WO2024100763A1 - Control device for injection-molding machine - Google Patents

Control device for injection-molding machine Download PDF

Info

Publication number
WO2024100763A1
WO2024100763A1 PCT/JP2022/041550 JP2022041550W WO2024100763A1 WO 2024100763 A1 WO2024100763 A1 WO 2024100763A1 JP 2022041550 W JP2022041550 W JP 2022041550W WO 2024100763 A1 WO2024100763 A1 WO 2024100763A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heat transfer
amount
resin
unit
Prior art date
Application number
PCT/JP2022/041550
Other languages
French (fr)
Japanese (ja)
Inventor
京祐 中村
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/041550 priority Critical patent/WO2024100763A1/en
Publication of WO2024100763A1 publication Critical patent/WO2024100763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • This disclosure relates to a control device for an injection molding machine.
  • the actual resin temperature may differ from the set temperature when it is measured. For example, under conditions where there is an insufficient supply of heat to the resin, the resin temperature may fall far below the set temperature, and conversely, under conditions where there is too much heat, the resin temperature may far exceed the set temperature. When the resin temperature deviates significantly from the set temperature, there is a high possibility of molding defects or damage to parts such as screws and cylinders.
  • This disclosure has been made in consideration of the above problems, and aims to provide a technology that allows users to properly understand the molten state of resin in an injection molding machine and effectively reduce molding defects.
  • the present disclosure relates to a control device for an injection molding machine that includes a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder, the control device including: an operation information acquisition unit that acquires operation information related to the operation of the heater; a characteristic information acquisition unit that acquires characteristic information related to the characteristics of the injection molding machine; a heater heat generation amount calculation unit that calculates the heat generation amount of the heater based on the acquired operation information and characteristic information; a heater heat transfer amount calculation unit that calculates the amount of heat transfer from the heater to the resin based on the heat generation amount of the heater when molding is performed with the cylinder maintained at a predetermined set temperature and the heat generation amount of the heater when molding is stopped with the cylinder maintained at a predetermined set temperature; a molten state determination unit that determines the molten state of the resin inside the cylinder based on the calculation result of the heater heat transfer amount calculation unit; and an output unit that outputs the determination result of the molten state determination unit.
  • This disclosure provides a technology that allows users to properly understand the molten state of resin in an injection molding machine and effectively reduces molding defects.
  • FIG. 1 is a schematic diagram showing a configuration of an injection molding machine according to a first embodiment.
  • FIG. FIG. 2 is a perspective view showing a heater disposed in the cylinder according to the first embodiment.
  • FIG. 2 is a functional block diagram of a control device for the injection molding machine according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating a heat balance during forming according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating a heat balance when molding is stopped in the first embodiment. 4 is a flowchart showing an example of a processing flow by a control device of the injection molding machine according to the first embodiment.
  • FIG. 11 is a schematic diagram illustrating a heat balance during forming according to the second embodiment.
  • FIG. 11 is a schematic diagram illustrating the heat balance when molding is stopped in the second embodiment.
  • FIG. 11 is a functional block diagram of a control device for an injection molding machine according to a second embodiment.
  • 10 is a flowchart showing an example of a processing flow by a control device of an injection molding machine according to a second embodiment.
  • 11 is a graph showing the relationship between the amount of heat transfer of a measured resin and the deviation between the resin temperature and a set temperature.
  • 11 is a diagram illustrating a threshold value for determining a relationship between a resin temperature and a set temperature set in the control device.
  • FIG. 11 is a diagram illustrating a threshold value for determining the degree of deviation of a resin temperature set in a control device from a set temperature.
  • FIG. 13 is a graph showing changes in the amount of heat transfer for each calculation interval.
  • 11 is a graph showing the relationship between the amount of heat transfer of a heater and the deviation between the resin temperature and the set temperature.
  • Fig. 1 is a schematic diagram showing the configuration of an injection molding machine 1 according to the first embodiment.
  • Fig. 2 is a perspective view showing heaters 24a to 24d arranged in a cylinder 22 of the injection molding machine 1 according to the first embodiment.
  • the injection molding machine 1 of this embodiment includes an injection section 2, a mold clamping section 3, a control device 10, and a display device 6.
  • the injection unit 2 is an injection device that includes a hopper 21, a cylinder 22, a screw 23, and a cooling jacket 26.
  • the cylinder 22 is, for example, a cylindrical body. Resin stored in the hopper 21 is supplied to the cylinder 22.
  • the screw 23 is disposed inside the cylinder 22, and transports the resin to the tip of the cylinder 22 by rotating.
  • the cooling jacket 26 is a device that cools the inside of the cylinder 22 (for example, the part on the root side inside the cylinder 22), and cooling water circulates through it.
  • heaters 24a to 24d are arranged, for example, in a plurality of positions along the axial direction of cylinder 22. Specifically, heaters 24a to 24d are arranged in a plurality of positions from nozzle portion 25 at the axial tip of cylinder 22 to the base end. Note that there is no particular limit to the number of heaters 24a to 24d.
  • heaters 24a to 24d are arranged along the axial direction to cover the outer periphery of the cylinder 22.
  • Heater 24a is a tip heater arranged in the nozzle portion 25.
  • Heaters 24b to 24d are located upstream of the nozzle portion 25 in the pellet conveying direction.
  • Heater 24b is one of the tip heaters located closest to the nozzle portion 25.
  • Heater 24d is located farthest from the nozzle portion 25, and heater 24c is located between heaters 24b and 24d.
  • the pellets are melted by heating the cylinder 22 with the heaters 24a to 24d.
  • the molten pellets are transported by the screw 23 to the nozzle portion 25 and injected into the mold 5.
  • the mold clamping unit 3 is a device that clamps the mold 5. A molded product is formed by clamping the mold 5 with the mold clamping unit 3.
  • FIG. 3 is a functional block diagram of the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the control device 10 of the injection molding machine 1 according to the first embodiment is configured using a computer equipped with memories such as a ROM (read only memory) and a RAM (random access memory), a CPU (control processing unit), and a communication control unit, which are connected to each other via a bus, for example.
  • memories such as a ROM (read only memory) and a RAM (random access memory), a CPU (control processing unit), and a communication control unit, which are connected to each other via a bus, for example.
  • the functions and operations of each functional unit of the control device 10 described below are achieved by the cooperation of the CPU and memory mounted on the computer, and the control program stored in the memory.
  • the control device 10 has, as functional units, an operation information acquisition unit 11, a characteristic information acquisition unit 12, a heater heat generation amount calculation unit 13, a heater heat transfer amount calculation unit 14, a melting state determination unit 15, and an output unit 20.
  • the operation information acquisition unit 11 acquires operation information related to the operation of the heaters 24a to 24d.
  • the operation information related to the heaters 24a to 24d is the operation rate of each of the heaters 24a to 24d.
  • the operation rate is an index of the operation state, for example, indicated as 0 to 100%.
  • the operation rate is determined, for example, based on the output, such as the voltage, of the heaters 24a to 24d.
  • the characteristic information acquisition unit 12 acquires characteristic information indicating the characteristics of the injection molding machine 1.
  • the characteristic information is, for example, the capacity of the heaters 24a to 24d.
  • the capacity of the heaters 24a to 24d here is a rated capacity of 1500 W at 200 V.
  • the heater heat generation amount calculation unit 13 calculates the heat generation amount of the heaters 24a to 24d based on the acquired operation information and characteristic information.
  • the heater heat generation amount calculation unit 13 calculates the heat generation amount per unit time of each heater 24a to 24d in a state in which the cylinder 22 is maintained at a preset temperature, for example.
  • the heater heat generation amount calculation unit 13 may calculate the heat generation amount by making corrections based on the difference between the rated voltage of the heaters 24a to 24d and the actual power supply voltage of the injection molding machine 1.
  • the amount of heat generated can be calculated, for example, by the following formula (1).
  • P Hi represents the amount of heat generated per unit time
  • t 1 represents the calculation start time
  • t 2 represents the calculation end time
  • W i represents the heater capacity
  • r i represents the heater operation rate.
  • the heater heat transfer amount calculation unit 14 calculates the amount of heat transfer from each of the heaters 24a to 24d to the resin based on the calculation result of the heater heat transfer amount calculation unit 13. An example of a method for calculating the amount of heat transfer by the heater heat transfer amount calculation unit 14 will be described.
  • the amount of heat transfer per unit time from the heaters 24a to 24d to the resin is P Ti .
  • the amount of heat transfer is expressed by the following formula (2).
  • the amount of heat transfer P Ti can be calculated from the difference between the amount of heat generated when molding is being performed P Hi and the amount of heat generated when molding is stopped P' Hi .
  • Fig. 4 is a schematic diagram for explaining the heat balance during molding.
  • Fig. 5 is a schematic diagram for explaining the heat balance when molding is stopped.
  • the heat generation amount P Hi during molding to maintain the cylinder 22 at the set temperature can be considered as the sum of the heat transfer amount P Ti and various heat dissipation.
  • the various heat dissipation is the sum of the heat amount applied to the heater 24b, the heat transfer amount to the front (the nozzle portion 25 side), the heat transfer amount to the rear (the opposite side of the nozzle portion 25), and the heat dissipation from the surface of the heater 24b.
  • the screw 23 stops inside the cylinder 22 and the resin does not flow, resulting in a stagnant state.
  • the resin temperature can be considered to be the same as the temperature of the cylinder 22, so the heat generated by the heater 24b is not transferred to the resin. Therefore, as shown in Fig. 5, the heat generation amount P'Hi when molding is stopped and the cylinder 22 is maintained at the set temperature can be considered to be equal to the various heat dissipations.
  • the heat transfer amount PTi can be obtained by subtracting the heat generation amount P'Hi from the heat generation amount PHi , which cancels out the various heat dissipations.
  • the melting state determination unit 15 determines the melting state of the resin inside the cylinder 22 based on the calculation results of the heater heat transfer amount calculation unit 14.
  • the amount of heat transfer P Ti from the heaters 24a to 24d to the resin is closely related to the resin temperature inside the cylinder 22. For example, if the resin does not receive a sufficient amount of heat upstream of a certain heater zone in the resin transport direction, the resin sent to that zone will be at a lower temperature than the set temperature of the heaters 24a to 24d. In this case, a large amount of heat is transferred from the heaters 24a to 24d to the resin, so the amount of heat transfer P Ti is large. Conversely, if the resin receives an excessive amount of heat upstream of a certain heater zone in the resin transport direction, the resin sent to that zone will be at a higher temperature than the set temperature of the heaters 24a to 24d, so the amount of heat transfer P Ti is small. In other words, there is a negative correlation between the "deviation of the resin temperature from the set temperature of each heater 24a to 24d" and the "amount of heat transfer P Ti .”
  • the melting state determination unit 15 of this embodiment calculates the melting state of the resin as the degree of deviation from the heater set temperature by utilizing the correlation between "the deviation of the resin temperature from the set temperature of each heater 24a to 24d" and "the amount of heat transfer P Ti .”
  • the output unit 20 outputs the result of the melting state judgment made by the melting state judgment unit 15 to enable the user to grasp the melting state.
  • the output unit 20 executes a process to display the result of the judgment made by the melting state judgment unit 15 on the display device 6 of the injection molding machine 1.
  • the output unit 20 may be configured to output the result of the judgment made by the melting state judgment unit 15 to an external computer connected to the injection molding machine 1 that is different from the display device 6 of the injection molding machine 1.
  • the display device 6 is, for example, an output device such as a liquid crystal display or a touch panel display. Note that instead of the display device 6, the determination result of the melting state determination unit 15 may be output by a sound output device that outputs sound.
  • Fig. 6 is a flow chart showing an example of a process flow by the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the characteristic information acquisition unit 12 acquires characteristic information indicating the characteristics of the injection molding machine 1 (step S10), and the operation information acquisition unit 11 acquires the operating rates related to the operations of the heaters 24 a to 24 d as operation information (step S11).
  • the operation information and characteristic information are acquired, for example, from various sensors, a storage unit (not shown) of the control device 10, an external computer (not shown), etc.
  • the heater heat generation amount calculation unit 13 calculates the heat generation amount of the heaters 24a to 24d based on the acquired operation information and characteristic information (step S12).
  • the heater heat generation amount calculation unit 13 calculates the heat generation amount per unit time of each of the heaters 24a to 24d in a state in which the cylinder 22 is maintained at a predetermined set temperature based on, for example, the operation rate of the heaters 24a to 24d and the capacity of the heaters 24a to 24d.
  • the heater heat transfer amount calculation unit 14 calculates the amount of heat transfer from the heaters 24a to 24d to the resin (step S13).
  • the heater heat transfer amount calculation unit 14 for example, substitutes the heat generation amount P Hi of the heaters 24a to 24d when molding is being performed and the heat generation amount P' Hi of the heaters 24a to 24d when molding is stopped into the above formula (2) to calculate the heat transfer amount P Ti from the heaters 24a to 24d to the resin.
  • the melted state determination unit 15 determines the melted state based on the heat transfer amount P Ti , which is the calculation result of the heater heat transfer amount calculation unit 14 (step S14).
  • the melted state determination unit 15 outputs information indicating the degree of the melted state based on a preset condition, for example, by utilizing a negative correlation between "the deviation of the resin temperature from the set temperature of each heater 24a to 24d" and "the heat transfer amount P Ti ".
  • the information indicating the degree of the melted state may be a numerical value, or may be a character, symbol, graph, picture, or a combination thereof, which indicates a state corresponding to the numerical value.
  • the output unit 20 When the molten state determination unit 15 outputs the determination result, the output unit 20 outputs the determination result (step S15).
  • the output unit 20 executes a process to display, for example, the determination result by the molten state determination unit 15 on the display device 6, which may be a numerical value, a letter, a symbol, a graph, a picture, or a combination thereof.
  • step S15 After the processing by the output unit 20 in step S15, if the molding process is to be continued, the control device 10 returns the process to step S11 and executes the processes from step S11 onwards again (step S16; Yes). On the other hand, if the control device 10 detects that the molding process has been stopped, it executes a process to stop molding and ends the flow (step S16; No). Note that the continuation or stop of the molding process is determined by the control device 10 based on, for example, the user's operation or whether the molten state satisfies a predetermined condition.
  • the control device 10 of the injection molding machine 1 provides the following effects. That is, the injection molding machine 1 includes a cylinder 22, heaters 24a to 24d arranged around the cylinder 22, and a screw 23 disposed inside the cylinder 22.
  • the control device 10 of the injection molding machine 1 includes an operation information acquisition unit 11 that acquires operation information related to the operation of the heaters 24a to 24d, a characteristic information acquisition unit 12 that acquires characteristic information related to the characteristics of the injection molding machine 1, a heater heat generation amount calculation unit 13 that calculates the heat generation amounts of the heaters 24a to 24d based on the acquired operation information and characteristic information, a heater heat transfer amount calculation unit 14 that calculates the amount of heat transfer from the heaters 24a to 24d to the resin based on the heat generation amounts of the heaters 24a to 24d when molding is performed in a state in which the cylinder 22 is maintained at a predetermined set temperature and the heat generation amounts of the heaters 24a to 24d when molding is stopped in a state in which the cylinder 22 is maintained
  • the information on the melting state output by the output unit 20 allows the user to accurately grasp the melting state of the resin even during continuous molding, without the need for special sensors. Being able to grasp the melting state makes it possible to know whether the molding conditions are good or bad, and to appropriately adjust the molding conditions.
  • the information output by the output unit 20 can also be used to identify the cause of molding defects or damage to the screw 23 or cylinder 22 parts.
  • Fig. 7 is a schematic diagram for explaining the heat balance during molding in the second embodiment
  • Fig. 8 is a schematic diagram for explaining the heat balance when molding is stopped in the second embodiment.
  • the operating rate indicating the operating state of the heaters 24a to 24d differs between when molding is in progress and when molding is stopped. If the operating rates of the heaters 24a to 24d differ, the surface temperatures of the heaters 24a to 24d differ, and the amount of heat dissipated from the surfaces of the heaters 24a to 24d also differ. For example, the amount of heat dissipated per unit time P Ri during molding as shown in FIG. 7 differs from the amount of heat dissipated per unit time P' Ri during molding is stopped as shown in FIG. 8 (amount of heat dissipated P Ri ⁇ amount of heat dissipated P' Ri ). Therefore, if the difference between the amount of heat dissipated by the heaters 24a to 24d during molding and when molding is stopped is corrected, the amount of heat transfer can be calculated more accurately.
  • the heat generation amount P Hi during molding can be considered as the sum of the heat transfer amount P Ti , the heat radiation amount P Ri , and other heat radiation excluding the heat radiation amount P Ri from various heat radiation.
  • the other heat radiation is the amount of heat transferred to the heater 24b toward the front (the nozzle portion 25 side) and the amount of heat transferred to the rear (the opposite side of the nozzle portion 25).
  • Heat dissipation from the heater surface can be divided into two types, convection and radiation, and the amount of heat dissipation can be calculated by adding them together.
  • the amount of heat dissipation is calculated using the heater surface temperature and ambient temperature acquired by the operation information acquisition unit 11, as well as the heater surface area, heat transfer coefficient, emissivity, and Stefan-Boltzmann coefficient acquired by the characteristic information acquisition unit 12.
  • the cylinder 22 may be assumed to have a simple cylindrical shape.
  • the ambient temperature and heater surface temperature are acquired, for example, by using the detection value of a temperature sensor (not shown) or by estimating using a predetermined function.
  • the amount of heater convection heat dissipation can be calculated, for example, using the following formula (3).
  • the amount of heater radiation heat dissipation can be calculated, for example, using the following formula (4).
  • P rci represents the amount of heater convection heat dissipation
  • T Hi represents the heater surface temperature
  • T C represents the ambient temperature
  • a i represents the heater surface area
  • h represents the heat transfer coefficient
  • P Rri represents the amount of heater radiation heat dissipation
  • represents the emissivity
  • represents the Stefan-Boltzmann coefficient.
  • the amount of heat transfer from a heater 24 to adjacent zones such as the front or rear in the axial direction of the cylinder 22 hardly changes if the set temperature of the cylinder 22 is the same.
  • the amount of heat transfer to the zone of heater 24a and the zone of heater 24c adjacent to the zone of heater 24b does not change. Therefore, it can be considered that the other heat dissipation excluding P Ri from the various heat dissipation during molding is equal to the other heat dissipation excluding P' Ri from the various heat dissipation during molding stop.
  • the heat transfer amount is calculated using the following formula (5).
  • FIG. 9 is a functional block diagram of the control device 10a of the injection molding machine 1 according to the second embodiment.
  • FIG. 10 is a flowchart showing an example of the processing flow by the control device 10a of the injection molding machine 1 according to the second embodiment.
  • control device 10a according to the second embodiment is different from the control device 10 of the injection molding machine 1 according to the first embodiment in that it further includes a heater heat radiation amount calculation unit 17 and in the process for calculating the heat transfer amount PTi , but the other configurations are common to the first embodiment.
  • the characteristic information acquisition unit 12 acquires, as characteristic information, the capacities of the heaters 24 a to 24 d, as well as the shapes of the heaters 24 a to 24 d and constants related to the heat dissipation of the heaters 24 a to 24 d (step S20).
  • the operation information acquisition unit 11 acquires the heater surface temperature and the ambient temperature as operation information in addition to the operating rates of the heaters 24a to 24d (step S21).
  • Constants related to heat dissipation include, for example, the heat transfer coefficient, the emissivity, the Stefan-Boltzmann coefficient, etc.
  • the heater heat generation amount calculation unit 13 calculates the heat generation amounts of the heaters 24a to 24d based on the acquired operation information and characteristic information (step S22).
  • the heater heat dissipation amount calculation unit 17 calculates the heat dissipation amount of each heater 24a to 24d based on the operation information acquired by the operation information acquisition unit 11 and the characteristic information acquired by the characteristic information acquisition unit 12 (step S23).
  • the heat dissipation amount of each heater 24a to 24d is the heat dissipation amount per unit time when the cylinder 22 is maintained at a predetermined set temperature.
  • the heater heat transfer amount calculation unit 14 calculates the heat transfer amount P Ti from the heaters 24a to 24d to the resin (step S24).
  • the heater heat transfer amount calculation unit 14 calculates the heat transfer amount P Ti from the heaters 24a to 24d to the resin by substituting, for example, the heat generation amount P Hi and the heat radiation amount P Ri of the heaters 24a to 24d when molding is being performed, and the heat generation amount P' Hi and the heat radiation amount P' Ri of the heaters 24a to 24d when molding is stopped, into the above formula ( 5 ).
  • the melted state determination unit 15 determines the melted state based on the heat transfer amount PTi calculated by the heater heat transfer amount calculation unit 14 (step S25), and the output unit 20 performs output processing based on the determination result of the melted state determination unit 15 (step S26).
  • the processing of step S27 is the same as the processing of step S16 in FIG. 6.
  • control device 10a of the injection molding machine 1 provides the following effects.
  • the control device 10a of the injection molding machine 1 further includes a heater heat dissipation calculation unit 17 that calculates the amount of heat dissipation of the heaters 24a to 24d based on the operation information and characteristic information, and the heater heat transfer calculation unit 14 calculates the amount of heat transfer from the heaters 24a to 24d to the resin based on the amounts of heat generated by the heaters 24a to 24d and the amount of heat dissipation calculated by the heater heat transfer calculation unit 17 when molding is in progress, and the amounts of heat generated by the heaters 24a to 24d and the amount of heat dissipation calculated by the heater heat transfer calculation unit 17 when molding is stopped.
  • the control device 10 according to the third embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the determination method of the molten state determination unit 15 is different from the determination method in the first embodiment.
