate 10. The third dummy via portion 33 is separated from the multiple vias 231 of the redistribution layer 23 and from the first dummy via portion 31 and the second dummy via portion 32. When viewed in the first direction z, the top portion 34 overlaps the entire third dummy via portion 33.
 図13に示すように、第3ダミービア部33は、第7部331、第8部332および第9部333を有する。第7部331は、第1基材101に収容されているとともに、複数の第1端子221のいずれかと、第1中継部351とにつながっている。第8部332は、第2基材102に収容されているとともに、頂部34および第2中継部352につながっている。第9部333は、第3基材103に収容されているとともに、第1中継部351および第2中継部352につながっている。第7部331、第8部332および第9部333は、第1方向zにおいて互いに離れている。第1方向zに視て、第8部332は、第7部331および第9部333の各々に重なっている。 13, the third dummy via portion 33 has a seventh portion 331, an eighth portion 332, and a ninth portion 333. The seventh portion 331 is housed in the first substrate 101 and is connected to one of the plurality of first terminals 221 and the first relay portion 351. The eighth portion 332 is housed in the second substrate 102 and is connected to the top portion 34 and the second relay portion 352. The ninth portion 333 is housed in the third substrate 103 and is connected to the first relay portion 351 and the second relay portion 352. The seventh portion 331, the eighth portion 332, and the ninth portion 333 are separated from each other in the first direction z. When viewed in the first direction z, the eighth portion 332 overlaps with each of the seventh portion 331 and the ninth portion 333.
 第1方向zに視て、第1ダミービア部31、第2ダミービア部32および第3ダミービア部33の各々の最大寸法は、再配線層23の複数のビア231の各々の最大寸法に略等しい。 When viewed in the first direction z, the maximum dimension of each of the first dummy via portion 31, the second dummy via portion 32, and the third dummy via portion 33 is approximately equal to the maximum dimension of each of the multiple vias 231 in the redistribution layer 23.
 図13に示すように、複数の中継部35の各々は、第1ダミービア部31、第2ダミービア部32および第3ダミービア部33につながっている。 As shown in FIG. 13, each of the multiple relay sections 35 is connected to a first dummy via section 31, a second dummy via section 32, and a third dummy via section 33.
 次に、複数の端子22のうち4つの第2端子222のいずれかにつながるダミー配線30について説明する。図13に示すように、ダミー配線30は、第1ダミービア部31、2つの第2ダミービア部32、2つの第3ダミービア部33、頂部34、および複数の中継部35を有する。これらのうち、第1ダミービア部31、2つの第2ダミービア部32、および2つの第3ダミービア部33の配置形態を除き、先述の複数の第1端子221のいずれかにつながるダミー配線30の構成と同様である。 Next, the dummy wiring 30 connected to one of the four second terminals 222 out of the multiple terminals 22 will be described. As shown in FIG. 13, the dummy wiring 30 has a first dummy via portion 31, two second dummy via portions 32, two third dummy via portions 33, a top portion 34, and multiple relay portions 35. Except for the arrangement of the first dummy via portion 31, the two second dummy via portions 32, and the two third dummy via portions 33, the configuration of the dummy wiring 30 connected to one of the multiple first terminals 221 described above is the same.
 図12に示すように、2つの第2ダミービア部32のうち一方の第2ダミービア部32は、第2方向xにおいて第1ダミービア部31の隣に位置する。他方の第2ダミービア部32は、第3方向yにおいて第1ダミービア部31の隣に位置する。2つの第3ダミービア部33のうち一方の第3ダミービア部33は、先述の一方の第2ダミービア部32を基準として第1ダミービア部31とは反対側に位置する。他方の第3ダミービア部33は、先述の他方の第2ダミービア部32を基準として第1ダミービア部31とは反対側に位置する。これにより、第1ダミービア部31は、基材10の2つの第1端面131のいずれかと、基材10の2つの第2端面132のいずれかとの各々から露出している。2つの第2ダミービア部32は、2つの第1端面131のいずれかと、2つの第2端面132のいずれかとから個別に露出している。2つの第3ダミービア部33は、2つの第1端面131のいずれかと、2つの第2端面132のいずれかとから個別に露出している。 As shown in FIG. 12, one of the two second dummy via portions 32 is located next to the first dummy via portion 31 in the second direction x. The other second dummy via portion 32 is located next to the first dummy via portion 31 in the third direction y. One of the two third dummy via portions 33 is located on the opposite side to the first dummy via portion 31 with respect to the one second dummy via portion 32 mentioned above. The other third dummy via portion 33 is located on the opposite side to the first dummy via portion 31 with respect to the other second dummy via portion 32 mentioned above. As a result, the first dummy via portion 31 is exposed from either of the two first end faces 131 of the substrate 10 and either of the two second end faces 132 of the substrate 10. The two second dummy via portions 32 are individually exposed from one of the two first end faces 131 and one of the two second end faces 132. The two third dummy via portions 33 are individually exposed from one of the two first end faces 131 and one of the two second end faces 132.
