WO2024100935A1 - Input device and input method - Google Patents

Input device and input method Download PDF

Info

Publication number
WO2024100935A1
WO2024100935A1 PCT/JP2023/026902 JP2023026902W WO2024100935A1 WO 2024100935 A1 WO2024100935 A1 WO 2024100935A1 JP 2023026902 W JP2023026902 W JP 2023026902W WO 2024100935 A1 WO2024100935 A1 WO 2024100935A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
user
gaze position
gaze
processor
Prior art date
Application number
PCT/JP2023/026902
Other languages
French (fr)
Japanese (ja)
Inventor
匡夫 濱田
毅 吉原
智広 森川
要介 田中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024100935A1 publication Critical patent/WO2024100935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry

Definitions

  • This disclosure relates to an input device and an input method.
  • Patent Document 1 discloses an information processing device that acquires a history of information indicating the correspondence between the position of a user's gaze point and the position of an index indicating an operation position operated by the user, detects the user's gaze point, and controls the display position of the index based on the acquired history of information indicating the correspondence so that the index is displayed at a position corresponding to the detected current position of the gaze point.
  • the gaze point calibration process requires the accumulation of information indicating the correspondence between the gaze point position and the operation position. Therefore, in an environment where information indicating the correspondence cannot be accumulated for each user, such as an Automatic Teller Machine (ATM) used outside the home, the information processing device may not be able to perform sufficient calibration, which may result in an error in the operation position, making it difficult to perform input operations based on the gaze position.
  • ATM Automatic Teller Machine
  • the present disclosure has been devised in consideration of the above-mentioned conventional situation, and aims to provide an input device and input method that make it more efficient to calibrate the gaze position in gaze input.
  • the present disclosure provides an input device capable of accepting an input operation based on a user's gaze position, the input device comprising: a display unit that displays an input screen capable of accepting the input operation; a camera that images the user; a calculation unit that calculates a correction parameter for calibrating the gaze position of the first user with respect to the input screen based on the gaze position of the first user shown in a first captured image; and a processor that detects the gaze position of a second user shown in a second captured image taken after calculating the correction parameter, calibrates the gaze position of the second user using the correction parameter, and accepts the input operation with respect to the input screen based on the calibrated gaze position of the second user.
  • the present disclosure also provides an input method performed by an input device capable of accepting an input operation based on a user's gaze position, the input method including: displaying an input screen capable of accepting the input operation; acquiring a first captured image of the user; calculating a correction parameter for calibrating the gaze position of the first user with respect to the input screen based on the gaze position of the first user shown in the first captured image; acquiring a second captured image of the user; calibrating the gaze position of a second user shown in the second captured image using the correction parameter; and accepting the input operation with respect to the input screen based on the calibrated gaze position of the second user.
  • the present disclosure also provides an input device capable of accepting an input operation based on a user's gaze position, the input device including a processor that detects the gaze position of a first user shown in a first captured image captured by a camera and the gaze position of a second user shown in a second captured image captured by the camera, and accepts the input operation on an input screen capable of accepting the input operation based on the gaze position of the first user and the gaze position of the second user.
  • This disclosure makes it possible to more efficiently calibrate gaze position during gaze input.
  • FIG. 1 is a block diagram showing an example of an internal configuration of a gaze input device according to a first embodiment;
  • FIG. 1 is a diagram for explaining an example of an operation procedure of the eye-gaze input device according to the first embodiment;
  • FIG. 1 is a diagram for explaining an example of an operation procedure of the eye-gaze input device according to the first embodiment;
  • FIG. 1 is a diagram for explaining an example of a method for calibrating a gaze position.
  • FIG. 1 is a diagram for explaining a method for calculating the movement direction of the gaze position.
  • FIG. 13 is a diagram showing an example of an angle at which an eye-gaze input operation can be accepted based on the moving direction of the eye-gaze position;
  • FIG. 1 is a diagram for explaining an example of a dead region.
  • FIG. 11 is a diagram for explaining a first example of an eye-gaze input operation procedure.
  • FIG. 11 is a diagram for explaining a first example of an eye-gaze input operation procedure.
  • FIG. 11 is a diagram for explaining a second example of an eye-gaze input operation procedure.
  • FIG. 11 is a diagram for explaining a second example of an eye-gaze input operation procedure.
  • FIG. 11 shows another example of an input screen
  • FIG. 11 shows another example of an input screen
  • Fig. 1 is a block diagram showing an example of the internal configuration of the gaze input device P1 according to embodiment 1. It should be noted that the gaze input device P1 shown in Fig. 1 is merely an example, and needless to say, the present invention is not limited to this.
  • the gaze input device P1 is equipped with a camera 13 capable of capturing an image of the face of a user looking at a display 14, and is realized, for example, by a personal computer (hereinafter referred to as "PC"), a notebook PC, a tablet terminal, a smartphone, etc.
  • the gaze input device P1 is capable of accepting gaze input operations based on the user's gaze position.
  • the gaze input device P1 is a system capable of accepting input operations based on the user's gaze, and includes a processor 11, a memory 12, a camera 13, a display 14, and a database DB1. Note that the database DB1 may be configured separately from the gaze input device P1.
  • the camera 13 and the display 14 may also be configured separately from the gaze input device P1.
  • the processor 11 which is an example of a calculation unit, is configured using, for example, a Central Processing Unit (CPU) or a Field Programmable Gate Array (FPGA), and performs various processes and controls in cooperation with the memory 12. Specifically, the processor 11 references the programs and data stored in the memory 12 and executes the programs to realize the functions of each unit.
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • the processor 11 outputs the calibration screen SC0 (see FIG. 4, an example of an input screen) to the display 14 and displays it.
  • the processor 11 then causes the camera 13 to capture an image of the user looking at the calibration screen SC0, and calculates correction parameters (e.g., a transformation matrix, etc.) for correcting (transforming) the positional deviation of the user's gaze position detected using the captured image of the user output from the camera 13.
  • correction parameters e.g., a transformation matrix, etc.
  • the processor 11 After calculating the correction parameters, the processor 11 displays the input screen SC1 (see Figs. 6, 7, and 8) and starts accepting gaze input operations by the user on the input screen SC1 (see Figs. 6, 7, and 8).
  • the processor 11 uses the correction parameters to correct and store the gaze position of the user detected based on the captured image output from the camera 13, and accepts input operations of input information (e.g., PIN code, symbols, pictograms, stroke order, password, etc.) based on the time-series changes in the gaze position.
  • input information e.g., PIN code, symbols, pictograms, stroke order, password, etc.
  • the processor 11 performs image analysis on the captured image output from the camera 13 and generates measurement environment information. Based on the generated measurement environment information, the processor 11 determines a threshold value for each variability of the detected gaze positions.
  • the measurement environment information here includes, for example, any one of the following information: the size of the display 14, the brightness of the user's face area shown in the face image, the distance between the display 14 and the user (imaging distance), the angle of the user's face, etc.
  • the processor 11 compares the input information based on the received input operation result with the user's registration information (e.g., PIN code, password, etc.) registered in the database DB1.
  • the user's registration information registered in the database DB1 may be registered in the memory 12 instead of the database DB1.
  • Memory 12 has, for example, a Random Access Memory (hereinafter referred to as "RAM”) as a working memory used when executing each process of processor 11, and a Read Only Memory (hereinafter referred to as "ROM”) that stores programs and data that define the operation of processor 11. Data or information generated or acquired by processor 11 is temporarily stored in RAM. Programs that define the operation of processor 11 are written in ROM. Memory 12 stores the size of display 14, etc. Memory 12 may also store the installation position and distance of camera 13 relative to display 14, etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the camera 13 is configured to have at least an image sensor (not shown) and a lens (not shown).
  • the image sensor is, for example, a solid-state imaging element such as a Charged-Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS), and converts the optical image formed on the imaging surface into an electrical signal.
  • CCD Charged-Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the display 14 which is an example of a display unit, is configured using, for example, a Liquid Crystal Display (LCD) or an organic electroluminescence (EL) display.
  • the display 14 displays the calibration screen SC0 (see FIG. 4), the input screen SC1 (see FIG. 6, FIG. 7, FIG. 8), etc., output from the processor 11.
  • Database DB1 is a so-called storage device, and is configured using a storage medium such as a flash memory, a hard disk drive (HDD), or a solid state drive (SSD).
  • Database DB1 stores user registration information (e.g., PIN code, password, etc.) in a manner that allows it to be managed for each user.
  • Figure 2 is a diagram for explaining an example of the operation procedure of the eye-gaze input device P1 according to embodiment 1.
  • Figure 3 is a diagram for explaining an example of the operation procedure of the eye-gaze input device P1 according to embodiment 1.
  • FIG. 4 is a diagram for explaining an example of a method for calibrating the eye-gaze position.
  • the calibration screen SC0 shown in FIG. 4 shows an example that is similar to the input screen SC1 (see FIG. 6) for accepting input operations for input information, but is not limited to this.
  • the processor 11 outputs the calibration screen SC0 (see FIG. 4) including the center point "A" to the display 14 and displays it (St11).
  • the calibration screen SC0 includes a center point "A."
  • the center point "A" is located approximately in the center of the calibration screen SC0.
  • the processor 11 outputs the calibration screen SC0 to the display 14 for display.
  • the processor 11 requests the user to look at (gaze at) the center point "A" included in the calibration screen SC0. This request may be made by displaying a message requesting the user to gaze at the center point "A” on the display 14, or by outputting the message requesting the user to gaze at the center point "A” as audio from a speaker (not shown).
  • the camera 13 captures an image of the user gazing at the calibration screen SC0 (St12). The camera 13 outputs the captured image to the processor 11.
  • the processor 11 detects the face of the user (person) from the captured image output from the camera 13, and detects the user's gaze position on the calibration screen SC0 using a gaze detection algorithm (St13).
  • the processor 11 stores information on the detected gaze position (coordinates) in the memory 12 (St13).
  • the processor 11 calculates the amount of positional blur of the gaze position Pt0 for a predetermined time (e.g., 0.3 seconds, 0.5 seconds, etc.) based on each of the accumulated gaze positions Pt0 for a predetermined time (St14).
  • a predetermined time e.g., 0.3 seconds, 0.5 seconds, etc.
  • the amount of positional blur is the standard deviation value that indicates the variation of each of the detected gaze positions.
  • the processor 11 determines whether the calculated amount of positional blur of the gaze position Pt0 for a predetermined time period is less than a threshold value (St15).
  • the threshold value is a predetermined fixed value that is determined based on the measurement environment information.
  • step St15 determines in the processing of step St15 that the calculated amount of positional blur of the gaze position Pt0 for the specified time period is less than the threshold value (St15, YES), it calculates the center position PtC0 of the gaze position Pt0 for the specified time period (St16).
  • step St15 determines in the processing of step St15 that the calculated amount of positional blur of the gaze position Pt0 for the specified time period is not less than the threshold value (St15, NO), the processor 11 returns to the processing of step St12.
  • the processor 11 calculates a correction parameter (transformation matrix DR0) for coordinate transformation of the center position PtC0 to the center position Ct of the center point "A" (i.e., the center position PtC0 of the area ARA) based on the calculated center position PtC0 and the center position Ct (see FIG. 8) of the center point "A" (St17).
  • the correction parameter calculated here is a parameter for transforming (correcting) the user's gaze position (i.e., the center position PtC0 of the gaze position Pt0) to the gaze input position by the user.
  • the processor 11 can correct the positional shift of the user's gaze position, for example, by converting the gaze position Pt0 for a predetermined time into an input position Pt0' and the gaze position Pt1 for a predetermined time into an input position Pt1'.
  • the processor 11 After calculating the correction parameters, the processor 11 ends the calibration process and outputs and displays the input screen SC1 for accepting input of input information on the display 14 (St18).
  • the input screen SC1 includes a center point “A” and input keys “1", “2", “3", and “4" corresponding to four numbers.
  • the center point “A” is located approximately in the center of the input screen SC1.
  • Each of the input keys “1” to “4" is located at approximately equal intervals on concentric circles centered on the center point "A".
  • the camera 13 captures an image of the user gazing at the input screen SC1 (St19). The camera 13 outputs the captured image to the processor 11.
  • Processor 11 detects the face of the user (person) from the captured image output from camera 13, and detects the user's gaze position on input screen SC1 using a gaze detection algorithm (St20). Processor 11 accumulates information on the detected gaze position (coordinates) for a predetermined period of time (e.g., 0.3 seconds, 0.5 seconds, etc.) in memory 12 in chronological order (St20). Processor 11 may also accumulate information on the detected gaze position in association with imaging time information of the captured image in which this gaze position was detected.
  • a gaze detection algorithm St20
  • Processor 11 may also accumulate information on the detected gaze position in association with imaging time information of the captured image in which this gaze position was detected.
  • the processor 11 calculates an approximation line based on the accumulated gaze positions for a predetermined time period and the center position Ct (see FIG. 8) of the center point "A" which is the starting point of the gaze position movement (St22).
  • the processor 11 calculates the angle of the calculated approximation line and accumulates it in the memory 12 in chronological order (St23).
  • the processor 11 calculates an angular blur amount (e.g., the angular blur amount ⁇ A shown in FIG. 5, the angular blur amount ⁇ B shown in FIG. 6, etc.) indicating the amount of blur in the user's gaze position based on the angles of the multiple approximate straight lines accumulated by at least two approximate straight line calculation processes Rp1 (St24).
  • an angular blur amount e.g., the angular blur amount ⁇ A shown in FIG. 5, the angular blur amount ⁇ B shown in FIG. 6, etc.
  • the processor 11 determines whether the amount of angular blur is less than a threshold value corresponding to a specific input key (St25).
  • the threshold value referred to here is, for example, the threshold value ⁇ 1 shown in FIG. 7, or the threshold values ⁇ 2 and ⁇ 3 shown in FIG. 13, and is a threshold value for determining whether an input key has been input among the center point "A", the number "1", ..., which are input keys displayed on the input screens SC1, SC2, and SC3, based on the direction of movement of the user's gaze position (i.e., the angle of the approximated line).
  • the processor 11 determines in the processing of step St25 that the amount of angular blur is less than the threshold value (St25, YES), it confirms the input content (input key) based on the input keys (e.g., center point "A", number "1", ..., etc.) arranged in the direction of movement of the user's gaze position indicated by the approximation line, and accepts an input operation based on the user's gaze (St26).
  • the input content e.g., center point "A", number "1", ..., etc.
  • step St25 determines in the processing of step St25 that the amount of angular blur is not less than the threshold value (St25, NO)
  • the processor 11 returns to the processing of step St19.
  • the processor 11 determines whether or not input operations for a predetermined number of digits (e.g., three digits, four digits, etc.) have been completed based on the number of input contents (input keys) accepted as input operations (St27).
  • a predetermined number of digits e.g., three digits, four digits, etc.
  • step St27 determines in the process of step St27 that the input operation for the predetermined number of digits has been completed (St27, YES)
  • the operation procedure shown in FIG. 3 ends.
  • the processor 11 acquires input information based on the input contents (input keys) for the predetermined number of digits, and proceeds to a process of comparing the input information with the input information previously registered in the database DB1.
  • step St27 determines in the processing of step St27 that the input operation for the predetermined number of digits has not been completed (St27: NO)
  • the processor 11 returns to the processing of step St19.
  • the eye-gaze input device P1 can accept an input operation based on the direction of movement of the user's eye-gaze position (i.e., changes over time) even when the user's eye-gaze position is not detected in the areas ARA, AR1, AR2, AR3, AR4 of each input key, or when the user's eye-gaze position detected in the areas ARA (an example of a first input section) and AR1 to AR4 (an example of a second input section) of each input key does not satisfy a predetermined condition for accepting an input operation (for example, the user's eye-gaze position is continuously detected within areas ARA, AR1 to AR4 for a predetermined period of time or more).
  • the eye-gaze input device P1 can accept input key input operations without the user having to gaze at the areas ARA, AR1 to AR4 of each input key, so the time required for each user to perform input operations can be more effectively reduced.
  • the eye-gaze input device P1 can receive input operations based on the user's gaze with a high degree of accuracy. Therefore, even if the eye-gaze input device P1 is used by an unspecified number of users without recording and storing correction parameters for each user in advance, it can calculate correction parameters with low calibration accuracy by gazing at at least one point (for example, the central point "A"), and therefore can more effectively reduce the time required to calculate the correction parameters for each user.
  • FIG. 5 is a diagram explaining the method of calculating the moving direction of the gaze position.
  • the processor 11 executes the approximate line calculation process Rp1 three times.
  • the processor 11 accumulates the gaze positions for a predetermined time period (St21), and calculates the approximate line DR21 based on the accumulated gaze positions Pt21' for the predetermined time period and the center position Ct of the center point "A", which is the starting point of the gaze position movement (St22).
  • the processor 11 calculates the angle of the approximate line DR21, and accumulates it in chronological order in the memory 12 (St23).
  • processor 11 returns to the process of step St19, further accumulates gaze positions for a predetermined time period (St21), and calculates approximate line DR22 based on the accumulated gaze positions Pt22' for the predetermined time period and the center position Ct of center point "A", which is the starting point of the gaze position movement (St22).
  • Processor 11 calculates the angle of approximate line DR22 and accumulates it in chronological order in memory 12 (St23).
  • processor 11 returns to the process of step St19, further accumulates gaze positions for a predetermined time period (St21), and calculates approximate line DR23 based on the accumulated gaze positions Pt23' for the predetermined time period and the center position Ct of center point "A", which is the starting point of the gaze position movement (St22).
  • Processor 11 calculates the angle of approximate line DR23 and accumulates it in chronological order in memory 12 (St23).
  • the processor 11 calculates the angular blur amount ⁇ A, which indicates the amount of blur in the user's gaze position, based on the angles of the three approximate lines DR21 to DR23 accumulated by the approximate line calculation process Rp1 (St24).
  • the eye gaze input device P1 can calculate the direction in which the user's eye gaze position moves and the amount of blur in the direction in which the user's eye gaze position moves.
  • Fig. 6 is a diagram explaining a method of accepting an eye-gaze input operation based on the moving direction of the eye-gaze position.
  • Fig. 7 is a diagram showing an example of an angle at which an eye-gaze input operation based on the moving direction of the eye-gaze position can be accepted.
  • the processor 11 calculates four approximate straight lines DR31 to DR34 corresponding to each of the accumulated gaze positions based on each of the four gaze positions and the center position Ct of the center point "A" (see FIG. 8) (St22).
  • the processor 11 calculates the angle of each of the calculated four approximate straight lines DR31 to DR34 and accumulates them in the memory 12 (St23).
  • the processor 11 calculates the angular blur amount ⁇ B, which indicates the amount of blur in the user's gaze position, based on the angles of the approximated lines DR31 to DR34 accumulated by the approximated line calculation process Rp1 (St24).
  • the processor 11 determines whether the calculated angular blur amount ⁇ B is less than the threshold value ⁇ 1 (St25).
  • the threshold value ⁇ 1 may be an angle of 90° or less.
  • processor 11 determines that the calculated angle blur amount ⁇ B is less than threshold ⁇ 1, it determines in which of angle regions ⁇ 11, ⁇ 12, ⁇ 13, or ⁇ 14 the angle of the approximated line falls in, in the chronological order in which the angles of approximated lines DR31 to DR34 were calculated. If processor 11 determines based on the determination result that the angle of the approximated line falls within the same angle region a predetermined number of times (e.g., two times, five times, etc.) or more consecutively in the chronological order, it accepts an input operation in which the input content is an input key that corresponds to this angle region and is positioned in the direction of movement of the user's gaze position indicated by the approximated line (St26).
  • a predetermined number of times e.g., two times, five times, etc.
  • each angle region ⁇ 11 shown in FIG. 7 is a region that is -45° or more and less than +45°, with the position of the input key "1" as the reference (0 (zero)°).
  • the angle region ⁇ 12 is a region that is +45° or more and less than +135°, with the position of the input key “1” as the reference (0 (zero)°).
  • the angle region ⁇ 13 is a region that is +135° or more and less than +225°, with the position of the input key "1” as the reference (0 (zero)°).
  • the angle region ⁇ 12 is a region that is +225° or more and less than +315° (i.e., less than -45°), with the position of the input key "1" as the reference (0 (zero)°).
  • Processor 11 determines whether the angle of approximate line DR31 is included in any of the angle regions ⁇ 11 to ⁇ 14. After determining that the angle of approximate line DR31 is included in angle region ⁇ 11, processor 11 determines whether the angle of approximate line DR32, which is calculated next to approximate line DR31, is included in the same angle region ⁇ 11 as the angle of approximate line DR31.
  • the processor 11 determines whether the angle of the approximated straight line DR33, which is calculated next to the approximated straight line DR32, is included in the same angle region ⁇ 11 as the angles of the approximated straight lines DR31 to DR32.
  • the processor 11 determines whether the angle of the approximated straight line DR34, which is calculated next to the approximated straight line DR33, is included in the same angle region ⁇ 11 as the angles of the approximated straight lines DR31 to DR33.
  • processor 11 After determining that the angle of approximated straight line DR34 is included in angle region ⁇ 11, processor 11 detects that it has determined that each of the angles of approximated straight lines DR31 to DR34 is included in the same angle region ⁇ 11 four times in succession in time series (i.e., a predetermined number of times). Processor 11 accepts an input operation in which the input content is the input key "1" corresponding to the angle region ⁇ 11 that includes the angles of approximated straight lines DR31 to DR34.
  • the eye-gaze input device P1 can estimate the input content that the user is about to input based on the moving direction of the user's gaze position, and can accept it as an input operation before the user gazes at the input keys. This makes it possible to more efficiently reduce the time required for each user to input information. Furthermore, because the eye-gaze input device P1 can more accurately estimate the moving direction of the user's gaze position based on the amount of angular deviation of the user's gaze position, it is possible to more effectively prevent erroneous input of input information even when calibration accuracy is low.