  • the thing that interests users most is the molten state of the resin injected into the mold 5, in other words, the molten state of the metered resin.
  • the resin temperature of the metered resin at the tip of the screw 23 is a negative correlation between the resin temperature of the metered resin at the tip of the screw 23 and the deviation from the set temperature of the heater 24a or heater 24b located at the tip side of the cylinder 22.
  • Figure 11 is a graph showing the relationship between the amount of heat transfer of the measured resin and the deviation between the resin temperature and the set temperature.
  • the horizontal axis is the amount of heat transfer of the heater 24b
  • the vertical axis is the experimental result showing the degree of deviation between the resin temperature and the set temperature. This experiment was performed using the same molding machine, screw cylinder, and resin material, and various plasticization conditions were changed except for the metering stroke.
  • the approximate straight line in Figure 11 also shows that there is a very strong negative correlation between the amount of heat transfer of the heater 24b and the deviation between the resin temperature and the set temperature.
  • the supply section where the resin is supplied and the compression section where the resin is compressed do not receive a sufficient amount of heat, and resin at a temperature lower than the set temperature is measured, which may lead to deterioration of filling properties and molding defects.
  • the resin temperature is low, the viscosity of the resin is high, so a large load is applied to the parts at the tip of the screw 23, which may cause damage.
  • the amount of heat transfer is small, too much heat may be applied, causing the metering resin to become too hot, leading to thermal degradation.
  • the object of determination by the molten state determination unit 15 is the heater 24a of the nozzle portion 25 that is closest to the metered resin or the heater 24b on the tip side of the cylinder 22.
  • the object to be judged may be selected, for example, based on the relationship between the volume of the resin to be injected (one-shot volume) and the internal volume of the nozzle portion 25. If the volume of the resin to be injected is judged to be large in relation to the internal volume of the nozzle portion 25, the heater 24b on the cylinder 22 side is selected, and conversely, if it is judged to be small, the heater 24a of the nozzle portion 25 is selected.
  • the size may be judged, for example, based on a threshold value that is set empirically or theoretically. In other words, only the heater located on the tip side of the cylinder 22 is judged.
  • the control device 10 of the injection molding machine 1 has the following effects.
  • the melted state determination unit 15 determines the melted state of the resin inside the cylinder 22 based on the calculation results of the heater heat transfer amount calculation unit 14, which targets the heater 24a or heater 24b located at the tip side of the cylinder 22.
  • the amount of heat transfer is calculated based on the heater 24a or heater 24b located at the tip side of the cylinder 22, so the melted state of the metered resin can be grasped and the user can appropriately and accurately adjust the molding conditions to prevent molding defects and damage to parts.
  • the control device 10 according to the fourth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the melted state determination unit 15 determines the melted state based on a threshold value for the calculation result of the heater heat transfer amount calculation unit 14.
  • the threshold value is set to determine the relationship between the resin temperature and the input set temperature. For example, when the heat transfer amount of the heaters 24a to 24d is 0 or close to 0, the resin temperature is close to the set temperature. Also, if the heat transfer amount is large, the resin temperature is lower than the set temperature, and conversely, if the heat transfer amount is small, the resin temperature is higher than the set temperature. Therefore, the state of the resin can be determined by appropriately setting the threshold value for the heat transfer amount.
  • FIG. 12 is a diagram for explaining the threshold value for determining the relationship between the resin temperature and the set temperature set in the control device 10.
  • the horizontal axis shown in FIG. 12 indicates the amount of heat transfer P Ti .
  • a first threshold value as a predetermined upper limit value in the + direction with 0 as a reference, and a second threshold value as a predetermined upper limit value in the - direction with 0 as a reference are set.
  • the first threshold value is empirically or theoretically set as a numerical value by which it can be determined that the resin temperature is below the set temperature.
  • the second threshold value is empirically or theoretically set as a numerical value by which it can be determined that the resin temperature is above the set temperature.
  • the first threshold value and the second threshold value are, for example, stored in a storage unit (not shown) of the control device 10 and read out by the melting state determination unit 15.
  • the melted state determination unit 15 of the fourth embodiment determines that the resin temperature is equal to or approximately equal to the set temperature when the heat transfer amount P Ti , which is the calculation result of the heater heat transfer amount calculation unit 14, is between the first threshold value and the second threshold value.
  • the melted state determination unit 15 determines that the resin temperature is higher than the set temperature when the heat transfer amount P Ti is a numerical value lower than the second threshold value.
  • the melted state determination unit 15 determines that the resin temperature is lower than the set temperature when the heat transfer amount P Ti is a numerical value higher than the first threshold value.
  • the output unit 20 outputs the judgment result derived by the melting state judgment unit 15. For example, when the output unit 20 judges that the resin temperature is lower than the set temperature, it outputs "The resin temperature is lower than the set temperature” to the display device 6. When the output unit 20 judges that the resin temperature is higher than the set temperature, it outputs "The resin temperature is high” to the display device 6. When the output unit 20 judges that the resin temperature is equal to the set temperature, it may display information such as "The resin temperature is equal to the set temperature" on the display device 6. The output unit 20 may also display on the display device 6 the diagram shown in FIG. 12 or an image of the diagram shown in FIG. 12 with a symbol indicating the position corresponding to the current calculation result added.
  • two thresholds a first threshold and a second threshold
  • three judgment results are set, but this is not limited to this.
  • a configuration may be adopted in which a single threshold is set and the resin temperature is judged to be either high or low.
  • a configuration may be adopted in which three or more thresholds are set to judge the melting state in more detail.
  • the control device 10 of the injection molding machine 1 has the following effects.
  • the molten state determination unit 15 determines the molten state based on a threshold value, which is a criterion for determining the relationship between the resin temperature and the input set temperature, and the calculation result of the heater heat transfer amount calculation unit 14. This allows the user to understand the relationship between the resin temperature and the set temperature when molding is performed, making it even easier to understand the molten state of the resin.
  • the control device 10 according to the fifth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the melted state determination unit 15 determines the melted state based on a threshold value for the calculation result of the heater heat transfer amount calculation unit 14.
  • the threshold value is set to determine whether the resin temperature is too far from the input set temperature. For example, if the heat transfer amount of the heaters 24a to 24d is too large, the resin temperature is lower than the normal range, and conversely, if the heat transfer amount is too small, the resin temperature is higher than the normal range. If the heat transfer amount is outside the normal range in this way, it cannot be said that appropriate molding conditions are being maintained.
  • FIG. 13 is a diagram for explaining a threshold value for determining the deviation of the resin temperature set in the control device from the set temperature.
  • the horizontal axis shown in FIG. 13 indicates the amount of heat transfer P Ti .
  • a first threshold value is set as a predetermined upper limit value in the + direction with 0 as a reference
  • a second threshold value is set as a predetermined upper limit value in the - direction with 0 as a reference.
  • the first threshold value and the second threshold value are set empirically or theoretically as values that can determine the normal range.
  • the first threshold value and the second threshold value are stored, for example, in a storage unit (not shown) of the control device 10, and are read out by the melting state determination unit 15.
  • the melted state determination unit 15 of the fifth embodiment determines that the resin temperature is within the normal range when the heat transfer amount P Ti , which is the calculation result of the heater heat transfer amount calculation unit 14, is between the first threshold value and the second threshold value.
  • the melted state determination unit 15 determines that the resin temperature is significantly higher than the set temperature and deviates from it when the heat transfer amount P Ti is a numerical value lower than the second threshold value.
  • the melted state determination unit 15 determines that the resin temperature is significantly lower than the set temperature and deviates from it when the heat transfer amount P Ti is a numerical value higher than the first threshold value.
  • the output unit 20 outputs the judgment result derived by the melting state judgment unit 15. For example, if the resin temperature is outside the lower part of the normal range, the output unit 20 outputs warning information such as "The resin temperature is too low compared to the set temperature” to the display device 6. If the resin temperature is outside the upper part of the normal range, the output unit 20 outputs warning information such as "The resin temperature is too high” to the display device 6. If the resin temperature is within the normal range, the output unit 20 may output information such as "The resin temperature is normal” to the display device 6. The output unit 20 may also display on the display device 6 the diagram shown in FIG. 13 or an image of the diagram shown in FIG. 13 with a symbol indicating the position corresponding to the current calculation result added.
  • two thresholds a first threshold and a second threshold, are set, and three judgment results are set, but this is not limited to this.
  • one threshold may be set, or three or more thresholds may be set to judge the melting state in more detail.
  • the control device 10 of the injection molding machine 1 has the following effects.
  • the melted state determination unit 15 determines the melted state based on a threshold value, which is a criterion for determining whether the resin temperature deviates too much from the set temperature, and the calculation result of the heater heat transfer amount calculation unit 14, and the output unit outputs a warning if it is determined that the resin temperature deviates too much from the set temperature. This allows the user to quickly and easily determine whether the melted state of the resin has become inappropriate, and if so, the molding conditions can be changed to more appropriate weighing conditions.
  • the control device 10 according to the sixth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the melted state determination unit 15 compares the results of the heater heat transfer amount calculation unit 14 in different calculation intervals and determines how the resin temperature has changed. In the following description, the calculation interval is determined by the number of shots.
  • the melting state determination unit 15 compares the heat transfer amounts calculated by the heater heat transfer amount calculation unit 14 for each section and calculates the difference between them. Based on this difference in heat transfer amount for each section and a preset threshold, it determines the change in resin temperature in different calculation sections as "no change,” "temperature increase,” or “temperature decrease.”
  • the threshold is set, for example, theoretically or empirically, and is the criterion for determining whether or not a change has occurred; it is stored in the memory unit (not shown) of the control device 10.
  • FIG. 14 is a graph showing the change in the amount of heat transfer for each calculation interval.
  • the horizontal axis indicates the number of shots
  • the vertical axis indicates the amount of heat transfer.
  • the average amount of heat transfer in interval 1 is A
  • the average amount of heat transfer in interval 2 is B
  • the average amount of heat transfer in interval 3 is C.
  • A, B, and C are numerical values, with a magnitude relationship of A>C>B. Note that the average value here is, for example, a representative value of the amount of heat transfer for each shot in the same calculation interval.
  • the change in resin temperature is determined in section 2 and section 3.
  • A>B which indicates a difference in the degree of change
  • the molten state determination unit 15 determines the molten state to be in a "temperature rise” state, indicating that the resin temperature is higher than in section 1.
  • C ⁇ B which indicates a difference in the degree of change, is established, so the molten state determination unit 15 determines the molten state to be in a "temperature fall” state, indicating that the resin temperature is lower than in section 2.
  • the output unit 20 outputs the judgment result derived by the melted state judgment unit 15. For example, if the output unit 20 judges that the resin temperature is rising, it outputs information indicating "temperature rise” to the display device 6. If the output unit 20 judges that the resin temperature is falling, it outputs information indicating "temperature fall” to the display device 6. If the output unit 20 judges that the resin temperature does not exceed the threshold value and there is no change, it may output information such as "no change" to the display device 6. The output unit 20 may also cause the display device 6 to display the graph shown in FIG. 14 and information indicating the calculation results.
  • one of three types of judgment results is selected, but this is not limited to the above. For example, it may be determined whether or not a temperature change is occurring, or multiple thresholds may be set to select one of four or more types of judgment results.
  • the control device 10 of the injection molding machine 1 has the following effects.
  • the melted state determination unit 15 compares the calculation results of the heater heat transfer amount calculation unit 14 in different calculation intervals, and determines the change in resin temperature in the calculation interval based on the comparison result. This allows the user to easily grasp the change in resin temperature when conditions such as molding conditions or molding state change, and allows for effective adjustment of molding conditions.
  • the control device 10 according to the seventh embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the melted state determination unit 15 utilizes the correlation between the heat transfer amounts of the heaters 24a to 24d acquired in advance and the deviation of the resin temperature from the set temperature, and converts the heat transfer amount, which is the calculation result of the heater heat transfer amount calculation unit 14, into the deviation (relative value) between the resin temperature and the set temperature.
  • FIG. 15 is a graph showing the relationship between the amount of heat transfer of heaters 24a-24d and the deviation between the resin temperature and the set temperature.
  • the horizontal axis shows the amount of heat transfer of the heaters
  • the vertical axis shows the degree of deviation between the resin temperature and the set temperature.
  • a regression equation showing the relationship between the amount of heat transfer, the resin temperature, and the deviation between the set temperature is derived in advance, and the regression equation is stored in a memory unit (not shown) of the control device 10, etc.
  • the melted state determination unit 15 substitutes the amount of heat transfer into a preset regression equation and calculates the degree of deviation between the resin temperature and the set temperature.
  • the melted state determination unit 15 may also convert the set temperatures of the heaters 24a to 24d into an absolute value for the resin temperature.
  • the output unit 20 outputs the judgment result derived by the molten state judgment unit 15.
  • the output unit 20 outputs, for example, a numerical value indicating the degree of deviation between the resin temperature and the set temperature as the judgment result of the molten state judgment unit 15, or a resin temperature based on the degree of deviation.
  • the output unit 20 may also display the graph and regression equation shown in FIG. 15 on the display device 6 together with information indicating the calculation result.
  • the control device 10 of the injection molding machine 1 according to the seventh embodiment described above has the following effects.
  • the melted state determination unit 15 outputs at least one of the amount of deviation between the resin temperature and the set temperature or the resin temperature (absolute value) calculated based on the amount of deviation as a determination result based on a regression equation that derives the degree of deviation between the resin temperature and the set temperature in advance and the calculation result of the heater heat transfer amount calculation unit. This allows the user to quantitatively grasp the melted state of the resin.
  • the control device 10 according to the eighth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment.
  • the method of calculating the heat transfer amount by the heater heat transfer amount calculation unit 14 is different from that in the first embodiment.
  • the operation information acquisition unit 11 acquires the set temperature of each control point of the cylinder 22 as operation information.
  • the actual temperature at each control point may also be acquired.
  • the characteristic information acquisition unit 12 acquires a preset regression equation together with the capacity of the heaters 24a to 24d as characteristic information.
  • the regression equation is acquired, for example, from a memory unit (not shown) of the control device 10.
  • the heater heat transfer amount calculation unit 14 calculates the amount of heat generated by the heaters 24a to 24d to maintain the cylinder 22 at the set temperature without using the calculation results of the heater heat generation amount calculation unit 13.
  • the amount of heat generated in the molding stopped state is the amount of heat required to maintain the cylinder 22 at the set temperature. Therefore, the amount of heat generated in the molding stopped state can be uniquely determined by the set temperature of the control point of the cylinder 22 in the molding stopped state.
  • the amount of heat transfer is estimated using a regression equation that shows the relationship between the set temperature of the cylinder 22 obtained in advance and the amount of heat generated. This eliminates the need to actually measure the amount of heat transfer each time the set temperature of the cylinder 22 changes. Note that when the set temperatures of adjacent heaters 24a to 24d are different, heat moves in the axial direction, so it is desirable to use the values of not only the target heater but also the adjacent heaters as explanatory variables in the regression equation. Furthermore, in the eighth embodiment, the ambient temperature around the cylinder 22 may also be added as an explanatory variable.
  • the control device 10 according to the ninth embodiment has a common configuration with the control device 10a of the injection molding machine 1 according to the second embodiment.
  • the method of calculating the heat transfer amount by the heater heat transfer amount calculation unit 14 is different from that in the first embodiment.
  • the operation information acquisition unit 11 acquires the set temperature of each control point of the cylinder 22 as operation information.
  • the actual temperature at each control point may also be acquired.
  • the characteristic information acquisition unit 12 acquires a preset regression equation together with the capacity of the heaters 24a to 24d as characteristic information.
  • the regression equation is acquired, for example, from a memory unit (not shown) of the control device 10.
  • the surface temperatures of the heaters 24a to 24d in the molding stopped state are uniquely determined by the set temperature of the cylinder. Therefore, in the ninth embodiment, the surface temperatures of the heaters 24a to 24d are estimated based on a regression equation that shows the relationship between the temperature of the cylinder 22 and the surface temperatures of the heaters 24a to 24d, and the amount of heat dissipation in the molding stopped state is calculated. This eliminates the need to actually measure the amount of heat dissipation each time the set temperature of the cylinder 22 changes.
  • the ambient temperature around the cylinder may be added as an explanatory variable of the regression equation.
  • a control device (10, 10a) for an injection molding machine (1) including a cylinder (22), heaters (24a to 24d) disposed around the cylinder (22), and a screw (23) disposed inside the cylinder (22),
  • An operation information acquisition unit (11) that acquires operation information related to the operation of the heaters (24a to 24d); a characteristic information acquisition unit (12) that acquires characteristic information relating to characteristics of the injection molding machine (1); a heater heat generation amount calculation unit (13) that calculates the heat generation amount of the heaters (24a to 24d) based on the acquired operation information and characteristic information; a heater heat transfer amount calculation unit (14) for calculating an amount of heat transfer from the heaters (24a to 24d) to a resin based on the amount of heat generated by the heaters (24a to 24d) during molding in a state in which the cylinder (22) is maintained at a predetermined set temperature, and the amount of heat generated by the heaters (24a to
  • the control device (10, 10a) of the injection molding machine (1) further comprises a heater heat radiation amount calculation unit (17) that calculates the heat radiation amount of the heaters (24a to 24d) based on the operation information and the characteristic information,
  • the heater heat transfer amount calculation unit (14) The amount of heat transferred from the heaters (24a to 24d) to the resin is calculated based on the amount of heat generated by the heaters (24a to 24d) during molding and the amount of heat dissipation calculated by the heater heat dissipation calculation unit (17), and the amount of heat generated by the heaters (24a to 24d) and the amount of heat dissipation calculated by the heater heat dissipation calculation unit (17) when molding is stopped.
  • the melt state determination unit In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15) The melting state of the resin inside the cylinder is determined based on the calculation results of the heater heat transfer amount calculation unit (14), which calculates the heaters (24a to 24d) located on the tip side of the cylinder (22).
  • the melt state determination unit In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15) The melting state is judged based on a threshold value, which is a criterion for judging the relationship between the resin temperature and the input set temperature, and the calculation result of the heater heat transfer amount calculation unit (14).
  • the melt state determination unit In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15) A melting state is determined based on a threshold value, which is a criterion for determining whether or not the resin temperature is too far from the set temperature, and a calculation result of the heater heat transfer amount calculation unit (14); The output unit (20) outputs warning information when it is determined that the resin temperature is too far away from the set temperature.
  • melt state determination unit In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15) The calculation results of the heater heat transfer amount calculation unit (14) in different calculation intervals are compared, and a change in the resin temperature in the calculation interval is determined based on the comparison result.
  • the melt state determination unit (15) Based on a regression equation that derives the degree of deviation between the resin temperature and the set temperature in advance and the calculation result of the heater heat transfer amount calculation unit (14), at least one of the deviation amount between the resin temperature and the set temperature or the resin temperature calculated based on the deviation amount is output as a judgment result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a technology that, in an injection-molding machine, can effectively reduce molding defects by making it possible for a user to suitably ascertain a melting state of resin. A control device 10 for an injection-molding machine 1 comprises: an operation information acquisition unit 11 that acquires operation information pertaining to operations of heaters 24a-24d; a characteristic information acquisition unit 12 that acquires characteristic information pertaining to a characteristic of the injection-molding machine 1; a heater heat generation amount calculation unit 13 that calculates the heat generation amount of the heaters 24a-24d on the basis of the acquired operation information and the acquired characteristic information; a heater heat transfer amount calculation unit 14 that calculates the heat transfer amount from the heaters 24a-24d to resin on the basis of the heat generation amount of the heaters 24a-24d at the time when molding is carried out in a state in which the cylinder 22 is maintained at a prescribed set temperature and the heat generation amount of the heaters 24a-24d at the time when the molding is stopped in the state in which the cylinder 22 is maintained at the prescribed set temperature; a melting state determination unit 15 that determines a melting state of the resin inside the cylinder 22 on the basis of a calculation result of the heater heat transfer amount calculation unit 14; and an output unit 20 that outputs a determination result of the melting state determination unit 15.

