JP5896295B2 - Separation membrane for nanofiltration - Google Patents

Separation membrane for nanofiltration Download PDF

Info

Publication number
JP5896295B2
JP5896295B2 JP2012139549A JP2012139549A JP5896295B2 JP 5896295 B2 JP5896295 B2 JP 5896295B2 JP 2012139549 A JP2012139549 A JP 2012139549A JP 2012139549 A JP2012139549 A JP 2012139549A JP 5896295 B2 JP5896295 B2 JP 5896295B2
Authority
JP
Japan
Prior art keywords
membrane
water
hollow fiber
separation membrane
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012139549A
Other languages
Japanese (ja)
Other versions
JP2013031836A (en
Inventor
昌男 東
昌男 東
純輔 森田
純輔 森田
北河 享
享 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012139549A priority Critical patent/JP5896295B2/en
Publication of JP2013031836A publication Critical patent/JP2013031836A/en
Application granted granted Critical
Publication of JP5896295B2 publication Critical patent/JP5896295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐薬品性に優れる素材を使用しながら、塩除去性と透水性を高いレベルで両立した、ナノろ過に好適な分離膜に関する。   The present invention relates to a separation membrane suitable for nanofiltration, in which a salt removability and water permeability are compatible at a high level while using a material excellent in chemical resistance.

ナノろ過膜を長期間安定して運転するためには、逆浸透膜と同様に被処理水の殺菌や濁質成分除去を始めとする適切な前処理や定期的な膜洗浄が不可欠である。ナノろ過膜表面にファウリング成分が沈着したり、微生物の増殖によるスライムが付着すると著しい性能低下を引き起こすためである。前処理としては、pH調整や膜処理等によるスケールおよびファウリング原因物質の除去が挙げられ、膜洗浄にはアルカリ系薬液や塩素系薬液、特に次亜塩素酸ナトリウム等の使用が挙げられる。   In order to stably operate the nanofiltration membrane for a long period of time, appropriate pretreatment such as sterilization of water to be treated and removal of turbid components and periodic membrane cleaning are indispensable as in the case of a reverse osmosis membrane. This is because when fouling components are deposited on the surface of the nanofiltration membrane or when slime is adhered due to the growth of microorganisms, the performance is significantly reduced. Examples of the pretreatment include removal of scale and fouling-causing substances by pH adjustment, membrane treatment, and the like, and membrane washing includes the use of an alkaline chemical solution, a chlorine chemical solution, particularly sodium hypochlorite.

膜の洗浄方法と膜素材の特性との関係について、これまでに広く商用化されている膜を例として述べると、主に三酢酸セルロース(CTA、特許文献1参照)および芳香族ポリアミド(PAm、特許文献2参照)が挙げられる。CTA系膜は、PAm系膜に比べて耐塩素性に優れ、特に次亜塩素酸ナトリウムによる洗浄および膜性能回復性に優れるが、耐アルカリ性に弱くアルカリ系薬液の使用が限定されるという欠点を有する。逆に、PAm系膜はCTA系膜に比べて耐アルカリ性に優れるが、塩素耐性が非常に低いため塩素系薬液の使用が限定されてしまうという欠点を有する。   Regarding the relationship between the method of cleaning the membrane and the characteristics of the membrane material, membranes that have been widely commercialized so far are described as an example. Mainly cellulose triacetate (CTA, see Patent Document 1) and aromatic polyamide (PAm, Patent Document 2). CTA-based membranes have superior chlorine resistance compared to PAm-based membranes, and are particularly excellent in cleaning with sodium hypochlorite and membrane performance recoverability, but have the disadvantage of being weak in alkali resistance and limiting the use of alkaline chemicals. Have. Conversely, PAm-based films are superior in alkali resistance compared to CTA-based films, but have a drawback that the use of chlorine-based chemicals is limited because of their extremely low chlorine resistance.

これらの欠点を補うべく、特許文献3では、スルホン化ポリアリールエーテルスルホン構造を有するポリマーを用いた分離膜が提案されている。これにより得られた膜は、耐薬品性が向上したが、一方で透水性が悪く実用に向かないという問題を有する。この問題を解決するために、特許文献4では、PAm系複合膜の上に薄くスルホン化ポリアリールエーテルスルホンをコーティングすることによって、透水性能と塩除去性能、および化学耐久性の両立を図った。しかし、この方法ではコーティング層が薄いために長期の耐薬品性保持に不安があること、また製膜工程が複雑化することでコストがかさむといった問題を有する。   In order to compensate for these drawbacks, Patent Document 3 proposes a separation membrane using a polymer having a sulfonated polyarylethersulfone structure. The film thus obtained has improved chemical resistance, but has a problem of poor water permeability and unsuitable for practical use. In order to solve this problem, Patent Document 4 attempts to achieve both water permeation performance, salt removal performance, and chemical durability by thinly coating a sulfonated polyarylethersulfone on the PAm-based composite membrane. However, this method has a problem that since the coating layer is thin, there is anxiety in maintaining long-term chemical resistance, and the cost is increased due to the complexity of the film forming process.

このように従来の分離膜は、塩除去性、透水性、および耐薬品性のいずれかに問題があり、これらの特性を全て高いレベルで実現したものは従来存在していないのが現状である。   As described above, conventional separation membranes have problems in any of salt removal, water permeability, and chemical resistance, and there is currently no one that has realized these characteristics at a high level. .

特許第3591618号公報Japanese Patent No. 3591618 特許第2794785号公報Japanese Patent No. 2794785 特公平07−67529号公報Japanese Patent Publication No. 07-67529 特開平10−57783号公報JP-A-10-57883

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、耐薬品性(耐アルカリ性、耐塩素性)を有する素材を使用しながら、ナノろ過に求められる塩除去性と透水性を高いレベルで両立した分離膜を提供することにある。   The present invention was devised in view of the current state of the prior art, and its purpose is to provide a salt removability required for nanofiltration while using a material having chemical resistance (alkali resistance, chlorine resistance). An object of the present invention is to provide a separation membrane having a high level of water permeability.

本発明者らは、上記目的を達成するために鋭意検討した結果、ナノろ過膜の素材として耐薬品性に優れる特定のスルホン化ポリアリーレンエーテルスルホンポリマーを使用し、この膜の含水状態の束縛水由来のピークトップの位置を特定のケミカルシフト値の領域に制御することによって、膜中のスルホン酸基と束縛水が良好に相互作用して塩除去性と透水性を高いレベルで両立できることを見出し、本発明の完成に至った。   As a result of intensive studies to achieve the above object, the present inventors have used a specific sulfonated polyarylene ether sulfone polymer having excellent chemical resistance as a material for the nanofiltration membrane, and the water content of the membrane is restricted. By controlling the position of the peak top of the origin to a specific chemical shift value region, it was found that the sulfonic acid group in the membrane and bound water interact well to achieve both high salt removal and water permeability. The present invention has been completed.

即ち、本発明は、以下の(1)〜(7)の構成を有するものである。
(1)下記一般式[I]で表される構成成分を含むスルホン化ポリアリーレンエーテルスルホンポリマーからなる分離膜であって、含水状態の前記分離膜を用いて膜中の水分子を測定したプロトン核磁気共鳴スペクトルにおいて、束縛水由来のスペクトルピークトップのケミカルシフトA(ppm)とバルク水由来のスペクトルピークトップのケミカルシフトB(ppm)との関係がB−0.30≦A<B−0.14を満たすことを特徴とするナノろ過用の分離膜。
式中、XはHまたは1価のカチオン種であり、nは10以上50以下の整数である。
(2)スルホン化ポリアリーレンエーテルスルホンポリマーの対数粘度が1.0〜2.3dL/gであることを特徴とする(1)に記載の分離膜。
(3)スルホン化ポリアリーレンエーテルスルホンポリマーのスルホン酸基含有量が0.5〜2.3meq/gであることを特徴とする(1)または(2)に記載の分離膜。
(4)示差走査熱量分析法による観察において、結晶化ピークが見られないことを特徴とする(1)〜(3)のいずれかに記載の分離膜。
(5)分離膜が内径70〜100μm、外径140〜175μmの中空糸膜であることを特徴とする(1)〜(4)のいずれかに記載の分離膜。
(6)中空糸の外周部から1μm以内の膜厚部分において10nm以上の直径の細孔が観察されないことを特徴とする(5)に記載の分離膜。
(7)湿潤状態における降伏強度が5MPa以上9MPa未満であることを特徴とする(5)または(6)に記載の分離膜。
That is, the present invention has the following configurations (1) to (7).
(1) Proton which is a separation membrane made of a sulfonated polyarylene ether sulfone polymer containing a constituent represented by the following general formula [I] and which measures water molecules in the membrane using the water-containing separation membrane In the nuclear magnetic resonance spectrum, the relationship between the chemical shift A (ppm) of the spectral peak top derived from bound water and the chemical shift B (ppm) of the spectral peak top derived from bulk water is B−0.30 ≦ A <B−0. 14. A separation membrane for nanofiltration characterized by satisfying .14.
In the formula, X is H or a monovalent cation species, and n is an integer of 10 to 50.
(2) The separation membrane according to (1), wherein the logarithmic viscosity of the sulfonated polyarylene ether sulfone polymer is 1.0 to 2.3 dL / g.
(3) The separation membrane according to (1) or (2), wherein the sulfonated polyarylene ether sulfone polymer has a sulfonic acid group content of 0.5 to 2.3 meq / g.
(4) The separation membrane according to any one of (1) to (3), wherein no crystallization peak is observed in observation by differential scanning calorimetry.
(5) The separation membrane according to any one of (1) to (4), wherein the separation membrane is a hollow fiber membrane having an inner diameter of 70 to 100 μm and an outer diameter of 140 to 175 μm.
(6) The separation membrane according to (5), wherein pores having a diameter of 10 nm or more are not observed in a film thickness portion within 1 μm from the outer peripheral portion of the hollow fiber.
(7) The separation membrane according to (5) or (6), wherein the yield strength in a wet state is 5 MPa or more and less than 9 MPa.

本発明の分離膜は、特定のスルホン化ポリアリーレンエーテルスルホンポリマーを素材として使用しているため、耐薬品性が高く、膜洗浄に使用するアルカリ系薬液と塩素系薬液の両方に対して強い耐性を有する。また、本発明の分離膜は、含水時の束縛水由来のピークトップの位置を特定のケミカルシフト値の範囲に制御しているので、膜中のスルホン酸基と水分子が効率的に相互作用でき、結果としてナノろ過に求められる塩除去性と透水性を高いレベルで達成することができる。   Since the separation membrane of the present invention uses a specific sulfonated polyarylene ether sulfone polymer as a material, it has high chemical resistance and strong resistance to both alkaline chemical solutions and chlorinated chemical solutions used for membrane cleaning. Have In addition, since the separation membrane of the present invention controls the position of the peak top derived from bound water when containing water within a specific chemical shift value range, the sulfonic acid groups in the membrane and water molecules interact efficiently. As a result, the salt removability and water permeability required for nanofiltration can be achieved at a high level.

プロトンNMRスペクトルチャートの一例を示す。An example of a proton NMR spectrum chart is shown.

従来、逆浸透膜やナノろ過膜の素材として三酢酸セルロース(CTA)や架橋芳香族ポリアミド(PAm)が用いられてきた。CTAは耐塩素性に優れるが、耐アルカリ性に劣る問題がある。一方、PAmはCTAに比べて耐アルカリ性に優れるが、耐塩素性に劣る。これらの膜は、使用とともに有機・無機物の堆積が膜表面に生じ(ファウリング)、透水性能が劣化する問題があった。一般に、ファウリングを取り除く方策として、酸やアルカリ、塩素を含んだ液に膜を浸して洗浄する方法があるが、CTAは耐アルカリ性に、PAmは耐塩素性が強くなく、長期に使用する上で耐薬品性に優れた膜の発明が期待されていた。   Conventionally, cellulose triacetate (CTA) and crosslinked aromatic polyamide (PAm) have been used as materials for reverse osmosis membranes and nanofiltration membranes. CTA is excellent in chlorine resistance, but has a problem inferior in alkali resistance. On the other hand, PAm is superior in alkali resistance to CTA but inferior in chlorine resistance. With these films, organic and inorganic deposits are generated on the film surface (fouling) with use, and there is a problem that the water permeation performance deteriorates. In general, there is a method of removing fouling by immersing the film in a solution containing acid, alkali, or chlorine. However, CTA is not resistant to alkali, and PAm is not resistant to chlorine. The invention of a film excellent in chemical resistance was expected.

一般に、ポリスルホン、ポリエーテルスルホン系材料は一般的に疎水性を示すため、分子間凝集力が乏しい特徴を有する。このため、非溶媒誘起型相分離(NIPS)法および熱誘起相分離(TIPS)法を利用して膜形成させても、限外ろ過膜(UF、細孔径は数十nm〜数百nm)以上の細孔が生成する。従って、ナノろ過膜としての機能を発現できない問題が生じる。そこで、本発明者らは、分子間力を上げるために相互作用力を有する基を共有結合させることに思いが至った。具体的に、共重合を行う基としては負電荷を有するものが良い。例えば、カルボキシル基、リン酸基、スルホン酸基等であるが、本発明者らの研究によれば、特にスルホン酸基が高い効果を示すことを見出した。   In general, polysulfone and polyethersulfone-based materials generally have hydrophobicity and thus have a characteristic of poor intermolecular cohesion. For this reason, even if the membrane is formed using the non-solvent induced phase separation (NIPS) method and the thermally induced phase separation (TIPS) method, the ultrafiltration membrane (UF, pore diameter is several tens nm to several hundreds nm) The above pores are generated. Therefore, the problem that the function as a nanofiltration membrane cannot be expressed arises. Therefore, the present inventors have come up with the idea of covalently bonding a group having an interaction force in order to increase the intermolecular force. Specifically, a group having a negative charge is preferable as a group for copolymerization. For example, a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like. According to the study by the present inventors, it has been found that a sulfonic acid group exhibits particularly high effects.