 次に、半導体装置A20の作用効果について説明する。 Next, the effects of the semiconductor device A20 will be explained.
 半導体装置A20は、基材10と、基材10の主面11に配置された配線層21と、基材10の裏面12に配置された端子22と、基材10に収容された再配線層23と、配線層21に導通する半導体素子41とを備える。再配線層23は、配線層21および端子22につながっている。半導体装置A20は、少なくとも一部が基材10に収容されたダミー配線30をさらに備える。ダミー配線30は、端子22につながっており、かつ基材10の端面13から露出している。したがって、本構成によれば、半導体装置A20においても、配線基板に対する半導体装置A20の接合強度を向上させることが可能となる。さらに半導体装置A20においては、半導体装置A10と共通する構成を具備することにより、半導体装置A10と同等の作用効果を奏する。 The semiconductor device A20 includes a substrate 10, a wiring layer 21 disposed on the main surface 11 of the substrate 10, a terminal 22 disposed on the rear surface 12 of the substrate 10, a rewiring layer 23 housed in the substrate 10, and a semiconductor element 41 that is conductive to the wiring layer 21. The rewiring layer 23 is connected to the wiring layer 21 and the terminal 22. The semiconductor device A20 further includes a dummy wiring 30 at least a part of which is housed in the substrate 10. The dummy wiring 30 is connected to the terminal 22 and is exposed from the end surface 13 of the substrate 10. Therefore, according to this configuration, the semiconductor device A20 can also improve the bonding strength of the semiconductor device A20 to the wiring board. Furthermore, the semiconductor device A20 has a configuration common to the semiconductor device A10, and thereby achieves the same effects as the semiconductor device A10.
 半導体装置A20においては、第1ダミービア部31は、端子22および頂部34につながる第2ダミービア部32を有する。第2ダミービア部32は、基材10の端面13から露出するとともに、再配線層23のビア231と、第1ダミービア部31との各々から離れている。本構成は、第1方向zに視て、第1ダミービア部31の最大寸法を、ビア231の最大寸法と略等しくしなければならないという制約がある場合に有効である。これにより、端面13から露出するダミー配線30の面積が過度に縮小することを防止できる。 In the semiconductor device A20, the first dummy via portion 31 has a second dummy via portion 32 that is connected to the terminal 22 and the top portion 34. The second dummy via portion 32 is exposed from the end face 13 of the substrate 10, and is separated from both the via 231 of the redistribution layer 23 and the first dummy via portion 31. This configuration is effective when there is a constraint that the maximum dimension of the first dummy via portion 31 must be approximately equal to the maximum dimension of the via 231 when viewed in the first direction z. This makes it possible to prevent the area of the dummy wiring 30 exposed from the end face 13 from being excessively reduced.
 上記の場合において、第1ダミービア部31は、第1基材101と第2基材102との間に位置する中継部35を有する。中継部35は、基材10の端面13から露出するとともに、第1ダミービア部31および第2ダミービア部32につながっている。本構成をとることにより、端面13から露出するダミー配線30の面積の拡大を図ることができる。 In the above case, the first dummy via portion 31 has a relay portion 35 located between the first substrate 101 and the second substrate 102. The relay portion 35 is exposed from the end face 13 of the substrate 10 and is connected to the first dummy via portion 31 and the second dummy via portion 32. By adopting this configuration, the area of the dummy wiring 30 exposed from the end face 13 can be increased.
 第1方向zに視て、頂部34は、第1ダミービア部31および第2ダミービア部32の各々の全体に重なっている。本構成をとることにより、ダミー配線30を電解めっきで形成する際、第1ダミービア部31および第2ダミービア部32の欠損を防止できる。 When viewed in the first direction z, the apex 34 overlaps the entire first dummy via portion 31 and the entire second dummy via portion 32. This configuration makes it possible to prevent damage to the first dummy via portion 31 and the second dummy via portion 32 when the dummy wiring 30 is formed by electrolytic plating.
 第3実施形態:
 図15~図19に基づき、本開示の第3実施形態にかかる半導体装置A30について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。
Third embodiment:
A semiconductor device A30 according to a third embodiment of the present disclosure will be described with reference to Fig. 15 to Fig. 19. In these figures, elements that are the same as or similar to those of the semiconductor device A10 described above are given the same reference numerals, and duplicated descriptions will be omitted.
 半導体装置A30においては、封止樹脂50の構成と、複数の被覆層70をさらに備えることとが、半導体装置A10の場合と異なる。 The semiconductor device A30 differs from the semiconductor device A10 in the configuration of the sealing resin 50 and in the additional inclusion of multiple coating layers 70.
