WO2024100719A1 - Numerical control device - Google Patents

Numerical control device Download PDF

Info

Publication number
WO2024100719A1
WO2024100719A1 PCT/JP2022/041387 JP2022041387W WO2024100719A1 WO 2024100719 A1 WO2024100719 A1 WO 2024100719A1 JP 2022041387 W JP2022041387 W JP 2022041387W WO 2024100719 A1 WO2024100719 A1 WO 2024100719A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
load
control device
confirmation
numerical control
Prior art date
Application number
PCT/JP2022/041387
Other languages
French (fr)
Japanese (ja)
Inventor
一剛 今西
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2023504085A priority Critical patent/JP7288158B1/en
Priority to PCT/JP2022/041387 priority patent/WO2024100719A1/en
Publication of WO2024100719A1 publication Critical patent/WO2024100719A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • This disclosure relates to a numerical control device.
  • a collaborative robot In order to detect accurate contact force, a collaborative robot needs to perform a load check each time it is turned on to ensure that the selected load setting matches the actual load on the robot. Since machine tool users need to use an unfamiliar robot teaching operation panel to perform the load check, checking the load on a collaborative robot is a difficult task for machine tool users. For this reason, there is a demand for a numerical control device that allows machine tool users to easily check the load.
  • One aspect of the present disclosure is a numerical control device that controls a robot via a robot control device using a numerical control program, and includes a load confirmation state acquisition unit that acquires a load confirmation state indicating a state in which the load setting and the actual load are confirmed in the robot from the robot control device, and a load setting information confirmation unit that transmits load setting confirmation information to the robot control device for confirming load setting information based on the load confirmation state, and completes confirmation of the load setting and the actual load.
  • FIG. 1 is a functional block diagram of a numerical control system according to an embodiment of the present invention.
  • 1 is a functional block diagram of a numerical control device and a robot control device according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of load setting information. 4 is a diagram showing load setting information for group 1 that is displayed when group 1 in FIG. 3 is selected.
  • FIG. FIG. 11 is a diagram illustrating an example of load setting confirmation information displayed on the display device.
  • 6 is a sequence diagram showing the flow of signals and information between the numerical control device and the robot control device when the load setting confirmation information shown in FIG. 5 is displayed.
  • Figure 1 is a functional block diagram of a numerical control system 1 according to this embodiment.
  • the numerical control system 1 comprises a machine tool 2 that processes a workpiece (not shown), a numerical control device (CNC) 4 that controls the operation of the machine tool 2, a collaborative robot 3 provided near the machine tool 2, and a robot control device 5 that controls the operation of the collaborative robot 3.
  • the numerical control system 1 controls the operation of the machine tool 2 and the collaborative robot 3 in a coordinated manner by using the numerical control device 4 and the robot control device 5 that are connected to each other so that they can communicate with each other.
  • the machine tool 2 processes a workpiece (not shown) in response to a machine tool control signal sent from the numerical control device 4.
  • the machine tool 2 is, for example, a lathe, a drill press, a milling machine, a grinding machine, a laser processing machine, an injection molding machine, etc., but is not limited to these.
  • the collaborative robot 3 operates under the control of the robot control device 5, and performs a predetermined task on a workpiece being machined by, for example, the machine tool 2.
  • the collaborative robot 3 is, for example, a multi-joint robot, and a tool 3b for gripping, machining, and inspecting the workpiece is attached to the arm tip 3a.
  • the collaborative robot 3 will be described as a six-axis multi-joint robot, but this is not limited to this.
  • the collaborative robot 3 will be described as a six-axis multi-joint robot, but the number of axes is not limited to this.
  • the collaborative robot 3 has functions such as a contact stop function, an escape mode function, and an inversion operation function, and can work safely in collaboration with humans.
  • the contact stop function is a function that immediately stops the collaborative robot 3 when it comes into contact with a human with a light force (for example, 10 to 20 N (i.e., 1 to 2 kgf)).
  • the escape mode function is a function that allows the arm of the collaborative robot 3 to escape on each axis by the human pushing the arm.
  • the inversion operation function is a function that reduces pinching by instantly inverting the arm when the collaborative robot 3 comes into contact with a hard object.
  • the collaborative robot 3 is equipped with an external force detection sensor to detect external forces such as contact with a human.
  • the external force detection sensor is, for example, a torque sensor or a force sensor. That is, the collaborative robot 3 detects contact with a human using the external force detection sensor, and the robot control device 5 stops the operation of the collaborative robot 3 according to the external force detected by the external force detection sensor. This allows the collaborative robot 3 to work safely in collaboration with humans.
  • the numerical control device 4 and the robot control device 5 are computers that are each composed of hardware such as a calculation processing means such as a CPU (Central Processing Unit), auxiliary storage means such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) that stores various computer programs, a main storage means such as a RAM (Random Access Memory) for storing data temporarily required for the calculation processing means to execute the computer programs, an operation means such as a keyboard that allows the operator to perform various operations, and a display means such as a display that displays various information to the operator.
  • the numerical control device 4 and the robot control device 5 are capable of sending and receiving various signals to each other, for example, via Ethernet (registered trademark).
  • FIG. 2 is a functional block diagram of the numerical control device 4 and the robot control device 5 according to this embodiment. First, the detailed configuration of the numerical control device 4 will be described. As shown in FIG. 2, the numerical control device 4 realizes various functions such as a function to control the operation of the machine tool 2 and a function to generate a motion path of the control axis of the collaborative robot 3, by using the above hardware configuration.
  • the numerical control device 4 uses a numerical control program to control the collaborative robot 3 via the robot control device 5. That is, the numerical control device 4 generates various commands for controlling the operation of the collaborative robot 3 and the tool 3b according to the numerical control program for the robot, and transmits them to the robot control device 5. More specifically, the numerical control device 4 includes a program input unit 41, an analysis unit 42, an operation control unit 43, a memory unit 44, a robot command signal generation unit 45, a data transmission/reception unit 46, a load confirmation status acquisition unit 47, an operation unit 48, a load setting information confirmation unit 49, and a display device 50.
  • the program input unit 41 reads out a numerical control program for a robot, which is composed of multiple robot command blocks, from the memory unit 44 and inputs it sequentially to the analysis unit 42.
  • the analysis unit 42 analyzes the command type based on the numerical control program input from the program input unit 41 for each command block, and outputs the analysis result to the operation control unit 43 and the robot command signal generation unit 45. More specifically, when the command type of the command block is a machine tool numerical control command for the machine tool 2, the analysis unit 42 transmits this machine tool numerical control command to the operation control unit 43. When the command type of the command block is a robot numerical control command for the collaborative robot 3, the analysis unit 42 outputs this robot numerical control command (hereinafter also referred to as a robot control command) to the robot command signal generation unit 45.
  • a robot control command hereinafter also referred to as a robot control command
  • the operation control unit 43 generates a machine tool control signal for controlling the operation of the machine tool 2 according to the analysis results sent from the analysis unit 42, and inputs the signal to the actuators that drive the various axes of the machine tool 2.
  • the machine tool 2 operates according to the machine tool control signal input from the operation control unit 43, and machines a workpiece (not shown).
  • the memory unit 44 stores, for example, a plurality of numerical control programs created based on operations by an operator. More specifically, the memory unit 44 stores numerical control programs that are composed of a plurality of command blocks for the machine tool 2 for controlling the operation of the machine tool 2, a plurality of command blocks for the collaborative robot 3 for controlling the operation of the collaborative robot 3, and the like.
  • the numerical control programs stored in the memory unit 44 are written in a known programming language for controlling the operation of the machine tool 2, such as G-code or M-code.
  • the memory unit 44 also stores, for example, machine coordinate values indicating the positions of various axes of the machine tool 2 operating under the above-mentioned numerical control program (i.e., the positions of the tool rest, table, etc. of the machine tool 2). These machine coordinate values are defined under a machine tool coordinate system that has as its origin a reference point determined at an arbitrary position on the machine tool 2 or in the vicinity of the machine tool 2. The machine coordinate values, which change sequentially under the numerical control program, are successively updated by a process not shown in the figures so that the latest values are stored in the memory unit 44.
  • the memory unit 44 also stores, for example, robot coordinate values indicating the position and orientation of the control point (e.g., the arm tip 3a of the collaborative robot 3) of the collaborative robot 3 operating under the control of the robot control device 5, in other words, the position of each control axis of the collaborative robot 3.
  • these robot coordinate values are defined under a robot coordinate system that is different from the machine tool coordinate system.
  • the memory unit 44 is updated sequentially with the robot coordinate values obtained from the robot control device 5 by a process not shown in the figure so that the latest values of the robot coordinate values that change sequentially under the numerical control program are stored.
  • the memory unit 44 also stores teaching positions, such as the start point and end point of the collaborative robot 3, input by the operator. Specifically, the memory unit 44 stores teaching positions of the collaborative robot 3 input from a teach pendant or the like, teaching positions input from a keyboard or the like, etc.
  • the teaching positions of the collaborative robot 3 include robot coordinate values indicating the positions of each control axis of the collaborative robot 3, and these robot coordinate values are defined under a robot coordinate system that is different from the machine tool coordinate system.
  • the robot command signal generation unit 45 generates a robot command signal for each robot command block based on the analysis results for each robot command block input from the analysis unit 42, and writes the generated robot command signal to the data transmission/reception unit 46.
  • the robot command signal generation unit 45 generates a robot command signal for each robot command block based on the robot numerical control command as the analysis result input from the analysis unit 42, and writes the generated robot command signal to the data transmission/reception unit 46.
  • the data transmission/reception unit 46 transmits and receives various data such as commands and robot coordinate values to and from the data transmission/reception unit 59 of the robot control device 5. Specifically, the data transmission/reception unit 46 transmits the robot command signal generated by the robot command signal generation unit 45 to the data transmission/reception unit 59 of the robot control device 5.
  • the operation unit 48 is composed of a teach pendant, keyboard, touch panel, etc., and accepts input operations from the user. For example, the operation unit 48 accepts input operations for the user to respond to load setting confirmation information in the form of a question, which will be described later.
  • the display device 50 is composed of a liquid crystal display, an organic EL display, a touch panel display, etc., and displays various information. For example, the display device 50 displays the load setting confirmation information described below.
  • the load confirmation state acquisition unit 47 acquires the load confirmation state from the robot control device 5.
  • the load confirmation state indicates a state in which the load setting and the actual load are confirmed in the collaborative robot 3.
  • the load confirmation state includes one of the following: unconfirmed, in which it has not been confirmed whether the load setting and the actual load match; mismatch, in which the load setting and the actual load do not match; and confirmed, in which confirmation of whether the load setting and the actual load match has been completed.
  • the analysis unit 42 notifies the load confirmation status acquisition unit 47 that it will acquire the load confirmation status of the collaborative robot 3.
  • the load confirmation state acquisition unit 47 outputs a command requesting the load confirmation state to the robot command signal generation unit 45, and the robot command signal generation unit 45 generates a robot command signal including a command requesting the load confirmation state and transmits it to the robot control device 5 via the data transmission/reception unit 46.
  • the robot control device 5 notifies the numerical control device 4 of the load confirmation state in response to a robot command signal including a command requesting the load confirmation state, and the load confirmation state acquisition unit 47 acquires the load confirmation state from the robot control device 5 via the data transmission/reception unit 59.
  • the load setting information confirmation unit 49 transmits load setting confirmation information for confirming the load setting information to the robot control device 5 based on the load confirmation state acquired by the load confirmation state acquisition unit 47, and completes confirmation of the load setting and the actual load in the collaborative robot 3.
  • the load setting information confirmation unit 49 displays the load setting confirmation information in the form of a question on the display device 50 based on the load confirmation state, and transmits the load setting confirmation information to the robot control device 5 based on the user's response to the load setting confirmation information in the form of a question.
  • the load setting information confirmation unit 49 transmits the load setting confirmation information to the data transmission/reception unit 59 of the robot control device 5 based on the load confirmation state and the analysis results of the robot numerical control command, completing the confirmation of the load setting and the actual load in the collaborative robot 3.
  • the load setting information confirmation unit 49 notifies the analysis unit 42 that analysis of the next block of the robot numerical control command is permitted.
  • the load setting information confirmation unit 49 notifies the analysis unit 42 that analysis of the next block of the robot numerical control command is to be stopped.