  • FIG. 8 is a diagram illustrating an example of the insensitive area ARN. Note that setting the insensitive area ARN is not essential and may be optional.
  • the insensitive area ARN is an area that disables the estimation process of the input content based on the angle of the approximate line, and is an area outside the area ARA of the center point "A" and within a radius R1 from the center position Ct of the area ARA of the center point "A".
  • the insensitive area ARN may be set in other shapes (e.g., ellipse, diamond, etc.) based on the aspect ratio and size of the display 14 or the arrangement of the input keys.
  • the processor 11 determines that the detected gaze position of the user is within the insensitive area ARN, the processor 11 does not use the gaze position of the user located within the insensitive area ARN in the calculation of the approximate line and the angle of the approximate line. In other words, the processor 11 calculates the approximate line and the angle of the approximate line based on the gaze position of the user detected outside the insensitive area ARN, estimates the input content that the user is about to input based on the calculated angle of the approximate line, and accepts it as an input operation before the user gazes at the input keys.
  • the gaze input device P1 uses the gaze position detected at a position that is at least a predetermined distance (radius R1) away from the center point "A" to estimate the input content, and can eliminate gaze positions that are detected near the center point "A" where the variation in the angle of the approximated line is likely to be small and that are likely to result in erroneous determination of the input content. Therefore, the gaze input device P1 can more effectively suppress erroneous determination of the input content in the process of estimating the input content based on the movement direction of the user's gaze position.
  • Fig. 9 is a diagram for explaining an example of the first gaze input operation procedure.
  • Fig. 10 is a diagram for explaining an example of the first gaze input operation procedure.
  • the first gaze input operation procedure is a gaze input operation procedure in which input operations for the center point "A" and input operations for the input keys "1" to "4" are alternately accepted, and corresponds to the processing of each of steps St19 to St26 shown in Fig. 3.
  • the input screens SC41, SC42, SC43, SC44, SC45, SC46, SC47, and SC48 shown in Figures 9 and 10, respectively, are merely examples and are not limited to these.
  • the number of numeric input keys is not limited to four.
  • the arrangement of the numeric input keys is not limited to the arrangement shown in input screens SC41 to SC48, and they may be rotated by any angle (for example, 45°) and arranged.
  • the processor 11 displays the input screen SC41 on the display 14, instructs the user to look at the center point "A" (by outputting voice, outputting a message, etc.), and enables (makes acceptable) only the input operation for the center point "A" out of the five input keys.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position. Processor 11 may generate correction parameters for calibrating the user's gaze position at this timing.
  • processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A" or in the direction in which center point "A” is located, it displays input screen SC42 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC42, processor 11 disables input operations for center point “A” and enables input operations for each of the four input keys “1" to "4" arranged around center point "A".
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1", area AR2 of input key “2", area AR3 of input key “3”, or area AR4 of input key "4" based on the detected user's gaze position or the movement direction DR41 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "1" on input screen SC42.
  • the processor 11 After accepting an input operation of any of the numeric input keys (here, input key "1"), the processor 11 displays the input screen SC43 on the display 14, instructs the user to gaze at the center point "A” again, and enables (accepts) only the input operation for the center point "A” out of the five input keys.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position or the movement direction DR42 of the user's gaze position (angle of the approximated line).
  • processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A” or in the direction in which center point “A” is located, it displays input screen SC44 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC44, processor 11 disables input operations for center point “A” and enables input operations for each of the four input keys “1" to "4" arranged around center point "A".
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1", area AR2 of input key “2", area AR3 of input key “3”, or area AR4 of input key "4" based on the detected user's gaze position or the movement direction DR43 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "2" on input screen SC44.
  • the processor 11 After accepting an input operation of any of the numeric input keys (here, input key "2"), the processor 11 displays the input screen SC45 on the display 14, instructs the user to gaze at the center point "A” again, and enables only the input operation for the center point "A” out of the five input keys.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A” is located based on the detected user's gaze position or the movement direction DR44 of the user's gaze position (angle of the approximated line).
  • processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A” or in the direction in which center point “A” is located, it displays input screen SC46 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC46, processor 11 disables input operations for center point “A” and enables input operations for each of the four input keys “1” to "4" arranged around center point "A".
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1", area AR2 of input key “2", area AR3 of input key “3”, or area AR4 of input key "4" based on the detected user's gaze position or the movement direction DR45 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "3" on input screen SC46.
  • the processor 11 After accepting an input operation of any of the numeric input keys (here, input key "3"), the processor 11 displays the input screen SC47 on the display 14, instructs the user to gaze at the center point "A” again, and enables only the input operation for the center point "A” out of the five input keys.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position or the movement direction DR46 of the user's gaze position (angle of the approximated line).
  • processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A” or in the direction in which center point “A” is located, it displays input screen SC48 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC48, processor 11 disables input operations for center point “A” and enables input operations for each of the four input keys “1" to "4" arranged around center point "A".
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1," AR2 of the input key “2,” AR3 of the input key “3,” or area AR4 of the input key "4" based on the detected user's gaze position or the movement direction DR46 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "4" on the input screen SC48.
  • the processor 11 After accepting the input of the four numbers “1,” “2,” “3,” and “4,” the processor 11 compares the input numbers (input information) with the registration information previously registered in the database DB1 and performs user authentication.
  • the eye-gaze input device P1 can more effectively suppress erroneous input of input information by alternately accepting an input operation of input information (here, a number) and an input operation of the center point "A" in the first eye-gaze input operation procedure. Furthermore, by alternately accepting an input operation for the center point "A” and an input operation for the input keys "1" to "4" (i.e., input information), when the user continuously inputs the same input information (for example, when the number "1" is input two or more times in succession), the eye-gaze input device P1 can more accurately accept the input operation of the same input information.
  • input information here, a number
  • input keys "1" to "4" i.e., input information
  • the eye-gaze input device P1 can prevent the center point "A” and any of the input keys “1” to “4" from being positioned on the same straight line. This makes it possible to accept input operations based on the time-series changes in the direction of movement of the user's eye-gaze position (the angle of the approximated straight line), and thus makes it possible to more effectively suppress erroneous inputs.
  • the input screens SC42, SC44, SC46, and SC48 shown in Figures 9 and 10 may display four of the five input keys, "1" to "4," for which input operations are enabled, in a solid line or with emphasis (for example, a thick line or a red frame, etc.), and only the center point "A,” for which input operations are disabled, in a dashed line or with a suppressed display (for example, a thin line or a gray frame, etc.).
  • the processor 11 when it receives an input operation for input information, it may enlarge and display the input key corresponding to the input information, or change the luminance of the lighting on the input screens SC41 to SC48 to make them flash. This allows the eye-gaze input device P1 to notify the user that the acceptance of the input operation has been completed.
  • Fig. 11 is a diagram for explaining an example of the second gaze input operation procedure.
  • Fig. 12 is a diagram for explaining an example of the second gaze input operation procedure.
  • the second gaze input operation procedure is a gaze input operation procedure when input operations of the input keys "1" to "4" are accepted consecutively, and corresponds to the processing of each of steps St19 to St26 shown in Fig. 3.
  • the input screens SC51, SC52, SC53, SC54, and SC55 shown in Figures 11 and 12, respectively, are merely examples and are not limited to these.
  • the number of numeric input keys is not limited to four.
  • the arrangement of the numeric input keys is not limited to the arrangement shown in input screens SC51 to SC55, and may be rotated by any angle (for example, 45°) and arranged.
  • the processor 11 displays the input screen SC51 on the display 14, instructs the user to gaze at the center point "A" (outputs voice and message), and enables (accepts) only the input operation for the center point "A" out of the five input keys.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position. Processor 11 may generate correction parameters for calibrating the user's gaze position at this timing.
  • the processor 11 determines, based on the detected user's gaze position, that the user is gazing within the area ARA of the center point "A” or in the direction in which the center point "A” is located, it displays the input screen SC52 on the display 14 and instructs the user to gaze at one of the number input keys. On the input screen SC52, the processor 11 disables input operations for the center point “A” and enables input operations for each of the four input keys "1" to "4" arranged around the center point "A".
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR51 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "1" on input screen SC52.
  • the processor 11 After accepting the input operation of any number input key (here, input key "1"), the processor 11 displays the input screen SC53 on the display 14 and instructs the user to look at the next number input key. It goes without saying that this instruction is not essential and may be omitted.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR52 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of number input key "2" on input screen SC54.
  • the processor 11 After accepting an input operation of any numeric input key (here, input key "2"), the processor 11 displays the input screen SC54 on the display 14 and instructs the user to focus on the next numeric input key.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR53 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of number input key "3" on input screen SC54.
  • the processor 11 After accepting an input operation of any numeric input key (here, input key "3"), the processor 11 displays the input screen SC55 on the display 14 and instructs the user to focus on the next numeric input key.
  • Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR54 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of number input key "4" on input screen SC54.
  • the processor 11 After accepting the input of the four numbers “1,” “2,” “3,” and “4,” the processor 11 compares the input numbers (input information) with the registration information previously registered in the database DB1 and performs user authentication.
  • the eye-gaze input device P1 can more effectively suppress erroneous input of input information by continuously accepting input operations of a predetermined number of digits of input information (here, numbers) after accepting an input operation of the center point "A" in the second eye-gaze input operation procedure. Furthermore, because the eye-gaze input device P1 does not alternately accept input operations for the center point "A” and input operations for the input keys "1" to "4" (i.e., input information), it is possible to shorten the time required for the input operation for the center point "A" between each piece of input information, and more efficiently shorten the eye-gaze input operation time per user.
  • a predetermined number of digits of input information here, numbers
  • the input screen SC51 shown in Figures 11 and 12 may display only the center point "A" of the five input keys for which input operation is enabled, using a solid line or highlighting (for example, displaying a thick line or a red frame, etc.), and each of the four input keys "1" to "4" for which input operation is disabled, using a dashed line or suppressing (for example, displaying a thin line or a gray frame, etc.).
  • the four input keys "1" to "4" for which input operations are enabled among the five input keys may be displayed with a solid line or highlighted (for example, a thick line, a red frame, etc.), and only the center point "A" for which input operations are disabled may be displayed with a dashed line or suppressed (for example, a thin line, a gray frame, etc.).
  • the processor 11 when it receives an input operation for input information, it may enlarge and display the input key corresponding to the input information, or change the illuminance of the lighting on the input screens SC51 to SC55 to make them flash. This allows the eye-gaze input device P1 to notify the user that the acceptance of the input operation has been completed.
  • Fig. 13 is a diagram showing another example of an input screen.
  • Fig. 14 is a diagram showing another example of an input screen. It goes without saying that the input screens SC2 and SC3 shown in Fig. 13 are merely examples and are not limited to these.
  • the input screen SC2 includes a center point "A” and eight input keys corresponding to the numeric input keys "1" to "8".
  • the processor 11 sets the threshold ⁇ 2 of the angular blur of the approximated line to 45° or less in gaze input using the input screen SC2. In such a case, the processor 11 accepts the input operation of the input key "1" when the threshold ⁇ 2 of the angular blur of the approximated line is 45° or less and the angle of the approximated line is -22.5° or more and less than +22.5° with the position of the input key "1" as the reference (0 (zero)°).
  • the input screen SC3 includes a center point "A” and ten input keys corresponding to the numeric input keys "0" to “9.”
  • the processor 11 sets the threshold ⁇ 3 of the angular deviation of the approximated line to 36° or less. In such a case, the processor 11 accepts the input operation of the input key "0" when the threshold ⁇ 3 of the angular deviation of the approximated line is 36° or less and the angle of the approximated line is -18° or more and less than +18° with the position of the input key "0" as the reference (0 (zero)°).
  • the gaze input device P1 (an example of an input device) according to the first embodiment is capable of receiving an input operation based on the gaze position of a user, and includes a calibration screen SC0 (an example of an input screen) capable of receiving an input operation, a display 14 (an example of a display unit) displaying the input screen SC1, a camera 13 that captures an image of a user, a processor 11 (an example of a calculation unit) that calculates a correction parameter for calibrating the gaze position of the first user relative to the input screen SC1 based on the gaze position of the first user shown in the captured first captured image, and a processor 11 that detects the gaze position of the second user shown in the captured second captured image after calculating the correction parameter, calibrates the gaze position of the second user using the correction parameter, and receives an input operation relative to the input screen SC1 based on the calibrated gaze position of the second user.
  • a calibration screen SC0 an example of an input screen
  • a display 14 an example of a display unit
  • a camera 13 that captures
  • the eye-gaze input device P1 can more efficiently calibrate the eye-gaze position and more efficiently accept input operations based on the user's eye gaze, even when correction parameters for each user are not recorded and stored in advance and the device is used by an unspecified number of users.
  • the eye-gaze input device P1 includes an area ARA (an example of a first input section) of a center point "A" that accepts a first input operation, and areas AR1 to AR4 (an example of a second input section) corresponding to a plurality of input keys "1" to "4" that accept a second input operation different from the first input operation.
  • This allows the eye-gaze input device P1 according to the first embodiment to accept an input operation for calibration and an input operation for input information on a single input screen SC1.
  • the first captured image in the gaze input device P1 according to embodiment 1 is an image captured of a user looking at area ARA of center point "A", and the processor 11 calculates correction parameters based on the gaze position of the first user and the position of area ARA of center point "A".
  • the gaze input device P1 according to embodiment 1 can more efficiently accept input operations based on the user's gaze, even when correction parameters for each user are not recorded and stored in advance and the device is used by an unspecified number of users.
  • the second captured image in the eye-gaze input device P1 according to the first embodiment is an image captured of a user looking at the areas AR1 to AR4 corresponding to any one of the input keys "1" to "4".
  • the processor 11 accepts an input operation based on the eye gaze position of the second user and the positions of the areas AR1 to AR4 corresponding to the multiple input keys "1" to "4".
  • the eye-gaze input device P1 according to the first embodiment can more effectively suppress erroneous input of input information by continuously accepting input operations of a predetermined number of digits of input information (here, numbers) after accepting an input operation of the center point "A" in the second eye-gaze input operation procedure.
  • the eye-gaze input device P1 does not alternately accept an input operation for the center point "A” and an input operation for the input keys "1" to "4" (i.e., input information), the time required for the input operation for the center point "A” between each piece of input information can be shortened, and the eye-gaze input operation time per user can be more efficiently shortened.
  • the second captured image in the eye-gaze input device P1 according to the first embodiment is an image captured of a user looking at the area ARA of the center point "A" or the areas AR1 to AR4 corresponding to any one of the input keys "1" to "4".
  • the processor 11 alternately accepts the first input operation and the second input operation.
  • the eye-gaze input device P1 according to the first embodiment can more effectively suppress erroneous input of input information by alternately repeating the acceptance of the input operation of the input information (here, a number) and the acceptance of the input operation of the center point "A" in the first eye-gaze input operation procedure.
  • the eye-gaze input device P1 can more accurately accept the input operation of the same continuous input information because it accepts the input of a different center point "A" while inputting the same input information.
  • the processor 11 in the eye-gaze input device P1 according to embodiment 1 activates the area ARA of the center point "A" on the input screen SC1, disables the areas AR1 to AR4 corresponding to the multiple input keys “1” to “4", and accepts a first input operation, and activates the areas AR1 to AR4 corresponding to the multiple input keys "1” to "4" on the input screen SC1, disables the area ARA of the center point "A", and accepts a second input operation.
  • the eye-gaze input device P1 according to embodiment 1 can more effectively suppress erroneous inputs by only activating (accepting) the input operation of either the center point "A” or the input keys "1" to "4".
  • the processor 11 in the eye-gaze input device P1 according to embodiment 1 accepts a first input operation or a second input operation, it highlights the area ARA of the center point "A" that corresponds to the accepted first input operation or second input operation, or the areas AR1 to AR4 that correspond to the input keys "1" to "4". This allows the eye-gaze input device P1 according to embodiment 1 to notify the user that acceptance of the input operation has been completed.
  • the area ARA of the center point "A" in the eye-gaze input device P1 according to embodiment 1 is located approximately in the center of the input screen SC1.
  • Areas AR1 to AR4 corresponding to the multiple input keys "1" to "4" are each located at approximately the same distance from the area ARA of the center point "A". This allows the eye-gaze input device P1 according to embodiment 1 to more clearly distinguish between the first input operation and the second input operation, and to more accurately accept the second input operation.
  • the areas AR1 to AR4 corresponding to the multiple input keys "1" to "4" in the eye-gaze input device P1 according to embodiment 1 are arranged at approximately equal intervals on a circumference centered on the area ARA at the center point "A". This allows the eye-gaze input device P1 according to embodiment 1 to more accurately receive the second input operation.
  • the input screen SC1 of the eye-gaze input device P1 has an insensitive area ARN around the area ARA of the center point "A" that disables input operations.
  • the processor 11 determines that the gaze position of the second user is within the insensitive area ARN, it omits the acceptance of input operations based on the gaze position of the second user.
  • the eye-gaze input device P1 uses the gaze position detected at a position that is outside the insensitive area ARN and is at least a predetermined distance (radius R1) away from the center point "A", which is outside the insensitive area ARN, to estimate the input content, thereby being able to eliminate gaze positions that are prone to erroneous determination of the input content, and therefore being able to more effectively suppress erroneous determination of the input content.
  • the processor 11 in the gaze input device P1 detects the gaze position of the second user from a plurality of second captured images captured by the camera 13, accumulates them in chronological order, calculates the movement direction of the user's gaze position based on the accumulated gaze positions of the second user, and accepts an input operation based on the movement direction of the user's gaze position.
  • the gaze input device P1 can accept an input operation based on the movement direction of the user's gaze position even when the user's gaze position is not detected within the areas ARA to AR4 of each input key, or when the user's gaze position detected in the areas ARA, AR1 to AR4 of each input key does not satisfy a predetermined condition for accepting an input operation (for example, the user's gaze position is detected within the areas ARA, AR1 to AR4 continuously for a predetermined time or more), etc.
  • a predetermined condition for accepting an input operation for example, the user's gaze position is detected within the areas ARA, AR1 to AR4 continuously for a predetermined time or more
  • the processor 11 in the eye-gaze input device P1 according to the first embodiment calculates and accumulates the moving direction of the user's eye gaze position based on the accumulated gaze position of the second user for a predetermined time, calculates the amount of blur in the moving direction of the user's eye gaze position based on the accumulated multiple moving directions, and accepts an input operation based on the moving direction when it is determined that the calculated amount of blur is equal to or less than a threshold.
  • the eye-gaze input device P1 according to the first embodiment can estimate the input content that the user is about to input based on the moving direction of the user's eye gaze position and accept it as an input operation before the user gazes at the input key, so that the time required for input information per user can be more efficiently shortened.
  • the eye-gaze input device P1 can more accurately estimate the moving direction of the user's eye gaze position based on the amount of angular blur of the user's eye gaze position, so that erroneous input of input information can be more effectively suppressed even when the calibration accuracy is low.
  • the input method performed by the gaze input device P1 capable of accepting an input operation based on a user's gaze position includes displaying a calibration screen SC0 (an example of an input screen) capable of accepting an input operation, an input screen SC1, acquiring a first captured image of a user, calculating a correction parameter for calibrating the gaze position of the first user relative to the input screen based on the gaze position of the first user shown in the first captured image, acquiring a second captured image of the user, calibrating the gaze position of the second user shown in the second captured image using the correction parameter, and accepting an input operation relative to the input screen based on the calibrated gaze position of the second user.
  • a calibration screen SC0 an example of an input screen
  • the eye-gaze input device P1 can more efficiently calibrate the eye-gaze position and more efficiently accept input operations based on the user's eye gaze, even when correction parameters for each user are not recorded and stored in advance and the device is used by an unspecified number of users.
  • the present disclosure is useful as an input device and input method that makes calibration of eye gaze input more efficient.
  • Processor 12 Memory 13
  • Camera 14 Display DB1 Database P1 Eye-gaze input device SC0 Calibration screen SC1, SC2, SC3, SC41, SC42, SC43, SC44, SC45, SC46, SC47, SC48, SC51, SC52, SC53, SC54, SC55 Input screen