 図16~図19に示すように、封止樹脂50の複数の側面52の各々は、第1領域521および第2領域522を含む。第1領域521は、頂面51につながり、かつ第1方向zに対して直交する方向を向く。第2領域522は、第1方向zにおいて第1領域521を基準として頂面51とは反対側に位置し、かつ第1領域521につながっている。第1方向zに視て、第1領域521は、頂面51に重なっている。 As shown in Figures 16 to 19, each of the multiple side surfaces 52 of the sealing resin 50 includes a first region 521 and a second region 522. The first region 521 is connected to the top surface 51 and faces a direction perpendicular to the first direction z. The second region 522 is located on the opposite side of the top surface 51 in the first direction z with the first region 521 as a reference, and is connected to the first region 521. When viewed in the first direction z, the first region 521 overlaps the top surface 51.
 複数の被覆層70は、図16~図18に示すように、外部に露出している。複数の被覆層70のいずれかは、複数の端子22のいずれかと、これにつながるダミー配線30のうち基材10の複数の端面13のいずれかから露出する領域とを覆っている。あわせて複数の被覆層70のいずれかは、封止樹脂50の複数の側面52のいずれかから露出する複数のダミー配線30のいずれかの頂部34を覆っている。さらに複数の被覆層70のいくつかは、複数の放熱層62を個別に覆っている。 The multiple coating layers 70 are exposed to the outside, as shown in Figures 16 to 18. Any of the multiple coating layers 70 covers any of the multiple terminals 22 and an area of the dummy wiring 30 connected thereto that is exposed from any of the multiple end faces 13 of the substrate 10. Additionally, any of the multiple coating layers 70 covers the top 34 of any of the multiple dummy wirings 30 that is exposed from any of the multiple side faces 52 of the sealing resin 50. Furthermore, some of the multiple coating layers 70 individually cover the multiple heat dissipation layers 62.
 複数の被覆層70は、金(Au)を含む導電体である。複数の被覆層70がハンダを介して配線基板に導電接合されることによって、半導体装置A10が配線基板に実装される。複数の被覆層70の各々は、複数の金属層を含む。当該複数の金属層は、複数の端子22のいずれか、または複数の放熱層62のいずれかに近い方から、ニッケル(Ni)層および金層の順に積層されたものである。この他、当該複数の金属層は、複数の端子22のいずれか、または複数の放熱層62のいずれかに近い方から、ニッケル層、パラジウム(Pd)層および金層の順に積層されたものでもよい。 The multiple coating layers 70 are conductors containing gold (Au). The multiple coating layers 70 are conductively bonded to the wiring board via solder, thereby mounting the semiconductor device A10 on the wiring board. Each of the multiple coating layers 70 includes multiple metal layers. The multiple metal layers are stacked in the order of a nickel (Ni) layer and a gold layer, starting from the side closer to one of the multiple terminals 22 or the multiple heat dissipation layers 62. Alternatively, the multiple metal layers may be stacked in the order of a nickel layer, a palladium (Pd) layer and a gold layer, starting from the side closer to one of the multiple terminals 22 or the multiple heat dissipation layers 62.
 次に、図20~図23に基づき、半導体装置A30の製造方法の一例について説明する。ここで、図20~図23の各々の断面位置は、図17の断面位置と同一(あるいは略同一)である。 Next, an example of a manufacturing method for semiconductor device A30 will be described with reference to Figures 20 to 23. Here, the cross-sectional positions of each of Figures 20 to 23 are the same (or approximately the same) as the cross-sectional position of Figure 17.
 まず、図20に示すように、封止樹脂50を形成し、かつ基材10の裏面12に絶縁層61を配置した後、封止樹脂50の頂面51に支持部材80を貼り付ける。支持部材80は、たとえばダイシングテープである。 First, as shown in FIG. 20, the sealing resin 50 is formed and an insulating layer 61 is placed on the back surface 12 of the substrate 10, and then a support member 80 is attached to the top surface 51 of the sealing resin 50. The support member 80 is, for example, a dicing tape.
 次いで、図21に示すように、基材10、封止樹脂50および絶縁層61の各々の一部と、複数の端子22の各々の一部と、複数のダミー配線30の各々の一部とを、幅b1を有する第1ブレード81を用いて除去することにより、第1方向zに凹む複数の溝83を形成する。複数の溝83は、第2方向xおよび第3方向yの各々に沿った格子状となるように形成される。 21, a first blade 81 having a width b1 is used to remove a portion of each of the base material 10, the sealing resin 50, and the insulating layer 61, a portion of each of the multiple terminals 22, and a portion of each of the multiple dummy wirings 30, thereby forming a plurality of grooves 83 recessed in the first direction z. The multiple grooves 83 are formed in a lattice pattern along each of the second direction x and the third direction y.
 次いで、図22に示すように、絶縁層61から外部に露出する複数の端子22、および複数の放熱層62の各々の領域と、基材10および封止樹脂50から外部に露出する複数のダミー配線30の各々の領域とを個別に覆う複数の被覆層70を形成する。複数の被覆層70は、無電解めっきにより形成される。 22, multiple coating layers 70 are formed to individually cover the multiple terminals 22 and each area of the multiple heat dissipation layers 62 exposed to the outside from the insulating layer 61, and the multiple dummy wirings 30 exposed to the outside from the substrate 10 and the sealing resin 50. The multiple coating layers 70 are formed by electroless plating.