  • the analysis unit 42 When the analysis unit 42 is notified that analysis of the next block of the numerical control command for the robot is permitted, it analyzes the next block of the numerical control command for the robot. On the other hand, if the load setting confirmation information and the load setting do not match in the load setting information confirmation unit 49, the analysis unit 42 stops analyzing the numerical control command for the robot.
  • the above hardware configuration of the robot control device 5 realizes various functions such as a memory unit 51, an analysis unit 52, a robot command generation unit 53, a program management unit 54, a trajectory control unit 55, a kinematics control unit 56, a servo control unit 57, a dynamics control unit 58, a data transmission/reception unit 59, a contact control unit 60, and a load setting confirmation unit 61.
  • the robot control device 6 controls the operation of the collaborative robot 3 based on commands sent from the numerical control device 4.
  • the storage unit 51 stores the robot program and various information for controlling the collaborative robot 3.
  • the storage unit 51 also stores load setting information for the collaborative robot 3. Note that in this embodiment, the storage unit 51 is provided in the robot control device 5, but the storage unit 51 may be provided in the numerical control device 4, or in an external electronic device or external server, etc., external to the numerical control device 4 and the robot control device 5.
  • the load setting information may include a load setting number associated with the load setting of the collaborative robot 3.
  • the load setting information also includes at least one of the load setting number, the load weight, the center of gravity position of the load, and the load inertia. This load setting information is input in advance by the operator and stored in the memory unit 51.
  • FIG. 3 is a diagram showing an example of load setting information.
  • the load setting information is displayed on the display screen of the display device 50 of the numerical control device 4.
  • a group with a load weight of 50 kg is assigned multiple setting numbers (No. 1 to 10).
  • FIG. 4 shows the load setting information for group 1 that is displayed when group 1 in FIG. 3 is selected.
  • the load setting information for group 1 stores the weight of the load, the position of the center of gravity of the load, and the inertia value of the load. In this way, the weight, the position of the center of gravity, and the inertia are associated with each load and stored in the memory unit 51.
  • the data transmission/reception unit 59 receives the robot command signal transmitted from the data transmission/reception unit 46 of the numerical control device 4.
  • the data transmission/reception unit 59 also outputs the received robot command signal to the analysis unit 52 in sequence.
  • the analysis unit 52 analyzes the robot command signal input from the data transmission/reception unit 59.
  • the analysis unit 52 also outputs the analysis result to the robot command generation unit 53.
  • the robot command generation unit 53 generates a robot command corresponding to the robot command signal based on the analysis result of the robot command signal input from the analysis unit 52.
  • the robot command generation unit 53 outputs the generated robot command to the program management unit 54.
  • the program management unit 54 When the program management unit 54 receives a robot command from the robot command generation unit 53, it executes the robot commands sequentially to generate an operation plan for the collaborative robot 3 according to the robot command signal, and outputs the operation plan to the trajectory control unit 55.
  • the program management unit 54 adds the input block robot command to the robot program stored in the memory unit 51.
  • a robot program corresponding to the robot command signal sent from the numerical control device 4 is generated and stored in the memory unit 51.
  • the stored robot program is started and played when the program management unit 54 receives a robot program start command as a robot command.
  • the trajectory control unit 55 calculates time series data of the control points of the collaborative robot 3 and outputs it to the kinematics control unit 56.
  • the kinematics control unit 56 calculates the target angles of each joint of the collaborative robot 3 from the input time series data and inputs them to the servo control unit 57.
  • the servo control unit 57 generates a robot control signal for the collaborative robot 3 by feedback controlling each servo motor of the collaborative robot 3 so that the target angle input from the kinematics control unit 56 is realized, and inputs the signal to the servo motor of the collaborative robot 3.
  • the servo control unit 57 also generates a robot control signal that reflects the torque calculated by the dynamics control unit 58, which will be described later. This enables the robot control device 5 to control the collaborative robot 3 based on the load setting information.
  • the dynamics control unit 58 calculates the torque to be input to the collaborative robot 3 by inverse dynamics calculation based on the load setting commanded by the robot command signal.
  • the dynamics control unit 58 outputs the torque obtained by calculation to the servo control unit 57.
  • the inverse dynamics calculation of the collaborative robot 3 is a method of calculating the input torque to each motor to realize the desired motion (time series data of the position, speed, and acceleration of each joint) calculated in the motion trajectory plan of the collaborative robot 3, taking into account the hand load, gravity, and the weight of the collaborative robot 3.
  • Numerical calculation methods such as the calculated torque method and the Newton-Euler method have been disclosed as methods related to this type of inverse dynamics calculation (for example, JP 8-118275 A and JP 2015-58520 A).
  • the contact control unit 60 controls the contact stop operation in response to the detection result of the external force by the external force detection sensor in the collaborative robot 3.
  • the contact stop operation refers to the operation of the collaborative robot 3 to stop the operation of the collaborative robot 3 in response to an external contact force.
  • FIG. 5 is a diagram showing an example of load setting confirmation information displayed on the display device 50.
  • FIG. 6 is a sequence diagram showing the flow of signals and information between the numerical control device 4 and the robot control device 5 when the load setting confirmation information shown in FIG. 5 is displayed.
  • the load setting information confirmation unit 49 displays the load setting confirmation information in the form of a question on the display device 50 based on the load confirmation status as follows. First, the load confirmation status acquisition unit 47 acquires the load confirmation status notified from the robot control device 5. In the example shown in Figures 5 and 6, the load confirmation status is unconfirmed. Also, at this point, the robot control device 5 prohibits the operation of the collaborative robot 3.
  • the load setting information confirmation unit 49 enables operations on a screen that displays the load confirmation information on the display device 50, and displays the message "Please enter your PIN" on the display device 50 as the load confirmation information.
  • the load setting information confirmation unit 49 When the load setting information confirmation unit 49 receives a PIN number input from the user via the operation unit 48, it notifies the robot control device 5 of the PIN number.
  • the load setting confirmation unit 61 of the robot control device 5 allows the load confirmation and notifies the numerical control device 4 of the load setting number.
  • the load setting information confirmation unit 49 displays the message "Is the actual load No. x?" on the display device 50 as load confirmation information.
  • x is an arbitrary load setting number.
  • the load setting confirmation unit 61 of the robot control device 5 confirms the load setting number according to the notified confirmation result, and notifies the numerical control device 4 of information confirming the contact state with the collaborative robot 3.
  • the load setting information confirmation unit 49 then displays the message "Is anyone touching the robot?" on the display device 50 as load confirmation information.
  • the user confirms that the collaborative robot 3 is not in contact with a person, and performs an operation to check the contact state using the operation unit 48.
  • the load setting information confirmation unit 49 receives an operation from the user to check the contact state using the operation unit 48, it notifies the robot control device 5 of the contact state.
  • the load setting confirmation unit 61 of the robot control device 5 confirms the contact state, determines the load confirmation state as confirmation complete, and notifies the numerical control device 4 of this load confirmation state.
  • the robot control device 5 also permits the operation of the collaborative robot 3.
  • the load setting information confirmation unit 49 When the load setting information confirmation unit 49 receives a load confirmation status in which confirmation has been completed, it displays the message "Load confirmation completed" on the display device 50 and disables operations on the screen displaying the load confirmation information on the display device 50.
  • FIG. 7 is a diagram showing an example of a numerical control program according to this embodiment.
  • the numerical control program shown in FIG. 7 is a program for a robot system.
  • FIG. 8 is a sequence diagram showing the flow of signals and information between the numerical control device 4 and the robot control device 5 when the numerical control program shown in FIG. 7 is executed.
  • the load confirmation state is unconfirmed.
  • the robot control device 5 prohibits the operation of the collaborative robot 3.
  • the load confirmation status acquisition unit 47 acquires the load confirmation status notified from the robot control device 5. Then, the load setting information confirmation unit 49 displays a message as load confirmation information based on the load confirmation status, and accepts input of a secret number xxxx. After load confirmation is permitted, the load setting information confirmation unit 49 notifies the numerical control device 4 of the load setting number No. 1.
  • xxxx is an arbitrary secret number. Furthermore, when the load setting information confirmation unit 49 accepts an operation to confirm the contact status from the user via the operation unit 48, it notifies the robot control device 5 of the contact status.
  • the load setting confirmation unit 61 of the robot control device 5 confirms the PIN number, the load setting number, and the contact state, and notifies the numerical control device 4 of the load confirmation result.
  • the robot control device 5 also permits the operation of the collaborative robot 3.
  • the numerical control device 4 includes a load confirmation state acquisition unit 47 that acquires a load confirmation state indicating the state in which the load setting and the actual load are confirmed in the collaborative robot 3 from the robot control device 5, and a load setting information confirmation unit 49 that transmits load setting confirmation information to the robot control device 5 for confirming the load setting information based on the load confirmation state, and completes the confirmation of the load setting and the actual load.
  • the numerical control device 4 can easily check the load on the collaborative robot 3 by operating the numerical control device 4, which the user of the machine tool 2 is familiar with, without using a teaching operation panel or the like of the robot control device 5.
  • the load setting information confirmation unit 49 also displays the load setting confirmation information in the form of a question on the display device 50, and transmits the load setting confirmation information to the robot control device 5 based on the user's response to the load setting confirmation information in the form of a question, thereby completing the confirmation of the load setting and the actual load.
  • the numerical control device 4 can easily confirm the load on the collaborative robot 3 by having the user of the machine tool 2 respond to the load setting confirmation information in the form of a question.
  • the numerical control device 4 also includes an analysis unit 42 that analyzes the numerical control commands for the robot in the numerical control program, and the load setting information confirmation unit 49 transmits load setting confirmation information to the robot control device 5 based on the load confirmation state and the analysis results of the numerical control commands for the robot, completing the confirmation of the load setting and the actual load.
  • the numerical control device 4 can check the load of the collaborative robot 3 using not only the load confirmation state but also the analysis results of the numerical control commands for the robot.
  • the analysis unit 42 stops analyzing the numerical control commands for the robot if the load setting and the actual load do not match.
  • the numerical control device 4 can stop the operation of the collaborative robot 3 if a malfunction occurs in the collaborative robot 3 by stopping the analysis of the numerical control commands for the robot.
  • the load setting information may also include a number associated with the load setting of the collaborative robot 3.
  • the load setting information may also include at least one of the weight of the load, the position of the center of gravity of the load, and the inertia information of the load.
  • the numerical control device 4 can preferably check the load setting of the collaborative robot 3.
  • the above-mentioned numerical control system 1 can be realized by hardware, software, or a combination of these. Furthermore, the control method performed by the above-mentioned numerical control system 1 can also be realized by hardware, software, or a combination of these.
  • being realized by software means being realized by a computer reading and executing a program.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/Ws, and semiconductor memories (e.g., mask ROMs, PROMs (Programmable ROMs), EPROMs (Erasable PROMs), flash ROMs, and RAMs (random access memory)).
  • a numerical control device (4) that controls a robot (3) via a robot control device (5) using a numerical control program, a load confirmation state acquisition unit (47) that acquires a load confirmation state indicating a state in which a load setting and an actual load are confirmed in the robot from the robot control device; a load setting information confirmation unit (49) that transmits load setting confirmation information for confirming load setting information based on the load confirmation state to the robot control device and completes confirmation of the load setting and an actual load;
  • a numerical control device comprising: (Appendix 2)
  • the load setting information confirmation unit (49) displays the load setting confirmation information in the form of a question on a display device, transmits the load setting confirmation information to the robot control device based on the user's answer to the load setting confirmation information in the form of a question, and completes confirmation of the load setting and the actual load.
  • the robot control system further includes an analysis unit (42) that analyzes a robot numerical control command in the numerical control program,
  • the load setting information confirmation unit (49) transmits the load setting confirmation information to the robot control device based on the load confirmation state and the analysis results of the numerical control command for the robot, and completes confirmation of the load setting and the actual load.
  • the numerical control device according to claim 3 wherein the analysis unit (42) stops analyzing the robot numerical control command when the load setting and the actual load do not match.
  • the load setting information includes a number associated with the load setting of the robot.
  • the load setting information includes at least one of a weight of the load, a center of gravity position of the load, and inertia information of the load. (Appendix 7) 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