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

This input device comprises: a display unit that displays an input screen image capable of accepting an input operation based on the gaze position of a user; a camera that captures an image of the user; a calculation unit that, on the basis of the gaze position of a first user appearing in the first captured image that was captured, calculates a correction parameter for calibrating the gaze position of the first user with respect to the input screen image; and a processor that calibrates the gaze position of a second user using the correction parameter and, on the basis of the calibrated gaze position of the second user, accepts an input operation on the input screen image.

Description

入力装置および入力方法Input device and input method
 本開示は、入力装置および入力方法に関する。 This disclosure relates to an input device and an input method.
 特許文献1には、ユーザの注視点の位置とユーザに操作される操作位置を示す指標の位置との対応関係を示す情報の履歴を取得し、ユーザの注視点を検出し、取得された対応関係を示す情報の履歴に基づいて、検出された現在の注視点の位置に対応する位置に表示されるように指標の表示位置を制御する情報処理装置が開示されている。 Patent Document 1 discloses an information processing device that acquires a history of information indicating the correspondence between the position of a user's gaze point and the position of an index indicating an operation position operated by the user, detects the user's gaze point, and controls the display position of the index based on the acquired history of information indicating the correspondence so that the index is displayed at a position corresponding to the detected current position of the gaze point.
国際公開第2016/147499号International Publication No. 2016/147499
 しかしながら、特許文献1では、注視点のキャリブレーション処理に、注視点の位置と、操作位置との対応関係を示す情報を蓄積する必要がある。したがって、例えば、外出先で使用するAutomatic Teller Machine(ATM)等のように対応関係を示す情報をユーザごとに蓄積できない環境において、情報処理装置は、キャリブレーションが十分に実行できず、操作位置に誤差が生じて視線位置に基づく入力操作が困難になる可能性があった。 However, in Patent Document 1, the gaze point calibration process requires the accumulation of information indicating the correspondence between the gaze point position and the operation position. Therefore, in an environment where information indicating the correspondence cannot be accumulated for each user, such as an Automatic Teller Machine (ATM) used outside the home, the information processing device may not be able to perform sufficient calibration, which may result in an error in the operation position, making it difficult to perform input operations based on the gaze position.
 本開示は、上述した従来の状況に鑑みて案出され、視線入力における視線位置のキャリブレーションをより効率化する入力装置および入力方法を提供することを目的とする。 The present disclosure has been devised in consideration of the above-mentioned conventional situation, and aims to provide an input device and input method that make it more efficient to calibrate the gaze position in gaze input.
 本開示は、ユーザの視線位置に基づく入力操作を受け付け可能な入力装置であって、前記入力操作を受け付け可能な入力画面を表示する表示部と、前記ユーザを撮像するカメラと、撮像された第1の撮像画像に映る第1のユーザの視線位置に基づいて、前記入力画面に対する前記第1のユーザの視線位置をキャリブレーションするための補正パラメータを算出する算出部と、前記補正パラメータの算出後に撮像された第2の撮像画像に映る第2のユーザの視線位置を検出し、前記補正パラメータを用いて、前記第2のユーザの視線位置をキャリブレーションし、キャリブレーションされた第2のユーザの視線位置に基づいて、前記入力画面に対する前記入力操作を受け付けるプロセッサと、を備える、入力装置を提供する。 The present disclosure provides an input device capable of accepting an input operation based on a user's gaze position, the input device comprising: a display unit that displays an input screen capable of accepting the input operation; a camera that images the user; a calculation unit that calculates a correction parameter for calibrating the gaze position of the first user with respect to the input screen based on the gaze position of the first user shown in a first captured image; and a processor that detects the gaze position of a second user shown in a second captured image taken after calculating the correction parameter, calibrates the gaze position of the second user using the correction parameter, and accepts the input operation with respect to the input screen based on the calibrated gaze position of the second user.
 また、本開示は、ユーザの視線位置に基づく入力操作を受け付け可能な入力装置が行う入力方法であって、前記入力操作を受け付け可能な入力画面を表示し、前記ユーザを撮像した第1の撮像画像を取得し、前記第1の撮像画像に映る第1のユーザの視線位置に基づいて、前記入力画面に対する前記第1のユーザの視線位置をキャリブレーションするための補正パラメータを算出し、前記ユーザを撮像した第2の撮像画像を取得し、前記補正パラメータを用いて、前記第2の撮像画像に映る第2のユーザの視線位置をキャリブレーションし、キャリブレーションされた第2のユーザの視線位置に基づいて、前記入力画面に対する前記入力操作を受け付ける、入力方法を提供する。 The present disclosure also provides an input method performed by an input device capable of accepting an input operation based on a user's gaze position, the input method including: displaying an input screen capable of accepting the input operation; acquiring a first captured image of the user; calculating a correction parameter for calibrating the gaze position of the first user with respect to the input screen based on the gaze position of the first user shown in the first captured image; acquiring a second captured image of the user; calibrating the gaze position of a second user shown in the second captured image using the correction parameter; and accepting the input operation with respect to the input screen based on the calibrated gaze position of the second user.
 また、本開示は、ユーザの視線位置に基づく入力操作を受け付け可能な入力装置であって、カメラにより撮像された第1の撮像画像に映る第1のユーザの視線位置と、前記カメラにより撮像された第2の撮像画像に映る第2のユーザの視線位置を検出し、前記第1のユーザの視線位置と前記第2のユーザの視線位置に基づいて、前記入力操作を受け付け可能な入力画面に対する前記入力操作を受け付けるプロセッサと、を備える、入力装置を提供する。 The present disclosure also provides an input device capable of accepting an input operation based on a user's gaze position, the input device including a processor that detects the gaze position of a first user shown in a first captured image captured by a camera and the gaze position of a second user shown in a second captured image captured by the camera, and accepts the input operation on an input screen capable of accepting the input operation based on the gaze position of the first user and the gaze position of the second user.
 本開示によれば、視線入力における視線位置のキャリブレーションをより効率化できる。 This disclosure makes it possible to more efficiently calibrate gaze position during gaze input.
実施の形態1に係る視線入力装置の内部構成例を示すブロック図FIG. 1 is a block diagram showing an example of an internal configuration of a gaze input device according to a first embodiment; 実施の形態1に係る視線入力装置の動作手順例を説明する図FIG. 1 is a diagram for explaining an example of an operation procedure of the eye-gaze input device according to the first embodiment; 実施の形態1に係る視線入力装置の動作手順例を説明する図FIG. 1 is a diagram for explaining an example of an operation procedure of the eye-gaze input device according to the first embodiment; 視線位置のキャリブレーション方法の一例を説明する図FIG. 1 is a diagram for explaining an example of a method for calibrating a gaze position. 視線位置の移動方向の算出方法を説明する図FIG. 1 is a diagram for explaining a method for calculating the movement direction of the gaze position. 視線位置の移動方向に基づく視線入力操作の受付方法を説明する図A diagram for explaining a method of accepting an eye-gaze input operation based on the moving direction of the eye-gaze position. 視線位置の移動方向に基づく視線入力操作を受け付け可能な角度の一例を示す図FIG. 13 is a diagram showing an example of an angle at which an eye-gaze input operation can be accepted based on the moving direction of the eye-gaze position; 不感領域の一例を説明する図FIG. 1 is a diagram for explaining an example of a dead region. 第1の視線入力操作手順例を説明する図FIG. 11 is a diagram for explaining a first example of an eye-gaze input operation procedure. 第1の視線入力操作手順例を説明する図FIG. 11 is a diagram for explaining a first example of an eye-gaze input operation procedure. 第2の視線入力操作手順例を説明する図FIG. 11 is a diagram for explaining a second example of an eye-gaze input operation procedure. 第2の視線入力操作手順例を説明する図FIG. 11 is a diagram for explaining a second example of an eye-gaze input operation procedure. 他の入力画面例を示す図FIG. 11 shows another example of an input screen 他の入力画面例を示す図FIG. 11 shows another example of an input screen
 以下、適宜図面を参照しながら、本開示に係る入力装置および入力方法を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Below, with reference to the drawings as appropriate, an embodiment that specifically discloses an input device and an input method according to the present disclosure will be described in detail. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations of substantially identical configurations may be omitted. This is to avoid the following explanation becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. Note that the attached drawings and the following explanation are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
 まず、図1を参照して、実施の形態1に係る視線入力装置P1について説明する。図1は、実施の形態1に係る視線入力装置P1の内部構成例を示すブロック図である。なお、図1に示す視線入力装置P1は、一例であって、これに限定されないことは言うまでもない。
(Embodiment 1)
First, a gaze input device P1 according to embodiment 1 will be described with reference to Fig. 1. Fig. 1 is a block diagram showing an example of the internal configuration of the gaze input device P1 according to embodiment 1. It should be noted that the gaze input device P1 shown in Fig. 1 is merely an example, and needless to say, the present invention is not limited to this.
 入力装置の一例としての視線入力装置P1は、ディスプレイ14を見るユーザの顔を撮像可能なカメラ13を備え、例えば、Personal Computer(以降、「PC」と表記)、ノートPC、タブレット端末、スマートフォン等により実現される。視線入力装置P1は、ユーザの視線位置に基づく視線入力操作を受け付け可能である。視線入力装置P1は、ユーザの視線に基づく入力操作を受け付け可能なシステムであって、プロセッサ11と、メモリ12と、カメラ13と、ディスプレイ14と、データベースDB1とを含む。なお、データベースDB1は、視線入力装置P1と別体で構成されてもよい。また、カメラ13と、ディスプレイ14も、視線入力装置P1と別体で構成されてもよい。 The gaze input device P1, as an example of an input device, is equipped with a camera 13 capable of capturing an image of the face of a user looking at a display 14, and is realized, for example, by a personal computer (hereinafter referred to as "PC"), a notebook PC, a tablet terminal, a smartphone, etc. The gaze input device P1 is capable of accepting gaze input operations based on the user's gaze position. The gaze input device P1 is a system capable of accepting input operations based on the user's gaze, and includes a processor 11, a memory 12, a camera 13, a display 14, and a database DB1. Note that the database DB1 may be configured separately from the gaze input device P1. The camera 13 and the display 14 may also be configured separately from the gaze input device P1.
 算出部の一例としてのプロセッサ11は、例えばCentral Processing Unit(CPU)またはField Programmable Gate Array(FPGA)を用いて構成されて、メモリ12と協働して、各種の処理および制御を行う。具体的には、プロセッサ11は、メモリ12に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。 The processor 11, which is an example of a calculation unit, is configured using, for example, a Central Processing Unit (CPU) or a Field Programmable Gate Array (FPGA), and performs various processes and controls in cooperation with the memory 12. Specifically, the processor 11 references the programs and data stored in the memory 12 and executes the programs to realize the functions of each unit.
 まず、プロセッサ11は、キャリブレーション画面SC0(図4参照、入力画面の一例)をディスプレイ14に出力し、表示させる。プロセッサ11は、キャリブレーション画面SC0を見るユーザをカメラ13により撮像させて、カメラ13から出力されたユーザの撮像画像を用いて検出されたユーザの視線位置の位置ずれを補正(変換)するための補正パラメータ(例えば、変換行列等)を算出する。 First, the processor 11 outputs the calibration screen SC0 (see FIG. 4, an example of an input screen) to the display 14 and displays it. The processor 11 then causes the camera 13 to capture an image of the user looking at the calibration screen SC0, and calculates correction parameters (e.g., a transformation matrix, etc.) for correcting (transforming) the positional deviation of the user's gaze position detected using the captured image of the user output from the camera 13.
 プロセッサ11は、補正パラメータを算出した後、入力画面SC1(図6、図7、図8参照)を表示し、入力画面SC1(図6、図7、図8参照)に対するユーザによる視線入力操作の受け付けを開始する。プロセッサ11は、補正パラメータを用いて、カメラ13から出力された撮像画像に基づいて検出されたユーザの視線位置を補正して蓄積し、視線位置の時系列変化に基づいて、入力情報(例えば、PINコード、記号、絵文字、一筆書き順序、パスワード等)の入力操作を受け付ける。 After calculating the correction parameters, the processor 11 displays the input screen SC1 (see Figs. 6, 7, and 8) and starts accepting gaze input operations by the user on the input screen SC1 (see Figs. 6, 7, and 8). The processor 11 uses the correction parameters to correct and store the gaze position of the user detected based on the captured image output from the camera 13, and accepts input operations of input information (e.g., PIN code, symbols, pictograms, stroke order, password, etc.) based on the time-series changes in the gaze position.
 また、プロセッサ11は、カメラ13から出力された撮像画像を画像解析し、計測環境情報を生成する。プロセッサ11は、生成された計測環境情報に基づいて、検出された視線位置のそれぞれのばらつきに関する閾値を決定する。 In addition, the processor 11 performs image analysis on the captured image output from the camera 13 and generates measurement environment information. Based on the generated measurement environment information, the processor 11 determines a threshold value for each variability of the detected gaze positions.
 なお、ここでいう計測環境情報は、例えば、ディスプレイ14の大きさ、顔画像に映るユーザの顔領域の明るさ、ディスプレイ14とユーザとの間の距離(撮像距離)、ユーザの顔の角度等のうちいずれか1つの情報を含む。 Note that the measurement environment information here includes, for example, any one of the following information: the size of the display 14, the brightness of the user's face area shown in the face image, the distance between the display 14 and the user (imaging distance), the angle of the user's face, etc.
 プロセッサ11は、受け付けた入力操作結果に基づく入力情報と、データベースDB1に登録されたユーザの登録情報(例えば、PINコード、パスワード等)とを照合する。なお、データベースDB1に登録されたユーザの登録情報は、データベースDB1に代えてメモリ12に登録されていてもよい。 The processor 11 compares the input information based on the received input operation result with the user's registration information (e.g., PIN code, password, etc.) registered in the database DB1. Note that the user's registration information registered in the database DB1 may be registered in the memory 12 instead of the database DB1.
 メモリ12は、例えばプロセッサ11の各処理を実行する際に用いられるワークメモリとしてのRandom Access Memory(以降、「RAM」と表記)と、プロセッサ11の動作を規定したプログラムおよびデータを格納するRead Only Memory(以降、「ROM」と表記)とを有する。RAMには、プロセッサ11により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ11の動作を規定するプログラムが書き込まれている。メモリ12は、ディスプレイ14の大きさ等を記憶する。なお、メモリ12は、ディスプレイ14に対するカメラ13の設置位置、距離等を記憶していてもよい。 Memory 12 has, for example, a Random Access Memory (hereinafter referred to as "RAM") as a working memory used when executing each process of processor 11, and a Read Only Memory (hereinafter referred to as "ROM") that stores programs and data that define the operation of processor 11. Data or information generated or acquired by processor 11 is temporarily stored in RAM. Programs that define the operation of processor 11 are written in ROM. Memory 12 stores the size of display 14, etc. Memory 12 may also store the installation position and distance of camera 13 relative to display 14, etc.
 カメラ13は、少なくともイメージセンサ(不図示)とレンズ(不図示)とを有して構成される。イメージセンサは、例えばCharged-Coupled Device(CCD)またはComplementary Metal Oxide Semiconductor(CMOS)の固体撮像素子であり、撮像面に結像した光学像を電気信号に変換する。カメラ13は、撮像したユーザの撮像画像をプロセッサ11に出力する。 The camera 13 is configured to have at least an image sensor (not shown) and a lens (not shown). The image sensor is, for example, a solid-state imaging element such as a Charged-Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS), and converts the optical image formed on the imaging surface into an electrical signal. The camera 13 outputs the captured image of the user to the processor 11.
 表示部の一例としてのディスプレイ14は、例えばLiquid Crystal Display(LCD)あるいは有機Electroluminescence(EL)ディスプレイを用いて構成される。ディスプレイ14は、プロセッサ11から出力されたキャリブレーション画面SC0(図4参照)、入力画面SC1(図6、図7、図8参照)等を表示する。 The display 14, which is an example of a display unit, is configured using, for example, a Liquid Crystal Display (LCD) or an organic electroluminescence (EL) display. The display 14 displays the calibration screen SC0 (see FIG. 4), the input screen SC1 (see FIG. 6, FIG. 7, FIG. 8), etc., output from the processor 11.
 データベースDB1は、所謂ストレージであって、例えばフラッシュメモリ、Hard Disk Drive(HDD)あるいはSolid State Drive(SSD)等の記憶媒体を用いて構成される。データベースDB1は、ユーザの登録情報(例えば、PINコード、パスワード等)をユーザごとに管理可能に格納する。 Database DB1 is a so-called storage device, and is configured using a storage medium such as a flash memory, a hard disk drive (HDD), or a solid state drive (SSD). Database DB1 stores user registration information (e.g., PIN code, password, etc.) in a manner that allows it to be managed for each user.
 次に、図2~図4のそれぞれを参照して、実施の形態1に係る視線入力装置P1の動作手順例について説明する。図2は、実施の形態1に係る視線入力装置P1の動作手順例を説明する図である。図3は、実施の形態1に係る視線入力装置P1の動作手順例を説明する図である。 Next, an example of the operation procedure of the eye-gaze input device P1 according to embodiment 1 will be described with reference to each of Figures 2 to 4. Figure 2 is a diagram for explaining an example of the operation procedure of the eye-gaze input device P1 according to embodiment 1. Figure 3 is a diagram for explaining an example of the operation procedure of the eye-gaze input device P1 according to embodiment 1.
 まず、図4を用いて、視線入力装置P1により実行されるキャリブレーション処理(ステップSt11~ステップSt18)について説明する。図4は、視線位置のキャリブレーション方法の一例を説明する図である。なお、図4に示すキャリブレーション画面SC0は、入力情報の入力操作を受け付けるための入力画面SC1(図6参照)と同様である例を示すが、これに限定されない。 First, the calibration process (steps St11 to St18) executed by the eye-gaze input device P1 will be described with reference to FIG. 4. FIG. 4 is a diagram for explaining an example of a method for calibrating the eye-gaze position. Note that the calibration screen SC0 shown in FIG. 4 shows an example that is similar to the input screen SC1 (see FIG. 6) for accepting input operations for input information, but is not limited to this.
 プロセッサ11は、中心点「A」を含むキャリブレーション画面SC0(図4参照)をディスプレイ14に出力し、表示させる(St11)。 The processor 11 outputs the calibration screen SC0 (see FIG. 4) including the center point "A" to the display 14 and displays it (St11).
 キャリブレーション画面SC0は、中心点「A」を含む。中心点「A」は、キャリブレーション画面SC0の略中央に配置される。 The calibration screen SC0 includes a center point "A." The center point "A" is located approximately in the center of the calibration screen SC0.
 プロセッサ11は、キャリブレーション画面SC0をディスプレイ14に出力して、表示させる。プロセッサ11は、ユーザにキャリブレーション画面SC0に含まれる中心点「A」を見る(注視する)ように要求する。なお、この要求は、中心点「A」の注視を要求するメッセージをディスプレイ14に表示することで実行されてもよいし、中心点「A」の注視を要求するメッセージをスピーカ(不図示)で音声出力することで実行されてもよい。 The processor 11 outputs the calibration screen SC0 to the display 14 for display. The processor 11 requests the user to look at (gaze at) the center point "A" included in the calibration screen SC0. This request may be made by displaying a message requesting the user to gaze at the center point "A" on the display 14, or by outputting the message requesting the user to gaze at the center point "A" as audio from a speaker (not shown).
 カメラ13は、キャリブレーション画面SC0を注視するユーザを撮像する(St12)。カメラ13は、撮像された撮像画像をプロセッサ11に出力する。 The camera 13 captures an image of the user gazing at the calibration screen SC0 (St12). The camera 13 outputs the captured image to the processor 11.
 プロセッサ11は、カメラ13から出力された撮像画像からユーザ(人物)の顔を検出し、視線検出アルゴリズムを用いて、キャリブレーション画面SC0上におけるユーザの視線位置を検出する(St13)。プロセッサ11は、検出された視線位置(座標)の情報をメモリ12に蓄積する(St13)。 The processor 11 detects the face of the user (person) from the captured image output from the camera 13, and detects the user's gaze position on the calibration screen SC0 using a gaze detection algorithm (St13). The processor 11 stores information on the detected gaze position (coordinates) in the memory 12 (St13).
 プロセッサ11は、蓄積された所定時間(例えば、0.3秒、0.5秒等)分の視線位置Pt0のそれぞれに基づいて、所定時間分の視線位置Pt0の位置ブレ量を算出する(St14)。なお、ここでいう位置ブレ量は、検出された視線位置のそれぞれのばらつきを示す標準偏差の値である。 The processor 11 calculates the amount of positional blur of the gaze position Pt0 for a predetermined time (e.g., 0.3 seconds, 0.5 seconds, etc.) based on each of the accumulated gaze positions Pt0 for a predetermined time (St14). Note that the amount of positional blur here is the standard deviation value that indicates the variation of each of the detected gaze positions.
 プロセッサ11は、算出された所定時間分の視線位置Pt0の位置ブレ量が閾値未満であるか否かを判定する(St15)。なお、閾値は、計測環境情報に基づいて決定される所定の固定値である。 The processor 11 determines whether the calculated amount of positional blur of the gaze position Pt0 for a predetermined time period is less than a threshold value (St15). Note that the threshold value is a predetermined fixed value that is determined based on the measurement environment information.
 プロセッサ11は、ステップSt15の処理において、算出された所定時間分の視線位置Pt0の位置ブレ量が閾値未満であると判定した場合(St15,YES)、所定時間分の視線位置Pt0の中心位置PtC0を算出する(St16)。 If the processor 11 determines in the processing of step St15 that the calculated amount of positional blur of the gaze position Pt0 for the specified time period is less than the threshold value (St15, YES), it calculates the center position PtC0 of the gaze position Pt0 for the specified time period (St16).
 一方、プロセッサ11は、ステップSt15の処理において、算出された所定時間分の視線位置Pt0の位置ブレ量が閾値未満でないと判定した場合(St15,NO)、ステップSt12の処理に戻る。 On the other hand, if the processor 11 determines in the processing of step St15 that the calculated amount of positional blur of the gaze position Pt0 for the specified time period is not less than the threshold value (St15, NO), the processor 11 returns to the processing of step St12.
 プロセッサ11は、算出された中心位置PtC0と、中心点「A」(つまり、領域ARA)の中心位置Ct(図8参照)とに基づいて、中心位置PtC0を中心点「A」の中心位置Ctに座標変換するための補正パラメータ(変換行列DR0)を算出する(St17)。ここで算出される補正パラメータは、ユーザの視線位置(つまり、視線位置Pt0の中心位置PtC0)を、ユーザによる視線入力位置に変換(補正)するためのパラメータである。 The processor 11 calculates a correction parameter (transformation matrix DR0) for coordinate transformation of the center position PtC0 to the center position Ct of the center point "A" (i.e., the center position PtC0 of the area ARA) based on the calculated center position PtC0 and the center position Ct (see FIG. 8) of the center point "A" (St17). The correction parameter calculated here is a parameter for transforming (correcting) the user's gaze position (i.e., the center position PtC0 of the gaze position Pt0) to the gaze input position by the user.