さらに、塩の浸透を除外する一方で、透水性を確保するという、相反する二つの要件を満たすことが必要である。この際に重要となるのがスルホン酸基の量および配置である。水分子が膜中を浸透するとき、スルホン酸基の化学的受容力に誘引されて順次浸透していく。このとき、スルホン酸基と水分子の距離が重要となる。即ち、スルホン酸基の密度が高くても水分子がスルホン酸基に容易に接近できない場合、スルホン酸基はその受容力を発揮することができず、結果、水の浸透は目標を達せず透水量が小さくなる。つまり、いたずらに分子内にあるスルホン酸基の個数割合を増やすだけでは問題は解決しない。膜構造全体の中で、スルホン酸基の密度・分布を適正化することが必要である。   Furthermore, it is necessary to satisfy two conflicting requirements of excluding salt penetration while ensuring water permeability. In this case, the amount and arrangement of the sulfonic acid groups are important. When water molecules permeate through the membrane, they are sequentially permeated by being attracted by the chemical capacity of the sulfonic acid group. At this time, the distance between the sulfonic acid group and the water molecule is important. That is, even if the density of the sulfonic acid group is high, if the water molecule is not easily accessible to the sulfonic acid group, the sulfonic acid group cannot exert its acceptability, and as a result, water penetration does not reach the target and The amount becomes smaller. In other words, simply increasing the number ratio of sulfonic acid groups in the molecule does not solve the problem. It is necessary to optimize the density and distribution of sulfonic acid groups in the entire membrane structure.

この課題に対して本発明者らは、膜の凝固条件を調整することにより上述のスルホン酸基の分布を制御できる方法を見出した。さらに、このスルホン酸基の受容力の大小について、核磁気共鳴スペクトル(NMR)を用いて測定できることを見出した。一般的に、プロトンNMRを測定したとき、水分子が別の化学種と相互作用すると、水分子中のプロトンの周囲に存在する電子の密度が変化する。その変化の程度をケミカルシフトで測ることが可能である。   In order to solve this problem, the present inventors have found a method capable of controlling the distribution of the sulfonic acid group described above by adjusting the solidification conditions of the membrane. Furthermore, it has been found that the acceptability of the sulfonic acid group can be measured using a nuclear magnetic resonance spectrum (NMR). In general, when proton NMR is measured, if a water molecule interacts with another chemical species, the density of electrons existing around the proton in the water molecule changes. The degree of change can be measured by chemical shift.

本発明の分離膜は、上記の知見に基づいて、CTAやPAmに比べて高い耐アルカリ性および耐塩素性を有するスルホン化ポリアリーレンエーテルスルホンポリマーを素材として選択したうえで、このポリマーのスルホン酸基が含水時の水分子を良好に相互作用できるように、含水膜中の水分子をプロトンNMRで測定したとき、束縛水由来のスペクトルピークトップのケミカルシフトA(ppm)とバルク水由来のスペクトルピークトップのケミカルシフトB(ppm)との関係がB−0.30≦A<B−0.14を満たすように制御したことに最大の特徴を有する。このような見地で分離膜の素材ポリマーを設計して、耐薬品性を維持しながら、塩除去性と透水性を両立させたものは従来から存在しない。   Based on the above findings, the separation membrane of the present invention is selected from a sulfonated polyarylene ether sulfone polymer having higher alkali resistance and chlorine resistance than CTA and PAm as a material, and then the sulfonic acid group of this polymer is selected. When water molecules in a water-containing film are measured by proton NMR so that water molecules can interact well when water is contained, the chemical shift A (ppm) at the top of the spectrum peak derived from bound water and the spectrum peak derived from bulk water The greatest characteristic is that the relationship with the top chemical shift B (ppm) was controlled so as to satisfy B−0.30 ≦ A <B−0.14. From this standpoint, there has never been a material that combines salt removal and water permeability while designing a material polymer for a separation membrane while maintaining chemical resistance.

本発明の分離膜は、ナノろ過を目的とした分離膜であり、被処理水に浸透圧以上の圧力をかけて浄水または濃縮水を得る方法に用いられる。具体的には、医薬プロセスの脱塩工程、農薬や低分子量物質の除去など浄水用途、果汁や菌類生産物質の濃縮、2段階RO処理の後段(ホウ素除去)やROの前処理(スケールの原因となる2価イオン除去)に用いられる。ナノろ過の圧力は、一般的に0.3〜1.5MPaと低い。ナノろ過に求められる分離膜の塩除去性と透水性としては、一般にNaClを用いた場合の塩除去率が5%以上93%未満であり、透水量が250L/m/D以上であることが好ましい。 The separation membrane of the present invention is a separation membrane for the purpose of nanofiltration, and is used in a method for obtaining purified water or concentrated water by applying a pressure not lower than the osmotic pressure to the water to be treated. Specifically, desalination of pharmaceutical processes, water purification applications such as removal of agricultural chemicals and low molecular weight substances, concentration of fruit juice and fungal product, 2 stage RO treatment (boron removal) and RO pretreatment (cause of scale) To remove divalent ions). The nanofiltration pressure is generally as low as 0.3 to 1.5 MPa. As the salt removal property and water permeability of the separation membrane required for nanofiltration, generally, the salt removal rate when using NaCl is 5% or more and less than 93%, and the water permeability is 250 L / m 2 / D or more. Is preferred.

本発明の分離膜としては、中空糸膜または平膜が用いられる。中空糸膜は、一般的にチューブインオリフィス型ノズルやアーク型(三点ブリッジ)ノズルを用いてポリマーを吐出させた後に凝固させて作成する中空状の糸からなる。また、中空糸膜は、一般的に単一素材からなる非対称膜の形態をとる。さらに、中空糸膜は、耐圧容器(モジュール)における単位容積当たりの有効膜面積が平膜より多くとれるため、モジュールのコンパクト化が可能という利点がある。但し、中空糸膜内部が閉塞すると回復困難となるため、外圧式で使用されることが多い。一方、平膜は、フィルム形状の膜であり、支持体層にポリエステルタフタおよびポリスルホン等からなる積層膜を用い、その上に分離機能層としてポリアミドやスルホン化ポリスルホン等を積層させた構造を有するものが一般的である。モジュールは主にスパイラル型が用いられている。本発明の分離膜としては、モジュール容積当りの膜面積が大きく、透過側に異物が混入しにくい中空糸膜を用いることが好ましい。中空糸膜は、用途に応じた所定の塩除去率および透過率を有し、さらに膜の経時変化が小さくなるように設計される。   As the separation membrane of the present invention, a hollow fiber membrane or a flat membrane is used. The hollow fiber membrane is generally formed of a hollow thread formed by discharging a polymer using a tube-in-orifice type nozzle or an arc type (three-point bridge) nozzle and then solidifying the polymer. The hollow fiber membrane generally takes the form of an asymmetric membrane made of a single material. Further, the hollow fiber membrane has an advantage that the module can be made compact because the effective membrane area per unit volume in the pressure vessel (module) can be larger than that of the flat membrane. However, since the inside of the hollow fiber membrane becomes difficult to recover, it is often used with an external pressure type. On the other hand, a flat membrane is a film-shaped membrane having a structure in which a laminated film made of polyester taffeta, polysulfone, or the like is used for a support layer, and polyamide, sulfonated polysulfone, or the like is laminated thereon as a separation functional layer. Is common. The module is mainly a spiral type. As the separation membrane of the present invention, it is preferable to use a hollow fiber membrane that has a large membrane area per module volume and is unlikely to contain foreign substances on the permeate side. The hollow fiber membrane is designed so as to have a predetermined salt removal rate and permeability according to the application, and to reduce the change with time of the membrane.

本発明の分離膜は、下記一般式[I]で表される構成成分を含むスルホン化ポリアリーレンエーテルスルホンポリマーからなる。
式中、XはHまたは1価のカチオン種であり、nは10以上50以下の整数である。1価のカチオン種としては、特に限定されないが、ナトリウム、カリウム、リチウムや他の金属種や各種アミン類等が挙げられる。
The separation membrane of the present invention comprises a sulfonated polyarylene ether sulfone polymer containing a constituent represented by the following general formula [I].
In the formula, X is H or a monovalent cation species, and n is an integer of 10 to 50. Although it does not specifically limit as monovalent | monohydric cation seed | species, Sodium, potassium, lithium, another metal seed | species, various amines, etc. are mentioned.

本発明で使用するスルホン化ポリアリーレンエーテルスルホンポリマーは、電子吸引性の芳香環上にスルホン酸基を導入したモノマー(3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン誘導体)を用いてポリアリーレンエーテルを合成することにより、高温でもスルホン酸基が脱離しにくいポリマーであり、3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン誘導体とともに2,6−ジクロロベンゾニトリルを併用することで、重合性の低い3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン誘導体を使用していても短時間で高重合度のポリアリーレンエーテル化合物が得られる特徴がある。スルホン化ポリアリーレンエーテルスルホンポリマーは、特に耐薬品性(耐アルカリ性、耐塩素性)に優れ、膜の長期使用に対して経時変化が小さい。   The sulfonated polyarylene ether sulfone polymer used in the present invention uses a monomer (3,3′-disulfo-4,4′-dichlorodiphenylsulfone derivative) in which a sulfonic acid group is introduced onto an electron-withdrawing aromatic ring. By synthesizing polyarylene ether, it is a polymer in which sulfonic acid groups are not easily removed even at high temperatures, and 2,6-dichlorobenzonitrile is used in combination with 3,3′-disulfo-4,4′-dichlorodiphenylsulfone derivatives. Thus, there is a feature that a polyarylene ether compound having a high degree of polymerization can be obtained in a short time even when a 3,3′-disulfo-4,4′-dichlorodiphenylsulfone derivative having low polymerizability is used. The sulfonated polyarylene ether sulfone polymer is particularly excellent in chemical resistance (alkali resistance and chlorine resistance), and has little change with time for long-term use of the membrane.

スルホン化ポリアリーレンエーテルスルホンポリマーは、従来公知の方法で得ることができるが、例えば、上記一般式[I]の左側の化合物と右側の化合物とをモノマーとして含む芳香族求核置換反応により重合することによって得られる。芳香族求核置換反応により重合する場合、上記一般式[I]の左側の化合物と右側の化合物を含む活性化ジフルオロ芳香族化合物および/またはジクロロ芳香族化合物と芳香族ジオール類を塩基性化合物の存在下で反応させることができる。重合は、0〜350℃の温度範囲で行うことができるが、50〜250℃の温度であることが好ましい。0℃より低い場合には、十分に反応が進まない傾向にあり、350℃より高い場合には、ポリマーの分解も起こり始める傾向がある。反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ジフェニルスルホン、スルホランなどを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されてもよい。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられるが、芳香族ジオール類を活性なフェノキシド構造にしうるものであれば、これらに限定されず使用することができる。芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水材を使用することもできる。芳香族求核置換反応を溶媒中で行う場合、得られるポリマー濃度として5〜50重量%となるようにモノマーを仕込むことが好ましい。5重量%よりも少ない場合は、重合度が上がりにくい傾向がある。一方、50重量%よりも多い場合には、反応系の粘性が高くなりすぎ、反応物の後処理が困難になる傾向がある。重合反応終了後は、反応溶液より蒸発によって溶媒を除去し、必要に応じて残留物を洗浄することによって、所望のポリマーが得られる。また、反応溶液を、ポリマーの溶解度が低い溶媒中に加えることによって、ポリマーを固体として沈殿させ、沈殿物の濾取によりポリマーを得ることもできる。   The sulfonated polyarylene ether sulfone polymer can be obtained by a conventionally known method. For example, the sulfonated polyarylene ether sulfone polymer is polymerized by an aromatic nucleophilic substitution reaction including the left compound of the general formula [I] and the right compound as monomers. Can be obtained. In the case of polymerization by aromatic nucleophilic substitution reaction, the activated difluoroaromatic compound and / or dichloroaromatic compound and aromatic diol containing the compound on the left side and the compound on the right side of the above general formula [I] are converted into basic compounds. The reaction can be carried out in the presence. The polymerization can be carried out in the temperature range of 0 to 350 ° C., but is preferably 50 to 250 ° C. When the temperature is lower than 0 ° C., the reaction does not proceed sufficiently, and when the temperature is higher than 350 ° C., the polymer tends to be decomposed. The reaction can be carried out in the absence of a solvent, but is preferably carried out in a solvent. Examples of the solvent that can be used include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, diphenyl sulfone, sulfolane, and the like. And any solvent that can be used as a stable solvent in the aromatic nucleophilic substitution reaction. These organic solvents may be used alone or as a mixture of two or more. Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like, and those that can convert an aromatic diol into an active phenoxide structure may be used. It can use without being limited to. In the aromatic nucleophilic substitution reaction, water may be generated as a by-product. In this case, regardless of the polymerization solvent, water can be removed from the system as an azeotrope by coexisting toluene or the like in the reaction system. As a method for removing water out of the system, a water absorbing material such as molecular sieve can also be used. When the aromatic nucleophilic substitution reaction is carried out in a solvent, it is preferable to charge the monomer so that the resulting polymer concentration is 5 to 50% by weight. When the amount is less than 5% by weight, the degree of polymerization tends to be difficult to increase. On the other hand, when the amount is more than 50% by weight, the viscosity of the reaction system becomes too high, and the post-treatment of the reaction product tends to be difficult. After completion of the polymerization reaction, the solvent is removed from the reaction solution by evaporation, and the residue is washed as necessary to obtain the desired polymer. In addition, the polymer can be obtained by precipitating the polymer as a solid by adding the reaction solution in a solvent having low polymer solubility, and collecting the precipitate by filtration.

スルホン化ポリアリーレンエーテルスルホンポリマーの対数粘度は、1.0〜2.3dL/gであることが好ましい。対数粘度が1.0dL/gより小さいと、分離膜に成形したときの膜が脆くなりやすく、また、2.3dL/gより大きいと、ポリマーの溶解が困難になり、加工性に問題が生じるおそれがある。   The logarithmic viscosity of the sulfonated polyarylene ether sulfone polymer is preferably 1.0 to 2.3 dL / g. If the logarithmic viscosity is less than 1.0 dL / g, the membrane when formed into a separation membrane tends to be brittle, and if it is greater than 2.3 dL / g, it becomes difficult to dissolve the polymer, resulting in problems in workability. There is a fear.