Provided is a numerical control device with which a user of a machine tool can easily confirm a load. This numerical control device, which uses a numerical control program to control a robot via a robot control device, comprises: a load confirmation state acquisition unit for acquiring from the robot control device a load confirmation state indicating a state in which a load setting and an actual load are confirmed in the robot; and a load setting information confirmation unit for transmitting load setting confirmation information for confirming the load setting information to the robot control device on the basis of the load confirmation state, thereby completing the confirmation of the load setting and the actual load.

Description

数値制御装置Numerical Control Device
 本開示は、数値制御装置に関する。 This disclosure relates to a numerical control device.
 従来、人との接触を検知して動作を停止する協働ロボットに関する技術が開示されている。例えば、協働ロボットの接触力を正確に計測するため、保持するワークの負荷情報を設定する技術が開示されている。  Technology has been disclosed in the past regarding collaborative robots that detect contact with humans and stop their operation. For example, technology has been disclosed that sets load information for the workpiece being held in order to accurately measure the contact force of a collaborative robot.
 また、加工現場を自動化するため、工作機械からロボットを操作するシステムに関する技術が開示されている。例えば、工作機械のユーザが慣れ親しんだ数値制御指令を用いてロボットの運転を行う技術が開示されている(例えば、特許文献1参照)。 Furthermore, technology has been disclosed relating to a system for operating robots from machine tools in order to automate machining sites. For example, technology has been disclosed for operating a robot using numerical control commands that are familiar to machine tool users (see, for example, Patent Document 1).
特開2014-241018号公報JP 2014-241018 A
 協働ロボットは、正確な接触力を検出するために、電源ON毎に、選択されている負荷設定と実際のロボットの負荷とが一致しているかを確認する負荷確認を行うことが必要である。工作機械のユーザは、負荷確認を行うために、使い慣れないロボット用の教示操作盤を用いる必要があるため、協働ロボットの負荷確認操作は、工作機械のユーザにとって難易度の高い作業である。そのため、工作機械のユーザが容易に負荷確認を行うことができる数値制御装置が望まれている。 In order to detect accurate contact force, a collaborative robot needs to perform a load check each time it is turned on to ensure that the selected load setting matches the actual load on the robot. Since machine tool users need to use an unfamiliar robot teaching operation panel to perform the load check, checking the load on a collaborative robot is a difficult task for machine tool users. For this reason, there is a demand for a numerical control device that allows machine tool users to easily check the load.
 本開示の一態様は、数値制御プログラムを用いてロボット制御装置を介してロボットを制御する数値制御装置であって、前記ロボットにおいて負荷設定と実際の負荷とを確認する状態を示す負荷確認状態を前記ロボット制御装置から取得する負荷確認状態取得部と、前記負荷確認状態に基づいて負荷設定情報を確認するための負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と実際の負荷との確認を完了する負荷設定情報確認部と、を備える数値制御装置である。 One aspect of the present disclosure is a numerical control device that controls a robot via a robot control device using a numerical control program, and includes a load confirmation state acquisition unit that acquires a load confirmation state indicating a state in which the load setting and the actual load are confirmed in the robot from the robot control device, and a load setting information confirmation unit that transmits load setting confirmation information to the robot control device for confirming load setting information based on the load confirmation state, and completes confirmation of the load setting and the actual load.
本実施形態に係る数値制御システムの機能ブロック図である。FIG. 1 is a functional block diagram of a numerical control system according to an embodiment of the present invention. 本実施形態に係る数値制御装置及びロボット制御装置の機能ブロック図である。1 is a functional block diagram of a numerical control device and a robot control device according to an embodiment of the present invention. 負荷設定情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of load setting information. 図3中のグループ1を選択したときに表示されるグループ1の負荷設定情報を示す図である。4 is a diagram showing load setting information for group 1 that is displayed when group 1 in FIG. 3 is selected. FIG. 表示装置に表示される負荷設定確認情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of load setting confirmation information displayed on the display device. 図5に示される負荷設定確認情報を表示する際における数値制御装置とロボット制御装置との間の信号及び情報の流れを示すシーケンス図である。6 is a sequence diagram showing the flow of signals and information between the numerical control device and the robot control device when the load setting confirmation information shown in FIG. 5 is displayed. FIG. 本実施形態に係る数値制御プログラムの例を示す図である。FIG. 4 is a diagram showing an example of a numerical control program according to the embodiment; 図7に示される数値制御プログラムを実行した際における数値制御装置とロボット制御装置との間の信号及び情報の流れを示すシーケンス図である。8 is a sequence diagram showing the flow of signals and information between a numerical control device and a robot control device when the numerical control program shown in FIG. 7 is executed.
 以下、本開示の実施形態の一例について説明する。図1は、本実施形態に係る数値制御システム1の機能ブロック図である。 Below, an example of an embodiment of the present disclosure is described. Figure 1 is a functional block diagram of a numerical control system 1 according to this embodiment.
 数値制御システム1は、図示しないワークを加工する工作機械2と、この工作機械2の動作を制御する数値制御装置(CNC)4と、工作機械2の近傍に設けられた協働ロボット3と、協働ロボット3の動作を制御するロボット制御装置5と、を備える。数値制御システム1は、互いに通信可能に接続された数値制御装置4及びロボット制御装置5を用いることによって、工作機械2及び協働ロボット3の動作を連動して制御する。 The numerical control system 1 comprises a machine tool 2 that processes a workpiece (not shown), a numerical control device (CNC) 4 that controls the operation of the machine tool 2, a collaborative robot 3 provided near the machine tool 2, and a robot control device 5 that controls the operation of the collaborative robot 3. The numerical control system 1 controls the operation of the machine tool 2 and the collaborative robot 3 in a coordinated manner by using the numerical control device 4 and the robot control device 5 that are connected to each other so that they can communicate with each other.
 工作機械2は、数値制御装置4から送信される工作機械制御信号に応じて図示しないワークを加工する。ここで工作機械2は、例えば、旋盤、ボール盤、フライス盤、研削盤、レーザ加工機、及び射出成形機等であるが、これらに限らない。 The machine tool 2 processes a workpiece (not shown) in response to a machine tool control signal sent from the numerical control device 4. Here, the machine tool 2 is, for example, a lathe, a drill press, a milling machine, a grinding machine, a laser processing machine, an injection molding machine, etc., but is not limited to these.
 協働ロボット3は、ロボット制御装置5による制御下において動作し、例えば工作機械2によって加工されるワークに対し所定の作業を行う。協働ロボット3は、例えば多関節ロボットであり、そのアーム先端部3aにはワークを把持したり、加工したり、検査したりするためのツール3bが取り付けられている。以下では、協働ロボット3は、6軸の多関節ロボットとした場合について説明するが、これに限らない。また以下では、協働ロボット3は、6軸の多関節ロボットとした場合について説明するが、軸数はこれに限らない。 The collaborative robot 3 operates under the control of the robot control device 5, and performs a predetermined task on a workpiece being machined by, for example, the machine tool 2. The collaborative robot 3 is, for example, a multi-joint robot, and a tool 3b for gripping, machining, and inspecting the workpiece is attached to the arm tip 3a. In the following, the collaborative robot 3 will be described as a six-axis multi-joint robot, but this is not limited to this. In the following, the collaborative robot 3 will be described as a six-axis multi-joint robot, but the number of axes is not limited to this.
 協働ロボット3は、接触停止機能、退避モード機能、反転動作機能等のような機能を有し、人と協働で安全に作業することができる。接触停止機能は、人と軽い力(例えば、10から20N(すなわち、1から2kgf))で接触したとき、即座に停止する機能である。退避モード機能は、人が協働ロボット3のアームを押すことによってアームを各軸において退避可能な機能である。反転動作機能は、協働ロボット3が硬い物体と接触した場合、アームが即座に反転することによって、挟み込みを軽減する機能である。協働ロボット3は、人との接触等のような外力を検出するために、外力検出センサを備える。外力検出センサは、例えば、トルクセンサ、力センサ等である。すなわち、協働ロボット3は、外力検出センサによって人との接触を検知し、ロボット制御装置5は、外力検出センサによって検出された外力に応じて協働ロボット3の動作を停止する。これにより、協働ロボット3は、人と協働で安全に作業することができる。 The collaborative robot 3 has functions such as a contact stop function, an escape mode function, and an inversion operation function, and can work safely in collaboration with humans. The contact stop function is a function that immediately stops the collaborative robot 3 when it comes into contact with a human with a light force (for example, 10 to 20 N (i.e., 1 to 2 kgf)). The escape mode function is a function that allows the arm of the collaborative robot 3 to escape on each axis by the human pushing the arm. The inversion operation function is a function that reduces pinching by instantly inverting the arm when the collaborative robot 3 comes into contact with a hard object. The collaborative robot 3 is equipped with an external force detection sensor to detect external forces such as contact with a human. The external force detection sensor is, for example, a torque sensor or a force sensor. That is, the collaborative robot 3 detects contact with a human using the external force detection sensor, and the robot control device 5 stops the operation of the collaborative robot 3 according to the external force detected by the external force detection sensor. This allows the collaborative robot 3 to work safely in collaboration with humans.
 数値制御装置4及びロボット制御装置5は、それぞれCPU(Central Processing Unit)等の演算処理手段、各種コンピュータプログラムを格納したHDD(Hard Disk Drive)やSSD(Solid State Drive)等の補助記憶手段、演算処理手段がコンピュータプログラムを実行する上で一時的に必要とされるデータを格納するためのRAM(Random Access Memory)といった主記憶手段、オペレータが各種操作を行うキーボードといった操作手段、及びオペレータに各種情報を表示するディスプレイといった表示手段等のハードウェアによって構成されるコンピュータである。これら数値制御装置4及びロボット制御装置5は、例えばイーサネット(登録商標)によって相互に各種信号を送受信することが可能となっている。 The numerical control device 4 and the robot control device 5 are computers that are each composed of hardware such as a calculation processing means such as a CPU (Central Processing Unit), auxiliary storage means such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) that stores various computer programs, a main storage means such as a RAM (Random Access Memory) for storing data temporarily required for the calculation processing means to execute the computer programs, an operation means such as a keyboard that allows the operator to perform various operations, and a display means such as a display that displays various information to the operator. The numerical control device 4 and the robot control device 5 are capable of sending and receiving various signals to each other, for example, via Ethernet (registered trademark).
 図2は、本実施形態に係る数値制御装置4及びロボット制御装置5の機能ブロック図である。先ず、数値制御装置4の詳細な構成について説明する。図2に示すように数値制御装置4は、上記ハードウェア構成によって、工作機械2の動作を制御する機能、協働ロボット3の制御軸の動作経路を生成する機能等のような各種機能を実現する。 FIG. 2 is a functional block diagram of the numerical control device 4 and the robot control device 5 according to this embodiment. First, the detailed configuration of the numerical control device 4 will be described. As shown in FIG. 2, the numerical control device 4 realizes various functions such as a function to control the operation of the machine tool 2 and a function to generate a motion path of the control axis of the collaborative robot 3, by using the above hardware configuration.
 数値制御装置4は、数値制御プログラムを用いてロボット制御装置5を介して協働ロボット3を制御する。すなわち、数値制御装置4は、ロボット用の数値制御プログラムに従って、協働ロボット3及びツール3bの動作を制御するための各種指令を生成し、ロボット制御装置5へ送信する。より具体的には、数値制御装置4は、プログラム入力部41と、解析部42と、動作制御部43と、記憶部44と、ロボット指令信号生成部45と、データ送受信部46と、負荷確認状態取得部47と、操作部48と、負荷設定情報確認部49と、表示装置50と、を備える。 The numerical control device 4 uses a numerical control program to control the collaborative robot 3 via the robot control device 5. That is, the numerical control device 4 generates various commands for controlling the operation of the collaborative robot 3 and the tool 3b according to the numerical control program for the robot, and transmits them to the robot control device 5. More specifically, the numerical control device 4 includes a program input unit 41, an analysis unit 42, an operation control unit 43, a memory unit 44, a robot command signal generation unit 45, a data transmission/reception unit 46, a load confirmation status acquisition unit 47, an operation unit 48, a load setting information confirmation unit 49, and a display device 50.
 プログラム入力部41は、複数のロボット指令ブロックによって構成されるロボット用の数値制御プログラムを記憶部44から読み出し、これを逐次解析部42へ入力する。 The program input unit 41 reads out a numerical control program for a robot, which is composed of multiple robot command blocks, from the memory unit 44 and inputs it sequentially to the analysis unit 42.
 解析部42は、プログラム入力部41から入力される数値制御プログラムに基づく指令種別を指令ブロックごとに解析し、その解析結果を動作制御部43及びロボット指令信号生成部45へ出力する。より具体的には、解析部42は、指令ブロックの指令種別が工作機械2に対する工作機械用数値制御指令である場合、この工作機械用数値制御指令を動作制御部43へ送信する。解析部42は、指令ブロックの指令種別が協働ロボット3に対するロボット用数値制御指令である場合、このロボット用数値制御指令(以下、ロボット制御指令ともいう)をロボット指令信号生成部45へ出力する。 The analysis unit 42 analyzes the command type based on the numerical control program input from the program input unit 41 for each command block, and outputs the analysis result to the operation control unit 43 and the robot command signal generation unit 45. More specifically, when the command type of the command block is a machine tool numerical control command for the machine tool 2, the analysis unit 42 transmits this machine tool numerical control command to the operation control unit 43. When the command type of the command block is a robot numerical control command for the collaborative robot 3, the analysis unit 42 outputs this robot numerical control command (hereinafter also referred to as a robot control command) to the robot command signal generation unit 45.
