WO2024099289A1 - Tds检测装置及其控制方法、控制器和净水装置 - Google Patents

Tds检测装置及其控制方法、控制器和净水装置 Download PDF

Info

Publication number
WO2024099289A1
WO2024099289A1 PCT/CN2023/130065 CN2023130065W WO2024099289A1 WO 2024099289 A1 WO2024099289 A1 WO 2024099289A1 CN 2023130065 W CN2023130065 W CN 2023130065W WO 2024099289 A1 WO2024099289 A1 WO 2024099289A1
Authority
WO
WIPO (PCT)
Prior art keywords
tds
voltage
detection
detection device
detection unit
Prior art date
Application number
PCT/CN2023/130065
Other languages
English (en)
French (fr)
Inventor
张娟利
袁振
Original Assignee
艾欧史密斯(中国)环境电器有限公司
艾欧史密斯(中国)热水器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾欧史密斯(中国)环境电器有限公司, 艾欧史密斯(中国)热水器有限公司 filed Critical 艾欧史密斯(中国)环境电器有限公司
Publication of WO2024099289A1 publication Critical patent/WO2024099289A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the present invention claims the priority of the Chinese invention patent with patent application number 202211399350.0 and invention name “TDS detection device and control method thereof, controller and water purification device”.
  • the present invention relates to the technical field of water purification, and in particular to a TDS detection device and a control method thereof, a controller and a water purification device.
  • the TDS detection device is used to detect the total dissolved solids (TDS) in water to evaluate the purity of water quality.
  • TDS total dissolved solids
  • the TDS value detected by the TDS detection device represents the content of dissolved impurities in water.
  • TDS detection devices can be of different types to meet different needs. As an ordinary consumer, generally only a simple, lightweight and low-cost TDS detection device, such as a water quality test pen, is needed to understand the quality of drinking water. This type of TDS detection device is low in cost and low in accuracy. Therefore, its accuracy performance needs to be further improved.
  • the technical problem to be solved by the embodiments of the present invention is to provide a TDS detection device and a control method and a controller thereof, which can effectively improve the accuracy of the TDS detection device.
  • the invention discloses a control method for a TDS detection device.
  • the TDS detection device comprises a first detection unit and a second detection unit
  • the control method of the TDS detection device comprises:
  • Step S1 applying a first voltage to the first detection unit and applying a second voltage to the second detection unit to perform TDS detection, wherein the first voltage is less than the second voltage;
  • Step S2 when the first detection unit and the second detection unit are reversed, a preset time is delayed after changing the voltage applied to one of the detection units, and then the voltage applied to the other detection unit is changed.
  • the present invention also discloses a controller, which is configured to execute the control method of the TDS detection device as described in any one of the above items.
  • the present invention also discloses a TDS detection device, the TDS detection device comprising: a controller as described in any one of the above, a first detection unit and a second detection unit; the first detection unit comprises: a first resistor and a first probe connected in series; the second detection unit comprises: a second resistor and a second probe connected in series;
  • the controller is used to apply voltage to the first detection unit and the second detection unit,
  • the first resistor is connected in series between the first voltage output port of the controller and the first probe.
  • the second resistor is connected in series between the second voltage output port of the controller and the second probe.
  • the present invention also discloses a water purification device, which comprises any of the TDS detection devices described above.
  • the present invention has the following beneficial effects:
  • step 1 In order to reduce or avoid the influence of parasitic capacitance on the detection accuracy of TDS value, in the above control method, after the first execution of step 1, when the first detection unit and the second detection unit are reversed, the voltage applied to one of the detection units is changed after a preset time delay, and then the voltage applied to the other detection unit is changed. In this way, during the preset delay time, the voltages applied to the first detection unit and the second detection unit are equal, so that the parasitic capacitance formed between the first detection unit and the second detection unit in the liquid to be tested can be eliminated. After this, after the reversal is completed, the voltage value obtained on the first probe or the second probe will not be deviated due to the parasitic capacitance, and the TDS value thus converted is relatively more accurate.
  • FIG1 is a schematic structural diagram of a TDS detection device according to an embodiment of the present invention.
  • FIG2 is a flow chart of the steps of the control method of the TDS detection device in the first embodiment of the present invention.
  • FIG. 3 is a flow chart of steps of a control method of a TDS detection device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the voltages applied to the first detection unit and the second detection unit and the voltage obtained on the probe respectively in the first implementation manner of the control method of the TDS detection device in an embodiment of the present invention
  • 5a and 5b are schematic diagrams comparing the voltage on the second probe obtained when performing TDS detection on the same liquid under the control method of the TDS detection device in the embodiment of the present application and the conventional polarity reversal method in the prior art;
  • FIG. 6 is a diagram showing the relationship between the third voltage value in different value intervals and the corresponding TDS value in an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing the principle of a water purification device according to an embodiment of the present invention.
  • each figure is marked as: 1. First detection unit; 11. First resistor; 12. First probe; 2. Second detection unit; 21. Second resistor; 22. Second probe; 3. Collection circuit; 31. Third resistor; 4. Controller; 10. First filter unit; 20. First waterway; 30. Second waterway; 40. First intersection; 50. Return waterway; 501. First one-way valve; 60. Second filter unit; 70. First detection device; 80. Second detection device; 90. Third filter unit; 110. Water inlet solenoid valve; 120. Water pump; 130. Third waterway; 1301. Throttling mechanism; 1302. Second one-way valve; 140. Wastewater waterway; 1401. Combination valve.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the internal communication of two elements, it can be directly connected, or it can be indirectly connected through an intermediate medium.
  • installed should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the internal communication of two elements, it can be directly connected, or it can be indirectly connected through an intermediate medium.
  • the terms “vertical”, “horizontal”, “up”, “down”, “left”, “right” and similar expressions used herein are only for illustrative purposes and do not represent the only implementation method.
  • FIG1 is a schematic diagram of the structure of the TDS detection device in an embodiment of the present invention.
  • the TDS detection device may include a first detection unit 1 and a second detection unit 2.
  • the first detection unit 1 may include: a first resistor 11 and a first probe 12 connected in series;
  • the second detection unit 2 may include: a second resistor 21 and a second probe 22 connected in series.
  • FIG. 2 is a flowchart of the steps of the control method of the TDS detection device in the embodiment of the present invention under the first embodiment
  • FIG. 3 is a flowchart of the steps of the control method of the TDS detection device in the embodiment of the present invention under the second embodiment.
  • the control method of the TDS detection device may include the following steps:
  • Step S1 applying a first voltage to the first detection unit 1 and applying a second voltage to the second detection unit 2 to perform TDS detection, wherein the first voltage is lower than the second voltage.
  • FIG4 is a schematic diagram of the voltages applied to the first detection unit and the second detection unit and the voltages obtained on the probes respectively in the first implementation mode of the control method of the TDS detection device in the embodiment of the present invention.
  • the first voltage is applied to the first detection unit 1 and the second voltage is applied to the second detection unit 2 at the same time to perform TDS detection, and the first voltage is less than the second voltage.
  • Position 1 in FIG4 is the voltage applied to the first detection unit 1
  • position 2 is the voltage applied to the second detection unit 2
  • position 3 is the voltage on the second probe 22 collected by the acquisition circuit when performing TDS detection on the liquid to be tested with a very low actual TDS value
  • position 4 is the voltage on the second probe 22 collected by the acquisition circuit when performing TDS detection on the liquid to be tested with a very high actual TDS value.
  • the first voltage can be a low level
  • the second voltage can be a high level.
  • the first voltage is 0V and the second voltage is 5V.
  • Step S2 when the first detection unit 1 and the second detection unit 2 are reversed, a preset time is delayed after changing the voltage applied to one of the detection units, and then the voltage applied to the other detection unit is changed.
  • the voltage applied to one of the detection units is first changed to become the voltage applied to the other detection unit, and then a preset time is delayed, and then the voltage applied to the other detection unit is changed to become the voltage previously applied to one detection unit.
  • step S2 may specifically include:
  • the voltage applied to the first detection unit 1 is changed to the second voltage after the first voltage is applied to the second detection unit 2, and then the first preset time is delayed.
  • the voltage applied to the second detection unit 2 is first changed to the first voltage, such as 0V, so that it first becomes the voltage applied to the first detection unit 1 in the first time period, and then the first preset time is delayed, and then the voltage applied to the first detection unit 1 is changed to the second voltage, such as 5V, so that it becomes the voltage previously applied to the second detection unit 2.
  • control method of the TDS detection device may further include:
  • Step S301 As shown in FIG4 , after step S2, the first electric current applied to the second detection unit 2 is maintained. In this step, the first voltage applied to the second detection unit 2 and the second voltage applied to the first detection unit 1 are maintained for a period of time, and TDS detection is performed during this period of time.
  • Step S401 As shown in FIG. 4 , after step S301 , when the first detection unit 1 and the second detection unit 2 are reversed again, the voltage applied to the second detection unit 2 is changed to the second voltage after delaying the second preset time after applying the first voltage to the first detection unit 1 .
  • step S301 the voltage applied to the first detection unit 1 is first changed to a first voltage, such as 0V, then delayed for a second preset time, and then the voltage applied to the second detection unit 2 is changed to a second voltage, such as 5V.