 プロセッサ11は、変換行列DR0を用いることで、例えば、所定時間分の視線位置Pt0を入力位置Pt0´に、所定時間分の視線位置Pt1を入力位置Pt1´にそれぞれ座標変換することで、ユーザの視線位置の位置ずれを補正できる。これにより、プロセッサ11は、例えば、所定時間分の視線位置Pt0を入力位置Pt0´に座標変換した後、入力位置Pt0´でユーザの入力操作を受け付けたり、ユーザの視線位置が視線位置Pt0から視線位置Pt1に移動した場合には、入力位置Pt0´から入力位置Pt1´に向かって移動したと判定したりできる。 By using the transformation matrix DR0, the processor 11 can correct the positional shift of the user's gaze position, for example, by converting the gaze position Pt0 for a predetermined time into an input position Pt0' and the gaze position Pt1 for a predetermined time into an input position Pt1'. This allows the processor 11 to, for example, convert the gaze position Pt0 for a predetermined time into an input position Pt0', and then accept an input operation from the user at the input position Pt0', or, when the user's gaze position moves from gaze position Pt0 to gaze position Pt1, determine that the gaze position has moved from input position Pt0' to input position Pt1'.
 プロセッサ11は、補正パラメータを算出した後、キャリブレーション処理を終了し、入力情報の入力を受け付けるための入力画面SC1をディスプレイ14に出力して、表示させる(St18)。入力画面SC1は、中心点「A」と、4つの数字に対応する入力キー「1」,「2」,「3」,「4」とを含む。中心点「A」は、入力画面SC1の略中央に配置される。入力キー「1」~「4」のそれぞれは、中心点「A」を中心点とする同心円上に略等間隔で配置される。 After calculating the correction parameters, the processor 11 ends the calibration process and outputs and displays the input screen SC1 for accepting input of input information on the display 14 (St18). The input screen SC1 includes a center point "A" and input keys "1", "2", "3", and "4" corresponding to four numbers. The center point "A" is located approximately in the center of the input screen SC1. Each of the input keys "1" to "4" is located at approximately equal intervals on concentric circles centered on the center point "A".
 次に、視線入力装置P1により実行される視線入力操作の受け付け処理(ステップSt19~ステップSt27)について説明する。 Next, we will explain the process of accepting the gaze input operation performed by the gaze input device P1 (steps St19 to St27).
 カメラ13は、入力画面SC1を注視するユーザを撮像する(St19)。カメラ13は、撮像された撮像画像をプロセッサ11に出力する。 The camera 13 captures an image of the user gazing at the input screen SC1 (St19). The camera 13 outputs the captured image to the processor 11.
 プロセッサ11は、カメラ13から出力された撮像画像からユーザ(人物)の顔を検出し、視線検出アルゴリズムを用いて、入力画面SC1上におけるユーザの視線位置を検出する(St20)。プロセッサ11は、メモリ12に、所定時間分(例えば、0.3秒分、0.5秒分等)検出された視線位置(座標)の情報を時系列に蓄積する(St20)。なお、プロセッサ11は、検出された視線位置の情報と、この視線位置が検出された撮像画像の撮像時刻情報とを対応付けて蓄積してもよい。 Processor 11 detects the face of the user (person) from the captured image output from camera 13, and detects the user's gaze position on input screen SC1 using a gaze detection algorithm (St20). Processor 11 accumulates information on the detected gaze position (coordinates) for a predetermined period of time (e.g., 0.3 seconds, 0.5 seconds, etc.) in memory 12 in chronological order (St20). Processor 11 may also accumulate information on the detected gaze position in association with imaging time information of the captured image in which this gaze position was detected.
 プロセッサ11は、蓄積された所定時間分の視線位置と、視線位置の移動開始点である中心点「A」の中心位置Ct(図8参照)とに基づいて、近似直線を算出する(St22)。プロセッサ11は、算出された近似直線の角度を算出し、メモリ12に時系列に蓄積する(St23)。 The processor 11 calculates an approximation line based on the accumulated gaze positions for a predetermined time period and the center position Ct (see FIG. 8) of the center point "A" which is the starting point of the gaze position movement (St22). The processor 11 calculates the angle of the calculated approximation line and accumulates it in the memory 12 in chronological order (St23).
 プロセッサ11は、少なくとも2回の近似直線の算出処理Rp1により蓄積された複数の近似直線のそれぞれの角度に基づいて、ユーザの視線位置のブレ量を示す角度ブレ量(例えば、図5に示す角度ブレ量θA、図6に示す角度ブレ量θB等)を算出する(St24)。 The processor 11 calculates an angular blur amount (e.g., the angular blur amount θA shown in FIG. 5, the angular blur amount θB shown in FIG. 6, etc.) indicating the amount of blur in the user's gaze position based on the angles of the multiple approximate straight lines accumulated by at least two approximate straight line calculation processes Rp1 (St24).
 プロセッサ11は、角度ブレ量が所定の入力キーに対応する閾値未満であるか否かを判定する(St25)。なお、ここでいう閾値は、例えば、図7に示す閾値θ1、図13に示す閾値θ2,θ3等であって、ユーザの視線位置の移動方向(つまり、近似直線の角度)に基づいて、入力画面SC1,SC2,SC3に表示された入力キーである中心点「A」,数字「1」,…のうちいずれの入力キーが入力されたか否かを判定するための閾値である。 The processor 11 determines whether the amount of angular blur is less than a threshold value corresponding to a specific input key (St25). The threshold value referred to here is, for example, the threshold value θ1 shown in FIG. 7, or the threshold values θ2 and θ3 shown in FIG. 13, and is a threshold value for determining whether an input key has been input among the center point "A", the number "1", ..., which are input keys displayed on the input screens SC1, SC2, and SC3, based on the direction of movement of the user's gaze position (i.e., the angle of the approximated line).
 プロセッサ11は、ステップSt25の処理において、角度ブレ量が閾値未満であると判定した場合(St25,YES)、近似直線が示すユーザの視線位置の移動方向に配置された入力キー(例えば、中心点「A」、数字「1」,…等)に基づいて、入力内容(入力キー)を確定し、ユーザの視線に基づく入力操作を受け付ける(St26)。 If the processor 11 determines in the processing of step St25 that the amount of angular blur is less than the threshold value (St25, YES), it confirms the input content (input key) based on the input keys (e.g., center point "A", number "1", ..., etc.) arranged in the direction of movement of the user's gaze position indicated by the approximation line, and accepts an input operation based on the user's gaze (St26).
 一方、プロセッサ11は、ステップSt25の処理において、角度ブレ量が閾値未満でないと判定した場合(St25,NO)、ステップSt19の処理に戻る。 On the other hand, if the processor 11 determines in the processing of step St25 that the amount of angular blur is not less than the threshold value (St25, NO), the processor 11 returns to the processing of step St19.
 プロセッサ11は、入力操作として受け付けた入力内容(入力キー)の数に基づいて、所定桁数(例えば、3桁、4桁等)分の入力操作が完了したか否かを判定する(St27)。 The processor 11 determines whether or not input operations for a predetermined number of digits (e.g., three digits, four digits, etc.) have been completed based on the number of input contents (input keys) accepted as input operations (St27).
 プロセッサ11は、ステップSt27の処理において、所定桁数分の入力操作が完了したと判定した場合(St27,YES)、図3に示す動作手順を終了する。プロセッサ11は、所定桁数分の入力内容(入力キー)に基づく入力情報を取得し、事前にデータベースDB1に登録された入力情報との照合処理に移行する。 If the processor 11 determines in the process of step St27 that the input operation for the predetermined number of digits has been completed (St27, YES), the operation procedure shown in FIG. 3 ends. The processor 11 acquires input information based on the input contents (input keys) for the predetermined number of digits, and proceeds to a process of comparing the input information with the input information previously registered in the database DB1.
 一方、プロセッサ11は、ステップSt27の処理において、所定桁数分の入力操作が完了していないと判定した場合(St27,NO)、ステップSt19の処理に戻る。 On the other hand, if the processor 11 determines in the processing of step St27 that the input operation for the predetermined number of digits has not been completed (St27: NO), the processor 11 returns to the processing of step St19.
 以上により、実施の形態1に係る視線入力装置P1は、ユーザの視線位置が各入力キーの領域ARA,AR1,AR2,AR3,AR4で検出されない場合、各入力キーの領域ARA(第1の入力部の一例),AR1~AR4(第2の入力部の一例)で検出されたユーザの視線位置が、入力操作を受け付けるための所定の条件(例えば、ユーザの視線位置が所定時間以上継続して領域ARA,AR1~AR4内から検出される等)を満たさない場合等であっても、ユーザの視線位置の移動方向(つまり、時系列変化)に基づいて、入力操作を受け付けることができる。 As described above, the eye-gaze input device P1 according to embodiment 1 can accept an input operation based on the direction of movement of the user's eye-gaze position (i.e., changes over time) even when the user's eye-gaze position is not detected in the areas ARA, AR1, AR2, AR3, AR4 of each input key, or when the user's eye-gaze position detected in the areas ARA (an example of a first input section) and AR1 to AR4 (an example of a second input section) of each input key does not satisfy a predetermined condition for accepting an input operation (for example, the user's eye-gaze position is continuously detected within areas ARA, AR1 to AR4 for a predetermined period of time or more).
 つまり、視線入力装置P1は、ユーザが各入力キーの領域ARA,AR1~AR4を注視しなくても入力キーの入力操作を受け付けることができるため、ユーザ1人当たりの入力操作に要する時間をより効果的に短縮することができる。 In other words, the eye-gaze input device P1 can accept input key input operations without the user having to gaze at the areas ARA, AR1 to AR4 of each input key, so the time required for each user to perform input operations can be more effectively reduced.
 また、視線入力装置P1は、キャリブレーション精度が低い場合であっても、ユーザの視線に基づく入力操作をより高精度に受け付けることができる。したがって、視線入力装置P1は、例えば、事前にユーザごとの補正パラメータが記録、蓄積されておらず、不特定多数のユーザにより利用される場合であっても、キャリブレーション精度が低い補正パラメータを少なくとも1点の(例えば、中心点「A」)の注視により算出できるため、ユーザ1人当たりの補正パラメータの算出に要する時間をより効果的に短縮することができる。 Furthermore, even if the calibration accuracy is low, the eye-gaze input device P1 can receive input operations based on the user's gaze with a high degree of accuracy. Therefore, even if the eye-gaze input device P1 is used by an unspecified number of users without recording and storing correction parameters for each user in advance, it can calculate correction parameters with low calibration accuracy by gazing at at least one point (for example, the central point "A"), and therefore can more effectively reduce the time required to calculate the correction parameters for each user.
 次に、図5を参照して、ユーザの視線位置の移動方向の算出処理(ステップSt19~ステップSt24)について具体的に説明する。図5は、視線位置の移動方向の算出方法を説明する図である。 Next, the process of calculating the moving direction of the user's gaze position (steps St19 to St24) will be described in detail with reference to FIG. 5. FIG. 5 is a diagram explaining the method of calculating the moving direction of the gaze position.
 まず、図5を参照して、近似直線の算出処理Rp1について説明する。なお、図5では、説明を分かりやすくするために蓄積された3つの視線位置Pt21´,Pt22´,Pt23´のそれぞれと、中心点「A」の中心位置Ct(図8参照)とに基づいて、ユーザの視線位置の時系列変化を示す3本の近似直線DR21,DR22,DR23のそれぞれを算出する例について説明する。なお、ステップSt19およびステップSt20の説明は同様であるため、省略する。 First, the approximate line calculation process Rp1 will be described with reference to FIG. 5. Note that in FIG. 5, for ease of understanding, an example will be described in which three approximate lines DR21, DR22, and DR23 indicating time-series changes in the user's gaze position are calculated based on three accumulated gaze positions Pt21', Pt22', and Pt23' and the center position Ct of center point "A" (see FIG. 8). Note that the explanations of steps St19 and St20 are similar and will be omitted.
 図5に示す例において、プロセッサ11は、近似直線の算出処理Rp1を3回実行する。 In the example shown in FIG. 5, the processor 11 executes the approximate line calculation process Rp1 three times.
 1回目の近似直線の算出処理Rp1において、プロセッサ11は、所定時間分の視線位置を蓄積し(St21)、蓄積された所定時間分の視線位置Pt21´と、視線位置の移動開始点である中心点「A」の中心位置Ctとに基づいて、近似直線DR21を算出する(St22)。プロセッサ11は、近似直線DR21の角度を算出し、メモリ12に時系列に蓄積する(St23)。 In the first approximate line calculation process Rp1, the processor 11 accumulates the gaze positions for a predetermined time period (St21), and calculates the approximate line DR21 based on the accumulated gaze positions Pt21' for the predetermined time period and the center position Ct of the center point "A", which is the starting point of the gaze position movement (St22). The processor 11 calculates the angle of the approximate line DR21, and accumulates it in chronological order in the memory 12 (St23).
 2回目の近似直線の算出処理Rp1において、プロセッサ11は、ステップSt19の処理に戻り、所定時間分の視線位置をさらに蓄積し(St21)、蓄積された所定時間分の視線位置Pt22´と、視線位置の移動開始点である中心点「A」の中心位置Ctとに基づいて、近似直線DR22を算出する(St22)。プロセッサ11は近似直線DR22の角度を算出し、メモリ12に時系列に蓄積する(St23)。 In the second approximate line calculation process Rp1, processor 11 returns to the process of step St19, further accumulates gaze positions for a predetermined time period (St21), and calculates approximate line DR22 based on the accumulated gaze positions Pt22' for the predetermined time period and the center position Ct of center point "A", which is the starting point of the gaze position movement (St22). Processor 11 calculates the angle of approximate line DR22 and accumulates it in chronological order in memory 12 (St23).
 3回目の近似直線の算出処理Rp1において、プロセッサ11は、ステップSt19の処理に戻り、所定時間分の視線位置をさらに蓄積し(St21)、蓄積された所定時間分の視線位置Pt23´と、視線位置の移動開始点である中心点「A」の中心位置Ctとに基づいて、近似直線DR23を算出する(St22)。プロセッサ11は近似直線DR23の角度を算出し、メモリ12に時系列に蓄積する(St23)。 In the third approximate line calculation process Rp1, processor 11 returns to the process of step St19, further accumulates gaze positions for a predetermined time period (St21), and calculates approximate line DR23 based on the accumulated gaze positions Pt23' for the predetermined time period and the center position Ct of center point "A", which is the starting point of the gaze position movement (St22). Processor 11 calculates the angle of approximate line DR23 and accumulates it in chronological order in memory 12 (St23).
 プロセッサ11は、近似直線の算出処理Rp1により蓄積された3本の近似直線DR21~DR23のそれぞれの角度に基づいて、ユーザの視線位置のブレ量を示す角度ブレ量θAを算出する(St24)。 The processor 11 calculates the angular blur amount θA, which indicates the amount of blur in the user's gaze position, based on the angles of the three approximate lines DR21 to DR23 accumulated by the approximate line calculation process Rp1 (St24).
 以上により、視線入力装置P1は、ユーザの視線位置の移動方向と、ユーザの視線位置の移動方向のブレ量とを算出できる。 As a result, the eye gaze input device P1 can calculate the direction in which the user's eye gaze position moves and the amount of blur in the direction in which the user's eye gaze position moves.
 次に、図6および図7のそれぞれを参照して、角度ブレ量に基づく入力操作の受け付け処理(ステップSt25~ステップSt26)について具体的に説明する。図6は、視線位置の移動方向に基づく視線入力操作の受付方法を説明する図である。図7は、視線位置の移動方向に基づく視線入力操作を受け付け可能な角度の一例を示す図である。 Next, the process of accepting an input operation based on the amount of angular shake (steps St25 to St26) will be described in detail with reference to Figs. 6 and 7. Fig. 6 is a diagram explaining a method of accepting an eye-gaze input operation based on the moving direction of the eye-gaze position. Fig. 7 is a diagram showing an example of an angle at which an eye-gaze input operation based on the moving direction of the eye-gaze position can be accepted.
 まず、図6を参照して、近似直線の算出処理Rp1について説明する。なお、図6では、説明を分かりやすくするために蓄積された4つの視線位置のそれぞれに基づいて、ユーザの視線位置の時系列変化を示す近似直線DR31,DR32,DR33,DR34のそれぞれを算出する例について説明する。 First, the approximate line calculation process Rp1 will be described with reference to Figure 6. Note that in Figure 6, an example will be described in which approximate lines DR31, DR32, DR33, and DR34 that indicate time-series changes in the user's gaze position are calculated based on four gaze positions that have been accumulated for ease of understanding.
 図6に示す例において、プロセッサ11は、蓄積された4つの視線位置のそれぞれと、中心点「A」の中心位置Ct(図8参照)とに基づいて、各視線位置に対応する4つの近似直線DR31~DR34のそれぞれを算出する(St22)。プロセッサ11は、算出された4つの近似直線DR31~DR34のそれぞれの角度を算出し、メモリ12に蓄積する(St23)。 In the example shown in FIG. 6, the processor 11 calculates four approximate straight lines DR31 to DR34 corresponding to each of the accumulated gaze positions based on each of the four gaze positions and the center position Ct of the center point "A" (see FIG. 8) (St22). The processor 11 calculates the angle of each of the calculated four approximate straight lines DR31 to DR34 and accumulates them in the memory 12 (St23).
 プロセッサ11は、近似直線の算出処理Rp1により蓄積された近似直線DR31~DR34のそれぞれの角度に基づいて、ユーザの視線位置のブレ量を示す角度ブレ量θBを算出する(St24)。 The processor 11 calculates the angular blur amount θB, which indicates the amount of blur in the user's gaze position, based on the angles of the approximated lines DR31 to DR34 accumulated by the approximated line calculation process Rp1 (St24).
 プロセッサ11は、算出された角度ブレ量θBが閾値θ1未満であるか否かを判定する(St25)。なお、図7に示す例において、閾値θ1は、90°以下の角度であればよい。 The processor 11 determines whether the calculated angular blur amount θB is less than the threshold value θ1 (St25). In the example shown in FIG. 7, the threshold value θ1 may be an angle of 90° or less.
 プロセッサ11は、算出された角度ブレ量θBが閾値θ1未満であると判定した場合、近似直線の角度が角度領域θ11,θ12,θ13,θ14のいずれに含まれるかを近似直線DR31~DR34の角度が算出された時系列順に判定する。プロセッサ11は、判定結果に基づいて、近似直線の角度が時系列に連続して所定回数(例えば、2回、5回等)以上、同一の角度領域内に含まれると判定した場合、この角度領域に対応し、近似直線が示すユーザの視線位置の移動方向に配置された入力キーを入力内容とする入力操作を受け付ける(St26)。 If processor 11 determines that the calculated angle blur amount θB is less than threshold θ1, it determines in which of angle regions θ11, θ12, θ13, or θ14 the angle of the approximated line falls in, in the chronological order in which the angles of approximated lines DR31 to DR34 were calculated. If processor 11 determines based on the determination result that the angle of the approximated line falls within the same angle region a predetermined number of times (e.g., two times, five times, etc.) or more consecutively in the chronological order, it accepts an input operation in which the input content is an input key that corresponds to this angle region and is positioned in the direction of movement of the user's gaze position indicated by the approximated line (St26).
 ここで、図7に示す各角度領域θ11は、入力キー「1」の位置を基準(0(ゼロ)°)として、-45°以上、かつ、+45°未満の領域である。角度領域θ12は、入力キー「1」の位置を基準(0(ゼロ)°)として、+45°以上、かつ、+135°未満の領域である。角度領域θ13は、入力キー「1」の位置を基準(0(ゼロ)°)として、+135°以上、かつ、+225°未満の領域である。角度領域θ12は、入力キー「1」の位置を基準(0(ゼロ)°)として、+225°以上、かつ、+315°未満(つまり、-45°未満)の領域である。 Here, each angle region θ11 shown in FIG. 7 is a region that is -45° or more and less than +45°, with the position of the input key "1" as the reference (0 (zero)°). The angle region θ12 is a region that is +45° or more and less than +135°, with the position of the input key "1" as the reference (0 (zero)°). The angle region θ13 is a region that is +135° or more and less than +225°, with the position of the input key "1" as the reference (0 (zero)°). The angle region θ12 is a region that is +225° or more and less than +315° (i.e., less than -45°), with the position of the input key "1" as the reference (0 (zero)°).
 以下、近似直線の角度が時系列に連続して4回、同一の角度領域内に含まれると判定した場合に、この角度領域に対応し、近似直線が示すユーザの視線位置の移動方向に配置された入力キーを入力内容とする入力操作を受け付ける場合のプロセッサ11の処理について、具体例を用いて説明する。 Below, we will use a concrete example to explain the process of the processor 11 when it is determined that the angle of the approximated line falls within the same angle region four times consecutively in time series, and when it accepts an input operation in which the input content is an input key that corresponds to this angle region and is positioned in the direction of movement of the user's gaze position indicated by the approximated line.
 プロセッサ11は、近似直線DR31の角度が角度領域θ11~θ14のいずれに含まれるかを判定する。プロセッサ11は、近似直線DR31の角度が角度領域θ11に含まれると判定した後、近似直線DR31の次に算出された近似直線DR32の角度が、近似直線DR31の角度と同一の角度領域θ11に含まれるか否かを判定する。 Processor 11 determines whether the angle of approximate line DR31 is included in any of the angle regions θ11 to θ14. After determining that the angle of approximate line DR31 is included in angle region θ11, processor 11 determines whether the angle of approximate line DR32, which is calculated next to approximate line DR31, is included in the same angle region θ11 as the angle of approximate line DR31.
 プロセッサ11は、近似直線DR32の角度が角度領域θ11に含まれると判定した後、近似直線DR32の次に算出された近似直線DR33の角度が、近似直線DR31~DR32の角度と同一の角度領域θ11に含まれるか否かを判定する。 After determining that the angle of the approximated straight line DR32 is included in the angle region θ11, the processor 11 determines whether the angle of the approximated straight line DR33, which is calculated next to the approximated straight line DR32, is included in the same angle region θ11 as the angles of the approximated straight lines DR31 to DR32.
 プロセッサ11は、近似直線DR33の角度が角度領域θ11に含まれると判定した後、近似直線DR33の次に算出された近似直線DR34の角度が、近似直線DR31~DR33の角度と同一の角度領域θ11に含まれるか否かを判定する。 After determining that the angle of the approximated straight line DR33 is included in the angle region θ11, the processor 11 determines whether the angle of the approximated straight line DR34, which is calculated next to the approximated straight line DR33, is included in the same angle region θ11 as the angles of the approximated straight lines DR31 to DR33.
 プロセッサ11は、近似直線DR34の角度が角度領域θ11に含まれると判定した後、時系列に連続して4回(つまり、所定回数)、近似直線DR31~DR34の角度のそれぞれが同一の角度領域θ11に含まれると判定したことを検知する。プロセッサ11は、近似直線DR31~DR34の角度が含まれる角度領域θ11に対応する入力キー「1」を、入力内容とする入力操作を受け付ける。 After determining that the angle of approximated straight line DR34 is included in angle region θ11, processor 11 detects that it has determined that each of the angles of approximated straight lines DR31 to DR34 is included in the same angle region θ11 four times in succession in time series (i.e., a predetermined number of times). Processor 11 accepts an input operation in which the input content is the input key "1" corresponding to the angle region θ11 that includes the angles of approximated straight lines DR31 to DR34.
 以上により、実施の形態1に係る視線入力装置P1は、ユーザの視線位置の移動方向に基づいて、ユーザが入力しようとしている入力内容を推定し、ユーザが入力キーを注視する前に入力操作として受け付けることができる。これにより、ユーザ1人当たりの入力情報の入力に要する時間をより効率的に短縮できる。また、視線入力装置P1は、ユーザの視線位置の角度ブレ量に基づいて、ユーザの視線位置の移動方向をより正確に推定することができるため、キャリブレーション精度が低い場合であっても、入力情報の誤入力をより効果的に抑制することができる。 As described above, the eye-gaze input device P1 according to embodiment 1 can estimate the input content that the user is about to input based on the moving direction of the user's gaze position, and can accept it as an input operation before the user gazes at the input keys. This makes it possible to more efficiently reduce the time required for each user to input information. Furthermore, because the eye-gaze input device P1 can more accurately estimate the moving direction of the user's gaze position based on the amount of angular deviation of the user's gaze position, it is possible to more effectively prevent erroneous input of input information even when calibration accuracy is low.
 次に、図8を参照して、不感領域ARNについて説明する。図8は、不感領域ARNの一例を説明する図である。なお、不感領域ARNの設定は必須でなく、任意であってよい。 Next, the insensitive area ARN will be described with reference to FIG. 8. FIG. 8 is a diagram illustrating an example of the insensitive area ARN. Note that setting the insensitive area ARN is not essential and may be optional.