スルホン化ポリアリーレンエーテルスルホンポリマーのスルホン酸基含有量は、0.5〜2.3meq/gであることが好ましい。スルホン酸基含有量が0.5meq/gより少ないと、分離膜として十分な塩除去性あるいは透水性を示さないおそれがあり、2.3meq/gより多いと、分離膜が高温高湿時に膨潤して使用に適さなくなるおそれがある。   The sulfonic acid group content of the sulfonated polyarylene ether sulfone polymer is preferably 0.5 to 2.3 meq / g. If the sulfonic acid group content is less than 0.5 meq / g, there is a risk that the salt removal property or water permeability will not be sufficient as the separation membrane. If the content is more than 2.3 meq / g, the separation membrane swells at high temperature and high humidity. May become unsuitable for use.

本発明の上記ポリマー素材を使用した分離膜は、含水状態の該膜を用いて膜中の水分子を測定したプロトン核磁気共鳴(NMR)スペクトルにおいて、束縛水由来のスペクトルピークトップのケミカルシフトA(ppm)とバルク水由来のスペクトルピークトップのケミカルシフトB(ppm)との関係がB−0.30≦A<B−0.14を満たすように制御されていることを特徴とする。ここで、束縛水は、分離膜の微細孔内で、電荷を持った基や極性基と相互作用して溶媒和を形成した水分子であり、回転・並進運動が制限される。一方、バルク水(自由水とも言う)は、通常の液体状態を保ち、回転・並進運動を行う運動性の高い状態をとる。ケミカルシフト(化学シフト)に関しては、プロトンNMRの場合、磁場中にある測定対象物へ外部エネルギー(ラジオ波)を与えると、測定対象物がもつ水素原子の周囲に存在する電子の密度の大小によって、吸収される外部エネルギー量が異なるが、この差がNMRスペクトルピークの出現箇所の差(ケミカルシフト差)として表される。電子密度大なら外部エネルギーに対する遮蔽効果が高く、高磁場側(ppm値の小さい側)にスペクトルピークが出現する。電子密度小なら遮蔽効果が小さく、低磁場側(ppm値の大きい側)にスペクトルピークが出現する。従って、電子密度の大小は、膜中の水分子のプロトンNMRのケミカルシフトが受ける化学的相互作用の大小を表わす。一般式[I]に示すポリマーからなるナノろ過膜はスルホン酸基を有しており、束縛水は特にこの基と強く相互作用すると考えられる。スルホン酸基の電子密度はバルク水と比べて大きく、強い相互作用を形成する束縛水周辺の電子密度はバルク水よりわずかに大きくなると考えられる。したがって、束縛水のケミカルシフトはバルク水よりも高磁場側に出現する。膜中に存在する水分子のプロトンNMR測定法については次の通りである。予め、室温下(25℃)10分間蒸留水に浸漬させておいた中空糸膜試料を長さ5cm程度に切りとり、直径3mmのキャピラリー管に該試料を4本挿入する。この時の試料の水分率は凡そ300〜400重量%とする。該キャピラリー管を直径5mmのNMRチューブに挿入し、BRUKER社製 AVANCE500(共鳴周波数500.13MHz、温度30℃、FT積算16回、待ち時間21秒)でプロトンNMR測定を行う。(予め、重水(DO)でシム調整を行う。) The separation membrane using the polymer material of the present invention is a chemical shift A at the top of a spectrum peak derived from bound water in a proton nuclear magnetic resonance (NMR) spectrum obtained by measuring water molecules in the membrane using the water-containing membrane. (Ppm) and the chemical shift B (ppm) of the spectral peak top derived from bulk water is controlled to satisfy B−0.30 ≦ A <B−0.14. Here, bound water is a water molecule that forms a solvation by interacting with a charged group or a polar group in the micropores of the separation membrane, and its rotational and translational motion is limited. On the other hand, bulk water (also referred to as free water) maintains a normal liquid state and takes a state of high mobility that performs rotation and translation. Regarding chemical shift (chemical shift), in the case of proton NMR, when external energy (radio wave) is applied to a measurement object in a magnetic field, the density of electrons existing around the hydrogen atom of the measurement object depends on the magnitude of the electron. Although the amount of external energy absorbed is different, this difference is expressed as a difference (chemical shift difference) in the appearance location of the NMR spectrum peak. If the electron density is high, the shielding effect against external energy is high, and a spectrum peak appears on the high magnetic field side (side with a low ppm value). If the electron density is small, the shielding effect is small, and a spectrum peak appears on the low magnetic field side (the side with the large ppm value). Therefore, the magnitude of the electron density represents the magnitude of the chemical interaction that the chemical shift of proton NMR of water molecules in the film undergoes. The nanofiltration membrane made of the polymer represented by the general formula [I] has a sulfonic acid group, and the bound water is considered to particularly strongly interact with this group. The electron density of sulfonic acid group is larger than that of bulk water, and the electron density around bound water that forms strong interaction is considered to be slightly higher than that of bulk water. Therefore, the chemical shift of bound water appears on the higher magnetic field side than bulk water. The proton NMR measurement method for water molecules present in the membrane is as follows. A hollow fiber membrane sample previously immersed in distilled water for 10 minutes at room temperature (25 ° C.) is cut to a length of about 5 cm, and four samples are inserted into a capillary tube having a diameter of 3 mm. The moisture content of the sample at this time is about 300 to 400% by weight. The capillary tube is inserted into an NMR tube having a diameter of 5 mm, and proton NMR measurement is performed with an AVANCE 500 manufactured by BRUKER (resonance frequency 500.13 MHz, temperature 30 ° C., FT integration 16 times, waiting time 21 seconds). (Shim adjustment is performed in advance with heavy water (D 2 O).)

図1にプロトンNMRスペクトルチャートの一例を示す。この際に観察される2本のスペクトルピークのうち、低磁場側に出現するスペクトルピークをバルク水由来のものとし、このケミカルシフトのピークトップを5.24ppmに合わせて基準とする。そして、高磁場側に現れる束縛水由来のスペクトルピークのピークトップのケミカルシフト、およびそれらの距離を確認する。なお、ピークトップとは、NMR測定の結果、得られるスペクトルピークの最も高い位置のことである。   FIG. 1 shows an example of a proton NMR spectrum chart. Of the two spectral peaks observed at this time, the spectral peak appearing on the low magnetic field side is derived from bulk water, and the peak top of this chemical shift is set to 5.24 ppm as a reference. And the chemical shift of the peak top of the spectrum peak derived from the bound water which appears on the high magnetic field side, and those distances are confirmed. The peak top is the highest position of the spectrum peak obtained as a result of NMR measurement.

束縛水由来のケミカルシフトのピークトップA(ppm)が、バルク水由来のケミカルシフトのピークトップB(ppm)に対してA<B−0.30となる場合、膜構造が全体的に著しく緻密になり、塩除去性は概ね93%以上を示すのに対して透水性が著しく低下し、実用的でないという問題がある。また、同様にしてB>A≧B−0.14となる場合、塩除去性が著しく低いか又は発現しない可能性があり、好ましくない。   When the peak top A (ppm) of the chemical shift derived from the bound water is A <B-0.30 with respect to the peak top B (ppm) of the chemical shift derived from the bulk water, the membrane structure as a whole is extremely dense. However, while the salt removability is approximately 93% or more, the water permeability is remarkably lowered, which is not practical. Similarly, when B> A ≧ B−0.14, the salt removability may be remarkably low or may not be expressed.

次に、本発明の分離膜中の水分子と膜分子を構成する高分子鎖との間の化学的相互作用、および膜性能との関係について述べる。一般に、紡糸上がり及び分離膜として使用中の膜は、概して50%〜1000%の水分率の水分を膜中に有する。この範囲の含水状態を保っていれば、水分率に関わらずバルク水と束縛水のプロトンNMRにおけるスペクトルピークトップ間のケミカルシフトはほぼ一定値を示す。このとき、該分離膜中の水分子がすべて膜を構成する高分子鎖と化学的な相互作用をしているわけではない。本発明者らの検討によれば、相互作用の有無は、水分子のプロトンNMRを測定することにより区別でき、膜が、概ね前述の水分率の場合、水分率の大小に依存せず、バルク水のスペクトルピークトップからの距離が安定して決まった位置にスペクトルピークを発現することを見出した。さらに詳しく述べれば、束縛水由来のスペクトルピークトップのケミカルシフトA(ppm)とバルク水由来のスペクトルピークトップのケミカルシフトB(ppm)との関係がB−0.30≦A<B−0.14を満たす範囲に1本ないし複数本のピークが観測されることが分かった。このことは、膜中の水の存在状態が複数存在することを意味する。このことから、膜中の水は、バルク水に加えて、何らかの化学的な相互作用を受けた水(束縛水)からなることを見出した。   Next, the chemical interaction between the water molecules in the separation membrane of the present invention and the polymer chains constituting the membrane molecules and the relationship with the membrane performance will be described. In general, membranes in use as spin-up and separation membranes generally have a moisture content of 50% to 1000% in the membrane. If the moisture content in this range is maintained, the chemical shift between the spectral peak tops in the proton NMR of bulk water and bound water is almost constant regardless of the moisture content. At this time, all water molecules in the separation membrane do not chemically interact with the polymer chains constituting the membrane. According to the study by the present inventors, the presence or absence of an interaction can be distinguished by measuring proton NMR of water molecules. When the membrane is approximately the above-mentioned moisture content, it does not depend on the magnitude of the moisture content, and the bulk It was found that the spectral peak appears at a position where the distance from the top of the spectral peak of water is stable and fixed. More specifically, the relationship between the chemical shift A (ppm) of the spectral peak top derived from bound water and the chemical shift B (ppm) of the spectral peak top derived from bulk water is B−0.30 ≦ A <B−0. It was found that one or more peaks were observed in a range satisfying 14. This means that there are multiple states of water in the membrane. From this, it has been found that the water in the membrane is composed of water subjected to some chemical interaction (bound water) in addition to bulk water.

本発明者らの検討によれば、紡糸に供するポリマー溶液の濃度と上述のケミカルシフト、および物性値に強い相関があることを見出した。即ち、分離膜として前述のポリマーを素材として用いた場合、ポリマー濃度25重量%を境にして、それよりも濃度が低い条件で作った中空糸膜(含水状態)を用いてプロトンNMRを測定したところ、膜中の水分子のケミカルシフトはB≧A≧B−0.14(ppm)の範囲に発現する。さらにこのような条件で作製した膜は、NaClで評価した場合に塩除去率を示さないか、または5%以下となる可能性があり、また、中空糸膜の強度が低くなり耐圧性に問題の生じる場合が多く、実用レベルのナノろ過膜としては機能を果たさない。逆に、ポリマー濃度を32.5重量%以上にすると、出来た膜の物性は、塩除去率は93%以上をキープする。同様にして測定した水分子のスペクトルピークトップのケミカルシフトはA<B−0.30(ppm)となり、透水性能が250L/m/D以下となり好ましくない。 According to the study by the present inventors, it has been found that there is a strong correlation between the concentration of the polymer solution subjected to spinning, the above-described chemical shift, and the physical property value. That is, when the aforementioned polymer was used as a separation membrane, proton NMR was measured using a hollow fiber membrane (hydrated state) made at a lower concentration than the polymer concentration of 25% by weight. However, the chemical shift of water molecules in the film appears in the range of B ≧ A ≧ B−0.14 (ppm). Furthermore, a membrane produced under such conditions may not show a salt removal rate when evaluated with NaCl, or may be 5% or less, and the strength of the hollow fiber membrane may be reduced, causing a problem with pressure resistance. In many cases, it does not function as a practical nanofiltration membrane. On the other hand, when the polymer concentration is 32.5% by weight or more, the physical properties of the resulting film keep the salt removal rate of 93% or more. The chemical shift of the spectrum peak top of water molecules measured in the same manner is A <B-0.30 (ppm), and the water permeability is not preferable because it is 250 L / m 2 / D or less.

さらに、紡糸時のエアギャップ長についても、膜中でのスルホン酸基の配置、更には束縛水の受けるケミカルシフトの変化にも多大な影響を与える。本発明者らの検討によれば、エアギャップ長と上述のケミカルシフト、および膜性能値に強い相関があることを見出した。即ち、ある一定値を境にして、エアギャップ長が長すぎる、かつ加熱ゾーンを用いて積極的に系中の溶媒を蒸発せしめた条件で作った糸のプロトンNMRを測定したところ、膜中の水分子のケミカルシフトはB≧A≧B−0.14(ppm)の範囲に発現する。このような条件で作製した中空糸膜は、エアギャップ通過の過程で膜中の溶媒が過剰に蒸発する。系中の溶媒が蒸発するとポリマー濃度の上昇を招くが、それと共にスルホン酸基の凝集が加速される。この結果出来た系のスルホン酸基は局在化されている。このような構造の膜をナノろ過膜として利用したとき、膜中を拡散する水分子はスルホン酸基と効率的に相互作用できない。結果として、塩除去率の減少ならびに透水量の減少を招く。更に、膜表面側のポリマー密度が非常に高くなり構造が非常に緻密化する。その結果、膜の最表層にスキン層が形成され、内部は分離能を持たない粗構造が形成される。このような膜の透水性能は10L/m/Dに達することはなく、塩除去率は50%未満であり、実用レベルのナノろ過膜としては機能を果たさない。 Furthermore, the air gap length at the time of spinning also has a great influence on the arrangement of sulfonic acid groups in the membrane, and further on the change in chemical shift subjected to bound water. According to the study by the present inventors, it has been found that there is a strong correlation between the air gap length, the above-described chemical shift, and the film performance value. That is, when the proton NMR of a yarn made under the condition that the air gap length is too long and the solvent in the system is actively evaporated using a heating zone with a certain value as a boundary, The chemical shift of water molecules appears in the range of B ≧ A ≧ B−0.14 (ppm). In the hollow fiber membrane produced under such conditions, the solvent in the membrane excessively evaporates in the process of passing through the air gap. When the solvent in the system evaporates, the concentration of the polymer is increased. At the same time, aggregation of the sulfonic acid group is accelerated. The resulting sulfonic acid groups are localized. When a membrane having such a structure is used as a nanofiltration membrane, water molecules diffusing in the membrane cannot interact efficiently with sulfonic acid groups. As a result, the salt removal rate is reduced and the water permeability is reduced. Furthermore, the polymer density on the film surface side becomes very high and the structure becomes very dense. As a result, a skin layer is formed on the outermost layer of the film, and a rough structure having no separation ability is formed inside. The water permeability of such a membrane does not reach 10 L / m 2 / D, the salt removal rate is less than 50%, and does not function as a practical level nanofiltration membrane.