  • a first voltage such as 0V
  • a second voltage such as 5V
  • the first preset time and the second preset time may be the same.
  • steps S1, S2, S301, and S401 may be executed cyclically in sequence, so that TDS detection may be continuously performed to improve detection accuracy.
  • step S2 may specifically include:
  • the voltage applied to the second detection unit 2 is changed to the first voltage after the second voltage is applied to the first detection unit 1, and then the third preset time is delayed.
  • the voltage applied to the first detection unit 1 is first changed to the second voltage, such as 5V, so that it first becomes the voltage applied to the second detection unit 2, and then the third preset time is delayed, and then the voltage applied to the second detection unit 2 is changed to the first voltage, such as 0V, so that it becomes the voltage previously applied to the first detection unit 1.
  • control method of the TDS detection device may further include:
  • Step S302 After step S2, the first voltage applied to the second detection unit 2 and the second voltage applied to the first detection unit 1 are maintained to perform TDS detection. In this step, the first voltage applied to the second detection unit 2 and the second voltage applied to the first detection unit 1 are maintained for a period of time, and TDS detection is performed during this period of time.
  • Step S402 After step S401, when the first detection unit 1 and the second detection unit 2 are reversed again, a fourth preset time is delayed after the second voltage is applied to the second detection unit 2, and then the voltage applied to the first detection unit 1 is changed to the first voltage.
  • step S301 the voltage applied to the second detection unit 1 is first changed to the second voltage, such as 5V, then delayed for a fourth preset time, and then the voltage applied to the first detection unit 1 is changed to the first voltage, such as 0V.
  • the third preset time and the fourth preset time may be the same.
  • steps S1, S2, S302, and S303 may be executed cyclically in sequence, so that TDS detection may be performed continuously, and the detection accuracy may be improved by performing TDS detection multiple times.
  • step 1 After the first execution of step 1, if the first detection unit 1 and the second detection unit 2 are directly reversed, after the execution of step 1, since the first detection unit 1 and the second detection unit 2 are inserted in the liquid to be tested, a parasitic capacitance will be formed between the two. Then, after the first detection unit 1 and the second detection unit 2 are reversed, the TDS value obtained by TDS detection will be affected by the parasitic capacitance. This is because when performing TDS detection, it is specifically obtained by obtaining the voltage value on the first probe 12 or the second probe 22 and then converting it.
  • the voltage value obtained on the first probe 12 or the second probe 22 will have a certain deviation, and the deviation will cause the TDS value obtained by TDS detection after the reversal to be not accurate enough.
  • a parasitic capacitance will still be formed between the first detection unit 1 and the second detection unit 2.
  • the parasitic capacitance formed between the first detection unit 1 and the second detection unit 2 is larger, and thus the influence on the TDS value obtained by TDS detection is larger.
  • the voltage applied to one of the detection units is changed after a preset time is delayed, and then the voltage applied to the other detection unit is changed.
  • the preset time of delay the voltages applied to the first detection unit 1 and the second detection unit 2 are equal, so that the parasitic capacitance formed in the liquid to be tested between the first detection unit 1 and the second detection unit 2 can be eliminated.
  • the voltage value obtained on the first probe 12 or the second probe 22 will not be deviated due to the parasitic capacitance, and the TDS value converted thereby is relatively more accurate.
  • the polarity reversal is completed once, and then the second polarity reversal is performed, it is still possible to continue to change the voltage applied to one of the detection units and then delay for a period of time, and then change the voltage applied to the other detection unit. In this way, during this period of time, the voltages applied to the first detection unit 1 and the second detection unit 2 are equal, and the parasitic capacitance formed in the liquid to be tested between the first detection unit 1 and the second detection unit 2 can be eliminated.
  • the voltage value on the first probe 12 or the second probe 22 is obtained again, it will not be affected by the parasitic capacitance and will not be deviated, and the TDS value converted from it is still relatively more accurate.
  • the influence of the parasitic capacitance formed between the first detection unit 1 and the second detection unit 2 on the TDS detection can be effectively eliminated, thereby achieving accurate detection of the TDS value of the liquid to be tested.
  • FIG5a and FIG5b are schematic diagrams for comparing the voltage on the second probe obtained when performing TDS detection on the same liquid to be detected in the conventional polarity reversal mode in the prior art.
  • FIG5a is the voltage on the second probe obtained when performing TDS detection on the same liquid to be detected in the conventional polarity reversal mode in the prior art
  • the lower half of FIG5a is the voltage on the second probe obtained in the control method of the TDS detection device in the embodiment of the present application.
  • FIG5b is a schematic diagram of combining the voltages on the second probes in the above two cases, so as to facilitate comparison. It can be seen from the above that the voltage on the second probe 22 obtained when performing TDS detection in the conventional polarity reversal mode in the prior art is reduced by the influence of parasitic capacitance within a short period of time after polarity reversal.
  • the control method in the present application can eliminate the parasitic capacitance formed in the liquid to be detected between the first detection unit 1 and the second detection unit 2 at each polarity reversal, and the voltage value on the second probe 22 obtained when performing TDS detection will not be reduced due to the influence of parasitic capacitance, thereby causing deviation.
  • performing TDS detection may include: performing TDS detection by acquiring a first voltage value on the second probe 22 ; and/or performing TDS detection by acquiring a first voltage value on the first probe 12 .
  • performing TDS detection may include: performing TDS detection by acquiring a first voltage value on the second probe 22.
  • performing TDS detection may include: performing TDS detection by acquiring a first voltage value on the first probe 12.
  • performing TDS detection may include: performing TDS detection by acquiring a first voltage value on the first probe 12.
  • step S1 since the second voltage is applied to the second detection unit 2, which is greater than the first voltage, the value of the first voltage value obtained on the second probe 22 is much larger than the value of the first voltage value obtained on the first probe 12.
  • the value of the first voltage value obtained on the second probe 22 is slightly less than 5V, such as 4.7V, 4.5V, 4.0V, etc., but generally close to 5V, but the value of the first voltage value obtained on the first probe 12 at this time is slightly greater than 0V, such as 0.3V, 0.4V, 0.5V, etc.
  • step S302 The principle is the same and I will not elaborate on it here.
  • the step of performing TDS detection may specifically include the following steps:
  • the first voltage values on the plurality of first probes 12 or the second probes 22 are acquired.
  • the first voltage value on the first probe 12 or the second probe 22 may be collected at regular intervals within a specific time period, for example, once every 75us, 100us, 150us, etc., and collected multiple times continuously to obtain multiple first voltage values.
  • the specific time period may be the time period in which different first voltages and second voltages are applied to the first detection unit 1 and the second detection unit 2, respectively, and may be the early part of the time period as much as possible.
  • a second voltage value is acquired.
  • AD represents the second voltage value
  • N represents the number of first voltage values
  • AD1, AD2...ADN respectively represent multiple first voltage values
  • K1, K2...KN respectively represent different weight coefficients assigned to the multiple first voltage values.
  • Different weight coefficients are assigned according to the variation trends of the collected multiple first voltage values, so as to calculate the second voltage value corresponding to the converted TSD. This method can prevent the fluctuation of a single point from affecting the accuracy of sampling.
  • K1, K2, ..., KN decrease in sequence.
  • the liquid to be tested is still in the stage of ion migration. Therefore, it can be seen that the first voltage value obtained is in a continuous change process.
  • the first voltage value in the continuous change process can better reflect the TDS value in the liquid to be tested. Therefore, it is necessary to assign a larger weight coefficient to the first voltage value measured in the early stage, so that the second voltage value corresponding to the converted TDS calculated in the end is more reliable and accurate.
  • the TDS value is acquired based on the second voltage value and the corresponding relationship between the voltage value and the TDS value.
  • the second voltage value is brought into the corresponding relationship between the voltage value and the TDS value, thereby obtaining the TDS value corresponding to the second voltage value.
  • the calculated TDS value can more accurately reflect the actual TDS value of the liquid to be tested.
  • the above steps may include the following steps:
  • the second voltage value is corrected based on the temperature of the liquid to be measured to obtain a third voltage value.
  • T represents the temperature T of the liquid to be measured
  • AD represents the second voltage value
  • AD0 represents the third voltage value
  • the compensation constant is not a fixed constant, and it may have a corresponding relationship with AD.
  • the TDS value is acquired based on the third voltage value and the corresponding relationship between the voltage value and the TDS value.
  • AD0 represents the third voltage value
  • TDS represents the TDS value of the liquid to be tested
  • k represents a variable
  • b represents a constant.
  • FIG6 is a relationship diagram of the third voltage value in different numerical intervals and the corresponding TDS value in the embodiment of the present invention.
  • the value of k is k1
  • the value of k2 is k2
  • the minimum value of the first numerical interval is greater than the maximum value of the second numerical interval
  • k1 is less than k2. Since the slopes of different intervals differ greatly, it is necessary to make the relationship between the voltage value and the TDS value correspond to each other through segmented fitting, so as to further improve the accuracy of the TDS finally calculated.
  • the present application also proposes a controller 4, which is configured to execute the control method of the TDS detection device as described above.
  • the controller 4 may be in the form of a chip.