 不感領域ARNは、近似直線の角度に基づく入力内容の推定処理を無効化する領域であって、中心点「A」の領域ARA外、かつ、中心点「A」の領域ARAの中心位置Ctから半径R1内の領域である。なお、不感領域ARNは、ディスプレイ14のアスペクト比、大きさ、あるいは入力キーの配置に基づいて、他の形状(例えば、楕円、菱形等)で設定されてよい。 The insensitive area ARN is an area that disables the estimation process of the input content based on the angle of the approximate line, and is an area outside the area ARA of the center point "A" and within a radius R1 from the center position Ct of the area ARA of the center point "A". Note that the insensitive area ARN may be set in other shapes (e.g., ellipse, diamond, etc.) based on the aspect ratio and size of the display 14 or the arrangement of the input keys.
 プロセッサ11は、検出されたユーザの視線位置が不感領域ARN内であると判定した場合、不感領域ARN内に位置するユーザの視線位置を近似直線および近似直線の角度の算出に使用しない。つまり、プロセッサ11は、不感領域ARN外で検出されたユーザの視線位置に基づいて、近似直線および近似直線の角度の算出を実行し、算出された近似直線の角度に基づいて、ユーザが入力しようとしている入力内容を推定し、ユーザが入力キーを注視する前に入力操作として受け付ける。 When the processor 11 determines that the detected gaze position of the user is within the insensitive area ARN, the processor 11 does not use the gaze position of the user located within the insensitive area ARN in the calculation of the approximate line and the angle of the approximate line. In other words, the processor 11 calculates the approximate line and the angle of the approximate line based on the gaze position of the user detected outside the insensitive area ARN, estimates the input content that the user is about to input based on the calculated angle of the approximate line, and accepts it as an input operation before the user gazes at the input keys.
 これにより、実施の形態1に係る視線入力装置P1は、中心点「A」から所定距離(半径R1)以上離れた位置で検出された視線位置を入力内容の推定に用いることで、近似直線の角度のばらつきが小さくなりやすい中心点「A」の近傍で検出され、入力内容の誤判定が生じやすい視線位置を除去できる。したがって、視線入力装置P1は、ユーザの視線位置の移動方向に基づく入力内容の推定処理において、入力内容の誤判定をより効果的に抑制することができる。 As a result, the gaze input device P1 according to embodiment 1 uses the gaze position detected at a position that is at least a predetermined distance (radius R1) away from the center point "A" to estimate the input content, and can eliminate gaze positions that are detected near the center point "A" where the variation in the angle of the approximated line is likely to be small and that are likely to result in erroneous determination of the input content. Therefore, the gaze input device P1 can more effectively suppress erroneous determination of the input content in the process of estimating the input content based on the movement direction of the user's gaze position.
 次に、図9および図10のそれぞれを参照して、第1の視線入力操作手順について説明する。図9は、第1の視線入力操作手順例を説明する図である。図10は、第1の視線入力操作手順例を説明する図である。第1の視線入力操作手順は、中心点「A」に対する入力操作と入力キー「1」~「4」に対する入力操作とを交互に受け付ける場合の視線入力操作手順であって、図3に示すステップSt19~ステップSt26のそれぞれの処理に対応する。 Next, the first gaze input operation procedure will be described with reference to Fig. 9 and Fig. 10. Fig. 9 is a diagram for explaining an example of the first gaze input operation procedure. Fig. 10 is a diagram for explaining an example of the first gaze input operation procedure. The first gaze input operation procedure is a gaze input operation procedure in which input operations for the center point "A" and input operations for the input keys "1" to "4" are alternately accepted, and corresponds to the processing of each of steps St19 to St26 shown in Fig. 3.
 なお、図9および図10のそれぞれに示す入力画面SC41,SC42,SC43,SC44,SC45,SC46,SC47,SC48は、一例であって、これに限定されない。例えば、数字の入力キーの数は、4つに限定されない。また、例えば、数字の入力キーの配置は、入力画面SC41~SC48に示す配置に限定されず、任意の角度(例えば、45°)だけ回転されて配置されてもよい。 Note that the input screens SC41, SC42, SC43, SC44, SC45, SC46, SC47, and SC48 shown in Figures 9 and 10, respectively, are merely examples and are not limited to these. For example, the number of numeric input keys is not limited to four. Also, for example, the arrangement of the numeric input keys is not limited to the arrangement shown in input screens SC41 to SC48, and they may be rotated by any angle (for example, 45°) and arranged.
 プロセッサ11は、入力画面SC41をディスプレイ14に表示し、ユーザに中心点「A」を注視させるように指示(音声出力、メッセージ出力等)するとともに、5つの入力キーのうち中心点「A」に対する入力操作のみを有効(受け付け可能)化する。 The processor 11 displays the input screen SC41 on the display 14, instructs the user to look at the center point "A" (by outputting voice, outputting a message, etc.), and enables (makes acceptable) only the input operation for the center point "A" out of the five input keys.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視しているか否かを判定する。なお、プロセッサ11は、このタイミングでユーザの視線位置をキャリブレーションするための補正パラメータの生成を実行してよい。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position. Processor 11 may generate correction parameters for calibrating the user's gaze position at this timing.
 プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視していると判定した場合、入力画面SC42をディスプレイ14に表示し、ユーザにいずれかの数字の入力キーを注視させるように指示する。プロセッサ11は、入力画面SC42において、中心点「A」に対する入力操作を無効化するとともに、中心点「A」の周囲に配置された4つの入力キー「1」~「4」のそれぞれに対する入力操作を有効化する。 If processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located, it displays input screen SC42 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC42, processor 11 disables input operations for center point "A" and enables input operations for each of the four input keys "1" to "4" arranged around center point "A".
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR41(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1、入力キー「2」の領域AR2、入力キー「3」の領域AR3、入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC42で数字の入力キー「1」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1", area AR2 of input key "2", area AR3 of input key "3", or area AR4 of input key "4" based on the detected user's gaze position or the movement direction DR41 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "1" on input screen SC42.
 プロセッサ11は、いずれかの数字の入力キー(ここでは、入力キー「1」)の入力操作を受け付けた後、入力画面SC43をディスプレイ14に表示し、ユーザに中心点「A」を注視させるように再度指示するとともに、5つの入力キーのうち中心点「A」に対する入力操作のみを有効(受け付け可能)化する。 After accepting an input operation of any of the numeric input keys (here, input key "1"), the processor 11 displays the input screen SC43 on the display 14, instructs the user to gaze at the center point "A" again, and enables (accepts) only the input operation for the center point "A" out of the five input keys.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR42(近似直線の角度)に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視しているか否かを判定する。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position or the movement direction DR42 of the user's gaze position (angle of the approximated line).
 プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視していると判定した場合、入力画面SC44をディスプレイ14に表示し、ユーザにいずれかの数字の入力キーを注視させるように指示する。プロセッサ11は、入力画面SC44において、中心点「A」に対する入力操作を無効化するとともに、中心点「A」の周囲に配置された4つの入力キー「1」~「4」のそれぞれに対する入力操作を有効化する。 If processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located, it displays input screen SC44 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC44, processor 11 disables input operations for center point "A" and enables input operations for each of the four input keys "1" to "4" arranged around center point "A".
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR43(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1、入力キー「2」の領域AR2、入力キー「3」の領域AR3、入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC44で数字の入力キー「2」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1", area AR2 of input key "2", area AR3 of input key "3", or area AR4 of input key "4" based on the detected user's gaze position or the movement direction DR43 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "2" on input screen SC44.
 プロセッサ11は、いずれかの数字の入力キー(ここでは、入力キー「2」)の入力操作を受け付けた後、入力画面SC45をディスプレイ14に表示し、ユーザに中心点「A」を注視させるように再度指示するとともに、5つの入力キーのうち中心点「A」に対する入力操作のみを有効化する。 After accepting an input operation of any of the numeric input keys (here, input key "2"), the processor 11 displays the input screen SC45 on the display 14, instructs the user to gaze at the center point "A" again, and enables only the input operation for the center point "A" out of the five input keys.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR44(近似直線の角度)に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視しているか否かを判定する。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position or the movement direction DR44 of the user's gaze position (angle of the approximated line).
 プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視していると判定した場合、入力画面SC46をディスプレイ14に表示し、ユーザにいずれかの数字の入力キーを注視させるように指示する。プロセッサ11は、入力画面SC46において、中心点「A」に対する入力操作を無効化するとともに、中心点「A」の周囲に配置された4つの入力キー「1」~「4」のそれぞれに対する入力操作を有効化する。 If processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located, it displays input screen SC46 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC46, processor 11 disables input operations for center point "A" and enables input operations for each of the four input keys "1" to "4" arranged around center point "A".
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR45(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1、入力キー「2」の領域AR2、入力キー「3」の領域AR3、入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC46で数字の入力キー「3」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1", area AR2 of input key "2", area AR3 of input key "3", or area AR4 of input key "4" based on the detected user's gaze position or the movement direction DR45 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "3" on input screen SC46.
 プロセッサ11は、いずれかの数字の入力キー(ここでは、入力キー「3」)の入力操作を受け付けた後、入力画面SC47をディスプレイ14に表示し、ユーザに中心点「A」を注視させるように再度指示するとともに、5つの入力キーのうち中心点「A」に対する入力操作のみを有効化する。 After accepting an input operation of any of the numeric input keys (here, input key "3"), the processor 11 displays the input screen SC47 on the display 14, instructs the user to gaze at the center point "A" again, and enables only the input operation for the center point "A" out of the five input keys.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR46(近似直線の角度)に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視しているか否かを判定する。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position or the movement direction DR46 of the user's gaze position (angle of the approximated line).
 プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視していると判定した場合、入力画面SC48をディスプレイ14に表示し、ユーザにいずれかの数字の入力キーを注視させるように指示する。プロセッサ11は、入力画面SC48において、中心点「A」に対する入力操作を無効化するとともに、中心点「A」の周囲に配置された4つの入力キー「1」~「4」のそれぞれに対する入力操作を有効化する。 If processor 11 determines, based on the detected user's gaze position, that the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located, it displays input screen SC48 on display 14 and instructs the user to gaze at one of the number input keys. On input screen SC48, processor 11 disables input operations for center point "A" and enables input operations for each of the four input keys "1" to "4" arranged around center point "A".
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR46(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1、入力キー「2」の領域AR2、入力キー「3」の領域AR3、入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC48で数字の入力キー「4」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing at area AR1 of the four input keys "1," AR2 of the input key "2," AR3 of the input key "3," or area AR4 of the input key "4" based on the detected user's gaze position or the movement direction DR46 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "4" on the input screen SC48.
 プロセッサ11は、4つの数字「1」,「2」,「3」,「4」の入力操作を受け付けた後、入力された数字(入力情報)と、データベースDB1に事前に登録された登録情報とを照合し、ユーザ認証を実行する。 After accepting the input of the four numbers "1," "2," "3," and "4," the processor 11 compares the input numbers (input information) with the registration information previously registered in the database DB1 and performs user authentication.
 以上により、実施の形態1に係る視線入力装置P1は、第1の視線入力操作手順において入力情報(ここでは、数字)の入力操作の受け付けと、中心点「A」の入力操作の受け付けとを交互に繰り返すことで、入力情報の誤入力をより効果的に抑制することができる。さらに、視線入力装置P1は、中心点「A」に対する入力操作と入力キー「1」~「4」(つまり、入力情報)に対する入力操作とを交互に受け付けることで、ユーザが連続して同一の入力情報を入力する場合(例えば、数字「1」を2回以上連続して入力する場合等)、同一の入力情報の入力操作をより正確に受け付けることができる。 As described above, the eye-gaze input device P1 according to embodiment 1 can more effectively suppress erroneous input of input information by alternately accepting an input operation of input information (here, a number) and an input operation of the center point "A" in the first eye-gaze input operation procedure. Furthermore, by alternately accepting an input operation for the center point "A" and an input operation for the input keys "1" to "4" (i.e., input information), when the user continuously inputs the same input information (for example, when the number "1" is input two or more times in succession), the eye-gaze input device P1 can more accurately accept the input operation of the same input information.
 また、視線入力装置P1は、中心点「A」または入力キー「1」~「4」のどちらかの入力操作のみを有効化(受け付け)することで、中心点「A」といずれかの入力キー「1」~「4」とが同一直線状に配置されることを防止できるため、ユーザの視線位置の移動方向(近似直線の角度)の時系列変化に基づいて、入力操作を受け付けることができ、誤入力をより効果的に抑制することができる。 In addition, by enabling (accepting) only the input operation of either the center point "A" or the input keys "1" to "4," the eye-gaze input device P1 can prevent the center point "A" and any of the input keys "1" to "4" from being positioned on the same straight line. This makes it possible to accept input operations based on the time-series changes in the direction of movement of the user's eye-gaze position (the angle of the approximated straight line), and thus makes it possible to more effectively suppress erroneous inputs.
 なお、図9および図10に示す入力画面SC41,SC43,SC45,SC47のそれぞれは、5つの入力キーのうち入力操作が有効化されている中心点「A」のみ実線あるいは強調表示(例えば、太線表示、赤枠表示等)し、入力操作が無効化されている4つの入力キー「1」~「4」のそれぞれを破線あるいは抑制表示(例えば、細線、灰色枠表示等)してもよい。 In addition, in each of the input screens SC41, SC43, SC45, and SC47 shown in Figures 9 and 10, only the center point "A" of the five input keys for which input operation is enabled may be displayed with a solid line or highlighted (for example, a thick line or a red frame, etc.), and each of the four input keys "1" to "4" for which input operation is disabled may be displayed with a dashed line or suppressed (for example, a thin line or a gray frame, etc.).
 同様に、図9および図10に示す入力画面SC42,SC44,SC46,SC48は、5つの入力キーのうち入力操作が有効化されている4つの入力キー「1」~「4」のそれぞれを実線あるいは強調表示(例えば、太線表示、赤枠表示等)し、入力操作が無効化されている中心点「A」のみを破線あるいは抑制表示(例えば、細線、灰色枠表示等)してもよい。 Similarly, the input screens SC42, SC44, SC46, and SC48 shown in Figures 9 and 10 may display four of the five input keys, "1" to "4," for which input operations are enabled, in a solid line or with emphasis (for example, a thick line or a red frame, etc.), and only the center point "A," for which input operations are disabled, in a dashed line or with a suppressed display (for example, a thin line or a gray frame, etc.).
 また、プロセッサ11は、入力情報の入力操作を受け付けたタイミングで、入力された入力情報に対応する入力キーを拡大して表示したり、入力画面SC41~SC48の照明の照度を変更してフラッシュさせたりしてもよい。これにより、視線入力装置P1は、ユーザに入力操作の受け付けを完了した旨を通知することができる。 In addition, when the processor 11 receives an input operation for input information, it may enlarge and display the input key corresponding to the input information, or change the luminance of the lighting on the input screens SC41 to SC48 to make them flash. This allows the eye-gaze input device P1 to notify the user that the acceptance of the input operation has been completed.
 次に、図11および図12のそれぞれを参照して、第2の視線入力操作手順について説明する。図11は、第2の視線入力操作手順例を説明する図である。図12は、第2の視線入力操作手順例を説明する図である。第2の視線入力操作手順は、入力キー「1」~「4」の入力操作を連続して受け付ける場合の視線入力操作手順であって、図3に示すステップSt19~ステップSt26のそれぞれの処理に対応する。 Next, the second gaze input operation procedure will be described with reference to Figs. 11 and 12. Fig. 11 is a diagram for explaining an example of the second gaze input operation procedure. Fig. 12 is a diagram for explaining an example of the second gaze input operation procedure. The second gaze input operation procedure is a gaze input operation procedure when input operations of the input keys "1" to "4" are accepted consecutively, and corresponds to the processing of each of steps St19 to St26 shown in Fig. 3.
 なお、図11および図12のそれぞれに示す入力画面SC51,SC52,SC53,SC54,SC55は、一例であって、これに限定されない。例えば、数字の入力キーの数は、4つに限定されない。また、例えば、数字の入力キーの配置は、入力画面SC51~SC55に示す配置に限定されず、任意の角度(例えば、45°)だけ回転されて配置されてもよい。 Note that the input screens SC51, SC52, SC53, SC54, and SC55 shown in Figures 11 and 12, respectively, are merely examples and are not limited to these. For example, the number of numeric input keys is not limited to four. Also, for example, the arrangement of the numeric input keys is not limited to the arrangement shown in input screens SC51 to SC55, and may be rotated by any angle (for example, 45°) and arranged.
 プロセッサ11は、入力画面SC51をディスプレイ14に表示し、ユーザに中心点「A」を注視させるように指示(音声出力、メッセージ出力)するとともに、5つの入力キーのうち中心点「A」に対する入力操作のみを有効(受け付け可能)化する。 The processor 11 displays the input screen SC51 on the display 14, instructs the user to gaze at the center point "A" (outputs voice and message), and enables (accepts) only the input operation for the center point "A" out of the five input keys.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視しているか否かを判定する。なお、プロセッサ11は、このタイミングでユーザの視線位置をキャリブレーションするための補正パラメータの生成を実行してよい。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines whether the user is gazing within area ARA of center point "A" or in the direction in which center point "A" is located based on the detected user's gaze position. Processor 11 may generate correction parameters for calibrating the user's gaze position at this timing.
 プロセッサ11は、検出されたユーザの視線位置に基づいて、ユーザが中心点「A」の領域ARA内、あるいは、中心点「A」が配置された方向を注視していると判定した場合、入力画面SC52をディスプレイ14に表示し、ユーザにいずれかの数字の入力キーを注視させるように指示する。プロセッサ11は、入力画面SC52において、中心点「A」に対する入力操作を無効化するとともに、中心点「A」の周囲に配置された4つの入力キー「1」~「4」のそれぞれに対する入力操作を有効化する。 If the processor 11 determines, based on the detected user's gaze position, that the user is gazing within the area ARA of the center point "A" or in the direction in which the center point "A" is located, it displays the input screen SC52 on the display 14 and instructs the user to gaze at one of the number input keys. On the input screen SC52, the processor 11 disables input operations for the center point "A" and enables input operations for each of the four input keys "1" to "4" arranged around the center point "A".
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR51(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1~入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC52で数字の入力キー「1」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR51 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of the number input key "1" on input screen SC52.
 プロセッサ11は、いずれかの数字の入力キー(ここでは、入力キー「1」)の入力操作を受け付けた後、入力画面SC53をディスプレイ14に表示し、ユーザに次の数字の入力キーを注視させるように指示する。なお、この指示は必須でなく、省略されてよいことは言うまでもない。 After accepting the input operation of any number input key (here, input key "1"), the processor 11 displays the input screen SC53 on the display 14 and instructs the user to look at the next number input key. It goes without saying that this instruction is not essential and may be omitted.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR52(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1~入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC54で数字の入力キー「2」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR52 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of number input key "2" on input screen SC54.
 プロセッサ11は、いずれかの数字の入力キー(ここでは、入力キー「2」)の入力操作を受け付けた後、入力画面SC54をディスプレイ14に表示し、ユーザに次の数字の入力キーを注視させるように指示する。 After accepting an input operation of any numeric input key (here, input key "2"), the processor 11 displays the input screen SC54 on the display 14 and instructs the user to focus on the next numeric input key.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR53(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1~入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC54で数字の入力キー「3」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR53 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of number input key "3" on input screen SC54.
 プロセッサ11は、いずれかの数字の入力キー(ここでは、入力キー「3」)の入力操作を受け付けた後、入力画面SC55をディスプレイ14に表示し、ユーザに次の数字の入力キーを注視させるように指示する。 After accepting an input operation of any numeric input key (here, input key "3"), the processor 11 displays the input screen SC55 on the display 14 and instructs the user to focus on the next numeric input key.
 プロセッサ11は、撮像画像に基づいて、ユーザの視線位置を検出する。プロセッサ11は、検出されたユーザの視線位置、あるいはユーザの視線位置の移動方向DR54(近似直線の角度)に基づいて、ユーザが4つの入力キー「1」の領域AR1~入力キー「4」の領域AR4のいずれを注視しているか否かを判定する。プロセッサ11は、入力画面SC54で数字の入力キー「4」の入力操作を受け付ける。 Processor 11 detects the user's gaze position based on the captured image. Processor 11 determines which of area AR1 of input key "1" to area AR4 of input key "4" the user is gazing at based on the detected user's gaze position or the movement direction DR54 of the user's gaze position (angle of the approximated line). Processor 11 accepts the input operation of number input key "4" on input screen SC54.
 プロセッサ11は、4つの数字「1」,「2」,「3」,「4」の入力操作を受け付けた後、入力された数字(入力情報)と、データベースDB1に事前に登録された登録情報とを照合し、ユーザ認証を実行する。 After accepting the input of the four numbers "1," "2," "3," and "4," the processor 11 compares the input numbers (input information) with the registration information previously registered in the database DB1 and performs user authentication.