Description

射出成形機の制御装置Injection molding machine control device
 本開示は、射出成形機の制御装置に関する。 This disclosure relates to a control device for an injection molding machine.
 従来、射出成形機の制御装置において、シリンダの制御点温度を設定温度に維持するようにヒータ出力を制御する技術において、熱量や温度の推定が行われている。(例えば、特許文献1、特許文献2及び特許文献3参照)。  Conventionally, in a control device for an injection molding machine, the amount of heat and temperature are estimated in a technique for controlling heater output so as to maintain the control point temperature of a cylinder at a set temperature. (See, for example, Patent Documents 1, 2, and 3.)
国際公開第2008/149742号International Publication No. 2008/149742 国際公開第2019/177040号International Publication No. 2019/177040 特開2010-241034号公報JP 2010-241034 A
 ところで、制御点温度を設定温度に維持するようにヒータ出力を制御していても、樹脂温度を実際に測定すると、設定温度と異なっていることがある。例えば、樹脂への熱量供給が不足する条件では、樹脂温度が設定温度を大きく下回り、逆に、熱量を余分に与えすぎるような条件では、樹脂温度が設定温度を大きく上回ることがある。樹脂温度が設定温度から大きく乖離している状態では、成形不良の発生やスクリュ、シリンダ等の部品の破損が起こる可能性が高くなってしまう。 Even if the heater output is controlled to maintain the control point temperature at the set temperature, the actual resin temperature may differ from the set temperature when it is measured. For example, under conditions where there is an insufficient supply of heat to the resin, the resin temperature may fall far below the set temperature, and conversely, under conditions where there is too much heat, the resin temperature may far exceed the set temperature. When the resin temperature deviates significantly from the set temperature, there is a high possibility of molding defects or damage to parts such as screws and cylinders.
 精度の観点からは、制御点温度ではなくシリンダ内部の樹脂温度を直接制御する方が好ましいものの、溶融樹脂の温度を直接測定して制御することは、シリンダの強度、センサ強度及びコスト等の厳しい条件を満たす必要がある。しかしながら、ユーザは、シリンダの各制御点温度が設定した値に維持されているのを見ると、シリンダ内部の樹脂温度が設定温度になっていると考えてしまう。ユーザに樹脂の溶融状態(温度)を適切に把握させるという点で従来技術には改善の余地があった。 From the standpoint of accuracy, it is preferable to directly control the resin temperature inside the cylinder rather than the control point temperature, but directly measuring and controlling the temperature of the molten resin requires meeting strict conditions such as cylinder strength, sensor strength, and cost. However, when a user sees that the temperatures of each control point on the cylinder are maintained at a set value, they tend to assume that the resin temperature inside the cylinder is at the set temperature. Conventional technology left room for improvement in terms of allowing users to properly grasp the molten state (temperature) of the resin.
 本開示は上記課題に鑑みてなされたものであり、射出成形機において、ユーザに樹脂の溶融状態を適切に把握させて成形不良を効果的に低減できる技術を提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide a technology that allows users to properly understand the molten state of resin in an injection molding machine and effectively reduce molding defects.
 本開示は、シリンダと、前記シリンダの周囲に配設されるヒータと、前記シリンダの内部に配置されるスクリュと、を備える射出成形機の制御装置であって、前記ヒータの動作に関する動作情報を取得する動作情報取得部と、前記射出成形機の特性に関する特性情報を取得する特性情報取得部と、取得された前記動作情報及び前記特性情報に基づいて、ヒータの発熱量を演算するヒータ発熱量演算部と、前記シリンダを所定の設定温度に維持した状態における成形実行時の前記ヒータの発熱量と、前記シリンダを所定の設定温度に維持した状態における成形停止時の前記ヒータの発熱量と、に基づいて前記ヒータから樹脂への伝熱量を演算するヒータ伝熱量演算部と、前記ヒータ伝熱量演算部の演算結果に基づいて前記シリンダ内部の樹脂の溶融状態を判定する溶融状態判定部と、前記溶融状態判定部の判定結果を出力する出力部と、を備える制御装置である。 The present disclosure relates to a control device for an injection molding machine that includes a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder, the control device including: an operation information acquisition unit that acquires operation information related to the operation of the heater; a characteristic information acquisition unit that acquires characteristic information related to the characteristics of the injection molding machine; a heater heat generation amount calculation unit that calculates the heat generation amount of the heater based on the acquired operation information and characteristic information; a heater heat transfer amount calculation unit that calculates the amount of heat transfer from the heater to the resin based on the heat generation amount of the heater when molding is performed with the cylinder maintained at a predetermined set temperature and the heat generation amount of the heater when molding is stopped with the cylinder maintained at a predetermined set temperature; a molten state determination unit that determines the molten state of the resin inside the cylinder based on the calculation result of the heater heat transfer amount calculation unit; and an output unit that outputs the determination result of the molten state determination unit.
 本開示によれば、射出成形機において、ユーザに樹脂の溶融状態を適切に把握させて成形不良を効果的に低減できる技術を提供することができる。 This disclosure provides a technology that allows users to properly understand the molten state of resin in an injection molding machine and effectively reduces molding defects.
第1実施形態に係る射出成形機の構成を示す模式図である。1 is a schematic diagram showing a configuration of an injection molding machine according to a first embodiment. FIG. 第1実施形態に係るシリンダに配置されるヒータを示す斜視図である。FIG. 2 is a perspective view showing a heater disposed in the cylinder according to the first embodiment. 第1実施形態に係る射出成形機の制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of a control device for the injection molding machine according to the first embodiment. 第1実施形態の成形実行時の熱収支を説明する模式図である。FIG. 4 is a schematic diagram illustrating a heat balance during forming according to the first embodiment. 第1実施形態の成形停止時の熱収支を説明する模式図である。FIG. 4 is a schematic diagram illustrating a heat balance when molding is stopped in the first embodiment. 第1実施形態に係る射出成形機の制御装置による処理の流れの一例を示すフローチャートである。4 is a flowchart showing an example of a processing flow by a control device of the injection molding machine according to the first embodiment. 第2実施形態の成形実行時の熱収支を説明する模式図である。FIG. 11 is a schematic diagram illustrating a heat balance during forming according to the second embodiment. 第2実施形態の成形停止時の熱収支を説明する模式図である。FIG. 11 is a schematic diagram illustrating the heat balance when molding is stopped in the second embodiment. 第2実施形態に係る射出成形機の制御装置の機能ブロック図である。FIG. 11 is a functional block diagram of a control device for an injection molding machine according to a second embodiment. 第2実施形態に係る射出成形機の制御装置による処理の流れの一例を示すフローチャートである。10 is a flowchart showing an example of a processing flow by a control device of an injection molding machine according to a second embodiment. 計量された樹脂の伝熱量に対する樹脂温度と設定温度の乖離の関係を示すグラフである。11 is a graph showing the relationship between the amount of heat transfer of a measured resin and the deviation between the resin temperature and a set temperature. 制御装置に設定される樹脂温度と設定温度の関係を判定する閾値を説明する図である。11 is a diagram illustrating a threshold value for determining a relationship between a resin temperature and a set temperature set in the control device. FIG. 制御装置に設定される樹脂温度の設定温度からの乖離度を判定する閾値を説明する図である。11 is a diagram illustrating a threshold value for determining the degree of deviation of a resin temperature set in a control device from a set temperature. FIG. 演算区間ごとの伝熱量の変化を示すグラフである。13 is a graph showing changes in the amount of heat transfer for each calculation interval. ヒータの伝熱量と樹脂温度と設定温度の乖離の関係を示すグラフである。11 is a graph showing the relationship between the amount of heat transfer of a heater and the deviation between the resin temperature and the set temperature.
 以下、本開示の実施形態について、図面を参照して詳しく説明する。なお、第2実施形態以降の説明において、第1実施形態と共通する構成については同一符号を付し、その説明を適宜省略する。 The embodiments of the present disclosure will be described in detail below with reference to the drawings. In the description of the second and subsequent embodiments, the same reference numerals will be used to designate configurations common to the first embodiment, and descriptions thereof will be omitted as appropriate.
[第1実施形態]
 図1は、第1実施形態に係る射出成形機1の構成を示す模式図である。図2は、第1実施形態に係る射出成形機1のシリンダ22に配置されるヒータ24a~24dを示す斜視図である。本実施形態の射出成形機1は、射出部2と、型締部3と、制御装置10と、表示装置6と、を備える。
[First embodiment]
Fig. 1 is a schematic diagram showing the configuration of an injection molding machine 1 according to the first embodiment. Fig. 2 is a perspective view showing heaters 24a to 24d arranged in a cylinder 22 of the injection molding machine 1 according to the first embodiment. The injection molding machine 1 of this embodiment includes an injection section 2, a mold clamping section 3, a control device 10, and a display device 6.
 射出部2は、ホッパ21と、シリンダ22と、スクリュ23と、冷却ジャケット26と、を備える射出装置である。シリンダ22は、例えば、筒状体である。シリンダ22には、ホッパ21に貯留された樹脂が供給される。スクリュ23は、シリンダ22の内部に配置され、回転によって樹脂をシリンダ22の先端に搬送する。冷却ジャケット26は、シリンダ22の内部(例えば、シリンダ22の内部における根元側の部分)を冷却する装置であり、冷却水が循環している。 The injection unit 2 is an injection device that includes a hopper 21, a cylinder 22, a screw 23, and a cooling jacket 26. The cylinder 22 is, for example, a cylindrical body. Resin stored in the hopper 21 is supplied to the cylinder 22. The screw 23 is disposed inside the cylinder 22, and transports the resin to the tip of the cylinder 22 by rotating. The cooling jacket 26 is a device that cools the inside of the cylinder 22 (for example, the part on the root side inside the cylinder 22), and cooling water circulates through it.
 図2に示されるように、ヒータ24a~24dは、例えば、シリンダ22の軸方向に沿って複数配置される。具体的には、ヒータ24a~24dは、シリンダ22の軸方向先端のノズル部25から基端まで複数配置される。なお、ヒータ24a~24dの数は特に限定されない。 As shown in FIG. 2, heaters 24a to 24d are arranged, for example, in a plurality of positions along the axial direction of cylinder 22. Specifically, heaters 24a to 24d are arranged in a plurality of positions from nozzle portion 25 at the axial tip of cylinder 22 to the base end. Note that there is no particular limit to the number of heaters 24a to 24d.
 本実施形態において、ヒータ24a~24dはシリンダ22の外周を覆うように、軸方向に沿って4つ配置される。ヒータ24aは、ノズル部25に配置される先端側ヒータである。ヒータ24b~24dは、ペレットの搬送方向においてノズル部25よりも上流側に位置する。ヒータ24bは、ノズル部25に最も近い位置に位置する先端側ヒータの1つである。ヒータ24dはノズル部25から最も遠い位置にあり、ヒータ24cはヒータ24bとヒータ24dの間に位置する。 In this embodiment, four heaters 24a to 24d are arranged along the axial direction to cover the outer periphery of the cylinder 22. Heater 24a is a tip heater arranged in the nozzle portion 25. Heaters 24b to 24d are located upstream of the nozzle portion 25 in the pellet conveying direction. Heater 24b is one of the tip heaters located closest to the nozzle portion 25. Heater 24d is located farthest from the nozzle portion 25, and heater 24c is located between heaters 24b and 24d.
 ヒータ24a~24dによってシリンダ22が加熱されることにより、ペレットが溶融する。溶融したペレットは、スクリュ23によってノズル部25側へ搬送され、金型5に注入される。 The pellets are melted by heating the cylinder 22 with the heaters 24a to 24d. The molten pellets are transported by the screw 23 to the nozzle portion 25 and injected into the mold 5.
 型締部3は、金型5を型締めする装置である。型締部3による金型5の型締めにより成形品が成形される。 The mold clamping unit 3 is a device that clamps the mold 5. A molded product is formed by clamping the mold 5 with the mold clamping unit 3.
 次に、制御装置10について説明する。図3は、第1実施形態に係る射出成形機1の制御装置10の機能ブロック図である。第1実施形態に係る射出成形機1の制御装置10は、例えば、バスを介して互いに接続された、ROM(read only memory)やRAM(random access memory)等のメモリ、CPU(control processing unit)、及び通信制御部を備えたコンピュータを用いて構成される。以下に説明する制御装置10の各機能部の機能及び動作は、上記コンピュータに搭載されたCPU、メモリ、及び該メモリに記憶された制御プログラムが協働することにより達成される。 Next, the control device 10 will be described. FIG. 3 is a functional block diagram of the control device 10 of the injection molding machine 1 according to the first embodiment. The control device 10 of the injection molding machine 1 according to the first embodiment is configured using a computer equipped with memories such as a ROM (read only memory) and a RAM (random access memory), a CPU (control processing unit), and a communication control unit, which are connected to each other via a bus, for example. The functions and operations of each functional unit of the control device 10 described below are achieved by the cooperation of the CPU and memory mounted on the computer, and the control program stored in the memory.
 制御装置10は、動作情報取得部11と、特性情報取得部12と、ヒータ発熱量演算部13と、ヒータ伝熱量演算部14と、溶融状態判定部15と、出力部20と、を機能部として備える。 The control device 10 has, as functional units, an operation information acquisition unit 11, a characteristic information acquisition unit 12, a heater heat generation amount calculation unit 13, a heater heat transfer amount calculation unit 14, a melting state determination unit 15, and an output unit 20.
 動作情報取得部11は、ヒータ24a~24dの動作に関する動作情報を取得する。本実施形態におけるヒータ24a~24dに関する動作情報は、各ヒータ24a~24dの稼働率である。稼働率は、例えば、0~100%で示される稼働状態の指標である。稼働率は、例えば、ヒータ24a~24dの電圧等の出力に基づいて決まる。 The operation information acquisition unit 11 acquires operation information related to the operation of the heaters 24a to 24d. In this embodiment, the operation information related to the heaters 24a to 24d is the operation rate of each of the heaters 24a to 24d. The operation rate is an index of the operation state, for example, indicated as 0 to 100%. The operation rate is determined, for example, based on the output, such as the voltage, of the heaters 24a to 24d.
 特性情報取得部12は、射出成形機1の特性を示す特性情報を取得する。特性情報は、例えば、ヒータ24a~24dの容量である。ここでいうヒータ24a~24dの容量は、200Vのときに1500Wになるような定格容量である。 The characteristic information acquisition unit 12 acquires characteristic information indicating the characteristics of the injection molding machine 1. The characteristic information is, for example, the capacity of the heaters 24a to 24d. The capacity of the heaters 24a to 24d here is a rated capacity of 1500 W at 200 V.
 ヒータ発熱量演算部13は、取得された動作情報及び特性情報に基づいて、ヒータ24a~24dの発熱量を演算する。ヒータ発熱量演算部13は、例えば、予め設定される設定温度にシリンダ22を維持した状態における各ヒータ24a~24dの単位時間当たり発熱量を演算する。ヒータ発熱量演算部13は、ヒータ24a~24dの定格電圧と、実際の射出成形機1の電源電圧の違いに基づいて補正を行って発熱量を演算してもよい。 The heater heat generation amount calculation unit 13 calculates the heat generation amount of the heaters 24a to 24d based on the acquired operation information and characteristic information. The heater heat generation amount calculation unit 13 calculates the heat generation amount per unit time of each heater 24a to 24d in a state in which the cylinder 22 is maintained at a preset temperature, for example. The heater heat generation amount calculation unit 13 may calculate the heat generation amount by making corrections based on the difference between the rated voltage of the heaters 24a to 24d and the actual power supply voltage of the injection molding machine 1.
 ヒータ発熱量演算部13による発熱量の計算方法の一例について説明する。発熱量は、例えば、下式(1)によって演算することができる。なお、式(1)中のPHiは単位時間当たり発熱量、tは計算開始時間、tは計算終了時間、Wはヒータ容量、rはヒータ稼働率をそれぞれ表している。 An example of a method for calculating the amount of heat generated by the heater heat generation amount calculation unit 13 will be described below. The amount of heat generated can be calculated, for example, by the following formula (1). In formula (1), P Hi represents the amount of heat generated per unit time, t 1 represents the calculation start time, t 2 represents the calculation end time, W i represents the heater capacity, and r i represents the heater operation rate.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ヒータ伝熱量演算部14は、ヒータ発熱量演算部13の演算結果に基づいて各ヒータ24a~24dから樹脂への伝熱量を演算する。ヒータ伝熱量演算部14による伝熱量の演算方法の例について説明する。ヒータ24a~24dから樹脂への単位時間当たり伝熱量をPTiとする。所定の設定温度にシリンダ22を維持した状態で、成形を実行しているときの単位時間当たり発熱量をPHiとし、成形を停止しているときの単位時間当たり発熱量をP´Hiとすると、伝熱量は、下式(2)の関係となる。下式(2)が示すように、成形実行時の発熱量PHiと成形停止時の発熱量P´Hiの差によって伝熱量PTiを演算することができるのである。 The heater heat transfer amount calculation unit 14 calculates the amount of heat transfer from each of the heaters 24a to 24d to the resin based on the calculation result of the heater heat transfer amount calculation unit 13. An example of a method for calculating the amount of heat transfer by the heater heat transfer amount calculation unit 14 will be described. The amount of heat transfer per unit time from the heaters 24a to 24d to the resin is P Ti . In a state where the cylinder 22 is maintained at a predetermined set temperature, if the amount of heat generated per unit time when molding is being performed is P Hi and the amount of heat generated per unit time when molding is stopped is P' Hi , the amount of heat transfer is expressed by the following formula (2). As shown in the following formula (2), the amount of heat transfer P Ti can be calculated from the difference between the amount of heat generated when molding is being performed P Hi and the amount of heat generated when molding is stopped P' Hi .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)について図4及び図5を参照して説明する。図4は成形実行時の熱収支を説明する模式図である。図5は成形停止時の熱収支を説明する模式図である。図4に示されるように、成形実行時の熱収支を考えると、設定温度にシリンダ22を維持する成形実行時の発熱量PHiは、伝熱量PTiに各種放熱を加算したものと考えることができる。ここで、各種放熱は、ヒータ24bに加えられた熱量のうち、前方(ノズル部25側)への伝熱量、後方(ノズル部25の反対側)への伝熱量、ヒータ24bの表面からの放熱量の総和である。 The formula (2) will be described with reference to Fig. 4 and Fig. 5. Fig. 4 is a schematic diagram for explaining the heat balance during molding. Fig. 5 is a schematic diagram for explaining the heat balance when molding is stopped. As shown in Fig. 4, when considering the heat balance during molding, the heat generation amount P Hi during molding to maintain the cylinder 22 at the set temperature can be considered as the sum of the heat transfer amount P Ti and various heat dissipation. Here, the various heat dissipation is the sum of the heat amount applied to the heater 24b, the heat transfer amount to the front (the nozzle portion 25 side), the heat transfer amount to the rear (the opposite side of the nozzle portion 25), and the heat dissipation from the surface of the heater 24b.
 一方、成形停止時の熱収支を考えると、成形実行時と異なり、シリンダ22の内部では、スクリュ23が停止して樹脂が流れていない滞留状態となる。この状態では、樹脂温度がシリンダ22の温度と同じになっていると考えることができるので、ヒータ24bの発熱量が樹脂には伝わらないことになる。従って、図5に示されるように、設定温度にシリンダ22を維持する成形停止時の発熱量P´Hiは、各種放熱と等しくなると考えることができる。各種放熱も成形実行時と同様と考えることができるので、発熱量PHiから発熱量P´Hiを差し引くことによって各種放熱が相殺されて伝熱量PTiを求めることができる。 On the other hand, when considering the heat balance when molding is stopped, unlike when molding is in progress, the screw 23 stops inside the cylinder 22 and the resin does not flow, resulting in a stagnant state. In this state, the resin temperature can be considered to be the same as the temperature of the cylinder 22, so the heat generated by the heater 24b is not transferred to the resin. Therefore, as shown in Fig. 5, the heat generation amount P'Hi when molding is stopped and the cylinder 22 is maintained at the set temperature can be considered to be equal to the various heat dissipations. Since the various heat dissipations can be considered to be the same as when molding is in progress, the heat transfer amount PTi can be obtained by subtracting the heat generation amount P'Hi from the heat generation amount PHi , which cancels out the various heat dissipations.
 次に、図3に戻って溶融状態判定部15について説明する。溶融状態判定部15は、ヒータ伝熱量演算部14の演算結果に基づいてシリンダ22内部の樹脂の溶融状態を判定する。 Next, returning to FIG. 3, the melting state determination unit 15 will be described. The melting state determination unit 15 determines the melting state of the resin inside the cylinder 22 based on the calculation results of the heater heat transfer amount calculation unit 14.
 ヒータ24a~24dから樹脂への伝熱量PTiは、シリンダ22の内部の樹脂温度と密接な関係がある。例えば、あるヒータゾーンよりも樹脂の搬送方向の上流側において、樹脂が十分に熱量を受けていない場合、そのゾーンに送られてくる樹脂は、ヒータ24a~24dの設定温度よりも低温になる。この場合、ヒータ24a~24dから樹脂へ多く熱が移動するため、伝熱量PTiが大きくなる。逆に、あるヒータゾーンよりも樹脂の搬送方向の上流側において、樹脂が熱量を過剰に受けている場合、そのゾーンに送られてくる樹脂は、ヒータ24a~24dの設定温度よりも高温になるので、伝熱量PTiが小さくなる。即ち、「樹脂温度の各ヒータ24a~24dの設定温度からの乖離」と「伝熱量PTi」の間には負の相関が存在する。 The amount of heat transfer P Ti from the heaters 24a to 24d to the resin is closely related to the resin temperature inside the cylinder 22. For example, if the resin does not receive a sufficient amount of heat upstream of a certain heater zone in the resin transport direction, the resin sent to that zone will be at a lower temperature than the set temperature of the heaters 24a to 24d. In this case, a large amount of heat is transferred from the heaters 24a to 24d to the resin, so the amount of heat transfer P Ti is large. Conversely, if the resin receives an excessive amount of heat upstream of a certain heater zone in the resin transport direction, the resin sent to that zone will be at a higher temperature than the set temperature of the heaters 24a to 24d, so the amount of heat transfer P Ti is small. In other words, there is a negative correlation between the "deviation of the resin temperature from the set temperature of each heater 24a to 24d" and the "amount of heat transfer P Ti ."