 動作制御部43は、解析部42から送信される解析結果に応じて工作機械2の動作を制御するための工作機械制御信号を生成し、工作機械2の各種軸を駆動するアクチュエータへ入力する。工作機械2は、動作制御部43から入力される工作機械制御信号に応じて動作し、図示しないワークを加工する。 The operation control unit 43 generates a machine tool control signal for controlling the operation of the machine tool 2 according to the analysis results sent from the analysis unit 42, and inputs the signal to the actuators that drive the various axes of the machine tool 2. The machine tool 2 operates according to the machine tool control signal input from the operation control unit 43, and machines a workpiece (not shown).
 記憶部44は、例えば、オペレータによる操作に基づいて作成された複数の数値制御プログラムを格納する。より具体的には、記憶部44は、工作機械2の動作を制御するための工作機械2に対する複数の指令ブロックや協働ロボット3の動作を制御するための協働ロボット3に対する複数の指令ブロック等によって構成される数値制御プログラムを格納する。記憶部44に格納されている数値制御プログラムは、GコードやMコード等、工作機械2の動作を制御するため既知のプログラム言語で記述されている。 The memory unit 44 stores, for example, a plurality of numerical control programs created based on operations by an operator. More specifically, the memory unit 44 stores numerical control programs that are composed of a plurality of command blocks for the machine tool 2 for controlling the operation of the machine tool 2, a plurality of command blocks for the collaborative robot 3 for controlling the operation of the collaborative robot 3, and the like. The numerical control programs stored in the memory unit 44 are written in a known programming language for controlling the operation of the machine tool 2, such as G-code or M-code.
 また、記憶部44は、例えば、上記数値制御プログラムの下で作動する工作機械2の各種軸の位置(すなわち、工作機械2の刃物台やテーブル等の位置)を示す機械座標値を格納する。なお、これら機械座標値は、工作機械2上又は工作機械2の近傍の任意の位置に定められた基準点を原点とする工作機械座標系の下で定義される。記憶部44には、数値制御プログラムの下で逐次変化する機械座標値の最新値が格納されるよう、図示しない処理によって逐次更新される。 The memory unit 44 also stores, for example, machine coordinate values indicating the positions of various axes of the machine tool 2 operating under the above-mentioned numerical control program (i.e., the positions of the tool rest, table, etc. of the machine tool 2). These machine coordinate values are defined under a machine tool coordinate system that has as its origin a reference point determined at an arbitrary position on the machine tool 2 or in the vicinity of the machine tool 2. The machine coordinate values, which change sequentially under the numerical control program, are successively updated by a process not shown in the figures so that the latest values are stored in the memory unit 44.
 また、記憶部44は、例えば、ロボット制御装置5の制御下で作動する協働ロボット3の制御点(例えば、協働ロボット3のアーム先端部3a)の位置及び姿勢、換言すれば協働ロボット3の各制御軸の位置を示すロボット座標値が格納されている。なお、これらロボット座標値は、上述したように工作機械座標系とは異なるロボット座標系の下で定義される。記憶部44には、数値制御プログラムの下で逐次変化するロボット座標値の最新値が格納されるよう、図示しない処理によりロボット制御装置5から取得されたロボット座標値によって逐次更新される。 The memory unit 44 also stores, for example, robot coordinate values indicating the position and orientation of the control point (e.g., the arm tip 3a of the collaborative robot 3) of the collaborative robot 3 operating under the control of the robot control device 5, in other words, the position of each control axis of the collaborative robot 3. Note that, as described above, these robot coordinate values are defined under a robot coordinate system that is different from the machine tool coordinate system. The memory unit 44 is updated sequentially with the robot coordinate values obtained from the robot control device 5 by a process not shown in the figure so that the latest values of the robot coordinate values that change sequentially under the numerical control program are stored.
 また、記憶部44は、例えば、オペレータにより入力された協働ロボット3の始点及び終点といった教示位置を記憶する。具体的には、記憶部44は、ティーチペンダント等から入力された協働ロボット3の教示位置、キーボード等から入力された教示位置等を記憶する。協働ロボット3の教示位置には、協働ロボット3の各制御軸の位置を示すロボット座標値が含まれ、これらロボット座標値は、工作機械座標系とは異なるロボット座標系の下で定義される。 The memory unit 44 also stores teaching positions, such as the start point and end point of the collaborative robot 3, input by the operator. Specifically, the memory unit 44 stores teaching positions of the collaborative robot 3 input from a teach pendant or the like, teaching positions input from a keyboard or the like, etc. The teaching positions of the collaborative robot 3 include robot coordinate values indicating the positions of each control axis of the collaborative robot 3, and these robot coordinate values are defined under a robot coordinate system that is different from the machine tool coordinate system.
 ロボット指令信号生成部45は、解析部42から入力されるロボット指令ブロック毎の解析結果に基づいて、ロボット指令ブロック毎にロボット指令信号を生成し、生成したロボット指令信号をデータ送受信部46に書き込む。 The robot command signal generation unit 45 generates a robot command signal for each robot command block based on the analysis results for each robot command block input from the analysis unit 42, and writes the generated robot command signal to the data transmission/reception unit 46.
 具体的には、ロボット指令信号生成部45は、解析部42から入力される解析結果としてのロボット用数値制御指令に基づいて、ロボット指令ブロック毎にロボット指令信号を生成し、生成したロボット指令信号をデータ送受信部46に書き込む。 Specifically, the robot command signal generation unit 45 generates a robot command signal for each robot command block based on the robot numerical control command as the analysis result input from the analysis unit 42, and writes the generated robot command signal to the data transmission/reception unit 46.
 データ送受信部46は、ロボット制御装置5のデータ送受信部59との間で指令及びロボット座標値等の各種データを送受信する。具体的には、データ送受信部46は、ロボット指令信号生成部45によって生成されたロボット指令信号をロボット制御装置5のデータ送受信部59へ送信する。 The data transmission/reception unit 46 transmits and receives various data such as commands and robot coordinate values to and from the data transmission/reception unit 59 of the robot control device 5. Specifically, the data transmission/reception unit 46 transmits the robot command signal generated by the robot command signal generation unit 45 to the data transmission/reception unit 59 of the robot control device 5.
 操作部48は、ティーチペンダント、キーボード、タッチパネル等で構成され、ユーザからの入力操作を受け付ける。操作部48は、例えば、後述する質問形式の負荷設定確認情報に対するユーザの回答のための入力操作を受け付ける。 The operation unit 48 is composed of a teach pendant, keyboard, touch panel, etc., and accepts input operations from the user. For example, the operation unit 48 accepts input operations for the user to respond to load setting confirmation information in the form of a question, which will be described later.
 表示装置50は、液晶ディスプレイ、有機ELディスプレイ、タッチパネルディスプレイ等で構成され、各種の情報を表示する。表示装置50は、例えば、後述の負荷設定確認情報を表示する。 The display device 50 is composed of a liquid crystal display, an organic EL display, a touch panel display, etc., and displays various information. For example, the display device 50 displays the load setting confirmation information described below.
 負荷確認状態取得部47は、負荷確認状態をロボット制御装置5から取得する。ここで、負荷確認状態は、協働ロボット3において負荷設定と実際の負荷とを確認する状態を示す。負荷確認状態は、負荷設定と実際の負荷とが一致するかを確認していない未確認、負荷設定と実際の負荷とが一致しない不一致、及び負荷設定と実際の負荷とが一致するかの確認を完了した確認完了のいずれか1つを含む。 The load confirmation state acquisition unit 47 acquires the load confirmation state from the robot control device 5. Here, the load confirmation state indicates a state in which the load setting and the actual load are confirmed in the collaborative robot 3. The load confirmation state includes one of the following: unconfirmed, in which it has not been confirmed whether the load setting and the actual load match; mismatch, in which the load setting and the actual load do not match; and confirmed, in which confirmation of whether the load setting and the actual load match has been completed.
 具体的には、解析部42は、解析したロボット用数値制御指令から負荷確認指令が抽出されると、負荷確認状態取得部47へ協働ロボット3の負荷確認状態を取得することを通知する。 Specifically, when a load confirmation command is extracted from the analyzed robot numerical control command, the analysis unit 42 notifies the load confirmation status acquisition unit 47 that it will acquire the load confirmation status of the collaborative robot 3.
 負荷確認状態取得部47は、負荷確認状態を要求する指令をロボット指令信号生成部45へ出力し、ロボット指令信号生成部45は、負荷確認状態を要求する指令を含むロボット指令信号を生成し、データ送受信部46を介してロボット制御装置5へ送信する。 The load confirmation state acquisition unit 47 outputs a command requesting the load confirmation state to the robot command signal generation unit 45, and the robot command signal generation unit 45 generates a robot command signal including a command requesting the load confirmation state and transmits it to the robot control device 5 via the data transmission/reception unit 46.
 ロボット制御装置5は、負荷確認状態を要求する指令を含むロボット指令信号に応じて、負荷確認状態を数値制御装置4へ通知し、負荷確認状態取得部47は、データ送受信部59を介して負荷確認状態をロボット制御装置5から取得する。 The robot control device 5 notifies the numerical control device 4 of the load confirmation state in response to a robot command signal including a command requesting the load confirmation state, and the load confirmation state acquisition unit 47 acquires the load confirmation state from the robot control device 5 via the data transmission/reception unit 59.
 負荷設定情報確認部49は、負荷確認状態取得部47が取得した負荷確認状態に基づいて、負荷設定情報を確認するための負荷設定確認情報をロボット制御装置5へ送信し、協働ロボット3において負荷設定と実際の負荷との確認を完了する。 The load setting information confirmation unit 49 transmits load setting confirmation information for confirming the load setting information to the robot control device 5 based on the load confirmation state acquired by the load confirmation state acquisition unit 47, and completes confirmation of the load setting and the actual load in the collaborative robot 3.
 具体的には、負荷設定情報確認部49は、負荷確認状態に基づいて、負荷設定確認情報を質問形式で表示装置50に表示し、質問形式の負荷設定確認情報に対するユーザの回答に基づいて負荷設定確認情報をロボット制御装置5へ送信する。 Specifically, the load setting information confirmation unit 49 displays the load setting confirmation information in the form of a question on the display device 50 based on the load confirmation state, and transmits the load setting confirmation information to the robot control device 5 based on the user's response to the load setting confirmation information in the form of a question.
 そして、負荷設定情報確認部49は、負荷確認状態及びロボット用数値制御指令の解析結果に基づいて、負荷設定確認情報をロボット制御装置5のデータ送受信部59へ送信し、協働ロボット3における負荷設定と実際の負荷との確認を完了する。 Then, the load setting information confirmation unit 49 transmits the load setting confirmation information to the data transmission/reception unit 59 of the robot control device 5 based on the load confirmation state and the analysis results of the robot numerical control command, completing the confirmation of the load setting and the actual load in the collaborative robot 3.
 すなわち、負荷設定情報確認部49は、協働ロボット3における負荷設定と実際の負荷とが一致した場合、ロボット用数値制御指令の次ブロックの解析を許可することを解析部42へ通知する。一方、負荷設定情報確認部49は、協働ロボット3における負荷設定と実際の負荷とが一致しない場合、ロボット用数値制御指令の次ブロックの解析を中止することを解析部42へ通知する。 In other words, if the load setting and the actual load in the collaborative robot 3 match, the load setting information confirmation unit 49 notifies the analysis unit 42 that analysis of the next block of the robot numerical control command is permitted. On the other hand, if the load setting and the actual load in the collaborative robot 3 do not match, the load setting information confirmation unit 49 notifies the analysis unit 42 that analysis of the next block of the robot numerical control command is to be stopped.
 解析部42は、ロボット用数値制御指令の次ブロックの解析を許可することが通知されると、ロボット用数値制御指令の次ブロックを解析する。一方、解析部42は、負荷設定情報確認部49において、負荷設定確認情報と、負荷設定とが一致しない場合、ロボット用数値制御指令の解析を中止する。 When the analysis unit 42 is notified that analysis of the next block of the numerical control command for the robot is permitted, it analyzes the next block of the numerical control command for the robot. On the other hand, if the load setting confirmation information and the load setting do not match in the load setting information confirmation unit 49, the analysis unit 42 stops analyzing the numerical control command for the robot.
 次に、ロボット制御装置5の構成について詳細に説明する。図2に示すように、ロボット制御装置5には、上記ハードウェア構成によって、記憶部51、解析部52、ロボット命令生成部53、プログラム管理部54、軌跡制御部55、キネマティクス制御部56、サーボ制御部57、ダイナミクス制御部58、データ送受信部59、接触制御部60、及び負荷設定確認部61等の各種機能が実現される。ロボット制御装置6は、これらのような機能部を用いることによって、数値制御装置4から送信される指令に基づいて協働ロボット3の動作を制御する。 Next, the configuration of the robot control device 5 will be described in detail. As shown in FIG. 2, the above hardware configuration of the robot control device 5 realizes various functions such as a memory unit 51, an analysis unit 52, a robot command generation unit 53, a program management unit 54, a trajectory control unit 55, a kinematics control unit 56, a servo control unit 57, a dynamics control unit 58, a data transmission/reception unit 59, a contact control unit 60, and a load setting confirmation unit 61. By using these functional units, the robot control device 6 controls the operation of the collaborative robot 3 based on commands sent from the numerical control device 4.