詳細なメカニズムについては不詳であるが、本発明者らは、ポリマー濃度と膜性能の間に相関があることを見出した。即ち、ポリマー濃度が低すぎると、膜を形成せしめたときに、膜構造の特徴としてスルホン酸基の凝集が過度にすすむ。このことは、膜中に存在する水分子が、該凝集構造中のスルホン酸基と効率的に相互作用状態を実現できないことを意味する。結果として、分離膜として使用したときに、膜中を拡散する水分子が効率的にスルホン酸基と相互作用できないため、水分子の拡散が抑制され、低い透水性能に留まる。束縛水の受けるケミカルシフトもバルク水に近い位置に留まる。逆に、ポリマー濃度を高くすると、凝集構造のサイズは小さいかもしれないが、スルホン酸基は凝集することなく均一に分散するため、膜中の水分子との化学接触および相互作用できる確率が高まる。結果として、水分子が早く拡散するようにスルホン酸基のチャンネルが配列形成するので、高い透水性能が得られるのである。束縛水のケミカルシフトも自由水とは遠く離れた位置に観測できる。本発明の分離膜は、このような知見に基づいて、ナノろ過に要求される透水性と塩除去性を持つように、含水時の膜中における束縛水由来のプロトンNMRのピークトップの位置に関して、束縛水由来のスペクトルピークトップのケミカルシフトA(ppm)とバルク水由来のスペクトルピークトップのケミカルシフトB(ppm)との関係がB−0.30≦A<B−0.14を満たすように設定している。   Although the detailed mechanism is unknown, the present inventors have found that there is a correlation between polymer concentration and membrane performance. That is, if the polymer concentration is too low, sulfonic acid group aggregation excessively proceeds as a characteristic of the membrane structure when the membrane is formed. This means that water molecules present in the membrane cannot efficiently interact with the sulfonic acid group in the aggregated structure. As a result, when used as a separation membrane, the water molecules diffusing in the membrane cannot efficiently interact with the sulfonic acid group, so that the diffusion of water molecules is suppressed and the low water permeability performance remains. The chemical shift that the bound water receives is also close to the bulk water. Conversely, when the polymer concentration is increased, the size of the aggregate structure may be small, but the sulfonic acid groups are uniformly dispersed without agglomeration, which increases the probability of chemical contact and interaction with water molecules in the membrane. . As a result, since the sulfonic acid group channels are arranged so that water molecules diffuse quickly, high water permeability is obtained. The chemical shift of bound water can also be observed far away from free water. Based on such knowledge, the separation membrane of the present invention has a water permeability and a salt removal property required for nanofiltration, so that the position of the peak top of proton NMR derived from bound water in the membrane at the time of hydration is as follows. The relation between the chemical shift A (ppm) of the spectral peak top derived from bound water and the chemical shift B (ppm) of the spectral peak top derived from bulk water satisfies B−0.30 ≦ A <B−0.14. Is set.

次に、本発明の分離膜の製造方法を、中空糸膜の場合を例にして説明する。本発明の中空糸膜は、従来公知の方法と同様に、製膜原液を紡糸口金から空中走行部を経て凝固浴中に吐出して中空糸膜を作成し、この中空糸膜を水洗した後に熱水処理に供して膜を収縮させることによって製造されることができる。   Next, the method for producing a separation membrane of the present invention will be described by taking a hollow fiber membrane as an example. The hollow fiber membrane of the present invention is prepared by discharging a membrane-forming stock solution from a spinneret through an aerial running section into a coagulation bath in the same manner as a conventionally known method, creating a hollow fiber membrane, and washing the hollow fiber membrane with water. It can be produced by subjecting it to a hydrothermal treatment to shrink the membrane.

製膜原液としては、膜素材の式[I]で表されるポリマーと溶媒と非溶媒を含むものを使用し、必要により有機酸および/または有機アミンを加えたものを使用する。溶媒は、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルスルホキシドから選ばれる1種以上を使用することが好ましい。より好ましくは、N−メチル−2−ピロリドンである。非溶媒は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールから選ばれる1種以上を使用することが好ましい。より好ましくは、エチレングリコールである。有機酸は、アミノ酸、芳香族カルボン酸、ヒドロキシ酸、アルコキシ酸、二塩基酸またはそのヒドロキシモノエステルが好ましい。より好ましくは、フタル酸、酒石酸、ε−アミノ−n−カプロン酸、安息香酸、4−メチルアミノ酪酸、p−オキシ安息香酸、マレイン酸であり、2種以上を混合して使用することができる。有機アミンは、一級、二級、三級ヒドロキシアルキルアミンのいずれでも使用できる。具体的には、モノエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミンが好ましい。   As the membrane-forming stock solution, a membrane material containing a polymer represented by the formula [I], a solvent and a non-solvent is used, and if necessary, an organic acid and / or an organic amine is added. The solvent is preferably one or more selected from N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N, N-dimethylsulfoxide. More preferred is N-methyl-2-pyrrolidone. The non-solvent is preferably one or more selected from ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol. More preferably, it is ethylene glycol. The organic acid is preferably an amino acid, an aromatic carboxylic acid, a hydroxy acid, an alkoxy acid, a dibasic acid or a hydroxy monoester thereof. More preferably, it is phthalic acid, tartaric acid, ε-amino-n-caproic acid, benzoic acid, 4-methylaminobutyric acid, p-oxybenzoic acid, maleic acid, and a mixture of two or more can be used. . As the organic amine, any of primary, secondary, and tertiary hydroxyalkylamine can be used. Specifically, monoethanolamine, triethanolamine, diisopropanolamine, and triisopropanolamine are preferable.

製膜原液中の式[I]のポリマーの濃度は30重量%〜32.5重量%未満であることが好ましい。ポリマーの濃度が上記範囲より低いと、得られた中空糸膜がナノろ過用途に求められる耐圧性能を満たさないことがあり、上記範囲より高いと、実用的な透水性を満たさない可能性がある。また、製膜原液中の溶媒/非溶媒の重量比は95/5〜70/30が好ましく、さらに90/10〜75/25の範囲にあることが好ましい。溶媒/非溶媒の重量比が上記範囲より低いと、溶媒蒸発が進行しないため膜表面の構造が緻密化せず、透水性は大きく変化しないが塩除去性能が低いものとなり、上記範囲より高いと、極端な非対称膜化が進行して膜強度が得られない可能性がある。   The concentration of the polymer of the formula [I] in the film forming stock solution is preferably 30% by weight to less than 32.5% by weight. When the concentration of the polymer is lower than the above range, the obtained hollow fiber membrane may not satisfy the pressure resistance required for nanofiltration, and when it is higher than the above range, it may not satisfy practical water permeability. . Further, the weight ratio of the solvent / non-solvent in the membrane forming stock solution is preferably 95/5 to 70/30, and more preferably in the range of 90/10 to 75/25. If the solvent / non-solvent weight ratio is lower than the above range, solvent evaporation does not proceed, the membrane surface structure does not become dense, and the water permeability does not change greatly, but the salt removal performance is low, and if it is higher than the above range, There is a possibility that the film strength cannot be obtained due to the progress of extreme asymmetric film formation.

次に、上記のようにして得られた製膜原液を90〜190℃に加熱して溶解し、得られた製膜原液を150〜180℃に加熱したアーク(3点ブリッジ)型、C型、又はチューブインオリフィス型ノズルより押出す。チューブインオリフィス型ノズルを使用する場合は、中空形成材として空気、窒素、二酸化炭素、アルゴンなどを使用することが好ましいが、紡糸温度よりも高い沸点の有機溶媒を使用することもできる。押出された製膜原液は、0.02〜0.4秒間、空中走行部(気体雰囲気、エアギャップ)を通過した後、続いて水性凝固浴に浸漬して凝固される。   Next, the film-forming stock solution obtained as described above is dissolved by heating to 90 to 190 ° C., and the obtained film-forming stock solution is heated to 150 to 180 ° C. Or extruded from a tube-in orifice type nozzle. When a tube-in-orifice type nozzle is used, air, nitrogen, carbon dioxide, argon or the like is preferably used as the hollow forming material, but an organic solvent having a boiling point higher than the spinning temperature can also be used. The extruded film-forming stock solution passes through the aerial traveling part (gas atmosphere, air gap) for 0.02 to 0.4 seconds, and is then immersed in an aqueous coagulation bath to be solidified.

既に述べてきたように、素材ポリマーのスルホン酸基と水分子が良好に相互作用するためには、スルホン酸基を膜中に均一に分布せしめることが必要である。このためには、エアギャップ長の設定も重要である。ここで、エアギャップとは乾湿式紡糸において紡糸ノズルと凝固浴の間に存在する空間を指す。即ち、エアギャップ長が100cmと長すぎると、エアギャップをノズルから紡出した中空糸が走行中に溶媒が蒸散するとともに膜中でスルホン酸基の凝集が起こり、好ましくない。また、エアギャップが0.5cm未満と短すぎる場合、紡糸口金吐出後の溶液の不安定状態が凝固により固定されてしまうため、好ましくない。エアギャップを無くし、紡糸口金を凝固液に浸けて膜を作成すると、強度が不足するため、好ましくない。好ましいエアギャップ長は、50cm〜1cm、より好ましくは30cm〜2cmである。   As already described, in order for the sulfonic acid groups of the material polymer and water molecules to interact well, it is necessary to distribute the sulfonic acid groups uniformly in the membrane. For this purpose, the setting of the air gap length is also important. Here, the air gap refers to a space existing between the spinning nozzle and the coagulation bath in dry and wet spinning. That is, if the air gap length is as long as 100 cm, the hollow fibers spun from the nozzle through the air gap evaporate while running and the sulfonic acid groups aggregate in the membrane. In addition, when the air gap is too short as less than 0.5 cm, the unstable state of the solution after the spinneret is discharged is fixed by solidification, which is not preferable. It is not preferable to create a film by eliminating the air gap and immersing the spinneret in the coagulation liquid because the strength is insufficient. A preferable air gap length is 50 cm to 1 cm, more preferably 30 cm to 2 cm.

凝固浴は、製膜原液に使用した溶媒、非溶媒と同一組成のものを使用することが好ましい。凝固浴の組成割合は、溶媒:非溶媒:水(重量比)=0〜15:0〜8:100〜77が好ましい。水の比率が低すぎると、膜の相分離が進行し、細孔径が大きくなりすぎることがある。   It is preferable to use a coagulation bath having the same composition as the solvent and non-solvent used in the film-forming stock solution. The composition ratio of the coagulation bath is preferably solvent: non-solvent: water (weight ratio) = 0 to 15: 0 to 8: 100 to 77. If the water ratio is too low, phase separation of the membrane proceeds and the pore size may become too large.

凝固浴から引き上げた中空糸膜は、残存する溶媒、非溶媒等を水あるいは塩水で洗浄除去する。水洗方式としては、例えば、長尺傾斜樋に水洗水を流下させ、その水洗水中に中空糸膜を通して水洗する多段傾斜樋水洗方式、また2本の長尺ローラーに互いに角度をもたせ、ローラーに中空糸膜を何重にも捲き上げるネルソンローラーにおいて、ネルソンローラー表面を常に水洗水で濡らし、該水洗水と中空糸膜との接触で水洗するネルソンローラー水洗方式、更にネット上に中空糸膜を振り落し、シャワー水によって水洗するネットシャワー水洗方式、また中空糸膜を直接深槽水洗水中に浸漬水洗する浸漬水洗方式等がある。   The hollow fiber membrane pulled up from the coagulation bath is washed away with residual solvent or non-solvent with water or salt water. As a water washing method, for example, a multi-stage inclined water washing method in which washing water is allowed to flow down in a long slanted basin, and the water is washed through the hollow fiber membrane in the rinsing water. In a Nelson roller that rolls up the yarn membrane multiple times, the surface of the Nelson roller is always wetted with water, and the water is washed by contact with the water and the hollow fiber membrane. There are a net shower water washing method in which the hollow fiber membrane is directly submerged in the deep bath water, and the like.

水洗処理を施した中空糸膜は、無緊張状態で水中に浸漬し、70〜98℃で5〜60分間、熱水もしくは熱塩水処理(アニール処理)を行うことが好ましい。熱水処理を施すことによって、膜構造の固定化や寸法安定性の向上、熱安定性の向上を図ることができる。このような目的のため、通常、アニール処理は、ガラス転移温度よりも高く融点よりも低い温度が採用される。膜の構造、特にスルホン酸基の配置はドープ濃度とエアギャップ長でほぼ決まるが、必ずしも最も安定な位置に配列されている訳ではない。アニール処理は、膜中のスルホン酸基の配列を含めて、膜を構成する分子鎖の位置を最適な場所にもたらす効果を有する。   The hollow fiber membrane subjected to the water washing treatment is preferably immersed in water in an unstrained state and subjected to hot water or hot salt water treatment (annealing treatment) at 70 to 98 ° C. for 5 to 60 minutes. By performing the hydrothermal treatment, it is possible to fix the membrane structure, improve the dimensional stability, and improve the thermal stability. For this purpose, the annealing treatment is usually performed at a temperature higher than the glass transition temperature and lower than the melting point. The structure of the membrane, particularly the arrangement of sulfonic acid groups, is almost determined by the dope concentration and the air gap length, but is not necessarily arranged at the most stable position. The annealing treatment has an effect of bringing the position of the molecular chain constituting the film to an optimal place including the arrangement of the sulfonic acid group in the film.