 最後に、図23に示すように、幅b2を有する第2ブレード82を用いて封止樹脂50を切断する。幅b2は、第1ブレード81の幅b1よりも小である。本工程での封止樹脂50の切断にあたっては、複数の溝83の各々に第2ブレード82を通過させた上で、第2ブレード82が支持部材80に接触するまで第2ブレード82を第1方向zに移動させる。以上の工程を経ることにより、半導体装置A30が得られる。 Finally, as shown in FIG. 23, the sealing resin 50 is cut using a second blade 82 having a width b2. The width b2 is smaller than the width b1 of the first blade 81. In this process, when cutting the sealing resin 50, the second blade 82 is passed through each of the multiple grooves 83, and then moved in the first direction z until the second blade 82 contacts the support member 80. By going through the above process, the semiconductor device A30 is obtained.
 次に、半導体装置A30の作用効果について説明する。 Next, the effects of the semiconductor device A30 will be explained.
 半導体装置A30は、基材10と、基材10の主面11に配置された配線層21と、基材10の裏面12に配置された端子22と、基材10に収容された再配線層23と、配線層21に導通する半導体素子41とを備える。再配線層23は、配線層21および端子22につながっている。半導体装置A30は、少なくとも一部が基材10に収容されたダミー配線30をさらに備える。ダミー配線30は、端子22につながっており、かつ基材10の端面13から露出している。したがって、本構成によれば、半導体装置A30においても、配線基板に対する半導体装置A30の接合強度を向上させることが可能となる。さらに半導体装置A30においては、半導体装置A10と共通する構成を具備することにより、半導体装置A10と同等の作用効果を奏する。 The semiconductor device A30 includes a substrate 10, a wiring layer 21 disposed on the main surface 11 of the substrate 10, a terminal 22 disposed on the rear surface 12 of the substrate 10, a rewiring layer 23 housed in the substrate 10, and a semiconductor element 41 that is conductive to the wiring layer 21. The rewiring layer 23 is connected to the wiring layer 21 and the terminal 22. The semiconductor device A30 further includes dummy wiring 30, at least a portion of which is housed in the substrate 10. The dummy wiring 30 is connected to the terminal 22 and is exposed from the end surface 13 of the substrate 10. Therefore, according to this configuration, the semiconductor device A30 can also improve the bonding strength of the semiconductor device A30 to the wiring board. Furthermore, the semiconductor device A30 has a configuration common to the semiconductor device A10, and thereby achieves the same effects as the semiconductor device A10.
 半導体装置A30は、端子22と、基材10の端面13から露出するダミー配線30の領域とを覆う被覆層70をさらに備える。被覆層70は、金を含む導電体である。本構成をとることにより、半導体装置A30を配線基板に実装する際、被覆層70に対する溶融したハンダの濡れ性が良好なものとなる。これにより、被覆層70に接するハンダフィレットの体積がより増加するため、配線基板に対する半導体装置A30の接合強度をさらに向上させることができる。 The semiconductor device A30 further includes a coating layer 70 that covers the terminals 22 and the areas of the dummy wiring 30 exposed from the end surface 13 of the substrate 10. The coating layer 70 is a conductor that contains gold. With this configuration, when the semiconductor device A30 is mounted on a wiring board, the wettability of the molten solder to the coating layer 70 is good. This further increases the volume of the solder fillet in contact with the coating layer 70, thereby further improving the bonding strength of the semiconductor device A30 to the wiring board.
 半導体装置A30においては、複数のダミー配線30の構成を、半導体装置A10の場合に替えて半導体装置A20の場合にすることができる。 In the semiconductor device A30, the configuration of the multiple dummy wirings 30 can be changed from that of the semiconductor device A10 to that of the semiconductor device A20.
 本開示は、先述した実施形態に限定されるものではない。本開示の各部の具体的な構成は、種々に設計変更自在である。 This disclosure is not limited to the embodiments described above. The specific configuration of each part of this disclosure can be freely designed in various ways.
 本開示は、以下の付記に記載した実施形態を含む。
 付記1.
 第1方向において互いに反対側を向く主面および裏面を有する基材と、
 前記主面に配置された配線層と、
 前記裏面に配置された端子と、
 前記基材に収容されるとともに、前記配線層および前記端子につながる再配線層と、
 前記配線層に導通する半導体素子と、を備え、
 前記基材は、前記第1方向に対して直交する方向を向く端面を有し、
 少なくとも一部が前記基材に収容されたダミー配線を備え、
 前記ダミー配線は、前記端子につながっており、かつ前記端面から露出している、半導体装置。
 付記2.
 前記半導体素子は、前記配線層に対向する電極を有し、
 前記電極は、前記配線層に導電接合されている、付記1に記載の半導体装置。
 付記3.
