WO2024101000A1 - Separation membrane and method for producing same - Google Patents

Separation membrane and method for producing same Download PDF

Info

Publication number
WO2024101000A1
WO2024101000A1 PCT/JP2023/033990 JP2023033990W WO2024101000A1 WO 2024101000 A1 WO2024101000 A1 WO 2024101000A1 JP 2023033990 W JP2023033990 W JP 2023033990W WO 2024101000 A1 WO2024101000 A1 WO 2024101000A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
separation
polyimide
functional layer
structural unit
Prior art date
Application number
PCT/JP2023/033990
Other languages
French (fr)
Japanese (ja)
Inventor
伶哉 日野
賢輔 谷
俊亮 佐山
雅士 三宅
信 近藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024101000A1 publication Critical patent/WO2024101000A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a separation membrane and a method for producing the same.
  • Membrane separation has been developed as a method for separating acidic gases from mixed gases that contain acidic gases such as carbon dioxide. Compared to the absorption method, which separates acidic gases contained in a mixed gas by absorbing them into an absorbent, the membrane separation method can efficiently separate acidic gases while keeping operating costs low.
  • Separation membranes used in membrane separation methods include composite membranes in which a separation functional layer is formed on a porous support.
  • Materials for the separation functional layer include resins such as polyimide resins and polyether block amide resins.
  • Patent Document 1 discloses a separation membrane containing a polyimide resin.
  • the present invention relates to A separation functional layer including polyimide P1; A porous support directly contacting the separation functional layer; Equipped with The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a 6-membered ring acid anhydride structure,
  • the present invention provides a separation membrane having a ratio R of the value obtained by multiplying the standard deviation ⁇ 1 by 3 to the average value Av1 for a separation factor ⁇ determined by the following Test 1 of 70% or less. Test 1: The separation membrane is cut to prepare three or more test pieces.
  • a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized.
  • a separation coefficient ⁇ of carbon dioxide relative to nitrogen is determined for each of the test pieces.
  • the carbon dioxide content in the mixed gas is 50 vol% under standard conditions
  • the mixed gas supplied to the space adjacent to the one side has a temperature of 30° C. and a pressure of 0.1 MPa, and the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  • the present invention relates to A method for producing a separation membrane comprising a separation functional layer containing polyimide P1 and a porous support directly in contact with the separation functional layer
  • the manufacturing method includes: A step I of forming the separation functional layer by applying a first coating liquid containing a material for the separation functional layer onto a substrate and drying the first coating liquid; A step II of applying a second coating liquid containing a material for the porous support and a porosifying agent onto the separation functional layer to form a coating film; Step III of removing the porosifying agent from the coating film to form the porous support;
  • the polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a six-membered ring acid anhydride structure.
  • the present invention provides a new separation membrane suitable for separating acid gases from a gas mixture that contains acid gases.
  • 1 is a cross-sectional view showing a schematic diagram of a separation membrane according to one embodiment of the present invention.
  • 1A to 1C are diagrams for explaining a method for producing a separation membrane.
  • 1A to 1C are diagrams for explaining a method for producing a separation membrane.
  • 1A to 1C are diagrams for explaining a method for producing a separation membrane.
  • 1 is a schematic cross-sectional view of a membrane separation device equipped with a separation membrane of the present invention.
  • FIG. 11 is a perspective view that illustrates a modified example of a membrane separation device provided with a separation membrane of the present invention.
  • the separation membrane according to the first aspect of the present invention is A separation functional layer including polyimide P1; A porous support directly contacting the separation functional layer; Equipped with The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a 6-membered ring acid anhydride structure,
  • A1 derived from a tetracarboxylic dianhydride having a 6-membered ring acid anhydride structure
  • a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized.
  • a separation coefficient ⁇ of carbon dioxide relative to nitrogen is determined for each of the test pieces.
  • the carbon dioxide content in the mixed gas is 50 vol% under standard conditions
  • the mixed gas supplied to the space adjacent to the one side has a temperature of 30° C. and a pressure of 0.1 MPa, and the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  • the average value Av1 is 20 or more.
  • the average permeation rate Av2 determined by the following Test 2 is 300 GPU or more.
  • Test 2 Three or more test pieces are prepared by the same method as in Test 1, and the above operation is carried out for each of the test pieces. Based on the results of the above operation, the permeation rate of carbon dioxide that permeated the test piece is determined for each of the test pieces.
  • the thickness of the separation functional layer is 3 ⁇ m or less.
  • the total thickness of the separation functional layer and the porous support is 30 ⁇ m or more.
  • the structural unit A1 is represented by the following formula (A1).
  • R 1a to R 4a are each independently a hydrogen atom or any substituent.
  • the polyimide P1 further contains a structural unit B1 derived from a diamine, and at least one of the structural units A1 and B1 has at least one functional group F selected from the group consisting of a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
  • the porous support includes polyimide P2.
  • the polyimide P2 contains the structural unit A1.
  • a manufacturing method includes the steps of: A method for producing a separation membrane comprising a separation functional layer containing polyimide P1 and a porous support directly in contact with the separation functional layer,
  • the manufacturing method includes: A step I of forming the separation functional layer by applying a first coating liquid containing a material for the separation functional layer onto a substrate and drying the first coating liquid; A step II of applying a second coating liquid containing a material for the porous support and a porosifying agent onto the separation functional layer to form a coating film; Step III of removing the porosifying agent from the coating film to form the porous support;
  • the polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a six-membered ring acid anhydride structure.
  • the polyimide P1 further includes a structural unit B1 derived from a diamine, and at least one of the structural units A1 and B1 has at least one functional group F selected from the group consisting of a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
  • At least one of the structural unit A1 and the structural unit B1 has the metal salt.
  • the first coating liquid contains, as the material of the separation functional layer, polyimide P having at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, and a compound having a metal, and in the step I, the polyimide P1 is formed from the polyimide P.
  • the compound includes a metal complex having the metal and a ligand coordinated to the metal.
  • the porosifying agent includes at least one selected from the group consisting of ether compounds and phosphoric acid compounds.
  • the porosifying agent is removed from the coating film by drying the coating film.
  • the separation membrane 10 of this embodiment includes a separation functional layer 1 and a porous support 2, and is, for example, composed of only the separation functional layer 1 and the porous support 2.
  • the porous support 2 is in direct contact with the separation functional layer 1 and supports the separation functional layer 1.
  • the separation functional layer 1 and the porous support 2 are, for example, integrated. In this specification, "integrated" means that the members cannot be separated from each other without destruction.
  • the separation functional layer 1 contains polyimide P1.
  • Polyimide P1 contains a structural unit A1 derived from tetracarboxylic dianhydride a1 having a six-membered ring acid anhydride structure S.
  • the separation membrane 10 with respect to the separation factor ⁇ determined by the following test 1, the ratio R of the value obtained by multiplying the standard deviation ⁇ 1 by 3 to the average value Av1 is 70% or less.
  • Test 1 The separation membrane 10 is cut to prepare three or more test pieces. For each test piece, a mixed gas consisting of carbon dioxide and nitrogen is supplied to the space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized (separation operation). Based on the results of the separation operation, the separation coefficient ⁇ of carbon dioxide relative to nitrogen is specified for each test piece.
  • the carbon dioxide content in the mixed gas is 50 vol% under standard conditions
  • the mixed gas supplied to the space adjacent to one side has a temperature of 30° C. and a pressure of 0.1 MPa
  • the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  • each test piece has the same shape and size, for example, a disk shape with a diameter of 20 mm.
  • the size of the disk-shaped test piece may be 20 mm or more in diameter.
  • Test 1 The separation operation of Test 1 can be performed, for example, by the following method. First, the test piece is set in a metal cell and sealed with an O-ring to prevent leakage. Next, the mixed gas is injected into the space (supply space) in the metal cell so that the mixed gas contacts the main surface 11 on the separation function layer side of the test piece. As described above, the carbon dioxide content of the mixed gas injected into the supply space is 50 vol% under standard conditions (0°C, 101 kPa). The mixed gas has a temperature of 30°C and a pressure of 0.1 MPa. In this specification, unless otherwise specified, "pressure" means absolute pressure.
  • the space (permeation space) in the metal cell adjacent to the main surface 12 on the porous support side of the test piece is depressurized by a vacuum pump.
  • the permeation space is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  • a permeation fluid that has permeated the test piece is obtained in the permeation space.
  • the separation factor ⁇ (CO 2 /N 2 ) of carbon dioxide relative to nitrogen can be calculated based on the weight of the permeation fluid and the volume ratio of carbon dioxide and the volume ratio of nitrogen in the permeation fluid.
  • the separation factor ⁇ can be calculated from the following formula.
  • X A and X B are the volume ratio of carbon dioxide and the volume ratio of nitrogen in the mixed gas, respectively.
  • the ratio R is 70% or less, preferably 60% or less, and may be 50% or less, 40% or less, 30% or less, 20% or less, 15% or less, or even 10% or less. It can be said that the lower the ratio R, the more the variation in the separation coefficient ⁇ in each test piece is suppressed.
  • the lower limit of the ratio R is not particularly limited, and may be, for example, 1% or more, or 5% or more.
  • the average value Av1 of the separation coefficient ⁇ is large.
  • the average value Av1 is, for example, 20 or more, and may be 25 or more, 30 or more, or even 35 or more.
  • the upper limit of the average value Av1 is not particularly limited, and may be, for example, 100, or 50.
  • the separation membrane 10 of the present embodiment preferably has an average permeation rate Av2 determined by the following Test 2 of 300 GPU or more.
  • Test 2 Three or more test pieces are prepared by the same method as in Test 1, and the above-mentioned separation operation is carried out for each of the test pieces. Based on the results of the separation operation, the permeation rate of carbon dioxide that permeated the test piece is determined for each of the test pieces.
  • each test piece has the same shape and size, for example, a disk shape with a diameter of 20 mm.
  • the size of the disk-shaped test piece may be 20 mm or more in diameter.
  • the permeation rate of carbon dioxide that has permeated the test piece can be specified for each test piece based on the results of the separation operation described above in Test 1.
  • GPU which is the unit of permeation rate, means 10 -6 ⁇ cm 3 (STP) / (sec ⁇ cm 2 ⁇ cmHg).
  • cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0 ° C. Based on the permeation rate of each test piece specified by Test 2, the average permeation rate Av2 can be calculated.
  • the average value Av2 of the transmission speed is large.
  • the average value Av2 is, for example, 300 GPU or more, and may be 400 GPU or more, 500 GPU or more, 600 GPU or more, 700 GPU or more, 800 GPU or more, 900 GPU or more, 1000 GPU or more, or even 1100 GPU or more.
  • the upper limit of the average value Av2 is not particularly limited, and is, for example, 3000 GPU.
  • the separation functional layer 1 is, for example, a layer that allows preferential permeation of acidic gases contained in a mixed gas, and is typically a dense layer (non-porous layer) in which no pores can be identified when observed at a magnification of 5000 times using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the separation functional layer 1 includes polyimide P1.
  • Polyimide P1 includes a structural unit A1 derived from a tetracarboxylic dianhydride a1 having a six-membered ring acid anhydride structure S, and further includes, for example, a structural unit B1 derived from a diamine b1.
  • At least one of the structural units A1 and B1 has at least one functional group F selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
  • At least one of the structural units A1 and B1 preferably has a metal salt as the functional group F.
  • the structural unit B1 has a functional group F.
  • the structural unit A1 may or may not have a functional group F.
  • the structural unit A1 derived from the tetracarboxylic dianhydride a1 is a structural unit suitable for improving the permeation rate of an acidic gas that permeates the separation functional layer 1.
  • the tetracarboxylic dianhydride a1 has, for example, one or more, preferably two, acid anhydride structures S.
  • the six-membered acid anhydride structure S is typically a glutaric anhydride structure represented by the following formula (1).
  • the tetracarboxylic dianhydride a1 may further have at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, or may not have the functional group f.
  • the functional group f is the same as the functional group F, except that metal salts are not included as an option.
  • the tetracarboxylic dianhydride a1 may have a condensed ring, and the condensed ring may contain an acid anhydride structure S.
  • the condensed ring may contain an aromatic ring together with the acid anhydride structure S.
  • the aromatic ring contained in the condensed ring may be composed only of carbon atoms, or may be a heteroaromatic ring containing a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the aromatic ring may be polycyclic or monocyclic.
  • the number of carbon atoms in the aromatic ring is not particularly limited, and is, for example, 4 to 14.
  • aromatic rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a furan ring, a pyrrole ring, a pyridine ring, and a thiophene ring.
  • the fused ring may or may not have a substituent.
  • the substituent of the fused ring is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group.
  • the halogen group include a fluoro group, a chloro group, a bromo group, and an iodo group.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1 to 15.
  • Examples of the hydrocarbon group are alkyl groups such as a methyl group, an ethyl group, and a propyl group.
  • the hydrocarbon group may be a halogenated hydrocarbon group in which a hydrogen atom is substituted with a halogen group.
  • the fused ring has multiple substituents, the multiple substituents may be the same as or different from each other.
  • the tetracarboxylic dianhydride a1 is represented, for example, by the following formula (a1).
  • R 1a to R 4a are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above.
  • the structural unit A1 derived from the tetracarboxylic dianhydride a1 is represented, for example, by the following formula (A1).
  • the structural unit A1 represented by formula (A1) is derived from the tetracarboxylic dianhydride a1 represented by the above formula (a1).
  • the nitrogen atom contained in the imide group is derived from the diamine that has reacted with the tetracarboxylic dianhydride a1.
  • R 1a to R 4a are the same as those in formula (a1) and are each independently a hydrogen atom or an arbitrary substituent.
  • Specific examples of the structural unit A1 represented by formula (A1) include the following formula (A1-1).
  • the ratio p1 of the amount of substance of the structural unit A1 to the amount of substance of all structural units A derived from tetracarboxylic dianhydride is, for example, 50 mol% or more, and may be 70 mol% or more, 90 mol% or more, 95 mol% or more, or even 99 mol% or more.
  • the polyimide P1 may contain only the structural unit A1 as the structural unit A derived from tetracarboxylic dianhydride. However, the polyimide P1 may further contain, in addition to the structural unit A1, a structural unit A2 derived from a tetracarboxylic dianhydride a2 having a five-membered ring acid anhydride structure.
  • the tetracarboxylic dianhydride a2 is not particularly limited, and examples thereof include pyromellitic dianhydride and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride.
  • the structural unit B1 derived from diamine b1, particularly the structural unit B1 having the functional group F, is a structural unit suitable for improving the selectivity of acidic gases that permeate the separation functional layer 1.
  • Diamine b1 is a compound having two primary amino groups and further having at least one functional group f selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, and a thiol group.
  • the number of functional groups f in diamine b1 is not particularly limited, and is, for example, 5 or less, preferably 2 or less, and particularly preferably 1. The fewer the number of functional groups f in diamine b1, the more improved the solubility of polyimide P1 is, and the easier it tends to be to apply a desired manufacturing method for separation functional layer 1.
  • the above-mentioned functional group f has a dissociable proton and can form a salt with a counter cation.
  • diamine b1 has a carboxyl group as the functional group f. It is preferable that diamine b1 does not have a group having a dissociable proton other than the functional group f, such as a sulfonic acid group. As an example, when diamine b1 does not contain a sulfonic acid group, it is easy to appropriately adjust the solubility of polyimide P1.
  • Diamine b1 may further have an aromatic ring.
  • the aromatic ring include those described above for tetracarboxylic dianhydride a1.
  • the substituent of the aromatic ring includes, for example, functional group f and a primary amino group.
  • the aromatic ring may have other substituents other than the substituent including functional group f and the substituent including a primary amino group, or may not have other substituents.
  • the other substituents include, but are not limited to, halogen groups and hydrocarbon groups. Examples of the halogen groups and hydrocarbon groups include those described above for tetracarboxylic dianhydride a1.
  • the other substituents may include a photopolymerizable functional group (for example, a vinyl group).
  • Diamine b1 is represented, for example, by the following formula (b1), formula (b2) or formula (b3).
  • R 1b to R 4b are each independently a hydrogen atom or an arbitrary substituent.
  • at least one selected from the group consisting of R 1b to R 4b is a group containing a functional group f, and is preferably the functional group f itself.
  • the arbitrary substituent other than the group containing the functional group f is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • R 5b to R 12b are each independently a hydrogen atom or an arbitrary substituent, and X 1 is a single bond or an arbitrary linking group.
  • at least one selected from the group consisting of R 5b to R 12b is a group containing a functional group f, and is preferably the functional group f itself.
  • the arbitrary substituent other than the group containing the functional group f is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the optional linking group is, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group include alkylene groups such as a methylene group, an ethylene group, a propane-1,3-diyl group, and a propane-2,2-diyl group.
  • the divalent hydrocarbon group may be a halogenated hydrocarbon group in which a hydrogen atom is substituted with a halogen group.
  • X 1 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
  • R 13b to R 20b are each independently a hydrogen atom or an arbitrary substituent, and X 2 is a single bond or an arbitrary linking group.
  • at least one selected from the group consisting of R 13b to R 20b is a group containing a functional group f, and is preferably the functional group f itself.
  • the arbitrary substituent other than the group containing the functional group f is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the optional linking group is, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group include those described above for X1 .
  • X2 may contain a functional group such as an ether group or an ester group in addition to or instead of the divalent hydrocarbon group.
  • the structural unit B1 derived from the diamine b1 preferably has a functional group F.
  • the structural unit B1 preferably contains, as the functional group F, a metal salt of a carboxyl group, a metal salt of a hydroxyl group, or a metal salt of a thiol group, and it is particularly preferable that the structural unit B1 contains a metal salt of a carboxyl group.
  • the metal contained in the metal salt as functional group F is not particularly limited, and examples thereof include Li, Na, K, Be, Mg, Ca, Ba, Sc, Y, Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Ag, Zn, B, Al, Ga, In, Pb, etc., and preferably Mg, Fe, Al, and Ga, and particularly preferably Al.
  • the metal salt as functional group F is preferably an aluminum salt.
  • the metal contained in the metal salt may be Na, Ca, etc.
  • the metal is present, in particular, as a cation.
  • the valence of this metal cation is, for example, 1 or more, preferably 2 or more, and more preferably 3 or more. As an example, the valence of the metal cation is 2 or 3.
  • the structural unit B1 contains a metal salt as the functional group F
  • multiple polyimides P1 can be coordinated to metal cations contained in the metal salt via functional groups such as carboxyl groups.
  • functional groups such as carboxyl groups.
  • multiple polyimides P1 are crosslinked with each other via metal cations.
  • physical aging of the polyimide P1 is suppressed, and thus the separation performance of the separation functional layer 1 tends to be suppressed from decreasing over time.
  • the separation performance of the separation functional layer 1 also tends to be improved.
  • the metal salt as the functional group F can be formed by exchanging a dissociable proton with a metal cation for a functional group f contained in the polyimide P obtained from a monomer group including, for example, tetracarboxylic dianhydride a1 and diamine b1.
  • the structural unit B1 derived from diamine b1 is represented, for example, by the following formula (B1), formula (B2) or formula (B3).
  • the structural unit B1 represented by formula (B1) is derived from diamine b1 represented by the above formula (b1).
  • the structural unit B1 represented by formula (B2) is derived from diamine b1 represented by the above formula (b2).
  • the structural unit B1 represented by formula (B3) is derived from diamine b1 represented by the above formula (b3).
  • R 1b to R 4b are each independently a hydrogen atom or an arbitrary substituent.
  • at least one selected from the group consisting of R 1b to R 4b is a group containing a functional group F, and is preferably the functional group F itself.
  • the arbitrary substituent other than the group containing the functional group F is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the structural unit B1 represented by formula (B1) include the following formulae (B1-1) to (B1-6).
  • M is any metal cation, preferably an Mg ion, an Fe ion, an Al ion or a Ga ion, and particularly preferably an Al ion.
  • M may also be an Na ion or a Ca ion.
  • R 5b to R 12b are each independently a hydrogen atom or an arbitrary substituent, and X 1 is a single bond or an arbitrary linking group.
  • at least one selected from the group consisting of R 5b to R 12b is a group containing a functional group F, and is preferably the functional group F itself.
  • the arbitrary substituent other than the group containing the functional group F is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the optional linking group is, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group include those described above.
  • X1 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
  • M is any metal cation, preferably an Mg ion, an Fe ion, an Al ion, or a Ga ion, and particularly preferably an Al ion. M may also be a Na ion or a Ca ion.
  • R 13b to R 20b are each independently a hydrogen atom or an arbitrary substituent, and X 2 is a single bond or an arbitrary linking group.
  • at least one selected from the group consisting of R 13b to R 20b is a group containing a functional group F, and is preferably the functional group F itself.
  • the arbitrary substituent other than the group containing the functional group F is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the optional linking group is, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group include those described above.
  • X2 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
  • M is any metal cation, preferably an Mg ion, an Fe ion, an Al ion, or a Ga ion, and particularly preferably an Al ion. M may also be a Na ion or a Ca ion.
  • the ratio p2 of the amount of substance of the structural unit B1, particularly the structural unit B1 having a functional group F, to the amount of substance of all structural units B derived from diamine is, for example, 1 mol% or more, and may be 3 mol% or more.
  • the upper limit of the ratio p2 is not particularly limited, and may be, for example, 60 mol%, 50 mol%, 40 mol%, 30 mol%, or even 25 mol%.
  • the ratio p2 is preferably 1 to 25 mol%. When the ratio p2 is in this range, the separation performance of the separation functional layer 1 tends to be good.
  • Polyimide P1 may further contain a structural unit B2 derived from diamine b2 having a sulfonyl group (-SO 2 -).
  • the structural unit B2 is a structural unit suitable for improving the permeation coefficient and permeation rate of acidic gases that permeate through the separation functional layer 1.
  • Diamine b2 is a compound having two primary amino groups together with a sulfonyl group.
  • the number of sulfonyl groups in diamine b2 is not particularly limited and is, for example, 5 or less, and preferably 1.
  • Diamine b2 does not contain a group having a dissociable proton, such as the above-mentioned functional group f.
  • Diamine b2 for example, contains a ring structure having a sulfonyl group.
  • the ring structure having a sulfonyl group is typically a thiophene 1,1-dioxide ring or a tetrahydrothiophene 1,1-dioxide ring.
  • the diamine b2 may have a condensed ring, and the condensed ring may contain a ring structure having a sulfonyl group.
  • the condensed ring may contain an aromatic ring together with the ring structure having a sulfonyl group. Examples of the aromatic ring include those described above for the tetracarboxylic dianhydride a1.
  • the substituent of the condensed ring contains, for example, a primary amino group.
  • the condensed ring may contain other substituents than the substituent containing the primary amino group, or may not contain other substituents.
  • the other substituents are not particularly limited, and examples thereof include halogen groups and hydrocarbon groups. Examples of halogen groups and hydrocarbon groups include those described above for tetracarboxylic dianhydride a1.
  • Diamine b2 is represented, for example, by the following formula (c1).
  • R 1c to R 6c are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group f, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the structural unit B2 derived from the diamine b2 is represented, for example, by the following formula (C1):
  • the structural unit B2 represented by formula (C1) is derived from the diamine b2 represented by the above formula (c1).
  • R 1c to R 6c are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the structural unit B2 represented by formula (C1) is suitable for improving the rigidity of the polyimide P1. According to the polyimide P1 having excellent rigidity, even when the pressure of the mixed gas to be separated is high, the separation functional layer 1 tends to be suppressed from being plasticized.
  • structural unit B2 represented by formula (C1) include the following formulae (C1-1) and (C1-2).
  • the ratio p3 of the amount of substance of the structural unit B2 to the amount of substances of all structural units B derived from diamine is not particularly limited, and may be, for example, 5 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, or even 40 mol% or more.
  • the upper limit of ratio p3 is not particularly limited, and may be, for example, 95 mol%, 90 mol%, 80 mol%, 70 mol%, 60 mol%, or even 50 mol%.
  • Polyimide P1 may further contain a structural unit B3 derived from a diamine b3 other than diamines b1 and b2.
  • Diamine b3 is a compound that does not have the above-mentioned functional group f or a sulfonyl group, and has two primary amino groups. Diamine b3 does not, for example, contain a group having a dissociable proton.
  • Diamine b3 may further have an aromatic ring.
  • the aromatic ring include those described above for tetracarboxylic dianhydride a1.
  • the substituent of the aromatic ring includes, for example, a primary amino group.
  • the aromatic ring may have other substituents other than the substituent including the primary amino group, or may not have other substituents.
  • the other substituents include, but are not limited to, halogen groups and hydrocarbon groups. Examples of the halogen groups and hydrocarbon groups include those described above for tetracarboxylic dianhydride a1.
  • Diamine b3 is represented, for example, by the following formula (d1), formula (d2) or formula (d3).
  • R 1d to R 4d are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group f and the group containing a sulfonyl group, and more specifically, a halogen group, a hydrocarbon group, etc.
  • the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • R 5d to R 8d are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group f and the group containing a sulfonyl group, and more specifically, a halogen group, a hydrocarbon group, etc.
  • the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • R 9d to R 16d are each independently a hydrogen atom or an arbitrary substituent, and X 3 is a single bond or an arbitrary linking group.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group f and the group containing a sulfonyl group, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the optional linking group is, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group include those mentioned above.
  • the divalent hydrocarbon group may further have an aromatic ring. Examples of the aromatic ring include those mentioned above for the tetracarboxylic dianhydride a1.
  • the divalent hydrocarbon group in X3 may be a fluorenediyl group.
  • X3 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
  • the structural unit B3 derived from diamine b3 is represented, for example, by the following formula (D1), formula (D2) or formula (D3).
  • the structural unit B3 represented by formula (D1) is derived from diamine b3 represented by the above formula (d1).
  • the structural unit B3 represented by formula (D2) is derived from diamine b3 represented by the above formula (d2).
  • the structural unit B3 represented by formula (D3) is derived from diamine b3 represented by the above formula (d3).
  • R 1d to R 4d are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and more specifically, a halogen group, a hydrocarbon group, etc.
  • the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • a specific example of the structural unit B3 represented by formula (D1) is the following formula (D1-1).
  • R 5d to R 8d are each independently a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and more specifically, a halogen group, a hydrocarbon group, etc.
  • the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • a specific example of the structural unit B3 represented by formula (D2) is the following formula (D2-1).
  • R 9d to R 16d are each independently a hydrogen atom or an arbitrary substituent, and X 3 is a single bond or an arbitrary linking group.
  • the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and in detail, is a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
  • the arbitrary linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include those described above.
  • X 3 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group. Specific examples of the structural unit B3 represented by formula (D3) include the following formulae (D3-1) to (D3-3).
  • the ratio p4 of the amount of substance of the structural unit B3 to the amount of substances of all structural units B derived from diamine is not particularly limited, and may be, for example, 5 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, or even 40 mol% or more.
  • the upper limit of ratio p4 is not particularly limited, and may be, for example, 95 mol%, 90 mol%, 80 mol%, 70 mol%, 60 mol%, or even 50 mol%.
  • polyimide P1 structural units A derived from tetracarboxylic dianhydride and structural units B derived from diamine are arranged alternately.
  • examples of combinations of adjacent structural units A and B include the following formulae (A1-B1), (A1-B2), (A1-C1), and (A1-D1).
  • R 1a to R 4a , R 1b to R 12b , R 1c to R 6c , and R 1d to R 4d are the same as those described above for formulae (A1), (B1), (B2), (C1), and (D1).
  • the weight average molecular weight (Mw) of polyimide P1 is, for example, 30,000 or more, preferably 50,000 or more, and more preferably 75,000 or more, from the viewpoint of the mechanical strength of the separation functional layer 1.
  • the upper limit of the weight average molecular weight of polyimide P1 is not particularly limited, and is, for example, 1 million.
  • the weight average molecular weight of polyimide P1 can be calculated, for example, by measuring the molecular weight distribution of polyimide P1 using a gel permeation chromatograph (GPC) equipped with a refractive index detector (RID) and using a calibration curve based on standard polystyrene from the obtained chromatogram (chart).
  • GPC gel permeation chromatograph
  • RID refractive index detector
  • the content of polyimide P1 in the separation functional layer 1 is, for example, 50 wt% or more, and may be 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, or even 95 wt% or more.
  • the separation functional layer 1 may be substantially composed of only polyimide P1.
  • the separation functional layer 1 may further contain other components in addition to polyimide P1.
  • other components include fillers such as nanoparticles.
  • the nanoparticles may contain an inorganic material or may contain an organic material.
  • inorganic materials contained in the nanoparticles include silica, titania, and alumina.
  • the fillers are dispersed in a matrix containing, for example, polyimide P1. The fillers may be spaced apart from each other within the matrix, or may be partially aggregated.
  • the thickness of the separation functional layer 1 is, for example, 50 ⁇ m or less, and may be 25 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, 2.5 ⁇ m or less, 2 ⁇ m or less, or even 1.5 ⁇ m or less.
  • the lower limit of the thickness of the separation functional layer 1 may be 0.05 ⁇ m or 0.1 ⁇ m.
  • the thickness of the separation functional layer 1 can be determined by the following method. First, the cross section of the separation membrane 10 is observed with a scanning electron microscope. Using the obtained electron microscope image, the distance between a pair of opposing main surfaces of the separation functional layer 1 is measured. The above distance is measured at three or more positions, and the average of the obtained values can be regarded as the thickness of the separation functional layer 1. In this embodiment, the variation in the distance between the pair of opposing main surfaces in the separation functional layer 1 tends to be suppressed. In other words, the variation in thickness within the separation functional layer 1 tends to be suppressed. When the variation in thickness within the separation functional layer 1 is suppressed, it can be said that the separation functional layer 1 has a smooth surface. Whether the surface of the separation functional layer 1 is smooth can also be determined by visually observing the reflection of light (visible light) on the surface of the separation functional layer 1.
  • the porous support 2 is in direct contact with the separation functional layer 1 and supports the separation functional layer 1.
  • the porous support 2 has a porous structure. From the viewpoint of improving the permeation coefficient and permeation rate of the acidic gas permeating the separation membrane 10, the porous support 2 preferably has continuous pores formed continuously in a three-dimensional shape. However, the porous support 2 may have independent pores, or may have both continuous pores and independent pores. The porous support 2 may have through holes penetrating the porous support 2.
  • the porous support 2 includes, for example, a polymer.
  • the polymer included in the porous support 2 include polyimide P2, polyamide, polyamideimide, polyether ether ketone, polyphenylene sulfide, and the like. It is preferable that the porous support 2 includes polyimide P2.
  • the polyimide P2 included in the porous support 2 may be the polyimide P1 included in the separation functional layer 1 described above, or may be the same as the polyimide P1. In other words, the polyimide P2 may include the structural unit A1 described above. However, the polyimide P2 may be a polyimide other than the polyimide P1 described above.
  • the polymer (particularly polyimide P2) content in the porous support 2 is, for example, 50 wt% or more, and may be 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, or even 95 wt% or more.
  • the porous support 2 may be composed essentially of polymer only.
  • the thickness of the porous support 2 is, for example, 10 ⁇ m or more, and may be 30 ⁇ m or more, 50 ⁇ m or more, 70 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, or even 110 ⁇ m or more.
  • the upper limit of the thickness of the porous support 2 is, for example, 300 ⁇ m.
  • the thickness of the porous support 2 can be determined by the following method. First, the cross section of the separation membrane 10 is observed with a scanning electron microscope. Using the obtained electron microscope image, the distance between a pair of opposing main surfaces of the porous support 2 is measured. The above distance is measured at three or more positions, and the average of the obtained values can be regarded as the thickness of the porous support 2.
  • the total value V of the thickness of the separation functional layer 1 and the thickness of the porous support 2 is, for example, 10 ⁇ m or more, and may be 30 ⁇ m or more, 50 ⁇ m or more, 70 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, or even 110 ⁇ m or more.
  • the upper limit of the total value V is, for example, 300 ⁇ m.
  • the separation membrane 10 is typically a flat membrane.