熱水処理温度が上記範囲より高いと、膜構造の緻密化が進みすぎて塩除去性と透水性のバランスが崩れることがあり、逆に、上記範囲より低いと、膜構造の非対称性が十分でなく、所望の塩除去性能が得られないことがある。熱水処理時間は、通常5〜60分である。処理時間が短すぎると、十分なアニール効果が得られない可能性がある。また、膜構造に不均一が生じることがある。処理時間が長すぎると、製造コストアップに繋がるだけでなく、膜が緻密化しすぎて所望の性能バランスが得られないことがある。   If the hydrothermal treatment temperature is higher than the above range, the membrane structure may become too dense and the balance between salt removal and water permeability may be lost. Conversely, if the temperature is lower than the above range, the asymmetry of the membrane structure is sufficient. In addition, the desired salt removal performance may not be obtained. The hot water treatment time is usually 5 to 60 minutes. If the treatment time is too short, a sufficient annealing effect may not be obtained. In addition, non-uniformity may occur in the film structure. If the treatment time is too long, not only will the production cost increase, but the membrane may become too dense, and the desired performance balance may not be obtained.

上記のようにして得られた本発明の中空糸膜は、従来公知の方法により中空糸膜モジュールとして組み込まれる。中空糸膜の組み込みは、例えば、中空糸膜を45〜180本集めて1つの中空糸膜集合体とし、さらにこの中空糸膜集合体を複数横に並べて偏平な中空糸膜束として、多数の孔を有する芯管にトラバースさせながら巻き付ける。この時の巻き付け角度は5〜60度とし、巻き上げ体の特定位置の周面上に交差部が形成するように巻き上げる。次に、この巻き上げ体の両端部を接着した後、片側のみ/または両側を切削して中空糸開口部を形成させ中空糸膜エレメントを作成する。得られた中空糸膜エレメントを圧力容器に挿入して中空糸膜モジュールを組立てる。   The hollow fiber membrane of the present invention obtained as described above is incorporated as a hollow fiber membrane module by a conventionally known method. For example, 45 to 180 hollow fiber membranes are collected into one hollow fiber membrane assembly, and a plurality of these hollow fiber membrane assemblies are arranged side by side as a flat hollow fiber membrane bundle. Wrap while traversing the core tube with holes. The winding angle at this time is set to 5 to 60 degrees, and the winding body is wound up so that the intersecting portion is formed on the peripheral surface of the specific position. Next, after bonding both ends of the wound body, only one side or both sides are cut to form a hollow fiber opening to form a hollow fiber membrane element. The obtained hollow fiber membrane element is inserted into a pressure vessel to assemble a hollow fiber membrane module.

中空糸膜の内径は、70〜100μmであることが好ましい。内径が上記範囲より小さいと、中空部を流れる流体の圧力損失が一般に大きくなるため、中空糸膜の長さを比較的長くした場合にナノろ過処理における使用圧において所望の透過水量が得られない可能性がある。一方、内径が上記範囲より大きいと、中空率とモジュール膜面積の取り合いになり、耐圧性または単位容積あたりの膜面積のいずれかを犠牲にする必要が生じる。   The inner diameter of the hollow fiber membrane is preferably 70 to 100 μm. When the inner diameter is smaller than the above range, the pressure loss of the fluid flowing through the hollow portion is generally large, so that when the length of the hollow fiber membrane is relatively long, a desired permeate amount cannot be obtained at the working pressure in nanofiltration treatment. there is a possibility. On the other hand, when the inner diameter is larger than the above range, the hollow ratio and the module membrane area are in balance, and either the pressure resistance or the membrane area per unit volume needs to be sacrificed.

中空糸膜の外径は、140〜175μmであることが好ましい。外径が上記範囲より小さいと、必然的に内径も小さくなるため、上述の内径と同じ問題が生じる。一方、外径が上記範囲より大きいと、モジュールにおける単位容積あたりの膜面積を大きくすることができなくなり、中空糸型モジュールのメリットの一つであるコンパクト性が損なわれる。   The outer diameter of the hollow fiber membrane is preferably 140 to 175 μm. If the outer diameter is smaller than the above range, the inner diameter inevitably becomes smaller, so the same problem as the above-mentioned inner diameter occurs. On the other hand, if the outer diameter is larger than the above range, the membrane area per unit volume in the module cannot be increased, and the compactness that is one of the merits of the hollow fiber type module is impaired.

中空糸膜の長さは、20〜300cmであることが好ましい。この長さは、中空糸型モジュールで一般に使用される可能性のある範囲である。但し、長さが上記範囲を逸脱すると、低い運転コストで透水性と塩除去性を両立することが困難になる可能性がある。   The length of the hollow fiber membrane is preferably 20 to 300 cm. This length is a range that may be commonly used in hollow fiber modules. However, if the length deviates from the above range, it may be difficult to achieve both water permeability and salt removability at a low operating cost.

本発明の分離膜は、示差走査熱量分析法による観察において、結晶化ピークが見られないという特徴を有する。これは、式[I]に示す通りポリマー主鎖にエーテル結合を多数含み、主鎖の熱運動性が高いこと、および分子間凝集力が低い疎水性セグメントを有していることから、結晶化に至るような凝集構造を発現しないためと考えられる。また、本発明の分離膜が中空糸膜の場合、中空糸膜の外周部から1μm以内の膜厚部分において10nm以上の直径の細孔が観察されないという特徴を有する。一般的に、エアギャップを経て凝固液中に浸漬した中空糸状溶液において、中空糸膜の最表面側から脱溶媒が起こり、ただちに相分離が生じていくのであるが、最表面側では相分離時間が短いことから微細な構造が形成され、内側(厚み方向)へ行くほど相分離時間が長くなり、内側が表面側よりも粗い構造が形成される傾向にある。特に、式[I]に示すポリマーはスルホン酸基を有しており、スルホン酸基同士や水分子を介して相互作用する。従って、中空糸膜の最表面側の構造がより緻密化する方向に作用し、結果、膜表面側の細孔径が著しく小さくなる。   The separation membrane of the present invention is characterized in that no crystallization peak is observed in observation by differential scanning calorimetry. This is because the polymer main chain contains many ether bonds as shown in the formula [I], the main chain has high thermal mobility, and has a hydrophobic segment with low intermolecular cohesion. This is thought to be because the aggregated structure leading to is not expressed. Further, when the separation membrane of the present invention is a hollow fiber membrane, there is a feature that pores having a diameter of 10 nm or more are not observed in a film thickness portion within 1 μm from the outer peripheral portion of the hollow fiber membrane. In general, in a hollow fiber solution immersed in a coagulating liquid through an air gap, desolvation occurs from the outermost surface side of the hollow fiber membrane, and phase separation occurs immediately. Since a short structure is formed, a fine structure is formed, and the phase separation time becomes longer toward the inner side (thickness direction), and a structure in which the inner side is rougher than the surface side tends to be formed. In particular, the polymer represented by the formula [I] has a sulfonic acid group and interacts with each other through sulfonic acid groups or water molecules. Accordingly, the structure on the outermost surface side of the hollow fiber membrane acts in the direction of further densification, and as a result, the pore diameter on the membrane surface side is remarkably reduced.

本発明の分離膜は、湿潤状態における降伏強度が5MPa以上9MPa未満である。一般的に、ナノろ過のために被処理水の浸透圧(一例として、塩化ナトリウムから成る溶液の塩濃度500ppmの場合は約0.04MPa)以上の外圧を膜にかける必要があり、実用的な透水量を得るためには0.5〜2.0MPa、式[I]の膜特性を考えると好ましくは0.5〜1.5MPaの範囲にて外圧をかける必要がある。本発明者らの検討の結果、中空糸膜の耐圧性と湿潤状態における引っ張り方向の降伏強度に相関があることを見出した。一般的に、中空糸膜をナノろ過膜として用いるためには、上記の降伏強度が3MPa以上、好ましくは5MPa以上であることが好ましい。降伏強度が上記に満たない中空糸膜は、ナノろ過の運転外圧に耐えられないおそれがある。式[I]のポリマーからなる中空糸膜においては、上述の降伏強度5MPa未満の場合、上述のナノろ過処理の実用的な外圧の範囲において糸形状がわずかに変形し、透水性が悪化する傾向にあり好ましくない。また、9MPa以上の耐圧性を持たせるには紡糸原液のポリマー濃度を高める必要があるが、この範囲では中空糸膜の透水性が低下する可能性があるため、好ましくない。本発明者らの鋭意検討の結果、式[I]のポリマーを用い、実用的な塩除去性および透水性を発現させつつナノろ過膜として運用するためには、湿潤状態における降伏強度が5MPa以上9MPa未満であることが好ましいことが分かった。   The separation membrane of the present invention has a yield strength in a wet state of 5 MPa or more and less than 9 MPa. In general, for nanofiltration, it is necessary to apply an external pressure equal to or higher than the osmotic pressure of water to be treated (for example, about 0.04 MPa when the salt concentration of a solution of sodium chloride is 500 ppm), which is practical. In order to obtain the amount of water permeation, it is necessary to apply an external pressure in the range of 0.5 to 1.5 MPa, preferably in the range of 0.5 to 1.5 MPa, considering the membrane characteristics of the formula [I]. As a result of the study by the present inventors, it has been found that there is a correlation between the pressure resistance of the hollow fiber membrane and the yield strength in the tensile direction in a wet state. Generally, in order to use a hollow fiber membrane as a nanofiltration membrane, it is preferable that the yield strength is 3 MPa or more, preferably 5 MPa or more. A hollow fiber membrane having a yield strength less than the above may not be able to withstand the external pressure of nanofiltration. In the hollow fiber membrane made of the polymer of the formula [I], when the yield strength is less than 5 MPa, the yarn shape slightly deforms within the practical external pressure range of the nanofiltration treatment, and the water permeability tends to deteriorate. It is not preferable. Moreover, in order to give pressure resistance of 9 MPa or more, it is necessary to increase the polymer concentration of the spinning dope, but this range is not preferable because the water permeability of the hollow fiber membrane may be lowered. As a result of intensive studies by the present inventors, the yield strength in a wet state is 5 MPa or more in order to use the polymer of formula [I] and operate as a nanofiltration membrane while expressing practical salt removal and water permeability. It has been found that the pressure is preferably less than 9 MPa.

また、膜は薬液に暴露した後も降伏強度が維持されることが望ましい。膜を実際に使用する際には、膜性能を維持するために定期的に薬液で洗浄する必要がある。この時、膜が薬液に暴露した後も、耐圧性能や塩除去性能の低下が小さいほうが好ましい。本発明のナノろ過膜は、医薬プロセスの脱塩工程、農薬や低分子量物質の除去など浄水用途、果汁や菌類生産物質の濃縮、2段階RO処理の後段(ホウ素除去)やROの前処理(スケールの原因となる2価イオン除去)用途での使用を想定していることから、膜の塩除去性能の低下がほとんど見られず、膜の強度保持率が80%以上、好ましくは90%以上、より好ましくは95%以上であることが好ましい。強度保持率がこれらより小さくなると、中空糸膜がナノろ過の運転外圧に耐えられなくなり、糸形状が変化し、透水性や塩除去性が悪化する可能性がある。本発明者らは、式[I]のポリマーからなる中空糸膜を用いて耐塩素性、および耐アルカリ性について調査した。その結果、遊離塩素濃度100ppm、pH7、約20℃に調整した塩素液を用いて膜を浸漬させた場合、および、pH10、40℃に調整したアルカリ液を用いて膜を浸漬させた場合の両方において、12週間を経過しても塩除去性能がほとんど変化せず、降伏強度保持率が98%以上となることが分かった。なお、降伏強度の保持率とは次の通りである。
降伏強度保持率(%)=(浸漬前の中空糸膜の降伏強度[MPa]/浸漬後の中空糸膜の降伏強度[MPa])×100
Moreover, it is desirable that the yield strength is maintained even after the film is exposed to the chemical solution. When the membrane is actually used, it is necessary to periodically clean it with a chemical solution in order to maintain the membrane performance. At this time, it is preferable that the decrease in pressure resistance and salt removal performance is small even after the membrane is exposed to the chemical solution. The nanofiltration membrane of the present invention is used for water purification such as desalination of pharmaceutical processes, removal of agricultural chemicals and low molecular weight substances, concentration of fruit juice and fungal product, 2 stage RO treatment (boron removal) and RO pretreatment ( (Removal of divalent ions causing scale) Since it is assumed to be used in applications, there is almost no decrease in the salt removal performance of the membrane, and the strength retention of the membrane is 80% or more, preferably 90% or more More preferably, it is 95% or more. When the strength retention is smaller than these, the hollow fiber membrane cannot withstand the operation pressure outside the nanofiltration, the shape of the yarn changes, and the water permeability and salt removability may deteriorate. The present inventors investigated about chlorine resistance and alkali resistance using the hollow fiber membrane which consists of a polymer of a formula [I]. As a result, both when the membrane was immersed using a chlorine solution adjusted to a free chlorine concentration of 100 ppm, pH 7, and about 20 ° C., and when the membrane was immersed using an alkaline solution adjusted to pH 10 and 40 ° C. , The salt removal performance hardly changed even after 12 weeks, and the yield strength retention was found to be 98% or more. The yield strength retention rate is as follows.
Yield strength retention (%) = (yield strength of hollow fiber membrane before immersion [MPa] / yield strength of hollow fiber membrane after immersion [MPa]) × 100

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で測定された特性値の測定は、以下の方法に従った。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measurement of the characteristic value measured in the Example followed the following method.

(1)対数粘度
ポリマー粉末を0.5g/dlの濃度でN−メチル−2−ピロリドンに溶解し、30℃の恒温槽中でウベローデ型粘度計を用いて粘度測定を行い、対数粘度ln[ta/tb]/c)で評価した(taは試料溶液の落下秒数、tbは溶媒のみの落下秒数、cはポリマー濃度)。
(1) Logarithmic viscosity The polymer powder was dissolved in N-methyl-2-pyrrolidone at a concentration of 0.5 g / dl, and the viscosity was measured using a Ubbelohde viscometer in a constant temperature bath at 30 ° C. (ta / tb] / c) (ta is the number of seconds that the sample solution falls, tb is the number of seconds that the solvent is dropped, and c is the polymer concentration).