 本実施形態の溶融状態判定部15は、「樹脂温度の各ヒータ24a~24dの設定温度からの乖離」と「伝熱量PTi」の間の相関を利用することにより、樹脂の溶融状態をヒータ設定温度からの乖離の度合いとして算出する。 The melting state determination unit 15 of this embodiment calculates the melting state of the resin as the degree of deviation from the heater set temperature by utilizing the correlation between "the deviation of the resin temperature from the set temperature of each heater 24a to 24d" and "the amount of heat transfer P Ti ."
 出力部20について説明する。出力部20は、ユーザの溶融状態の把握を可能にするために、溶融状態判定部15による溶融状態の判定結果を出力する。本実施形態では、射出成形機1の表示装置6に溶融状態判定部15の判定結果を表示させる処理を実行する。なお、出力部20は、射出成形機1の表示装置6とは異なる射出成形機1に接続される外部のコンピュータに溶融状態判定部15の判定結果を出力する構成としてもよい。 The output unit 20 will now be described. The output unit 20 outputs the result of the melting state judgment made by the melting state judgment unit 15 to enable the user to grasp the melting state. In this embodiment, the output unit 20 executes a process to display the result of the judgment made by the melting state judgment unit 15 on the display device 6 of the injection molding machine 1. The output unit 20 may be configured to output the result of the judgment made by the melting state judgment unit 15 to an external computer connected to the injection molding machine 1 that is different from the display device 6 of the injection molding machine 1.
 表示装置6は、例えば、液晶ディスプレイやタッチパネルディスプレイ等の出力装置である。なお、表示装置6に替えて音声を出力する発音装置によって溶融状態判定部15の判定結果を出力する構成としてもよい。 The display device 6 is, for example, an output device such as a liquid crystal display or a touch panel display. Note that instead of the display device 6, the determination result of the melting state determination unit 15 may be output by a sound output device that outputs sound.
 次に、図6を参照して伝熱量PTiを演算するための処理の流れについて説明する。図6は、第1実施形態に係る射出成形機1の制御装置10による処理の流れの一例を示すフローチャートである。 Next, a process flow for calculating the amount of heat transfer PTi will be described with reference to Fig. 6. Fig. 6 is a flow chart showing an example of a process flow by the control device 10 of the injection molding machine 1 according to the first embodiment.
 伝熱量PTiを演算するための処理が開始されると、特性情報取得部12が射出成形機1の特性を示す特性情報を取得するとともに(ステップS10)、動作情報取得部11が上述のヒータ24a~24dの動作に関する稼働率を動作情報として取得する(ステップS11)。動作情報や特性情報は、例えば、各種のセンサ、制御装置10の記憶部(図示せず)や外部のコンピュータ(図示せず)等から取得される。 When the process for calculating the amount of heat transfer P Ti is started, the characteristic information acquisition unit 12 acquires characteristic information indicating the characteristics of the injection molding machine 1 (step S10), and the operation information acquisition unit 11 acquires the operating rates related to the operations of the heaters 24 a to 24 d as operation information (step S11). The operation information and characteristic information are acquired, for example, from various sensors, a storage unit (not shown) of the control device 10, an external computer (not shown), etc.
 ヒータ発熱量演算部13は、取得された動作情報及び特性情報に基づいて、ヒータ24a~24dの発熱量を演算する(ステップS12)。ヒータ発熱量演算部13は、例えば、ヒータ24a~24dの稼働率とヒータ24a~24dの容量に基づいてシリンダ22を所定の設定温度に維持した状態における各ヒータ24a~24dの単位時間当たり発熱量を演算する。 The heater heat generation amount calculation unit 13 calculates the heat generation amount of the heaters 24a to 24d based on the acquired operation information and characteristic information (step S12). The heater heat generation amount calculation unit 13 calculates the heat generation amount per unit time of each of the heaters 24a to 24d in a state in which the cylinder 22 is maintained at a predetermined set temperature based on, for example, the operation rate of the heaters 24a to 24d and the capacity of the heaters 24a to 24d.
 次に、ヒータ伝熱量演算部14が、ヒータ24a~24dから樹脂への伝熱量を演算する(ステップS13)。ヒータ伝熱量演算部14は、例えば、成形実行時のヒータ24a~24dの発熱量PHiと、成形停止時のヒータ24a~24dの発熱量P´Hiと、を上式(2)に代入し、ヒータ24a~24dから樹脂への伝熱量PTiを演算する。 Next, the heater heat transfer amount calculation unit 14 calculates the amount of heat transfer from the heaters 24a to 24d to the resin (step S13). The heater heat transfer amount calculation unit 14, for example, substitutes the heat generation amount P Hi of the heaters 24a to 24d when molding is being performed and the heat generation amount P' Hi of the heaters 24a to 24d when molding is stopped into the above formula (2) to calculate the heat transfer amount P Ti from the heaters 24a to 24d to the resin.
 次に、溶融状態判定部15は、ヒータ伝熱量演算部14の演算結果である伝熱量PTiに基づいて溶融状態を判定する(ステップS14)。溶融状態判定部15は、例えば、「樹脂温度の各ヒータ24a~24dの設定温度からの乖離」と「伝熱量PTi」の間には負の相関を利用して予め設定される条件に基づいて溶融状態の程度を示す情報を出力する。溶融状態の程度を示す情報は、数値であってもよいし、数値に対応する状態を示す文字、記号、グラフ、絵又はその組合せ等であってもよい。 Next, the melted state determination unit 15 determines the melted state based on the heat transfer amount P Ti , which is the calculation result of the heater heat transfer amount calculation unit 14 (step S14). The melted state determination unit 15 outputs information indicating the degree of the melted state based on a preset condition, for example, by utilizing a negative correlation between "the deviation of the resin temperature from the set temperature of each heater 24a to 24d" and "the heat transfer amount P Ti ". The information indicating the degree of the melted state may be a numerical value, or may be a character, symbol, graph, picture, or a combination thereof, which indicates a state corresponding to the numerical value.
 出力部20は、溶融状態判定部15による判定結果が出力されると、当該判定結果を出力する(ステップS15)。出力部20は、例えば、表示装置6に溶融状態判定部15による判定結果である数値、文字、記号、グラフ、絵又はそれらの組合せ等を表示させる処理を実行する。 When the molten state determination unit 15 outputs the determination result, the output unit 20 outputs the determination result (step S15). The output unit 20 executes a process to display, for example, the determination result by the molten state determination unit 15 on the display device 6, which may be a numerical value, a letter, a symbol, a graph, a picture, or a combination thereof.
 ステップS15の出力部20による処理の後、制御装置10は、成形処理が継続される場合は、ステップS11に処理を戻し、ステップS11以降の処理を再び実行する(ステップS16;Yes)。一方、制御装置10は、成形処理の停止を検出すると、成形を停止するための処理を実行してフローを終了する(ステップS16;No)。なお、成形処理の継続又は停止は、例えば、ユーザの操作や溶融状態が予め定められた条件を満たす否か等に基づいて制御装置10により判定される。 After the processing by the output unit 20 in step S15, if the molding process is to be continued, the control device 10 returns the process to step S11 and executes the processes from step S11 onwards again (step S16; Yes). On the other hand, if the control device 10 detects that the molding process has been stopped, it executes a process to stop molding and ends the flow (step S16; No). Note that the continuation or stop of the molding process is determined by the control device 10 based on, for example, the user's operation or whether the molten state satisfies a predetermined condition.
 以上説明した第1実施形態に係る射出成形機1の制御装置10によれば、以下の効果が奏される。即ち、射出成形機1は、シリンダ22と、シリンダ22の周囲に配設されるヒータ24a~24dと、シリンダ22の内部に配置されるスクリュ23と、を備える。そして、射出成形機1の制御装置10は、ヒータ24a~24dの動作に関する動作情報を取得する動作情報取得部11と、射出成形機1の特性に関する特性情報を取得する特性情報取得部12と、取得された動作情報及び特性情報に基づいて、ヒータ24a~24dの発熱量を演算するヒータ発熱量演算部13と、シリンダ22を所定の設定温度に維持した状態における成形実行時のヒータ24a~24dの発熱量と、シリンダ22を所定の設定温度に維持した状態における成形停止時のヒータ24a~24dの発熱量と、に基づいてヒータ24a~24dから樹脂への伝熱量を演算するヒータ伝熱量演算部14と、ヒータ伝熱量演算部14の演算結果に基づいてシリンダ22内部の樹脂の溶融状態を判定する溶融状態判定部15と、溶融状態判定部15の判定結果を出力する出力部20と、を備える。これにより、出力部20によって出力される溶融状態の情報により、連続成形中であっても、特殊なセンサを必要とすることなく樹脂の溶融状態をユーザが正確に把握できる。溶融状態を把握できるので成形条件の良し悪しが分かり、成形条件の調整を適切に行うことができる。また、出力部20によって出力される情報は、成形不良やスクリュ23やシリンダ22の部品に破損が起こった場合の原因究明にも活用できる。 The control device 10 of the injection molding machine 1 according to the first embodiment described above provides the following effects. That is, the injection molding machine 1 includes a cylinder 22, heaters 24a to 24d arranged around the cylinder 22, and a screw 23 disposed inside the cylinder 22. The control device 10 of the injection molding machine 1 includes an operation information acquisition unit 11 that acquires operation information related to the operation of the heaters 24a to 24d, a characteristic information acquisition unit 12 that acquires characteristic information related to the characteristics of the injection molding machine 1, a heater heat generation amount calculation unit 13 that calculates the heat generation amounts of the heaters 24a to 24d based on the acquired operation information and characteristic information, a heater heat transfer amount calculation unit 14 that calculates the amount of heat transfer from the heaters 24a to 24d to the resin based on the heat generation amounts of the heaters 24a to 24d when molding is performed in a state in which the cylinder 22 is maintained at a predetermined set temperature and the heat generation amounts of the heaters 24a to 24d when molding is stopped in a state in which the cylinder 22 is maintained at the predetermined set temperature, a molten state determination unit 15 that determines the molten state of the resin inside the cylinder 22 based on the calculation result of the heater heat transfer amount calculation unit 14, and an output unit 20 that outputs the determination result of the molten state determination unit 15. As a result, the information on the melting state output by the output unit 20 allows the user to accurately grasp the melting state of the resin even during continuous molding, without the need for special sensors. Being able to grasp the melting state makes it possible to know whether the molding conditions are good or bad, and to appropriately adjust the molding conditions. The information output by the output unit 20 can also be used to identify the cause of molding defects or damage to the screw 23 or cylinder 22 parts.
[第2実施形態]
 第2実施形態では、ヒータ24a~24dの放熱量を考慮した制御を行う。図7及び図8を参照して第2実施形態の放熱量を考慮した熱収支について説明する。図7は第2実施形態の成形実行時の熱収支を説明する模式図であり、図8は第2実施形態の成形停止時の熱収支を説明する模式図である。
[Second embodiment]
In the second embodiment, control is performed taking into consideration the amount of heat radiation from the heaters 24a to 24d. The heat balance taking into consideration the amount of heat radiation in the second embodiment will be described with reference to Fig. 7 and Fig. 8. Fig. 7 is a schematic diagram for explaining the heat balance during molding in the second embodiment, and Fig. 8 is a schematic diagram for explaining the heat balance when molding is stopped in the second embodiment.
 シリンダ22を所定の設定温度に維持した状態であっても、成形実行時と成形停止時ではヒータ24a~24dの稼働状態を示す稼働率は異なる。ヒータ24a~24dの稼働率が異なればヒータ24a~24dの表面温度も異なり、ヒータ24a~24dの表面からの放熱量も異なる。例えば、図7に示す成形実行時の単位時間当たり放熱量PRiと、図8に示す成形停止時の単位時間当たり放熱量P´Riと、は異なることになる(放熱量PRi≠放熱量P´Ri)。従って、成形実行時と成形停止時のヒータ24a~24dの放熱量の差を補正すれば、より正確に伝熱量を計算することができる。 Even if the cylinder 22 is maintained at a predetermined set temperature, the operating rate indicating the operating state of the heaters 24a to 24d differs between when molding is in progress and when molding is stopped. If the operating rates of the heaters 24a to 24d differ, the surface temperatures of the heaters 24a to 24d differ, and the amount of heat dissipated from the surfaces of the heaters 24a to 24d also differ. For example, the amount of heat dissipated per unit time P Ri during molding as shown in FIG. 7 differs from the amount of heat dissipated per unit time P' Ri during molding is stopped as shown in FIG. 8 (amount of heat dissipated P Ri ≠ amount of heat dissipated P' Ri ). Therefore, if the difference between the amount of heat dissipated by the heaters 24a to 24d during molding and when molding is stopped is corrected, the amount of heat transfer can be calculated more accurately.
 成形実行時の発熱量PHiは、伝熱量PTiに対し、放熱量PRiと、各種放熱から放熱量PRiを除いたその他の放熱と、を加算したものと考えることができる。ここで、その他放熱は、ヒータ24bに加えられた伝熱量のうち、前方(ノズル部25側)への伝熱量、後方(ノズル部25の反対側)への伝熱量である。 The heat generation amount P Hi during molding can be considered as the sum of the heat transfer amount P Ti , the heat radiation amount P Ri , and other heat radiation excluding the heat radiation amount P Ri from various heat radiation. Here, the other heat radiation is the amount of heat transferred to the heater 24b toward the front (the nozzle portion 25 side) and the amount of heat transferred to the rear (the opposite side of the nozzle portion 25).
 ヒータ表面からの放熱は、対流と放射の2種類に分けられ、その合計により放熱量を計算することができる。第2実施形態では、動作情報取得部11が取得したヒータ表面温度、雰囲気温度とともに、特性情報取得部12が取得したヒータ表面積、熱伝達率、放射率、ステファンボルツマン係数を利用して放熱量を計算する。この計算において、シリンダ22を単純な円筒形状と仮定して計算してもよい。雰囲気温度やヒータ表面の温度は、例えば、温度センサ(図示せず)の検出値を利用したり、所定の関数により推定したりすることにより取得される。 Heat dissipation from the heater surface can be divided into two types, convection and radiation, and the amount of heat dissipation can be calculated by adding them together. In the second embodiment, the amount of heat dissipation is calculated using the heater surface temperature and ambient temperature acquired by the operation information acquisition unit 11, as well as the heater surface area, heat transfer coefficient, emissivity, and Stefan-Boltzmann coefficient acquired by the characteristic information acquisition unit 12. In this calculation, the cylinder 22 may be assumed to have a simple cylindrical shape. The ambient temperature and heater surface temperature are acquired, for example, by using the detection value of a temperature sensor (not shown) or by estimating using a predetermined function.
 放熱量の計算方法の一例について説明する。ヒータ対流放熱量は、例えば、下式(3)を用いて演算することができる。また、ヒータ放射放熱量は、例えば、下式(4)を用いて演算することができる。なお、式中のPrciはヒータ対流放熱量、THiはヒータ表面温度、Tは雰囲気温度、Aはヒータ表面積、hは熱伝達率、PRriはヒータ放射放熱量、εは放射率、σはステファンボルツマン係数を表している。 An example of a method for calculating the amount of heat dissipation will be described. The amount of heater convection heat dissipation can be calculated, for example, using the following formula (3). The amount of heater radiation heat dissipation can be calculated, for example, using the following formula (4). In the formula, P rci represents the amount of heater convection heat dissipation, T Hi represents the heater surface temperature, T C represents the ambient temperature, A i represents the heater surface area, h represents the heat transfer coefficient, P Rri represents the amount of heater radiation heat dissipation, ε represents the emissivity, and σ represents the Stefan-Boltzmann coefficient.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 あるヒータ24におけるシリンダ22の軸方向における前方や後方等の隣接するゾーンへの伝熱量は、シリンダ22の設定温度が同じであれば殆ど変化しないと考えられる。図7や図8の例では、ヒータ24bのゾーンに隣接するヒータ24aのゾーンやヒータ24cのゾーンへの伝熱量は変わらない。従って、成形実行時の各種放熱からPRiを除いたその他放熱と、成形停止時の各種放熱からP´Riを除いたその他放熱は等しくなると考えることができる。第2実施形態では、下式(5)を用いて伝熱量を演算する。 It is considered that the amount of heat transfer from a heater 24 to adjacent zones such as the front or rear in the axial direction of the cylinder 22 hardly changes if the set temperature of the cylinder 22 is the same. In the examples of Figures 7 and 8, the amount of heat transfer to the zone of heater 24a and the zone of heater 24c adjacent to the zone of heater 24b does not change. Therefore, it can be considered that the other heat dissipation excluding P Ri from the various heat dissipation during molding is equal to the other heat dissipation excluding P' Ri from the various heat dissipation during molding stop. In the second embodiment, the heat transfer amount is calculated using the following formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 次に、第2実施形態の制御装置10aの具体例について説明する。図9は、第2実施形態に係る射出成形機1の制御装置10aの機能ブロック図である。図10は、第2実施形態に係る射出成形機1の制御装置10aによる処理の流れの一例を示すフローチャートである。 Next, a specific example of the control device 10a of the second embodiment will be described. FIG. 9 is a functional block diagram of the control device 10a of the injection molding machine 1 according to the second embodiment. FIG. 10 is a flowchart showing an example of the processing flow by the control device 10a of the injection molding machine 1 according to the second embodiment.
 図9に示されるように、第2実施形態に係る制御装置10aは、第1実施形態に係る射出成形機1の制御装置10と比べて、ヒータ放熱量演算部17を更に備える点と、伝熱量PTiを演算するための処理と、が相違し、その他の構成は第1実施形態と共通である。 As shown in FIG. 9, the control device 10a according to the second embodiment is different from the control device 10 of the injection molding machine 1 according to the first embodiment in that it further includes a heater heat radiation amount calculation unit 17 and in the process for calculating the heat transfer amount PTi , but the other configurations are common to the first embodiment.
 伝熱量PTiを演算するための処理が開始されると、図10に示されるように、特性情報取得部12は、ヒータ24a~24dの容量の他、ヒータ24a~24dの形状やヒータ24a~24dの放熱に関する定数を特性情報として取得する(ステップS20)。 When the process for calculating the heat transfer amount P Ti is started, as shown in FIG. 10, the characteristic information acquisition unit 12 acquires, as characteristic information, the capacities of the heaters 24 a to 24 d, as well as the shapes of the heaters 24 a to 24 d and constants related to the heat dissipation of the heaters 24 a to 24 d (step S20).
 また、動作情報取得部11は、ヒータ24a~24dの稼働率の他に、ヒータ表面温度と雰囲気温度を動作情報として取得する(ステップS21)。放熱に関する定数は、例えば、熱伝達率、放射率、ステファンボルツマン係数等である。 In addition, the operation information acquisition unit 11 acquires the heater surface temperature and the ambient temperature as operation information in addition to the operating rates of the heaters 24a to 24d (step S21). Constants related to heat dissipation include, for example, the heat transfer coefficient, the emissivity, the Stefan-Boltzmann coefficient, etc.
 また、ヒータ発熱量演算部13は、第1実施形態と同様に、取得された動作情報及び特性情報に基づいて、ヒータ24a~24dの発熱量を演算する(ステップS22)。 Furthermore, similar to the first embodiment, the heater heat generation amount calculation unit 13 calculates the heat generation amounts of the heaters 24a to 24d based on the acquired operation information and characteristic information (step S22).
 ヒータ放熱量演算部17は、動作情報取得部11が取得した動作情報と、特性情報取得部12が取得した特性情報と、に基づいて各ヒータ24a~24dの放熱量を演算する(ステップS23)。各ヒータ24a~24dの放熱量は、所定の設定温度にシリンダ22を維持した状態での単位時間当たり放熱量である。 The heater heat dissipation amount calculation unit 17 calculates the heat dissipation amount of each heater 24a to 24d based on the operation information acquired by the operation information acquisition unit 11 and the characteristic information acquired by the characteristic information acquisition unit 12 (step S23). The heat dissipation amount of each heater 24a to 24d is the heat dissipation amount per unit time when the cylinder 22 is maintained at a predetermined set temperature.
 ヒータ放熱量演算部17による放熱量の演算処理の後、ヒータ伝熱量演算部14が、ヒータ24a~24dから樹脂への伝熱量PTiを演算する(ステップS24)。ヒータ伝熱量演算部14は、例えば、成形実行時のヒータ24a~24dの発熱量PHi及び放熱量PRiと、成形停止時のヒータ24a~24dの発熱量P´Hi及び放熱量P´Riと、を上式(5)に代入してヒータ24a~24dから樹脂への伝熱量PTiを演算する。 After the heater heat radiation amount calculation unit 17 calculates the heat radiation amount, the heater heat transfer amount calculation unit 14 calculates the heat transfer amount P Ti from the heaters 24a to 24d to the resin (step S24). The heater heat transfer amount calculation unit 14 calculates the heat transfer amount P Ti from the heaters 24a to 24d to the resin by substituting, for example, the heat generation amount P Hi and the heat radiation amount P Ri of the heaters 24a to 24d when molding is being performed, and the heat generation amount P' Hi and the heat radiation amount P' Ri of the heaters 24a to 24d when molding is stopped, into the above formula ( 5 ).
 溶融状態判定部15はヒータ伝熱量演算部14の演算結果である伝熱量PTiに基づいて溶融状態を判定し(ステップS25)、出力部20は溶融状態判定部15の判定結果に基づいて出力処理を行う(ステップS26)。ステップS27の処理は、図6のステップS16の処理と同様である。 The melted state determination unit 15 determines the melted state based on the heat transfer amount PTi calculated by the heater heat transfer amount calculation unit 14 (step S25), and the output unit 20 performs output processing based on the determination result of the melted state determination unit 15 (step S26). The processing of step S27 is the same as the processing of step S16 in FIG. 6.
 以上説明した第2実施形態に係る射出成形機1の制御装置10aによれば、以下の効果が奏される。 The control device 10a of the injection molding machine 1 according to the second embodiment described above provides the following effects.