  • the separation membrane 10 may have a shape other than a flat membrane, for example, a hollow fiber membrane.
  • the method for producing the separation membrane 10 includes, for example, step I (FIG. 2A) of forming the separation functional layer 1 by applying a first coating liquid containing the material of the separation functional layer 1 onto a substrate 5 and drying it, step II (FIG. 2B) of forming the coating film 6 by applying a second coating liquid containing the material of the porous support 2 and a porogen onto the separation functional layer 1, and step III (FIG. 2C) of forming the porous support 2 by removing the porogen from the coating film 6.
  • the first coating liquid contains, as materials for the separation functional layer 1, a polyimide P having at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, and a compound M having a metal.
  • the polyimide P is a precursor of the polyimide P1
  • the polyimide P1 can be formed from the polyimide P by exchanging the dissociative proton of the functional group f with a metal cation.
  • this first coating liquid can form a polyimide P1 having a metal salt as the functional group F.
  • Polyimide P can be prepared, for example, by the following method. First, a diamine group including the above-mentioned diamine b1 is dissolved in a solvent to obtain a solution.
  • the solvent include polar organic solvents such as N-methyl-2-pyrrolidone and 1,3-dioxolane.
  • the tetracarboxylic dianhydride group including the above-mentioned tetracarboxylic dianhydride a1 is gradually added to the obtained solution. This causes the tetracarboxylic dianhydride a1 to react with the monomer group including the diamine b1 to form polyamic acid.
  • the addition of the tetracarboxylic dianhydride group is carried out under stirring conditions, for example, for 3 to 20 hours in a heated environment of 140°C or higher.
  • polyimide P can be obtained by imidizing polyamic acid.
  • the imidization method include chemical imidization and thermal imidization.
  • the chemical imidization method is a method in which polyamic acid is imidized, for example, at room temperature using a dehydrating condensation agent.
  • Examples of the dehydrating condensation agent include acetic anhydride, pyridine, and triethylamine.
  • the thermal imidization method is a method in which polyamic acid is imidized by heat treatment. The temperature of the heat treatment is, for example, 180°C or higher.
  • the content of polyimide P in the first coating liquid can be adjusted appropriately depending on the solubility of polyimide P, and is, for example, 1 wt% to 30 wt%.
  • the ratio of the weight of polyimide P to the total weight of polyimide P and the solvent is, for example, 1 wt% to 30 wt%.
  • the metal contained in compound M includes those mentioned above as the metal contained in the metal salt as functional group F.
  • the metal exists, for example, as a cation.
  • Examples of compound M include a metal complex having a metal and a ligand coordinated to the metal, and an inorganic salt containing a metal.
  • Compound M preferably contains a metal complex.
  • the ligand is volatile.
  • the boiling point of the ligand may be 20°C to 260°C under atmospheric pressure (101.325 kPa).
  • a volatile ligand is likely to volatilize when the first coating film described below is dried, and is unlikely to remain in the separation functional layer 1.
  • the ligand does not have to be volatile. In this case, the ligand can be easily removed from the separation functional layer 1 by performing a cleaning operation after the formation of the separation functional layer 1 (or separation membrane 10).
  • the ligand is typically an organic ligand having a functional group for coordinating to the metal.
  • the number of carbon atoms in the organic ligand is not particularly limited, and may be, for example, 1 to 10.
  • Examples of the functional group contained in the organic ligand include a carbonyl group such as a ketone group.
  • the number of functional groups contained in the organic ligand may be, for example, 1 or more, and may be 2 or more.
  • a specific example of the organic ligand is acetylacetonate (acac).
  • a specific example of the metal complex is Al(acac) 3 .
  • inorganic salts include chlorides, nitrates, sulfates, etc., and more specifically, LiCl, NaCl, KCl, AgNO3 , MgCl2 , CaCl2 , BaCl2 , NiCl2 , ZnCl2 , CuCl2 , Pb( NO3 ) 2 , Al( NO3 ) 3 , Fe2 ( SO4 ) 3 , etc.
  • the ratio of the weight of compound M to the weight of polyimide P can be adjusted appropriately depending on the composition of polyimide P, and is, for example, 1 to 10 wt %.
  • the first coating liquid may further contain a ligand.
  • the ratio of the weight of the ligand to the weight of the polyimide P can be appropriately adjusted depending on the content of the polyimide P and the metal complex, and is, for example, 1 to 10 wt %.
  • the first coating liquid further contains, for example, a solvent.
  • the solvent is typically a good solvent capable of dissolving polyimide P.
  • the solvent preferably contains at least one selected from the group consisting of amide compounds and lactone compounds, and more preferably contains an amide compound.
  • amide compounds include N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAc).
  • lactone compounds include ⁇ -butyrolactone.
  • the content of the solvent in the first coating liquid is, for example, 30 wt% to 95 wt%.
  • the ratio of the weight of the solvent to the total weight of the polyimide P and the solvent is, for example, 30 wt% to 95 wt%.
  • the first coating liquid is not limited to the above-mentioned composition.
  • the first coating liquid contains polyimide P1 instead of the above-mentioned polyimide P and compound M.
  • polyimide P1 has at least one functional group F selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
  • examples of the substrate 5 include films containing resin; paper; and sheets containing metal materials such as aluminum and stainless steel. Sheets containing metal materials tend to have high heat resistance.
  • the substrate 5 is preferably a film containing resin, since it has excellent surface smoothness.
  • examples of the polymer contained in the resin include polyolefins such as polyethylene, polypropylene, polybutene, polybutadiene, and polymethylpentene; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyvinyl chloride, vinyl chloride copolymers; polyurethane; ethylene-vinyl acetate copolymers; and polyimides, with polyesters, particularly polyethylene terephthalate, being preferred.
  • polyolefins such as polyethylene, polypropylene, polybutene, polybutadiene, and polymethylpentene
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyvinyl chloride vinyl chloride copolymers
  • polyurethane ethylene-vinyl acetate copolymers
  • polyimides with polyesters, particularly polyethylene terephthalate, being preferred.
  • the surface of the substrate 5 may be subjected to a release treatment.
  • the release treatment may be performed, for example, by applying a release treatment agent to the surface of the substrate 5.
  • the release treatment agent include silicone-based release treatment agents, long-chain alkyl-based release treatment agents, fluorine-based release treatment agents, and molybdenum sulfide-based release treatment agents.
  • the release treatment agents may be used alone or in combination of two or more.
  • the substrate 5 is preferably a polyethylene terephthalate (PET) film that has been subjected to a release treatment.
  • PET polyethylene terephthalate
  • the thickness of the substrate 5 is not particularly limited, but is, for example, 5 to 100 ⁇ m, and preferably 10 to 50 ⁇ m.
  • a surface modification treatment may be performed on the substrate 5 before the first coating liquid is applied. If the substrate 5 has been subjected to a release treatment, the surface modification treatment may be performed on the surface of the substrate 5 that has been subjected to the release treatment. Examples of the surface modification treatment include corona treatment, plasma treatment, excimer treatment, and frame treatment, and corona treatment is preferred.
  • the surface modification treatment can be carried out, for example, by irradiating the surface of the substrate 5 with active energy rays.
  • active energy rays include electron beams, ion beams, plasma beams, and ultraviolet rays.
  • the discharge amount is, for example, 0.1 kW min/ m2 or more.
  • the upper limit of the discharge amount is not particularly limited and is, for example, 10 kW min/ m2 .
  • the method of applying the first coating liquid to the substrate 5 is not particularly limited, and may be, for example, a spin coating method, a dip coating method, a slot die coating method, or the like.
  • the first coating liquid may be applied to the substrate 5 using an applicator or a wire bar.
  • the first coating liquid may be applied, for example, to the surface of the substrate 5 that has been subjected to a peeling treatment or a surface modification treatment.
  • a coating film (first coating film) is formed by applying the first coating liquid to the substrate 5.
  • the thickness of the first coating film can be adjusted appropriately according to the desired thickness of the separation functional layer 1, and is, for example, 1 ⁇ m to 100 ⁇ m.
  • the first coating film is dried to obtain the separation functional layer 1 ( Figure 2A).
  • the drying conditions for the first coating film are not particularly limited, and for example, the drying temperature is 50°C to 200°C and the drying time is 1 minute to 10 hours.
  • the first coating film can be dried, for example, using a heater.
  • the first coating film may be dried by passing it through a heating unit equipped with a heater.
  • the first coating film may be dried by passing it through multiple heating units. The set temperatures of the multiple heating units may be the same or different.
  • the dissociable protons contained in the functional group f of polyimide P are exchanged with the metal (metal cation) of compound M.
  • the metal (metal cation) of compound M when compound M is a metal complex and the ligand contained in the metal complex is volatile, the ligand volatilizes during drying, which tends to promote the exchange between the dissociable protons of functional group f and the metal of compound M.
  • the exchange between the dissociable protons of functional group f and the metal of compound M forms a metal salt of functional group f, and polyimide P1 is formed from polyimide P.
  • the separation functional layer 1 obtained by this method, multiple polyimides P1 are usually crosslinked with each other via metal cations. Due to this crosslinked structure, the separation functional layer 1 tends to have high solvent resistance. Therefore, in this embodiment, when the second coating liquid is applied onto the separation functional layer 1 in step II described later, the separation functional layer 1 tends to be less soluble in the solvent contained in the second coating liquid.
  • the exchange of the dissociable protons contained in the functional group f of the polyimide P with the metal of the compound M may be performed after the formation of the separation functional layer 1.
  • a first coating liquid containing the above-mentioned polyimide P and a solvent is applied onto the substrate 5 and dried to form the separation functional layer 1.
  • the separation functional layer 1 may be immersed in a solution containing the above-mentioned compound M to exchange the dissociable protons of the functional group f with the metal of the compound M.
  • Step I is not limited to the above-mentioned method, and for example, the separation functional layer 1 may be formed by applying a first coating liquid containing the above-mentioned polyimide P1 and a solvent onto the substrate 5 and drying it.
  • the separation functional layer 1 may be produced by applying a first coating liquid containing polyamic acid, which is a precursor of polyimide P1, onto the substrate 5 and imidizing the polyamic acid to form polyimide P1.
  • the second coating liquid preferably contains the material of the porous support 2 and a porogen, and further contains a solvent.
  • the material of the porous support 2 include the above-mentioned polymers.
  • the composition of the second coating liquid may be the same as the composition described above for the first coating liquid, except for the porogen. That is, the second coating liquid may contain, as the material of the porous support 2, a polyimide P having a functional group f and a compound M having a metal.
  • the polyimide P is a precursor of the polyimide P2, and the polyimide P2 can be formed from the polyimide P by exchanging the dissociative proton of the functional group f with a metal cation.
  • the content of the polymer (e.g., polyimide P) in the second coating liquid can be adjusted as appropriate depending on the solubility of the polymer, and is, for example, 1 wt% to 30 wt%.
  • the ratio of the weight of the polymer to the total weight of the polymer, solvent, and porosifying agent is, for example, 1 wt% to 30 wt%.
  • the porosity-inducing agent is, for example, a poor solvent that hardly dissolves the material of the porous support 2 (for example, polyimide P).
  • the porosity-inducing agent preferably contains at least one selected from the group consisting of ether compounds and phosphoric acid compounds, and more preferably contains a phosphoric acid compound.
  • ether compounds include glycol compounds such as diethylene glycol, diethylene glycol monomethyl ether, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol, tetraethylene glycol monomethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, polyethylene glycol dimethyl ether, polyethylene glycol monomethyl ether, and polyethylene glycol.
  • glycol compounds such as diethylene glycol, diethylene glycol monomethyl ether, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol monomethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, tripropylene
  • phosphoric acid compounds examples include phosphate ester compounds such as trimethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, and triethyl phosphate, with triethyl phosphate being preferred.
  • the boiling point of the porosity agent is higher than the boiling point of the solvent contained in the second coating liquid.
  • the boiling point of the porosity agent may be, for example, 50°C or more higher than the boiling point of the solvent, 80°C or more, or even 100°C or more higher.
  • the boiling point of the porosity agent is, for example, 200°C to 350°C.
  • the content of the porosity agent in the second coating liquid is, for example, 10 wt% to 60 wt%.
  • the content of the porosity agent is preferably higher than the content of the material of the porous support 2.
  • the content of the porosity agent is preferably 25 wt% or more from the viewpoint of suppressing the formation of a dense layer (skin layer) near the surface of the coating film 6 when the coating film 6 is dried, etc.
  • the ratio of the weight of the porosity agent to the total weight of the polymer, solvent, and porosity agent is, for example, 10 wt% to 60 wt%, and preferably 25 wt% or more.
  • Examples of the solvent contained in the second coating liquid include those mentioned above for the first coating liquid.
  • the content of the solvent in the second coating liquid is, for example, 30 wt% to 80 wt%.
  • the ratio of the weight of the solvent to the total weight of the polymer, solvent, and porosifying agent is, for example, 30 wt% to 80 wt%.
  • step II the method of applying the second coating liquid to the separation functional layer 1 is not particularly limited, and can be performed by the method described above for step I.
  • a coating film (second coating film) 6 is formed by applying the second coating liquid to the separation functional layer 1 ( Figure 2B).
  • the thickness of the second coating film 6 can be adjusted appropriately depending on the desired thickness of the porous support 2, and is, for example, 50 ⁇ m to 1000 ⁇ m.
  • step III when the porogen is removed from the second coating film 6, holes are formed due to the porogen, and the porous support 2 is formed (FIG. 2C).
  • the porogen can be removed from the second coating film 6 by drying the second coating film 6.
  • the drying conditions and drying method of the second coating film 6 are as described above for step I.
  • the solvent also tends to be removed from the second coating film 6.
  • the second coating liquid contains polyimide P having a functional group f and compound M having a metal
  • the dissociable protons contained in the functional group f of the polyimide P are exchanged with the metal (metal cation) of the compound M.
  • the exchange of the dissociable protons of the functional group f with the metal of the compound M forms a metal salt of the functional group f, and polyimide P2 is formed from the polyimide P.
  • the exchange of the dissociable protons contained in the functional group f of the polyimide P with the metal of the compound M may be carried out after the formation of the porous support 2.
  • a second coating liquid containing the polyimide P, a porosifying agent, and a solvent is applied to the separation functional layer 1, and dried to form the porous support 2.
  • the dissociable protons of the functional group f may be exchanged with the metal of the compound M by immersing the porous support 2 in a solution containing the compound M.
  • Step IV The manufacturing method of this embodiment may further include step IV, in which the separation functional layer 1 and the porous support 2 are subjected to a heat treatment (annealing treatment) after step III.
  • Step IV tends to improve the separation performance of the separation membrane 10 and also suppress the separation performance of the separation membrane 10 from decreasing over time.
  • Step IV also makes it possible to obtain a separation membrane 10 that contains almost no residual solvent by sufficiently volatilizing the solvent.
  • Step IV may be performed after the step of removing the substrate 5 from the laminate including the separation functional layer 1 and the porous support 2 (step V described below).
  • the temperature of the heat treatment may be, for example, higher than 200°C, 230°C or higher, or even 250°C or higher.
  • the upper limit of the temperature of the heat treatment is not particularly limited, and may be, for example, 350°C or lower, or may be 300°C or lower.
  • the time of the heat treatment is, for example, 1 minute or more, and may be 10 minutes or more, or may be 30 minutes or more.
  • the upper limit of the time of the heat treatment is not particularly limited, and may be, for example, 24 hours or less.
  • the manufacturing method of this embodiment further includes, for example, after step III or step IV, step V of removing the substrate 5 from the laminate including the separation functional layer 1 and the porous support 2. By removing the substrate 5, a separation membrane 10 can be obtained ( FIG. 1 ).
  • step I of the manufacturing method of this embodiment the first coating film is dried in contact with the substrate 5 to form the separation functional layer 1.
  • the separation functional layer 1 When the separation functional layer 1 is formed, its surface is in contact with the substrate 5, so that defects such as pinholes tend not to form on the surface.
  • the separation functional layer 1 produced by this method also tends to have reduced thickness variation within the membrane. Due to these factors, the separation membrane 10 produced by the manufacturing method of this embodiment has reduced separation performance variation within the membrane. In this way, the manufacturing method of this embodiment is suitable for reducing the above-mentioned ratio R related to the separation coefficient ⁇ of the separation membrane 10. Furthermore, the manufacturing method of this embodiment has the advantage that the thicknesses of the separation functional layer 1 and the porous support 2 can be easily adjusted independently.
  • a dense layer may be formed near the surface of the coating film depending on the composition of the coating solution and the conditions for removing the porosifying agent, resulting in the formation of a porous support having pores caused by the porosifying agent and a separation functional layer equivalent to the skin layer.
  • the skin layer is formed on the surface of the coating film opposite the substrate (the surface exposed to the outside). According to the study of the present inventors, when the skin layer is formed, if the surface is exposed to the outside, defects such as pinholes are likely to occur on the surface.
  • separation membrane by transferring the separation functional layer prepared in step I above to a porous support.
  • separation functional layers containing polyimide usually have poor adhesion to porous supports. Therefore, in order to transfer the separation functional layer to the porous support, it is necessary to place a layer (intermediate layer) that can adhere sufficiently to these members between the separation functional layer and the porous support, which increases manufacturing costs. If an intermediate layer is present, the permeation speed of the fluid passing through the separation membrane also tends to decrease.
  • the use of the separation membrane 10 of this embodiment includes the use of separating an acidic gas from a mixed gas containing an acidic gas.
  • the acidic gas in the mixed gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, and nitrogen oxides (NOx), and preferably carbon dioxide.
  • the mixed gas contains other gases other than the acidic gas. Examples of the other gases include non-polar gases such as hydrogen, nitrogen, and methane, and inert gases such as helium, and preferably nitrogen.
  • the separation membrane 10 of this embodiment is suitable for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  • the use of the separation membrane 10 is not limited to the use of separating an acidic gas from the above-mentioned mixed gas.
  • the membrane separation device 100 of the present embodiment includes a separation membrane 10 and a tank 20.
  • the tank 20 includes a first chamber 21 and a second chamber 22.
  • the separation membrane 10 is disposed inside the tank 20. Inside the tank 20, the separation membrane 10 separates the first chamber 21 from the second chamber 22.
  • the separation membrane 10 extends from one of a pair of wall surfaces of the tank 20 to the other.
  • the first chamber 21 has an inlet 21a and an outlet 21b.
  • the second chamber 22 has an outlet 22a.
  • Each of the inlet 21a, the outlet 21b, and the outlet 22a is, for example, an opening formed in the wall surface of the tank 20.
  • the mixed gas 30 containing the acidic gas is supplied to the first chamber 21 through the inlet 21a.
  • the content of the acidic gas in the mixed gas 30 is not particularly limited, and is, for example, 0.01 vol% (100 ppm) or more under standard conditions, preferably 1 vol% or more, more preferably 10 vol% or more, even more preferably 30 vol% or more, and particularly preferably 50 vol% or more.
  • the upper limit of the content of the acidic gas in the mixed gas 30 is not particularly limited, and is, for example, 90 vol% under standard conditions.
  • the pressure inside the first chamber 21 may be increased by supplying the mixed gas 30.
  • the membrane separation device 100 may further include a pump (not shown) for increasing the pressure of the mixed gas 30.
  • the pressure of the mixed gas 30 supplied to the first chamber 21 is, for example, 0.1 MPa or more, preferably 0.3 MPa or more.
  • the second chamber 22 may be depressurized while the mixed gas 30 is being supplied to the first chamber 21.
  • the membrane separation device 100 may further include a pump (not shown) for depressurizing the second chamber 22.
  • the second chamber 22 may be depressurized so that the space within the second chamber 22 is reduced by, for example, 10 kPa or more, preferably 50 kPa or more, and more preferably 100 kPa or more, relative to the atmospheric pressure in the measurement environment.
  • a permeating fluid 35 having a higher acid gas content than the mixed gas 30 can be obtained on the other side of the separation membrane 10. That is, the permeating fluid 35 is supplied to the second chamber 22.
  • the permeating fluid 35 contains, for example, an acid gas as a main component. However, the permeating fluid 35 may contain small amounts of other gases besides the acid gas.
  • the permeating fluid 35 is discharged to the outside of the tank 20 through the outlet 22a.
  • the acid gas content in the mixed gas 30 gradually decreases from the inlet 21a to the outlet 21b of the first chamber 21.
  • the mixed gas 30 (non-permeating fluid 36) treated in the first chamber 21 is discharged to the outside of the tank 20 through the outlet 21b.
  • the membrane separation device 100 of this embodiment is suitable for a flow-through (continuous) membrane separation method.
  • the membrane separation device 100 of this embodiment may also be used for a batch-type membrane separation method.
  • the membrane separation device 100 may be a spiral-type membrane element, a hollow fiber membrane element, or the like.
  • Fig. 4 shows a spiral-type membrane element.
  • the membrane separation device 110 in Fig. 4 includes a central tube 41 and a stack 42.
  • the stack 42 includes the separation membrane 10.
  • the central tube 41 has a cylindrical shape. A plurality of holes are formed on the surface of the central tube 41 to allow the permeation fluid 35 to flow into the interior of the central tube 41.
  • materials for the central tube 41 include resins such as acrylonitrile butadiene styrene copolymer resin (ABS resin), polyphenylene ether resin (PPE resin), and polysulfone resin (PSF resin); and metals such as stainless steel and titanium.
  • the inner diameter of the central tube 41 is, for example, in the range of 20 to 100 mm.
  • the laminate 42 further includes a feed-side flow path material 43 and a permeate-side flow path material 44 in addition to the separation membrane 10.
  • the laminate 42 is wound around the central tube 41.
  • the membrane separation device 110 may further include an exterior material (not shown).
  • the supply-side flow passage material 43 and the permeate-side flow passage material 44 can be, for example, a resin net made of polyphenylene sulfide (PPS) or ethylene-chlorotrifluoroethylene copolymer (ECTFE).
  • PPS polyphenylene sulfide
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • Membrane separation using the membrane separation device 110 is performed, for example, by the following method.
  • the permeating fluid 35 that has permeated the separation membrane 10 of the stack 42 moves into the inside of the central tube 41.
  • the permeating fluid 35 is discharged to the outside through the central tube 41.
  • the mixed gas 30 (non-permeating fluid 36) that has been treated by the membrane separation device 110 is discharged to the outside from the other end of the rolled stack 42. This allows the acid gas to be separated from the mixed gas 30.
  • polyimide P was synthesized using an automatic polymerization apparatus (Mettler Toledo, EasyMax402).
  • An automatic polymerization apparatus Metal Mettler Toledo, EasyMax402
  • a separable flask (capacity 400 mL) attached to the apparatus was equipped with a Dimroth, stirring rod, internal thermometer, nitrogen inlet tube and flat stopper.
  • a cooling liquid set to 10°C was circulated in the Dimroth chiller.
  • N2 gas was circulated in the flask at a flow rate of 100 mL/min.
  • the stirring speed was set to 300 rpm.
  • NTDA naphthalene-1,4,5,8-tetracarboxylic dianhydride
  • benzoic acid 8.54 g (70 mmol) of benzoic acid
  • Example 1 The polyimide P was added to a 10L pail, and N-methyl-2-pyrrolidone (NMP) as a solvent and acetylacetone as a ligand were added to obtain a mixed solution. The mixed solution was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade. Next, NMP and Al(acac) 3 as compound M (metal complex) were added to another screw tube, and an ultrasonic treatment was performed using an ultrasonic cleaner to obtain an Al(acac) 3 solution. The Al(acac) 3 solution and the mixed solution were further mixed, and the mixture was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade to prepare a first coating solution.
  • NMP N-methyl-2-pyrrolidone
  • acetylacetone as a ligand
  • the ratio of the weight of polyimide P to the total weight of polyimide P and NMP was 8 wt %, and the ratio of the weight of NMP to the total weight was 92 wt %.
  • the ratio of the weight of Al(acac) 3 to the weight of polyimide P and the weight of acetylacetone to the weight of polyimide P were both 6 wt %.
  • a release-treated polyethylene terephthalate (PET) film (Mitsubishi Chemical Corporation, MRF75T302) was prepared as a substrate. Corona treatment was performed on the release-treated surface of this substrate under the condition of a discharge amount of 0.25 kW min/ m2 .
  • the above-mentioned first coating liquid was applied onto the substrate to form a first coating film (thickness 20 ⁇ m). The first coating liquid was applied using a slot die.
  • the first coating film was transported at a speed of 1 m/min and passed through three heating sections to dry the first coating film.
  • the first coating film passed through the first heating section, the second heating section, and the third heating section in this order.
  • the set temperature of the first heating section was 100°C
  • the set temperature of the second heating section was 130°C
  • the set temperature of the third heating section was 130°C.
  • the time (drying time) for the first coating film to pass through the first to third heating sections was 6 minutes.
  • the first coating film was dried to obtain a separation functional layer. Note that, as the first coating film dried, the dissociative protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M. As a result, an Al salt of the carboxyl group was formed, and polyimide P1 was obtained.
  • Step II The polyimide P was added to a 10L pail, and N,N-dimethylformamide (DMF) was added as a solvent, triethyl phosphate as a porosifying agent, and acetylacetone as a ligand to obtain a mixed solution.
  • the mixed solution was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade.
  • DMF and Al(acac) 3 as compound M (metal complex) were added to another screw tube, and an ultrasonic treatment was performed using an ultrasonic cleaner to obtain an Al(acac) 3 solution.
  • the Al(acac) 3 solution and the mixed solution were further mixed, and the mixture was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade to prepare a second coating solution.
  • the ratio of the weight of polyimide P to the total weight of polyimide P, DMF, and the porosifier (triethyl phosphate) was 10 wt%, the ratio of the weight of DMF to the total weight was 45 wt%, and the ratio of the weight of the porosifier to the total weight was 45 wt%.
  • the ratio of the weight of Al(acac) 3 to the weight of polyimide P and the ratio of the weight of acetylacetone to the weight of polyimide P were both 6 wt%.
  • the second coating liquid was applied onto the separation functional layer obtained in step I to form a second coating film (thickness 250 ⁇ m).
  • the second coating liquid was applied using a slot die.
  • the second coating film was dried to remove the porosity agent from the second coating film.
  • the drying of the second coating film was performed by the following method. First, the second coating film was conveyed at a speed of 1 m/min and passed through three heating sections. In detail, the second coating film passed through the first heating section, the second heating section, and the third heating section in this order.
  • the set temperature of the first heating section was 60° C.
  • the set temperature of the second heating section was 60° C.
  • the set temperature of the third heating section was 90° C.
  • the time (drying time) for the second coating film to pass through the first to third heating sections was 6 minutes. After passing through the first to third heating sections, the second coating film was further heated at 150° C. for 30 minutes.
  • the porosity agent was removed from the second coating film to obtain a porous support.
  • the dissociative protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M.
  • Al of the compound M As a result, an Al salt of the carboxyl group was formed, and polyimide P2 was obtained.
  • Polyimide P2 had the same composition as Polyimide P1 above.
  • Steps IV and V After the above step III, the substrate was removed from the laminate including the separation functional layer and the porous support (step V). Furthermore, the separation functional layer and the porous support were further subjected to a heat treatment (step IV). The heat treatment was performed at 300° C. for 30 minutes. Thus, the separation membrane of Example 1 was obtained.
  • Example 2 The separation membrane of Example 2 was obtained in the same manner as in Example 1, except that in step I, the thickness of the first coating film was changed to 10 ⁇ m, a polyimide (PI) film (manufactured by Fujiko Co., Ltd., SCA0) that had been release-treated with a silicone-based release treatment agent was used as the substrate, and in step III, the set temperature of the third heating section was changed to 60° C.
  • PI polyimide
  • Example 3 The separation membrane of Example 3 was obtained by the same method as in Example 1, except that in step I, the discharge amount of the corona treatment on the substrate was changed to 0.45 kW min/ m2 , in step II, the second coating liquid was prepared using a Thinky Corporation foam remover mixer instead of a propeller-type stirring blade, and the second coating liquid was applied using an applicator instead of a slot die, and in step III, the second coating film was heated at 130°C for 30 minutes to remove the porosifying agent from the second coating film. Note that in Example 3, the operation of passing the second coating film through the first to third heating sections was not performed in step III.
  • Example 4 to 7 Separation membranes of Examples 4 to 7 were obtained in the same manner as in Example 3, except that the composition of the second coating solution and the thickness of the second coating film were changed as shown in Table 1.
  • Example 8 First, the above-mentioned polyimide P was added to a 50 mL screw tube, and further, N,N-dimethylformamide (DMF) as a solvent, polyethylene glycol 200 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PEG200) as a porosifying agent, and acetylacetone as a ligand were added to obtain a mixed solution. The mixed solution was stirred for 5 minutes and degassed for 5 minutes twice. Next, DMF and Al(acac) 3 as compound M (metal complex) were added to another screw tube, and further, an ultrasonic treatment was performed using an ultrasonic cleaner to obtain an Al(acac) 3 solution.
  • DMF N,N-dimethylformamide
  • PEG200 polyethylene glycol 200
  • acetylacetone as a ligand
  • the Al(acac) 3 solution and the above-mentioned mixed solution were further mixed, and a stirring operation for 5 minutes and a degassing operation for 5 minutes were repeated twice to prepare a coating solution.
  • the stirring operation and degassing operation were performed using a Thinky Corporation's Foaming Mixer.
  • the ratio of the weight of polyimide P to the total weight of polyimide P, DMF, and porosifier (PEG200) was 19.5 wt%
  • the ratio of the weight of DMF to the total weight was 66.9 wt%
  • the ratio of the weight of the porosifier to the total weight was 13.7 wt%.
  • the ratio of the weight of Al(acac) 3 to the weight of polyimide P and the ratio of the weight of acetylacetone to the weight of polyimide P were both 6 wt%.
  • a release-treated PET film (PET125 SG1, manufactured by PANAC) was prepared as a substrate.
  • the above coating solution was applied onto this substrate to form a coating film (thickness 350 ⁇ m).
  • the coating solution was applied using a comma coater.
  • the coating film was transported at a speed of 0.5 m/min and dried by passing through the heating section.
  • the temperature of the heating section was set to 60°C.
  • the time (drying time) for the coating film to pass through the heating section was 9 minutes.
  • the coating film was immersed in methanol at room temperature for 480 minutes, and then dried at 40°C for 30 minutes.
  • the porosity-inducing agent was removed from the coating film, and a porous support having pores caused by the porosity-inducing agent and a separation function layer corresponding to the skin layer were formed.
  • the substrate was removed from the laminate including the separation function layer and the porous support.
  • Example 8 The separation function layer and the porous support were subjected to a heat treatment at 300°C for 30 minutes to obtain the separation membrane of Example 8.
  • the dissociable protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M.
  • Example 9 First, a coating solution was prepared in the same manner as in Example 8, except that the composition of the coating solution was changed as shown in Table 3.
  • polyethylene glycol monomethyl ether 400 M400, manufactured by NOF Corp.
  • a release-treated PET film PET100 SG2, manufactured by PANAC Corp.
  • the above coating solution was applied onto this substrate to form a coating film (thickness 300 ⁇ m).
  • the coating solution was applied using a comma coater.
  • Example 9 the coating film was transported at a speed of 0.2 m/min and dried by passing through the heating section.
  • the temperature of the heating section was set to 60°C.
  • the time (drying time) for the coating film to pass through the heating section was 30 minutes.
  • the coating film was immersed in methanol at room temperature for 30 minutes, and further dried at 60°C for 60 minutes.
  • the porosity agent was removed from the coating film, and a porous support having pores caused by the porosity agent and a separation function layer corresponding to the skin layer were formed.
  • the substrate was removed from the laminate including the separation function layer and the porous support.
  • the separation function layer and the porous support were subjected to a heat treatment at 300°C for 30 minutes to obtain the separation membrane of Example 9.
  • the dissociable protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M.
  • Example 10 A separation membrane of Example 10 was obtained by the same method as in Example 9, except that the composition of the coating solution was changed as shown in Table 3. In Example 10, the dissociable proton of the carboxyl group contained in polyimide P was exchanged with Al of compound M.
  • the separation membranes of Examples 1 to 7 produced by the manufacturing method of this embodiment all had a smooth surface for the separation functional layer, and the ratio R for the separation factor ⁇ was 70% or less.
  • the separation membranes of Examples 1 to 7, which have a ratio R of 70% or less, have reduced variation in the separation factor ⁇ compared to the separation membranes of Examples 8 to 10, and can be said to be suitable for separating acidic gases from mixed gases that contain acidic gases. According to the manufacturing method of this embodiment, it is possible to produce separation membranes with reduced variation in the separation factor ⁇ , which is presumably expected to improve yields.
  • the separation membrane of this embodiment is suitable for separating acid gas from a gas mixture containing acid gas.
  • the separation membrane of this embodiment is suitable for separating carbon dioxide from off-gas of chemical plants or thermal power plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a novel separation membrane that is suitable for separation of an acidic gas from a gas mixture that contains the acidic gas. A separation membrane 10 according to the present invention is provided with: a separation function layer 1 that contains a polyimide P1; and a porous support 2 that is in direct contact with the separation function layer 1. The polyimide P1 comprises a constituent unit A1 which is derived from a tetracarboxylic acid dianhydride that has an acid anhydride structure having a six-membered ring. With respect to the separation coefficient α of the separation membrane 10, the separation coefficient α being identified by test 1, the ratio R of the value obtained by multiplying the standard deviation σ1 by 3 to the average Av1 is 70% or less.