 前記再配線層は、前記配線層および前記端子の少なくともいずれかにつながるビアを有し、
 前記ダミー配線は、前記端子につながる第1ダミービア部を有し、
 前記ビアは、前記端面から離れており、
 前記第1ダミービア部は、前記端面から露出しており、かつ前記ビアから離れている、付記2に記載の半導体装置。
 付記4.
 前記ダミー配線は、前記主面に配置され、かつ前記第1ダミービア部につながる頂部を有し、
 前記第1方向に視て、前記頂部は、前記主面の周縁に重なっている、付記3に記載の半導体装置。
 付記5.
 前記第1方向に視て、前記頂部は、前記第1ダミービア部の全体に重なっている、付記4に記載の半導体装置。
 付記6.
 前記第1方向に視て、前記第1ダミービア部の最小寸法は、前記ビアの寸法よりも大きい、付記5に記載の半導体装置。
 付記7.
 前記ダミー配線は、前記端子および前記頂部につながる第2ダミービア部を有し、
 前記第2ダミービア部は、前記端面から露出しており、かつ前記ビアおよび前記第1ダミービア部の各々から離れている、付記5に記載の半導体装置。
 付記8.
 前記第1方向に視て、前記頂部は、前記第2ダミービア部の全体に重なっている、付記7に記載の半導体装置。
 付記9.
 前記基材は、前記裏面を含む第1基材と、前記第1方向に視て前記第1基材に重なり、かつ前記主面を含む第2基材を有し、
 前記ダミー配線は、前記第1基材と前記第2基材との間に位置する中継部を有し、
 前記中継部は、前記端面から露出するとともに、前記第1ダミービア部および前記第2ダミービア部につながっている、付記8に記載の半導体装置。
 付記10.
 前記ビアは、前記第1基材に収容され、かつ前記端子につながる第1ビアと、前記第2基材に収容され、かつ前記配線層につながる第2ビアと、を含み、
 前記再配線層は、前記第1基材と前記第2基材との間に位置する中間層を有し、
 前記中間層は、前記第1ビアおよび前記第2ビアにつながっている、付記9に記載の半導体装置。
 付記11.
 前記第1方向に視て、前記配線層は、前記主面の周縁から離れている、付記4ないし10のいずれかに記載の半導体装置。
 付記12.
 前記頂部は、前記配線層から離れている、付記11に記載の半導体装置。
 付記13.
 前記配線層および前記半導体素子を覆う封止樹脂をさらに備え、
 前記頂部は、前記封止樹脂から露出している、付記12に記載の半導体装置。
 付記14.
 前記端子と、前記端面から露出する前記ダミー配線の領域と、を覆う被覆層をさらに備え、
 前記被覆層は、金を含む導電体である、付記13に記載の半導体装置。
 付記15.
 前記裏面を覆う絶縁層をさらに備え、
 前記端子は、前記絶縁層から露出している、付記14に記載の半導体装置。
 付記16.
 前記配線層に導電接合された受動素子をさらに備え、
 前記受動素子は、前記封止樹脂に覆われている、付記15に記載の半導体装置。
 付記17.
 前記裏面に配置された放熱層をさらに備え、
 前記放熱層は、前記絶縁層から露出しており、
 前記第1方向に視て、前記半導体素子は、前記放熱層に重なっている、付記16に記載の半導体装置。
The present disclosure includes the embodiments described in the appended claims below.
Appendix 1.
A substrate having a main surface and a back surface facing in opposite directions in a first direction;
A wiring layer disposed on the main surface;
A terminal disposed on the back surface;
a rewiring layer that is accommodated in the base material and is connected to the wiring layer and the terminal;
a semiconductor element electrically connected to the wiring layer;
The base material has an end surface facing a direction perpendicular to the first direction,
At least a portion of the dummy wiring is accommodated in the base material,
The dummy wiring is connected to the terminal and exposed from the end surface.
Appendix 2.
the semiconductor element has an electrode facing the wiring layer,
2. The semiconductor device according to claim 1, wherein the electrode is conductively connected to the wiring layer.
Appendix 3.
the redistribution layer has a via connected to at least one of the wiring layer and the terminal;
the dummy wiring has a first dummy via portion connected to the terminal,
the via is spaced from the end face;
3. The semiconductor device according to claim 2, wherein the first dummy via portion is exposed from the end face and is spaced apart from the via.
Appendix 4.
the dummy wiring is disposed on the main surface and has a top portion connected to the first dummy via portion,
4. The semiconductor device according to claim 3, wherein, when viewed in the first direction, the top portion overlaps a peripheral edge of the main surface.
Appendix 5.
5. The semiconductor device according to claim 4, wherein, when viewed in the first direction, the top portion overlaps the entire first dummy via portion.
Appendix 6.
6. The semiconductor device according to claim 5, wherein a minimum dimension of the first dummy via portion is greater than a dimension of the via when viewed in the first direction.