 記憶部51は、協働ロボット3を制御するためのロボットプログラム及び各種情報を記憶する。また、記憶部51は、協働ロボット3の負荷設定情報を記憶する。なお、本実施形態では、記憶部51は、ロボット制御装置5に設けられているが、記憶部51は、数値制御装置4に設けられてもよく、数値制御装置4及びロボット制御装置5の外部の電子機器や外部サーバー等に設けられてもよい。 The storage unit 51 stores the robot program and various information for controlling the collaborative robot 3. The storage unit 51 also stores load setting information for the collaborative robot 3. Note that in this embodiment, the storage unit 51 is provided in the robot control device 5, but the storage unit 51 may be provided in the numerical control device 4, or in an external electronic device or external server, etc., external to the numerical control device 4 and the robot control device 5.
 ここで、負荷設定情報は、協働ロボット3の負荷設定に対応付けられた負荷の設定番号を含んでもよい。また、負荷設定情報は、負荷の設定番号、負荷の重量、負荷の重心位置、負荷のイナーシャのうち少なくとも1つを含む。これらの負荷設定情報は、オペレータにより予め入力され、記憶部51に記憶される。 Here, the load setting information may include a load setting number associated with the load setting of the collaborative robot 3. The load setting information also includes at least one of the load setting number, the load weight, the center of gravity position of the load, and the load inertia. This load setting information is input in advance by the operator and stored in the memory unit 51.
 図3は、負荷設定情報の一例を示す図である。これらの負荷設定情報は、数値制御装置4の表示装置50における表示画面に表示される。図3に示されるように、例えば負荷重量50kgのグループは、複数の設定番号(No.1から10)を付与される。 FIG. 3 is a diagram showing an example of load setting information. The load setting information is displayed on the display screen of the display device 50 of the numerical control device 4. As shown in FIG. 3, for example, a group with a load weight of 50 kg is assigned multiple setting numbers (No. 1 to 10).
 図4は、図3中のグループ1を選択したときに表示されるグループ1の負荷設定情報を示す図である。グループ1の負荷設定情報は、負荷の重量、負荷の重心位置及び負荷のイナーシャ値が記憶されている。このように、負荷ごとに重量、重心位置及びイナーシャが対応付けられて記憶部51に記憶されている。 FIG. 4 shows the load setting information for group 1 that is displayed when group 1 in FIG. 3 is selected. The load setting information for group 1 stores the weight of the load, the position of the center of gravity of the load, and the inertia value of the load. In this way, the weight, the position of the center of gravity, and the inertia are associated with each load and stored in the memory unit 51.
 図2に戻り、データ送受信部59は、数値制御装置4のデータ送受信部46から送信されるロボット指令信号を受信する。また、データ送受信部59は、受信したロボット指令信号を逐次、解析部52へ出力する。 Returning to FIG. 2, the data transmission/reception unit 59 receives the robot command signal transmitted from the data transmission/reception unit 46 of the numerical control device 4. The data transmission/reception unit 59 also outputs the received robot command signal to the analysis unit 52 in sequence.
 解析部52は、データ送受信部59から入力されるロボット指令信号を解析する。また、解析部52は、その解析結果をロボット命令生成部53へ出力する。 The analysis unit 52 analyzes the robot command signal input from the data transmission/reception unit 59. The analysis unit 52 also outputs the analysis result to the robot command generation unit 53.
 ロボット命令生成部53は、解析部52から入力されるロボット指令信号の解析結果に基づいて、ロボット指令信号に応じたロボット命令を生成する。ロボット命令生成部53は、生成したロボット命令をプログラム管理部54へ出力する。 The robot command generation unit 53 generates a robot command corresponding to the robot command signal based on the analysis result of the robot command signal input from the analysis unit 52. The robot command generation unit 53 outputs the generated robot command to the program management unit 54.
 プログラム管理部54は、ロボット命令生成部53からロボット命令が入力されると、ロボット命令を逐次実行することにより、上記ロボット指令信号に応じた協働ロボット3の動作計画を生成し、軌跡制御部55へ出力する。 When the program management unit 54 receives a robot command from the robot command generation unit 53, it executes the robot commands sequentially to generate an operation plan for the collaborative robot 3 according to the robot command signal, and outputs the operation plan to the trajectory control unit 55.
 また、プログラム管理部54は、ロボット命令生成部53から入力されるロボット命令がブロックロボット命令である場合には、記憶部51に格納されているロボットプログラムに、入力されたブロックロボット命令を追加する。これにより記憶部51には、数値制御装置4から送信されるロボット指令信号に応じたロボットプログラムが生成されて記憶される。記憶されたロボットプログラムは、プログラム管理部54がロボット命令としてロボットプログラム起動指令を受けることにより、起動及び再生される。 Furthermore, if the robot command input from the robot command generation unit 53 is a block robot command, the program management unit 54 adds the input block robot command to the robot program stored in the memory unit 51. As a result, a robot program corresponding to the robot command signal sent from the numerical control device 4 is generated and stored in the memory unit 51. The stored robot program is started and played when the program management unit 54 receives a robot program start command as a robot command.
 軌跡制御部55は、プログラム管理部54から動作計画が入力されると、協働ロボット3の制御点の時系列データを算出し、キネマティクス制御部56へ出力する。 When the motion plan is input from the program management unit 54, the trajectory control unit 55 calculates time series data of the control points of the collaborative robot 3 and outputs it to the kinematics control unit 56.
 キネマティクス制御部56は、入力された時系列データから協働ロボット3の各関節の目標角度を算出し、サーボ制御部57へ入力する。 The kinematics control unit 56 calculates the target angles of each joint of the collaborative robot 3 from the input time series data and inputs them to the servo control unit 57.
 サーボ制御部57は、キネマティクス制御部56から入力される目標角度が実現するように協働ロボット3の各サーボモータをフィードバック制御することによって協働ロボット3に対するロボット制御信号を生成し、協働ロボット3のサーボモータへ入力する。また、サーボ制御部57は、後述のダイナミクス制御部58により計算されたトルクを反映したロボット制御信号を生成する。これにより、ロボット制御装置5は、負荷設定情報に基づいて協働ロボット3を制御可能となっている。 The servo control unit 57 generates a robot control signal for the collaborative robot 3 by feedback controlling each servo motor of the collaborative robot 3 so that the target angle input from the kinematics control unit 56 is realized, and inputs the signal to the servo motor of the collaborative robot 3. The servo control unit 57 also generates a robot control signal that reflects the torque calculated by the dynamics control unit 58, which will be described later. This enables the robot control device 5 to control the collaborative robot 3 based on the load setting information.
 ダイナミクス制御部58は、ロボット指令信号によって指令された負荷設定に基づいて、逆動力学計算により協働ロボット3に入力するトルクを計算する。ダイナミクス制御部58は、計算により取得したトルクを、サーボ制御部57へ出力する。 The dynamics control unit 58 calculates the torque to be input to the collaborative robot 3 by inverse dynamics calculation based on the load setting commanded by the robot command signal. The dynamics control unit 58 outputs the torque obtained by calculation to the servo control unit 57.
 ここで、協働ロボット3の逆動力学計算とは、協働ロボット3の動作軌跡計画で算出される望みの運動(各関節の位置、速度、加速度の時系列データ)に基づいて、協働ロボット3に加わる手先負荷や重力、自重を考慮し、そのような応答を実現するための各モータへの入力トルクを計算する手法である。このような逆動力学計算に関するものとして、例えば、計算トルク法やニュートン・オイラー法等の数値計算方法が開示されている(例えば、特開平8-118275号公報、特開2015-58520号公報)。 Here, the inverse dynamics calculation of the collaborative robot 3 is a method of calculating the input torque to each motor to realize the desired motion (time series data of the position, speed, and acceleration of each joint) calculated in the motion trajectory plan of the collaborative robot 3, taking into account the hand load, gravity, and the weight of the collaborative robot 3. Numerical calculation methods such as the calculated torque method and the Newton-Euler method have been disclosed as methods related to this type of inverse dynamics calculation (for example, JP 8-118275 A and JP 2015-58520 A).
 接触制御部60は、協働ロボット3における外力検出センサによる外力の検出結果に応じて、接触停止動作を制御する。ここで、接触停止動作は、協働ロボット3が外部からの接触力に応じて協働ロボット3の動作を停止する動作を示す。 The contact control unit 60 controls the contact stop operation in response to the detection result of the external force by the external force detection sensor in the collaborative robot 3. Here, the contact stop operation refers to the operation of the collaborative robot 3 to stop the operation of the collaborative robot 3 in response to an external contact force.
 図5は、表示装置50に表示される負荷設定確認情報の一例を示す図である。図6は、図5に示される負荷設定確認情報を表示する際における数値制御装置4とロボット制御装置5との間の信号及び情報の流れを示すシーケンス図である。 FIG. 5 is a diagram showing an example of load setting confirmation information displayed on the display device 50. FIG. 6 is a sequence diagram showing the flow of signals and information between the numerical control device 4 and the robot control device 5 when the load setting confirmation information shown in FIG. 5 is displayed.
 負荷設定情報確認部49は、以下のように、負荷確認状態に基づいて、表示装置50に負荷設定確認情報を質問形式で表示する。先ず、負荷確認状態取得部47は、ロボット制御装置5から通知された負荷確認状態を取得する。図5及び図6に示される例では、負荷確認状態は、未確認である。また、この時点では、ロボット制御装置5は、協働ロボット3の運転を禁止する。 The load setting information confirmation unit 49 displays the load setting confirmation information in the form of a question on the display device 50 based on the load confirmation status as follows. First, the load confirmation status acquisition unit 47 acquires the load confirmation status notified from the robot control device 5. In the example shown in Figures 5 and 6, the load confirmation status is unconfirmed. Also, at this point, the robot control device 5 prohibits the operation of the collaborative robot 3.
 負荷設定情報確認部49は、表示装置50における負荷確認情報を表示する画面に対する操作を有効にし、負荷確認情報としてメッセージ「暗証番号を入力してください」を表示装置50に表示する。 The load setting information confirmation unit 49 enables operations on a screen that displays the load confirmation information on the display device 50, and displays the message "Please enter your PIN" on the display device 50 as the load confirmation information.
 負荷設定情報確認部49は、操作部48によってユーザからの暗証番号の入力を受け付けると、暗証番号をロボット制御装置5へ通知する。 When the load setting information confirmation unit 49 receives a PIN number input from the user via the operation unit 48, it notifies the robot control device 5 of the PIN number.
 ロボット制御装置5の負荷設定確認部61は、通知された暗証番号が、事前に設定された暗証番号と一致した場合、負荷確認を許可し、負荷の設定番号を数値制御装置4へ通知する。 If the notified PIN matches a pre-set PIN, the load setting confirmation unit 61 of the robot control device 5 allows the load confirmation and notifies the numerical control device 4 of the load setting number.
 次に、負荷設定情報確認部49は、負荷確認情報としてメッセージ「実際の負荷はNo.x?」を表示装置50に表示する。ここで、xは任意の負荷の設定番号である。負荷設定情報確認部49は、操作部48によってユーザからのYES又はNOのいずれかの選択操作を受け付けると、YES又はNOを示す確認結果をロボット制御装置5へ通知する。 Then, the load setting information confirmation unit 49 displays the message "Is the actual load No. x?" on the display device 50 as load confirmation information. Here, x is an arbitrary load setting number. When the load setting information confirmation unit 49 receives a selection operation of either YES or NO from the user via the operation unit 48, it notifies the robot control device 5 of the confirmation result indicating YES or NO.
 ロボット制御装置5の負荷設定確認部61は、通知された確認結果に応じて負荷の設定番号を確認し、協働ロボット3への接触状態を確認する情報を数値制御装置4へ通知する。 The load setting confirmation unit 61 of the robot control device 5 confirms the load setting number according to the notified confirmation result, and notifies the numerical control device 4 of information confirming the contact state with the collaborative robot 3.
 次に、負荷設定情報確認部49は、負荷確認情報としてメッセージ「ロボットに接触している人はいませんか?」を表示装置50に表示する。ユーザは、協働ロボット3が人と接触していないことを確認し、操作部48によって接触状態を確認する操作を行う。負荷設定情報確認部49は、操作部48によってユーザからの接触状態を確認する操作を受け付けると、接触状態をロボット制御装置5へ通知する。 The load setting information confirmation unit 49 then displays the message "Is anyone touching the robot?" on the display device 50 as load confirmation information. The user confirms that the collaborative robot 3 is not in contact with a person, and performs an operation to check the contact state using the operation unit 48. When the load setting information confirmation unit 49 receives an operation from the user to check the contact state using the operation unit 48, it notifies the robot control device 5 of the contact state.
 ロボット制御装置5の負荷設定確認部61は、接触状態を確認し、負荷確認状態を確認完了とし、この負荷確認状態を数値制御装置4へ通知する。また、ロボット制御装置5は、協働ロボット3の運転を許可する。 The load setting confirmation unit 61 of the robot control device 5 confirms the contact state, determines the load confirmation state as confirmation complete, and notifies the numerical control device 4 of this load confirmation state. The robot control device 5 also permits the operation of the collaborative robot 3.
 負荷設定情報確認部49は、確認完了となった負荷確認状態を受け付けると、メッセージ「負荷確認を完了しました」を表示装置50に表示し、表示装置50における負荷確認情報を表示する画面に対する操作を無効にする。 When the load setting information confirmation unit 49 receives a load confirmation status in which confirmation has been completed, it displays the message "Load confirmation completed" on the display device 50 and disables operations on the screen displaying the load confirmation information on the display device 50.
 図7は、本実施形態に係る数値制御プログラムの例を示す図である。図7に示される数値制御プログラムは、ロボット用系統のためのプログラムである。図8は、図7に示される数値制御プログラムを実行した際における数値制御装置4とロボット制御装置5との間の信号及び情報の流れを示すシーケンス図である。図7及び図8に示される例では、負荷確認状態は、未確認である。また、この時点では、ロボット制御装置5は、協働ロボット3の運転を禁止する。 FIG. 7 is a diagram showing an example of a numerical control program according to this embodiment. The numerical control program shown in FIG. 7 is a program for a robot system. FIG. 8 is a sequence diagram showing the flow of signals and information between the numerical control device 4 and the robot control device 5 when the numerical control program shown in FIG. 7 is executed. In the example shown in FIGS. 7 and 8, the load confirmation state is unconfirmed. Also, at this point, the robot control device 5 prohibits the operation of the collaborative robot 3.