  • the TDS detection device may include: the controller 4 as described above, a first detection unit 1, and a second detection unit 2.
  • the first detection unit 1 may include: a first resistor 11 and a first probe 12 connected in series.
  • the second detection unit 2 includes: a second resistor 21 and a second probe 22 connected in series.
  • the controller 4 is used to apply a voltage to the first detection unit 1 and the second detection unit 2, and the first resistor 11 is connected in series between the first voltage output port of the controller 4 and the first probe 12, and the second resistor 21 is connected in series between the second voltage output port of the controller 4 and the second probe 22.
  • the resistance of the first resistor 11 may not be equal to the resistance of the second resistor 21, or may be equal to the resistance of the second resistor 21. Further, when the resistance of the first resistor 11 is equal to the resistance of the second resistor 21, when the first probe 12 and the second probe 22 are inserted into the liquid to be tested to detect the TDS value, before the polarity is reversed, the first voltage is applied to the first detection unit 1 and the second voltage is applied to the second detection unit 2. After the polarity is reversed, the first voltage applied to the second detection unit 2 and the second voltage applied to the first detection unit 1 are maintained. Before the polarity is reversed, the potential on the first probe 12 is the same as the potential on the second probe 22 after the polarity is reversed.
  • the TDS detection device may include a collection circuit 3, the collection circuit 3
  • the sampling point is electrically connected to the first probe 12 or the second probe 22 , and a third resistor 31 is provided on the acquisition circuit 3 .
  • the present application also proposes a water purification device, which includes any of the TDS detection devices described above.
  • the TDS detection device can be used to directly perform TDS detection on water in the water purification device.
  • the water purification device may include: a first detection device 70 for detecting the TDS value of the purified water after filtration; and a second detection device 80 for detecting the TDS value of the raw water before filtration.
  • the first detection device 70 may adopt the TDS detection device in the present application, and/or the second detection device 80 may adopt the TDS detection device in the present application.
  • the water purification device can directly obtain the TDS value of the purified water after filtration and the TDS value of the raw water before filtration, and can not only reflect the TDS value of the raw water before filtration and the TDS value of the purified water after filtration to the user, but also can judge whether the purified water after filtration meets the standard and whether the filter unit of the water purification device needs to be replaced in time through the TDS value of the purified water after filtration.
  • FIG. 7 is a schematic diagram of the principle of the water purification device in the embodiment of the present invention.
  • the water purification device may include: a first filter unit 10; a first waterway 20 connected to the raw water inlet of the first filter unit 10; a second waterway 30 connected to the purified water outlet of the first filter unit 10; a return waterway 50, one end of the return waterway 50 is connected to the first waterway 20 at the first intersection 40, and the other end of the return waterway 50 is connected to the second waterway 30; the first probe 12 and the second probe 22 of the second detection device 80 are arranged between the first intersection 40 of the first waterway 20 and the raw water inlet of the first filter unit 10.
  • the first probe 12 and the second probe 22 of the first detection device 70 can be arranged on the second waterway 30.
  • a first one-way valve 501 may be arranged on the return waterway 50, and the first one-way valve 501 can be conducted from the second waterway 30 to the first waterway 20.
  • the first filter unit 10 may include at least one of the following: a reverse osmosis membrane filter unit, a nanofiltration membrane filter unit, etc., which can filter the raw water with high precision to form purified water that can be used by users, and the purified water may include pure water.
  • the water purification device may also include: a second filter unit 60, a wastewater waterway 140, a combination valve 1401 with a wastewater ratio function and an opening and closing function, and a water pump 120.
  • the second filter unit 60 is a pre-filter unit, and the second filter unit 60 can be arranged between the first intersection 40 of the first waterway 20 and the raw water inlet of the first filter unit 10, and the first probe 12 and the second probe 22 of the second detection device 80 are arranged between the second filter unit 60 and the raw water inlet of the first filter unit 10.
  • the wastewater circuit 140 may be connected to the wastewater outlet of the first filter unit 10, and the combination valve 1401 is arranged on the wastewater circuit 140.
  • the combination valve 1401 may include a wastewater ratio device and a first opening and closing valve connected in series, or the combination valve 1401 may include a wastewater ratio device and a first opening and closing valve connected in series, and a second opening and closing valve, and the second opening and closing valve is connected in parallel with the wastewater ratio device and the first opening and closing valve connected in series. It can be arranged at any position on the circulating waterway formed by the first filter unit 10 and the return waterway 50, and is generally arranged upstream of the first filter unit 10, such as between the first filter unit 10 and the second filter unit 60.
  • the water purification device can also include: a third filter unit 90, and the third filter unit 90 is arranged on the second waterway 30.
  • the third filter unit 90 can be a post-filter unit.
  • the inlet of the first waterway 20 can be connected to the water source through the water inlet solenoid valve 110.
  • the raw water of the water source flows into the first waterway 20 and flows into the raw water inlet of the first filter unit 10 for filtration.
  • the clean water formed after filtration is discharged from the clean water outlet of the first filter unit 10 to the second waterway 30.
  • the clean water is then discharged after being processed by the third filter unit 90 for use by users.
  • the waste water formed after filtration by the first filter unit 10 is discharged after passing through the waste water ratio device on the waste waterway 140.
  • the water purification device can have a first working state.
  • the return water path 50 can return the clean water flowing out of the clean water outlet to the first filter unit 10 through the drive of the water pump 120.
  • the combination valve 1401 is first in a closed state, and the return water path 50 can return the clean water flowing out of the clean water outlet through the second filter unit 60 and then reach the first filter unit 10.
  • the water purification device may include: a third water path 130, one end of the third water path 130 is connected to the wastewater outlet of the first filter unit 10, and the other end of the third water path 130 is connected to the first filter unit 10 and the second filter unit 60.
  • the third water path 130 may be provided with a second one-way valve 1302 and a throttling structure that can make the wastewater outlet of the first filter unit 10 conduct to the other end of the third water path 130, and the throttling structure may include a small hole.
  • the return water path 50 returns the clean water flowing out of the clean water outlet through the second filter unit 60 and then reaches the first filter unit 10
  • the waste water generated by the first filter unit 10 also flows back to the downstream of the second filter unit 60 through the third water path 130.
  • the second filter unit 60 can be replaced with all the clean water.
  • the water inlet solenoid valve 110 can be opened again, the combination valve 1401 is opened or in the waste water ratio function, and the raw water of the water source pushes out the clean water in the second filter unit 60, so that the part of the clean water replaces the water on the raw water side of the filter membrane in the first filter unit 10 with the part of the clean water. After that, the water inlet solenoid valve 110 is closed.
  • the water purifier After the water purifier finishes outputting purified water, the water purifier enters the first working state.
  • the return waterway 50 flows the purified water formed in the process of the first filter unit 10 back to the first waterway 20 and then enters the first filter unit 10, so that the raw water on the raw water side of the filter membrane in the first filter unit 10 is replaced by purified water, thereby preventing the raw water on the raw water side of the filter membrane from permeating through the filter membrane to the purified water side when the water purifier is not used for a long time, resulting in a high TDS of the purified water just output when the water purifier is used again.
  • the second detection device 80 can be placed in a purified water environment, which improves the immersion water quality of the second detection device and avoids the adverse effect of the second detection device 80 being immersed in raw water for a long time on its life.
  • the second detection device 80 is located downstream of the second filter unit 60.
  • the water in the water path 20 is the purified water generated by the first filter unit 10.
  • the second detection device 80 performs TDS detection, not the TDS of the raw water, but the TDS of the purified water. Therefore, after the first working state ends, and when the water purification device outputs purified water next time, the second detection device 80 performs TDS detection after at least a predetermined time delay.
  • the raw water entering the water source will replace the purified water in the first water path 20.
  • the second detection device 80 performs TDS detection again to obtain the TDS value of the raw water entering the water source, thereby ensuring the reliability of the TDS value detected by the second detection device 80.
  • the resistance value of the first resistor 11 in the first detection device 70 is greater than the resistance value of the first resistor 11 in the second detection device 80; the resistance value of the second resistor 21 in the first detection device 70 is greater than the resistance value of the second resistor 21 in the second detection device 80.
  • the resistance value of the first resistor 11 in the first detection device 70 is equal to the resistance value of the second resistor 21 in the first detection device 70; the resistance value of the first resistor 11 in the second detection device 80 is equal to the resistance value of the second resistor 21 in the second detection device 80.
  • the above method can effectively improve the accuracy of the TDS value obtained by the first detection device 70 for purified water detection and the accuracy of the TDS value obtained by the second detection device 80 for raw water detection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种TDS检测装置及其控制方法、控制器和净水装置,其涉及净水技术领域,所述TDS检测装置的控制方法包括,对所述第一检测单元施加第一电压并对所述第二检测单元施加第二电压以进行TDS检测,所述第一电压小于所述第二电压;当对所述第一检测单元和所述第二检测单元进行倒极时,在改变施加在其中一个检测单元上的电压后延迟预设时间,再改变施加在另一个检测单元上的电压。本申请能够有效提高TDS检测装置的精度。