 以上により、実施の形態1に係る視線入力装置P1は、第2の視線入力操作手順において中心点「A」の入力操作の受け付けた後、所定桁数の入力情報(ここでは、数字)の入力操作の受け付けを連続して実行することで、入力情報の誤入力をより効果的に抑制することができる。さらに、視線入力装置P1は、中心点「A」に対する入力操作と入力キー「1」~「4」(つまり、入力情報)に対する入力操作とを交互に受け付けないため、各入力情報の合間の中心点「A」に対する入力操作に要する時間を短縮でき、ユーザ1人当たりの視線入力操作時間をより効率的に短縮することができる。 As described above, the eye-gaze input device P1 according to embodiment 1 can more effectively suppress erroneous input of input information by continuously accepting input operations of a predetermined number of digits of input information (here, numbers) after accepting an input operation of the center point "A" in the second eye-gaze input operation procedure. Furthermore, because the eye-gaze input device P1 does not alternately accept input operations for the center point "A" and input operations for the input keys "1" to "4" (i.e., input information), it is possible to shorten the time required for the input operation for the center point "A" between each piece of input information, and more efficiently shorten the eye-gaze input operation time per user.
 なお、図11および図12に示す入力画面SC51は、5つの入力キーのうち入力操作が有効化されている中心点「A」のみ実線あるいは強調表示(例えば、太線表示、赤枠表示等)し、入力操作が無効化されている4つの入力キー「1」~「4」のそれぞれを破線あるいは抑制表示(例えば、細線、灰色枠表示等)してもよい。 In addition, the input screen SC51 shown in Figures 11 and 12 may display only the center point "A" of the five input keys for which input operation is enabled, using a solid line or highlighting (for example, displaying a thick line or a red frame, etc.), and each of the four input keys "1" to "4" for which input operation is disabled, using a dashed line or suppressing (for example, displaying a thin line or a gray frame, etc.).
 同様に、図11および図12に示す入力画面SC52~SC55のそれぞれは、5つの入力キーのうち入力操作が有効化されている4つの入力キー「1」~「4」のそれぞれを実線あるいは強調表示(例えば、太線表示、赤枠表示等)し、入力操作が無効化されている中心点「A」のみを破線あるいは抑制表示(例えば、細線、灰色枠表示等)してもよい。 Similarly, in each of the input screens SC52 to SC55 shown in Figures 11 and 12, the four input keys "1" to "4" for which input operations are enabled among the five input keys may be displayed with a solid line or highlighted (for example, a thick line, a red frame, etc.), and only the center point "A" for which input operations are disabled may be displayed with a dashed line or suppressed (for example, a thin line, a gray frame, etc.).
 また、プロセッサ11は、入力情報の入力操作を受け付けたタイミングで、入力された入力情報に対応する入力キーを拡大して表示したり、入力画面SC51~SC55の照明の照度を変更してフラッシュさせたりしてもよい。これにより、視線入力装置P1は、ユーザに入力操作の受け付けを完了した旨を通知することができる。 In addition, when the processor 11 receives an input operation for input information, it may enlarge and display the input key corresponding to the input information, or change the illuminance of the lighting on the input screens SC51 to SC55 to make them flash. This allows the eye-gaze input device P1 to notify the user that the acceptance of the input operation has been completed.
 次に、図13および図14のそれぞれを参照して、他の入力画面例について説明する。図13は、他の入力画面例を示す図である。図14は、他の入力画面例を示す図である。なお、図13に示す入力画面SC2,SC3のそれぞれは一例であって、これに限定されないことは言うまでもない。 Next, other examples of input screens will be described with reference to Fig. 13 and Fig. 14. Fig. 13 is a diagram showing another example of an input screen. Fig. 14 is a diagram showing another example of an input screen. It goes without saying that the input screens SC2 and SC3 shown in Fig. 13 are merely examples and are not limited to these.
 入力画面SC2は、中心点「A」と、数字の入力キー「1」~「8」のそれぞれに対応する8個の入力キーとを含んで構成される。プロセッサ11は、入力画面SC2を用いた視線入力において、近似直線の角度ブレ量の閾値θ2が45°以下に設定される。このような場合、プロセッサ11は、近似直線の角度ブレ量の閾値θ2が45°以下であって、入力キー「1」の位置を基準(0(ゼロ)°)として、近似直線の角度が-22.5°以上、かつ、+22.5°未満である場合に入力キー「1」の入力操作を受け付ける。 The input screen SC2 includes a center point "A" and eight input keys corresponding to the numeric input keys "1" to "8". The processor 11 sets the threshold θ2 of the angular blur of the approximated line to 45° or less in gaze input using the input screen SC2. In such a case, the processor 11 accepts the input operation of the input key "1" when the threshold θ2 of the angular blur of the approximated line is 45° or less and the angle of the approximated line is -22.5° or more and less than +22.5° with the position of the input key "1" as the reference (0 (zero)°).
 入力画面SC3は、中心点「A」と、数字の入力キー「0」~「9」のそれぞれに対応する10個の入力キーとを含んで構成される。プロセッサ11は、入力画面SC3を用いた視線入力において、近似直線の角度ブレ量の閾値θ3が36°以下に設定される。このような場合、プロセッサ11は、近似直線の角度ブレ量の閾値θ3が36°以下であって、入力キー「0」の位置を基準(0(ゼロ)°)として、近似直線の角度が-18°以上、かつ、+18°未満である場合に入力キー「0」の入力操作を受け付ける。 The input screen SC3 includes a center point "A" and ten input keys corresponding to the numeric input keys "0" to "9." In gaze input using the input screen SC3, the processor 11 sets the threshold θ3 of the angular deviation of the approximated line to 36° or less. In such a case, the processor 11 accepts the input operation of the input key "0" when the threshold θ3 of the angular deviation of the approximated line is 36° or less and the angle of the approximated line is -18° or more and less than +18° with the position of the input key "0" as the reference (0 (zero)°).
 以上により、実施の形態1に係る視線入力装置P1(入力装置の一例)は、ユーザの視線位置に基づく入力操作を受け付け可能であって、入力操作を受け付け可能なキャリブレーション画面SC0(入力画面の一例)、入力画面SC1を表示するディスプレイ14(表示部の一例)と、ユーザを撮像するカメラ13と、撮像された第1の撮像画像に映る第1のユーザの視線位置に基づいて、入力画面SC1に対する第1のユーザの視線位置をキャリブレーションするための補正パラメータを算出するプロセッサ11(算出部の一例)と、補正パラメータの算出後に撮像された第2の撮像画像に映る第2のユーザの視線位置を検出し、補正パラメータを用いて、第2のユーザの視線位置をキャリブレーションし、キャリブレーションされた第2のユーザの視線位置に基づいて、入力画面SC1に対する入力操作を受け付けるプロセッサ11と、を備える。 As described above, the gaze input device P1 (an example of an input device) according to the first embodiment is capable of receiving an input operation based on the gaze position of a user, and includes a calibration screen SC0 (an example of an input screen) capable of receiving an input operation, a display 14 (an example of a display unit) displaying the input screen SC1, a camera 13 that captures an image of a user, a processor 11 (an example of a calculation unit) that calculates a correction parameter for calibrating the gaze position of the first user relative to the input screen SC1 based on the gaze position of the first user shown in the captured first captured image, and a processor 11 that detects the gaze position of the second user shown in the captured second captured image after calculating the correction parameter, calibrates the gaze position of the second user using the correction parameter, and receives an input operation relative to the input screen SC1 based on the calibrated gaze position of the second user.
 これにより、実施の形態1に係る視線入力装置P1は、事前にユーザごとの補正パラメータが記録、蓄積されておらず、不特定多数のユーザにより利用される場合であっても、視線位置のキャリブレーションをより効率化できるとともに、ユーザの視線に基づく入力操作をより効率的に受け付けることができる。 As a result, the eye-gaze input device P1 according to embodiment 1 can more efficiently calibrate the eye-gaze position and more efficiently accept input operations based on the user's eye gaze, even when correction parameters for each user are not recorded and stored in advance and the device is used by an unspecified number of users.
 また、実施の形態1に係る視線入力装置P1は、第1の入力操作を受け付ける中心点「A」の領域ARA(第1の入力部の一例)と、第1の入力操作と異なる第2の入力操作を受け付ける複数の入力キー「1」~「4」に対応する領域AR1~AR4(第2の入力部の一例)とを含む。これにより、実施の形態1に係る視線入力装置P1は、1つの入力画面SC1でキャリブレーションのための入力操作と、入力情報の入力操作とを受け付けることができる。 Furthermore, the eye-gaze input device P1 according to the first embodiment includes an area ARA (an example of a first input section) of a center point "A" that accepts a first input operation, and areas AR1 to AR4 (an example of a second input section) corresponding to a plurality of input keys "1" to "4" that accept a second input operation different from the first input operation. This allows the eye-gaze input device P1 according to the first embodiment to accept an input operation for calibration and an input operation for input information on a single input screen SC1.
 また、実施の形態1に係る視線入力装置P1における第1の撮像画像は、中心点「A」の領域ARAを見るユーザが撮像された撮像画像であって、プロセッサ11は、第1のユーザの視線位置と、中心点「A」の領域ARAの位置とに基づいて、補正パラメータを算出する。これにより、実施の形態1に係る視線入力装置P1は、事前にユーザごとの補正パラメータが記録、蓄積されておらず、不特定多数のユーザにより利用される場合であっても、ユーザの視線に基づく入力操作をより効率的に受け付けることができる。 The first captured image in the gaze input device P1 according to embodiment 1 is an image captured of a user looking at area ARA of center point "A", and the processor 11 calculates correction parameters based on the gaze position of the first user and the position of area ARA of center point "A". As a result, the gaze input device P1 according to embodiment 1 can more efficiently accept input operations based on the user's gaze, even when correction parameters for each user are not recorded and stored in advance and the device is used by an unspecified number of users.
 また、実施の形態1に係る視線入力装置P1における第2の撮像画像は、いずれか1つの入力キー「1」~「4」に対応する領域AR1~AR4を見るユーザが撮像された撮像画像である。プロセッサ11は、第2のユーザの視線位置と、複数の入力キー「1」~「4」に対応する領域AR1~AR4の位置とに基づいて、入力操作を受け付ける。これにより、実施の形態1に係る視線入力装置P1は、第2の視線入力操作手順において中心点「A」の入力操作の受け付けた後、所定桁数の入力情報(ここでは、数字)の入力操作の受け付けを連続して実行することで、入力情報の誤入力をより効果的に抑制することができる。さらに、視線入力装置P1は、中心点「A」に対する入力操作と入力キー「1」~「4」(つまり、入力情報)に対する入力操作とを交互に受け付けないため、各入力情報の合間の中心点「A」に対する入力操作に要する時間を短縮でき、ユーザ1人当たりの視線入力操作時間をより効率的に短縮することができる。 The second captured image in the eye-gaze input device P1 according to the first embodiment is an image captured of a user looking at the areas AR1 to AR4 corresponding to any one of the input keys "1" to "4". The processor 11 accepts an input operation based on the eye gaze position of the second user and the positions of the areas AR1 to AR4 corresponding to the multiple input keys "1" to "4". As a result, the eye-gaze input device P1 according to the first embodiment can more effectively suppress erroneous input of input information by continuously accepting input operations of a predetermined number of digits of input information (here, numbers) after accepting an input operation of the center point "A" in the second eye-gaze input operation procedure. Furthermore, since the eye-gaze input device P1 does not alternately accept an input operation for the center point "A" and an input operation for the input keys "1" to "4" (i.e., input information), the time required for the input operation for the center point "A" between each piece of input information can be shortened, and the eye-gaze input operation time per user can be more efficiently shortened.
 また、実施の形態1に係る視線入力装置P1における第2の撮像画像は、中心点「A」の領域ARAまたはいずれか1つの入力キー「1」~「4」に対応する領域AR1~AR4を見るユーザが撮像された撮像画像である。プロセッサ11は、第1の入力操作と、第2の入力操作とを交互に受け付ける。これにより、実施の形態1に係る視線入力装置P1は、第1の視線入力操作手順において入力情報(ここでは、数字)の入力操作の受け付けと、中心点「A」の入力操作の受け付けとを交互に繰り返すことで、入力情報の誤入力をより効果的に抑制することができる。さらに、視線入力装置P1は、中心点「A」に対する入力操作と入力キー「1」~「4」(つまり、入力情報)に対する入力操作とを交互に受け付けることで、ユーザが連続して同一の入力情報を入力する場合(例えば、数字「1」を2回以上連続して入力する場合等)であっても、同一の入力情報を入力する間に異なる中心点「A」の入力を受け付けるため、連続する同一の入力情報の入力操作をより正確に受け付けることができる。 The second captured image in the eye-gaze input device P1 according to the first embodiment is an image captured of a user looking at the area ARA of the center point "A" or the areas AR1 to AR4 corresponding to any one of the input keys "1" to "4". The processor 11 alternately accepts the first input operation and the second input operation. As a result, the eye-gaze input device P1 according to the first embodiment can more effectively suppress erroneous input of input information by alternately repeating the acceptance of the input operation of the input information (here, a number) and the acceptance of the input operation of the center point "A" in the first eye-gaze input operation procedure. Furthermore, by alternately accepting the input operation for the center point "A" and the input operation for the input keys "1" to "4" (i.e., input information), even when the user continuously inputs the same input information (for example, when the number "1" is input two or more times in succession), the eye-gaze input device P1 can more accurately accept the input operation of the same continuous input information because it accepts the input of a different center point "A" while inputting the same input information.
 また、実施の形態1に係る視線入力装置P1におけるプロセッサ11は、入力画面SC1において中心点「A」の領域ARAを有効化し、複数の入力キー「1」~「4」に対応する領域AR1~AR4を無効化して、第1の入力操作を受け付け、入力画面SC1において複数の入力キー「1」~「4」に対応する領域AR1~AR4を有効化し、中心点「A」の領域ARAを無効化して、第2の入力操作を受け付ける。これにより、実施の形態1に係る視線入力装置P1は、中心点「A」または入力キー「1」~「4」のどちらかの入力操作のみを有効化(受け付け)することで、誤入力をより効果的に抑制することができる。 The processor 11 in the eye-gaze input device P1 according to embodiment 1 activates the area ARA of the center point "A" on the input screen SC1, disables the areas AR1 to AR4 corresponding to the multiple input keys "1" to "4", and accepts a first input operation, and activates the areas AR1 to AR4 corresponding to the multiple input keys "1" to "4" on the input screen SC1, disables the area ARA of the center point "A", and accepts a second input operation. As a result, the eye-gaze input device P1 according to embodiment 1 can more effectively suppress erroneous inputs by only activating (accepting) the input operation of either the center point "A" or the input keys "1" to "4".
 また、実施の形態1に係る視線入力装置P1におけるプロセッサ11は、第1の入力操作または第2の入力操作を受け付けた場合、受け付けた第1の入力操作または第2の入力操作に対応する中心点「A」の領域ARAまたは入力キー「1」~「4」に対応する領域AR1~AR4を強調表示させる。これにより、実施の形態1に係る視線入力装置P1は、ユーザに入力操作の受け付けを完了した旨を通知することができる。 Furthermore, when the processor 11 in the eye-gaze input device P1 according to embodiment 1 accepts a first input operation or a second input operation, it highlights the area ARA of the center point "A" that corresponds to the accepted first input operation or second input operation, or the areas AR1 to AR4 that correspond to the input keys "1" to "4". This allows the eye-gaze input device P1 according to embodiment 1 to notify the user that acceptance of the input operation has been completed.
 また、実施の形態1に係る視線入力装置P1における中心点「A」の領域ARAは、入力画面SC1の略中央に配置される。複数の入力キー「1」~「4」に対応する領域AR1~AR4は、中心点「A」の領域ARAからそれぞれ略同一距離に配置される。これにより、実施の形態1に係る視線入力装置P1は、第1の入力操作と、第2の入力操作とをより明確に区別でき、また、第2の入力操作をより正確に受け付けることができる。 In addition, the area ARA of the center point "A" in the eye-gaze input device P1 according to embodiment 1 is located approximately in the center of the input screen SC1. Areas AR1 to AR4 corresponding to the multiple input keys "1" to "4" are each located at approximately the same distance from the area ARA of the center point "A". This allows the eye-gaze input device P1 according to embodiment 1 to more clearly distinguish between the first input operation and the second input operation, and to more accurately accept the second input operation.
 また、実施の形態1に係る視線入力装置P1における複数の入力キー「1」~「4」に対応する領域AR1~AR4は、中心点「A」の領域ARAを中心とする円周上に略等間隔で配置される。これにより、実施の形態1に係る視線入力装置P1は、第2の入力操作をより正確に受け付けることができる。 In addition, the areas AR1 to AR4 corresponding to the multiple input keys "1" to "4" in the eye-gaze input device P1 according to embodiment 1 are arranged at approximately equal intervals on a circumference centered on the area ARA at the center point "A". This allows the eye-gaze input device P1 according to embodiment 1 to more accurately receive the second input operation.
 また、実施の形態1に係る視線入力装置P1における入力画面SC1は、中心点「A」の領域ARAの周囲に入力操作を無効化する不感領域ARNを有する。プロセッサ11は、第2のユーザの視線位置が不感領域ARN内であると判定した場合、第2のユーザの視線位置に基づく入力操作の受け付けを省略する。これにより、実施の形態1に係る視線入力装置P1は、不感領域ARN外である中心点「A」から所定距離(半径R1)以上離れた位置で検出された視線位置を入力内容の推定に用いることで、入力内容の誤判定が生じやすい視線位置を除去できるため、入力内容の誤判定をより効果的に抑制することができる。 In addition, the input screen SC1 of the eye-gaze input device P1 according to embodiment 1 has an insensitive area ARN around the area ARA of the center point "A" that disables input operations. When the processor 11 determines that the gaze position of the second user is within the insensitive area ARN, it omits the acceptance of input operations based on the gaze position of the second user. As a result, the eye-gaze input device P1 according to embodiment 1 uses the gaze position detected at a position that is outside the insensitive area ARN and is at least a predetermined distance (radius R1) away from the center point "A", which is outside the insensitive area ARN, to estimate the input content, thereby being able to eliminate gaze positions that are prone to erroneous determination of the input content, and therefore being able to more effectively suppress erroneous determination of the input content.
 また、実施の形態1に係る視線入力装置P1におけるプロセッサ11は、カメラ13により撮像された複数の第2の撮像画像から第2のユーザの視線位置をそれぞれ検出して、時系列に蓄積し、蓄積された第2のユーザの視線位置に基づいて、ユーザの視線位置の移動方向を算出し、ユーザの視線位置の移動方向に基づく入力操作を受け付ける。これにより、実施の形態1に係る視線入力装置P1は、ユーザの視線位置が各入力キーの領域ARA~AR4内で検出されない場合、各入力キーの領域ARA,AR1~AR4で検出されたユーザの視線位置が、入力操作を受け付けるための所定の条件(例えば、ユーザの視線位置が所定時間以上継続して領域ARA,AR1~AR4内から検出される等)を満たさない場合等であっても、ユーザの視線位置の移動方向に基づいて、入力操作を受け付けることができる。 The processor 11 in the gaze input device P1 according to the first embodiment detects the gaze position of the second user from a plurality of second captured images captured by the camera 13, accumulates them in chronological order, calculates the movement direction of the user's gaze position based on the accumulated gaze positions of the second user, and accepts an input operation based on the movement direction of the user's gaze position. As a result, the gaze input device P1 according to the first embodiment can accept an input operation based on the movement direction of the user's gaze position even when the user's gaze position is not detected within the areas ARA to AR4 of each input key, or when the user's gaze position detected in the areas ARA, AR1 to AR4 of each input key does not satisfy a predetermined condition for accepting an input operation (for example, the user's gaze position is detected within the areas ARA, AR1 to AR4 continuously for a predetermined time or more), etc.
 また、実施の形態1に係る視線入力装置P1におけるプロセッサ11は、蓄積された所定時間分の第2のユーザの視線位置に基づいて、ユーザの視線位置の移動方向を算出して蓄積し、蓄積された複数の移動方向に基づいて、ユーザの視線位置の移動方向のブレ量を算出し、算出されたブレ量が閾値以下であると判定した場合、移動方向に基づく入力操作を受け付ける。これにより、実施の形態1に係る視線入力装置P1は、ユーザの視線位置の移動方向に基づいて、ユーザが入力しようとしている入力内容を推定し、ユーザが入力キーを注視する前に入力操作として受け付けることができるため、ユーザ一人当たりの入力情報の入力に要する時間をより効率的に短縮できる。また、視線入力装置P1は、ユーザの視線位置の角度ブレ量に基づいて、ユーザの視線位置の移動方向をより正確に推定することができるため、キャリブレーション精度が低い場合であっても、入力情報の誤入力をより効果的に抑制することができる。 The processor 11 in the eye-gaze input device P1 according to the first embodiment calculates and accumulates the moving direction of the user's eye gaze position based on the accumulated gaze position of the second user for a predetermined time, calculates the amount of blur in the moving direction of the user's eye gaze position based on the accumulated multiple moving directions, and accepts an input operation based on the moving direction when it is determined that the calculated amount of blur is equal to or less than a threshold. As a result, the eye-gaze input device P1 according to the first embodiment can estimate the input content that the user is about to input based on the moving direction of the user's eye gaze position and accept it as an input operation before the user gazes at the input key, so that the time required for input information per user can be more efficiently shortened. Furthermore, the eye-gaze input device P1 can more accurately estimate the moving direction of the user's eye gaze position based on the amount of angular blur of the user's eye gaze position, so that erroneous input of input information can be more effectively suppressed even when the calibration accuracy is low.
 以上により、実施の形態1において、ユーザの視線位置に基づく入力操作を受け付け可能な視線入力装置P1(入力装置の一例)が行う入力方法は、入力操作を受け付け可能なキャリブレーション画面SC0(入力画面の一例)、入力画面SC1を表示し、ユーザを撮像した第1の撮像画像を取得し、第1の撮像画像に映る第1のユーザの視線位置に基づいて、入力画面に対する第1のユーザの視線位置をキャリブレーションするための補正パラメータを算出し、ユーザを撮像した第2の撮像画像を取得し、補正パラメータを用いて、第2の撮像画像に映る第2のユーザの視線位置をキャリブレーションし、キャリブレーションされた第2のユーザの視線位置に基づいて、入力画面に対する入力操作を受け付ける。 As described above, in the first embodiment, the input method performed by the gaze input device P1 (an example of an input device) capable of accepting an input operation based on a user's gaze position includes displaying a calibration screen SC0 (an example of an input screen) capable of accepting an input operation, an input screen SC1, acquiring a first captured image of a user, calculating a correction parameter for calibrating the gaze position of the first user relative to the input screen based on the gaze position of the first user shown in the first captured image, acquiring a second captured image of the user, calibrating the gaze position of the second user shown in the second captured image using the correction parameter, and accepting an input operation relative to the input screen based on the calibrated gaze position of the second user.
 これにより、実施の形態1に係る視線入力装置P1は、事前にユーザごとの補正パラメータが記録、蓄積されておらず、不特定多数のユーザにより利用される場合であっても、視線位置のキャリブレーションをより効率化できるとともに、ユーザの視線に基づく入力操作をより効率的に受け付けることができる。 As a result, the eye-gaze input device P1 according to embodiment 1 can more efficiently calibrate the eye-gaze position and more efficiently accept input operations based on the user's eye gaze, even when correction parameters for each user are not recorded and stored in advance and the device is used by an unspecified number of users.
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It is clear that a person skilled in the art could conceive of various modifications, amendments, substitutions, additions, deletions, and equivalents within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present disclosure. Furthermore, the components in the various embodiments described above may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年11月11日出願の日本特許出願(特願2022-181386)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-181386) filed on November 11, 2022, the contents of which are incorporated by reference into this application.
 本開示は、視線入力におけるキャリブレーションをより効率化する入力装置および入力方法として有用である。 The present disclosure is useful as an input device and input method that makes calibration of eye gaze input more efficient.
11 プロセッサ
12 メモリ
13 カメラ
14 ディスプレイ
DB1 データベース
P1 視線入力装置
SC0 キャリブレーション画面
SC1,SC2,SC3,SC41,SC42,SC43,SC44,SC45,SC46,SC47,SC48,SC51,SC52,SC53,SC54,SC55 入力画面
11 Processor 12 Memory 13 Camera 14 Display DB1 Database P1 Eye-gaze input device SC0 Calibration screen SC1, SC2, SC3, SC41, SC42, SC43, SC44, SC45, SC46, SC47, SC48, SC51, SC52, SC53, SC54, SC55 Input screen