(2)スルホン酸基含有量
窒素雰囲気下で一晩乾燥した試料の重量をはかり、水酸化ナトリウム水溶液と攪拌処理した後、塩酸水溶液による逆滴定を行うことでイオン交換容量(IEC)を求めた。
(2) Sulfonic acid group content The sample dried overnight under a nitrogen atmosphere was weighed, stirred with an aqueous sodium hydroxide solution, and then back titrated with an aqueous hydrochloric acid solution to determine the ion exchange capacity (IEC). .

(3)式[I]のn
予め100℃に調整した真空乾燥器で1晩乾燥させたポリマー20mgを、ナカライテスク社の重水素化DMSO(DMSO−D6)1mLに溶解させた高分子溶液を用いて、BRUKER AVANCE500(周波数500.13MHz、温度30℃、FT積算32回)でプロトンNMRを測定した。得られたスペクトルチャートにおいて、下記に示した式[I]の芳香環上のプロトンaおよびbに相当するスペクトルピークは独立しており、これらの積分強度の比は下記式の通りになる。
積分強度a:積分強度b=n:(100−n)
式[I]に、nを評価するための芳香環上のプロトンa、bを示した。
(3) n in formula [I]
A polymer solution prepared by dissolving 20 mg of a polymer dried overnight in a vacuum drier previously adjusted to 100 ° C. in 1 mL of deuterated DMSO (DMSO-D6) manufactured by Nacalai Tesque Co., Ltd. was used. Proton NMR was measured at 13 MHz, temperature 30 ° C., and FT integration 32 times. In the obtained spectrum chart, spectral peaks corresponding to protons a and b on the aromatic ring of the formula [I] shown below are independent, and the ratio of these integrated intensities is as shown in the following formula.
Integral intensity a: Integral intensity b = n: (100−n)
In Formula [I], protons a and b on the aromatic ring for evaluating n are shown.

(4)水分率
湿潤状態の中空糸を約1g電子天秤で秤りとり、予め100℃に調整した真空乾燥機で1晩真空乾燥させた。乾燥後の中空糸膜を電子天秤で秤量し、以下の式を用いて水分率を算出した。
水分率(%)=(乾燥後の中空糸膜の重量[wt%]/乾燥前の中空糸膜の重量[wt%])×100
(4) Moisture content About 1 g of wet hollow fiber was weighed with an electronic balance, and dried in a vacuum dryer overnight adjusted to 100 ° C. overnight. The dried hollow fiber membrane was weighed with an electronic balance, and the moisture content was calculated using the following equation.
Moisture content (%) = (weight of hollow fiber membrane after drying [wt%] / weight of hollow fiber membrane before drying [wt%]) × 100

(5)ケミカルシフト
予め、室温下(25℃)10分間蒸留水に浸漬させておいた中空糸膜試料を長さ5cm程度に切りとり、直径3mmのガラス製キャピラリー管に該試料を4本挿入した。この時の試料の水分率は凡そ300〜400重量%であった。該キャピラリー管を直径5mmのNMRチューブに挿入し、BRUKER社製 AVANCE500(共鳴周波数500.13MHz、温度30℃、FT積算16回、待ち時間21秒)でプロトンNMR測定を行った。(予め、重水(DO)でシム調整を行った。)
図1は、プロトンNMRスペクトルチャートの一例を表す。観察される2本のスペクトルピークのうち、低磁場側に出現するスペクトルピークをバルク水由来のものとし、このケミカルシフトのピークトップを5.24ppmに合わせて基準とした。そして、高磁場側に現れる束縛水由来のスペクトルピークのピークトップのケミカルシフト、およびそれらの距離を確認した。なお、ケミカルシフトの値の読みは全てスペクトルピークのピークトップの値を読んだ。
(5) Chemical shift A hollow fiber membrane sample previously immersed in distilled water for 10 minutes at room temperature (25 ° C.) was cut to a length of about 5 cm, and four samples were inserted into a glass capillary tube having a diameter of 3 mm. . The moisture content of the sample at this time was about 300 to 400% by weight. The capillary tube was inserted into an NMR tube having a diameter of 5 mm, and proton NMR measurement was performed with an AVANCE 500 manufactured by BRUKER (resonance frequency 500.13 MHz, temperature 30 ° C., FT integration 16 times, waiting time 21 seconds). (The shim was adjusted beforehand with heavy water (D 2 O).)
FIG. 1 shows an example of a proton NMR spectrum chart. Of the two observed spectral peaks, the spectral peak appearing on the low magnetic field side was derived from bulk water, and the peak top of this chemical shift was adjusted to 5.24 ppm as a reference. And the chemical shift of the peak top of the spectrum peak derived from the bound water which appears on the high magnetic field side, and those distances were confirmed. All chemical shift values were read from the peak top value of the spectrum peak.

(5)細孔観察
中空糸膜を液体窒素へ浸漬して凍結させ、中空糸膜断面および中空糸膜の表面をSEM観察用試料台に両面テープで固定した。これら試料に白金コーティングを行い、日立製作所製の走査型電子顕微鏡(S−800)を用いて倍率1万倍で観察した。この際、中空糸膜の外周部から1μm以内の膜厚部分において10nm以上の直径の細孔の有無を確認した。
(5) Observation of pores The hollow fiber membrane was immersed in liquid nitrogen and frozen, and the cross section of the hollow fiber membrane and the surface of the hollow fiber membrane were fixed to a sample stage for SEM observation with a double-sided tape. These samples were coated with platinum and observed at a magnification of 10,000 using a scanning electron microscope (S-800) manufactured by Hitachi. At this time, the presence or absence of pores having a diameter of 10 nm or more was confirmed in the film thickness portion within 1 μm from the outer peripheral portion of the hollow fiber membrane.

(6)結晶化ピーク
予め60℃の真空乾燥機で乾燥させた中空糸膜試料を用い、TA instruments製 示差走査熱量分析計(DSC Q100)を用いて、窒素下、変調温度条件として周期60秒、振幅±0.796℃、温度範囲20℃から250℃として5℃/分の昇温速度で昇温させた。測定の結果得られた非可逆成分(non reverse heat flow)から、結晶化に由来する発熱ピークの有無を確認した。
(6) Crystallization peak A hollow fiber membrane sample previously dried in a vacuum dryer at 60 ° C was used, and a differential scanning calorimeter (DSC Q100) manufactured by TA instruments was used as a modulation temperature condition under nitrogen for a period of 60 seconds. The temperature was raised at a rate of 5 ° C./min with an amplitude of ± 0.796 ° C. and a temperature range of 20 ° C. to 250 ° C. From the irreversible component obtained as a result of the measurement, the presence or absence of an exothermic peak derived from crystallization was confirmed.

(7)中空糸膜の外径・内径
3mmφの孔を空けた2mm厚のSUS小板を用い、孔に適量の湿潤中空糸膜を詰めてカットすることで、中空糸膜の断面を露出させたサンプルホルダーを作成した。これをNikon製顕微鏡(ECLIPSE LV100)のステージに設置した後、Nikon製 画像処理装置(DIGITAL SIGHT DS−U2)およびCCDカメラ(DS−Ri1)を起動させた。画像解析ソフトとしてNIS Element D3.00 SP6を用い、画面に映る中空糸膜断面の外径および内径を、該解析ソフトの計測機能を用いて測定することで中空糸膜の外径および内径を算出した。
(7) Outer diameter / inner diameter of hollow fiber membrane Using a 2 mm thick SUS platelet with a 3 mmφ hole, the hole is filled with an appropriate amount of wet hollow fiber membrane and cut to expose the cross section of the hollow fiber membrane. A sample holder was created. This was placed on the stage of a Nikon microscope (ECLIPSE LV100), and then a Nikon image processing apparatus (DIGITAL SIGN DS-U2) and a CCD camera (DS-Ri1) were activated. Using NIS Element D3.00 SP6 as image analysis software, calculate the outer diameter and inner diameter of the hollow fiber membrane by measuring the outer diameter and inner diameter of the cross section of the hollow fiber membrane displayed on the screen using the measurement function of the analysis software. did.

(8)降伏強度
島津製作所製 SHIMADZU AGS−J 1kNを用い、湿潤状態の中空糸膜の引張試験を行った。ロードセルは50Nとし、糸の固定および引っ張りには平チャックを用いた。チャックの初期のつかみ間距離は50mm、平チャックへの糸掛け時の糸への加重は0.03Nとしてセットした。糸の引っ張り速度は50mm/分とした。測定データは解析ソフト(TRAPEZIUM X ver.1.0.2.SP)を用いて、応力(MPa)、伸度(%)、および降伏強度(MPa)を算出した。
(8) Yield strength A tensile test of a wet hollow fiber membrane was performed using SHIMADZU AGS-J 1 kN manufactured by Shimadzu Corporation. The load cell was 50 N, and a flat chuck was used for fixing and pulling the yarn. The initial gripping distance between the chucks was set to 50 mm, and the weight applied to the yarn when threading the flat chuck was set to 0.03N. The yarn pulling speed was 50 mm / min. For the measurement data, stress (MPa), elongation (%), and yield strength (MPa) were calculated using analysis software (TRAPEZIUM X ver. 1.0.2.SP).

(9)降伏強度保持率(耐塩素、耐アルカリ)
ナカライテスク社の次亜塩素酸ナトリウム溶液を蒸留水で薄めて遊離塩素濃度100ppmとし、さらに同社の1N塩酸を用いてpH7に調整した塩素液を調製した。また、同社の1N水酸化ナトリウム水溶液を蒸留水で薄めてpH10のアルカリ液を調製した。これらに長さ20cmの20本束とした中空糸膜を浸漬した。塩素水溶液の温度は室温(約20℃)とし、アルカリ液の温度は40℃とした。遊離塩素濃度およびpHを一定に保ちながら12週間浸漬させた後、上述の降伏強度の測定と同じ方法で浸漬糸の降伏強度を測定した。降伏強度の保持率の算出式は次の通りである。
降伏強度保持率(%)=(浸漬前の中空糸膜の降伏強度[MPa]/浸漬後の中空糸膜の降伏強度[MPa])×100
(9) Yield strength retention (chlorine resistance, alkali resistance)
A sodium hypochlorite solution of Nacalai Tesque was diluted with distilled water to a free chlorine concentration of 100 ppm, and a chlorine solution adjusted to pH 7 using 1N hydrochloric acid of the company was prepared. In addition, an alkaline solution having a pH of 10 was prepared by diluting the 1N sodium hydroxide aqueous solution of the company with distilled water. A hollow fiber membrane having 20 bundles each having a length of 20 cm was immersed in these. The temperature of the aqueous chlorine solution was room temperature (about 20 ° C.), and the temperature of the alkaline solution was 40 ° C. After soaking for 12 weeks while keeping the free chlorine concentration and pH constant, the yield strength of the soaked yarn was measured by the same method as the above-described measurement of the yield strength. The formula for calculating the yield strength retention rate is as follows.
Yield strength retention (%) = (yield strength of hollow fiber membrane before immersion [MPa] / yield strength of hollow fiber membrane after immersion [MPa]) × 100

(10)透水量
中空糸膜を束ねて、プラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた中空糸膜の端部を切断することで中空糸膜の開口面を得て、外径基準の膜面積がおよそ0.025mの評価用モジュールを作製した。この評価用モジュールを供給水タンク、ポンプからなる膜性能試験装置に接続し、性能評価した。
塩化ナトリウム濃度500mg/Lの供給水溶液を、25℃、圧力1.0MPaで中空糸膜の外側から内側へ向かって濾過して装置をおよそ1時間運転する。その後、中空糸膜の開口面より膜透過水を採取して、電子天秤(島津製作所 LIBROR EB−3200D)で透過水重量を測定した。透過水重量は、下記式で25℃での透過水量に換算した。
透過水量(L)=透過水重量(kg)/0.99704(kg/L)
透水量(FR)は下記式より算出する。
FR[L/m/日]=透過水量[L]/外径基準膜面積[m]/採取時間[分]×(60[分]×24[時間])
(10) Water permeability After hollow fiber membranes were bundled and inserted into a plastic sleeve, a thermosetting resin was poured into the sleeve, cured and sealed. The end portion of the hollow fiber membrane cured with the thermosetting resin was cut to obtain an opening surface of the hollow fiber membrane, and an evaluation module having an outer diameter reference membrane area of approximately 0.025 m 2 was produced. This evaluation module was connected to a membrane performance testing device consisting of a feed water tank and a pump, and the performance was evaluated.
The supply aqueous solution having a sodium chloride concentration of 500 mg / L is filtered from the outside to the inside of the hollow fiber membrane at 25 ° C. and a pressure of 1.0 MPa, and the apparatus is operated for about 1 hour. Thereafter, the membrane permeate was collected from the opening surface of the hollow fiber membrane, and the weight of the permeate was measured with an electronic balance (Shimadzu Corporation LIBBROR EB-3200D). The permeated water weight was converted to the permeated water amount at 25 ° C. by the following formula.
Permeated water amount (L) = Permeated water weight (kg) /0.99704 (kg / L)
The water permeability (FR) is calculated from the following formula.
FR [L / m 2 / day] = permeated water amount [L] / outer diameter reference membrane area [m 2 ] / collection time [min] × (60 [min] × 24 [hour])

(11)塩除去率
前記透水量測定で採取した膜透過水と、同じく透水量の測定で使用した塩化ナトリウム濃度500mg/L供給水溶液から電気伝導率計(東亜ディーケーケー社CM−25R)を用いて塩化ナトリウム濃度を測定した。
塩除去率は下記式より算出する。
塩除去率[%]=(1−膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
(11) Salt removal rate Using a conductivity meter (Toa DKK Corporation CM-25R) from the membrane permeate collected in the water permeation measurement and a sodium chloride concentration 500 mg / L aqueous solution used in the same water permeation measurement. Sodium chloride concentration was measured.
The salt removal rate is calculated from the following formula.
Salt removal rate [%] = (1-membrane permeated water salt concentration [mg / L] / feed aqueous solution salt concentration [mg / L]) × 100