Description

TDS检测装置及其控制方法、控制器和净水装置
相关申请
本发明要求专利申请号为202211399350.0、发明名称为“TDS检测装置及其控制方法、控制器和净水装置”的中国发明专利的优先权。
技术领域
本发明涉及净水技术领域,特别涉及一种TDS检测装置及其控制方法、控制器和净水装置。
背景技术
TDS检测装置用于检测水中的总溶解固体量(Total dissolved solids,TDS),以评价水质的纯净度。通俗的讲,TDS检测装置检测出的TDS值代表水中溶解物杂质含量,TDS值越大,说明水中的杂质含量大,反之,杂质含量小。TDS检测装置可以具体有不同的类型,以满足不同的需求。作为普通的消费者,一般只需简易轻便式成本较低的TDS检测装置,例如水质测试笔,以了解饮用水的水质,而这类TDS检测装置成本较低,其精度偏低,因此,其精度性能有待进一步提高。
发明内容
为了克服现有技术的上述缺陷,本发明实施例所要解决的技术问题是提供了一种TDS检测装置及其控制方法、控制器,其能够有效提高TDS检测装置的精度。
为了实现上述目的,本发明所采用的技术方案内容具体如下:
本发明公开了一种TDS检测装置的控制方法,
所述TDS检测装置包括第一检测单元和第二检测单元;
所述TDS检测装置的控制方法包括,
步骤S1:对所述第一检测单元施加第一电压并对所述第二检测单元施加第二电压以进行TDS检测,所述第一电压小于所述第二电压;
步骤S2:当对所述第一检测单元和所述第二检测单元进行倒极时,在改变施加在其中一个检测单元上的电压后延迟预设时间,再改变施加在另一个检测单元上的电压。
本发明还公开了一种控制器,所述控制器被配置为执行如上述任一项所述的TDS检测装置的控制方法。
本发明还公开了一种TDS检测装置,所述TDS检测装置包括:如上述任一项所述的控制器、第一检测单元和第二检测单元;所述第一检测单元包括:串联的第一电阻和第一探针;所述第二检测单元包括:串联的第二电阻和第二探针;
所述控制器用于向所述第一检测单元和所述第二检测单元施加电压,
所述控制器的第一电压输出口与所述第一探针之间串联有所述第一电阻,
所述控制器的第二电压输出口与所述第二探针之间串联有所述第二电阻。
本发明还公开了一种净水装置,所述净水装置包括如上述任一所述的TDS检测装置。
与现有技术相比,本发明的有益效果在于:
为了能够减小或避免寄生电容影响TDS值的检测精度,在上述控制方法中,在第一次执行步骤1之后,当对所述第一检测单元和所述第二检测单元进行倒极时,在改变施加在其中一个检测单元上的电压后延迟预设时间,再改变施加在另一个检测单元上的电压。这样以后,在延迟的预设时间内,第一检测单元和所述第二检测单元上施加的电压是相等的,这样能够消除之前第一检测单元和所述第二检测单元之间在待测液体中形成的寄生电容。在此之后,倒极完成之后,获取的第一探针或者第二探针上的电压值就不会因寄生电容而出现偏差,由此换算得到的TDS值相对更为精确。
附图说明
图1为本发明实施例中TDS检测装置的结构示意图;
图2为本发明实施例中TDS检测装置的控制方法在第一种实施方式下的步骤流程图;
图3为本发明实施例中TDS检测装置的控制方法在第二种实施方式下的步骤流程图;
图4为本发明实施例中TDS检测装置的控制方法在第一种实施方式下分别对第一检测单元和第二检测单元施加的电压和探针上获取的电压的示意图;
图5a和图5b为本申请实施例中TDS检测装置的控制方法与现有技术中常规倒极方式下针对同一待测液体下在进行TDS检测时获取的第二探针上的电压的对比示意图;
图6为本发明实施例中第三电压值处于不同数值区间时与相对应TDS值的关系图;
图7为本发明实施例中净水装置的原理示意图。
其中,各附图标记为:
1、第一检测单元;11、第一电阻;12、第一探针;2、第二检测单元;21、第二电
阻;22、第二探针;3、采集电路;31、第三电阻;4、控制器;10、第一过滤单元;20、第一水路;30、第二水路;40、第一交点;50、回水水路;501、第一单向阀;60、第二过滤单元;70、第一检测装置;80、第二检测装置;90、第三过滤单元;110、进水电磁阀;120、水泵;130、第三水路;1301、节流机构;1302、第二单向阀;140、废水水路;1401、组合阀。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了能够有效提高TDS检测装置的精度,在本申请中提出了一种TDS检测装置的控制方法,图1为本发明实施例中TDS检测装置的结构示意图,如图1所示,TDS检测装置可以包括第一检测单元1和第二检测单元2。作为可行的,第一检测单元1可以包括:串联的第一电阻11和第一探针12;第二检测单元2可以包括:串联的第二电阻21和第二探针22。当第一检测单元1和第二检测单元2同时插入至待检测水中时,通 过向第一检测单元1和第二检测单元2分别施加不同的电压,从而实现对待检测水的TDS检测。
图2为本发明实施例中TDS检测装置的控制方法在第一种实施方式下的步骤流程图,图3为本发明实施例中TDS检测装置的控制方法在第二种实施方式下的步骤流程图,如图2至图3所示,TDS检测装置的控制方法可以包括以下步骤:
步骤S1:对第一检测单元1施加第一电压并对第二检测单元2施加第二电压以进行TDS检测,第一电压小于第二电压。
图4为本发明实施例中TDS检测装置的控制方法在第一种实施方式下分别对第一检测单元和第二检测单元施加的电压和探针上获取的电压的示意图,如图4所示,同时对第一检测单元1施加第一电压并对第二检测单元2施加第二电压以进行TDS检测,第一电压小于第二电压。在图4中的1号位置为对第一检测单元1施加的电压,2号位置为对第二检测单元2施加的电压,3号位置为对实际TDS值很低的待测液体进行TDS检测时采集电路采集的第二探针22上的电压,4位置为对实际TDS值很高的待测液体进行TDS检测时采集电路采集的第二探针22上的电压。例如,第一电压可以为低电平,第二电压可以为高电平,为了方便说明,如第一电压为0V,第二电压为5V。
步骤S2:当对第一检测单元1和第二检测单元2进行倒极时,在改变施加在其中一个检测单元上的电压后延迟预设时间,再改变施加在另一个检测单元上的电压。
如图4所示,当对第一检测单元1和第二检测单元2进行倒极时,在第二时间段内,先改变施加在其中一个检测单元上的电压,使其先变成施加在另一个检测单元上的电压,之后延迟预设时间,再改变施加在另一个检测单元上的电压,使其变成之前施加在一个检测单元上的电压。
在第一种实施方式中,步骤S2具体可以包括:
如图4所示,当对第一检测单元1和第二检测单元2进行倒极时,在对第二检测单元2施加第一电压后延迟第一预设时间,再改变向第一检测单元1施加的电压至第二电压。也就是说,先改变施加在第二检测单元2上的电压至第一电压,例如0V,使其先变成第一时间段内施加在第一检测单元1上的电压,之后延迟第一预设时间,再改变施加在第一检测单元1上的电压至第二电压,例如5V,使其变成之前施加在第二检测单元2上的电压。
在第一种实施方式中,TDS检测装置的控制方法还可以包括:
步骤S301:如图4所示,在步骤S2之后,维持施加在第二检测单元2上的第一电 压和施加在第一检测单元1上的第二电压进行TDS检测。在本步骤中,维持施加在第二检测单元2上的第一电压和施加在第一检测单元1上的第二电压一段时间,在该段时间内进行TDS检测。
步骤S401:如图4所示,在步骤S301之后,当对第一检测单元1和第二检测单元2进行再次倒极时,在对第一检测单元1施加第一电压后延迟第二预设时间,再改变向第二检测单元2施加的电压至第二电压。
也就是说,在步骤S301之后,先改变施加在第一检测单元1上的电压至第一电压,例如0V,之后延迟第二预设时间,再改变施加在第二检测单元2上的电压至第二电压,例如5V。
作为可行的,第一预设时间与第二预设时间可以相同。
之后,可以依次循环执行步骤S1、S2、S301、S401,从而可以不断进行TDS检测,以提高检测的准确性。
在第二种实施方式中,步骤S2具体可以包括:
当对第一检测单元1和第二检测单元2进行倒极时,在对第一检测单元1施加第二电压后延迟第三预设时间,再改变向第二检测单元2施加的电压至第一电压。也就是说,先改变施加在第一检测单元1上的电压至第二电压,例如5V,使其先变成施加在第二检测单元2上的电压,之后延迟第三预设时间,再改变施加在第二检测单元2上的电压至第一电压,例如0V,使其变成之前施加在第一检测单元1上的电压。
在第二种实施方式中,TDS检测装置的控制方法还可以包括:
步骤S302:在步骤S2之后,维持施加在第二检测单元2上的第一电压和施加在第一检测单元1上的第二电压进行TDS检测。在本步骤中,维持施加在第二检测单元2上的第一电压和施加在第一检测单元1上的第二电压一段时间,在该段时间内进行TDS检测。