Claims (15)

  1.  ユーザの視線位置に基づく入力操作を受け付け可能な入力装置であって、
     前記入力操作を受け付け可能な入力画面を表示する表示部と、
     前記ユーザを撮像するカメラと、
     撮像された第1の撮像画像に映る第1のユーザの視線位置に基づいて、前記入力画面に対する前記第1のユーザの視線位置をキャリブレーションするための補正パラメータを算出する算出部と、
     前記補正パラメータの算出後に撮像された第2の撮像画像に映る第2のユーザの視線位置を検出し、前記補正パラメータを用いて、前記第2のユーザの視線位置をキャリブレーションし、キャリブレーションされた第2のユーザの視線位置に基づいて、前記入力画面に対する前記入力操作を受け付けるプロセッサと、を備える、
     入力装置。
    An input device capable of receiving an input operation based on a user's gaze position,
    a display unit that displays an input screen capable of accepting the input operation;
    A camera for capturing an image of the user;
    a calculation unit that calculates a correction parameter for calibrating a gaze position of the first user with respect to the input screen based on a gaze position of the first user shown in a captured first captured image;
    a processor that detects a gaze position of a second user appearing in a second captured image captured after the calculation of the correction parameter, calibrates the gaze position of the second user using the correction parameter, and accepts the input operation on the input screen based on the calibrated gaze position of the second user.
    Input device.
  2.  前記入力画面は、
     第1の入力操作を受け付ける第1の入力部)と、前記第1の入力操作と異なる第2の入力操作を受け付ける複数の第2の入力部とを含む、
     請求項1に記載の入力装置。
    The input screen is
    a first input unit that accepts a first input operation, and a plurality of second input units that accept a second input operation different from the first input operation,
    The input device according to claim 1 .
  3.  前記第1の撮像画像は、前記第1の入力部を見る前記ユーザが撮像された撮像画像であって、
     前記算出部は、前記第1のユーザの視線位置と、前記第1の入力部の位置とに基づいて、前記補正パラメータを算出する、
     請求項2に記載の入力装置。
    The first captured image is an image captured by capturing the user looking at the first input unit,
    the calculation unit calculates the correction parameter based on a gaze position of the first user and a position of the first input unit.
    The input device according to claim 2 .
  4.  前記第2の撮像画像は、いずれか1つの前記第2の入力部を見る前記ユーザが撮像された撮像画像であって、
     前記プロセッサは、前記第2のユーザの視線位置と、前記複数の第2の入力部の位置とに基づいて、前記入力操作を受け付ける
     請求項2に記載の入力装置。
    The second captured image is an image captured by capturing the user looking at any one of the second input units,
    The input device according to claim 2 , wherein the processor accepts the input operation based on a gaze position of the second user and positions of the plurality of second input units.
  5.  前記第2の撮像画像は、前記第1の入力部またはいずれか1つの前記第2の入力部を見る前記ユーザが撮像された撮像画像であって、
     前記プロセッサは、
     前記第1の入力操作と、前記第2の入力操作とを交互に受け付ける、
     請求項2に記載の入力装置。
    The second captured image is an image captured by capturing the user looking at the first input unit or any one of the second input units,
    The processor,
    The first input operation and the second input operation are alternately received.
    The input device according to claim 2 .
  6.  前記プロセッサは、
     前記入力画面において前記第1の入力部を有効化し、前記複数の第2の入力部を無効化して、前記第1の入力操作を受け付け、
     前記入力画面において前記複数の第2の入力部を有効化し、前記第1の入力部を無効化して、前記第2の入力操作を受け付ける、
     請求項4に記載の入力装置。
    The processor,
    enabling the first input unit on the input screen and disabling the second input units to receive the first input operation;
    enabling the plurality of second input units on the input screen and disabling the first input unit to accept the second input operation;
    5. The input device according to claim 4.
  7.  前記プロセッサは、
     前記第1の入力操作または第2の入力操作を受け付けた場合、受け付けた前記第1の入力操作または第2の入力操作に対応する前記第1の入力部または前記第2の入力部を強調表示させる、
     請求項2に記載の入力装置。
    The processor,
    When the first input operation or the second input operation is received, the first input unit or the second input unit corresponding to the received first input operation or the second input operation is highlighted.
    The input device according to claim 2 .
  8.  前記第1の入力部は、前記入力画面の略中央に配置され、
     前記複数の第2の入力部は、前記第1の入力部からそれぞれ略同一距離に配置される、
     請求項2に記載の入力装置。
    the first input unit is disposed at approximately the center of the input screen,
    The second input units are disposed at approximately the same distance from the first input unit.
    The input device according to claim 2 .
  9.  前記複数の第2の入力部は、前記第1の入力部を中心とする円周上に略等間隔で配置される、
     請求項8に記載の入力装置。
    The plurality of second input units are arranged at substantially equal intervals on a circumference centered on the first input unit.
    9. The input device according to claim 8.
  10.  前記入力画面は、前記第1の入力部の周囲に前記入力操作を無効化する不感領域を有し、
     前記プロセッサは、
     前記第2のユーザの視線位置が前記不感領域内であると判定した場合、前記第2のユーザの視線位置に基づく前記入力操作の受け付けを省略する、
     請求項2に記載の入力装置。
    the input screen has an insensitive area around the first input unit for invalidating the input operation,
    The processor,
    When it is determined that the gaze position of the second user is within the insensitive area, acceptance of the input operation based on the gaze position of the second user is omitted.
    The input device according to claim 2 .
  11.  前記プロセッサは、
     前記カメラにより撮像された複数の前記第2の撮像画像から前記第2のユーザの視線位置をそれぞれ検出して、時系列に蓄積し、
     蓄積された前記第2のユーザの視線位置に基づいて、前記ユーザの視線位置の移動方向を算出し、
     前記ユーザの視線位置の移動方向に基づく前記入力操作を受け付ける、
     請求項1に記載の入力装置。
    The processor,
    Detecting a gaze position of the second user from each of the plurality of second captured images captured by the camera, and storing the detected gaze positions in a time series;
    Calculating a moving direction of the gaze position of the second user based on the accumulated gaze position of the second user;
    accepting the input operation based on a moving direction of a gaze position of the user;
    The input device according to claim 1 .
  12.  前記プロセッサは、
     蓄積された所定時間分の前記第2のユーザの視線位置に基づいて、前記ユーザの視線位置の移動方向を算出して蓄積し、
     蓄積された複数の前記移動方向に基づいて、前記ユーザの視線位置の移動方向のブレ量を算出し、
     算出された前記ブレ量が閾値以下であると判定した場合、前記移動方向に基づく前記入力操作を受け付ける、
     請求項11に記載の入力装置。
    The processor,
    Calculating and storing a moving direction of the gaze position of the second user based on the accumulated gaze position of the second user for a predetermined time period;
    Calculating an amount of blur in the movement direction of the gaze position of the user based on the accumulated plurality of movement directions;
    when it is determined that the calculated amount of blur is equal to or smaller than a threshold, the input operation based on the moving direction is accepted.
    12. The input device according to claim 11.
  13.  ユーザの視線位置に基づく入力操作を受け付け可能な入力装置が行う入力方法であって、
     前記入力操作を受け付け可能な入力画面を表示し、
     前記ユーザを撮像した第1の撮像画像を取得し、
     前記第1の撮像画像に映る第1のユーザの視線位置に基づいて、前記入力画面に対する前記第1のユーザの視線位置をキャリブレーションするための補正パラメータを算出し、
     前記ユーザを撮像した第2の撮像画像を取得し、
     前記補正パラメータを用いて、前記第2の撮像画像に映る第2のユーザの視線位置をキャリブレーションし、
     キャリブレーションされた第2のユーザの視線位置に基づいて、前記入力画面に対する前記入力操作を受け付ける、
     入力方法。
    An input method performed by an input device capable of accepting an input operation based on a user's gaze position, comprising:
    displaying an input screen capable of accepting the input operation;
    acquiring a first captured image of the user;
    calculating a correction parameter for calibrating a gaze position of the first user with respect to the input screen based on a gaze position of the first user captured in the first captured image;
    acquiring a second captured image of the user;
    calibrating a gaze position of a second user appearing in the second captured image using the correction parameters;
    accepting the input operation on the input screen based on the calibrated gaze position of the second user;
    input method.
  14.  ユーザの視線位置に基づく入力操作を受け付け可能な入力装置であって、
     カメラにより撮像された第1の撮像画像に映る第1のユーザの視線位置と、前記カメラにより撮像された第2の撮像画像に映る第2のユーザの視線位置を検出し、前記第1のユーザの視線位置と前記第2のユーザの視線位置に基づいて、前記入力操作を受け付け可能な入力画面に対する前記入力操作を受け付けるプロセッサと、を備える、
     入力装置。
    An input device capable of receiving an input operation based on a user's gaze position,
    a processor that detects a gaze position of a first user shown in a first captured image captured by a camera and a gaze position of a second user shown in a second captured image captured by the camera, and accepts an input operation on an input screen capable of accepting the input operation based on the gaze position of the first user and the gaze position of the second user.
    Input device.
  15.  前記入力画面は、
     第1の入力操作を受け付ける第1の入力部と、前記第1の入力操作と異なる第2の入力操作を受け付ける複数の第2の入力部とを含む、
     請求項14に記載の入力装置。
    The input screen is
    a first input unit that accepts a first input operation, and a plurality of second input units that accept a second input operation different from the first input operation;
    15. The input device of claim 14.
PCT/JP2023/026902 2022-11-11 2023-07-21 Input device and input method WO2024100935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022181386 2022-11-11
JP2022-181386 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024100935A1 true WO2024100935A1 (en) 2024-05-16