Appendix 7.
the dummy wiring has a second dummy via portion connected to the terminal and the top portion,
6. The semiconductor device according to claim 5, wherein the second dummy via portion is exposed from the end face and is spaced apart from each of the via and the first dummy via portion.
Appendix 8.
8. The semiconductor device according to claim 7, wherein, when viewed in the first direction, the top portion overlaps the entire second dummy via portion.
Appendix 9.
the base material includes a first base material including the back surface and a second base material overlapping the first base material when viewed in the first direction and including the main surface;
the dummy wiring has a relay portion located between the first base material and the second base material,
9. The semiconductor device according to claim 8, wherein the relay portion is exposed from the end face and is connected to the first dummy via portion and the second dummy via portion.
Appendix 10.
the vias include a first via that is accommodated in the first base material and connected to the terminal, and a second via that is accommodated in the second base material and connected to the wiring layer;
the redistribution layer has an intermediate layer located between the first substrate and the second substrate;
10. The semiconductor device according to claim 9, wherein the intermediate layer is connected to the first via and the second via.
Appendix 11.
11. The semiconductor device according to claim 4, wherein the wiring layer is spaced apart from a periphery of the main surface when viewed in the first direction.
Appendix 12.
12. The semiconductor device of claim 11, wherein the top is spaced from the wiring layer.
Appendix 13.
a sealing resin for covering the wiring layer and the semiconductor element,
13. The semiconductor device according to claim 12, wherein the top portion is exposed from the sealing resin.
Appendix 14.
a covering layer that covers the terminals and the areas of the dummy wiring exposed from the end faces,
The semiconductor device described in Appendix 13, wherein the coating layer is a conductor containing gold.
Appendix 15.
Further comprising an insulating layer covering the back surface,
15. The semiconductor device according to claim 14, wherein the terminal is exposed from the insulating layer.
Appendix 16.
a passive element conductively connected to the wiring layer;
16. The semiconductor device according to claim 15, wherein the passive element is covered with the sealing resin.
Appendix 17.
Further comprising a heat dissipation layer disposed on the back surface,
the heat dissipation layer is exposed from the insulating layer,
17. The semiconductor device according to claim 16, wherein, when viewed in the first direction, the semiconductor element overlaps the heat dissipation layer.
A10,A20,A30:半導体装置   10:基材
101:第1基材   102:第2基材
103:第3基材   11:主面
111:周縁   12:裏面
121:周縁   13:端面
131:第1端面   132:第2端面
21:配線層   22:端子
221:第1端子   222:第2端子
23:再配線層   231:ビア
231A:第1ビア   231B:第2ビア
232:中間層   232A:第1中間配線
232B:第2中間配線   232C:中間ビア
30:ダミー配線   31:第1ダミービア部
311:第1部   312:第2部
313:第3部   32:第2ダミービア部
321:第4部   322:第5部
323:第6部   33:第3ダミービア部
331:第7部   332:第8部
333:第9部   34:頂部
35:中継部   351:第1中継部
352:第2中継部   41:半導体素子
411:電極   42:受動素子
421:電極   50:封止樹脂
51:頂面   52:側面
521:第1領域   522:第2領域
61:絶縁層   62:放熱層
70:被覆層   80:支持部材
81:第1ブレード   82:第2ブレード
83:溝   z:第1方向
x:第2方向   y:第3方向
A10, A20, A30: semiconductor device 10: substrate 101: first substrate 102: second substrate 103: third substrate 11: main surface 111: periphery 12: back surface 121: periphery 13: end surface 131: first end surface 132: second end surface 21: wiring layer 22: terminal 221: first terminal 222: second terminal 23: rewiring layer 231: via 231A: first via 231B: second via 232: intermediate layer 232A: first intermediate wiring 232B: second intermediate wiring 232C: intermediate via 30: dummy wiring 31: first dummy via portion 311: first portion 312: second portion 313: third portion 32: second dummy via portion 321: fourth portion 322: fifth portion 323: sixth portion 33: third dummy via portion 331: seventh portion 332: eighth portion 333: ninth portion 34: top portion 35: relay portion 351: first relay portion 352: second relay portion 41: semiconductor element 411: electrode 42: passive element 421: electrode 50: sealing resin 51: top surface 52: side surface 521: first region 522: second region 61: insulating layer 62: heat dissipation layer 70: coating layer 80: support member 81: first blade 82: second blade 83: groove z: first direction x: second direction y: third direction

Claims (17)

  1.  第1方向において互いに反対側を向く主面および裏面を有する基材と、
     前記主面に配置された配線層と、
     前記裏面に配置された端子と、
     前記基材に収容されるとともに、前記配線層および前記端子につながる再配線層と、
     前記配線層に導通する半導体素子と、を備え、
     前記基材は、前記第1方向に対して直交する方向を向く端面を有し、
     少なくとも一部が前記基材に収容されたダミー配線を備え、
     前記ダミー配線は、前記端子につながっており、かつ前記端面から露出している、半導体装置。
    A substrate having a main surface and a back surface facing in opposite directions in a first direction;
    A wiring layer disposed on the main surface;
    A terminal disposed on the back surface;
    a rewiring layer that is accommodated in the base material and is connected to the wiring layer and the terminal;
    a semiconductor element electrically connected to the wiring layer;
    The base material has an end surface facing a direction perpendicular to the first direction,
    a dummy wiring, at least a portion of which is accommodated in the base material;
    The dummy wiring is connected to the terminal and exposed from the end surface.