 数値制御プログラムにおいて、先ず、“G100”が指令され、負荷確認状態取得部47は、ロボット制御装置5から通知された負荷確認状態を取得する。そして、負荷設定情報確認部49は、負荷確認状態に基づいて負荷確認情報としてのメッセージを表示し、暗証番号xxxxの入力を受け付ける。負荷設定情報確認部49は、負荷確認が許可された後、負荷の設定番号No.1を数値制御装置4へ通知する。ここで、xxxxは、任意の暗証番号である。更に、負荷設定情報確認部49は、操作部48によってユーザからの接触状態を確認する操作を受け付けると、接触状態をロボット制御装置5へ通知する。 In the numerical control program, first, "G100" is commanded, and the load confirmation status acquisition unit 47 acquires the load confirmation status notified from the robot control device 5. Then, the load setting information confirmation unit 49 displays a message as load confirmation information based on the load confirmation status, and accepts input of a secret number xxxx. After load confirmation is permitted, the load setting information confirmation unit 49 notifies the numerical control device 4 of the load setting number No. 1. Here, xxxx is an arbitrary secret number. Furthermore, when the load setting information confirmation unit 49 accepts an operation to confirm the contact status from the user via the operation unit 48, it notifies the robot control device 5 of the contact status.
 ロボット制御装置5の負荷設定確認部61は、暗証番号の確認、負荷の設定番号の確認及び接触状態の確認を行い、負荷確認の結果を数値制御装置4へ通知する。また、ロボット制御装置5は、協働ロボット3の運転を許可する。 The load setting confirmation unit 61 of the robot control device 5 confirms the PIN number, the load setting number, and the contact state, and notifies the numerical control device 4 of the load confirmation result. The robot control device 5 also permits the operation of the collaborative robot 3.
 次に、協働ロボット3の位置が不明であるため、“G68.8”が入力され、各軸座標系が選択される。“G7.3 J1=_J2=_J3=_J4=_J5=_J6=_”が指令されると、ロボット制御装置5は、各軸座標系上の指定位置に協働ロボット3を位置決めする。なお、コマンド中のアンダーバーの部分には、協働ロボット3の指定位置の座標値が入力される。 Next, since the position of the collaborative robot 3 is unknown, "G68.8" is input and each axis coordinate system is selected. When "G7.3 J1=_J2=_J3=_J4=_J5=_J6=_" is commanded, the robot control device 5 positions the collaborative robot 3 at the specified position on each axis coordinate system. Note that the coordinate value of the specified position of the collaborative robot 3 is input in the underscore part in the command.
 次いで、“G68.9”が指令され、直交座標系が選択される。“G01 X_Y_Z_A_B_C_P_”が指令されると、ロボット制御装置5は、直交座標系上の指定位置(ワーク位置)へ協働ロボット3を直線移動させ、位置決めする。なお、コマンド中のアンダーバーの部分には、協働ロボット3の指定位置の座標値が入力される。このように数値制御装置4は、数値制御プログラムを実行し、負荷設定情報を確認することができる。 Next, "G68.9" is commanded and the Cartesian coordinate system is selected. When "G01 X_Y_Z_A_B_C_P_" is commanded, the robot control device 5 moves the collaborative robot 3 in a straight line to the specified position (work position) on the Cartesian coordinate system and positions it. Note that the coordinate value of the specified position of the collaborative robot 3 is input in the underscore part of the command. In this way, the numerical control device 4 can execute the numerical control program and check the load setting information.
 以上説明したように本実施形態によれば、数値制御装置4は、協働ロボット3において負荷設定と実際の負荷とを確認する状態を示す負荷確認状態をロボット制御装置5から取得する負荷確認状態取得部47と、負荷確認状態に基づいて負荷設定情報を確認するための負荷設定確認情報をロボット制御装置5へ送信し、負荷設定と実際の負荷との確認を完了する負荷設定情報確認部49と、を備える。 As described above, according to this embodiment, the numerical control device 4 includes a load confirmation state acquisition unit 47 that acquires a load confirmation state indicating the state in which the load setting and the actual load are confirmed in the collaborative robot 3 from the robot control device 5, and a load setting information confirmation unit 49 that transmits load setting confirmation information to the robot control device 5 for confirming the load setting information based on the load confirmation state, and completes the confirmation of the load setting and the actual load.
 このような構成によって、数値制御装置4は、ロボット制御装置5の教示操作盤等を使用せずに、工作機械2のユーザが使い慣れた数値制御装置4上の操作によって簡単に協働ロボット3の負荷確認を行うことができる。 With this configuration, the numerical control device 4 can easily check the load on the collaborative robot 3 by operating the numerical control device 4, which the user of the machine tool 2 is familiar with, without using a teaching operation panel or the like of the robot control device 5.
 また、負荷設定情報確認部49は、負荷設定確認情報を質問形式で表示装置50に表示し、質問形式の負荷設定確認情報に対するユーザの回答に基づいて負荷設定確認情報をロボット制御装置5へ送信し、負荷設定と実際の負荷との確認を完了する。このような構成によって、数値制御装置4は、工作機械2のユーザが、質問形式の負荷設定確認情報に対して回答することによって、簡単に協働ロボット3の負荷確認を行うことができる。 The load setting information confirmation unit 49 also displays the load setting confirmation information in the form of a question on the display device 50, and transmits the load setting confirmation information to the robot control device 5 based on the user's response to the load setting confirmation information in the form of a question, thereby completing the confirmation of the load setting and the actual load. With this configuration, the numerical control device 4 can easily confirm the load on the collaborative robot 3 by having the user of the machine tool 2 respond to the load setting confirmation information in the form of a question.
 また、数値制御装置4は、数値制御プログラム中のロボット用数値制御指令を解析する解析部42を更に備え、負荷設定情報確認部49は、負荷確認状態及びロボット用数値制御指令の解析結果に基づいて、負荷設定確認情報をロボット制御装置5へ送信し、負荷設定と実際の負荷との確認を完了する。このような構成によって、数値制御装置4は、負荷確認状態だけでなく、ロボット用数値制御指令の解析結果も用いて、協働ロボット3の負荷確認を行うことができる。 The numerical control device 4 also includes an analysis unit 42 that analyzes the numerical control commands for the robot in the numerical control program, and the load setting information confirmation unit 49 transmits load setting confirmation information to the robot control device 5 based on the load confirmation state and the analysis results of the numerical control commands for the robot, completing the confirmation of the load setting and the actual load. With this configuration, the numerical control device 4 can check the load of the collaborative robot 3 using not only the load confirmation state but also the analysis results of the numerical control commands for the robot.
 また、解析部42は、負荷設定と実際の負荷とが一致しない場合、ロボット用数値制御指令の解析を中止する。このような構成によって、数値制御装置4は、ロボット用数値制御指令の解析を中止することによって、協働ロボット3に不具合が生じた場合、協働ロボット3の動作を停止させることができる。 In addition, the analysis unit 42 stops analyzing the numerical control commands for the robot if the load setting and the actual load do not match. With this configuration, the numerical control device 4 can stop the operation of the collaborative robot 3 if a malfunction occurs in the collaborative robot 3 by stopping the analysis of the numerical control commands for the robot.
 また、負荷設定情報は、協働ロボット3の負荷設定に対応付けられた番号を含んでもよい。また、負荷設定情報は、負荷の重量、負荷の重心位置、負荷のイナーシャ情報のうちの少なくとも一つを含んでもよい。このような構成によって、数値制御装置4は、協働ロボット3の負荷設定を好適に確認することができる。 The load setting information may also include a number associated with the load setting of the collaborative robot 3. The load setting information may also include at least one of the weight of the load, the position of the center of gravity of the load, and the inertia information of the load. With this configuration, the numerical control device 4 can preferably check the load setting of the collaborative robot 3.
 以上、本発明の実施形態について説明したが、上記の数値制御システム1は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記の数値制御システム1により行なわれる制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 The above describes an embodiment of the present invention, but the above-mentioned numerical control system 1 can be realized by hardware, software, or a combination of these. Furthermore, the control method performed by the above-mentioned numerical control system 1 can also be realized by hardware, software, or a combination of these. Here, being realized by software means being realized by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて記憶され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。 The program can be stored and provided to a computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/Ws, and semiconductor memories (e.g., mask ROMs, PROMs (Programmable ROMs), EPROMs (Erasable PROMs), flash ROMs, and RAMs (random access memory)).
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the spirit of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these. The same applies when numerical values or formulas are used to explain the above-mentioned embodiments.
 上記実施形態及び変形例に関し、更に以下の付記を開示する。
(付記1)
 数値制御プログラムを用いてロボット制御装置(5)を介してロボット(3)を制御する数値制御装置(4)であって、
 前記ロボットにおいて負荷設定と実際の負荷とを確認する状態を示す負荷確認状態を前記ロボット制御装置から取得する負荷確認状態取得部(47)と、
 前記負荷確認状態に基づいて負荷設定情報を確認するための負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と実際の負荷との確認を完了する負荷設定情報確認部(49)と、
を備える数値制御装置。
(付記2)
 前記負荷設定情報確認部(49)は、前記負荷設定確認情報を質問形式で表示装置に表示し、質問形式の前記負荷設定確認情報に対するユーザの回答に基づいて前記負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と実際の負荷との確認を完了する、付記1に記載の数値制御装置。
(付記3)
 前記数値制御プログラム中のロボット用数値制御指令を解析する解析部(42)を更に備え、
 前記負荷設定情報確認部(49)は、前記負荷確認状態及び前記ロボット用数値制御指令の解析結果に基づいて、前記負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と前記実際の負荷との確認を完了する、付記1に記載の数値制御装置。
(付記4)
 前記解析部(42)は、前記負荷設定と前記実際の負荷とが一致しない場合、前記ロボット用数値制御指令の解析を中止する、付記3に記載の数値制御装置。
(付記5)
 前記負荷設定情報は、前記ロボットの前記負荷設定に対応付けられた番号を含む、付記1又は2に記載の数値制御装置。
(付記6)
 前記負荷設定情報は、前記負荷の重量、前記負荷の重心位置、前記負荷のイナーシャ情報のうちの少なくとも一つを含む、付記1又は2に記載の数値制御装置。
(付記7)
 前記ロボットは、人との接触を検知して動作を停止する協働ロボットである、付記1に記載の数値制御装置。
The following supplementary notes are further disclosed regarding the above embodiment and modified examples.
(Appendix 1)
A numerical control device (4) that controls a robot (3) via a robot control device (5) using a numerical control program,
a load confirmation state acquisition unit (47) that acquires a load confirmation state indicating a state in which a load setting and an actual load are confirmed in the robot from the robot control device;
a load setting information confirmation unit (49) that transmits load setting confirmation information for confirming load setting information based on the load confirmation state to the robot control device and completes confirmation of the load setting and an actual load;
A numerical control device comprising:
(Appendix 2)
The load setting information confirmation unit (49) displays the load setting confirmation information in the form of a question on a display device, transmits the load setting confirmation information to the robot control device based on the user's answer to the load setting confirmation information in the form of a question, and completes confirmation of the load setting and the actual load.
(Appendix 3)
The robot control system further includes an analysis unit (42) that analyzes a robot numerical control command in the numerical control program,
The load setting information confirmation unit (49) transmits the load setting confirmation information to the robot control device based on the load confirmation state and the analysis results of the numerical control command for the robot, and completes confirmation of the load setting and the actual load.
(Appendix 4)
The numerical control device according to claim 3, wherein the analysis unit (42) stops analyzing the robot numerical control command when the load setting and the actual load do not match.
(Appendix 5)
3. The numerical control device according to claim 1, wherein the load setting information includes a number associated with the load setting of the robot.
(Appendix 6)
3. The numerical control device according to claim 1, wherein the load setting information includes at least one of a weight of the load, a center of gravity position of the load, and inertia information of the load.
(Appendix 7)
2. The numerical control device according to claim 1, wherein the robot is a collaborative robot that detects contact with a human and stops its operation.
 1 数値制御システム
 2 工作機械
 3 協働ロボット
 4 数値制御装置
 5 ロボット制御装置
 41 プログラム入力部
 42 解析部
 43 動作制御部
 44 記憶部
 45 ロボット指令信号生成部
 46 データ送受信部
 47 負荷確認状態取得部
 48 操作部
 49 負荷設定情報確認部
 50 表示装置
 51 記憶部
 52 解析部
 53 ロボット命令生成部
 54 プログラム管理部
 55 軌跡制御部
 56 キネマティクス制御部
 57 サーボ制御部
 58 ダイナミクス制御部
 59 データ送受信部
 60 接触制御部
 61 負荷設定確認部
REFERENCE SIGNS LIST 1 Numerical control system 2 Machine tool 3 Collaborative robot 4 Numerical control device 5 Robot control device 41 Program input unit 42 Analysis unit 43 Motion control unit 44 Memory unit 45 Robot command signal generation unit 46 Data transmission/reception unit 47 Load confirmation state acquisition unit 48 Operation unit 49 Load setting information confirmation unit 50 Display device 51 Memory unit 52 Analysis unit 53 Robot command generation unit 54 Program management unit 55 Trajectory control unit 56 Kinematics control unit 57 Servo control unit 58 Dynamics control unit 59 Data transmission/reception unit 60 Contact control unit 61 Load setting confirmation unit