步骤S402:在步骤S401之后,当对第一检测单元1和第二检测单元2进行再次倒极时,在对第二检测单元2施加第二电压后延迟第四预设时间,再改变向第一检测单元1施加的电压至第一电压。
也就是说,在步骤S301之后,先改变施加在第二检测单元1上的电压至第二电压,例如5V,之后延迟第四预设时间,再改变施加在第一检测单元1上的电压至第一电压,例如0V。
作为可行的,第三预设时间与第四预设时间可以相同。
之后,可以依次循环执行步骤S1、S2、S302、S302,从而可以不断进行TDS检测,通过多次进行TDS检测以提高检测的准确性。
当第一次执行步骤1之后,如果直接对第一检测单元1和第二检测单元2进行倒极,则在执行步骤1后,由于第一检测单元1和第二检测单元2插设在待测液体中,两者之间会形成寄生电容,那么在对第一检测单元1和第二检测单元2进行倒极之后,进行TDS检测所得到的TDS值就会受到寄生电容的影响。这是由于进行TDS检测时,具体是通过获取第一探针12或者第二探针22上的电压值再进行换算得到的,受到寄生电容的影响,获取的第一探针12或者第二探针22上的电压值会出现一定的偏差,该偏差会导致在倒极以后进行TDS检测所得到的TDS值不够精确。同样的,如果在倒极一次完成以后,之后再进行第二次倒极,第一检测单元1和第二检测单元2之间依然会形成寄生电容,在此之后即使再获取的第一探针12或者第二探针22上的电压值还是会出现一定的偏差,后续进行TDS检测所得到的TDS值依然是不够精确的。尤其当倒极的频率越高时,第一检测单元1和第二检测单元2之间形成的寄生电容就越大,因此对进行TDS检测获取的TDS值的影响也就越大。
为了能够减小或避免寄生电容影响TDS值的检测精度,在上述控制方法中,在第一次执行步骤1之后,当对第一检测单元1和第二检测单元2进行倒极时,在改变施加在其中一个检测单元上的电压后延迟预设时间,再改变施加在另一个检测单元上的电压。这样以后,在延迟的预设时间内,第一检测单元1和第二检测单元2上施加的电压是相等的,这样能够消除之前第一检测单元1和第二检测单元2之间在待测液体中形成的寄生电容。在此之后,倒极完成之后,获取的第一探针12或者第二探针22上的电压值就不会因寄生电容而出现偏差,由此换算得到的TDS值相对更为精确。同样的,如果在倒极一次完成以后,之后再进行第二次倒极时,依然可以继续改变施加在其中一个检测单元上的电压后延迟一段时间,再改变施加在另一个检测单元上的电压。这样在该段时间内,第一检测单元1和第二检测单元2上施加的电压是相等的,又能够消除之前第一检测单元1和第二检测单元2之间在待测液体中形成的寄生电容。在此之后即使再获取的第一探针12或者第二探针22上的电压值就不会受到寄生电容的影响而出现偏差,由此换算得到的TDS值依然相对更为精确。尤其当倒极的频率越高时,能够有效消除第一检测单元1和第二检测单元2之间形成的寄生电容对进行TDS检测的影响,进而实现待测液体TDS值的精确检测。
由于对第一检测单元1和第二检测单元2进行倒极是循环不断的,通过本申请中的 控制方法可以在每一次倒极时都消除第一检测单元1和第二检测单元2之间在待测液体中形成的寄生电容,因此,在每个步骤中进行TDS检测时获取得到的第一探针12或者第二探针22上的电压值均不会受到寄生电容的影响而出现偏差。图5a和图5b为本申请实施例中TDS检测装置的控制方法与现有技术中常规倒极方式下针对同一待测液体下在进行TDS检测时获取的第二探针上的电压的对比示意图,图5a中的上半部为现有技术中常规倒极方式下针对同一待测液体下在进行TDS检测时获取的第二探针上的电压,图5a中的下半部为本申请实施例中TDS检测装置的控制方法中获取的第二探针上的电压,图5b为将上述两种情况下的第二探针上的电压复合在一起时的示意图,从而方便进行对比,从上可以看出,现有技术中常规倒极方式下进行TDS检测时获取的第二探针22上的电压在倒极后的一小段时间内受到寄生电容的影响而被减小,通过本申请中的控制方法可以在每一次倒极时都消除第一检测单元1和第二检测单元2之间在待测液体中形成的寄生电容,在进行TDS检测时获取得到的第二探针22上的电压值均不会受到寄生电容的影响而出现减小,进而导致偏差。
作为可行的,在上述所有步骤中,进行TDS检测可以包括:通过获取第二探针22上的第一电压值以进行TDS检测;和/或,通过获取第一探针12上的第一电压值以进行TDS检测。
进一步的,在步骤S1中,进行TDS检测可以包括:通过获取第二探针22上的第一电压值以进行TDS检测。在步骤S301中,进行TDS检测包括:通过获取第一探针12上的第一电压值以进行TDS检测。在步骤S302中,进行TDS检测可以包括:通过获取第一探针12上的第一电压值以进行TDS检测。
在上述实施方式中,在步骤S1中,由于对第二检测单元2施加的是第二电压,其大于第一电压,因此,通过获取第二探针22上的第一电压值的数值相对获取第一探针12上的第一电压值的数值要大很多,如图4所示,如果第二电压是5V,第一电压为0V,再结合第一电阻11和第二电阻21的阻值大小,待测液体中TDS值实际大小,获取第二探针22上的第一电压值的数值是略小于5V的数值,例如可能是4.7V、4.5V、4.0V附近等等,但总体是靠近5V的,但是此时获取的第一探针12上的第一电压值的数值是略大于0V的,例如可能是0.3V、0.4V、0.5V附近等等,若第一电压值的数值过小,则检测过程中获取的数值略微的浮动、不稳定等最终造成的浮动值占第一电压值的比例会很大,最终换算出的TDS的误差也就会变的相当大。因此,获取第二探针22上数值较大的第一电压值可以避免上述问题的发生,进而提高检测的精确度。在步骤S302中, 原理也是如此,在此不在进行赘述。
作为可行的,在上述所有步骤中,进行TDS检测的步骤具体可以包括以下步骤:
获取多个第一探针12或第二探针22上的第一电压值。
在上述步骤中,可以在特定时间段内每隔一定时间采集一次第一探针12或第二探针22上的第一电压值,例如每隔75us、100us、150us等等采集一次,连续采集多次以获取多个第一电压值。特定时间段可以为对第一检测单元1、第二检测单元2分别施加不同的第一电压和第二电压的该时间段,尽可能是该时间段中的前期部分。
基于多个第一电压值,获取第二电压值。
在本步骤中,基于多个第一电压值,获取第二电压值的具体获取过程可以如下:
AD=K1×AD1+K2×AD2+K3×AD3+……+KN×ADN,
其中,AD表示第二电压值,N表示第一电压值的个数,AD1、AD2…ADN分别表示多个第一电压值,K1、K2…KN分别表示对多个第一电压值赋予的不同的权重系数。
根据采集的多个第一电压值的变化趋势赋予不同的权重系数,从而计算出换算TSD所对应的第二电压值,通过该方式可以避免单点的波动性影响采样的准确性。
进一步的,K1、K2…KN依次减小。如图4所示,第一检测单元1、第二检测单元2分别施加不同的第一电压和第二电压的该时间段的前期,由于刚进行倒极操作,待测液体还刚处于离子迁移的阶段,因此可以看出获取的第一电压值处于持续变化过程中,持续变化过程中的第一电压值越能反映出中处待测液体中TDS值,所以需要给越前期测量得到的第一电压值赋予越大的权重系数,从而使得最后计算出换算TDS所对应的第二电压值越为可靠准确。
基于第二电压值、以及电压值与TDS值的对应关系,获取TDS值。
在获取到第二电压值以后,将第二电压值带入电压值与TDS值的对应关系中,从而获取到第二电压值相对应的TDS值。该计算得到的TDS值能够更为精确的反映出待测液体的实际TDS值。
进一步的,为了避免待测液体的温度对计算得到的TDS值的影响,造成计算得到的TDS值因温度影响略微偏离待测液体的实际TDS值,上述步骤可以包括以下步骤:
基于待测液体的温度对第二电压值进行修正,获取第三电压值。
在本步骤中,具体获取过程可以如下:
AD0=AD/(1+a(T-25)),
其中,T表示待测液体的温度T,AD表示第二电压值,AD0表示第三电压值,a 表示补偿常数。补偿常数并非为一个固定的常数,它与AD可以具有相对应的关系。
基于第三电压值以及电压值与TDS值的对应关系,获取TDS值。
在本步骤中,具体获取过程可以如下:
TDS=k×AD0+b,
其中,AD0表述第三电压值,TDS表示待测液体的TDS值,k表示变量,b表示常数。
图6为本发明实施例中第三电压值处于不同数值区间时与相对应TDS值的关系图,如图6所示,当第三电压值处于第一数值区间时,k的数值为k1,当第三电压值位于处于第二数值区间时,k的数值为k2;第一数值区间的最小值大于第二数值区间的最大值时,k1小于k2。由于不同的区间的斜率相差较大,因此需要通过分段拟合的方式以使电压值与TDS值的关系相对应,从而进一步提高最后计算得到的TDS的精度。