(実施例1)
3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩(略号:S−DCDPS)11.5mol%、2,6−ジクロロベンゾニトリル(略号:DCBN)38.5mol%、4,4’−ビフェノール50mol%を重合して得たスルホン化ポリアリールエーテルスルホン系ポリマー(略号:SPN−23)を、予め110℃12時間乾燥させた後で66重量部量りとり、続いてN−メチル−2−ピロリドン(略号:NMP)123.2重量部、エチレングリコール(略号;EG)30.8重量部をセパラブルフラスコに投入し、170℃で3時間撹拌することで均一なポリマー濃度30重量%のポリマー溶液を得た。
このポリマー溶液を紡糸原料(ドープ)とし、プランジャー型押出機能を有する紡糸装置に仕込んだ。ドープを150℃に保ちチューブインオリフィス型ノズルまで送液させ、スリット幅100ミクロン(外径400ミクロン、内径200ミクロン)のドープ吐出孔から0.24g/分の速度で吐出させた。内液はEGを用い、ギアポンプで0.12g/分の速度で送液し、110ミクロンの内液吐出孔から吐出させた。エアギャップ長を20mmとし、純水からなる凝固浴に浸漬させた。凝固した中空糸膜を紡糸速度15m/分で引き取り、かせまき機またはワインダーで巻き取った。さらに、得られた中空糸膜サンプルを、さらに濃度4.5重量%の塩水に浸漬させ、温度98℃、時間20分の条件でアニール処理を行った。膜の詳細と評価結果を表1に示す。
Example 1
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 11.5 mol%, 2,6-dichlorobenzonitrile (abbreviation: DCBN) 38.5 mol%, 4,4 A sulfonated polyarylethersulfone-based polymer (abbreviation: SPN-23) obtained by polymerizing 50 mol% of -biphenol was dried in advance at 110 ° C. for 12 hours, and then weighed 66 parts by weight, followed by N-methyl- 2-Pyrrolidone (abbreviation: NMP) 123.2 parts by weight and ethylene glycol (abbreviation: EG) 30.8 parts by weight were charged into a separable flask and stirred at 170 ° C. for 3 hours to obtain a uniform polymer concentration of 30% by weight. A polymer solution was obtained.
This polymer solution was used as a spinning raw material (dope) and charged into a spinning device having a plunger-type extrusion function. The dope was kept at 150 ° C. and fed to a tube-in-orifice nozzle, and discharged from a dope discharge hole having a slit width of 100 microns (outer diameter 400 microns, inner diameter 200 microns) at a rate of 0.24 g / min. EG was used as the internal liquid, and the liquid was fed at a rate of 0.12 g / min with a gear pump, and discharged from a 110 micron internal liquid discharge hole. The air gap length was 20 mm, and it was immersed in a coagulation bath made of pure water. The coagulated hollow fiber membrane was taken up at a spinning speed of 15 m / min and wound up with a skeiner or a winder. Further, the obtained hollow fiber membrane sample was further immersed in a salt water having a concentration of 4.5% by weight, and annealed at a temperature of 98 ° C. for 20 minutes. The details of the membrane and the evaluation results are shown in Table 1.

(実施例2)
実施例1で得た中空糸膜を、10重量%塩化リチウム水溶液に1晩浸漬させることにより、式[I]のスルホン酸基上のカウンターカチオン(X)をリチウムイオンに変化させた。膜の詳細と評価結果を表1に示す。
(Example 2)
By immersing the hollow fiber membrane obtained in Example 1 in a 10 wt% aqueous lithium chloride solution overnight, the counter cation (X) on the sulfonic acid group of the formula [I] was changed to lithium ions. The details of the membrane and the evaluation results are shown in Table 1.

(実施例3)
実施例1で得た中空糸膜を、10重量%塩化カリウム水溶液に1晩浸漬させることにより、式[I]のスルホン酸基上のカウンターカチオン(X)をカリウムイオンに変化させた。膜の詳細と評価結果を表1に示す。
(Example 3)
By immersing the hollow fiber membrane obtained in Example 1 in a 10 wt% aqueous potassium chloride solution overnight, the counter cation (X) on the sulfonic acid group of the formula [I] was changed to potassium ions. The details of the membrane and the evaluation results are shown in Table 1.

(実施例4)
3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩(略号:S−DCDPS)11.5mol%、2,6−ジクロロベンゾニトリル(略号:DCBN)38.5mol%、4,4’−ビフェノール50mol%を重合して得たスルホン化ポリアリールエーテルスルホン系ポリマー(略号:SPN−23)を2N−濃硫酸に24時間浸漬し、その後水洗後の水が中性になるまでポリマーを水洗することにより、スルホン酸基上のカウンターカチオンをプロトンに変換させたSPN−23(X=H型)を用いたこと、および紡糸後のアニール処理に熱水を用いたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
Example 4
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 11.5 mol%, 2,6-dichlorobenzonitrile (abbreviation: DCBN) 38.5 mol%, 4,4 A sulfonated polyarylether sulfone polymer (abbreviation: SPN-23) obtained by polymerizing 50 mol% of biphenol was immersed in 2N concentrated sulfuric acid for 24 hours, and then the polymer was washed until the water after washing became neutral. Example except that SPN-23 (X = H type) in which the counter cation on the sulfonic acid group was converted to proton by washing with water and using hot water for the annealing treatment after spinning were used. A hollow fiber membrane was obtained in the same manner as in 1. The details of the membrane and the evaluation results are shown in Table 1.

(実施例5)
式[I]のnを12とした以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Example 5)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that n in formula [I] was changed to 12. The details of the membrane and the evaluation results are shown in Table 1.

(実施例6)
式[I]のnを45とした以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Example 6)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that n in formula [I] was changed to 45. The details of the membrane and the evaluation results are shown in Table 1.

(実施例7)
ドープの組成において、SPN−23ポリマーを62重量部、NMPを110.4重量部、EGを27.6重量部としたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Example 7)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the composition of the dope was 62 parts by weight of SPN-23 polymer, 110.4 parts by weight of NMP, and 27.6 parts by weight of EG. The details of the membrane and the evaluation results are shown in Table 1.

(実施例8)
ドープの組成において、SPN−23ポリマーを64重量部、NMPを112.9重量部、EGを23.1重量部としたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Example 8)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the dope composition was 64 parts by weight of SPN-23 polymer, 112.9 parts by weight of NMP, and 23.1 parts by weight of EG. The details of the membrane and the evaluation results are shown in Table 1.

(実施例9)
エアギャップ長を10mmとしたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
Example 9
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the air gap length was 10 mm. The details of the membrane and the evaluation results are shown in Table 1.

(実施例10)
エアギャップ長を400mmとしたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Example 10)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the air gap length was 400 mm. The details of the membrane and the evaluation results are shown in Table 1.

(比較例1)
実施例1で作製したポリマーに濃度が34重量%(内、NMP対EGの重量比で87対13の混合溶媒を含有)になるよう溶媒を仕込んで攪拌し、紡糸に適する均一なポリマー溶液を作製した。このポリマー溶液を用いて実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Comparative Example 1)
The polymer prepared in Example 1 was charged with a solvent so that the concentration was 34% by weight (including a mixed solvent of 87:13 in a weight ratio of NMP to EG), and stirred to obtain a uniform polymer solution suitable for spinning. Produced. Using this polymer solution, a hollow fiber membrane was obtained in the same manner as in Example 1. The details of the membrane and the evaluation results are shown in Table 1.

(比較例2)
ドープのポリマー濃度を27.5重量%(内、NMP対EGの重量比で75対25の混合溶媒を含有)とした以外は、実施例1と同様の方法で中空糸膜を得た。得られた中空糸膜は降伏強度が低く、透水性が低下した。膜の詳細と評価結果を表1に示す。
(Comparative Example 2)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the polymer concentration of the dope was changed to 27.5% by weight (including a mixed solvent of 75:25 in a weight ratio of NMP to EG). The obtained hollow fiber membrane had low yield strength and reduced water permeability. The details of the membrane and the evaluation results are shown in Table 1.

(比較例3)
エアギャップ長を3mmとしたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Comparative Example 3)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the air gap length was 3 mm. The details of the membrane and the evaluation results are shown in Table 1.

(比較例4)
エアギャップ長を700mmとし、さらにエアギャップ内の空気を加熱できる管状ヒーターを取り付け、エアギャップの雰囲気温度を100℃としたこと以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Comparative Example 4)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the air gap length was 700 mm, a tubular heater capable of heating the air in the air gap was attached, and the atmospheric temperature of the air gap was 100 ° C. The details of the membrane and the evaluation results are shown in Table 1.

(比較例5)
4,4’−ジクロロジフェニルスルホン2ナトリウム塩(略号:DCDPS)11.5mol%、2,6−ジクロロベンゾニトリル(略号:DCBN)38.5mol%、4,4’−ビフェノール50mol%を重合して得たポリアリールエーテルスルホン系ポリマーを、予め80℃で24時間真空乾燥させた後で66重量部量りとり、続いてN−メチル−2−ピロリドン(略号:NMP)123.2重量部、エチレングリコール(略号;EG)30.8重量部をセパラブルフラスコに投入し、100℃で3時間撹拌することで均一な濃度40重量%のポリマー溶液を得た。このポリマー溶液のドープ温度および紡糸温度を60℃に変更した以外は、実施例1と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Comparative Example 5)
4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: DCDPS) 11.5 mol%, 2,6-dichlorobenzonitrile (abbreviation: DCBN) 38.5 mol%, and 4,4′-biphenol 50 mol% were polymerized. The obtained polyarylethersulfone-based polymer was vacuum-dried at 80 ° C. for 24 hours in advance and then weighed 66 parts by weight, followed by N-methyl-2-pyrrolidone (abbreviation: NMP) 123.2 parts by weight, ethylene glycol (Abbreviation: EG) 30.8 parts by weight were put into a separable flask and stirred at 100 ° C. for 3 hours to obtain a polymer solution having a uniform concentration of 40% by weight. A hollow fiber membrane was obtained in the same manner as in Example 1 except that the dope temperature and spinning temperature of this polymer solution were changed to 60 ° C. The details of the membrane and the evaluation results are shown in Table 1.

(比較例6)
スルホン酸基含有量を下げた(式[I]のn=8.9)ポリマーを使用した以外は、実施例と同様の方法で中空糸膜を得た。膜の詳細と評価結果を表1に示す。
(Comparative Example 6)
A hollow fiber membrane was obtained in the same manner as in Example except that a polymer having a reduced sulfonic acid group content (n = 8.9 in formula [I]) was used. The details of the membrane and the evaluation results are shown in Table 1.

(比較例7)
スルホン酸基含有量を上げた(式[I]のn=52.3)ポリマーを使用したこと以外は、実施例1と同様の方法で紡糸を試みた。結果、凝固浴を通過した中空糸が著しく膨潤し、膜性能の評価に耐える中空糸膜を得ることができなかった。膜の詳細を表1に示す。
(Comparative Example 7)
Spinning was attempted in the same manner as in Example 1 except that a polymer having an increased sulfonic acid group content (n = 52.3 in formula [I]) was used. As a result, the hollow fiber that passed through the coagulation bath swelled significantly, and a hollow fiber membrane that could withstand the evaluation of the membrane performance could not be obtained. Details of the membrane are shown in Table 1.

(比較例8)
三酢酸セルロース(CTA、ダイセル化学工業、LT35)41重量部、NMP49.9重量部、EG8.8重量部、安息香酸0.3重量部を180℃で均一に溶解して製膜原液(ドープ)を得た。得られた製膜原液を減圧下で脱泡した後、アーク型ノズルより163℃で外気と遮断された空間(エアギャップ、AG)中に吐出し、AG通過時間0.03秒を経て、NMP:EG:水=4.25:0.75:95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸膜の洗浄を行い、湿潤状態のまま振り落とした。得られた中空糸膜を60℃の水に浸漬し、40分間アニール処理を行った。膜の詳細と評価結果を表1に示す。
(Comparative Example 8)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41 parts by weight, NMP 49.9 parts by weight, EG 8.8 parts by weight, benzoic acid 0.3 parts by weight uniformly dissolved at 180 ° C. Got. The obtained film-forming stock solution was defoamed under reduced pressure, and then discharged from an arc type nozzle into a space (air gap, AG) that was blocked from outside air at 163 ° C., after passing through an AG passage time of 0.03 seconds, NMP : EG: water = 4.25: 0.75: 95 was immersed in a 12 ° C. coagulation bath. Subsequently, the hollow fiber membrane was washed by a multistage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber membrane was immersed in water at 60 ° C. and annealed for 40 minutes. The details of the membrane and the evaluation results are shown in Table 1.