 本実施形態に係る射出成形機1の制御装置10aは、動作情報及び特性情報に基づいて、ヒータ24a~24dの放熱量を演算するヒータ放熱量演算部17を更に備え、ヒータ伝熱量演算部14は、成形実行時におけるヒータ24a~24dの発熱量及びヒータ放熱量演算部17が演算した放熱量と、成形停止時におけるヒータ24a~24dの発熱量とヒータ放熱量演算部17が演算した放熱量と、に基づいてヒータ24a~24dから樹脂への伝熱量を演算する。これにより、成形実行時と成形停止時の差が大きく伝熱量の計算への影響が大きいヒータ24a~24dの表面からの放熱量が補正されるので、より一層効率的かつ正確に伝熱量を演算できる。 The control device 10a of the injection molding machine 1 according to this embodiment further includes a heater heat dissipation calculation unit 17 that calculates the amount of heat dissipation of the heaters 24a to 24d based on the operation information and characteristic information, and the heater heat transfer calculation unit 14 calculates the amount of heat transfer from the heaters 24a to 24d to the resin based on the amounts of heat generated by the heaters 24a to 24d and the amount of heat dissipation calculated by the heater heat transfer calculation unit 17 when molding is in progress, and the amounts of heat generated by the heaters 24a to 24d and the amount of heat dissipation calculated by the heater heat transfer calculation unit 17 when molding is stopped. This corrects the amount of heat dissipation from the surfaces of the heaters 24a to 24d, which differs greatly between when molding is in progress and when molding is stopped and has a large impact on the calculation of the amount of heat transfer, making it possible to calculate the amount of heat transfer more efficiently and accurately.
[第3実施形態]
 第3実施形態に係る制御装置10は、第1実施形態に係る射出成形機1の制御装置10と構成は共通である。第3実施形態では、溶融状態判定部15の判定方法が第1実施形態の判定方法と異なる。
[Third embodiment]
The control device 10 according to the third embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment. In the third embodiment, the determination method of the molten state determination unit 15 is different from the determination method in the first embodiment.
 ユーザにとって最も関心があるのは、金型5内に射出される樹脂の溶融状態であり、換言すると計量される計量樹脂の溶融状態である。スクリュ23先端の計量樹脂の樹脂温度とシリンダ22の先端側に位置するヒータ24a又はヒータ24bの設定温度の乖離との間には負の相関が存在する。 The thing that interests users most is the molten state of the resin injected into the mold 5, in other words, the molten state of the metered resin. There is a negative correlation between the resin temperature of the metered resin at the tip of the screw 23 and the deviation from the set temperature of the heater 24a or heater 24b located at the tip side of the cylinder 22.
 図11は、計量された樹脂の伝熱量に対する樹脂温度と設定温度の乖離の関係を示すグラフである。図11のグラフは、横軸はヒータ24bの伝熱量であり、縦軸は樹脂温度と設定温度の乖離の度合いを示す実験結果である。この実験は同一の成形機、スクリュシリンダ、樹脂材料を使用し、計量ストロークを除いた様々な可塑化条件を変更して行ったものである。図11の近似直線からも、ヒータ24bの伝熱量と、樹脂温度と設定温度の乖離の間には、非常に強い負の相関があることがわかる。即ち、伝熱量が非常に大きい場合には、樹脂が供給される供給部や樹脂が圧縮される圧縮部にて十分な熱量を受けておらず、設定温度よりも低温の樹脂が計量されてしまうことになり、充填性の悪化や、成形不良につながる可能性がある。また、樹脂温度が低温の場合、樹脂は粘度が高いため、スクリュ23の先端部分の部品に大きな負荷がかかり破損も起こりうる。逆に伝熱量が小さい場合には余分に熱量を与えすぎて、計量樹脂が高温になりすぎて熱劣化等が起こる可能性もある。 Figure 11 is a graph showing the relationship between the amount of heat transfer of the measured resin and the deviation between the resin temperature and the set temperature. In the graph of Figure 11, the horizontal axis is the amount of heat transfer of the heater 24b, and the vertical axis is the experimental result showing the degree of deviation between the resin temperature and the set temperature. This experiment was performed using the same molding machine, screw cylinder, and resin material, and various plasticization conditions were changed except for the metering stroke. The approximate straight line in Figure 11 also shows that there is a very strong negative correlation between the amount of heat transfer of the heater 24b and the deviation between the resin temperature and the set temperature. In other words, when the amount of heat transfer is very large, the supply section where the resin is supplied and the compression section where the resin is compressed do not receive a sufficient amount of heat, and resin at a temperature lower than the set temperature is measured, which may lead to deterioration of filling properties and molding defects. In addition, when the resin temperature is low, the viscosity of the resin is high, so a large load is applied to the parts at the tip of the screw 23, which may cause damage. Conversely, if the amount of heat transfer is small, too much heat may be applied, causing the metering resin to become too hot, leading to thermal degradation.
 そこで、第3実施形態では、この計量樹脂における相関関係を利用して計量樹脂の溶融状態を精度よく判定するため、溶融状態判定部15の判定を行う対象を計量樹脂に近いノズル部25のヒータ24a又はシリンダ22の先端側のヒータ24bとする。 In the third embodiment, therefore, in order to accurately determine the molten state of the metered resin by utilizing this correlation in the metered resin, the object of determination by the molten state determination unit 15 is the heater 24a of the nozzle portion 25 that is closest to the metered resin or the heater 24b on the tip side of the cylinder 22.
 なお、判定を行う対象は、例えば、射出する樹脂の容積(ワンショットのボリューム)とノズル部25の内部容積の関係に基づいて選択してもよい。射出する樹脂の容積がノズル部25の内部容積の関係で大きいと判断できる場合はシリンダ22側のヒータ24bを選択し、逆に小さいと判断できる場合はノズル部25のヒータ24aを選択する。大小は、例えば、経験的又は理論的に設定される閾値に基づいて判定してもよい。換言すれば、シリンダ22の先端側に位置するヒータのみが判定対象となる。 The object to be judged may be selected, for example, based on the relationship between the volume of the resin to be injected (one-shot volume) and the internal volume of the nozzle portion 25. If the volume of the resin to be injected is judged to be large in relation to the internal volume of the nozzle portion 25, the heater 24b on the cylinder 22 side is selected, and conversely, if it is judged to be small, the heater 24a of the nozzle portion 25 is selected. The size may be judged, for example, based on a threshold value that is set empirically or theoretically. In other words, only the heater located on the tip side of the cylinder 22 is judged.
 以上説明した第3実施形態に係る射出成形機1の制御装置10によれば、以下の効果が奏される。本実施形態では、溶融状態判定部15は、シリンダ22の先端側に位置するヒータ24a又はヒータ24bを演算対象とする、ヒータ伝熱量演算部14の演算結果に基づいてシリンダ22内部の樹脂の溶融状態を判定する。これにより、シリンダ22の先端側に位置するヒータ24a又はヒータ24bに基づいて伝熱量を演算することになるので、計量樹脂の溶融状態を把握でき、ユーザは成形不良や部品の破損を防ぐ成形条件の調整を適切かつ正確に行うことができる。 The control device 10 of the injection molding machine 1 according to the third embodiment described above has the following effects. In this embodiment, the melted state determination unit 15 determines the melted state of the resin inside the cylinder 22 based on the calculation results of the heater heat transfer amount calculation unit 14, which targets the heater 24a or heater 24b located at the tip side of the cylinder 22. As a result, the amount of heat transfer is calculated based on the heater 24a or heater 24b located at the tip side of the cylinder 22, so the melted state of the metered resin can be grasped and the user can appropriately and accurately adjust the molding conditions to prevent molding defects and damage to parts.
[第4実施形態]
 第4実施形態に係る制御装置10は、第1実施形態に係る射出成形機1の制御装置10と構成は共通である。第4実施形態では、溶融状態判定部15が、ヒータ伝熱量演算部14の演算結果に対する閾値に基づいて溶融状態を判定する。閾値は、樹脂温度と入力された設定温度の関係を判定するために設定されるものである。例えば、ヒータ24a~24dの伝熱量が0又は0に近い場合は、樹脂温度は設定温度に近くなっていることになる。また、伝熱量が大きければ設定温度よりも樹脂温度が低温となっていることになり、逆に伝熱量が小さければ設定温度よりも樹脂温度が高温になっていることになる。従って、伝熱量に対する閾値を適切に設定することで、樹脂の状態を判定することができる。
[Fourth embodiment]
The control device 10 according to the fourth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment. In the fourth embodiment, the melted state determination unit 15 determines the melted state based on a threshold value for the calculation result of the heater heat transfer amount calculation unit 14. The threshold value is set to determine the relationship between the resin temperature and the input set temperature. For example, when the heat transfer amount of the heaters 24a to 24d is 0 or close to 0, the resin temperature is close to the set temperature. Also, if the heat transfer amount is large, the resin temperature is lower than the set temperature, and conversely, if the heat transfer amount is small, the resin temperature is higher than the set temperature. Therefore, the state of the resin can be determined by appropriately setting the threshold value for the heat transfer amount.
 図12は、制御装置10に設定される樹脂温度と設定温度の関係を判定する閾値を説明する図である。図12に示される横軸は伝熱量PTiを示す。第4実施形態では、樹脂温度と設定温度の関係を判定するために、0を基準として+の方向に所定の上限値としての第1閾値と、0を基準として-の方向に所定の上限値としての第2閾値と、が設定される。第1閾値は、樹脂温度が設定温度を下回ると判断できる数値として経験的又は理論的に設定される。第2閾値は樹脂温度が設定温度を上回ると判断できる数値として経験的又は理論的に設定される。第1閾値及び第2閾値は、例えば、制御装置10の記憶部(図示せず)に記憶され、溶融状態判定部15によって読み出される。 FIG. 12 is a diagram for explaining the threshold value for determining the relationship between the resin temperature and the set temperature set in the control device 10. The horizontal axis shown in FIG. 12 indicates the amount of heat transfer P Ti . In the fourth embodiment, in order to determine the relationship between the resin temperature and the set temperature, a first threshold value as a predetermined upper limit value in the + direction with 0 as a reference, and a second threshold value as a predetermined upper limit value in the - direction with 0 as a reference, are set. The first threshold value is empirically or theoretically set as a numerical value by which it can be determined that the resin temperature is below the set temperature. The second threshold value is empirically or theoretically set as a numerical value by which it can be determined that the resin temperature is above the set temperature. The first threshold value and the second threshold value are, for example, stored in a storage unit (not shown) of the control device 10 and read out by the melting state determination unit 15.
 第4実施形態の溶融状態判定部15は、ヒータ伝熱量演算部14の演算結果である伝熱量PTiが第1閾値と第2閾値の間にある場合は樹脂温度と設定温度が等しい又は略等しいと判定する。溶融状態判定部15は、伝熱量PTiが第2閾値よりも下回っている数値の場合は樹脂温度が設定温度よりも上回っていると判定する。一方、伝熱量PTiが第1閾値よりも上回っている数値の場合は樹脂温度が設定温度よりも下回っていると判定する。 The melted state determination unit 15 of the fourth embodiment determines that the resin temperature is equal to or approximately equal to the set temperature when the heat transfer amount P Ti , which is the calculation result of the heater heat transfer amount calculation unit 14, is between the first threshold value and the second threshold value. The melted state determination unit 15 determines that the resin temperature is higher than the set temperature when the heat transfer amount P Ti is a numerical value lower than the second threshold value. On the other hand, the melted state determination unit 15 determines that the resin temperature is lower than the set temperature when the heat transfer amount P Ti is a numerical value higher than the first threshold value.
 出力部20は、溶融状態判定部15が導出した判定結果を出力する。出力部20は、例えば、樹脂温度が設定温度よりも低くなっていると判定された場合は「樹脂温度が設定温度よりも低くなっています」を表示装置6に出力する。また、出力部20は樹脂温度が設定温度よりも高くなっていると判定された場合は「樹脂温度が高くなっています」を表示装置6に出力する。また、出力部20は、樹脂温度が設定温度と等しいと判定された場合は「樹脂温度は設定温度に一致しています」等の情報を表示装置6に表示してもよい。また、出力部20は、図12に示す図や図12に示す図に現在の演算結果に対応する位置を示す記号を加えた画像を表示装置6に表示させてもよい。 The output unit 20 outputs the judgment result derived by the melting state judgment unit 15. For example, when the output unit 20 judges that the resin temperature is lower than the set temperature, it outputs "The resin temperature is lower than the set temperature" to the display device 6. When the output unit 20 judges that the resin temperature is higher than the set temperature, it outputs "The resin temperature is high" to the display device 6. When the output unit 20 judges that the resin temperature is equal to the set temperature, it may display information such as "The resin temperature is equal to the set temperature" on the display device 6. The output unit 20 may also display on the display device 6 the diagram shown in FIG. 12 or an image of the diagram shown in FIG. 12 with a symbol indicating the position corresponding to the current calculation result added.
 なお、第4実施形態の説明では、第1閾値と第2閾値の2つを閾値として設け、判定結果を3つとしていたがこれに限定されるわけではない。例えば、閾値を1つとして樹脂温度が高い又は低いかの何れかを判定する構成としてもよい。また、閾値を3つ以上設けて溶融状態をより細かく判定する構成としてもよい。 In the description of the fourth embodiment, two thresholds, a first threshold and a second threshold, are set, and three judgment results are set, but this is not limited to this. For example, a configuration may be adopted in which a single threshold is set and the resin temperature is judged to be either high or low. Also, a configuration may be adopted in which three or more thresholds are set to judge the melting state in more detail.
 以上説明した第4実施形態に係る射出成形機1の制御装置10によれば、以下の効果が奏される。本実施形態では、溶融状態判定部15は、樹脂温度と入力された設定温度の関係を判定する基準である閾値と、ヒータ伝熱量演算部14の演算結果と、に基づいて溶融状態を判定する。これにより、ユーザは成形実行時の樹脂温度と設定温度の関係を把握することができ、樹脂の溶融状態をより一層容易に把握できる。 The control device 10 of the injection molding machine 1 according to the fourth embodiment described above has the following effects. In this embodiment, the molten state determination unit 15 determines the molten state based on a threshold value, which is a criterion for determining the relationship between the resin temperature and the input set temperature, and the calculation result of the heater heat transfer amount calculation unit 14. This allows the user to understand the relationship between the resin temperature and the set temperature when molding is performed, making it even easier to understand the molten state of the resin.
[第5実施形態]
 第5実施形態に係る制御装置10は、第1実施形態に係る射出成形機1の制御装置10と構成は共通である。第5実施形態では、溶融状態判定部15が、ヒータ伝熱量演算部14の演算結果に対する閾値に基づいて溶融状態を判定する。閾値は、樹脂温度が、入力された設定温度から乖離しすぎていないかを判定するために設定されるものである。例えば、ヒータ24a~24dの伝熱量が大きすぎる場合は樹脂温度が正常範囲を超えて低温になっていることになり、逆に、伝熱量が小さすぎる場合は、樹脂温度が正常範囲を超えて高温になっていることになる。このように伝熱量が正常範囲の外側にある場合、適切な成形条件が維持されているとは言えない。
[Fifth embodiment]
The control device 10 according to the fifth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment. In the fifth embodiment, the melted state determination unit 15 determines the melted state based on a threshold value for the calculation result of the heater heat transfer amount calculation unit 14. The threshold value is set to determine whether the resin temperature is too far from the input set temperature. For example, if the heat transfer amount of the heaters 24a to 24d is too large, the resin temperature is lower than the normal range, and conversely, if the heat transfer amount is too small, the resin temperature is higher than the normal range. If the heat transfer amount is outside the normal range in this way, it cannot be said that appropriate molding conditions are being maintained.
 図13は、制御装置に設定される樹脂温度の設定温度からの乖離度を判定する閾値を説明する図である。図13に示される横軸は伝熱量PTiを示す。第5実施形態では、樹脂温度が正常範囲にあるか否かを判定するために、0を基準として+の方向に所定の上限値としての第1閾値と、0を基準として-の方向に所定の上限値としての第2閾値と、が設定される。第1閾値と第2閾値は、正常範囲を判断できる数値として経験的又は理論的に設定される。第1閾値及び第2閾値は、例えば、制御装置10の記憶部(図示せず)に記憶され、溶融状態判定部15によって読み出される。 FIG. 13 is a diagram for explaining a threshold value for determining the deviation of the resin temperature set in the control device from the set temperature. The horizontal axis shown in FIG. 13 indicates the amount of heat transfer P Ti . In the fifth embodiment, in order to determine whether the resin temperature is within the normal range or not, a first threshold value is set as a predetermined upper limit value in the + direction with 0 as a reference, and a second threshold value is set as a predetermined upper limit value in the - direction with 0 as a reference. The first threshold value and the second threshold value are set empirically or theoretically as values that can determine the normal range. The first threshold value and the second threshold value are stored, for example, in a storage unit (not shown) of the control device 10, and are read out by the melting state determination unit 15.
 第5実施形態の溶融状態判定部15は、ヒータ伝熱量演算部14の演算結果である伝熱量PTiが第1閾値と第2閾値の間にある場合は樹脂温度が正常範囲にあると判定する。溶融状態判定部15は、伝熱量PTiが第2閾値よりも下回っている数値の場合は樹脂温度が設定温度よりも大きく上回って乖離していると判定する。一方、伝熱量PTiが第1閾値よりも上回っている数値の場合は樹脂温度が設定温度よりも大きく下回って乖離していると判定する。 The melted state determination unit 15 of the fifth embodiment determines that the resin temperature is within the normal range when the heat transfer amount P Ti , which is the calculation result of the heater heat transfer amount calculation unit 14, is between the first threshold value and the second threshold value. The melted state determination unit 15 determines that the resin temperature is significantly higher than the set temperature and deviates from it when the heat transfer amount P Ti is a numerical value lower than the second threshold value. On the other hand, the melted state determination unit 15 determines that the resin temperature is significantly lower than the set temperature and deviates from it when the heat transfer amount P Ti is a numerical value higher than the first threshold value.
 出力部20は、溶融状態判定部15が導出した判定結果を出力する。出力部20は、例えば、樹脂温度が正常範囲を下側に外れている場合は「樹脂温度が設定温度より低くなりすぎています」等の警告情報を表示装置6に出力する。また、樹脂温度が正常範囲を上側に外れている場合は「樹脂温度が高くなりすぎています」等の警告情報を表示装置6に出力する。また、出力部20は、樹脂温度が正常範囲内にある場合は「樹脂温度は正常です」等の情報を表示装置6に出力してもよい。また、出力部20は、図13に示す図や図13に示す図に現在の演算結果に対応する位置を示す記号を加えた画像を表示装置6に表示させてもよい。 The output unit 20 outputs the judgment result derived by the melting state judgment unit 15. For example, if the resin temperature is outside the lower part of the normal range, the output unit 20 outputs warning information such as "The resin temperature is too low compared to the set temperature" to the display device 6. If the resin temperature is outside the upper part of the normal range, the output unit 20 outputs warning information such as "The resin temperature is too high" to the display device 6. If the resin temperature is within the normal range, the output unit 20 may output information such as "The resin temperature is normal" to the display device 6. The output unit 20 may also display on the display device 6 the diagram shown in FIG. 13 or an image of the diagram shown in FIG. 13 with a symbol indicating the position corresponding to the current calculation result added.
 なお、第5実施形態の説明では、第1閾値と第2閾値の2つを閾値として設け、判定結果を3つとしていたがこれに限定されるわけではない。例えば、閾値を1つとしてもよいし、閾値を3つ以上設けて溶融状態をより細かく判定する構成としてもよい。 In the description of the fifth embodiment, two thresholds, a first threshold and a second threshold, are set, and three judgment results are set, but this is not limited to this. For example, one threshold may be set, or three or more thresholds may be set to judge the melting state in more detail.
 以上説明した第5実施形態に係る射出成形機1の制御装置10によれば、以下の効果が奏される。本実施形態では、溶融状態判定部15は、樹脂温度が設定温度から乖離しすぎているか否かを判定する基準である閾値と、ヒータ伝熱量演算部14の演算結果と、に基づいて溶融状態を判定し、出力部は、樹脂温度が設定温度から乖離しすぎていると判定された場合は警告報を出力する。これにより、ユーザは樹脂の溶融状態が不適切になっているかどうかを速やかかつ容易に把握でき、不適切な場合は成形条件を変更することによってより適切な計量条件に変えることができる。 The control device 10 of the injection molding machine 1 according to the fifth embodiment described above has the following effects. In this embodiment, the melted state determination unit 15 determines the melted state based on a threshold value, which is a criterion for determining whether the resin temperature deviates too much from the set temperature, and the calculation result of the heater heat transfer amount calculation unit 14, and the output unit outputs a warning if it is determined that the resin temperature deviates too much from the set temperature. This allows the user to quickly and easily determine whether the melted state of the resin has become inappropriate, and if so, the molding conditions can be changed to more appropriate weighing conditions.
[第6実施形態]
 第6実施形態に係る制御装置10は、第1実施形態に係る射出成形機1の制御装置10と構成は共通である。第6実施形態では、溶融状態判定部15が異なる演算区間におけるヒータ伝熱量演算部14の結果を比較し、樹脂温度がどのように変化したかを判定する。なお、以下の説明において演算区間は、ショット数によって決まる。
Sixth Embodiment
The control device 10 according to the sixth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment. In the sixth embodiment, the melted state determination unit 15 compares the results of the heater heat transfer amount calculation unit 14 in different calculation intervals and determines how the resin temperature has changed. In the following description, the calculation interval is determined by the number of shots.
 溶融状態判定部15は、区間ごとのヒータ伝熱量演算部14の演算結果である伝熱量を比較し、その差を計算する。この区間ごとの伝熱量の差と予め設定される閾値に基づいて「変化なし」、「温度上昇」又は「温度低下」というように、異なる演算区間における樹脂温度の変化を判定する。閾値は、例えば、理論的又は経験的に設定されるものであり、変化が生じているか否かの判定基準であり、制御装置10の記憶部(図示せず)に記憶される。 The melting state determination unit 15 compares the heat transfer amounts calculated by the heater heat transfer amount calculation unit 14 for each section and calculates the difference between them. Based on this difference in heat transfer amount for each section and a preset threshold, it determines the change in resin temperature in different calculation sections as "no change," "temperature increase," or "temperature decrease." The threshold is set, for example, theoretically or empirically, and is the criterion for determining whether or not a change has occurred; it is stored in the memory unit (not shown) of the control device 10.