  2.  前記半導体素子は、前記配線層に対向する電極を有し、
     前記電極は、前記配線層に導電接合されている、請求項1に記載の半導体装置。
    the semiconductor element has an electrode facing the wiring layer,
    The semiconductor device according to claim 1 , wherein the electrode is conductively connected to the wiring layer.
  3.  前記再配線層は、前記配線層および前記端子の少なくともいずれかにつながるビアを有し、
     前記ダミー配線は、前記端子につながる第1ダミービア部を有し、
     前記ビアは、前記端面から離れており、
     前記第1ダミービア部は、前記端面から露出しており、かつ前記ビアから離れている、請求項2に記載の半導体装置。
    the redistribution layer has a via connected to at least one of the wiring layer and the terminal;
    the dummy wiring has a first dummy via portion connected to the terminal,
    the via is spaced from the end face;
    The semiconductor device according to claim 2 , wherein the first dummy via portion is exposed from the end face and is spaced apart from the via.
  4.  前記ダミー配線は、前記主面に配置され、かつ前記第1ダミービア部につながる頂部を有し、
     前記第1方向に視て、前記頂部は、前記主面の周縁に重なっている、請求項3に記載の半導体装置。
    the dummy wiring is disposed on the main surface and has a top portion connected to the first dummy via portion,
    The semiconductor device according to claim 3 , wherein the top portion overlaps a peripheral edge of the main surface when viewed in the first direction.
  5.  前記第1方向に視て、前記頂部は、前記第1ダミービア部の全体に重なっている、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein, when viewed in the first direction, the top portion overlaps the entire first dummy via portion.
  6.  前記第1方向に視て、前記第1ダミービア部の最小寸法は、前記ビアの寸法よりも大きい、請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein the minimum dimension of the first dummy via portion is greater than the dimension of the via when viewed in the first direction.
  7.  前記ダミー配線は、前記端子および前記頂部につながる第2ダミービア部を有し、
     前記第2ダミービア部は、前記端面から露出しており、かつ前記ビアおよび前記第1ダミービア部の各々から離れている、請求項5に記載の半導体装置。
    the dummy wiring has a second dummy via portion connected to the terminal and the top portion,
    The semiconductor device according to claim 5 , wherein the second dummy via portion is exposed from the end face and is spaced apart from both the via and the first dummy via portion.
  8.  前記第1方向に視て、前記頂部は、前記第2ダミービア部の全体に重なっている、請求項7に記載の半導体装置。 The semiconductor device according to claim 7, wherein, when viewed in the first direction, the top portion overlaps the entire second dummy via portion.
  9.  前記基材は、前記裏面を含む第1基材と、前記第1方向に視て前記第1基材に重なり、かつ前記主面を含む第2基材を有し、
     前記ダミー配線は、前記第1基材と前記第2基材との間に位置する中継部を有し、
     前記中継部は、前記端面から露出するとともに、前記第1ダミービア部および前記第2ダミービア部につながっている、請求項8に記載の半導体装置。
    the base material includes a first base material including the back surface and a second base material overlapping the first base material when viewed in the first direction and including the main surface;
    the dummy wiring has a relay portion located between the first base material and the second base material,
    The semiconductor device according to claim 8 , wherein the relay portion is exposed from the end face and is connected to the first dummy via portion and the second dummy via portion.
  10.  前記ビアは、前記第1基材に収容され、かつ前記端子につながる第1ビアと、前記第2基材に収容され、かつ前記配線層につながる第2ビアと、を含み、
     前記再配線層は、前記第1基材と前記第2基材との間に位置する中間層を有し、
     前記中間層は、前記第1ビアおよび前記第2ビアにつながっている、請求項9に記載の半導体装置。
    the vias include a first via that is accommodated in the first base material and connected to the terminal, and a second via that is accommodated in the second base material and connected to the wiring layer;
    the redistribution layer has an intermediate layer located between the first substrate and the second substrate;
    The semiconductor device according to claim 9 , wherein the intermediate layer is connected to the first via and the second via.
  11.  前記第1方向に視て、前記配線層は、前記主面の周縁から離れている、請求項4ないし10のいずれかに記載の半導体装置。 The semiconductor device according to any one of claims 4 to 10, wherein the wiring layer is spaced apart from the periphery of the main surface when viewed in the first direction.
  12.  前記頂部は、前記配線層から離れている、請求項11に記載の半導体装置。 The semiconductor device of claim 11, wherein the top is spaced apart from the wiring layer.