Description

分離膜、及びその製造方法Separation membrane and method for producing same
 本発明は、分離膜、及びその製造方法に関する。 The present invention relates to a separation membrane and a method for producing the same.
 二酸化炭素などの酸性ガスを含む混合気体から酸性ガスを分離する方法として、膜分離法が開発されている。膜分離法は、混合気体に含まれる酸性ガスを吸収剤に吸収させて分離する吸収法と比べて、運転コストを抑えながら酸性ガスを効率的に分離することができる。 Membrane separation has been developed as a method for separating acidic gases from mixed gases that contain acidic gases such as carbon dioxide. Compared to the absorption method, which separates acidic gases contained in a mixed gas by absorbing them into an absorbent, the membrane separation method can efficiently separate acidic gases while keeping operating costs low.
 膜分離法に用いられる分離膜としては、分離機能層を多孔性支持体の上に形成した複合膜が挙げられる。分離機能層の材料としては、例えば、ポリイミド樹脂、ポリエーテルブロックアミド樹脂などの樹脂が挙げられる。例えば、特許文献1には、ポリイミド樹脂を含む分離膜が開示されている。 Separation membranes used in membrane separation methods include composite membranes in which a separation functional layer is formed on a porous support. Materials for the separation functional layer include resins such as polyimide resins and polyether block amide resins. For example, Patent Document 1 discloses a separation membrane containing a polyimide resin.
特開2014-184424号公報JP 2014-184424 A
 酸性ガスを含む混合気体から酸性ガスを分離することに適した新たな分離膜が求められている。 There is a need for new separation membranes suitable for separating acid gases from gas mixtures that contain acid gases.
 本発明は、
 ポリイミドP1を含む分離機能層と、
 前記分離機能層に直接接する多孔性支持体と、
を備え、
 前記ポリイミドP1は、6員環の酸無水物構造を有するテトラカルボン酸二無水物に由来する構成単位A1を含み、
 下記試験1によって特定された分離係数αについて、平均値Av1に対する、標準偏差σ1に3を乗じた値の比率Rが70%以下である、分離膜を提供する。
 試験1:前記分離膜を切断し、3つ以上の試験片を作製する。前記試験片のそれぞれについて、前記試験片の一方の面に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、前記試験片の他方の面に隣接する空間を減圧する操作を行う。前記操作の結果に基づいて、前記試験片のそれぞれについて、窒素に対する二酸化炭素の分離係数αを特定する。ここで、前記操作において、前記混合気体における前記二酸化炭素の含有率は、標準状態で50vol%であり、前記一方の面に隣接する空間に供給される前記混合気体は、温度が30℃であり、圧力が0.1MPaであり、前記他方の面に隣接する空間は、当該空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。
The present invention relates to
A separation functional layer including polyimide P1;
A porous support directly contacting the separation functional layer;
Equipped with
The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a 6-membered ring acid anhydride structure,
The present invention provides a separation membrane having a ratio R of the value obtained by multiplying the standard deviation σ1 by 3 to the average value Av1 for a separation factor α determined by the following Test 1 of 70% or less.
Test 1: The separation membrane is cut to prepare three or more test pieces. For each of the test pieces, a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized. Based on the results of the operation, a separation coefficient α of carbon dioxide relative to nitrogen is determined for each of the test pieces. Here, in the operation, the carbon dioxide content in the mixed gas is 50 vol% under standard conditions, the mixed gas supplied to the space adjacent to the one side has a temperature of 30° C. and a pressure of 0.1 MPa, and the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
 さらに本発明は、
 ポリイミドP1を含む分離機能層と、前記分離機能層に直接接する多孔性支持体と、を備える分離膜の製造方法であって、
 前記製造方法は、
 前記分離機能層の材料を含む第1塗布液を基材の上に塗布し、乾燥させることによって前記分離機能層を形成する工程Iと、
 前記多孔性支持体の材料、及び多孔化剤を含む第2塗布液を前記分離機能層の上に塗布して、塗布膜を形成する工程IIと、
 前記塗布膜から前記多孔化剤を除去して、前記多孔性支持体を形成する工程IIIと、
を含み、
 前記ポリイミドP1は、6員環の酸無水物構造を有するテトラカルボン酸二無水物に由来する構成単位A1を含む、製造方法を提供する。
Further, the present invention relates to
A method for producing a separation membrane comprising a separation functional layer containing polyimide P1 and a porous support directly in contact with the separation functional layer,
The manufacturing method includes:
A step I of forming the separation functional layer by applying a first coating liquid containing a material for the separation functional layer onto a substrate and drying the first coating liquid;
A step II of applying a second coating liquid containing a material for the porous support and a porosifying agent onto the separation functional layer to form a coating film;
Step III of removing the porosifying agent from the coating film to form the porous support;
Including,
The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a six-membered ring acid anhydride structure.
 本発明によれば、酸性ガスを含む混合気体から酸性ガスを分離することに適した新たな分離膜を提供できる。 The present invention provides a new separation membrane suitable for separating acid gases from a gas mixture that contains acid gases.
本発明の一実施形態にかかる分離膜を模式的に示す断面図である。1 is a cross-sectional view showing a schematic diagram of a separation membrane according to one embodiment of the present invention. 分離膜の製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for producing a separation membrane. 分離膜の製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for producing a separation membrane. 分離膜の製造方法を説明するための図である。1A to 1C are diagrams for explaining a method for producing a separation membrane. 本発明の分離膜を備えた膜分離装置の概略断面図である。1 is a schematic cross-sectional view of a membrane separation device equipped with a separation membrane of the present invention. 本発明の分離膜を備えた膜分離装置の変形例を模式的に示す斜視図である。FIG. 11 is a perspective view that illustrates a modified example of a membrane separation device provided with a separation membrane of the present invention.
 本発明の第1態様にかかる分離膜は、
 ポリイミドP1を含む分離機能層と、
 前記分離機能層に直接接する多孔性支持体と、
を備え、
 前記ポリイミドP1は、6員環の酸無水物構造を有するテトラカルボン酸二無水物に由来する構成単位A1を含み、
 下記試験1によって特定された分離係数αについて、平均値Av1に対する、標準偏差σ1に3を乗じた値の比率Rが70%以下である。
 試験1:前記分離膜を切断し、3つ以上の試験片を作製する。前記試験片のそれぞれについて、前記試験片の一方の面に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、前記試験片の他方の面に隣接する空間を減圧する操作を行う。前記操作の結果に基づいて、前記試験片のそれぞれについて、窒素に対する二酸化炭素の分離係数αを特定する。ここで、前記操作において、前記混合気体における前記二酸化炭素の含有率は、標準状態で50vol%であり、前記一方の面に隣接する空間に供給される前記混合気体は、温度が30℃であり、圧力が0.1MPaであり、前記他方の面に隣接する空間は、当該空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。
The separation membrane according to the first aspect of the present invention is
A separation functional layer including polyimide P1;
A porous support directly contacting the separation functional layer;
Equipped with
The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a 6-membered ring acid anhydride structure,
For the separation factor α specified by the following Test 1, the ratio R of the value obtained by multiplying the standard deviation σ1 by 3 to the average value Av1 is 70% or less.
Test 1: The separation membrane is cut to prepare three or more test pieces. For each of the test pieces, a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized. Based on the results of the operation, a separation coefficient α of carbon dioxide relative to nitrogen is determined for each of the test pieces. Here, in the operation, the carbon dioxide content in the mixed gas is 50 vol% under standard conditions, the mixed gas supplied to the space adjacent to the one side has a temperature of 30° C. and a pressure of 0.1 MPa, and the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
 本発明の第2態様において、例えば、第1態様にかかる分離膜では、前記平均値Av1が20以上である。 In the second aspect of the present invention, for example, in the separation membrane according to the first aspect, the average value Av1 is 20 or more.
 本発明の第3態様において、例えば、第1又は第2態様にかかる分離膜では、下記試験2によって特定された透過速度の平均値Av2が300GPU以上である。
 試験2:前記試験1と同じ方法によって、3つ以上の試験片を作製し、前記試験片のそれぞれについて前記操作を行う。前記操作の結果に基づいて、前記試験片のそれぞれについて、前記試験片を透過した二酸化炭素の透過速度を特定する。
In a third aspect of the present invention, for example, in the separation membrane according to the first or second aspect, the average permeation rate Av2 determined by the following Test 2 is 300 GPU or more.
Test 2: Three or more test pieces are prepared by the same method as in Test 1, and the above operation is carried out for each of the test pieces. Based on the results of the above operation, the permeation rate of carbon dioxide that permeated the test piece is determined for each of the test pieces.
 本発明の第4態様において、例えば、第1~第3態様のいずれか1つにかかる分離膜では、前記分離機能層の厚さが3μm以下である。 In the fourth aspect of the present invention, for example, in the separation membrane according to any one of the first to third aspects, the thickness of the separation functional layer is 3 μm or less.
 本発明の第5態様において、例えば、第1~第4態様のいずれか1つにかかる分離膜では、前記分離機能層の厚さと、前記多孔性支持体の厚さとの合計値が30μm以上である。 In the fifth aspect of the present invention, for example, in the separation membrane according to any one of the first to fourth aspects, the total thickness of the separation functional layer and the porous support is 30 μm or more.
 本発明の第6態様において、例えば、第1~第5態様のいずれか1つにかかる分離膜では、前記構成単位A1は、下記式(A1)で表される。
Figure JPOXMLDOC01-appb-C000002
 前記式(A1)において、R1a~R4aは、互いに独立して、水素原子又は任意の置換基である。
In a sixth aspect of the present invention, for example, in the separation membrane according to any one of the first to fifth aspects, the structural unit A1 is represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000002
In the above formula (A1), R 1a to R 4a are each independently a hydrogen atom or any substituent.
 本発明の第7態様において、例えば、第1~第6態様のいずれか1つにかかる分離膜では、前記ポリイミドP1は、ジアミンに由来する構成単位B1をさらに含み、前記構成単位A1及び前記構成単位B1のうちの少なくとも1つは、カルボキシル基、ヒドロキシル基、チオール基及びこれらの金属塩からなる群より選ばれる少なくとも1つの官能基Fを有する。 In the seventh aspect of the present invention, for example, in the separation membrane according to any one of the first to sixth aspects, the polyimide P1 further contains a structural unit B1 derived from a diamine, and at least one of the structural units A1 and B1 has at least one functional group F selected from the group consisting of a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
 本発明の第8態様において、例えば、第1~第7態様のいずれか1つにかかる分離膜では、前記多孔性支持体は、ポリイミドP2を含む。 In the eighth aspect of the present invention, for example, in the separation membrane according to any one of the first to seventh aspects, the porous support includes polyimide P2.
 本発明の第9態様において、例えば、第8態様にかかる分離膜では、前記ポリイミドP2は、前記構成単位A1を含む。 In the ninth aspect of the present invention, for example, in the separation membrane according to the eighth aspect, the polyimide P2 contains the structural unit A1.
 本発明の第10態様にかかる製造方法は、
 ポリイミドP1を含む分離機能層と、前記分離機能層に直接接する多孔性支持体と、を備える分離膜の製造方法であって、
 前記製造方法は、
 前記分離機能層の材料を含む第1塗布液を基材の上に塗布し、乾燥させることによって前記分離機能層を形成する工程Iと、
 前記多孔性支持体の材料、及び多孔化剤を含む第2塗布液を前記分離機能層の上に塗布して、塗布膜を形成する工程IIと、
 前記塗布膜から前記多孔化剤を除去して、前記多孔性支持体を形成する工程IIIと、
を含み、
 前記ポリイミドP1は、6員環の酸無水物構造を有するテトラカルボン酸二無水物に由来する構成単位A1を含む。
A manufacturing method according to a tenth aspect of the present invention includes the steps of:
A method for producing a separation membrane comprising a separation functional layer containing polyimide P1 and a porous support directly in contact with the separation functional layer,
The manufacturing method includes:
A step I of forming the separation functional layer by applying a first coating liquid containing a material for the separation functional layer onto a substrate and drying the first coating liquid;
A step II of applying a second coating liquid containing a material for the porous support and a porosifying agent onto the separation functional layer to form a coating film;
Step III of removing the porosifying agent from the coating film to form the porous support;
Including,
The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a six-membered ring acid anhydride structure.
 本発明の第11態様において、例えば、第10態様にかかる製造方法では、前記ポリイミドP1は、ジアミンに由来する構成単位B1をさらに含み、前記構成単位A1及び前記構成単位B1のうちの少なくとも1つは、カルボキシル基、ヒドロキシル基、チオール基及びこれらの金属塩からなる群より選ばれる少なくとも1つの官能基Fを有する。 In the eleventh aspect of the present invention, for example, in the manufacturing method according to the tenth aspect, the polyimide P1 further includes a structural unit B1 derived from a diamine, and at least one of the structural units A1 and B1 has at least one functional group F selected from the group consisting of a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
 本発明の第12態様において、例えば、第11態様にかかる製造方法では、前記構成単位A1及び前記構成単位B1のうちの少なくとも1つは、前記金属塩を有する。 In the twelfth aspect of the present invention, for example, in the manufacturing method according to the eleventh aspect, at least one of the structural unit A1 and the structural unit B1 has the metal salt.
 本発明の第13態様において、例えば、第12態様にかかる製造方法では、前記第1塗布液は、前記分離機能層の前記材料として、カルボキシル基、ヒドロキシル基及びチオール基からなる群より選ばれる少なくとも1つの官能基fを有するポリイミドPと、金属を有する化合物とを含み、前記工程Iにおいて、前記ポリイミドPから前記ポリイミドP1を形成する。 In the thirteenth aspect of the present invention, for example, in the manufacturing method according to the twelfth aspect, the first coating liquid contains, as the material of the separation functional layer, polyimide P having at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, and a compound having a metal, and in the step I, the polyimide P1 is formed from the polyimide P.
 本発明の第14態様において、例えば、第13態様にかかる製造方法では、前記化合物は、前記金属と、前記金属に配位している配位子とを有する金属錯体を含む。 In a fourteenth aspect of the present invention, for example in the manufacturing method according to the thirteenth aspect, the compound includes a metal complex having the metal and a ligand coordinated to the metal.
 本発明の第15態様において、例えば、第10~第14態様のいずれか1つにかかる製造方法では、前記多孔化剤は、エーテル化合物及びリン酸化合物からなる群より選ばれる少なくとも1つを含む。 In a fifteenth aspect of the present invention, for example, in a manufacturing method according to any one of the tenth to fourteenth aspects, the porosifying agent includes at least one selected from the group consisting of ether compounds and phosphoric acid compounds.
 本発明の第16態様において、例えば、第10~第15態様のいずれか1つにかかる製造方法では、前記塗布膜を乾燥させることによって、前記塗布膜から前記多孔化剤を除去する。 In the sixteenth aspect of the present invention, for example in the manufacturing method according to any one of the tenth to fifteenth aspects, the porosifying agent is removed from the coating film by drying the coating film.
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 The present invention will be described in detail below, but the following description is not intended to limit the present invention to a specific embodiment.
<分離膜の実施形態>
 図1に示すように、本実施形態の分離膜10は、分離機能層1及び多孔性支持体2を備えており、例えば、分離機能層1及び多孔性支持体2のみから構成されている。多孔性支持体2は、分離機能層1に直接接しており、分離機能層1を支持している。分離機能層1と多孔性支持体2とは、例えば、一体化している。本明細書において、「一体化」とは、部材同士を非破壊で互いに分離できないことを意味する。
<Embodiments of separation membrane>
As shown in Fig. 1, the separation membrane 10 of this embodiment includes a separation functional layer 1 and a porous support 2, and is, for example, composed of only the separation functional layer 1 and the porous support 2. The porous support 2 is in direct contact with the separation functional layer 1 and supports the separation functional layer 1. The separation functional layer 1 and the porous support 2 are, for example, integrated. In this specification, "integrated" means that the members cannot be separated from each other without destruction.
 分離機能層1は、ポリイミドP1を含む。ポリイミドP1は、6員環の酸無水物構造Sを有するテトラカルボン酸二無水物a1に由来する構成単位A1を含む。 The separation functional layer 1 contains polyimide P1. Polyimide P1 contains a structural unit A1 derived from tetracarboxylic dianhydride a1 having a six-membered ring acid anhydride structure S.
 分離膜10は、下記試験1によって特定された分離係数αについて、平均値Av1に対する、標準偏差σ1に3を乗じた値の比率Rが70%以下である。
 試験1:分離膜10を切断し、3つ以上の試験片を作製する。試験片のそれぞれについて、試験片の一方の面に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、試験片の他方の面に隣接する空間を減圧する操作(分離操作)を行う。分離操作の結果に基づいて、試験片のそれぞれについて、窒素に対する二酸化炭素の分離係数αを特定する。ここで、分離操作において、混合気体における二酸化炭素の含有率は、標準状態で50vol%であり、一方の面に隣接する空間に供給される混合気体は、温度が30℃であり、圧力が0.1MPaであり、他方の面に隣接する空間は、当該空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。
In the separation membrane 10, with respect to the separation factor α determined by the following test 1, the ratio R of the value obtained by multiplying the standard deviation σ1 by 3 to the average value Av1 is 70% or less.
Test 1: The separation membrane 10 is cut to prepare three or more test pieces. For each test piece, a mixed gas consisting of carbon dioxide and nitrogen is supplied to the space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized (separation operation). Based on the results of the separation operation, the separation coefficient α of carbon dioxide relative to nitrogen is specified for each test piece. Here, in the separation operation, the carbon dioxide content in the mixed gas is 50 vol% under standard conditions, the mixed gas supplied to the space adjacent to one side has a temperature of 30° C. and a pressure of 0.1 MPa, and the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
 試験1において、各試験片は、形状及びサイズが互いに同じであり、例えば、直径20mmの円板状である。円板状の試験片のサイズは、直径20mm以上であってもよい。 In Test 1, each test piece has the same shape and size, for example, a disk shape with a diameter of 20 mm. The size of the disk-shaped test piece may be 20 mm or more in diameter.
 試験1の分離操作は、例えば、次の方法によって行うことができる。まず、試験片を金属セル中にセットし、リークが発生しないようにOリングでシールする。次に、試験片の分離機能層側の主面11に混合気体が接触するように、金属セル内の空間(供給空間)に混合気体を注入する。上述のとおり、供給空間に注入される混合気体において、二酸化炭素の含有率は、標準状態(0℃、101kPa)で50vol%である。混合気体は、温度が30℃であり、圧力が0.1MPaである。なお、本明細書において、特に言及のない限り、「圧力」は、絶対圧を意味する。 The separation operation of Test 1 can be performed, for example, by the following method. First, the test piece is set in a metal cell and sealed with an O-ring to prevent leakage. Next, the mixed gas is injected into the space (supply space) in the metal cell so that the mixed gas contacts the main surface 11 on the separation function layer side of the test piece. As described above, the carbon dioxide content of the mixed gas injected into the supply space is 50 vol% under standard conditions (0°C, 101 kPa). The mixed gas has a temperature of 30°C and a pressure of 0.1 MPa. In this specification, unless otherwise specified, "pressure" means absolute pressure.
 次に、試験片の多孔性支持体側の主面12に隣接する金属セル内の空間(透過空間)を真空ポンプで減圧する。このとき、透過空間は、当該空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧される。これにより、透過空間において、試験片を透過した透過流体が得られる。透過流体の重量、並びに、透過流体における二酸化炭素の体積比率及び窒素の体積比率などに基づいて、窒素に対する二酸化炭素の分離係数α(CO2/N2)を算出することができる。詳細には、分離係数αは、以下の式から算出することができる。ただし、下記式において、XA及びXBは、それぞれ、混合気体における二酸化炭素の体積比率及び窒素の体積比率である。YA及びYBは、それぞれ、試験片を透過した透過流体における二酸化炭素の体積比率及び窒素の体積比率である。これらの体積比率は、標準状態(0℃、101kPa)での値である。
分離係数α=(YA/YB)/(XA/XB
Next, the space (permeation space) in the metal cell adjacent to the main surface 12 on the porous support side of the test piece is depressurized by a vacuum pump. At this time, the permeation space is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment. As a result, a permeation fluid that has permeated the test piece is obtained in the permeation space. The separation factor α (CO 2 /N 2 ) of carbon dioxide relative to nitrogen can be calculated based on the weight of the permeation fluid and the volume ratio of carbon dioxide and the volume ratio of nitrogen in the permeation fluid. In detail, the separation factor α can be calculated from the following formula. In the following formula, X A and X B are the volume ratio of carbon dioxide and the volume ratio of nitrogen in the mixed gas, respectively. Y A and Y B are the volume ratio of carbon dioxide and the volume ratio of nitrogen in the permeation fluid that has permeated the test piece, respectively. These volume ratios are values at standard conditions (0° C., 101 kPa).
Separation factor α=( YA / YB )/( XA / XB )
 試験1によって特定された各試験片の分離係数αに基づいて、分離係数αの平均値Av1及び標準偏差σ1を算出する。これらに基づいて、下記式により、比率R(%)を算出することができる。
 比率R=100×3×標準偏差σ1/平均値Av1
The average value Av1 and standard deviation σ1 of the separation coefficient α are calculated based on the separation coefficient α of each test piece specified by Test 1. Based on these, the ratio R (%) can be calculated by the following formula.
Ratio R = 100 × 3 × standard deviation σ1 / average value Av1
 上述のとおり、比率Rは、70%以下であり、好ましくは60%以下であり、50%以下、40%以下、30%以下、20%以下、15%以下、さらには10%以下であってもよい。比率Rが低ければ低いほど、各試験片での分離係数αのばらつきが抑制されていると言える。比率Rの下限は、特に限定されず、例えば1%以上であり、5%以上であってもよい。 As described above, the ratio R is 70% or less, preferably 60% or less, and may be 50% or less, 40% or less, 30% or less, 20% or less, 15% or less, or even 10% or less. It can be said that the lower the ratio R, the more the variation in the separation coefficient α in each test piece is suppressed. The lower limit of the ratio R is not particularly limited, and may be, for example, 1% or more, or 5% or more.
 本実施形態では、分離係数αの平均値Av1が大きいことが好ましい。平均値Av1は、例えば20以上であり、25以上、30以上、さらには35以上であってもよい。平均値Av1の上限値は、特に限定されず、例えば100であり、50であってもよい。 In this embodiment, it is preferable that the average value Av1 of the separation coefficient α is large. The average value Av1 is, for example, 20 or more, and may be 25 or more, 30 or more, or even 35 or more. The upper limit of the average value Av1 is not particularly limited, and may be, for example, 100, or 50.
 さらに、本実施形態の分離膜10は、下記試験2によって特定された透過速度の平均値Av2が300GPU以上であることが好ましい。
 試験2:試験1と同じ方法によって、3つ以上の試験片を作製し、試験片のそれぞれについて上記の分離操作を行う。分離操作の結果に基づいて、試験片のそれぞれについて、試験片を透過した二酸化炭素の透過速度を特定する。
Furthermore, the separation membrane 10 of the present embodiment preferably has an average permeation rate Av2 determined by the following Test 2 of 300 GPU or more.
Test 2: Three or more test pieces are prepared by the same method as in Test 1, and the above-mentioned separation operation is carried out for each of the test pieces. Based on the results of the separation operation, the permeation rate of carbon dioxide that permeated the test piece is determined for each of the test pieces.
 試験2において、各試験片は、形状及びサイズが互いに同じであり、例えば、直径20mmの円板状である。円板状の試験片のサイズは、直径20mm以上であってもよい。試験2では、試験1で上述した分離操作を行った結果に基づいて、各試験片について、試験片を透過した二酸化炭素の透過速度を特定することができる。なお、透過速度の単位であるGPUは、10-6・cm3(STP)/(sec・cm2・cmHg)を意味する。cm3(STP)は、1気圧、0℃での二酸化炭素の体積を意味する。試験2によって特定された各試験片の透過速度に基づいて、透過速度の平均値Av2を算出することができる。 In Test 2, each test piece has the same shape and size, for example, a disk shape with a diameter of 20 mm. The size of the disk-shaped test piece may be 20 mm or more in diameter. In Test 2, the permeation rate of carbon dioxide that has permeated the test piece can be specified for each test piece based on the results of the separation operation described above in Test 1. Note that GPU, which is the unit of permeation rate, means 10 -6 · cm 3 (STP) / (sec · cm 2 · cmHg). cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0 ° C. Based on the permeation rate of each test piece specified by Test 2, the average permeation rate Av2 can be calculated.
 本実施形態では、透過速度の平均値Av2が大きいことが好ましい。平均値Av2は、例えば300GPU以上であり、400GPU以上、500GPU以上、600GPU以上、700GPU以上、800GPU以上、900GPU以上、1000GPU以上、さらには1100GPU以上であってもよい。平均値Av2の上限値は、特に限定されず、例えば3000GPUである In this embodiment, it is preferable that the average value Av2 of the transmission speed is large. The average value Av2 is, for example, 300 GPU or more, and may be 400 GPU or more, 500 GPU or more, 600 GPU or more, 700 GPU or more, 800 GPU or more, 900 GPU or more, 1000 GPU or more, or even 1100 GPU or more. The upper limit of the average value Av2 is not particularly limited, and is, for example, 3000 GPU.
(分離機能層)
 分離機能層1は、例えば、混合気体に含まれる酸性ガスを優先的に透過させることができる層であり、典型的には、走査型電子顕微鏡(SEM)を用いて、拡大倍率5000倍で観察したときに、孔が確認できない緻密層(無孔層)である。
(Separation functional layer)
The separation functional layer 1 is, for example, a layer that allows preferential permeation of acidic gases contained in a mixed gas, and is typically a dense layer (non-porous layer) in which no pores can be identified when observed at a magnification of 5000 times using a scanning electron microscope (SEM).
 上述のとおり、本実施形態において、分離機能層1は、ポリイミドP1を含む。ポリイミドP1は、6員環の酸無水物構造Sを有するテトラカルボン酸二無水物a1に由来する構成単位A1を含み、例えば、ジアミンb1に由来する構成単位B1をさらに含む。構成単位A1及び構成単位B1のうちの少なくとも1つは、例えば、カルボキシル基、ヒドロキシル基、チオール基及びこれらの金属塩からなる群より選ばれる少なくとも1つの官能基Fを有する。構成単位A1及び構成単位B1のうちの少なくとも1つは、官能基Fとして、金属塩を有することが好ましい。特に、ポリイミドP1では、構成単位B1が官能基Fを有することが好ましい。構成単位A1は、官能基Fを有していてもよく、有していなくてもよい。 As described above, in this embodiment, the separation functional layer 1 includes polyimide P1. Polyimide P1 includes a structural unit A1 derived from a tetracarboxylic dianhydride a1 having a six-membered ring acid anhydride structure S, and further includes, for example, a structural unit B1 derived from a diamine b1. At least one of the structural units A1 and B1 has at least one functional group F selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof. At least one of the structural units A1 and B1 preferably has a metal salt as the functional group F. In particular, in polyimide P1, it is preferable that the structural unit B1 has a functional group F. The structural unit A1 may or may not have a functional group F.
 テトラカルボン酸二無水物a1に由来する構成単位A1は、分離機能層1を透過する酸性ガスの透過速度を向上させることに適した構成単位である。テトラカルボン酸二無水物a1は、例えば、1つ以上、好ましくは2つ、の酸無水物構造Sを有する。6員環の酸無水物構造Sは、典型的には、下記式(1)で表されるグルタル酸無水物構造である。
Figure JPOXMLDOC01-appb-C000003
The structural unit A1 derived from the tetracarboxylic dianhydride a1 is a structural unit suitable for improving the permeation rate of an acidic gas that permeates the separation functional layer 1. The tetracarboxylic dianhydride a1 has, for example, one or more, preferably two, acid anhydride structures S. The six-membered acid anhydride structure S is typically a glutaric anhydride structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
 テトラカルボン酸二無水物a1は、カルボキシル基、ヒドロキシル基及びチオール基からなる群より選ばれる少なくとも1つの官能基fをさらに有していてもよく、官能基fを有していなくてもよい。なお、本明細書において、官能基fは、金属塩が選択肢に含まれていないことを除き、官能基Fと同じである。 The tetracarboxylic dianhydride a1 may further have at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, or may not have the functional group f. In this specification, the functional group f is the same as the functional group F, except that metal salts are not included as an option.
 テトラカルボン酸二無水物a1は、縮合環を有していてもよく、当該縮合環が酸無水物構造Sを含んでいてもよい。縮合環は、酸無水物構造Sとともに、芳香環を含んでいてもよい。縮合環に含まれる芳香環は、炭素原子のみから構成されていてもよく、酸素原子、窒素原子、硫黄原子などのヘテロ原子を含む複素芳香環であってもよい。芳香環は、多環式であってもよく、単環式であってもよい。芳香環の炭素数は、特に限定されず、例えば4~14である。芳香環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フラン環、ピロール環、ピリジン環及びチオフェン環が挙げられる。 The tetracarboxylic dianhydride a1 may have a condensed ring, and the condensed ring may contain an acid anhydride structure S. The condensed ring may contain an aromatic ring together with the acid anhydride structure S. The aromatic ring contained in the condensed ring may be composed only of carbon atoms, or may be a heteroaromatic ring containing a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom. The aromatic ring may be polycyclic or monocyclic. The number of carbon atoms in the aromatic ring is not particularly limited, and is, for example, 4 to 14. Specific examples of aromatic rings include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a furan ring, a pyrrole ring, a pyridine ring, and a thiophene ring.
 縮合環は、置換基を有していてもよく、置換基を有していなくてもよい。縮合環の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基としては、フルオロ基、クロロ基、ブロモ基、ヨード基などが挙げられる。炭化水素基の炭素数は、特に限定されず、例えば1~15である。炭化水素基は、例えば、メチル基、エチル基、プロピル基などのアルキル基である。炭化水素基は、水素原子がハロゲン基で置換されたハロゲン化炭化水素基であってもよい。縮合環が複数の置換基を有するとき、複数の置換基は、互いに同じであってもよく、異なっていてもよい。 The fused ring may or may not have a substituent. The substituent of the fused ring is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group include a fluoro group, a chloro group, a bromo group, and an iodo group. The number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1 to 15. Examples of the hydrocarbon group are alkyl groups such as a methyl group, an ethyl group, and a propyl group. The hydrocarbon group may be a halogenated hydrocarbon group in which a hydrogen atom is substituted with a halogen group. When the fused ring has multiple substituents, the multiple substituents may be the same as or different from each other.
 テトラカルボン酸二無水物a1は、例えば、下記式(a1)で表される。
Figure JPOXMLDOC01-appb-C000004
The tetracarboxylic dianhydride a1 is represented, for example, by the following formula (a1).
Figure JPOXMLDOC01-appb-C000004
 式(a1)において、R1a~R4aは、互いに独立して、水素原子又は任意の置換基である。任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、上述したものが挙げられる。 In formula (a1), R 1a to R 4a are each independently a hydrogen atom or an arbitrary substituent. The arbitrary substituent is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above.
 ポリイミドP1において、テトラカルボン酸二無水物a1に由来する構成単位A1は、例えば、下記式(A1)で表される。式(A1)で表される構成単位A1は、上記の式(a1)で表されるテトラカルボン酸二無水物a1に由来している。なお、式(A1)において、イミド基に含まれる窒素原子は、テトラカルボン酸二無水物a1と反応したジアミンに由来する。
Figure JPOXMLDOC01-appb-C000005
In the polyimide P1, the structural unit A1 derived from the tetracarboxylic dianhydride a1 is represented, for example, by the following formula (A1). The structural unit A1 represented by formula (A1) is derived from the tetracarboxylic dianhydride a1 represented by the above formula (a1). In the formula (A1), the nitrogen atom contained in the imide group is derived from the diamine that has reacted with the tetracarboxylic dianhydride a1.
Figure JPOXMLDOC01-appb-C000005
 式(A1)において、R1a~R4aは、式(a1)と同じであり、互いに独立して、水素原子又は任意の置換基である。式(A1)で表される構成単位A1の具体例としては、下記式(A1-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000006
In formula (A1), R 1a to R 4a are the same as those in formula (a1) and are each independently a hydrogen atom or an arbitrary substituent. Specific examples of the structural unit A1 represented by formula (A1) include the following formula (A1-1).
Figure JPOXMLDOC01-appb-C000006
 ポリイミドP1において、テトラカルボン酸二無水物に由来する全ての構成単位Aの物質量に対する、上記の構成単位A1の物質量の比率p1は、例えば50mol%以上であり、70mol%以上、90mol%以上、95mol%以上、さらには99mol%以上であってもよい。ポリイミドP1は、テトラカルボン酸二無水物に由来する構成単位Aとして、上記の構成単位A1のみを含んでいてもよい。ただし、ポリイミドP1は、構成単位A1以外に、5員環の酸無水物構造を有するテトラカルボン酸二無水物a2に由来する構成単位A2をさらに含んでいてもよい。テトラカルボン酸二無水物a2としては、特に限定されず、例えば、ピロメリット酸二無水和物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物などが挙げられる。 In the polyimide P1, the ratio p1 of the amount of substance of the structural unit A1 to the amount of substance of all structural units A derived from tetracarboxylic dianhydride is, for example, 50 mol% or more, and may be 70 mol% or more, 90 mol% or more, 95 mol% or more, or even 99 mol% or more. The polyimide P1 may contain only the structural unit A1 as the structural unit A derived from tetracarboxylic dianhydride. However, the polyimide P1 may further contain, in addition to the structural unit A1, a structural unit A2 derived from a tetracarboxylic dianhydride a2 having a five-membered ring acid anhydride structure. The tetracarboxylic dianhydride a2 is not particularly limited, and examples thereof include pyromellitic dianhydride and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride.
 ジアミンb1に由来する構成単位B1、特に官能基Fを有する構成単位B1、は、分離機能層1を透過する酸性ガスの選択性を向上させることに適した構成単位である。ジアミンb1は、2つの1級アミノ基を有し、例えば、カルボキシル基、ヒドロキシル基及びチオール基からなる群より選ばれる少なくとも1つの官能基fをさらに有する化合物である。ジアミンb1における官能基fの数は、特に限定されず、例えば5以下であり、好ましくは2以下であり、1であることが特に好ましい。ジアミンb1における官能基fの数が少なければ少ないほど、ポリイミドP1の溶解性が改善され、分離機能層1の望ましい製造方法を適用しやすい傾向がある。 The structural unit B1 derived from diamine b1, particularly the structural unit B1 having the functional group F, is a structural unit suitable for improving the selectivity of acidic gases that permeate the separation functional layer 1. Diamine b1 is a compound having two primary amino groups and further having at least one functional group f selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, and a thiol group. The number of functional groups f in diamine b1 is not particularly limited, and is, for example, 5 or less, preferably 2 or less, and particularly preferably 1. The fewer the number of functional groups f in diamine b1, the more improved the solubility of polyimide P1 is, and the easier it tends to be to apply a desired manufacturing method for separation functional layer 1.
 上記の官能基fは、解離性のプロトンを有しており、対カチオンと塩を形成することができる。特に、塩を容易に形成できる観点から、ジアミンb1は、官能基fとしてカルボキシル基を有することが好ましい。なお、ジアミンb1は、官能基f以外の解離性のプロトンを有する基、例えばスルホン酸基、を有していないことが好ましい。一例として、ジアミンb1がスルホン酸基を含まない場合、ポリイミドP1の溶解性を適切に調節しやすい。 The above-mentioned functional group f has a dissociable proton and can form a salt with a counter cation. In particular, from the viewpoint of easily forming a salt, it is preferable that diamine b1 has a carboxyl group as the functional group f. It is preferable that diamine b1 does not have a group having a dissociable proton other than the functional group f, such as a sulfonic acid group. As an example, when diamine b1 does not contain a sulfonic acid group, it is easy to appropriately adjust the solubility of polyimide P1.
 ジアミンb1は、芳香環をさらに有していてもよい。芳香環としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。ジアミンb1において、芳香環の置換基が、例えば、官能基f及び1級アミノ基を含んでいる。芳香環は、官能基fを含む置換基及び1級アミノ基を含む置換基以外の他の置換基を有していてもよく、他の置換基を有していなくてもよい。他の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。なお、ジアミンb1において、他の置換基は、光重合性の官能基(例えば、ビニル基)を含んでいてもよい。 Diamine b1 may further have an aromatic ring. Examples of the aromatic ring include those described above for tetracarboxylic dianhydride a1. In diamine b1, the substituent of the aromatic ring includes, for example, functional group f and a primary amino group. The aromatic ring may have other substituents other than the substituent including functional group f and the substituent including a primary amino group, or may not have other substituents. Examples of the other substituents include, but are not limited to, halogen groups and hydrocarbon groups. Examples of the halogen groups and hydrocarbon groups include those described above for tetracarboxylic dianhydride a1. In diamine b1, the other substituents may include a photopolymerizable functional group (for example, a vinyl group).