 図14は、演算区間ごとの伝熱量の変化を示すグラフである。図14のグラフにおいて横軸はショット数を示し、縦軸は伝熱量を示す。この例において、区間1における伝熱量の平均値はAであり、区間2における伝熱量の平均値はBであり、区間3における伝熱量の平均値はCである。A、B、Cは数値であり、A>C>Bの大小関係となっている。なお、ここでいう平均値は、例えば、同じ演算区間におけるショットごとの伝熱量の代表値である。 FIG. 14 is a graph showing the change in the amount of heat transfer for each calculation interval. In the graph of FIG. 14, the horizontal axis indicates the number of shots, and the vertical axis indicates the amount of heat transfer. In this example, the average amount of heat transfer in interval 1 is A, the average amount of heat transfer in interval 2 is B, and the average amount of heat transfer in interval 3 is C. A, B, and C are numerical values, with a magnitude relationship of A>C>B. Note that the average value here is, for example, a representative value of the amount of heat transfer for each shot in the same calculation interval.
 図14の例では、区間2と区間3において樹脂温度の変化が判定される。区間2については、変化が生じる程度の差があるA>Bが成立しているので溶融状態判定部15は、区間1よりも樹脂温度が上がっていることを示す「温度上昇」にあると溶融状態を判定する。区間3についても、変化が生じる程度の差があるC<Bが成立しているので溶融状態判定部15は、区間2よりも樹脂温度が下がっていることを示す「温度下降」にあると溶融状態を判定する。 In the example of Figure 14, the change in resin temperature is determined in section 2 and section 3. For section 2, A>B, which indicates a difference in the degree of change, is established, so the molten state determination unit 15 determines the molten state to be in a "temperature rise" state, indicating that the resin temperature is higher than in section 1. For section 3, C<B, which indicates a difference in the degree of change, is established, so the molten state determination unit 15 determines the molten state to be in a "temperature fall" state, indicating that the resin temperature is lower than in section 2.
 出力部20は、溶融状態判定部15が導出した判定結果を出力する。出力部20は、例えば、樹脂温度が上昇していると判定された場合は「温度上昇」を示す情報を表示装置6に出力する。また、樹脂温度が下降していると判定された場合は「温度下降」を示す情報を表示装置6に出力する。また、出力部20は、樹脂温度が閾値を越えず、変化がないと判定された場合は「変化なし」等の情報を表示装置6に出力してもよい。また、出力部20は、図14に示すグラフや演算結果を示す情報を表示装置6に表示させてもよい。 The output unit 20 outputs the judgment result derived by the melted state judgment unit 15. For example, if the output unit 20 judges that the resin temperature is rising, it outputs information indicating "temperature rise" to the display device 6. If the output unit 20 judges that the resin temperature is falling, it outputs information indicating "temperature fall" to the display device 6. If the output unit 20 judges that the resin temperature does not exceed the threshold value and there is no change, it may output information such as "no change" to the display device 6. The output unit 20 may also cause the display device 6 to display the graph shown in FIG. 14 and information indicating the calculation results.
 なお、第6実施形態の説明では、3種類の判定結果から1つを選択する構成としていたがこれに限定されるわけではない。例えば、温度変化が起こっているか否かを判定してもよいし、閾値を多く設けて4種類以上の判定結果から1つを選択する構成としてもよい。 In the description of the sixth embodiment, one of three types of judgment results is selected, but this is not limited to the above. For example, it may be determined whether or not a temperature change is occurring, or multiple thresholds may be set to select one of four or more types of judgment results.
 以上説明した第6実施形態に係る射出成形機1の制御装置10によれば、以下の効果が奏される。本実施形態では、溶融状態判定部15は、異なる演算区間におけるヒータ伝熱量演算部14の演算結果を比較し、比較結果に基づいて演算区間における樹脂温度の変化を判定する。これにより、ユーザは、成形条件等の条件や成形状態が変わった際の樹脂の温度変化を容易に把握することができ、成形条件の効果的な調整を行うことができる。 The control device 10 of the injection molding machine 1 according to the sixth embodiment described above has the following effects. In this embodiment, the melted state determination unit 15 compares the calculation results of the heater heat transfer amount calculation unit 14 in different calculation intervals, and determines the change in resin temperature in the calculation interval based on the comparison result. This allows the user to easily grasp the change in resin temperature when conditions such as molding conditions or molding state change, and allows for effective adjustment of molding conditions.
[第7実施形態]
 第7実施形態に係る制御装置10は、第1実施形態に係る射出成形機1の制御装置10と構成は共通である。第7実施形態では、溶融状態判定部15は、予め取得されるヒータ24a~24dの伝熱量と樹脂温度の設定温度からの乖離の間の相関関係を利用し、ヒータ伝熱量演算部14の演算結果である伝熱量を、樹脂の温度と設定温度の乖離(相対値)に換算する。
[Seventh embodiment]
The control device 10 according to the seventh embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment. In the seventh embodiment, the melted state determination unit 15 utilizes the correlation between the heat transfer amounts of the heaters 24a to 24d acquired in advance and the deviation of the resin temperature from the set temperature, and converts the heat transfer amount, which is the calculation result of the heater heat transfer amount calculation unit 14, into the deviation (relative value) between the resin temperature and the set temperature.
 図15は、ヒータ24a~24dの伝熱量と樹脂温度と設定温度の乖離の関係を示すグラフである。図15のグラフにおいて横軸はヒータの伝熱量を示し、縦軸は樹脂温度と設定温度の乖離の程度を示す。図15に示されるように、伝熱量と樹脂温度と設定温度の乖離の関係を示す回帰式が予め導出され、当該回帰式が制御装置10の記憶部(図示せず)等に記憶される。 FIG. 15 is a graph showing the relationship between the amount of heat transfer of heaters 24a-24d and the deviation between the resin temperature and the set temperature. In the graph of FIG. 15, the horizontal axis shows the amount of heat transfer of the heaters, and the vertical axis shows the degree of deviation between the resin temperature and the set temperature. As shown in FIG. 15, a regression equation showing the relationship between the amount of heat transfer, the resin temperature, and the deviation between the set temperature is derived in advance, and the regression equation is stored in a memory unit (not shown) of the control device 10, etc.
 溶融状態判定部15は、予め設定された回帰式に対して伝熱量を代入し、樹脂温度と設定温度の乖離の度合いを示す乖離度を演算する。また、溶融状態判定部15は、ヒータ24a~24dの設定温度を用いて、樹脂の温度の絶対値に換算してもよい。 The melted state determination unit 15 substitutes the amount of heat transfer into a preset regression equation and calculates the degree of deviation between the resin temperature and the set temperature. The melted state determination unit 15 may also convert the set temperatures of the heaters 24a to 24d into an absolute value for the resin temperature.
 出力部20は、溶融状態判定部15が導出した判定結果を出力する。出力部20は、例えば、溶融状態判定部15の判定結果として樹脂温度と設定温度の乖離の度合いを示す数値や、乖離の度合いに基づく樹脂温度を出力する。また、出力部20は、図15に示すグラフや回帰式を演算結果を示す情報とともに表示装置6に表示させてもよい。 The output unit 20 outputs the judgment result derived by the molten state judgment unit 15. The output unit 20 outputs, for example, a numerical value indicating the degree of deviation between the resin temperature and the set temperature as the judgment result of the molten state judgment unit 15, or a resin temperature based on the degree of deviation. The output unit 20 may also display the graph and regression equation shown in FIG. 15 on the display device 6 together with information indicating the calculation result.
 以上説明した第7実施形態に係る射出成形機1の制御装置10によれば、以下の効果が奏される。本実施形態では、溶融状態判定部15は、予め樹脂温度と設定温度の乖離の程度を導出する回帰式と、ヒータ伝熱量演算部の演算結果と、に基づいて、樹脂温度と設定温度の乖離量又は乖離量に基づいて演算される樹脂温度(絶対値)のうち少なくとも何れか一方を判定結果として出力する。これにより、ユーザは樹脂の溶融状態を定量的に把握することができる。 The control device 10 of the injection molding machine 1 according to the seventh embodiment described above has the following effects. In this embodiment, the melted state determination unit 15 outputs at least one of the amount of deviation between the resin temperature and the set temperature or the resin temperature (absolute value) calculated based on the amount of deviation as a determination result based on a regression equation that derives the degree of deviation between the resin temperature and the set temperature in advance and the calculation result of the heater heat transfer amount calculation unit. This allows the user to quantitatively grasp the melted state of the resin.
[第8実施形態]
 第8実施形態に係る制御装置10は、第1実施形態に係る射出成形機1の制御装置10と構成は共通である。第8実施形態では、ヒータ伝熱量演算部14の伝熱量の演算方法が第1実施形態とは異なる。
[Eighth embodiment]
The control device 10 according to the eighth embodiment has a common configuration with the control device 10 of the injection molding machine 1 according to the first embodiment. In the eighth embodiment, the method of calculating the heat transfer amount by the heater heat transfer amount calculation unit 14 is different from that in the first embodiment.
 第8実施形態では、動作情報取得部11はシリンダ22の各制御点の設定温度を動作情報として取得する。各制御点における実測温度を取得してもよい。また、特性情報取得部12は、特性情報としてヒータ24a~24dの容量とともに予め設定された回帰式を取得する。回帰式は、例えば、制御装置10の記憶部(図示せず)から取得される。 In the eighth embodiment, the operation information acquisition unit 11 acquires the set temperature of each control point of the cylinder 22 as operation information. The actual temperature at each control point may also be acquired. In addition, the characteristic information acquisition unit 12 acquires a preset regression equation together with the capacity of the heaters 24a to 24d as characteristic information. The regression equation is acquired, for example, from a memory unit (not shown) of the control device 10.
 ヒータ伝熱量演算部14は、ヒータ発熱量演算部13の演算結果を使用せずにヒータ24a~24dがシリンダ22を設定温度に維持するために必要な発熱量を演算する。成形停止状態における発熱量は、シリンダ22を設定温度に維持するのに必要な熱量である。従って、成形停止状態における発熱量は、成形停止状態のシリンダ22の制御点の設定温度によって一意に定めることができる。 The heater heat transfer amount calculation unit 14 calculates the amount of heat generated by the heaters 24a to 24d to maintain the cylinder 22 at the set temperature without using the calculation results of the heater heat generation amount calculation unit 13. The amount of heat generated in the molding stopped state is the amount of heat required to maintain the cylinder 22 at the set temperature. Therefore, the amount of heat generated in the molding stopped state can be uniquely determined by the set temperature of the control point of the cylinder 22 in the molding stopped state.
 第8実施形態では、事前に取得したシリンダ22の設定温度と発熱量の関係を示す回帰式を利用して伝熱量を推定する。これにより、シリンダ22の設定温度が変わるたびに伝熱量を実測によって求める手間を省略することができる。なお、隣接するヒータ24a~24dの設定温度が異なる場合は熱が軸方向に移動するため、回帰式の説明変数には対象のヒータだけでなく、それに隣接するヒータの値を使用することが望ましい。更に、第8実施形態において、シリンダ22の周囲の雰囲気温度も説明変数に加えても良い。 In the eighth embodiment, the amount of heat transfer is estimated using a regression equation that shows the relationship between the set temperature of the cylinder 22 obtained in advance and the amount of heat generated. This eliminates the need to actually measure the amount of heat transfer each time the set temperature of the cylinder 22 changes. Note that when the set temperatures of adjacent heaters 24a to 24d are different, heat moves in the axial direction, so it is desirable to use the values of not only the target heater but also the adjacent heaters as explanatory variables in the regression equation. Furthermore, in the eighth embodiment, the ambient temperature around the cylinder 22 may also be added as an explanatory variable.
[第9実施形態]
 第9実施形態に係る制御装置10は、第2実施形態に係る射出成形機1の制御装置10aと構成は共通である。第9実施形態では、ヒータ伝熱量演算部14の伝熱量の演算方法が第1実施形態とは異なる。
[Ninth embodiment]
The control device 10 according to the ninth embodiment has a common configuration with the control device 10a of the injection molding machine 1 according to the second embodiment. In the ninth embodiment, the method of calculating the heat transfer amount by the heater heat transfer amount calculation unit 14 is different from that in the first embodiment.
 第9実施形態では、動作情報取得部11はシリンダ22の各制御点の設定温度を動作情報として取得する。各制御点における実測温度を取得してもよい。また、特性情報取得部12は、特性情報としてヒータ24a~24dの容量とともに予め設定された回帰式を取得する。回帰式は、例えば、制御装置10の記憶部(図示せず)から取得される。 In the ninth embodiment, the operation information acquisition unit 11 acquires the set temperature of each control point of the cylinder 22 as operation information. The actual temperature at each control point may also be acquired. In addition, the characteristic information acquisition unit 12 acquires a preset regression equation together with the capacity of the heaters 24a to 24d as characteristic information. The regression equation is acquired, for example, from a memory unit (not shown) of the control device 10.
 成形停止状態におけるヒータ24a~24dの表面温度は、シリンダの設定温度によって一意に定まる。そこで、第9実施形態では、シリンダ22の温度とヒータ24a~24dの表面温度の関係を示す回帰式に基づいてヒータ24a~24dの表面温度を推定し、成形停止状態の放熱量を演算する。これにより、シリンダ22の設定温度が変わるたびに放熱量を実測により求める手間を省略できる。なお、回帰式の説明変数としてシリンダ周囲の雰囲気温度を加えてもよい。 The surface temperatures of the heaters 24a to 24d in the molding stopped state are uniquely determined by the set temperature of the cylinder. Therefore, in the ninth embodiment, the surface temperatures of the heaters 24a to 24d are estimated based on a regression equation that shows the relationship between the temperature of the cylinder 22 and the surface temperatures of the heaters 24a to 24d, and the amount of heat dissipation in the molding stopped state is calculated. This eliminates the need to actually measure the amount of heat dissipation each time the set temperature of the cylinder 22 changes. The ambient temperature around the cylinder may be added as an explanatory variable of the regression equation.
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、又は、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the gist of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these. The same applies when numerical values or formulas are used to explain the above-mentioned embodiments.
 上記実施形態及び変形例に関し、更に以下の付記を開示する。
(付記1)
 シリンダ(22)と、前記シリンダ(22)の周囲に配設されるヒータ(24a~24d)と、前記シリンダ(22)の内部に配置されるスクリュ(23)と、を備える射出成形機(1)の制御装置(10,10a)であって、
 前記ヒータ(24a~24d)の動作に関する動作情報を取得する動作情報取得部(11)と、
 前記射出成形機(1)の特性に関する特性情報を取得する特性情報取得部(12)と、
 取得された前記動作情報及び前記特性情報に基づいて、ヒータ(24a~24d)の発熱量を演算するヒータ発熱量演算部(13)と、
 前記シリンダ(22)を所定の設定温度に維持した状態における成形実行時の前記ヒータ(24a~24d)の発熱量と、前記シリンダ(22)を所定の設定温度に維持した状態における成形停止時の前記ヒータ(24a~24d)の発熱量と、に基づいて前記ヒータ(24a~24d)から樹脂への伝熱量を演算するヒータ伝熱量演算部(14)と、
 前記ヒータ伝熱量演算部(14)の演算結果に基づいて前記シリンダ内部の樹脂の溶融状態を判定する溶融状態判定部(15)と、
 前記溶融状態判定部(15)の判定結果を出力する出力部(20)と、
を備える射出成形機(1)の制御装置(10,10a)である。
The following supplementary notes are further disclosed regarding the above embodiment and modified examples.
(Appendix 1)
A control device (10, 10a) for an injection molding machine (1) including a cylinder (22), heaters (24a to 24d) disposed around the cylinder (22), and a screw (23) disposed inside the cylinder (22),
An operation information acquisition unit (11) that acquires operation information related to the operation of the heaters (24a to 24d);
a characteristic information acquisition unit (12) that acquires characteristic information relating to characteristics of the injection molding machine (1);
a heater heat generation amount calculation unit (13) that calculates the heat generation amount of the heaters (24a to 24d) based on the acquired operation information and characteristic information;
a heater heat transfer amount calculation unit (14) for calculating an amount of heat transfer from the heaters (24a to 24d) to a resin based on the amount of heat generated by the heaters (24a to 24d) during molding in a state in which the cylinder (22) is maintained at a predetermined set temperature, and the amount of heat generated by the heaters (24a to 24d) when molding is stopped in a state in which the cylinder (22) is maintained at a predetermined set temperature;
a melting state determination unit (15) that determines a melting state of the resin inside the cylinder based on a calculation result of the heater heat transfer amount calculation unit (14);
an output unit (20) that outputs a result of the determination by the melting state determination unit (15);
The present invention relates to a control device (10, 10a) for an injection molding machine (1).
(付記2)
 上記の射出成形機(1)の制御装置(10,10a)において、前記動作情報及び前記特性情報に基づいて、前記ヒータ(24a~24d)の放熱量を演算するヒータ放熱量演算部(17)を更に備え、
 前記ヒータ伝熱量演算部(14)は、
 前記成形実行時における前記ヒータ(24a~24d)の発熱量及び前記ヒータ放熱量演算部(17)が演算した放熱量と、前記成形停止時における前記ヒータ(24a~24d)の発熱量と前記ヒータ放熱量演算部(17)が演算した放熱量と、に基づいて前記ヒータ(24a~24d)から樹脂への伝熱量を演算する。
(Appendix 2)
The control device (10, 10a) of the injection molding machine (1) further comprises a heater heat radiation amount calculation unit (17) that calculates the heat radiation amount of the heaters (24a to 24d) based on the operation information and the characteristic information,
The heater heat transfer amount calculation unit (14)
The amount of heat transferred from the heaters (24a to 24d) to the resin is calculated based on the amount of heat generated by the heaters (24a to 24d) during molding and the amount of heat dissipation calculated by the heater heat dissipation calculation unit (17), and the amount of heat generated by the heaters (24a to 24d) and the amount of heat dissipation calculated by the heater heat dissipation calculation unit (17) when molding is stopped.
(付記3)
 上記の射出成形機(1)の制御装置(10,10a)において、前記溶融状態判定部(15)は、
 前記シリンダ(22)の先端側に位置する前記ヒータ(24a~24d)を演算対象とする、前記ヒータ伝熱量演算部(14)の演算結果に基づいて前記シリンダ内部の樹脂の溶融状態を判定する。
(Appendix 3)
In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15)
The melting state of the resin inside the cylinder is determined based on the calculation results of the heater heat transfer amount calculation unit (14), which calculates the heaters (24a to 24d) located on the tip side of the cylinder (22).
(付記4)
 上記の射出成形機(1)の制御装置(10,10a)において、前記溶融状態判定部(15)は、
 樹脂温度と入力された設定温度の関係を判定する基準である閾値と、前記ヒータ伝熱量演算部(14)の演算結果と、に基づいて溶融状態を判定する。
(Appendix 4)
In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15)
The melting state is judged based on a threshold value, which is a criterion for judging the relationship between the resin temperature and the input set temperature, and the calculation result of the heater heat transfer amount calculation unit (14).
(付記5)
 上記の射出成形機(1)の制御装置(10,10a)において、前記溶融状態判定部(15)は、
 樹脂温度が前記設定温度から乖離しすぎているか否かを判定する基準である閾値と、前記ヒータ伝熱量演算部(14)の演算結果と、に基づいて溶融状態を判定し、
 前記出力部(20)は、樹脂温度が前記設定温度から乖離しすぎていると判定された場合は警告情報を出力する。
(Appendix 5)
In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15)
A melting state is determined based on a threshold value, which is a criterion for determining whether or not the resin temperature is too far from the set temperature, and a calculation result of the heater heat transfer amount calculation unit (14);
The output unit (20) outputs warning information when it is determined that the resin temperature is too far away from the set temperature.
(付記6)
 上記の射出成形機(1)の制御装置(10,10a)において、前記溶融状態判定部(15)は、
 異なる演算区間における前記ヒータ伝熱量演算部(14)の演算結果を比較し、比較結果に基づいて前記演算区間における樹脂温度の変化を判定する。
(Appendix 6)
In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15)
The calculation results of the heater heat transfer amount calculation unit (14) in different calculation intervals are compared, and a change in the resin temperature in the calculation interval is determined based on the comparison result.
(付記7)
 上記の射出成形機(1)の制御装置(10,10a)において、前記溶融状態判定部(15)は、
 予め樹脂温度と前記設定温度の乖離の程度を導出する回帰式と、前記ヒータ伝熱量演算部(14)の演算結果と、に基づいて、樹脂温度と設定温度の乖離量又は前記乖離量に基づいて演算される樹脂温度のうち少なくとも何れか一方を判定結果として出力する。
(Appendix 7)
In the control device (10, 10a) of the injection molding machine (1), the melt state determination unit (15)
Based on a regression equation that derives the degree of deviation between the resin temperature and the set temperature in advance and the calculation result of the heater heat transfer amount calculation unit (14), at least one of the deviation amount between the resin temperature and the set temperature or the resin temperature calculated based on the deviation amount is output as a judgment result.
 1 射出成形機
 10、10a 制御装置
 11 動作情報取得部
 12 特性情報取得部
 13 ヒータ発熱量演算部
 14 ヒータ伝熱量演算部
 15 溶融状態判定部
 17 ヒータ放熱量演算部
 20 出力部
REFERENCE SIGNS LIST 1 injection molding machine 10, 10a control device 11 operation information acquisition unit 12 characteristic information acquisition unit 13 heater heat generation amount calculation unit 14 heater heat transfer amount calculation unit 15 melted state determination unit 17 heater heat radiation amount calculation unit 20 output unit