在本申请中还提出了一种控制器4,该控制器4被配置为执行如上述的TDS检测装置的控制方法。该控制器4可以采用芯片的形式。
在本申请中还提出了一种TDS检测装置,如图1所示,TDS检测装置可以包括:如上述控制器4、第一检测单元1和第二检测单元2。第一检测单元1可以包括:串联的第一电阻11和第一探针12。第二检测单元2包括:串联的第二电阻21和第二探针22。控制器4用于向第一检测单元1和第二检测单元2施加电压,控制器4的第一电压输出口与第一探针12之间串联有第一电阻11,控制器4的第二电压输出口与第二探针22之间串联有第二电阻21。
第一电阻11的阻值可以不等于第二电阻21的阻值,也可以等于第二电阻21的阻值。进一步的,当第一电阻11的阻值等于第二电阻21的阻值时,在第一探针12和第二探针22插入待测液体检测TDS值时,在倒极前,对第一检测单元1施加第一电压并对第二检测单元2施加第二电压,在倒极后,维持施加在第二检测单元2上的第一电压和施加在第一检测单元1上的第二电压,在倒极前,第一探针12上的电势与倒极后的第二探针22上的电势是相同的,这样就可以有效避免一个探针结垢的程度大于另一个探针结垢的程度,导致结垢程度大的探针出现电阻过大、失灵等可能,从而提高TDS检测装置的检测精度。另外,当第一电阻11的阻值等于第二电阻21的阻值时,即使随着第一探针12和第二探针22的使用慢慢出现结垢,两边结构程度也是相同的,且结垢速度慢,这样整体上可以有效提高TDS检测装置的使用寿命。
为了实现进行TDS检测,当然的,TDS检测装置可以包括采集电路3,采集电路3 的采样点与第一探针12或第二探针22相电性连接,采集电路3上设置有第三电阻31。
在本申请中还提出了一种净水装置,净水装置包括如上述任一的TDS检测装置。利用TDS检测装置可以在净水装置中直接对水进行TDS检测。
作为可行的,净水装置可以包括:用于检测过滤后的净水的TDS值的第一检测装置70;用于检测过滤前的原水的TDS值的第二检测装置80。第一检测装置70可以采用本申请中的TDS检测装置,和/或,第二检测装置80可以采用本申请中的TDS检测装置。通过上述结构,净水装置可以直接获取到过滤后的净水的TDS值以及过滤前的原水的TDS值,不仅可以将过滤前的原水的TDS值和过滤后的净水的TDS值反映给用户知晓,还可以通过滤后的净水的TDS值可以判断过滤后的净水是否满足标准,净水装置的过滤单元是否需要及时更换。相对于根据过滤总水量或者过滤总时间或者净水装置使用时间来判断过滤单元是否要更换更为准确,更加能够使得过滤单元得到充分的利用,避免出现过滤单元的过早更换,或者过滤单元的过滤效果已经不符合标准但依然不提示更换的情况发生。
作为可行的,图7为本发明实施例中净水装置的原理示意图,如图7所示,净水装置可以包括:第一过滤单元10;与第一过滤单元10的原水进口相连通的第一水路20;与第一过滤单元10的净水出口相连通的第二水路30;回水水路50,回水水路50的一端与第一水路20相连接于第一交点40,回水水路50的另一端与第二水路30相连接;第二检测装置80的第一探针12和第二探针22设置在第一水路20的第一交点40与第一过滤单元10的原水进口之间。第一检测装置70的第一探针12和第二探针22设置在第二水路30上即可。回水水路50上可以设置有第一单向阀501,第一单向阀501能由第二水路30向第一水路20方向导通。例如,第一过滤单元10至少可以包括以下之一:反渗透膜过滤单元、纳滤膜过滤单元等,其能够将原水进行高精度的过滤以形成能供用户使用的净水,该净水可以包括纯水。进一步的,净水装置还可以包括:第二过滤单元60、废水水路140、具有废水比功能和开闭功能的组合阀1401和水泵120。第二过滤单元60为前置过滤单元,第二过滤单元60可以设置在第一水路20的第一交点40与第一过滤单元10的原水进口之间,第二检测装置80的第一探针12和第二探针22设置在第二过滤单元60与第一过滤单元10的原水进口之间。废水水路140可以与第一过滤单元10的废水出口相连通,组合阀1401设置在废水水路140上,组合阀1401可以包括串联的废水比装置和第一开闭阀,或者组合阀1401可以包括串联的废水比装置和第一开闭阀、以及第二开闭阀,第二开闭阀与串联的废水比装置和第一开闭阀相并联。水泵120 可以设置在第一过滤单元10、回水水路50形成的循环水路上的任意位置上,一般设置在第一过滤单元10的上游,如第一过滤单元10与第二过滤单元60之间。净水装置还可以包括:第三过滤单元90,第三过滤单元90设置在第二水路30上。第三过滤单元90可以为后置过滤单元。
第一水路20的进口可以通过进水电磁阀110与水源相连通,水源的原水自第一水路20流入,流入第一过滤单元10的原水进口经过过滤,过滤后形成的净水自第一过滤单元10的净水出口排出至第二水路30,净水再经过第三过滤单元90的处理后排出供给用户使用。经过第一过滤单元10过滤后形成的废水则通过废水水路140上的废水比装置后排出。
在上述结构下,净水装置可以具有第一工作状态,在第一工作状态下,可以通过水泵120的驱动,回水水路50将从净水出口流出的净水回流至第一过滤单元10。例如,组合阀1401先处于关闭状态,回水水路50可以将从净水出口流出的净水回流经过第二过滤单元60,再到达第一过滤单元10。净水装置可以包括:第三水路130,第三水路130一端连接第一过滤单元10的废水出口,第三水路130另一端与第一过滤单元10和第二过滤单元60之间相连通。第三水路130上可以设置有能使第一过滤单元10的废水出口向第三水路130另一端导通的第二单向阀1302和节流结构,该节流结构可以包括小孔。当回水水路50将从净水出口流出的净水回流经过第二过滤单元60,再到达第一过滤单元10时,第一过滤单元10产生的废水通过第三水路130也回流至第二过滤单元60的下游,此时第二过滤单元60中可以替换成全部的净水,之后,再可以开启进水电磁阀110,组合阀1401开启或处于废水比功能下,水源的原水将第二过滤单元60中的净水顶出,以使该部分净水将第一过滤单元10中过滤膜的原水侧的水替换成该部分净水。之后,关闭进水电磁阀110。
在净水装置输出净水结束以后,净水装置进入第一工作状态。在第一工作状态下,回水水路50将第一过滤单元10过程形成的净水返流至第一水路20再进入至第一过滤单元10中,从而使得第一过滤单元10中过滤膜的原水侧的原水替换成净水,进而避免净水装置久置不用时,过滤膜的原水侧的原水渗透过过滤膜到达净水侧,导致净水装置再次使用时刚输出的净水的TDS偏高,同时也可以使第二检测装置80处于净水的环境中,改善了第二检测装置的浸入水质,避免了第二检测装置80长时间浸泡在原水中对寿命产生的不利影响。
由于在第一工作状态结束后,第二检测装置80所处的第二过滤单元60下游的第一 水路20中为第一过滤单元10生成的净水,此时,第二检测装置80进行TDS检测并非检测到的为原水的TDS,而是净水的TDS。所以,在第一工作状态结束后,且在净水装置下次输出净水时,第二检测装置80至少延迟预定时间后进行TDS检测。通过上述方式,在延迟预定时间后,水源进入的原水会将第一水路20中的净水替换掉,此时,第二检测装置80再进行TDS检测才是获取的水源进入的原水的TDS值,从而保证了第二检测装置80探测到的TDS值的可靠性。
作为可行的,当第一检测装置70采用TDS检测装置和第二检测装置80采用TDS检测装置时,第一检测装置70中的第一电阻11的阻值大于第二检测装置80中的第一电阻11的阻值;第一检测装置70中的第二电阻21的阻值大于第二检测装置80中的第二电阻21的阻值。第一检测装置70中的第一电阻11的阻值等于第一检测装置70中的第二电阻21的阻值;第二检测装置80中的第一电阻11的阻值等于第二检测装置80中的第二电阻21的阻值。
由于原水的实际TDS值本身就较大,相当于原水的阻值就较小,净水的实际TDS值本身就很小,相当于净水的阻值很大,所以通过上述方式,可以有效提高第一检测装置70对净水检测得到的TDS值的精度,第二检测装置80对原水检测得到的TDS值的精度。
披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由…构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。这里通过使用术语“可以”,旨在说明“可以”包括的所描述的任何属性都是可选的。多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (28)