 ジアミンb1は、例えば、下記式(b1)、式(b2)又は式(b3)で表される。
Figure JPOXMLDOC01-appb-C000007
Diamine b1 is represented, for example, by the following formula (b1), formula (b2) or formula (b3).
Figure JPOXMLDOC01-appb-C000007
 式(b1)において、R1b~R4bは、互いに独立して、水素原子又は任意の置換基である。ただし、R1b~R4bからなる群より選ばれる少なくとも1つは、官能基fを含む基であり、好ましくは官能基fそのものである。官能基fを含む基以外の任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (b1), R 1b to R 4b are each independently a hydrogen atom or an arbitrary substituent. However, at least one selected from the group consisting of R 1b to R 4b is a group containing a functional group f, and is preferably the functional group f itself. The arbitrary substituent other than the group containing the functional group f is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(b2)において、R5b~R12bは、互いに独立して、水素原子又は任意の置換基であり、X1は、単結合又は任意の連結基である。ただし、R5b~R12bからなる群より選ばれる少なくとも1つは、官能基fを含む基であり、好ましくは官能基fそのものである。官能基fを含む基以外の任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (b2), R 5b to R 12b are each independently a hydrogen atom or an arbitrary substituent, and X 1 is a single bond or an arbitrary linking group. However, at least one selected from the group consisting of R 5b to R 12b is a group containing a functional group f, and is preferably the functional group f itself. The arbitrary substituent other than the group containing the functional group f is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(b2)のX1において、任意の連結基は、例えば、2価の炭化水素基である。2価の炭化水素基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基などのアルキレン基が挙げられる。2価の炭化水素基は、水素原子がハロゲン基で置換されたハロゲン化炭化水素基であってもよい。X1は、2価の炭化水素基とともに、又は2価の炭化水素基に代えて、エーテル基やエステル基などの官能基を含んでいてもよい。 In X 1 of formula (b2), the optional linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include alkylene groups such as a methylene group, an ethylene group, a propane-1,3-diyl group, and a propane-2,2-diyl group. The divalent hydrocarbon group may be a halogenated hydrocarbon group in which a hydrogen atom is substituted with a halogen group. X 1 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
 式(b3)において、R13b~R20bは、互いに独立して、水素原子又は任意の置換基であり、X2は、単結合又は任意の連結基である。ただし、R13b~R20bからなる群より選ばれる少なくとも1つは、官能基fを含む基であり、好ましくは官能基fそのものである。官能基fを含む基以外の任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (b3), R 13b to R 20b are each independently a hydrogen atom or an arbitrary substituent, and X 2 is a single bond or an arbitrary linking group. However, at least one selected from the group consisting of R 13b to R 20b is a group containing a functional group f, and is preferably the functional group f itself. The arbitrary substituent other than the group containing the functional group f is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(b3)のX2において、任意の連結基は、例えば、2価の炭化水素基である。2価の炭化水素基としては、X1について上述したものが挙げられる。X2は、2価の炭化水素基とともに、又は2価の炭化水素基に代えて、エーテル基やエステル基などの官能基を含んでいてもよい。 In X2 of formula (b3), the optional linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include those described above for X1 . X2 may contain a functional group such as an ether group or an ester group in addition to or instead of the divalent hydrocarbon group.
 上述のとおり、ポリイミドP1において、ジアミンb1に由来する構成単位B1は、官能基Fを有することが好ましい。特に、構成単位B1は、官能基Fとして、カルボキシル基の金属塩、ヒドロキシル基の金属塩又はチオール基の金属塩を含むことが好ましく、カルボキシル基の金属塩を含むことが特に好ましい。 As described above, in the polyimide P1, the structural unit B1 derived from the diamine b1 preferably has a functional group F. In particular, the structural unit B1 preferably contains, as the functional group F, a metal salt of a carboxyl group, a metal salt of a hydroxyl group, or a metal salt of a thiol group, and it is particularly preferable that the structural unit B1 contains a metal salt of a carboxyl group.
 官能基Fとしての金属塩に含まれる金属としては、特に限定されず、例えば、Li、Na、K、Be、Mg、Ca、Ba、Sc、Y、Ti、Zr、V、Cr、Mo、Mn、Fe、Co、Ni、Cu、Ag、Zn、B、Al、Ga、In、Pbなどが挙げられ、好ましくは、Mg、Fe、Al及びGaであり、特に好ましくはAlである。すなわち、官能基Fとしての金属塩は、アルミニウム塩であることが好ましい。なお、金属塩に含まれる金属は、Na、Caなどであってもよい。 The metal contained in the metal salt as functional group F is not particularly limited, and examples thereof include Li, Na, K, Be, Mg, Ca, Ba, Sc, Y, Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Ag, Zn, B, Al, Ga, In, Pb, etc., and preferably Mg, Fe, Al, and Ga, and particularly preferably Al. In other words, the metal salt as functional group F is preferably an aluminum salt. The metal contained in the metal salt may be Na, Ca, etc.
 官能基Fとしての金属塩において、金属は、詳細には、カチオンとして存在する。この金属カチオンの価数は、例えば1以上であり、好ましくは2以上であり、より好ましくは3以上である。一例として、金属カチオンの価数は、2又は3である。 In the metal salt as the functional group F, the metal is present, in particular, as a cation. The valence of this metal cation is, for example, 1 or more, preferably 2 or more, and more preferably 3 or more. As an example, the valence of the metal cation is 2 or 3.
 構成単位B1が官能基Fとして金属塩を含む場合、複数のポリイミドP1が、カルボキシル基などの官能基を介して、金属塩に含まれる金属カチオンに配位することができる。これにより、複数のポリイミドP1が、金属カチオンを介して互いに架橋する。このような架橋構造が形成されることによって、ポリイミドP1の物理エージング(physical aging)が抑制され、これにより、分離機能層1の分離性能が経時的に低下することを抑制できる傾向がある。ポリイミドP1が官能基Fとして金属塩を含む場合、分離機能層1の分離性能が向上する傾向もある。後述するとおり、官能基Fとしての金属塩は、例えば、テトラカルボン酸二無水物a1とジアミンb1とを含むモノマー群から得られたポリイミドPに含まれる官能基fについて、解離性のプロトンを金属カチオンと交換させることによって形成することができる。 When the structural unit B1 contains a metal salt as the functional group F, multiple polyimides P1 can be coordinated to metal cations contained in the metal salt via functional groups such as carboxyl groups. As a result, multiple polyimides P1 are crosslinked with each other via metal cations. By forming such a crosslinked structure, physical aging of the polyimide P1 is suppressed, and thus the separation performance of the separation functional layer 1 tends to be suppressed from decreasing over time. When the polyimide P1 contains a metal salt as the functional group F, the separation performance of the separation functional layer 1 also tends to be improved. As described later, the metal salt as the functional group F can be formed by exchanging a dissociable proton with a metal cation for a functional group f contained in the polyimide P obtained from a monomer group including, for example, tetracarboxylic dianhydride a1 and diamine b1.
 ジアミンb1に由来する構成単位B1は、例えば、下記式(B1)、式(B2)又は式(B3)で表される。式(B1)で表される構成単位B1は、上記の式(b1)で表されるジアミンb1に由来している。式(B2)で表される構成単位B1は、上記の式(b2)で表されるジアミンb1に由来している。式(B3)で表される構成単位B1は、上記の式(b3)で表されるジアミンb1に由来している。
Figure JPOXMLDOC01-appb-C000008
The structural unit B1 derived from diamine b1 is represented, for example, by the following formula (B1), formula (B2) or formula (B3). The structural unit B1 represented by formula (B1) is derived from diamine b1 represented by the above formula (b1). The structural unit B1 represented by formula (B2) is derived from diamine b1 represented by the above formula (b2). The structural unit B1 represented by formula (B3) is derived from diamine b1 represented by the above formula (b3).
Figure JPOXMLDOC01-appb-C000008
 式(B1)において、R1b~R4bは、互いに独立して、水素原子又は任意の置換基である。ただし、R1b~R4bからなる群より選ばれる少なくとも1つは、官能基Fを含む基であり、好ましくは官能基Fそのものである。官能基Fを含む基以外の任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (B1), R 1b to R 4b are each independently a hydrogen atom or an arbitrary substituent. However, at least one selected from the group consisting of R 1b to R 4b is a group containing a functional group F, and is preferably the functional group F itself. The arbitrary substituent other than the group containing the functional group F is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(B1)で表される構成単位B1の具体例としては、下記式(B1-1)~(B1-6)が挙げられる。なお、式(B1-2)、(B1-4)及び(B1-6)において、Mは、任意の金属カチオンであり、好ましくはMgイオン、Feイオン、Alイオン又はGaイオンであり、特に好ましくはAlイオンである。Mは、Naイオン又はCaイオンであってもよい。
Figure JPOXMLDOC01-appb-C000009
Specific examples of the structural unit B1 represented by formula (B1) include the following formulae (B1-1) to (B1-6). In formulae (B1-2), (B1-4) and (B1-6), M is any metal cation, preferably an Mg ion, an Fe ion, an Al ion or a Ga ion, and particularly preferably an Al ion. M may also be an Na ion or a Ca ion.
Figure JPOXMLDOC01-appb-C000009
 式(B2)において、R5b~R12bは、互いに独立して、水素原子又は任意の置換基であり、X1は、単結合又は任意の連結基である。ただし、R5b~R12bからなる群より選ばれる少なくとも1つは、官能基Fを含む基であり、好ましくは官能基Fそのものである。官能基Fを含む基以外の任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (B2), R 5b to R 12b are each independently a hydrogen atom or an arbitrary substituent, and X 1 is a single bond or an arbitrary linking group. However, at least one selected from the group consisting of R 5b to R 12b is a group containing a functional group F, and is preferably the functional group F itself. The arbitrary substituent other than the group containing the functional group F is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(B2)のX1において、任意の連結基は、例えば、2価の炭化水素基である。2価の炭化水素基としては、上述したものが挙げられる。X1は、2価の炭化水素基とともに、又は2価の炭化水素基に代えて、エーテル基やエステル基などの官能基を含んでいてもよい。 In the formula (B2) , the optional linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include those described above. X1 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
 式(B2)で表される構成単位B1の具体例としては、下記式(B2-1)~(B2-12)が挙げられる。なお、これらの式において、Mは、任意の金属カチオンであり、好ましくはMgイオン、Feイオン、Alイオン又はGaイオンであり、特に好ましくはAlイオンである。Mは、Naイオン又はCaイオンであってもよい。
Figure JPOXMLDOC01-appb-C000010
Specific examples of the structural unit B1 represented by formula (B2) include the following formulae (B2-1) to (B2-12). In these formulae, M is any metal cation, preferably an Mg ion, an Fe ion, an Al ion, or a Ga ion, and particularly preferably an Al ion. M may also be a Na ion or a Ca ion.
Figure JPOXMLDOC01-appb-C000010
 式(B3)において、R13b~R20bは、互いに独立して、水素原子又は任意の置換基であり、X2は、単結合又は任意の連結基である。ただし、R13b~R20bからなる群より選ばれる少なくとも1つは、官能基Fを含む基であり、好ましくは官能基Fそのものである。官能基Fを含む基以外の任意の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (B3), R 13b to R 20b are each independently a hydrogen atom or an arbitrary substituent, and X 2 is a single bond or an arbitrary linking group. However, at least one selected from the group consisting of R 13b to R 20b is a group containing a functional group F, and is preferably the functional group F itself. The arbitrary substituent other than the group containing the functional group F is not particularly limited, and examples thereof include a halogen group and a hydrocarbon group. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(B3)のX2において、任意の連結基は、例えば、2価の炭化水素基である。2価の炭化水素基としては、上述したものが挙げられる。X2は、2価の炭化水素基とともに、又は2価の炭化水素基に代えて、エーテル基やエステル基などの官能基を含んでいてもよい。 In the formula (B3) , the optional linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include those described above. X2 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
 式(B3)で表される構成単位B1の具体例としては、下記式(B3-1)~(B3-6)が挙げられる。なお、これらの式において、Mは、任意の金属カチオンであり、好ましくはMgイオン、Feイオン、Alイオン又はGaイオンであり、特に好ましくはAlイオンである。Mは、Naイオン又はCaイオンであってもよい。
Figure JPOXMLDOC01-appb-C000011
Specific examples of the structural unit B1 represented by formula (B3) include the following formulae (B3-1) to (B3-6). In these formulae, M is any metal cation, preferably an Mg ion, an Fe ion, an Al ion, or a Ga ion, and particularly preferably an Al ion. M may also be a Na ion or a Ca ion.
Figure JPOXMLDOC01-appb-C000011
 ポリイミドP1において、ジアミンに由来する全ての構成単位Bの物質量に対する、構成単位B1、特に官能基Fを有する構成単位B1、の物質量の比率p2は、例えば、1mol%以上であり、3mol%以上であってもよい。比率p2の上限値は、特に限定されず、例えば60mol%であり、50mol%、40mol%、30mol%、さらには25mol%であってもよい。比率p2が低い場合、ポリイミドP1の溶解性が改善され、分離機能層1の望ましい製造方法を適用しやすい傾向がある。さらに、この場合、分離機能層1の強度が向上する傾向もある。比率p2は、好ましくは1~25mol%である。比率p2がこの範囲である場合、分離機能層1の分離性能が良好である傾向がある。 In the polyimide P1, the ratio p2 of the amount of substance of the structural unit B1, particularly the structural unit B1 having a functional group F, to the amount of substance of all structural units B derived from diamine is, for example, 1 mol% or more, and may be 3 mol% or more. The upper limit of the ratio p2 is not particularly limited, and may be, for example, 60 mol%, 50 mol%, 40 mol%, 30 mol%, or even 25 mol%. When the ratio p2 is low, the solubility of the polyimide P1 is improved, and the desired manufacturing method of the separation functional layer 1 tends to be easier to apply. Furthermore, in this case, the strength of the separation functional layer 1 also tends to be improved. The ratio p2 is preferably 1 to 25 mol%. When the ratio p2 is in this range, the separation performance of the separation functional layer 1 tends to be good.
 ポリイミドP1は、スルホニル基(-SO2-)を有するジアミンb2に由来する構成単位B2をさらに含んでいてもよい。構成単位B2は、分離機能層1を透過する酸性ガスの透過係数や透過速度を向上させることに適した構成単位である。ジアミンb2は、スルホニル基とともに、2つの1級アミノ基を有する化合物である。ジアミンb2におけるスルホニル基の数は、特に限定されず、例えば5以下であり、好ましくは1である。ジアミンb2は、例えば、上述した官能基fなどの解離性のプロトンを有する基を含まない。 Polyimide P1 may further contain a structural unit B2 derived from diamine b2 having a sulfonyl group (-SO 2 -). The structural unit B2 is a structural unit suitable for improving the permeation coefficient and permeation rate of acidic gases that permeate through the separation functional layer 1. Diamine b2 is a compound having two primary amino groups together with a sulfonyl group. The number of sulfonyl groups in diamine b2 is not particularly limited and is, for example, 5 or less, and preferably 1. Diamine b2 does not contain a group having a dissociable proton, such as the above-mentioned functional group f.
 ジアミンb2は、例えば、スルホニル基を有する環構造を含む。スルホニル基を有する環構造は、典型的には、チオフェン1,1-ジオキシド環、又はテトラヒドロチオフェン1,1-ジオキシド環である。 Diamine b2, for example, contains a ring structure having a sulfonyl group. The ring structure having a sulfonyl group is typically a thiophene 1,1-dioxide ring or a tetrahydrothiophene 1,1-dioxide ring.
 ジアミンb2は、縮合環を有していてもよく、当該縮合環がスルホニル基を有する環構造を含んでいてもよい。縮合環は、スルホニル基を有する環構造とともに、芳香環を含んでいてもよい。芳香環としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 The diamine b2 may have a condensed ring, and the condensed ring may contain a ring structure having a sulfonyl group. The condensed ring may contain an aromatic ring together with the ring structure having a sulfonyl group. Examples of the aromatic ring include those described above for the tetracarboxylic dianhydride a1.
 ジアミンb2において、縮合環の置換基が、例えば、1級アミノ基を含んでいる。縮合環は、1級アミノ基を含む置換基以外の他の置換基を有していてもよく、他の置換基を有していなくてもよい。他の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In diamine b2, the substituent of the condensed ring contains, for example, a primary amino group. The condensed ring may contain other substituents than the substituent containing the primary amino group, or may not contain other substituents. The other substituents are not particularly limited, and examples thereof include halogen groups and hydrocarbon groups. Examples of halogen groups and hydrocarbon groups include those described above for tetracarboxylic dianhydride a1.
 ジアミンb2は、例えば、下記式(c1)で表される。
Figure JPOXMLDOC01-appb-C000012
Diamine b2 is represented, for example, by the following formula (c1).
Figure JPOXMLDOC01-appb-C000012
 式(c1)において、R1c~R6cは、互いに独立して、水素原子又は任意の置換基である。式(c1)において、任意の置換基は、例えば、上記の官能基fを含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (c1), R 1c to R 6c are each independently a hydrogen atom or an arbitrary substituent. In formula (c1), the arbitrary substituent is, for example, a substituent other than the group containing the functional group f, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 ポリイミドP1において、ジアミンb2に由来する構成単位B2は、例えば、下記式(C1)で表される。式(C1)で表される構成単位B2は、上記の式(c1)で表されるジアミンb2に由来している。
Figure JPOXMLDOC01-appb-C000013
In the polyimide P1, the structural unit B2 derived from the diamine b2 is represented, for example, by the following formula (C1): The structural unit B2 represented by formula (C1) is derived from the diamine b2 represented by the above formula (c1).
Figure JPOXMLDOC01-appb-C000013
 式(C1)において、R1c~R6cは、互いに独立して、水素原子又は任意の置換基である。式(C1)において、任意の置換基は、例えば、上記の官能基Fを含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。式(C1)で表される構成単位B2は、ポリイミドP1の剛直性を向上させることに適している。剛直性に優れたポリイミドP1によれば、分離対象の混合気体の圧力が高い場合であっても、分離機能層1が可塑化することを抑制できる傾向がある。 In formula (C1), R 1c to R 6c are each independently a hydrogen atom or an arbitrary substituent. In formula (C1), the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1. The structural unit B2 represented by formula (C1) is suitable for improving the rigidity of the polyimide P1. According to the polyimide P1 having excellent rigidity, even when the pressure of the mixed gas to be separated is high, the separation functional layer 1 tends to be suppressed from being plasticized.
 式(C1)で表される構成単位B2の具体例としては、下記式(C1-1)~(C1-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Specific examples of the structural unit B2 represented by formula (C1) include the following formulae (C1-1) and (C1-2).
Figure JPOXMLDOC01-appb-C000014
 ポリイミドP1において、ジアミンに由来する全ての構成単位Bの物質量に対する、上記の構成単位B2の物質量の比率p3は、特に限定されず、例えば5mol%以上であり、10mol%以上、20mol%以上、30mol%以上、さらには40mol%以上であってもよい。比率p3の上限値は、特に限定されず、例えば95mol%であり、90mol%、80mol%、70mol%、60mol%、さらには50mol%であってもよい。 In polyimide P1, the ratio p3 of the amount of substance of the structural unit B2 to the amount of substances of all structural units B derived from diamine is not particularly limited, and may be, for example, 5 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, or even 40 mol% or more. The upper limit of ratio p3 is not particularly limited, and may be, for example, 95 mol%, 90 mol%, 80 mol%, 70 mol%, 60 mol%, or even 50 mol%.
 ポリイミドP1は、ジアミンb1及びb2以外の他のジアミンb3に由来する構成単位B3をさらに含んでいてもよい。ジアミンb3は、上記の官能基fやスルホニル基を有さず、2つの1級アミノ基を有する化合物である。ジアミンb3は、例えば、解離性のプロトンを有する基を含まない。 Polyimide P1 may further contain a structural unit B3 derived from a diamine b3 other than diamines b1 and b2. Diamine b3 is a compound that does not have the above-mentioned functional group f or a sulfonyl group, and has two primary amino groups. Diamine b3 does not, for example, contain a group having a dissociable proton.
 ジアミンb3は、芳香環をさらに有していてもよい。芳香環としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。ジアミンb3において、芳香環の置換基が、例えば、1級アミノ基を含んでいる。芳香環は、1級アミノ基を含む置換基以外の他の置換基を有していてもよく、他の置換基を有していなくてもよい。他の置換基としては、特に限定されず、ハロゲン基、炭化水素基などが挙げられる。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 Diamine b3 may further have an aromatic ring. Examples of the aromatic ring include those described above for tetracarboxylic dianhydride a1. In diamine b3, the substituent of the aromatic ring includes, for example, a primary amino group. The aromatic ring may have other substituents other than the substituent including the primary amino group, or may not have other substituents. Examples of the other substituents include, but are not limited to, halogen groups and hydrocarbon groups. Examples of the halogen groups and hydrocarbon groups include those described above for tetracarboxylic dianhydride a1.
 ジアミンb3は、例えば、下記式(d1)、式(d2)又は式(d3)で表される。
Figure JPOXMLDOC01-appb-C000015
Diamine b3 is represented, for example, by the following formula (d1), formula (d2) or formula (d3).
Figure JPOXMLDOC01-appb-C000015
 式(d1)において、R1d~R4dは、互いに独立して、水素原子又は任意の置換基である。式(d1)において、任意の置換基は、例えば、上記の官能基fを含む基及びスルホニル基を含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (d1), R 1d to R 4d are each independently a hydrogen atom or an arbitrary substituent. In formula (d1), the arbitrary substituent is, for example, a substituent other than the group containing the functional group f and the group containing a sulfonyl group, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(d2)において、R5d~R8dは、互いに独立して、水素原子又は任意の置換基である。式(d2)において、任意の置換基は、例えば、上記の官能基fを含む基及びスルホニル基を含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (d2), R 5d to R 8d are each independently a hydrogen atom or an arbitrary substituent. In formula (d2), the arbitrary substituent is, for example, a substituent other than the group containing the functional group f and the group containing a sulfonyl group, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(d3)において、R9d~R16dは、互いに独立して、水素原子又は任意の置換基であり、X3は、単結合又は任意の連結基である。式(d3)において、任意の置換基は、例えば、上記の官能基fを含む基及びスルホニル基を含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。 In formula (d3), R 9d to R 16d are each independently a hydrogen atom or an arbitrary substituent, and X 3 is a single bond or an arbitrary linking group. In formula (d3), the arbitrary substituent is, for example, a substituent other than the group containing the functional group f and the group containing a sulfonyl group, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1.
 式(d3)のX3において、任意の連結基は、例えば、2価の炭化水素基である。2価の炭化水素基としては、上述したものが挙げられる。X3において、2価の炭化水素基は、芳香環をさらに有していてもよい。芳香環としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。X3における2価の炭化水素基は、フルオレンジイル基であってもよい。X3は、2価の炭化水素基とともに、又は2価の炭化水素基に代えて、エーテル基やエステル基などの官能基を含んでいてもよい。 In X3 of formula (d3), the optional linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include those mentioned above. In X3 , the divalent hydrocarbon group may further have an aromatic ring. Examples of the aromatic ring include those mentioned above for the tetracarboxylic dianhydride a1. The divalent hydrocarbon group in X3 may be a fluorenediyl group. X3 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group.
 ジアミンb3に由来する構成単位B3は、例えば、下記式(D1)、式(D2)又は式(D3)で表される。式(D1)で表される構成単位B3は、上記の式(d1)で表されるジアミンb3に由来している。式(D2)で表される構成単位B3は、上記の式(d2)で表されるジアミンb3に由来している。式(D3)で表される構成単位B3は、上記の式(d3)で表されるジアミンb3に由来している。
Figure JPOXMLDOC01-appb-C000016
The structural unit B3 derived from diamine b3 is represented, for example, by the following formula (D1), formula (D2) or formula (D3). The structural unit B3 represented by formula (D1) is derived from diamine b3 represented by the above formula (d1). The structural unit B3 represented by formula (D2) is derived from diamine b3 represented by the above formula (d2). The structural unit B3 represented by formula (D3) is derived from diamine b3 represented by the above formula (d3).
Figure JPOXMLDOC01-appb-C000016
 式(D1)において、R1d~R4dは、互いに独立して、水素原子又は任意の置換基である。式(D1)において、任意の置換基は、例えば、上記の官能基Fを含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。式(D1)で表される構成単位B3の具体例としては、下記式(D1-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000017
In formula (D1), R 1d to R 4d are each independently a hydrogen atom or an arbitrary substituent. In formula (D1), the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1. A specific example of the structural unit B3 represented by formula (D1) is the following formula (D1-1).
Figure JPOXMLDOC01-appb-C000017
 式(D2)において、R5d~R8dは、互いに独立して、水素原子又は任意の置換基である。式(D2)において、任意の置換基は、例えば、上記の官能基Fを含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。式(D2)で表される構成単位B3の具体例としては、下記式(D2-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000018
In formula (D2), R 5d to R 8d are each independently a hydrogen atom or an arbitrary substituent. In formula (D2), the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and more specifically, a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1. A specific example of the structural unit B3 represented by formula (D2) is the following formula (D2-1).
Figure JPOXMLDOC01-appb-C000018
 式(D3)において、R9d~R16dは、互いに独立して、水素原子又は任意の置換基であり、X3は、単結合又は任意の連結基である。式(D3)において、任意の置換基は、例えば、上記の官能基Fを含む基以外の置換基であり、詳細には、ハロゲン基、炭化水素基などである。ハロゲン基及び炭化水素基としては、テトラカルボン酸二無水物a1について上述したものが挙げられる。式(D3)のX3において、任意の連結基は、例えば、2価の炭化水素基である。2価の炭化水素基としては、上述したものが挙げられる。X3は、2価の炭化水素基とともに、又は2価の炭化水素基に代えて、エーテル基やエステル基などの官能基を含んでいてもよい。式(D3)で表される構成単位B3の具体例としては、下記式(D3-1)~(D3-3)が挙げられる。
Figure JPOXMLDOC01-appb-C000019
In formula (D3), R 9d to R 16d are each independently a hydrogen atom or an arbitrary substituent, and X 3 is a single bond or an arbitrary linking group. In formula (D3), the arbitrary substituent is, for example, a substituent other than the group containing the functional group F, and in detail, is a halogen group, a hydrocarbon group, etc. Examples of the halogen group and the hydrocarbon group include those described above for the tetracarboxylic dianhydride a1. In formula (D3), the arbitrary linking group is, for example, a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include those described above. X 3 may contain a functional group such as an ether group or an ester group together with or instead of the divalent hydrocarbon group. Specific examples of the structural unit B3 represented by formula (D3) include the following formulae (D3-1) to (D3-3).
Figure JPOXMLDOC01-appb-C000019
 ポリイミドP1において、ジアミンに由来する全ての構成単位Bの物質量に対する、上記の構成単位B3の物質量の比率p4は、特に限定されず、例えば5mol%以上であり、10mol%以上、20mol%以上、30mol%以上、さらには40mol%以上であってもよい。比率p4の上限値は、特に限定されず、例えば95mol%であり、90mol%、80mol%、70mol%、60mol%、さらには50mol%であってもよい。 In polyimide P1, the ratio p4 of the amount of substance of the structural unit B3 to the amount of substances of all structural units B derived from diamine is not particularly limited, and may be, for example, 5 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, or even 40 mol% or more. The upper limit of ratio p4 is not particularly limited, and may be, for example, 95 mol%, 90 mol%, 80 mol%, 70 mol%, 60 mol%, or even 50 mol%.
 ポリイミドP1では、テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとが交互に並んでいる。ポリイミドP1において、隣接する構成単位A及びBの組み合わせとしては、例えば、下記式(A1-B1)、式(A1-B2)、式(A1-C1)、式(A1-D1)などが挙げられる。なお、これらの式において、R1a~R4a、R1b~R12b、R1c~R6c及びR1d~R4dは、式(A1)、式(B1)、式(B2)、式(C1)及び式(D1)について、上述したものと同じである。
Figure JPOXMLDOC01-appb-C000020
In polyimide P1, structural units A derived from tetracarboxylic dianhydride and structural units B derived from diamine are arranged alternately. In polyimide P1, examples of combinations of adjacent structural units A and B include the following formulae (A1-B1), (A1-B2), (A1-C1), and (A1-D1). In these formulae, R 1a to R 4a , R 1b to R 12b , R 1c to R 6c , and R 1d to R 4d are the same as those described above for formulae (A1), (B1), (B2), (C1), and (D1).
Figure JPOXMLDOC01-appb-C000020
 ポリイミドP1の重量平均分子量(Mw)は、分離機能層1の機械的強度の観点から、例えば30000以上であり、好ましくは50000以上であり、より好ましくは75000以上である。ポリイミドP1の重量平均分子量の上限値は、特に限定されず、例えば100万である。ポリイミドP1の重量平均分子量は、例えば、示差屈折率検出器(RID)を備えたゲルパーミエーションクロマトグラフ(GPC)によって、ポリイミドP1の分子量分布を測定し、得られたクロマトグラム(チャート)から、標準ポリスチレンによる検量線を用いて算出することができる。 The weight average molecular weight (Mw) of polyimide P1 is, for example, 30,000 or more, preferably 50,000 or more, and more preferably 75,000 or more, from the viewpoint of the mechanical strength of the separation functional layer 1. The upper limit of the weight average molecular weight of polyimide P1 is not particularly limited, and is, for example, 1 million. The weight average molecular weight of polyimide P1 can be calculated, for example, by measuring the molecular weight distribution of polyimide P1 using a gel permeation chromatograph (GPC) equipped with a refractive index detector (RID) and using a calibration curve based on standard polystyrene from the obtained chromatogram (chart).
 分離機能層1におけるポリイミドP1の含有率は、例えば50wt%以上であり、60wt%以上、70wt%以上、80wt%以上、90wt%以上、さらには95wt%以上であってもよい。分離機能層1は、実質的にポリイミドP1のみから構成されていてもよい。 The content of polyimide P1 in the separation functional layer 1 is, for example, 50 wt% or more, and may be 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, or even 95 wt% or more. The separation functional layer 1 may be substantially composed of only polyimide P1.
 分離機能層1は、ポリイミドP1以外の他の成分をさらに含んでいてもよい。他の成分としては、ナノ粒子などのフィラーが挙げられる。ナノ粒子は、無機材料を含んでいてもよく、有機材料を含んでいてもよい。ナノ粒子に含まれる無機材料としては、例えば、シリカ、チタニア及びアルミナが挙げられる。分離機能層1において、フィラーは、例えば、ポリイミドP1を含むマトリクスに分散している。フィラーは、マトリクス内で互いに離間していてもよく、部分的に凝集していてもよい。 The separation functional layer 1 may further contain other components in addition to polyimide P1. Examples of other components include fillers such as nanoparticles. The nanoparticles may contain an inorganic material or may contain an organic material. Examples of inorganic materials contained in the nanoparticles include silica, titania, and alumina. In the separation functional layer 1, the fillers are dispersed in a matrix containing, for example, polyimide P1. The fillers may be spaced apart from each other within the matrix, or may be partially aggregated.
 本実施形態において、分離機能層1の厚さは、例えば50μm以下であり、25μm以下、15μm以下、10μm以下、8μm以下、5μm以下、3μm以下、2.5μm以下、2μm以下、さらには1.5μm以下であってもよい。分離機能層1の厚さの下限値は、0.05μmであってもよく、0.1μmであってもよい。 In this embodiment, the thickness of the separation functional layer 1 is, for example, 50 μm or less, and may be 25 μm or less, 15 μm or less, 10 μm or less, 8 μm or less, 5 μm or less, 3 μm or less, 2.5 μm or less, 2 μm or less, or even 1.5 μm or less. The lower limit of the thickness of the separation functional layer 1 may be 0.05 μm or 0.1 μm.
 分離機能層1の厚さは、次の方法によって特定できる。まず、分離膜10の断面を走査型電子顕微鏡で観察する。得られた電子顕微鏡像を用いて、分離機能層1の互いに向かい合う1対の主面の間の距離を測定する。3点以上の位置で上記の距離を測定し、得られた値の平均値を分離機能層1の厚さとみなすことができる。なお、本実施形態では、分離機能層1において、互いに向かい合う1対の主面の間の距離のばらつきが抑制されている傾向がある。言い換えると、分離機能層1内での厚さのばらつきが抑制されている傾向がある。分離機能層1内での厚さのばらつきが抑制されている場合、分離機能層1は、平滑な表面を有していると言える。分離機能層1の表面が平滑かどうかは、分離機能層1の表面での光(可視光線)の反射具合を目視で観察して判断することもできる。 The thickness of the separation functional layer 1 can be determined by the following method. First, the cross section of the separation membrane 10 is observed with a scanning electron microscope. Using the obtained electron microscope image, the distance between a pair of opposing main surfaces of the separation functional layer 1 is measured. The above distance is measured at three or more positions, and the average of the obtained values can be regarded as the thickness of the separation functional layer 1. In this embodiment, the variation in the distance between the pair of opposing main surfaces in the separation functional layer 1 tends to be suppressed. In other words, the variation in thickness within the separation functional layer 1 tends to be suppressed. When the variation in thickness within the separation functional layer 1 is suppressed, it can be said that the separation functional layer 1 has a smooth surface. Whether the surface of the separation functional layer 1 is smooth can also be determined by visually observing the reflection of light (visible light) on the surface of the separation functional layer 1.
(多孔性支持体)
 上述のとおり、多孔性支持体2は、分離機能層1に直接接しており、分離機能層1を支持している。多孔性支持体2は、多孔質構造を有する。分離膜10を透過する酸性ガスの透過係数や透過速度を向上させる観点から、多孔性支持体2は、三次元状に連続して形成されている連続孔を有することが好ましい。ただし、多孔性支持体2は、独立孔を有していてもよく、連続孔及び独立孔の両方を有していてもよい。多孔性支持体2は、多孔性支持体2を貫通する貫通孔を有していてもよい。
(Porous Support)
As described above, the porous support 2 is in direct contact with the separation functional layer 1 and supports the separation functional layer 1. The porous support 2 has a porous structure. From the viewpoint of improving the permeation coefficient and permeation rate of the acidic gas permeating the separation membrane 10, the porous support 2 preferably has continuous pores formed continuously in a three-dimensional shape. However, the porous support 2 may have independent pores, or may have both continuous pores and independent pores. The porous support 2 may have through holes penetrating the porous support 2.
 多孔性支持体2は、例えば、ポリマーを含む。多孔性支持体2に含まれるポリマーの具体例としては、ポリイミドP2、ポリアミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどが挙げられる。多孔性支持体2は、ポリイミドP2を含むことが好ましい。多孔性支持体2に含まれるポリイミドP2は、分離機能層1に含まれるポリイミドP1として上述したものであってもよく、ポリイミドP1と同じであってもよい。すなわち、ポリイミドP2は、上述した構成単位A1を含んでいてもよい。ただし、ポリイミドP2は、ポリイミドP1として上述したもの以外の他のポリイミドであってもよい。 The porous support 2 includes, for example, a polymer. Specific examples of the polymer included in the porous support 2 include polyimide P2, polyamide, polyamideimide, polyether ether ketone, polyphenylene sulfide, and the like. It is preferable that the porous support 2 includes polyimide P2. The polyimide P2 included in the porous support 2 may be the polyimide P1 included in the separation functional layer 1 described above, or may be the same as the polyimide P1. In other words, the polyimide P2 may include the structural unit A1 described above. However, the polyimide P2 may be a polyimide other than the polyimide P1 described above.
 多孔性支持体2におけるポリマー(特にポリイミドP2)の含有率は、例えば50wt%以上であり、60wt%以上、70wt%以上、80wt%以上、90wt%以上、さらには95wt%以上であってもよい。多孔性支持体2は、実質的にポリマーのみから構成されていてもよい。 The polymer (particularly polyimide P2) content in the porous support 2 is, for example, 50 wt% or more, and may be 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, or even 95 wt% or more. The porous support 2 may be composed essentially of polymer only.