Claims (7)

  1.  シリンダと、前記シリンダの周囲に配設されるヒータと、前記シリンダの内部に配置されるスクリュと、を備える射出成形機の制御装置であって、
     前記ヒータの動作に関する動作情報を取得する動作情報取得部と、
     前記射出成形機の特性に関する特性情報を取得する特性情報取得部と、
     取得された前記動作情報及び前記特性情報に基づいて、ヒータの発熱量を演算するヒータ発熱量演算部と、
     前記シリンダを所定の設定温度に維持した状態における成形実行時の前記ヒータの発熱量と、前記シリンダを所定の設定温度に維持した状態における成形停止時の前記ヒータの発熱量と、に基づいて前記ヒータから樹脂への伝熱量を演算するヒータ伝熱量演算部と、
     前記ヒータ伝熱量演算部の演算結果に基づいて前記シリンダ内部の樹脂の溶融状態を判定する溶融状態判定部と、
     前記溶融状態判定部の判定結果を出力する出力部と、
    を備える射出成形機の制御装置。
    A control device for an injection molding machine including a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder,
    an operation information acquisition unit that acquires operation information related to the operation of the heater;
    a characteristic information acquisition unit that acquires characteristic information relating to characteristics of the injection molding machine;
    a heater heat generation amount calculation unit that calculates a heat generation amount of the heater based on the acquired operation information and characteristic information;
    a heater heat transfer amount calculation unit that calculates an amount of heat transfer from the heater to a resin based on a heat generation amount of the heater when molding is performed in a state where the cylinder is maintained at a predetermined set temperature and a heat generation amount of the heater when molding is stopped in a state where the cylinder is maintained at a predetermined set temperature;
    a melting state determination unit that determines a melting state of the resin inside the cylinder based on a calculation result of the heater heat transfer amount calculation unit;
    an output unit that outputs a determination result of the melting state determination unit;
    A control device for an injection molding machine comprising:
  2.  前記動作情報及び前記特性情報に基づいて、前記ヒータの放熱量を演算するヒータ放熱量演算部を更に備え、
     前記ヒータ伝熱量演算部は、
     前記成形実行時における前記ヒータの発熱量及び前記ヒータ放熱量演算部が演算した放熱量と、前記成形停止時における前記ヒータの発熱量と前記ヒータ放熱量演算部が演算した放熱量と、に基づいて前記ヒータから樹脂への伝熱量を演算する、
    請求項1に記載の射出成形機の制御装置。
    a heater heat dissipation amount calculation unit that calculates a heat dissipation amount of the heater based on the operation information and the characteristic information,
    The heater heat transfer amount calculation unit is
    a heat transfer amount from the heater to the resin is calculated based on the heat generation amount of the heater and the heat radiation amount calculated by the heater heat radiation amount calculation unit during the molding operation, and the heat generation amount of the heater and the heat radiation amount calculated by the heater heat radiation amount calculation unit during the molding stop time;
    The control device for an injection molding machine according to claim 1.
  3.  前記溶融状態判定部は、
     前記シリンダの先端側に位置する前記ヒータを演算対象とする、前記ヒータ伝熱量演算部の演算結果に基づいて前記シリンダ内部の樹脂の溶融状態を判定する、請求項1又は2に記載の射出成形機の制御装置。
    The melting state determination unit is
    3. The control device for an injection molding machine according to claim 1, further comprising: a heater disposed at a tip end of the cylinder; a heater heat transfer amount calculation unit that calculates a melting state of the resin inside the cylinder based on a calculation result of the heater heat transfer amount calculation unit.
  4.  前記溶融状態判定部は、
     樹脂温度と入力された設定温度の関係を判定する基準である閾値と、前記ヒータ伝熱量演算部の演算結果と、に基づいて溶融状態を判定する、
    請求項1から3の何れかに記載の射出成形機の制御装置。
    The melting state determination unit is
    A melting state is determined based on a threshold value that is a criterion for determining the relationship between the resin temperature and the input set temperature and a calculation result of the heater heat transfer amount calculation unit.
    4. The control device for an injection molding machine according to claim 1.
  5.  前記溶融状態判定部は、
     樹脂温度が前記設定温度から乖離しすぎているか否かを判定する基準である閾値と、前記ヒータ伝熱量演算部の演算結果と、に基づいて溶融状態を判定し、
     前記出力部は、樹脂温度が前記設定温度から乖離しすぎていると判定された場合は警告情報を出力する、
    請求項1から3の何れかに記載の射出成形機の制御装置。
    The melting state determination unit is
    determining a melting state based on a threshold value that is a criterion for determining whether or not the resin temperature is too far from the set temperature and a calculation result of the heater heat transfer amount calculation unit;
    the output unit outputs warning information when it is determined that the resin temperature is too far from the set temperature.
    4. The control device for an injection molding machine according to claim 1.
  6.  前記溶融状態判定部は、
     異なる演算区間における前記ヒータ伝熱量演算部の演算結果を比較し、比較結果に基づいて前記演算区間における樹脂温度の変化を判定する、
    請求項1から3の何れかに記載の射出成形機の制御装置。
    The melting state determination unit is
    comparing the calculation results of the heater heat transfer amount calculation unit in different calculation intervals, and determining a change in the resin temperature in the calculation interval based on the comparison result;
    4. The control device for an injection molding machine according to claim 1.
  7.  前記溶融状態判定部は、
     予め樹脂温度と前記設定温度の乖離の程度を導出する回帰式と、前記ヒータ伝熱量演算部の演算結果と、に基づいて、樹脂温度と設定温度の乖離量又は前記乖離量に基づいて演算される樹脂温度のうち少なくとも何れか一方を判定結果として出力する、
    請求項1から3の何れかに記載の射出成形機の制御装置。
    The melting state determination unit is
    based on a regression equation for deriving a degree of deviation between the resin temperature and the set temperature in advance and a calculation result of the heater heat transfer amount calculation unit, outputting at least one of the deviation amount between the resin temperature and the set temperature or the resin temperature calculated based on the deviation amount as a judgment result;
    4. The control device for an injection molding machine according to claim 1.
PCT/JP2022/041550 2022-11-08 2022-11-08 Control device for injection-molding machine WO2024100763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041550 WO2024100763A1 (en) 2022-11-08 2022-11-08 Control device for injection-molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041550 WO2024100763A1 (en) 2022-11-08 2022-11-08 Control device for injection-molding machine