  13.  前記配線層および前記半導体素子を覆う封止樹脂をさらに備え、
     前記頂部は、前記封止樹脂から露出している、請求項12に記載の半導体装置。
    a sealing resin for covering the wiring layer and the semiconductor element,
    The semiconductor device according to claim 12 , wherein the top portion is exposed from the sealing resin.
  14.  前記端子と、前記端面から露出する前記ダミー配線の領域と、を覆う被覆層をさらに備え、
     前記被覆層は、金を含む導電体である、請求項13に記載の半導体装置。
    a covering layer that covers the terminals and the areas of the dummy wiring exposed from the end faces,
    The semiconductor device according to claim 13 , wherein the covering layer is a conductor containing gold.
  15.  前記裏面を覆う絶縁層をさらに備え、
     前記端子は、前記絶縁層から露出している、請求項14に記載の半導体装置。
    Further comprising an insulating layer covering the back surface,
    The semiconductor device according to claim 14 , wherein the terminal is exposed from the insulating layer.
  16.  前記配線層に導電接合された受動素子をさらに備え、
     前記受動素子は、前記封止樹脂に覆われている、請求項15に記載の半導体装置。
    a passive element conductively connected to the wiring layer;
    The semiconductor device according to claim 15 , wherein the passive elements are covered with the sealing resin.
  17.  前記裏面に配置された放熱層をさらに備え、
     前記放熱層は、前記絶縁層から露出しており、
     前記第1方向に視て、前記半導体素子は、前記放熱層に重なっている、請求項16に記載の半導体装置。
    Further comprising a heat dissipation layer disposed on the back surface,
    the heat dissipation layer is exposed from the insulating layer,
    The semiconductor device according to claim 16 , wherein the semiconductor element overlaps the heat dissipation layer when viewed in the first direction.
PCT/JP2023/038769 2022-11-10 2023-10-26 Semiconductor device WO2024101174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022180008 2022-11-10
JP2022-180008 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101174A1 true WO2024101174A1 (en) 2024-05-16

Family

ID=91032716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038769 WO2024101174A1 (en) 2022-11-10 2023-10-26 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2024101174A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047866A (en) * 2002-07-15 2004-02-12 Renesas Technology Corp Semiconductor device
JP2015026835A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
JP2016006846A (en) * 2014-05-27 2016-01-14 京セラ株式会社 Wiring board and electronic apparatus
WO2016121491A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Electronic circuit module
US20210127484A1 (en) * 2019-10-28 2021-04-29 Samsung Electro-Mechanics Co., Ltd. Printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047866A (en) * 2002-07-15 2004-02-12 Renesas Technology Corp Semiconductor device
JP2015026835A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
JP2016006846A (en) * 2014-05-27 2016-01-14 京セラ株式会社 Wiring board and electronic apparatus
WO2016121491A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Electronic circuit module
US20210127484A1 (en) * 2019-10-28 2021-04-29 Samsung Electro-Mechanics Co., Ltd. Printed circuit board

Similar Documents

Publication Publication Date Title
EP1952440B1 (en) Metal cuboid semiconductor device and method
TW398063B (en) Lead frame and its manufacturing method thereof
US6025640A (en) Resin-sealed semiconductor device, circuit member for use therein and method of manufacturing resin-sealed semiconductor device
JP4606849B2 (en) Semiconductor chip package having decoupling capacitor and manufacturing method thereof
CN101834166B (en) Leadless integrated circuit package having standoff contacts and die attach pad
JPH10200012A (en) Package of ball grid array semiconductor and its manufacturing method
US20010027007A1 (en) Semiconductor device having bump electrodes and method of manufacturing the same
US6713317B2 (en) Semiconductor device and laminated leadframe package
US7719119B2 (en) Semiconductor device, electronic apparatus comprising the same, and method for fabrication of substrate for semiconductor device used therein
KR100611291B1 (en) Circuit device, circuit module, and manufacturing method of the circuit device
KR100411862B1 (en) Wiring substrate and semiconductor device
US20080142945A1 (en) Semiconductor package with redistribution layer of semiconductor chip directly contacted with substrate and method of fabricating the same
US11749589B2 (en) Module
KR102117477B1 (en) Semiconductor package and manufacturing method thereof
WO2024101174A1 (en) Semiconductor device
KR100818116B1 (en) Semiconductor package
JP4564968B2 (en) Temperature measuring device and method for manufacturing the device
JP7382167B2 (en) Electronic device and method for manufacturing electronic device
JP7154818B2 (en) Semiconductor device and method for manufacturing semiconductor device
JPH0613490A (en) Semiconductor device
WO2024176824A1 (en) Semiconductor device
JP2722451B2 (en) Semiconductor device
WO2024142884A1 (en) Electronic device and method for manufacturing electronic device
WO2024127985A1 (en) Electronic device
WO2024018798A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888522

Country of ref document: EP

Kind code of ref document: A1