  1. 一种TDS检测装置的控制方法,其中,
    所述TDS检测装置包括第一检测单元和第二检测单元;
    所述TDS检测装置的控制方法包括,
    步骤S1:对所述第一检测单元施加第一电压并对所述第二检测单元施加第二电压以进行TDS检测,所述第一电压小于所述第二电压;
    步骤S2:当对所述第一检测单元和所述第二检测单元进行倒极时,在改变施加在其中一个检测单元上的电压后延迟预设时间,再改变施加在另一个检测单元上的电压。
  2. 根据权利要求1所述的TDS检测装置的控制方法,其中,
    所述步骤S2具体包括,
    当对所述第一检测单元和所述第二检测单元进行倒极时,在对所述第二检测单元施加所述第一电压后延迟第一预设时间,再改变向所述第一检测单元施加的电压至所述第二电压。
  3. 根据权利要求2所述的TDS检测装置的控制方法,其中,
    所述TDS检测装置的控制方法还包括,
    步骤S301:维持施加在所述第二检测单元上的第一电压和施加在所述第一检测单元上的第二电压进行TDS检测;
    步骤S401:当对所述第一检测单元和所述第二检测单元进行再次倒极时,在对所述第一检测单元施加所述第一电压后延迟第二预设时间,再改变向所述第二检测单元施加的电压至所述第二电压。
  4. 根据权利要求3所述的TDS检测装置的控制方法,其中,依次循环执行步骤S1、S2、S301、S401。
  5. 根据权利要求1所述的TDS检测装置的控制方法,其中,
    所述步骤S2具体包括,
    当对所述第一检测单元和所述第二检测单元进行倒极时,在对所述第一检测单元施加所述第二电压后延迟第三预设时间,再改变向所述第二检测单元施加的电压至所述第 一电压。
  6. 根据权利要求5所述的TDS检测装置的控制方法,其中,
    所述TDS检测装置的控制方法还包括,
    步骤S302:维持施加在所述第二检测单元上的第一电压和施加在所述第一检测单元上的第二电压进行TDS检测;
    步骤S402:当对所述第一检测单元和所述第二检测单元进行再次倒极时,在对所述第二检测单元施加所述第二电压后延迟第四预设时间,再改变向所述第一检测单元施加的电压至所述第一电压。
  7. 根据权利要求6所述的TDS检测装置的控制方法,其中,依次循环执行步骤S1、S2、S302、S402。
  8. 根据权利要求6所述的TDS检测装置的控制方法,其中,所述第一检测单元包括:串联的第一电阻和第一探针;所述第二检测单元包括:串联的第二电阻和第二探针;
    在步骤S1中,进行TDS检测包括:通过获取所述第二探针上的第一电压值以进行TDS检测;或者
    在步骤S302中,进行TDS检测包括:通过获取所述第一探针上的第一电压值以进行TDS检测。
  9. 根据权利要求3所述的TDS检测装置的控制方法,其中,所述第一检测单元包括:串联的第一电阻和第一探针;所述第二检测单元包括:串联的第二电阻和第二探针;
    在步骤S1中,进行TDS检测包括:通过获取所述第二探针上的第一电压值以进行TDS检测;或者
    在步骤S301中,进行TDS检测包括:通过获取所述第一探针上的第一电压值以进行TDS检测。
  10. 根据权利要求1至9任一项所述的TDS检测装置的控制方法,其中,所述第一检测单元包括:串联的第一电阻和第一探针;所述第二检测单元包括:串联的第二电阻和第二探针;
    所述进行TDS检测的步骤具体包括:
    获取多个所述第一探针或所述第二探针上的第一电压值;
    基于多个所述第一电压值,获取第二电压值;
    基于所述第二电压值、以及电压值与TDS值的对应关系,获取TDS值。
  11. 根据权利要求10所述的TDS检测装置的控制方法,其中,
    所述基于多个所述第一电压值,获取第二电压值的具体获取过程如下:
    AD=K1×AD1+K2×AD2+K3×AD3+……+KN×ADN,
    其中,AD表示所述第二电压值,N表示所述第一电压值的个数,AD1、AD2…ADN分别表示多个所述第一电压值,K1、K2…KN分别表示对多个所述第一电压值赋予的不同的权重系数。
  12. 根据权利要求11所述的TDS检测装置的控制方法,其中,K1、K2…KN依次减小。
  13. 根据权利要求10所述的TDS检测装置的控制方法,其中,
    所述基于所述第二电压值、以及电压值与TDS值的对应关系,获取TDS值的步骤具体包括,
    基于待测液体的温度对所述第二电压值进行修正,获取第三电压值,
    基于所述第三电压值以及电压值与TDS值的对应关系,获取TDS值。
  14. 根据权利要求13所述的TDS检测装置的控制方法,其中,
    基于待测液体的温度对所述第二电压值进行修正,获取第三电压值的具体获取过程如下:
    AD0=AD/(1+a(T-25)),
    其中,T表示所述待测液体的温度T,AD表示所述第二电压值,AD0表示所述第三电压值,a表示补偿常数。
  15. 根据权利要求13所述的TDS检测装置的控制方法,其中,
    基于所述第三电压值以及电压值与TDS值的对应关系,获取TDS值的具体获取过 程如下:
    TDS=k×AD0+b,
    其中,AD0表述所述第三电压值,TDS表示待测液体的所述TDS值,k表示变量,b表示常数。
  16. 根据权利要求15所述的TDS检测装置的控制方法,其中,
    当所述第三电压值处于第一数值区间时,所述k的数值为k1,当所述第三电压值位于处于第二数值区间时,所述k的数值为k2;
    所述第一数值区间的最小值大于所述第二数值区间的最大值时,k1大于k2。
  17. 一种控制器,其中,所述控制器被配置为执行如权利要求1至16任一项所述的TDS检测装置的控制方法。
  18. 根据权利要求17所述的控制器,其中,所述控制器包括芯片。
  19. 一种TDS检测装置,其中,所述TDS检测装置包括:如权利要求17至18任一项所述的控制器、第一检测单元和第二检测单元;所述第一检测单元包括:串联的第一电阻和第一探针;所述第二检测单元包括:串联的第二电阻和第二探针;
    所述控制器用于向所述第一检测单元和所述第二检测单元施加电压,
    所述控制器的第一电压输出口与所述第一探针之间串联有所述第一电阻,
    所述控制器的第二电压输出口与所述第二探针之间串联有所述第二电阻。
  20. 根据权利要求19所述的TDS检测装置,其中,所述第一电阻的阻值等于所述第二电阻的阻值。
  21. 根据权利要求19所述的TDS检测装置,其中,所述TDS检测装置还包括采集电路,所述采集电路的采样点与所述第一探针或所述第二探针相电性连接,所述采集电路上设置有第三电阻。
  22. 一种净水装置,其中,所述净水装置包括如权利要求19至21任一所述的TDS 检测装置。
  23. 根据权利要求22所述的净水装置,其中,所述净水装置包括:用于检测过滤后的净水的TDS值的第一检测装置;用于检测过滤前的原水的TDS值的第二检测装置;
    所述第一检测装置采用所述TDS检测装置,和/或,所述第二检测装置采用所述TDS检测装置。
  24. 根据权利要求23所述的净水装置,其中,所述净水装置还包括:
    第一过滤单元;
    与所述第一过滤单元的原水进口相连通的第一水路;
    与所述第一过滤单元的净水出口相连通的第二水路;
    回水水路,所述回水水路的一端与所述第一水路相连接于第一交点,所述回水水路的另一端与所述第二水路相连接;
    所述第二检测装置的所述第一探针和所述第二探针设置在所述第一水路的所述第一交点与所述第一过滤单元的原水进口之间。
  25. 根据权利要求24所述的净水装置,其中,所述第一过滤单元至少包括以下之一:反渗透膜过滤单元、纳滤膜过滤单元。
  26. 根据权利要求24所述的净水装置,其中,所述净水装置具有第一工作状态,在第一工作状态下,所述回水水路将从所述净水出口流出的净水回流至所述第一过滤单元;
    在所述净水装置输出净水结束以后,进入所述第一工作状态;在所述第一工作状态结束后,且在所述净水装置下次输出净水时,所述第二检测装置至少延迟预定时间后进行TDS检测。
  27. 根据权利要求25所述的净水装置,其中,所述净水装置还包括:第二过滤单元,所述第二过滤单元为前置过滤单元,所述第二过滤单元设置在所述第一水路的所述第一交点与所述第一过滤单元的原水进口之间,所述第二检测装置的所述第一探针和所述第二探针设置在所述第二过滤单元与所述第一过滤单元的原水进口之间。
  28. 根据权利要求23所述的净水装置,其中,当所述第一检测装置采用所述TDS检测装置和所述第二检测装置采用所述TDS检测装置时;
    所述第一检测装置中的第一电阻的阻值大于所述第二检测装置中的第一电阻的阻值;
    所述第一检测装置中的第二电阻的阻值大于所述第二检测装置中的第二电阻的阻值;
    所述第一检测装置中的第一电阻的阻值等于所述第一检测装置中的第二电阻的阻值;所述第二检测装置中的第一电阻的阻值等于所述第二检测装置中的第二电阻的阻值。
PCT/CN2023/130065 2022-11-09 2023-11-07 Tds检测装置及其控制方法、控制器和净水装置 WO2024099289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211399350.0 2022-11-09
CN202211399350.0A CN115656267A (zh) 2022-11-09 2022-11-09 Tds检测装置及其控制方法、控制器和净水装置