 本実施形態において、多孔性支持体2の厚さは、例えば10μm以上であり、30μm以上、50μm以上、70μm以上、90μm以上、100μm以上、さらには110μm以上であってもよい。多孔性支持体2の厚さが大きければ大きいほど、分離膜10の剛性が向上し、取り扱いが容易である傾向がある。多孔性支持体2の厚さの上限値は、例えば、300μmである。 In this embodiment, the thickness of the porous support 2 is, for example, 10 μm or more, and may be 30 μm or more, 50 μm or more, 70 μm or more, 90 μm or more, 100 μm or more, or even 110 μm or more. The greater the thickness of the porous support 2, the greater the rigidity of the separation membrane 10 and the easier it tends to be to handle. The upper limit of the thickness of the porous support 2 is, for example, 300 μm.
 多孔性支持体2の厚さは、次の方法によって特定できる。まず、分離膜10の断面を走査型電子顕微鏡で観察する。得られた電子顕微鏡像を用いて、多孔性支持体2の互いに向かい合う1対の主面の間の距離を測定する。3点以上の位置で上記の距離を測定し、得られた値の平均値を多孔性支持体2の厚さとみなすことができる。 The thickness of the porous support 2 can be determined by the following method. First, the cross section of the separation membrane 10 is observed with a scanning electron microscope. Using the obtained electron microscope image, the distance between a pair of opposing main surfaces of the porous support 2 is measured. The above distance is measured at three or more positions, and the average of the obtained values can be regarded as the thickness of the porous support 2.
 なお、分離機能層1の厚さと、多孔性支持体2の厚さとの合計値V(典型的には、分離膜10の厚さ)は、例えば10μm以上であり、30μm以上、50μm以上、70μm以上、90μm以上、100μm以上、さらには110μm以上であってもよい。合計値Vの上限値は、例えば、300μmである。 The total value V of the thickness of the separation functional layer 1 and the thickness of the porous support 2 (typically, the thickness of the separation membrane 10) is, for example, 10 μm or more, and may be 30 μm or more, 50 μm or more, 70 μm or more, 90 μm or more, 100 μm or more, or even 110 μm or more. The upper limit of the total value V is, for example, 300 μm.
(分離膜の形状)
 本実施形態において、分離膜10は、典型的には平膜である。ただし、分離膜10は、平膜以外の形状であってもよく、例えば、中空糸膜であってもよい。
(Shape of separation membrane)
In this embodiment, the separation membrane 10 is typically a flat membrane. However, the separation membrane 10 may have a shape other than a flat membrane, for example, a hollow fiber membrane.
(分離膜の製造方法)
 以下では、図2A~2Cを参照して、本実施形態の分離膜10の製造方法を説明する。分離膜10の製造方法は、例えば、分離機能層1の材料を含む第1塗布液を基材5の上に塗布し、乾燥させることによって分離機能層1を形成する工程I(図2A)と、多孔性支持体2の材料、及び多孔化剤を含む第2塗布液を分離機能層1の上に塗布して、塗布膜6を形成する工程II(図2B)と、塗布膜6から多孔化剤を除去して、多孔性支持体2を形成する工程III(図2C)と、を含む。
(Method for producing separation membrane)
2A to 2C, the method for producing the separation membrane 10 of this embodiment is described below. The method for producing the separation membrane 10 includes, for example, step I (FIG. 2A) of forming the separation functional layer 1 by applying a first coating liquid containing the material of the separation functional layer 1 onto a substrate 5 and drying it, step II (FIG. 2B) of forming the coating film 6 by applying a second coating liquid containing the material of the porous support 2 and a porogen onto the separation functional layer 1, and step III (FIG. 2C) of forming the porous support 2 by removing the porogen from the coating film 6.
[工程I]
 工程Iにおいて、好ましい一形態では、第1塗布液は、分離機能層1の材料として、カルボキシル基、ヒドロキシル基及びチオール基からなる群より選ばれる少なくとも1つの官能基fを有するポリイミドPと、金属を有する化合物Mとを含む。この形態において、ポリイミドPは、ポリイミドP1の前駆体であり、官能基fの解離性のプロトンが金属カチオンと交換されることによって、ポリイミドPからポリイミドP1を形成することができる。後述するとおり、この第1塗布液によれば、上記の官能基Fとして金属塩を有するポリイミドP1を形成することができる。
[Step I]
In step I, in a preferred embodiment, the first coating liquid contains, as materials for the separation functional layer 1, a polyimide P having at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, and a compound M having a metal. In this embodiment, the polyimide P is a precursor of the polyimide P1, and the polyimide P1 can be formed from the polyimide P by exchanging the dissociative proton of the functional group f with a metal cation. As described later, this first coating liquid can form a polyimide P1 having a metal salt as the functional group F.
 ポリイミドPは、例えば、次の方法によって作製することができる。まず、上述のジアミンb1を含むジアミン群を溶媒に溶解させ、溶液を得る。溶媒としては、例えば、N-メチル-2-ピロリドン、1,3-ジオキソランなどの極性有機溶媒が挙げられる。 Polyimide P can be prepared, for example, by the following method. First, a diamine group including the above-mentioned diamine b1 is dissolved in a solvent to obtain a solution. Examples of the solvent include polar organic solvents such as N-methyl-2-pyrrolidone and 1,3-dioxolane.
 次に、得られた溶液に、上述のテトラカルボン酸二無水物a1を含むテトラカルボン酸二無水物群を徐々に添加する。これにより、テトラカルボン酸二無水物a1とジアミンb1を含むモノマー群が反応し、ポリアミド酸が形成される。テトラカルボン酸二無水物群の添加は、例えば、140℃以上の加熱環境下で3~20時間、攪拌条件下で行われる。 Next, the tetracarboxylic dianhydride group including the above-mentioned tetracarboxylic dianhydride a1 is gradually added to the obtained solution. This causes the tetracarboxylic dianhydride a1 to react with the monomer group including the diamine b1 to form polyamic acid. The addition of the tetracarboxylic dianhydride group is carried out under stirring conditions, for example, for 3 to 20 hours in a heated environment of 140°C or higher.
 次に、ポリアミド酸をイミド化することによって、ポリイミドPを得ることができる。イミド化の方法としては、例えば、化学イミド化法及び熱イミド化法が挙げられる。化学イミド化法は、脱水縮合剤を用いて、例えば室温条件下でポリアミド酸をイミド化する方法である。脱水縮合剤としては、例えば、無水酢酸、ピリジン及びトリエチルアミンが挙げられる。熱イミド化法は、加熱処理によって、ポリアミド酸をイミド化する方法である。加熱処理の温度は、例えば、180℃以上である。 Then, polyimide P can be obtained by imidizing polyamic acid. Examples of the imidization method include chemical imidization and thermal imidization. The chemical imidization method is a method in which polyamic acid is imidized, for example, at room temperature using a dehydrating condensation agent. Examples of the dehydrating condensation agent include acetic anhydride, pyridine, and triethylamine. The thermal imidization method is a method in which polyamic acid is imidized by heat treatment. The temperature of the heat treatment is, for example, 180°C or higher.
 第1塗布液におけるポリイミドPの含有率は、ポリイミドPの溶解性に応じて適宜調整でき、例えば1wt%~30wt%である。第1塗布液において、ポリイミドP及び溶剤の合計重量に対するポリイミドPの重量の比率は、例えば1wt%~30wt%である。 The content of polyimide P in the first coating liquid can be adjusted appropriately depending on the solubility of polyimide P, and is, for example, 1 wt% to 30 wt%. In the first coating liquid, the ratio of the weight of polyimide P to the total weight of polyimide P and the solvent is, for example, 1 wt% to 30 wt%.
 化合物Mが有する金属としては、官能基Fとしての金属塩に含まれる金属として上述したものが挙げられる。化合物Mにおいて、金属は、例えば、カチオンとして存在する。化合物Mとしては、例えば、金属と、当該金属に配位している配位子とを有する金属錯体や、金属を含む無機塩などが挙げられる。化合物Mは、金属錯体を含むことが好ましい。 The metal contained in compound M includes those mentioned above as the metal contained in the metal salt as functional group F. In compound M, the metal exists, for example, as a cation. Examples of compound M include a metal complex having a metal and a ligand coordinated to the metal, and an inorganic salt containing a metal. Compound M preferably contains a metal complex.
 金属錯体において、配位子は、揮発性を有していることが好ましい。一例として、配位子の沸点は、大気圧下(101.325kPa)で20℃~260℃であってもよい。揮発性を有する配位子は、後述する第1塗布膜の乾燥時に揮発しやすく、分離機能層1に残りにくい。なお、配位子は、揮発性を有していなくてもよい。この場合、分離機能層1(又は分離膜10)の形成後に洗浄操作を行うことによって、分離機能層1から配位子を容易に除去することができる。 In the metal complex, it is preferable that the ligand is volatile. As an example, the boiling point of the ligand may be 20°C to 260°C under atmospheric pressure (101.325 kPa). A volatile ligand is likely to volatilize when the first coating film described below is dried, and is unlikely to remain in the separation functional layer 1. The ligand does not have to be volatile. In this case, the ligand can be easily removed from the separation functional layer 1 by performing a cleaning operation after the formation of the separation functional layer 1 (or separation membrane 10).
 金属錯体において、配位子は、典型的には、金属に配位するための官能基を有する有機配位子である。有機配位子の炭素数は、特に限定されず、例えば1~10である。有機配位子に含まれる官能基としては、例えば、ケトン基などのカルボニル基が挙げられる。有機配位子に含まれる官能基の数は、例えば1以上であり、2以上であってもよい。有機配位子の具体例としては、アセチルアセトナート(acac)などが挙げられる。金属錯体の具体例としては、Al(acac)3などが挙げられる。 In the metal complex, the ligand is typically an organic ligand having a functional group for coordinating to the metal. The number of carbon atoms in the organic ligand is not particularly limited, and may be, for example, 1 to 10. Examples of the functional group contained in the organic ligand include a carbonyl group such as a ketone group. The number of functional groups contained in the organic ligand may be, for example, 1 or more, and may be 2 or more. A specific example of the organic ligand is acetylacetonate (acac). A specific example of the metal complex is Al(acac) 3 .
 無機塩としては、塩化物、硝酸塩、硫酸塩などが挙げられ、詳細には、LiCl、NaCl、KCl、AgNO3、MgCl2、CaCl2、BaCl2、NiCl2、ZnCl2、CuCl2、Pb(NO32、Al(NO33、Fe2(SO43などが挙げられる。 Examples of inorganic salts include chlorides, nitrates, sulfates, etc., and more specifically, LiCl, NaCl, KCl, AgNO3 , MgCl2 , CaCl2 , BaCl2 , NiCl2 , ZnCl2 , CuCl2 , Pb( NO3 ) 2 , Al( NO3 ) 3 , Fe2 ( SO4 ) 3 , etc.
 第1塗布液において、ポリイミドPの重量に対する化合物Mの重量の比率は、ポリイミドPの組成などに応じて適宜調整でき、例えば1~10wt%である。 In the first coating liquid, the ratio of the weight of compound M to the weight of polyimide P can be adjusted appropriately depending on the composition of polyimide P, and is, for example, 1 to 10 wt %.
 第1塗布液が化合物Mとして金属錯体を含む場合、第1塗布液は、配位子をさらに含んでいてもよい。第1塗布液において、ポリイミドPの重量に対する配位子の重量の比率は、ポリイミドPや金属錯体の含有率などに応じて適宜調整でき、例えば1~10wt%である。 When the first coating liquid contains a metal complex as compound M, the first coating liquid may further contain a ligand. In the first coating liquid, the ratio of the weight of the ligand to the weight of the polyimide P can be appropriately adjusted depending on the content of the polyimide P and the metal complex, and is, for example, 1 to 10 wt %.
 第1塗布液は、例えば、溶剤をさらに含む。溶剤は、典型的には、ポリイミドPを溶解させることができる良溶媒である。溶剤は、アミド化合物及びラクトン化合物からなる群より選ばれる少なくとも1つを含むことが好ましく、アミド化合物を含むことがより好ましい。アミド化合物としては、例えば、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)などが挙げられる。ラクトン化合物としては、例えば、γ-ブチロラクトンなどが挙げられる。 The first coating liquid further contains, for example, a solvent. The solvent is typically a good solvent capable of dissolving polyimide P. The solvent preferably contains at least one selected from the group consisting of amide compounds and lactone compounds, and more preferably contains an amide compound. Examples of amide compounds include N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAc). Examples of lactone compounds include γ-butyrolactone.
 第1塗布液における溶剤の含有率は、例えば30wt%~95wt%である。第1塗布液において、ポリイミドP及び溶剤の合計重量に対する溶剤の重量の比率は、例えば30wt%~95wt%である。 The content of the solvent in the first coating liquid is, for example, 30 wt% to 95 wt%. In the first coating liquid, the ratio of the weight of the solvent to the total weight of the polyimide P and the solvent is, for example, 30 wt% to 95 wt%.
 なお、第1塗布液は、上述の組成のものに限定されない。別の好ましい一形態では、第1塗布液は、上記のポリイミドP及び化合物Mに代えて、ポリイミドP1を含む。この形態において、ポリイミドP1は、例えば、カルボキシル基、ヒドロキシル基、チオール基及びこれらの金属塩からなる群より選ばれる少なくとも1つの官能基Fを有している。 The first coating liquid is not limited to the above-mentioned composition. In another preferred embodiment, the first coating liquid contains polyimide P1 instead of the above-mentioned polyimide P and compound M. In this embodiment, polyimide P1 has at least one functional group F selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
 工程Iにおいて、基材5としては、例えば、樹脂を含むフィルム;紙;アルミニウムやステンレス鋼などの金属材料を含むシートなどが挙げられる。金属材料を含むシートは、耐熱性が高い傾向がある。基材5は、表面平滑性に優れる点から、樹脂を含むフィルムであることが好ましい。基材5において、樹脂に含まれるポリマーとしては、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテンなどのポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリ塩化ビニル、塩化ビニル共重合体;ポリウレタン;エチレン-酢酸ビニル共重合体;ポリイミドなどが挙げられ、ポリエステル、特にポリエチレンテレフタレート、が好ましい。 In step I, examples of the substrate 5 include films containing resin; paper; and sheets containing metal materials such as aluminum and stainless steel. Sheets containing metal materials tend to have high heat resistance. The substrate 5 is preferably a film containing resin, since it has excellent surface smoothness. In the substrate 5, examples of the polymer contained in the resin include polyolefins such as polyethylene, polypropylene, polybutene, polybutadiene, and polymethylpentene; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyvinyl chloride, vinyl chloride copolymers; polyurethane; ethylene-vinyl acetate copolymers; and polyimides, with polyesters, particularly polyethylene terephthalate, being preferred.
 基材5の表面には、剥離処理が施されていてもよい。剥離処理は、例えば、基材5の表面に剥離処理剤を付与することによって行うことができる。剥離処理剤としては、シリコーン系剥離処理剤、長鎖アルキル系剥離処理剤、フッ素剥離処理剤、硫化モリブデン系剥離処理剤などが挙げられる。剥離処理剤は、単独又は2種以上組み合わせて用いられてもよい。基材5は、好ましくは、剥離処理が施されたポリエチレンテレフタレート(PET)製のフィルムである。 The surface of the substrate 5 may be subjected to a release treatment. The release treatment may be performed, for example, by applying a release treatment agent to the surface of the substrate 5. Examples of the release treatment agent include silicone-based release treatment agents, long-chain alkyl-based release treatment agents, fluorine-based release treatment agents, and molybdenum sulfide-based release treatment agents. The release treatment agents may be used alone or in combination of two or more. The substrate 5 is preferably a polyethylene terephthalate (PET) film that has been subjected to a release treatment.
 基材5の厚さは、特に限定されず、例えば5~100μmであり、好ましくは10~50μmである。 The thickness of the substrate 5 is not particularly limited, but is, for example, 5 to 100 μm, and preferably 10 to 50 μm.
 工程Iでは、第1塗布液を塗布する前に、基材5に対して表面改質処理を行ってもよい。基材5に剥離処理が施されている場合、表面改質処理は、剥離処理が施された基材5の表面に対して行われてもよい。表面改質処理としては、コロナ処理、プラズマ処理、エキシマ処理、フレーム処理などが挙げられ、好ましくはコロナ処理である。 In step I, a surface modification treatment may be performed on the substrate 5 before the first coating liquid is applied. If the substrate 5 has been subjected to a release treatment, the surface modification treatment may be performed on the surface of the substrate 5 that has been subjected to the release treatment. Examples of the surface modification treatment include corona treatment, plasma treatment, excimer treatment, and frame treatment, and corona treatment is preferred.
 表面改質処理は、例えば、基材5の表面に活性エネルギー線を照射することによって行うことができる。活性エネルギー線の具体例は、電子線、イオン線、プラズマ線、紫外線などである。表面改質処理としてコロナ処理を行う場合、その放電量は、例えば、0.1kW・min/m2以上である。放電量の上限値は、特に限定されず、例えば10kW・min/m2である。 The surface modification treatment can be carried out, for example, by irradiating the surface of the substrate 5 with active energy rays. Specific examples of active energy rays include electron beams, ion beams, plasma beams, and ultraviolet rays. When corona treatment is carried out as the surface modification treatment, the discharge amount is, for example, 0.1 kW min/ m2 or more. The upper limit of the discharge amount is not particularly limited and is, for example, 10 kW min/ m2 .
 第1塗布液を基材5に塗布する方法は、特に限定されず、例えば、スピンコート法、ディップコート法、スロットダイコート法などを利用できる。アプリケータやワイヤーバーなどを利用して第1塗布液を基材5に塗布してもよい。第1塗布液は、例えば、剥離処理や表面改質処理が施された基材5の表面上に塗布されてもよい。 The method of applying the first coating liquid to the substrate 5 is not particularly limited, and may be, for example, a spin coating method, a dip coating method, a slot die coating method, or the like. The first coating liquid may be applied to the substrate 5 using an applicator or a wire bar. The first coating liquid may be applied, for example, to the surface of the substrate 5 that has been subjected to a peeling treatment or a surface modification treatment.
 第1塗布液を基材5に塗布することによって塗布膜(第1塗布膜)が形成される。第1塗布膜の厚さは、目的とする分離機能層1の厚さに応じて適宜調整することができ、例えば1μm~100μmである。 A coating film (first coating film) is formed by applying the first coating liquid to the substrate 5. The thickness of the first coating film can be adjusted appropriately according to the desired thickness of the separation functional layer 1, and is, for example, 1 μm to 100 μm.
 工程Iでは、第1塗布膜を乾燥させることによって、分離機能層1を得ることができる(図2A)。第1塗布膜の乾燥条件は、特に限定されず、例えば、乾燥温度が50℃~200℃であり、乾燥時間が1分間~10時間である。第1塗布膜の乾燥は、例えばヒーターを用いて行うことができる。一例として、ヒーターを備えた加熱部内を通過させることによって第1塗布膜を乾燥させてもよい。第1塗布膜の乾燥は、複数の加熱部内を通過させることによって行ってもよい。複数の加熱部の設定温度は、互いに同じであってもよく、異なっていてもよい。 In step I, the first coating film is dried to obtain the separation functional layer 1 (Figure 2A). The drying conditions for the first coating film are not particularly limited, and for example, the drying temperature is 50°C to 200°C and the drying time is 1 minute to 10 hours. The first coating film can be dried, for example, using a heater. As an example, the first coating film may be dried by passing it through a heating unit equipped with a heater. The first coating film may be dried by passing it through multiple heating units. The set temperatures of the multiple heating units may be the same or different.
 第1塗布液が、官能基fを有するポリイミドPと、金属を有する化合物Mとを含む場合、例えば、第1塗布膜を乾燥させたときに、ポリイミドPの官能基fに含まれる解離性のプロトンと、化合物Mの金属(金属カチオン)とが交換する。特に、化合物Mが金属錯体であり、金属錯体に含まれる配位子が揮発性である場合は、乾燥時に配位子が揮発することによって、官能基fの解離性のプロトンと、化合物Mの金属との交換が促進される傾向がある。官能基fの解離性のプロトンと、化合物Mの金属との交換により、官能基fの金属塩が形成され、ポリイミドPからポリイミドP1が形成される。この方法で得られた分離機能層1において、複数のポリイミドP1は、通常、金属カチオンを介して互いに架橋している。この架橋構造に起因して、分離機能層1は、耐溶剤性が高い傾向がある。そのため、この形態では、後述する工程IIにおいて、第2塗布液が分離機能層1の上に塗布されたときに、第2塗布液に含まれる溶剤に対して、分離機能層1が溶解しにくい傾向がある。 When the first coating liquid contains polyimide P having a functional group f and compound M having a metal, for example, when the first coating film is dried, the dissociable protons contained in the functional group f of polyimide P are exchanged with the metal (metal cation) of compound M. In particular, when compound M is a metal complex and the ligand contained in the metal complex is volatile, the ligand volatilizes during drying, which tends to promote the exchange between the dissociable protons of functional group f and the metal of compound M. The exchange between the dissociable protons of functional group f and the metal of compound M forms a metal salt of functional group f, and polyimide P1 is formed from polyimide P. In the separation functional layer 1 obtained by this method, multiple polyimides P1 are usually crosslinked with each other via metal cations. Due to this crosslinked structure, the separation functional layer 1 tends to have high solvent resistance. Therefore, in this embodiment, when the second coating liquid is applied onto the separation functional layer 1 in step II described later, the separation functional layer 1 tends to be less soluble in the solvent contained in the second coating liquid.
 なお、ポリイミドPの官能基fに含まれる解離性のプロトンと、化合物Mの金属との交換は、分離機能層1の形成後に行ってもよい。例えば、上記のポリイミドP及び溶剤を含む第1塗布液を基材5の上に塗布し、乾燥させて分離機能層1を形成する。この分離機能層1を、上記の化合物Mを含む溶液に浸漬させることによって、官能基fの解離性のプロトンと、化合物Mの金属とを交換させてもよい。 The exchange of the dissociable protons contained in the functional group f of the polyimide P with the metal of the compound M may be performed after the formation of the separation functional layer 1. For example, a first coating liquid containing the above-mentioned polyimide P and a solvent is applied onto the substrate 5 and dried to form the separation functional layer 1. The separation functional layer 1 may be immersed in a solution containing the above-mentioned compound M to exchange the dissociable protons of the functional group f with the metal of the compound M.
 工程Iは、上述の方法に限定されず、例えば、上記のポリイミドP1及び溶剤を含む第1塗布液を基材5の上に塗布し、乾燥させることによって分離機能層1を形成してもよい。また、ポリイミドP1の前駆体であるポリアミド酸を含む第1塗布液を基材5の上に塗布し、ポリアミド酸をイミド化してポリイミドP1を形成することによって分離機能層1を作製してもよい。 Step I is not limited to the above-mentioned method, and for example, the separation functional layer 1 may be formed by applying a first coating liquid containing the above-mentioned polyimide P1 and a solvent onto the substrate 5 and drying it. Alternatively, the separation functional layer 1 may be produced by applying a first coating liquid containing polyamic acid, which is a precursor of polyimide P1, onto the substrate 5 and imidizing the polyamic acid to form polyimide P1.
[工程II]
 工程IIにおいて、第2塗布液は、多孔性支持体2の材料、及び多孔化剤を含み、溶剤をさらに含むことが好ましい。多孔性支持体2の材料としては、上述のポリマーが挙げられる。多孔性支持体2がポリイミドP2を含む場合、第2塗布液の組成は、多孔化剤を除き、第1塗布液について上述した組成と同じであってもよい。すなわち、第2塗布液は、多孔性支持体2の材料として、官能基fを有するポリイミドPと、金属を有する化合物Mとを含んでいてもよい。この形態において、ポリイミドPは、ポリイミドP2の前駆体であり、官能基fの解離性のプロトンが金属カチオンと交換されることによって、ポリイミドPからポリイミドP2を形成することができる。
[Step II]
In step II, the second coating liquid preferably contains the material of the porous support 2 and a porogen, and further contains a solvent. Examples of the material of the porous support 2 include the above-mentioned polymers. When the porous support 2 contains polyimide P2, the composition of the second coating liquid may be the same as the composition described above for the first coating liquid, except for the porogen. That is, the second coating liquid may contain, as the material of the porous support 2, a polyimide P having a functional group f and a compound M having a metal. In this embodiment, the polyimide P is a precursor of the polyimide P2, and the polyimide P2 can be formed from the polyimide P by exchanging the dissociative proton of the functional group f with a metal cation.
 第2塗布液におけるポリマー(例えばポリイミドP)の含有率は、ポリマーの溶解性に応じて適宜調整でき、例えば1wt%~30wt%である。第2塗布液において、ポリマー、溶剤及び多孔化剤の合計重量に対するポリマーの重量の比率は、例えば1wt%~30wt%である。 The content of the polymer (e.g., polyimide P) in the second coating liquid can be adjusted as appropriate depending on the solubility of the polymer, and is, for example, 1 wt% to 30 wt%. In the second coating liquid, the ratio of the weight of the polymer to the total weight of the polymer, solvent, and porosifying agent is, for example, 1 wt% to 30 wt%.
 多孔化剤は、例えば、多孔性支持体2の材料(例えばポリイミドP)をほとんど溶解させない貧溶媒である。多孔化剤は、エーテル化合物及びリン酸化合物からなる群より選ばれる少なくとも1つを含むことが好ましく、リン酸化合物を含むことがより好ましい。エーテル化合物としては、例えば、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコール、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールなどのグリコール化合物が挙げられる。 The porosity-inducing agent is, for example, a poor solvent that hardly dissolves the material of the porous support 2 (for example, polyimide P). The porosity-inducing agent preferably contains at least one selected from the group consisting of ether compounds and phosphoric acid compounds, and more preferably contains a phosphoric acid compound. Examples of ether compounds include glycol compounds such as diethylene glycol, diethylene glycol monomethyl ether, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol, tetraethylene glycol monomethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, polyethylene glycol dimethyl ether, polyethylene glycol monomethyl ether, and polyethylene glycol.
 リン酸化合物としては、例えば、リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチルなどのリン酸エステル化合物が挙げられ、リン酸トリエチルが好ましい。 Examples of phosphoric acid compounds include phosphate ester compounds such as trimethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, and triethyl phosphate, with triethyl phosphate being preferred.
 多孔性支持体2を容易に作製する観点から、多孔化剤の沸点は、第2塗布液に含まれる溶剤の沸点よりも高いことが好ましい。多孔化剤の沸点は、例えば、溶剤の沸点よりも50℃以上高くてもよく、80℃以上、さらには100℃以上高くてもよい。多孔化剤の沸点は、例えば、200℃~350℃である。 From the viewpoint of easily producing the porous support 2, it is preferable that the boiling point of the porosity agent is higher than the boiling point of the solvent contained in the second coating liquid. The boiling point of the porosity agent may be, for example, 50°C or more higher than the boiling point of the solvent, 80°C or more, or even 100°C or more higher. The boiling point of the porosity agent is, for example, 200°C to 350°C.
 第2塗布液における多孔化剤の含有率は、例えば10wt%~60wt%である。多孔化剤の含有率は、多孔性支持体2の材料の含有率よりも高いことが好ましい。さらに、多孔化剤の含有率は、塗布膜6の乾燥時などに、塗布膜6の表面付近で緻密な層(スキン層)が形成されることを抑制する観点から、25wt%以上であることが好ましい。第2塗布液において、ポリマー、溶剤及び多孔化剤の合計重量に対する多孔化剤の重量の比率は、例えば10wt%~60wt%であり、好ましくは25wt%以上である。 The content of the porosity agent in the second coating liquid is, for example, 10 wt% to 60 wt%. The content of the porosity agent is preferably higher than the content of the material of the porous support 2. Furthermore, the content of the porosity agent is preferably 25 wt% or more from the viewpoint of suppressing the formation of a dense layer (skin layer) near the surface of the coating film 6 when the coating film 6 is dried, etc. In the second coating liquid, the ratio of the weight of the porosity agent to the total weight of the polymer, solvent, and porosity agent is, for example, 10 wt% to 60 wt%, and preferably 25 wt% or more.
 第2塗布液に含まれる溶剤としては、例えば、第1塗布液について上述したものが挙げられる。第2塗布液において、溶剤は、分離機能層1がほとんど溶解しないように、その種類や含有率が調整されることが望ましい。第2塗布液における溶剤の含有率は、例えば30wt%~80wt%である。第2塗布液において、ポリマー、溶剤及び多孔化剤の合計重量に対する溶剤の重量の比率は、例えば30wt%~80wt%である。 Examples of the solvent contained in the second coating liquid include those mentioned above for the first coating liquid. In the second coating liquid, it is desirable to adjust the type and content of the solvent so that the separation functional layer 1 is hardly dissolved. The content of the solvent in the second coating liquid is, for example, 30 wt% to 80 wt%. In the second coating liquid, the ratio of the weight of the solvent to the total weight of the polymer, solvent, and porosifying agent is, for example, 30 wt% to 80 wt%.
 工程IIにおいて、第2塗布液を分離機能層1に塗布する方法は、特に限定されず、工程Iについて上述した方法によって行うことができる。第2塗布液を分離機能層1に塗布することによって塗布膜(第2塗布膜)6が形成される(図2B)。第2塗布膜6の厚さは、目的とする多孔性支持体2の厚さに応じて適宜調整することができ、例えば50μm~1000μmである。 In step II, the method of applying the second coating liquid to the separation functional layer 1 is not particularly limited, and can be performed by the method described above for step I. A coating film (second coating film) 6 is formed by applying the second coating liquid to the separation functional layer 1 (Figure 2B). The thickness of the second coating film 6 can be adjusted appropriately depending on the desired thickness of the porous support 2, and is, for example, 50 μm to 1000 μm.
[工程III]
 工程IIIにおいて、第2塗布膜6から多孔化剤を除去すると、多孔化剤に起因して孔が形成されて、多孔性支持体2が形成される(図2C)。本実施形態の製造方法では、例えば、第2塗布膜6を乾燥させることによって、第2塗布膜6から多孔化剤を除去することができる。第2塗布膜6の乾燥条件や乾燥方法としては、工程Iについて上述したものが挙げられる。なお、第2塗布膜6から多孔化剤を除去するときには、溶剤も第2塗布膜6から除去される傾向がある。
[Step III]
In step III, when the porogen is removed from the second coating film 6, holes are formed due to the porogen, and the porous support 2 is formed (FIG. 2C). In the manufacturing method of this embodiment, for example, the porogen can be removed from the second coating film 6 by drying the second coating film 6. The drying conditions and drying method of the second coating film 6 are as described above for step I. When the porogen is removed from the second coating film 6, the solvent also tends to be removed from the second coating film 6.
 第2塗布液が、官能基fを有するポリイミドPと、金属を有する化合物Mとを含む場合、例えば、第2塗布膜6を乾燥させたときに、ポリイミドPの官能基fに含まれる解離性のプロトンと、化合物Mの金属(金属カチオン)とが交換する。官能基fの解離性のプロトンと、化合物Mの金属との交換により、官能基fの金属塩が形成され、ポリイミドPからポリイミドP2が形成される。 If the second coating liquid contains polyimide P having a functional group f and compound M having a metal, for example, when the second coating film 6 is dried, the dissociable protons contained in the functional group f of the polyimide P are exchanged with the metal (metal cation) of the compound M. The exchange of the dissociable protons of the functional group f with the metal of the compound M forms a metal salt of the functional group f, and polyimide P2 is formed from the polyimide P.
 なお、ポリイミドPの官能基fに含まれる解離性のプロトンと、化合物Mの金属との交換は、多孔性支持体2の形成後に行ってもよい。例えば、上記のポリイミドP、多孔化剤及び溶剤を含む第2塗布液を分離機能層1に塗布し、乾燥させて多孔性支持体2を形成する。この多孔性支持体2を、上記の化合物Mを含む溶液に浸漬させることによって、官能基fの解離性のプロトンと、化合物Mの金属とを交換させてもよい。 The exchange of the dissociable protons contained in the functional group f of the polyimide P with the metal of the compound M may be carried out after the formation of the porous support 2. For example, a second coating liquid containing the polyimide P, a porosifying agent, and a solvent is applied to the separation functional layer 1, and dried to form the porous support 2. The dissociable protons of the functional group f may be exchanged with the metal of the compound M by immersing the porous support 2 in a solution containing the compound M.
[工程IV]
 本実施形態の製造方法は、工程IIIの後に、分離機能層1及び多孔性支持体2に対して、さらに加熱処理(アニール処理)を行う工程IVをさらに含んでいてもよい。工程IVによれば、分離膜10の分離性能が向上するとともに、分離膜10の分離性能が経時的に低下することも抑制できる傾向がある。工程IVによれば、溶剤が十分に揮発することによって、残存溶剤をほとんど含まない分離膜10を得ることもできる。なお、工程IVは、分離機能層1及び多孔性支持体2を含む積層体から基材5を取り除く工程(後述の工程V)の後に行ってもよい。
[Step IV]
The manufacturing method of this embodiment may further include step IV, in which the separation functional layer 1 and the porous support 2 are subjected to a heat treatment (annealing treatment) after step III. Step IV tends to improve the separation performance of the separation membrane 10 and also suppress the separation performance of the separation membrane 10 from decreasing over time. Step IV also makes it possible to obtain a separation membrane 10 that contains almost no residual solvent by sufficiently volatilizing the solvent. Step IV may be performed after the step of removing the substrate 5 from the laminate including the separation functional layer 1 and the porous support 2 (step V described below).
 工程IVにおいて、加熱処理の温度は、例えば200℃より高く、230℃以上、さらには250℃以上であってもよい。加熱処理の温度の上限は、特に限定されず、例えば350℃以下であり、300℃以下であってもよい。加熱処理の時間は、例えば1分以上であり、10分以上であってもよく、30分以上であってもよい。加熱処理の時間の上限は、特に限定されず、例えば24時間以下である。 In step IV, the temperature of the heat treatment may be, for example, higher than 200°C, 230°C or higher, or even 250°C or higher. The upper limit of the temperature of the heat treatment is not particularly limited, and may be, for example, 350°C or lower, or may be 300°C or lower. The time of the heat treatment is, for example, 1 minute or more, and may be 10 minutes or more, or may be 30 minutes or more. The upper limit of the time of the heat treatment is not particularly limited, and may be, for example, 24 hours or less.
[工程V]
 本実施形態の製造方法は、例えば、工程III又は工程IVの後に、分離機能層1及び多孔性支持体2を含む積層体から基材5を取り除く工程Vをさらに含む。基材5を取り除くことによって、分離膜10を得ることができる(図1)。
[Process V]
The manufacturing method of this embodiment further includes, for example, after step III or step IV, step V of removing the substrate 5 from the laminate including the separation functional layer 1 and the porous support 2. By removing the substrate 5, a separation membrane 10 can be obtained ( FIG. 1 ).
 本実施形態の製造方法の工程Iでは、第1塗布膜が、基材5と接した状態で乾燥して、分離機能層1が形成される。分離機能層1が形成されるときに、その表面が基材5に接していることによって、当該表面には、ピンホールなどの欠陥が形成されにくい傾向がある。この方法によって作製された分離機能層1は、膜内での厚さのばらつきが抑制されている傾向もある。これらに起因して、本実施形態の製造方法で作製された分離膜10は、膜内での分離性能のばらつきが抑制されている。このように、本実施形態の製造方法は、分離膜10の分離係数αに関する上述の比率Rを低下させることに適している。さらに、本実施形態の製造方法は、分離機能層1と多孔性支持体2の厚さを独立して調整しやすい利点もある。 In step I of the manufacturing method of this embodiment, the first coating film is dried in contact with the substrate 5 to form the separation functional layer 1. When the separation functional layer 1 is formed, its surface is in contact with the substrate 5, so that defects such as pinholes tend not to form on the surface. The separation functional layer 1 produced by this method also tends to have reduced thickness variation within the membrane. Due to these factors, the separation membrane 10 produced by the manufacturing method of this embodiment has reduced separation performance variation within the membrane. In this way, the manufacturing method of this embodiment is suitable for reducing the above-mentioned ratio R related to the separation coefficient α of the separation membrane 10. Furthermore, the manufacturing method of this embodiment has the advantage that the thicknesses of the separation functional layer 1 and the porous support 2 can be easily adjusted independently.
 本発明者らの検討によれば、例えば、ポリイミド及び多孔化剤を含む塗布液を基材の上に塗布し、得られた塗布膜から多孔化剤を除去した場合、塗布液の組成や多孔化剤を除去する条件などによっては、塗布膜の表面付近で緻密な層(スキン層)が形成され、これにより、多孔化剤に起因する孔を有する多孔性支持体と、スキン層に相当する分離機能層とが形成されることがある。ただし、この場合、スキン層は、塗布膜の基材とは反対側の表面(外部に露出している表面)に形成される。本発明者の検討によると、スキン層が形成されるときに、その表面が外部に露出していると、当該表面にはピンホールなどの欠陥が生じやすい。さらに、この方法では、スキン層の厚さのばらつきが大きい傾向もある。そのため、この方法では、分離膜の膜内での分離性能のばらつきを十分に抑制することが難しい。この方法では、分離機能層と多孔性支持体の厚さを独立して調整することも難しい。 According to the study of the present inventors, for example, when a coating solution containing polyimide and a porosifying agent is applied onto a substrate and the porosifying agent is removed from the resulting coating film, a dense layer (skin layer) may be formed near the surface of the coating film depending on the composition of the coating solution and the conditions for removing the porosifying agent, resulting in the formation of a porous support having pores caused by the porosifying agent and a separation functional layer equivalent to the skin layer. However, in this case, the skin layer is formed on the surface of the coating film opposite the substrate (the surface exposed to the outside). According to the study of the present inventors, when the skin layer is formed, if the surface is exposed to the outside, defects such as pinholes are likely to occur on the surface. Furthermore, in this method, there is a tendency for the thickness of the skin layer to vary widely. Therefore, in this method, it is difficult to sufficiently suppress the variation in the separation performance within the separation membrane. In this method, it is also difficult to independently adjust the thickness of the separation functional layer and the porous support.