Publications (1)

Publication Number Publication Date
WO2024100763A1 true WO2024100763A1 (en) 2024-05-16

Family

ID=91032346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041550 WO2024100763A1 (en) 2022-11-08 2022-11-08 Control device for injection-molding machine

Country Status (1)

Country Link
WO (1) WO2024100763A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225372A (en) * 2000-02-16 2001-08-21 Sumitomo Heavy Ind Ltd Method for controlling injection molding machine
WO2021246524A1 (en) * 2020-06-05 2021-12-09 ファナック株式会社 Control device and program for injection molding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225372A (en) * 2000-02-16 2001-08-21 Sumitomo Heavy Ind Ltd Method for controlling injection molding machine
WO2021246524A1 (en) * 2020-06-05 2021-12-09 ファナック株式会社 Control device and program for injection molding machine

Similar Documents

Publication Publication Date Title
Chen et al. Quality indexes design for online monitoring polymer injection molding
US7695654B2 (en) Method of molding system, including raising temperature of feedstock responsive to a calculated amount of thermal energy
EP0089130B1 (en) System for controlling temperature of molten resin in cylinder of extruder
EP1254013B1 (en) Method for operating extruder temperature controller with stable temperature reset
JP7260434B2 (en) Temperature control device for injection molding machine with abnormality detection function
CA2660482C (en) Thermal management of extruder of molding system
US20200101649A1 (en) Device for assisting molding condition determination and injection molding apparatus
CA2159161C (en) Method for controlling the temperature of a plastic mold
Chen et al. Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding
JP3799273B2 (en) Extruder temperature controller with stable temperature reset
WO2024100763A1 (en) Control device for injection-molding machine
KR20060082870A (en) Injection molding machine and method
Huang et al. Quality monitoring of micro-shrinkage defects in thick-walled injection molded components
US7412301B1 (en) Identifying quality molded article based on determination of plug blow
JP5015019B2 (en) Control method and control device for heater of injection molding machine
WO2024100765A1 (en) Device for controlling injection-molding machine
JP2002307539A (en) Method and device for controlling temperature of extrusion molding machine
JP2008302599A (en) Method for controlling injection molding machine
JP6605062B2 (en) Injection nozzle temperature control method
US20080035299A1 (en) Detection of plug blow from metal-molding system, amongst other things
WO2023223563A1 (en) Calculation device and program
WO2023058213A1 (en) Control device and program for injection molding machine
Chen et al. Quality monitoring and control for plasticization of acrylonitrile‐butadiene‐styrene regrind polymer in injection molding
CN115666899A (en) Control device and program for injection molding machine
JPS62249722A (en) Adapted controlling method for injection molding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965089

Country of ref document: EP

Kind code of ref document: A1