Publications (1)

Publication Number Publication Date
WO2024099289A1 true WO2024099289A1 (zh) 2024-05-16

Family

ID=85016664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130065 WO2024099289A1 (zh) 2022-11-09 2023-11-07 Tds检测装置及其控制方法、控制器和净水装置

Country Status (2)

Country Link
CN (1) CN115656267A (zh)
WO (1) WO2024099289A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656267A (zh) * 2022-11-09 2023-01-31 艾欧史密斯(中国)环境电器有限公司 Tds检测装置及其控制方法、控制器和净水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774099A (en) * 1995-04-25 1998-06-30 Hitachi, Ltd. Liquid crystal device with wide viewing angle characteristics
CN109655497A (zh) * 2018-11-28 2019-04-19 厦门芯阳科技股份有限公司 一种用于修正tds探针测量误差的控制电路及方法
CN109981024A (zh) * 2017-11-16 2019-07-05 株式会社捷太格特 马达控制装置
CN112305026A (zh) * 2019-07-26 2021-02-02 佛山市顺德区美的饮水机制造有限公司 检测装置、检测方法、水质检测设备和净水装置
CN115656267A (zh) * 2022-11-09 2023-01-31 艾欧史密斯(中国)环境电器有限公司 Tds检测装置及其控制方法、控制器和净水装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774099A (en) * 1995-04-25 1998-06-30 Hitachi, Ltd. Liquid crystal device with wide viewing angle characteristics
CN109981024A (zh) * 2017-11-16 2019-07-05 株式会社捷太格特 马达控制装置
CN109655497A (zh) * 2018-11-28 2019-04-19 厦门芯阳科技股份有限公司 一种用于修正tds探针测量误差的控制电路及方法
CN112305026A (zh) * 2019-07-26 2021-02-02 佛山市顺德区美的饮水机制造有限公司 检测装置、检测方法、水质检测设备和净水装置
CN115656267A (zh) * 2022-11-09 2023-01-31 艾欧史密斯(中国)环境电器有限公司 Tds检测装置及其控制方法、控制器和净水装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘轶群 (LIU, YIQUN): "TDS检测电路探讨 (Non-official translation: Discussion on TDS Detection Circuit)", 电器 (CHINA APPLIANCE), no. S1, 31 October 2013 (2013-10-31) *

Also Published As

Publication number Publication date
CN115656267A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024099289A1 (zh) Tds检测装置及其控制方法、控制器和净水装置
US5198116A (en) Method and apparatus for measuring the fouling potential of membrane system feeds
CN108328759B (zh) 一种净水系统滤芯使用寿命的确认方法及净水系统
CN105198111B (zh) 自动清洗滤膜的家用净水器及方法
WO2007072069A2 (en) Sensor circuits
CN103675023A (zh) Tds的检测电路和检测方法
CN109507264B (zh) 膜表面Zeta电位自动检测仪
CN108073213A (zh) 单板电源电压在线调整电路
KR102520775B1 (ko) 정수기
KR20160130006A (ko) 분리막 이상상태 실시간 감지방법
CN103605374A (zh) 一种能提高云台定位精度的装置及方法
Rieger et al. In-situ measurement of ammonium and nitrate in the activated sludge process
Alhadidi et al. Limitations, improvements and alternatives of the silt density index
CN108423775A (zh) 电离净水设备及家庭物联网管理系统
CN102288660A (zh) 一种工业气体中痕量水份和痕量氧检测的联检方法和装置
CN209024335U (zh) 一种提高产水水质及水利用率的edi系统
CN106915837B (zh) 净水系统及其滤芯寿命确定方法
CN108793329A (zh) 反渗透制水系统、控制装置、计算回收率的方法以及回收率控制方法
US20230152189A1 (en) Sensing system with improved fluidics control
CN208553766U (zh) 连续单程切向流过滤系统
Malik et al. Peritonitis, peritoneal inflammation and membrane permeability: a longitudinal study of dialysate and serum MCP-1 in stable patients on peritoneal dialysis
CN208314509U (zh) 一种tds测量电路、控制器模组及净水器
Wang et al. Study of dead-end microfiltration flux variety law
CN202075202U (zh) 过滤染色计数细胞的装置
CN105466996A (zh) 一种氧电流测量电路、溶解氧测量仪及氧电流测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887978

Country of ref document: EP

Kind code of ref document: A1