 なお、上記の工程Iで作製した分離機能層を多孔性支持体に転写して分離膜を作製する方法も考えられる。ただし、ポリイミドを含む分離機能層は、通常、多孔性支持体との接着力が乏しい。そのため、分離機能層を多孔性支持体に転写するためには、これらの部材と十分に接着できる層(中間層)を分離機能層と多孔性支持体との間に配置する必要があり、製造コストが増加する。中間層が存在する場合、分離膜を透過する流体の透過速度が低下する傾向もある。 It is also possible to prepare a separation membrane by transferring the separation functional layer prepared in step I above to a porous support. However, separation functional layers containing polyimide usually have poor adhesion to porous supports. Therefore, in order to transfer the separation functional layer to the porous support, it is necessary to place a layer (intermediate layer) that can adhere sufficiently to these members between the separation functional layer and the porous support, which increases manufacturing costs. If an intermediate layer is present, the permeation speed of the fluid passing through the separation membrane also tends to decrease.
(分離膜の用途)
 本実施形態の分離膜10の用途としては、酸性ガスを含む混合気体から酸性ガスを分離する用途が挙げられる。混合気体の酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、シアン化水素、窒素酸化物(NOx)などが挙げられ、好ましくは二酸化炭素である。混合気体は、酸性ガス以外の他のガスを含んでいる。他のガスとしては、例えば、水素、窒素、メタンなどの非極性ガス、及び、ヘリウムなどの不活性ガスが挙げられ、好ましくは窒素である。特に、本実施形態の分離膜10は、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離する用途に適している。ただし、分離膜10の用途は、上記の混合気体から酸性ガスを分離する用途に限定されない。
(Use of separation membrane)
The use of the separation membrane 10 of this embodiment includes the use of separating an acidic gas from a mixed gas containing an acidic gas. Examples of the acidic gas in the mixed gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, and nitrogen oxides (NOx), and preferably carbon dioxide. The mixed gas contains other gases other than the acidic gas. Examples of the other gases include non-polar gases such as hydrogen, nitrogen, and methane, and inert gases such as helium, and preferably nitrogen. In particular, the separation membrane 10 of this embodiment is suitable for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen. However, the use of the separation membrane 10 is not limited to the use of separating an acidic gas from the above-mentioned mixed gas.
<膜分離装置の実施形態>
 図3に示すとおり、本実施形態の膜分離装置100は、分離膜10及びタンク20を備えている。タンク20は、第1室21及び第2室22を備えている。分離膜10は、タンク20の内部に配置されている。タンク20の内部において、分離膜10は、第1室21と第2室22とを隔てている。分離膜10は、タンク20の1対の壁面の一方から他方まで延びている。
<Embodiment of Membrane Separation Apparatus>
3, the membrane separation device 100 of the present embodiment includes a separation membrane 10 and a tank 20. The tank 20 includes a first chamber 21 and a second chamber 22. The separation membrane 10 is disposed inside the tank 20. Inside the tank 20, the separation membrane 10 separates the first chamber 21 from the second chamber 22. The separation membrane 10 extends from one of a pair of wall surfaces of the tank 20 to the other.
 第1室21は、入口21a及び出口21bを有する。第2室22は、出口22aを有する。入口21a、出口21b及び出口22aのそれぞれは、例えば、タンク20の壁面に形成された開口である。 The first chamber 21 has an inlet 21a and an outlet 21b. The second chamber 22 has an outlet 22a. Each of the inlet 21a, the outlet 21b, and the outlet 22a is, for example, an opening formed in the wall surface of the tank 20.
 膜分離装置100を用いた膜分離は、例えば、次の方法によって行われる。まず、入口21aを通じて、酸性ガスを含む混合気体30を第1室21に供給する。混合気体30における酸性ガスの含有率は、特に限定されず、標準状態で、例えば0.01vol%(100ppm)以上であり、好ましくは1vol%以上であり、より好ましくは10vol%以上であり、さらに好ましくは30vol%以上であり、特に好ましくは50vol%以上である。混合気体30における酸性ガスの含有率の上限値は、特に限定されず、標準状態で、例えば90vol%である。 Membrane separation using the membrane separation device 100 is performed, for example, by the following method. First, the mixed gas 30 containing the acidic gas is supplied to the first chamber 21 through the inlet 21a. The content of the acidic gas in the mixed gas 30 is not particularly limited, and is, for example, 0.01 vol% (100 ppm) or more under standard conditions, preferably 1 vol% or more, more preferably 10 vol% or more, even more preferably 30 vol% or more, and particularly preferably 50 vol% or more. The upper limit of the content of the acidic gas in the mixed gas 30 is not particularly limited, and is, for example, 90 vol% under standard conditions.
 混合気体30の供給によって、第1室21内が昇圧されてもよい。膜分離装置100は、混合気体30を昇圧するためのポンプ(図示せず)をさらに備えていてもよい。第1室21に供給される混合気体30の圧力は、例えば0.1MPa以上、好ましくは0.3MPa以上である。 The pressure inside the first chamber 21 may be increased by supplying the mixed gas 30. The membrane separation device 100 may further include a pump (not shown) for increasing the pressure of the mixed gas 30. The pressure of the mixed gas 30 supplied to the first chamber 21 is, for example, 0.1 MPa or more, preferably 0.3 MPa or more.
 第1室21に混合気体30を供給した状態で、第2室22内を減圧してもよい。膜分離装置100は、第2室22内を減圧するためのポンプ(図示せず)をさらに備えていてもよい。第2室22は、第2室22内の空間が測定環境における大気圧に対して、例えば10kPa以上、好ましくは50kPa以上、より好ましくは100kPa以上小さくなるように減圧されてもよい。 The second chamber 22 may be depressurized while the mixed gas 30 is being supplied to the first chamber 21. The membrane separation device 100 may further include a pump (not shown) for depressurizing the second chamber 22. The second chamber 22 may be depressurized so that the space within the second chamber 22 is reduced by, for example, 10 kPa or more, preferably 50 kPa or more, and more preferably 100 kPa or more, relative to the atmospheric pressure in the measurement environment.
 第1室21内に混合気体30が供給されることによって、分離膜10の他方の面側において混合気体30よりも酸性ガスの含有率が高い透過流体35を得ることができる。すなわち、透過流体35が第2室22に供給される。透過流体35は、例えば、酸性ガスを主成分として含んでいる。ただし、透過流体35は、酸性ガス以外の他のガスを少量含んでいてもよい。透過流体35は、出口22aを通じて、タンク20の外部に排出される。 By supplying the mixed gas 30 into the first chamber 21, a permeating fluid 35 having a higher acid gas content than the mixed gas 30 can be obtained on the other side of the separation membrane 10. That is, the permeating fluid 35 is supplied to the second chamber 22. The permeating fluid 35 contains, for example, an acid gas as a main component. However, the permeating fluid 35 may contain small amounts of other gases besides the acid gas. The permeating fluid 35 is discharged to the outside of the tank 20 through the outlet 22a.
 混合気体30における酸性ガスの含有率は、第1室21の入口21aから出口21bに向かって徐々に低下する。第1室21で処理された混合気体30(非透過流体36)は、出口21bを通じて、タンク20の外部に排出される。 The acid gas content in the mixed gas 30 gradually decreases from the inlet 21a to the outlet 21b of the first chamber 21. The mixed gas 30 (non-permeating fluid 36) treated in the first chamber 21 is discharged to the outside of the tank 20 through the outlet 21b.
 本実施形態の膜分離装置100は、流通式(連続式)の膜分離方法に適している。ただし、本実施形態の膜分離装置100は、バッチ式の膜分離方法に用いられてもよい。 The membrane separation device 100 of this embodiment is suitable for a flow-through (continuous) membrane separation method. However, the membrane separation device 100 of this embodiment may also be used for a batch-type membrane separation method.
<膜分離装置の変形例>
 膜分離装置100は、スパイラル型の膜エレメント、中空糸膜エレメントなどであってもよい。図4は、スパイラル型の膜エレメントを示している。図4の膜分離装置110は、中心管41及び積層体42を備えている。積層体42が分離膜10を含んでいる。
<Modification of Membrane Separation Device>
The membrane separation device 100 may be a spiral-type membrane element, a hollow fiber membrane element, or the like. Fig. 4 shows a spiral-type membrane element. The membrane separation device 110 in Fig. 4 includes a central tube 41 and a stack 42. The stack 42 includes the separation membrane 10.
 中心管41は、円筒形状を有している。中心管41の表面には、中心管41の内部に透過流体35を流入させるための複数の孔が形成されている。中心管41の材料としては、例えば、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)、ポリフェニレンエーテル樹脂(PPE樹脂)、ポリサルフォン樹脂(PSF樹脂)などの樹脂;ステンレス鋼、チタンなどの金属が挙げられる。中心管41の内径は、例えば20~100mmの範囲にある。 The central tube 41 has a cylindrical shape. A plurality of holes are formed on the surface of the central tube 41 to allow the permeation fluid 35 to flow into the interior of the central tube 41. Examples of materials for the central tube 41 include resins such as acrylonitrile butadiene styrene copolymer resin (ABS resin), polyphenylene ether resin (PPE resin), and polysulfone resin (PSF resin); and metals such as stainless steel and titanium. The inner diameter of the central tube 41 is, for example, in the range of 20 to 100 mm.
 積層体42は、分離膜10の他に、供給側流路材43及び透過側流路材44をさらに含む。積層体42は、中心管41の周囲に巻回されている。膜分離装置110は、外装材(図示せず)をさらに備えていてもよい。 The laminate 42 further includes a feed-side flow path material 43 and a permeate-side flow path material 44 in addition to the separation membrane 10. The laminate 42 is wound around the central tube 41. The membrane separation device 110 may further include an exterior material (not shown).
 供給側流路材43及び透過側流路材44としては、例えばポリフェニレンサルファイド(PPS)又はエチレン-クロロトリフルオロエチレン共重合体(ECTFE)からなる樹脂製ネットを用いることができる。 The supply-side flow passage material 43 and the permeate-side flow passage material 44 can be, for example, a resin net made of polyphenylene sulfide (PPS) or ethylene-chlorotrifluoroethylene copolymer (ECTFE).
 膜分離装置110を用いた膜分離は、例えば、次の方法によって行われる。まず、巻回された積層体42の一端に混合気体30を供給する。積層体42の分離膜10を透過した透過流体35が中心管41の内部に移動する。透過流体35は、中心管41を通じて外部に排出される。膜分離装置110で処理された混合気体30(非透過流体36)は、巻回された積層体42の他端から外部に排出される。これにより、混合気体30から酸性ガスを分離することができる。 Membrane separation using the membrane separation device 110 is performed, for example, by the following method. First, the mixed gas 30 is supplied to one end of the rolled stack 42. The permeating fluid 35 that has permeated the separation membrane 10 of the stack 42 moves into the inside of the central tube 41. The permeating fluid 35 is discharged to the outside through the central tube 41. The mixed gas 30 (non-permeating fluid 36) that has been treated by the membrane separation device 110 is discharged to the outside from the other end of the rolled stack 42. This allows the acid gas to be separated from the mixed gas 30.
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited thereto.
[ポリイミドPの合成]
 まず、自動重合装置(メトラー・トレド社製、EasyMax402)を用いて、ポリイミドPの合成を行った。装置に付属しているセパラブルフラスコ(容量400mL)には、ジムロート、撹拌棒、内部温度計、窒素導入管及び平栓を装着した。ジムロートのチラーには、10℃に設定された冷却液を循環させた。フラスコ内には、100mL/minの流量で、N2ガスを流通させた。撹拌速度は、300rpmに設定した。次に、フラスコに、溶媒として1-メチル-2-ピロリドン(超脱水)96.1g、ジアミンとして2,4,6-トリメチル-1,3-フェニレンジアミン(TrMPD)2.62g(17.5mmol)、3,7-ジアミノ-2,8-ジメチルジベンゾチオフェンスルホン(DDBT)4.80g(17.5mmol)、及び5,5’-メチレンビス(2-アミノ安息香酸)(MBAA)2.11g(0.5mmol)を加えた。これらを室温下で撹拌させることによってジアミンを溶媒に溶解させた。得られた溶液に、テトラカルボン酸二無水物としてナフタレン-1,4,5,8-テトラカルボン酸二無水物(NTDA)9.53g(35.5mmol)、及び、安息香酸8.54g(70mmol)をさらに加えた。装置のジャケット温度を180℃に昇温し、8時間撹拌した。このとき、フラスコの内温は、172~175℃であった。撹拌後、フラスコの内温を25℃まで冷却し、一晩静置させた。
[Synthesis of Polyimide P]
First, polyimide P was synthesized using an automatic polymerization apparatus (Mettler Toledo, EasyMax402). A separable flask (capacity 400 mL) attached to the apparatus was equipped with a Dimroth, stirring rod, internal thermometer, nitrogen inlet tube and flat stopper. A cooling liquid set to 10°C was circulated in the Dimroth chiller. N2 gas was circulated in the flask at a flow rate of 100 mL/min. The stirring speed was set to 300 rpm. Next, 96.1 g of 1-methyl-2-pyrrolidone (super dehydrated) as a solvent, 2.62 g (17.5 mmol) of 2,4,6-trimethyl-1,3-phenylenediamine (TrMPD) as a diamine, 4.80 g (17.5 mmol) of 3,7-diamino-2,8-dimethyldibenzothiophenesulfone (DDBT), and 2.11 g (0.5 mmol) of 5,5'-methylenebis(2-aminobenzoic acid) (MBAA) were added to the flask. The diamine was dissolved in the solvent by stirring at room temperature. 9.53 g (35.5 mmol) of naphthalene-1,4,5,8-tetracarboxylic dianhydride (NTDA) as a tetracarboxylic dianhydride, and 8.54 g (70 mmol) of benzoic acid were further added to the obtained solution. The jacket temperature of the apparatus was raised to 180°C, and the mixture was stirred for 8 hours. At this time, the internal temperature of the flask was 172 to 175° C. After stirring, the internal temperature of the flask was cooled to 25° C. and allowed to stand overnight.
 次に、イソキノリン9.04g(70mmol)を加え、再びジャケット温度を180℃に昇温し、8時間攪拌した。反応液を一晩静置させた後、1-メチル-2-ピロリドン226gを加えることによって反応液を希釈した。次に、滴下ロートを用いて、メタノール650mLを反応液に30分程度かけて滴下し、再沈殿精製を行った。析出したポリイミドをろ別し、メタノール300mLを用いてポリイミドを洗浄する操作を2回行った。洗浄後、ろ別したポリイミドを60℃の熱風循環乾燥機で15時間乾燥させ、さらに、100℃の真空乾燥機で8時間乾燥させた。これにより、収量17.1gでポリイミドPを得た。 Next, 9.04 g (70 mmol) of isoquinoline was added, the jacket temperature was raised to 180°C again, and the mixture was stirred for 8 hours. After leaving the reaction solution to stand overnight, 226 g of 1-methyl-2-pyrrolidone was added to dilute the reaction solution. Next, using a dropping funnel, 650 mL of methanol was dropped into the reaction solution over about 30 minutes to perform reprecipitation purification. The precipitated polyimide was filtered off, and the polyimide was washed twice using 300 mL of methanol. After washing, the filtered polyimide was dried in a hot air circulation dryer at 60°C for 15 hours, and then further dried in a vacuum dryer at 100°C for 8 hours. As a result, polyimide P was obtained with a yield of 17.1 g.
(例1)
[工程I]
 上記のポリイミドPを10Lのペール缶に加え、さらに、溶剤としてN-メチル-2-ピロリドン(NMP)、及び、配位子としてアセチルアセトンを添加して、混合液を得た。この混合液について、プロペラ型撹拌羽根を用いて、回転数700~1400rpmで1時間撹拌した。次に、別のスクリュー管に、NMP、及び、化合物M(金属錯体)としてAl(acac)3を加え、さらに、超音波洗浄機を用いた超音波処理を行うことによって、Al(acac)3溶液を得た。Al(acac)3溶液と、上記の混合液とをさらに混合し、プロペラ型撹拌羽根を用いて、回転数700~1400rpmで1時間撹拌することによって、第1塗布液を調製した。
(Example 1)
[Step I]
The polyimide P was added to a 10L pail, and N-methyl-2-pyrrolidone (NMP) as a solvent and acetylacetone as a ligand were added to obtain a mixed solution. The mixed solution was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade. Next, NMP and Al(acac) 3 as compound M (metal complex) were added to another screw tube, and an ultrasonic treatment was performed using an ultrasonic cleaner to obtain an Al(acac) 3 solution. The Al(acac) 3 solution and the mixed solution were further mixed, and the mixture was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade to prepare a first coating solution.
 第1塗布液において、ポリイミドP及びNMPの合計重量に対するポリイミドPの重量の比率は8wt%であり、当該合計重量に対するNMPの重量の比率は92wt%であった。第1塗布液において、ポリイミドPの重量に対するAl(acac)3の重量の比率、及び、ポリイミドPの重量に対するアセチルアセトンの重量は、いずれも6wt%であった。 In the first coating liquid, the ratio of the weight of polyimide P to the total weight of polyimide P and NMP was 8 wt %, and the ratio of the weight of NMP to the total weight was 92 wt %. In the first coating liquid, the ratio of the weight of Al(acac) 3 to the weight of polyimide P and the weight of acetylacetone to the weight of polyimide P were both 6 wt %.
 次に、基材として、剥離処理されたポリエチレンテレフタレート(PET)フィルム(三菱ケミカル社製、MRF75T302)を準備した。この基材の剥離処理された表面に対して、放電量0.25kW・min/m2の条件でコロナ処理を行った。次に、上記の第1塗布液を基材の上に塗布し、第1塗布膜(厚さ20μm)を形成した。第1塗布液の塗布は、スロットダイを用いて行った。 Next, a release-treated polyethylene terephthalate (PET) film (Mitsubishi Chemical Corporation, MRF75T302) was prepared as a substrate. Corona treatment was performed on the release-treated surface of this substrate under the condition of a discharge amount of 0.25 kW min/ m2 . Next, the above-mentioned first coating liquid was applied onto the substrate to form a first coating film (thickness 20 μm). The first coating liquid was applied using a slot die.
 次に、速度1m/minで第1塗布膜を搬送し、3つの加熱部内を通過させることによって第1塗布膜を乾燥させた。詳細には、第1塗布膜は、第1加熱部、第2加熱部、及び第3加熱部をこの順番で通過した。第1加熱部の設定温度が100℃であり、第2加熱部の設定温度が130℃であり、第3加熱部の設定温度が130℃であった。第1塗布膜が第1~第3加熱部を通過する時間(乾燥時間)は6分間であった。第1塗布膜を乾燥させることによって、分離機能層が得られた。なお、第1塗布膜が乾燥することによって、ポリイミドPに含まれるカルボキシル基の解離性のプロトンが、化合物MのAlと交換された。これにより、カルボキシル基のAl塩が形成され、ポリイミドP1が得られた。 Then, the first coating film was transported at a speed of 1 m/min and passed through three heating sections to dry the first coating film. In detail, the first coating film passed through the first heating section, the second heating section, and the third heating section in this order. The set temperature of the first heating section was 100°C, the set temperature of the second heating section was 130°C, and the set temperature of the third heating section was 130°C. The time (drying time) for the first coating film to pass through the first to third heating sections was 6 minutes. The first coating film was dried to obtain a separation functional layer. Note that, as the first coating film dried, the dissociative protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M. As a result, an Al salt of the carboxyl group was formed, and polyimide P1 was obtained.
[工程II]
 上述のポリイミドPを10Lのペール缶に加え、さらに、溶剤としてN,N-ジメチルホルムアミド(DMF)、多孔化剤としてリン酸トリエチル、及び、配位子としてアセチルアセトンを添加して、混合液を得た。この混合液について、プロペラ型撹拌羽根を用いて、回転数700~1400rpmで1時間撹拌した。次に、別のスクリュー管に、DMF、及び、化合物M(金属錯体)としてAl(acac)3を加え、さらに、超音波洗浄機を用いた超音波処理を行うことによって、Al(acac)3溶液を得た。Al(acac)3溶液と、上記の混合液とをさらに混合し、プロペラ型撹拌羽根を用いて、回転数700~1400rpmで1時間撹拌することによって、第2塗布液を調製した。
[Step II]
The polyimide P was added to a 10L pail, and N,N-dimethylformamide (DMF) was added as a solvent, triethyl phosphate as a porosifying agent, and acetylacetone as a ligand to obtain a mixed solution. The mixed solution was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade. Next, DMF and Al(acac) 3 as compound M (metal complex) were added to another screw tube, and an ultrasonic treatment was performed using an ultrasonic cleaner to obtain an Al(acac) 3 solution. The Al(acac) 3 solution and the mixed solution were further mixed, and the mixture was stirred for 1 hour at 700 to 1400 rpm using a propeller-type stirring blade to prepare a second coating solution.
 第2塗布液において、ポリイミドP、DMF及び多孔化剤(リン酸トリエチル)の合計重量に対するポリイミドPの重量の比率は10wt%であり、当該合計重量に対するDMFの重量の比率は45wt%であり、当該合計重量に対する多孔化剤の重量の比率は45wt%であった。第2塗布液において、ポリイミドPの重量に対するAl(acac)3の重量の比率、及び、ポリイミドPの重量に対するアセチルアセトンの重量の比率は、いずれも6wt%であった。 In the second coating liquid, the ratio of the weight of polyimide P to the total weight of polyimide P, DMF, and the porosifier (triethyl phosphate) was 10 wt%, the ratio of the weight of DMF to the total weight was 45 wt%, and the ratio of the weight of the porosifier to the total weight was 45 wt%. In the second coating liquid, the ratio of the weight of Al(acac) 3 to the weight of polyimide P and the ratio of the weight of acetylacetone to the weight of polyimide P were both 6 wt%.
 次に、工程Iで得られた分離機能層の上に第2塗布液を塗布し、第2塗布膜(厚さ250μm)を形成した。第2塗布液の塗布は、スロットダイを用いて行った。 Next, the second coating liquid was applied onto the separation functional layer obtained in step I to form a second coating film (thickness 250 μm). The second coating liquid was applied using a slot die.
[工程III]
 次に、第2塗布膜を乾燥させることによって、第2塗布膜から多孔化剤を除去した。第2塗布膜の乾燥は、次の方法によって行った。まず、速度1m/minで第2塗布膜を搬送し、3つの加熱部内を通過させた。詳細には、第2塗布膜は、第1加熱部、第2加熱部、及び第3加熱部をこの順番で通過した。第1加熱部の設定温度が60℃であり、第2加熱部の設定温度が60℃であり、第3加熱部の設定温度が90℃であった。第2塗布膜が第1~第3加熱部を通過する時間(乾燥時間)は6分間であった。第1~第3加熱部を通過した後に、さらに、第2塗布膜を150℃で30分間加熱した。第2塗布膜から多孔化剤を除去することによって、多孔性支持体が得られた。なお、第2塗布膜が乾燥することによって、ポリイミドPに含まれるカルボキシル基の解離性のプロトンが、化合物MのAlと交換された。これにより、カルボキシル基のAl塩が形成され、ポリイミドP2が得られた。ポリイミドP2は、上記のポリイミドP1と同じ組成を有していた。
[Step III]
Next, the second coating film was dried to remove the porosity agent from the second coating film. The drying of the second coating film was performed by the following method. First, the second coating film was conveyed at a speed of 1 m/min and passed through three heating sections. In detail, the second coating film passed through the first heating section, the second heating section, and the third heating section in this order. The set temperature of the first heating section was 60° C., the set temperature of the second heating section was 60° C., and the set temperature of the third heating section was 90° C. The time (drying time) for the second coating film to pass through the first to third heating sections was 6 minutes. After passing through the first to third heating sections, the second coating film was further heated at 150° C. for 30 minutes. The porosity agent was removed from the second coating film to obtain a porous support. In addition, by drying the second coating film, the dissociative protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M. As a result, an Al salt of the carboxyl group was formed, and polyimide P2 was obtained. Polyimide P2 had the same composition as Polyimide P1 above.
[工程IV及びV]
 上記の工程IIIの後に、分離機能層及び多孔性支持体を含む積層体から基材を取り除いた(工程V)。さらに、分離機能層及び多孔性支持体に対して、さらなる加熱処理を行った(工程IV)。加熱処理は、300℃で30分間行った。これにより、例1の分離膜を得た。
[Steps IV and V]
After the above step III, the substrate was removed from the laminate including the separation functional layer and the porous support (step V). Furthermore, the separation functional layer and the porous support were further subjected to a heat treatment (step IV). The heat treatment was performed at 300° C. for 30 minutes. Thus, the separation membrane of Example 1 was obtained.
(例2)
 工程Iにおいて、第1塗布膜の厚さを10μmに変更したこと、基材として、シリコーン系剥離処理剤で剥離処理されたポリイミド(PI)フィルム(フジコー社製、SCA0)を用いたこと、及び、工程IIIにおいて、第3加熱部の設定温度を60℃に変更したことを除き、例1と同じ方法によって例2の分離膜を得た。
(Example 2)
The separation membrane of Example 2 was obtained in the same manner as in Example 1, except that in step I, the thickness of the first coating film was changed to 10 μm, a polyimide (PI) film (manufactured by Fujiko Co., Ltd., SCA0) that had been release-treated with a silicone-based release treatment agent was used as the substrate, and in step III, the set temperature of the third heating section was changed to 60° C.
(例3)
 工程Iにおいて、基材に対するコロナ処理の放電量を0.45kW・min/m2に変更したこと、工程IIにおいて、プロペラ型撹拌羽根に代えて、シンキー社製の泡取り練太郎を用いて第2塗布液を調製し、さらに、スロットダイに代えて、アプリケーターを用いて第2塗布液を塗布したこと、及び、工程IIIにおいて、第2塗布膜を130℃で30分間加熱することによって、第2塗布膜から多孔化剤を除去したことを除き、例1と同じ方法によって例3の分離膜を得た。なお、例3では、工程IIIにおいて、第2塗布膜を第1~第3加熱部に通過させる操作を行わなかった。
(Example 3)
The separation membrane of Example 3 was obtained by the same method as in Example 1, except that in step I, the discharge amount of the corona treatment on the substrate was changed to 0.45 kW min/ m2 , in step II, the second coating liquid was prepared using a Thinky Corporation foam remover mixer instead of a propeller-type stirring blade, and the second coating liquid was applied using an applicator instead of a slot die, and in step III, the second coating film was heated at 130°C for 30 minutes to remove the porosifying agent from the second coating film. Note that in Example 3, the operation of passing the second coating film through the first to third heating sections was not performed in step III.
(例4~7)
 第2塗布液の組成、及び第2塗布膜の厚さを表1に示すように変更したことを除き、例3と同じ方法によって、例4~7の分離膜を得た。
(Examples 4 to 7)
Separation membranes of Examples 4 to 7 were obtained in the same manner as in Example 3, except that the composition of the second coating solution and the thickness of the second coating film were changed as shown in Table 1.
[平滑性]
 例1~7の分離膜の分離機能層側の表面について、光(可視光線)の反射具合を目視で観察して、下記基準で平滑性を評価した。
(評価基準)
 ◎:表面に凹凸がほとんどなく、平滑性に優れている。
 〇:表面に凹凸がわずかに存在する。
 △:表面に凹凸が存在し、平滑性に劣る。
[Smoothness]
The surface of the separation functional layer side of the separation membranes of Examples 1 to 7 was visually observed for light (visible light) reflection, and the smoothness was evaluated according to the following criteria.
(Evaluation criteria)
⊚: The surface is almost free of irregularities and has excellent smoothness.
◯: There is slight unevenness on the surface.
Δ: The surface is uneven and has poor smoothness.
[透過速度]
 例1~7の分離膜について、上述の試験2を行った。試験2の結果に基づいて、二酸化炭素の透過速度の平均値Av2を特定した。
[Transmission rate]
The above-mentioned Test 2 was carried out on the separation membranes of Examples 1 to 7. Based on the results of Test 2, the average value Av2 of the carbon dioxide permeation rate was specified.
[分離係数α]
 例1~7の分離膜について、上述の試験1を行った。試験1の結果に基づいて、窒素に対する二酸化炭素の分離係数αについて、平均値Av1に対する、標準偏差σ1に3を乗じた値の比率Rなどを特定した。
[Separation factor α]
The above-mentioned Test 1 was carried out for the separation membranes of Examples 1 to 7. Based on the results of Test 1, the ratio R of the value obtained by multiplying the standard deviation σ1 by 3 to the average value Av1 was determined for the separation coefficient α of carbon dioxide relative to nitrogen.
[厚さ]
 例1~7の分離膜について、上述の方法によって、分離機能層及び多孔性支持体の厚さを測定した。
[thickness]
For the separation membranes of Examples 1 to 7, the thicknesses of the separation functional layer and the porous support were measured by the method described above.
[硬さ]
 例1~7の分離膜について、手で掴んだ感触に基づいて、下記基準で硬さを評価した。
◎:剛性が高く、破れにくい。
〇:剛性が比較的高い。
×:剛性が低く、破れやすい。
[Hardness]
The hardness of the separation membranes of Examples 1 to 7 was evaluated according to the feel when held in the hand, using the following criteria.
◎: High rigidity and tear resistance.
◯: Relatively high rigidity.
x: Low rigidity and prone to tearing.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(例8)
 まず、上述のポリイミドPを50mLのスクリュー管に加え、さらに、溶剤としてN,N-ジメチルホルムアミド(DMF)、多孔化剤としてポリエチレングリコール200(富士フイルム和光純薬社製、PEG200)、及び、配位子としてアセチルアセトンを添加して、混合液を得た。この混合液について、5分間の撹拌操作及び5分間の脱泡操作を2回繰り返した。次に、別のスクリュー管に、DMF、及び、化合物M(金属錯体)としてAl(acac)3を加え、さらに、超音波洗浄機を用いた超音波処理を行うことによって、Al(acac)3溶液を得た。Al(acac)3溶液と、上記の混合液とをさらに混合し、5分間の撹拌操作及び5分間の脱泡操作を2回繰り返すことによって、塗布液を調製した。なお、撹拌操作及び脱泡操作は、シンキー社製の泡取り練太郎を用いて行った。
(Example 8)
First, the above-mentioned polyimide P was added to a 50 mL screw tube, and further, N,N-dimethylformamide (DMF) as a solvent, polyethylene glycol 200 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PEG200) as a porosifying agent, and acetylacetone as a ligand were added to obtain a mixed solution. The mixed solution was stirred for 5 minutes and degassed for 5 minutes twice. Next, DMF and Al(acac) 3 as compound M (metal complex) were added to another screw tube, and further, an ultrasonic treatment was performed using an ultrasonic cleaner to obtain an Al(acac) 3 solution. The Al(acac) 3 solution and the above-mentioned mixed solution were further mixed, and a stirring operation for 5 minutes and a degassing operation for 5 minutes were repeated twice to prepare a coating solution. The stirring operation and degassing operation were performed using a Thinky Corporation's Foaming Mixer.
 塗布液において、ポリイミドP、DMF及び多孔化剤(PEG200)の合計重量に対するポリイミドPの重量の比率は19.5wt%であり、当該合計重量に対するDMFの重量の比率は66.9wt%であり、当該合計重量に対する多孔化剤の重量の比率は13.7wt%であった。塗布液において、ポリイミドPの重量に対するAl(acac)3の重量の比率、及び、ポリイミドPの重量に対するアセチルアセトンの重量の比率は、いずれも6wt%であった。 In the coating solution, the ratio of the weight of polyimide P to the total weight of polyimide P, DMF, and porosifier (PEG200) was 19.5 wt%, the ratio of the weight of DMF to the total weight was 66.9 wt%, and the ratio of the weight of the porosifier to the total weight was 13.7 wt%. In the coating solution, the ratio of the weight of Al(acac) 3 to the weight of polyimide P and the ratio of the weight of acetylacetone to the weight of polyimide P were both 6 wt%.
 次に、基材として、剥離処理されたPETフィルム(PANAC社製、PET125 SG1)を準備した。この基材の上に、上記の塗布液を塗布し、塗布膜(厚さ350μm)を形成した。塗布液の塗布は、コンマコーターを用いて行った。 Next, a release-treated PET film (PET125 SG1, manufactured by PANAC) was prepared as a substrate. The above coating solution was applied onto this substrate to form a coating film (thickness 350 μm). The coating solution was applied using a comma coater.
 次に、速度0.5m/minで塗布膜を搬送し、加熱部内を通過させることによって塗布膜を乾燥させた。加熱部の設定温度は60℃であった。塗布膜が加熱部を通過する時間(乾燥時間)は9分間であった。次に、室温のメタノールに、塗布膜を480分間浸漬させ、さらに、40℃で30分間乾燥させた。これにより、塗布膜から多孔化剤が除去され、多孔化剤に起因する孔を有する多孔性支持体と、スキン層に相当する分離機能層とが形成された。次に、分離機能層及び多孔性支持体を含む積層体から基材を取り除いた。分離機能層及び多孔性支持体に対して、300℃で30分間の加熱処理を行うことによって、例8の分離膜を得た。なお、例8では、ポリイミドPに含まれるカルボキシル基の解離性のプロトンが、化合物MのAlと交換されていた。 Next, the coating film was transported at a speed of 0.5 m/min and dried by passing through the heating section. The temperature of the heating section was set to 60°C. The time (drying time) for the coating film to pass through the heating section was 9 minutes. Next, the coating film was immersed in methanol at room temperature for 480 minutes, and then dried at 40°C for 30 minutes. As a result, the porosity-inducing agent was removed from the coating film, and a porous support having pores caused by the porosity-inducing agent and a separation function layer corresponding to the skin layer were formed. Next, the substrate was removed from the laminate including the separation function layer and the porous support. The separation function layer and the porous support were subjected to a heat treatment at 300°C for 30 minutes to obtain the separation membrane of Example 8. In Example 8, the dissociable protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M.
(例9)
 まず、塗布液の組成を表3に示すように変更したことを除き、例8と同じ方法によって塗布液を準備した。なお、例9では、多孔化剤としてポリエチレングリコールモノメチルエーテル400(日油社製、M400)を用いた。次に、基材として、剥離処理されたPETフィルム(PANAC社製、PET100 SG2)を準備した。この基材の上に、上記の塗布液を塗布し、塗布膜(厚さ300μm)を形成した。塗布液の塗布は、コンマコーターを用いて行った。
(Example 9)
First, a coating solution was prepared in the same manner as in Example 8, except that the composition of the coating solution was changed as shown in Table 3. In Example 9, polyethylene glycol monomethyl ether 400 (M400, manufactured by NOF Corp.) was used as the porosifying agent. Next, a release-treated PET film (PET100 SG2, manufactured by PANAC Corp.) was prepared as the substrate. The above coating solution was applied onto this substrate to form a coating film (thickness 300 μm). The coating solution was applied using a comma coater.
 次に、速度0.2m/minで塗布膜を搬送し、加熱部内を通過させることによって塗布膜を乾燥させた。加熱部の設定温度は60℃であった。塗布膜が加熱部を通過する時間(乾燥時間)は30分間であった。次に、室温のメタノールに、塗布膜を30分間浸漬させ、さらに、60℃で60分間乾燥させた。これにより、塗布膜から多孔化剤が除去され、多孔化剤に起因する孔を有する多孔性支持体と、スキン層に相当する分離機能層とが形成された。次に、分離機能層及び多孔性支持体を含む積層体から基材を取り除いた。分離機能層及び多孔性支持体に対して、300℃で30分間の加熱処理を行うことによって、例9の分離膜を得た。なお、例9では、ポリイミドPに含まれるカルボキシル基の解離性のプロトンが、化合物MのAlと交換されていた。 Then, the coating film was transported at a speed of 0.2 m/min and dried by passing through the heating section. The temperature of the heating section was set to 60°C. The time (drying time) for the coating film to pass through the heating section was 30 minutes. Next, the coating film was immersed in methanol at room temperature for 30 minutes, and further dried at 60°C for 60 minutes. As a result, the porosity agent was removed from the coating film, and a porous support having pores caused by the porosity agent and a separation function layer corresponding to the skin layer were formed. Next, the substrate was removed from the laminate including the separation function layer and the porous support. The separation function layer and the porous support were subjected to a heat treatment at 300°C for 30 minutes to obtain the separation membrane of Example 9. In Example 9, the dissociable protons of the carboxyl group contained in the polyimide P were exchanged with Al of the compound M.
(例10)
 塗布液の組成を表3に示すように変更したことを除き、例9と同じ方法によって、例10の分離膜を得た。なお、例10では、ポリイミドPに含まれるカルボキシル基の解離性のプロトンが、化合物MのAlと交換されていた。
(Example 10)
A separation membrane of Example 10 was obtained by the same method as in Example 9, except that the composition of the coating solution was changed as shown in Table 3. In Example 10, the dissociable proton of the carboxyl group contained in polyimide P was exchanged with Al of compound M.
[評価]
 例8~10の分離膜について、例1~7と同じ方法によって、平滑性、透過速度、分離係数α、厚さ及び硬さの評価を行った。
[evaluation]
The separation membranes of Examples 8 to 10 were evaluated for smoothness, permeation rate, separation factor α, thickness and hardness by the same methods as those of Examples 1 to 7.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表1~4からわかるとおり、本実施形態の製造方法で作製された例1~7の分離膜は、いずれも分離機能層の表面が平滑であり、分離係数αについての比率Rが70%以下であった。比率Rが70%以下である例1~7の分離膜は、例8~10の分離膜に比べて、分離係数αのばらつきが抑制されており、酸性ガスを含む混合気体から酸性ガスを分離することに適していると言える。本実施形態の製造方法によれば、分離係数αのばらつきが抑制された分離膜を作製でき、これにより、歩留まりが改善されると推定される。 As can be seen from Tables 1 to 4, the separation membranes of Examples 1 to 7 produced by the manufacturing method of this embodiment all had a smooth surface for the separation functional layer, and the ratio R for the separation factor α was 70% or less. The separation membranes of Examples 1 to 7, which have a ratio R of 70% or less, have reduced variation in the separation factor α compared to the separation membranes of Examples 8 to 10, and can be said to be suitable for separating acidic gases from mixed gases that contain acidic gases. According to the manufacturing method of this embodiment, it is possible to produce separation membranes with reduced variation in the separation factor α, which is presumably expected to improve yields.
 なお、例1~7の分離膜は、いずれも、硬さの評価結果が良好であり、取り扱いが容易であった。特に、例5~7の分離膜は、剛性が高く、膜分離装置に容易に組み込めることが予想される。 All of the separation membranes of Examples 1 to 7 had good hardness evaluation results and were easy to handle. In particular, the separation membranes of Examples 5 to 7 were highly rigid and are expected to be easily incorporated into membrane separation equipment.
 本実施形態の分離膜は、酸性ガスを含む混合気体から酸性ガスを分離することに適している。特に、本実施形態の分離膜は、化学プラント又は火力発電のオフガスから二酸化炭素を分離することに適している。 The separation membrane of this embodiment is suitable for separating acid gas from a gas mixture containing acid gas. In particular, the separation membrane of this embodiment is suitable for separating carbon dioxide from off-gas of chemical plants or thermal power plants.