Family

ID=91032109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026902 WO2024100935A1 (en) 2022-11-11 2023-07-21 Input device and input method

Country Status (1)

Country Link
WO (1) WO2024100935A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136000A (en) * 2005-11-21 2007-06-07 Nippon Telegr & Teleph Corp <Ntt> Apparatus, method and program for measuring visual axis
JP2020502628A (en) * 2016-10-27 2020-01-23 アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited User interface for information input in virtual reality environment
JP2022169043A (en) * 2021-04-27 2022-11-09 パナソニックIpマネジメント株式会社 Authentication device and authentication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136000A (en) * 2005-11-21 2007-06-07 Nippon Telegr & Teleph Corp <Ntt> Apparatus, method and program for measuring visual axis
JP2020502628A (en) * 2016-10-27 2020-01-23 アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited User interface for information input in virtual reality environment
JP2022169043A (en) * 2021-04-27 2022-11-09 パナソニックIpマネジメント株式会社 Authentication device and authentication system

Similar Documents

Publication Publication Date Title
RU2672181C2 (en) Method and device for team generation
JP4755490B2 (en) Blur correction method and imaging apparatus
KR20150108303A (en) Method and device for detecting straight line
WO2013089190A1 (en) Imaging device and imaging method, and storage medium for storing tracking program processable by computer
WO2020238626A1 (en) Image state determination method and device, apparatus, system, and computer storage medium
US20050163498A1 (en) User interface for automatic red-eye removal in a digital image
JP2012029245A (en) Imaging apparatus
JP6502511B2 (en) Calculation device, control method of calculation device, and calculation program
JP5676956B2 (en) Image processing apparatus, image processing method, and program
CN111080571B (en) Camera shielding state detection method, device, terminal and storage medium
US20170193322A1 (en) Optical reading of external segmented display
JP6690092B2 (en) Heat source detection device, heat source detection method, and heat source detection program
JP2011164742A (en) Apparatus, method, and program for controlling display, and recording medium
US9569838B2 (en) Image processing apparatus, method of controlling image processing apparatus and storage medium
WO2024100935A1 (en) Input device and input method
JP6564136B2 (en) Image processing apparatus, image processing method, and program
JP5554438B2 (en) Improved control of image capture devices
US11330191B2 (en) Image processing device and image processing method to generate one image using images captured by two imaging units
JPH11296304A (en) Screen display inputting device and parallax correcting method
WO2023098249A1 (en) Method for assisting oct in scanning, and pc terminal, storage medium and system
JP2008015979A (en) Method, program and apparatus for pattern detection, and imaging apparatus
CN112637587B (en) Dead pixel detection method and device
JP2008211534A (en) Face detecting device
JP2007206963A (en) Image processor, image processing method, program and storage medium
US20200193601A1 (en) Processing system, processing apparatus, terminal apparatus, processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888290

Country of ref document: EP

Kind code of ref document: A1