Claims (7)

  1.  数値制御プログラムを用いてロボット制御装置を介してロボットを制御する数値制御装置であって、
     前記ロボットにおいて負荷設定と実際の負荷とを確認する状態を示す負荷確認状態を前記ロボット制御装置から取得する負荷確認状態取得部と、
     前記負荷確認状態に基づいて負荷設定情報を確認するための負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と実際の負荷との確認を完了する負荷設定情報確認部と、
    を備える数値制御装置。
    A numerical control device that controls a robot via a robot control device using a numerical control program,
    a load confirmation state acquisition unit that acquires a load confirmation state indicating a state in which a load setting and an actual load are confirmed in the robot from the robot control device;
    a load setting information confirmation unit that transmits load setting confirmation information for confirming load setting information based on the load confirmation state to the robot control device and completes confirmation of the load setting and an actual load;
    A numerical control device comprising:
  2.  前記負荷設定情報確認部は、前記負荷設定確認情報を質問形式で表示装置に表示し、質問形式の前記負荷設定確認情報に対するユーザの回答に基づいて前記負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と実際の負荷との確認を完了する、請求項1に記載の数値制御装置。 The numerical control device according to claim 1, wherein the load setting information confirmation unit displays the load setting confirmation information in the form of a question on a display device, transmits the load setting confirmation information to the robot control device based on a user's response to the load setting confirmation information in the form of a question, and completes confirmation of the load setting and the actual load.
  3.  前記数値制御プログラム中のロボット用数値制御指令を解析する解析部を更に備え、
     前記負荷設定情報確認部は、前記負荷確認状態及び前記ロボット用数値制御指令の解析結果に基づいて、前記負荷設定確認情報を前記ロボット制御装置へ送信し、前記負荷設定と前記実際の負荷との確認を完了する、請求項1に記載の数値制御装置。
    An analysis unit that analyzes a robot numerical control command in the numerical control program,
    2. The numerical control device according to claim 1, wherein the load setting information confirmation unit transmits the load setting confirmation information to the robot control device based on the load confirmation state and an analysis result of the robot numerical control command, and completes confirmation of the load setting and the actual load.
  4.  前記解析部は、前記負荷設定と前記実際の負荷とが一致しない場合、前記ロボット用数値制御指令の解析を中止する、請求項3に記載の数値制御装置。 The numerical control device according to claim 3, wherein the analysis unit stops analyzing the numerical control command for the robot if the load setting and the actual load do not match.
  5.  前記負荷設定情報は、前記ロボットの前記負荷設定に対応付けられた番号を含む、請求項1又は2に記載の数値制御装置。 The numerical control device according to claim 1 or 2, wherein the load setting information includes a number associated with the load setting of the robot.
  6.  前記負荷設定情報は、前記負荷の重量、前記負荷の重心位置、前記負荷のイナーシャ情報のうちの少なくとも一つを含む、請求項1又は2に記載の数値制御装置。 The numerical control device according to claim 1 or 2, wherein the load setting information includes at least one of the weight of the load, the center of gravity position of the load, and inertia information of the load.
  7.  前記ロボットは、人との接触を検知して動作を停止する協働ロボットである、請求項1に記載の数値制御装置。 The numerical control device according to claim 1, wherein the robot is a collaborative robot that detects contact with a person and stops its operation.
PCT/JP2022/041387 2022-11-07 2022-11-07 Numerical control device WO2024100719A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023504085A JP7288158B1 (en) 2022-11-07 2022-11-07 Numerical controller
PCT/JP2022/041387 WO2024100719A1 (en) 2022-11-07 2022-11-07 Numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041387 WO2024100719A1 (en) 2022-11-07 2022-11-07 Numerical control device