Claims (16)

  1.  ポリイミドP1を含む分離機能層と、
     前記分離機能層に直接接する多孔性支持体と、
    を備え、
     前記ポリイミドP1は、6員環の酸無水物構造を有するテトラカルボン酸二無水物に由来する構成単位A1を含み、
     下記試験1によって特定された分離係数αについて、平均値Av1に対する、標準偏差σ1に3を乗じた値の比率Rが70%以下である、分離膜。
     試験1:前記分離膜を切断し、3つ以上の試験片を作製する。前記試験片のそれぞれについて、前記試験片の一方の面に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、前記試験片の他方の面に隣接する空間を減圧する操作を行う。前記操作の結果に基づいて、前記試験片のそれぞれについて、窒素に対する二酸化炭素の分離係数αを特定する。ここで、前記操作において、前記混合気体における前記二酸化炭素の含有率は、標準状態で50vol%であり、前記一方の面に隣接する空間に供給される前記混合気体は、温度が30℃であり、圧力が0.1MPaであり、前記他方の面に隣接する空間は、当該空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。
    A separation functional layer including polyimide P1;
    A porous support directly contacting the separation functional layer;
    Equipped with
    The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a 6-membered ring acid anhydride structure,
    A separation membrane, in which the ratio R of the value obtained by multiplying the standard deviation σ1 by 3 to the average value Av1 for the separation factor α specified by the following Test 1 is 70% or less.
    Test 1: The separation membrane is cut to prepare three or more test pieces. For each of the test pieces, a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one side of the test piece, and the space adjacent to the other side of the test piece is depressurized. Based on the results of the operation, a separation coefficient α of carbon dioxide relative to nitrogen is determined for each of the test pieces. Here, in the operation, the carbon dioxide content in the mixed gas is 50 vol% under standard conditions, the mixed gas supplied to the space adjacent to the one side has a temperature of 30° C. and a pressure of 0.1 MPa, and the space adjacent to the other side is depressurized so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  2.  前記平均値Av1が20以上である、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the average value Av1 is 20 or more.
  3.  下記試験2によって特定された透過速度の平均値Av2が300GPU以上である、請求項1に記載の分離膜。
     試験2:前記試験1と同じ方法によって、3つ以上の試験片を作製し、前記試験片のそれぞれについて前記操作を行う。前記操作の結果に基づいて、前記試験片のそれぞれについて、前記試験片を透過した二酸化炭素の透過速度を特定する。
    The separation membrane according to claim 1, wherein the average permeation rate Av2 determined by the following Test 2 is 300 GPU or more.
    Test 2: Three or more test pieces are prepared by the same method as in Test 1, and the above operation is carried out for each of the test pieces. Based on the results of the above operation, the permeation rate of carbon dioxide that permeated the test piece is determined for each of the test pieces.
  4.  前記分離機能層の厚さが3μm以下である、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the thickness of the separation functional layer is 3 μm or less.
  5.  前記分離機能層の厚さと、前記多孔性支持体の厚さとの合計値が30μm以上である、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the sum of the thickness of the separation functional layer and the thickness of the porous support is 30 μm or more.
  6.  前記構成単位A1は、下記式(A1)で表される、請求項1に記載の分離膜。
    Figure JPOXMLDOC01-appb-C000001
     前記式(A1)において、R1a~R4aは、互いに独立して、水素原子又は任意の置換基である。
    The separation membrane according to claim 1 , wherein the structural unit A1 is represented by the following formula (A1):
    Figure JPOXMLDOC01-appb-C000001
    In the formula (A1), R 1a to R 4a are each independently a hydrogen atom or an arbitrary substituent.
  7.  前記ポリイミドP1は、ジアミンに由来する構成単位B1をさらに含み、
     前記構成単位A1及び前記構成単位B1のうちの少なくとも1つは、カルボキシル基、ヒドロキシル基、チオール基及びこれらの金属塩からなる群より選ばれる少なくとも1つの官能基Fを有する、請求項1に記載の分離膜。
    The polyimide P1 further includes a structural unit B1 derived from a diamine,
    2. The separation membrane according to claim 1, wherein at least one of the structural unit A1 and the structural unit B1 has at least one functional group F selected from the group consisting of a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
  8.  前記多孔性支持体は、ポリイミドP2を含む、請求項1に記載の分離膜。 The separation membrane of claim 1, wherein the porous support comprises polyimide P2.
  9.  前記ポリイミドP2は、前記構成単位A1を含む、請求項8に記載の分離膜。 The separation membrane according to claim 8, wherein the polyimide P2 contains the structural unit A1.
  10.  ポリイミドP1を含む分離機能層と、前記分離機能層に直接接する多孔性支持体と、を備える分離膜の製造方法であって、
     前記製造方法は、
     前記分離機能層の材料を含む第1塗布液を基材の上に塗布し、乾燥させることによって前記分離機能層を形成する工程Iと、
     前記多孔性支持体の材料、及び多孔化剤を含む第2塗布液を前記分離機能層の上に塗布して、塗布膜を形成する工程IIと、
     前記塗布膜から前記多孔化剤を除去して、前記多孔性支持体を形成する工程IIIと、
    を含み、
     前記ポリイミドP1は、6員環の酸無水物構造を有するテトラカルボン酸二無水物に由来する構成単位A1を含む、製造方法。
    A method for producing a separation membrane comprising a separation functional layer containing polyimide P1 and a porous support directly in contact with the separation functional layer,
    The manufacturing method includes:
    A step I of forming the separation functional layer by applying a first coating liquid containing a material for the separation functional layer onto a substrate and drying the first coating liquid;
    A step II of applying a second coating liquid containing a material for the porous support and a porosifying agent onto the separation functional layer to form a coating film;
    Step III of removing the porosifying agent from the coating film to form the porous support;
    Including,
    The polyimide P1 contains a structural unit A1 derived from a tetracarboxylic dianhydride having a six-membered ring acid anhydride structure.
  11.  前記ポリイミドP1は、ジアミンに由来する構成単位B1をさらに含み、
     前記構成単位A1及び前記構成単位B1のうちの少なくとも1つは、カルボキシル基、ヒドロキシル基、チオール基及びこれらの金属塩からなる群より選ばれる少なくとも1つの官能基Fを有する、請求項10に記載の製造方法。
    The polyimide P1 further includes a structural unit B1 derived from a diamine,
    The method according to claim 10, wherein at least one of the structural unit A1 and the structural unit B1 has at least one functional group F selected from the group consisting of a carboxyl group, a hydroxyl group, a thiol group, and metal salts thereof.
  12.  前記構成単位A1及び前記構成単位B1のうちの少なくとも1つは、前記金属塩を有する、請求項11に記載の製造方法。 The method of claim 11, wherein at least one of the structural unit A1 and the structural unit B1 has the metal salt.
  13.  前記第1塗布液は、前記分離機能層の前記材料として、カルボキシル基、ヒドロキシル基及びチオール基からなる群より選ばれる少なくとも1つの官能基fを有するポリイミドPと、金属を有する化合物とを含み、
     前記工程Iにおいて、前記ポリイミドPから前記ポリイミドP1を形成する、請求項12に記載の製造方法。
    the first coating liquid contains, as the material of the separation functional layer, a polyimide P having at least one functional group f selected from the group consisting of a carboxyl group, a hydroxyl group, and a thiol group, and a compound having a metal;
    The method according to claim 12 , wherein in the step I, the polyimide P1 is formed from the polyimide P.
  14.  前記化合物は、前記金属と、前記金属に配位している配位子とを有する金属錯体を含む、請求項13に記載の製造方法。 The method of claim 13, wherein the compound includes a metal complex having the metal and a ligand coordinated to the metal.
  15.  前記多孔化剤は、エーテル化合物及びリン酸化合物からなる群より選ばれる少なくとも1つを含む、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the porosifying agent includes at least one selected from the group consisting of ether compounds and phosphoric acid compounds.
  16.  前記塗布膜を乾燥させることによって、前記塗布膜から前記多孔化剤を除去する、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the porosifying agent is removed from the coating film by drying the coating film.
PCT/JP2023/033990 2022-11-11 2023-09-19 Separation membrane and method for producing same WO2024101000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-181049 2022-11-11
JP2022181049 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101000A1 true WO2024101000A1 (en) 2024-05-16