(比較例9)
無水ピペラジン8.062重量部、4,4’−ジアミノジフェニルスルホン54.23重量部を窒素導入管、温度計、撹拌機を備えた500Lの反応器に窒素気流下で投入した。続いて、反応器中に、酸捕捉剤としてピリジン50重量部、反応溶媒としてN−メチルピロリドン(NMP)470重量部を加え、充分撹拌し均一溶液とした。該溶液を約5℃まで冷却した後、該溶液中にテレフタル酸ジクロリド63.342重量部を投入し、重縮合反応を開始した。冷却下で約30分間、さらに室温下で約30分間撹拌した。反応終了後、反応溶液を1000重量部の水中に投入し、ポリマーを沈澱析出させた。次いで、生成ポリマーの細粉化、純水による純粋物の洗浄を4回繰り返し、ポリマー中の未反応物及び溶媒類の除去をおこなった。最後に、ポリマーの乾燥を約80〜100℃の熱風で約48時間乾燥した。
上記で合成したポリアミド(37重量部)、N,N−ジメチルアセトアミド(57.11量部)、NMP5.79重量部、無水ポリグリセリン(数平均分子量=480,3.7重量部)、塩化カルシウム6水和物(2.75重量部)からなる製膜原液(ドープ)を、アーク(3点ブリッジ)型ノズル(温度:130℃)から吐出し、約10℃の水中に導き、外径約165ミクロン、中空率約30%の中空糸膜を得た。さらに膜中に残留する溶媒およびポリグリセリンの除去を目的として、中空糸膜を水中に一昼夜浸漬させた。膜の詳細と評価結果を表1に示す。
(Comparative Example 9)
8.062 parts by weight of anhydrous piperazine and 54.23 parts by weight of 4,4′-diaminodiphenylsulfone were charged into a 500 L reactor equipped with a nitrogen introduction tube, a thermometer and a stirrer under a nitrogen stream. Subsequently, 50 parts by weight of pyridine as an acid scavenger and 470 parts by weight of N-methylpyrrolidone (NMP) as a reaction solvent were added to the reactor and sufficiently stirred to obtain a homogeneous solution. After cooling the solution to about 5 ° C., 63.342 parts by weight of terephthalic acid dichloride was added to the solution to start a polycondensation reaction. The mixture was stirred for about 30 minutes under cooling and about 30 minutes at room temperature. After completion of the reaction, the reaction solution was poured into 1000 parts by weight of water to precipitate the polymer. Subsequently, the fineness of the produced polymer and washing of the pure product with pure water were repeated four times to remove unreacted substances and solvents in the polymer. Finally, the polymer was dried with hot air at about 80-100 ° C. for about 48 hours.
Polyamide (37 parts by weight) synthesized above, N, N-dimethylacetamide (57.11 parts by weight), 5.79 parts by weight of NMP, anhydrous polyglycerol (number average molecular weight = 480, 3.7 parts by weight), calcium chloride A film-forming stock solution (dope) composed of hexahydrate (2.75 parts by weight) is discharged from an arc (three-point bridge) type nozzle (temperature: 130 ° C.) and guided into water at about 10 ° C. A hollow fiber membrane of 165 microns and a hollow rate of about 30% was obtained. Further, for the purpose of removing the solvent and polyglycerin remaining in the membrane, the hollow fiber membrane was immersed in water all day and night. The details of the membrane and the evaluation results are shown in Table 1.

実施例1〜10、比較例1〜9の膜の詳細と評価結果を表1に示す。
Table 1 shows details and evaluation results of the films of Examples 1 to 10 and Comparative Examples 1 to 9.

表1の結果から明らかなように、実施例1〜10はナノろ過処理に適する圧力1.0MPaにおける塩除去性と透水量が十分に実用レベルを満たしている。比較例1では、製膜原液のポリマー濃度が高いため、中空糸膜中のポリマー密度を全体的に上昇させた結果、塩除去性は上昇するが透水性が低下した。比較例2は、製膜原液のポリマー濃度を下げたことで評価時の外圧に耐えられず、塩除去性や透水量が低下してしまいナノろ過処理の用途に向かない。比較例3では、エアギャップを3mmまで短くして紡糸を行ったが、中空糸膜の糸径が安定せず、性能もバラツキのあるものとなった。比較例4では、エアギャップを700mmとして、かつエアギャップ内の雰囲気温度を100℃としたが、塩除去性能および透水性の著しい低下が見られた。比較例5では、スルホン化をしていないポリアリールエーテルスルホンからなる中空糸膜を用いたが、膜中の細孔径が大きくなり塩除去性が発現しなかった。比較例6では、式[I]のnを本発明の範囲の下限外にしたところ、透水性は上昇したが塩除去性が著しく劣る結果となった。比較例7では、式[I]のnを本発明の範囲の上限外にしたところ、安定して評価可能な中空糸を得ることが困難であった。比較例8では、三酢酸セルロースを用いて中空糸膜を用いたところ、耐アルカリ性に関する降伏強度保持率が低下しており、耐アルカリ性に劣る結果となった。比較例9は、ポリアミドからなる中空糸膜を用いたが、耐塩素性に関する降伏強度保持率が著しく低下しており、耐塩素性に劣る結果となった。   As is clear from the results in Table 1, in Examples 1 to 10, the salt removability and water permeability at a pressure of 1.0 MPa suitable for nanofiltration treatment sufficiently satisfy the practical level. In Comparative Example 1, since the polymer concentration of the membrane forming stock solution was high, the polymer density in the hollow fiber membrane was increased as a whole. As a result, the salt removability increased but the water permeability decreased. Comparative Example 2 cannot withstand the external pressure at the time of evaluation due to lowering of the polymer concentration of the membrane-forming stock solution, and salt removal and water permeability are reduced, which is not suitable for nanofiltration treatment. In Comparative Example 3, spinning was performed with the air gap shortened to 3 mm. However, the yarn diameter of the hollow fiber membrane was not stable, and the performance also varied. In Comparative Example 4, although the air gap was 700 mm and the atmospheric temperature in the air gap was 100 ° C., the salt removal performance and water permeability were markedly reduced. In Comparative Example 5, a hollow fiber membrane made of non-sulfonated polyarylethersulfone was used, but the pore diameter in the membrane was large and salt removability was not exhibited. In Comparative Example 6, when n in the formula [I] was outside the lower limit of the range of the present invention, the water permeability increased, but the salt removability was remarkably inferior. In Comparative Example 7, when n in the formula [I] was outside the upper limit of the range of the present invention, it was difficult to obtain a hollow fiber that could be evaluated stably. In Comparative Example 8, when a hollow fiber membrane was used using cellulose triacetate, the yield strength retention rate related to alkali resistance was lowered, resulting in inferior alkali resistance. Although the comparative example 9 used the hollow fiber membrane which consists of polyamides, the yield strength retention rate regarding chlorine resistance fell remarkably, and it resulted in inferior to chlorine resistance.

本発明の分離膜は、耐薬品性に優れる素材を使用しながら、塩除去性と透水性を高いレベルで両立しているので、ナノろ過の処理に極めて有用である。   The separation membrane of the present invention is extremely useful for nanofiltration treatment because it has a high level of both salt removal and water permeability while using a material excellent in chemical resistance.

Claims (7)

下記一般式[I]で表される構成成分を含むスルホン化ポリアリーレンエーテルスルホンポリマーからなる分離膜であって、含水状態の前記分離膜を用いて膜中の水分子を測定したプロトン核磁気共鳴スペクトルにおいて、束縛水由来のスペクトルピークトップのケミカルシフトA(ppm)とバルク水由来のスペクトルピークトップのケミカルシフトB(ppm)との関係がB−0.30≦A<B−0.14を満たすことを特徴とするナノろ過用の分離膜。
式中、XはHまたは1価のカチオン種であり、nは10以上50以下の整数である。
Proton nuclear magnetic resonance comprising a separation membrane comprising a sulfonated polyarylene ether sulfone polymer containing a component represented by the following general formula [I], wherein water molecules in the membrane were measured using the separation membrane in a water-containing state In the spectrum, the relationship between the chemical shift A (ppm) of the spectral peak top derived from bound water and the chemical shift B (ppm) of the spectral peak top derived from bulk water satisfies B−0.30 ≦ A <B−0.14. A separation membrane for nanofiltration characterized by filling.
In the formula, X is H or a monovalent cation species, and n is an integer of 10 to 50.
スルホン化ポリアリーレンエーテルスルホンポリマーの対数粘度が1.0〜2.3dL/gであることを特徴とする請求項1に記載の分離膜。   The separation membrane according to claim 1, wherein the sulfonated polyarylene ether sulfone polymer has a logarithmic viscosity of 1.0 to 2.3 dL / g. スルホン化ポリアリーレンエーテルスルホンポリマーのスルホン酸基含有量が0.5〜2.3meq/gであることを特徴とする請求項1または2に記載の分離膜。   The separation membrane according to claim 1 or 2, wherein the sulfonated polyarylene ether sulfone polymer has a sulfonic acid group content of 0.5 to 2.3 meq / g. 示差走査熱量分析法による観察において、結晶化ピークが見られないことを特徴とする請求項1〜3のいずれかに記載の分離膜。   The separation membrane according to any one of claims 1 to 3, wherein no crystallization peak is observed in observation by differential scanning calorimetry. 分離膜が内径70〜100μm、外径140〜175μmの中空糸膜であることを特徴とする請求項1〜4のいずれかに記載の分離膜。   The separation membrane according to any one of claims 1 to 4, wherein the separation membrane is a hollow fiber membrane having an inner diameter of 70 to 100 µm and an outer diameter of 140 to 175 µm. 中空糸膜の外周部から1μm以内の膜厚部分において10nm以上の直径の細孔が観察されないことを特徴とする請求項5に記載の分離膜。   6. The separation membrane according to claim 5, wherein pores having a diameter of 10 nm or more are not observed in a film thickness portion within 1 μm from the outer peripheral portion of the hollow fiber membrane. 湿潤状態における降伏強度が5MPa以上9MPa未満であることを特徴とする請求項5または6に記載の分離膜。   The separation membrane according to claim 5 or 6, wherein the yield strength in a wet state is 5 MPa or more and less than 9 MPa.
JP2012139549A 2011-07-04 2012-06-21 Separation membrane for nanofiltration Active JP5896295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139549A JP5896295B2 (en) 2011-07-04 2012-06-21 Separation membrane for nanofiltration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011148168 2011-07-04
JP2011148168 2011-07-04
JP2012139549A JP5896295B2 (en) 2011-07-04 2012-06-21 Separation membrane for nanofiltration

Publications (2)

Publication Number Publication Date
JP2013031836A JP2013031836A (en) 2013-02-14
JP5896295B2 true JP5896295B2 (en) 2016-03-30

Family

ID=47788185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139549A Active JP5896295B2 (en) 2011-07-04 2012-06-21 Separation membrane for nanofiltration

Country Status (1)

Country Link
JP (1) JP5896295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254102B2 (en) 2019-01-15 2023-04-07 株式会社日立ハイテク Electromagnetic field shielding plate, manufacturing method thereof, electromagnetic field shielding structure, and semiconductor manufacturing environment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211509B2 (en) * 2011-07-04 2015-12-15 Toyobo Co., Ltd. Reverse osmosis membrane for wastewater treatment
WO2014054346A1 (en) 2012-10-04 2014-04-10 東洋紡株式会社 Composite separation membrane
WO2014092107A1 (en) * 2012-12-11 2014-06-19 東洋紡株式会社 Composite separation membrane
CA2963623C (en) * 2014-10-07 2021-12-28 Toyobo Co., Ltd. Polymer separation membrane having a layer of variable density
WO2019189548A1 (en) * 2018-03-29 2019-10-03 三井化学株式会社 Method for producing solution having reduced solute concentration
JP6944044B2 (en) * 2018-03-29 2021-10-06 三井化学株式会社 Forward osmosis membrane and its uses
JP2021159784A (en) 2020-03-30 2021-10-11 東洋紡株式会社 Polyphenylene-based semi-permeable membrane and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617471B2 (en) * 1985-09-30 1994-03-09 日東電工株式会社 Sulfonated polyaryl ether polymer and method for producing the same
JPS62117811A (en) * 1985-11-13 1987-05-29 Mitsubishi Rayon Co Ltd Production of conjugated hollow fiber membrane
JP2000300972A (en) * 1999-04-19 2000-10-31 Toyobo Co Ltd Manufacture of composite hollow fiber membrane, composite hollow fiber membrane manufacturing device, and composite hollow fiber membrane
JP2005235404A (en) * 2004-02-17 2005-09-02 Toyobo Co Ltd Blend ion exchange membrane, membrane/electrode joining body, and fuel cell
DE102006036496A1 (en) * 2006-07-28 2008-02-07 Leibniz-Institut Für Polymerforschung Dresden E.V. Sulfonated polyaryl compounds, membrane material therefrom, process for their preparation and use
JP5109092B2 (en) * 2008-12-19 2012-12-26 東洋紡株式会社 Hollow fiber membrane spinning method and hollow fiber membrane
US9211509B2 (en) * 2011-07-04 2015-12-15 Toyobo Co., Ltd. Reverse osmosis membrane for wastewater treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254102B2 (en) 2019-01-15 2023-04-07 株式会社日立ハイテク Electromagnetic field shielding plate, manufacturing method thereof, electromagnetic field shielding structure, and semiconductor manufacturing environment

Also Published As

Publication number Publication date
JP2013031836A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5252333B1 (en) Reverse osmosis membrane for wastewater treatment
JP5896295B2 (en) Separation membrane for nanofiltration
KR101928256B1 (en) Composite semipermeable membrane and process for production thereof
JP5896294B2 (en) Reverse osmosis membrane for brine desalination
Dalwani et al. Sulfonated poly (ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media
Lau et al. Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK
JP5370871B2 (en) Hollow fiber type reverse osmosis membrane
JP6256705B2 (en) Composite separation membrane
Shi et al. Solvent activation before heat-treatment for improving reverse osmosis membrane performance
JP2013022588A (en) Separation membrane, manufacturing method of the same and water treatment apparatus including separation membrane
Guan et al. Preparation and properties of novel sulfonated copoly (phthalazinone biphenyl ether sulfone) composite nanofiltration membrane
JP2013223852A (en) Reverse osmosis membrane for saline water conversion
JP6544245B2 (en) Composite semipermeable membrane
Gao et al. Rapid in-situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration
KR101415046B1 (en) Meta aramid base hollow fiber membrane having improved thermal resistance and water permeability and preparing method of the same
JP6620754B2 (en) Separation membrane and separation membrane element and separation membrane module
JP6273982B2 (en) Hollow fiber membrane, method for producing the same, and module using the same
EP3053641B1 (en) Water-treatment separation membrane comprising ionic exchange polymer layer and method for forming same
Yan et al. Side grafting tertiary amine in polyaryl ether sulfone membranes for reversible-multiple separations
CN113195081A (en) Porous membranes for high pressure filtration
JP2021041313A (en) Hollow fiber membrane
WO2020127454A1 (en) Porous membranes for high pressure filtration
JP2014144438A (en) Asymmetric semipermeable membrane, production method of the same and water production method using the same
KR20130011987A (en) Membrane, method for manufacturing the same and water treatment device including the same
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160218

R151 Written notification of patent or utility model registration

Ref document number: 5896295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350