Publications (1)

Publication Number Publication Date
WO2024100719A1 true WO2024100719A1 (en) 2024-05-16

Family

ID=86611015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041387 WO2024100719A1 (en) 2022-11-07 2022-11-07 Numerical control device

Country Status (2)

Country Link
JP (1) JP7288158B1 (en)
WO (1) WO2024100719A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198872A (en) * 2015-04-14 2016-12-01 ファナック株式会社 Tool transportation apparatus with grip force measurement means for tool holding means of tool magazine, and processing system
US20190015975A1 (en) * 2017-07-14 2019-01-17 Peak Analysis and automation Limited Robotic positioning system
JP2020121351A (en) * 2019-01-29 2020-08-13 ファナック株式会社 Robot system
WO2022224425A1 (en) * 2021-04-23 2022-10-27 ファナック株式会社 Numerical control device and numerical control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198872A (en) * 2015-04-14 2016-12-01 ファナック株式会社 Tool transportation apparatus with grip force measurement means for tool holding means of tool magazine, and processing system
US20190015975A1 (en) * 2017-07-14 2019-01-17 Peak Analysis and automation Limited Robotic positioning system
JP2020121351A (en) * 2019-01-29 2020-08-13 ファナック株式会社 Robot system
WO2022224425A1 (en) * 2021-04-23 2022-10-27 ファナック株式会社 Numerical control device and numerical control system

Also Published As

Publication number Publication date
JP7288158B1 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
CN102239454B (en) Method and device for inputting commands into a control of a manipulator
KR910002566A (en) Manufacturing method of metal sheet and the like
WO2022224425A1 (en) Numerical control device and numerical control system
JP2018073136A (en) Machine learning apparatus and processing time prediction system
JP2019146421A (en) Failure predicting device and mechanical learning device
WO2024100719A1 (en) Numerical control device
JP6914452B1 (en) Numerical control device and machine learning device
WO2024116221A1 (en) Numerical control device and numerical control system
WO2024100721A1 (en) Numerical control device and numerical control system
WO2024100718A1 (en) Numerical control device and numerical control system
WO2024116223A1 (en) Robot control device
Mousavi Mohammadi et al. A real-time impedance-based singularity and joint-limits avoidance approach for manual guidance of industrial robots
WO2024100720A1 (en) Numerical control device and numerical control system
JP2020055082A (en) Robot teaching device, robot teaching method and operation instruction memorizing method
TW202419233A (en) Numerical control device
JP7311732B1 (en) Numerical controller and numerical control system
JP6811878B1 (en) Numerical control device and numerical control method
TW202419993A (en) Numerical control device and numerical control system
JP7448736B1 (en) Numerical control device and numerical control system
TW202422252A (en) Numerical control device and numerical control system
US20230249337A1 (en) Numerical control system
TW202419995A (en) Numerical control device and numerical control system
Maťuga Control and positioning of robotic arm on CNC cutting machines and their applications in industry
WO2022176818A1 (en) Robot control device, robot control system, and computer program
JP7355965B1 (en) Numerical control device and numerical control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965046

Country of ref document: EP

Kind code of ref document: A1