Family

ID=91032229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033990 WO2024101000A1 (en) 2022-11-11 2023-09-19 Separation membrane and method for producing same

Country Status (2)

Country Link
CN (1) CN118369151A (en)
WO (1) WO2024101000A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236352A (en) * 2002-02-15 2003-08-26 Ube Ind Ltd New separation membrane and method for manufacturing the same
WO2014175011A1 (en) * 2013-04-22 2014-10-30 東京応化工業株式会社 Method for producing porous polyimide film, porous polyimide film and separator using same
CN108043232A (en) * 2017-12-06 2018-05-18 上海交通大学 A kind of hexatomic ring polyimide copolymer seperation film and its preparation method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236352A (en) * 2002-02-15 2003-08-26 Ube Ind Ltd New separation membrane and method for manufacturing the same
WO2014175011A1 (en) * 2013-04-22 2014-10-30 東京応化工業株式会社 Method for producing porous polyimide film, porous polyimide film and separator using same
CN108043232A (en) * 2017-12-06 2018-05-18 上海交通大学 A kind of hexatomic ring polyimide copolymer seperation film and its preparation method and application

Also Published As

Publication number Publication date
CN118369151A (en) 2024-07-19

Similar Documents

Publication Publication Date Title
Han et al. Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination
KR101306478B1 (en) Porous membranes made up of organopolysiloxane copolymers
CN105263608A (en) Composite semipermeable membrane
KR102408068B1 (en) Gas Separation Membrane, Gas Separation Membrane Element and Gas Separation Method
JP5252333B1 (en) Reverse osmosis membrane for wastewater treatment
JP5896295B2 (en) Separation membrane for nanofiltration
KR20160083881A (en) Crosslinked polymer compositions for gas separation membranes
WO2018221684A1 (en) Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
Chen et al. Highly stable polysulfone solvent resistant nanofiltration membranes with internal cross-linking networks
WO2024101000A1 (en) Separation membrane and method for producing same
JP2014000533A (en) Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
JP6623600B2 (en) Asymmetric gas separation membrane and method for separating and recovering gas
WO2020122153A1 (en) Power generation system
WO2023112803A1 (en) Separation functional layer, separation membrane, and method for producing separation functional layer
JP6302074B2 (en) Water treatment separation membrane including ion exchange polymer layer and method for producing the same
JPWO2015147103A1 (en) Asymmetric gas separation membrane and method for separating and recovering gas
WO2024014285A1 (en) Separation membrane and method for manufacturing same
WO2024202568A1 (en) Separation membrane
WO2020122151A1 (en) Power generation system
JP2022152519A (en) Asymmetric hollow fiber gas separation membrane
JPS6391122A (en) Separation of steam
JP5136667B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
WO2024195265A1 (en) Separation functional layer, separation membrane, and method for producing separation functional layer
WO2024057853A1 (en) Manufacturing method for separation membrane, and laminate body
JPH07236822A (en) Gas-separation membrane using surface modified polyimide resin, and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888354

Country of ref document: EP

Kind code of ref document: A1