WO2024099121A1 - 前庭功能的风险检测方法及电子设备 - Google Patents

前庭功能的风险检测方法及电子设备 Download PDF

Info

Publication number
WO2024099121A1
WO2024099121A1 PCT/CN2023/127429 CN2023127429W WO2024099121A1 WO 2024099121 A1 WO2024099121 A1 WO 2024099121A1 CN 2023127429 W CN2023127429 W CN 2023127429W WO 2024099121 A1 WO2024099121 A1 WO 2024099121A1
Authority
WO
WIPO (PCT)
Prior art keywords
person
action
tested
electronic device
pupil
Prior art date
Application number
PCT/CN2023/127429
Other languages
English (en)
French (fr)
Inventor
陆沐
马春晖
陈霄汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024099121A1 publication Critical patent/WO2024099121A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present application relates to the field of terminal technology, and in particular to a vestibular function risk detection method and electronic equipment.
  • Balance ability is one of the most basic athletic qualities of the human body and is the basis for other sports activities.
  • the human body's balance system is composed of the sensory system, nervous system and motor system.
  • the core of the sensory system is the vestibular function, which is mainly used to sense the rotational acceleration of the human body in space.
  • the vestibular function is closely related to the human body's spatial orientation ability, anti-sickness ability, vertigo, balance disorders and other diseases. Therefore, countries around the world generally attach great importance to the risk detection of vestibular function.
  • each risk detection item requires professional equipment or professional personnel to assist.
  • the detection threshold is high and cannot meet the user's needs for detection at any time.
  • the present application provides a vestibular function risk detection method and electronic equipment, which do not require professional equipment or professional personnel assistance, can meet the user's needs for detection at any time, and facilitate timely adoption of corresponding measures to prevent problems before they occur.
  • a method for detecting risk of vestibular function comprising:
  • the electronic device collects acceleration data while the person to be tested maintains the first action, collects angular velocity data while the person to be tested performs the fourth action, and collects pupil movement trajectory while the person to be tested performs the fifth action, and then determines the evaluation result of vestibular function based on at least two of the acceleration data, angular velocity data and pupil movement trajectory.
  • the method described in the first aspect is implemented without the need for professional equipment or the assistance of professionals, and can meet the user's need for detection at any time, so as to facilitate timely taking of corresponding measures to prevent problems before they occur.
  • the vestibular function evaluation result is determined based on at least two of the acceleration data, the angular velocity data, and the pupil movement trajectory, the vestibular function evaluation result is determined based on a combination of multiple factors, and the vestibular function evaluation result is more accurate.
  • the first action includes standing upright with eyes closed, feet together, and arms raised to the sides at shoulder level.
  • the first action may also include standing upright with eyes closed, feet together, and arms hanging naturally to the sides, etc.
  • the fourth action includes walking forward and walking backward after walking forward.
  • the fifth action includes gazing at the displayed light spot while keeping the head still.
  • the light spot includes a light spot displayed as a dot track, or a light spot displayed as a track.
  • the evaluation result of vestibular function is determined based on the acceleration data, including: while the person to be tested maintains a first action, using an acceleration sensor to collect acceleration data, determining whether the person to be tested has a falling event based on the acceleration data, and determining the evaluation result of vestibular function based on the falling event.
  • the electronic device determines the change in acceleration data of the person to be tested during the period when the person to be tested maintains the first action based on the acceleration modulus in the acceleration data, and when the change in the acceleration data is greater than a first threshold, it is determined that the person to be tested has a fall event; when the change in the acceleration data is less than or equal to the first threshold, it is determined that the person to be tested has not a fall event.
  • the electronic device can detect the falling event based on the acceleration data of the person to be tested during the first action, and the risk detection of the closed-eyes upright project in the vestibular function can be completed without professional equipment or professional personnel.
  • the method while the person to be tested maintains the first action and before using the acceleration sensor to collect acceleration data, the method also includes: outputting first interaction guidance information; the first interaction guidance information is used to instruct the person to be tested to perform the first action.
  • the electronic device can guide the person to be tested to complete the risk detection of the eye-closed upright item in the vestibular function through the first interactive guidance information.
  • the method also includes: the electronic device collects acceleration data of the person to be tested during the second action and/or acceleration data during the third action; based on the two or three acceleration data collected while the person to be tested maintains the first action, the second action, and the third action respectively, it is determined that the person to be tested is at risk of labyrinthine lesions or cerebellar lesions.
  • the head of the person to be tested is tilted in different directions in the first action, the second action and the third action; for example, in the first action, the head of the person to be tested is facing forward, in the second action, the head of the person to be tested is tilted to the left, and in the third action, the head of the person to be tested is tilted to the right.
  • the person to be tested maintains the same falling direction for two or three corresponding falling events during the first action, the second action, and the third action, it is determined that the person to be tested has a risk of cerebellar lesions, otherwise, there is a risk of labyrinthine lesions. For example, when the person to be tested maintains the first action, the second action, and the third action, and the corresponding falling directions for the falling events are all "left", it is determined that the person to be tested has a risk of cerebellar lesions.
  • the electronic device can determine whether the person under test has a risk of labyrinthine lesions or cerebellar lesions based on two or three acceleration data collected when the person under test maintains the first action, the second action, and the third action respectively.
  • the method before collecting the acceleration data of the person to be tested during the second action and/or the acceleration data of the person to be tested during the third action, the method further includes:
  • Output third interaction guidance information where the third interaction guidance information is used to instruct the person to be tested to perform a third action.
  • the method further includes: detecting whether the person to be tested has performed the second action by means of a gyroscope sensor; if it is detected that the person to be tested has performed the second action, executing the step of collecting acceleration data of the person to be tested during the period of maintaining the second action; and/or,
  • the method further includes: detecting whether the person to be tested has performed the third action by means of a gyroscope sensor; if it is detected that the person to be tested has performed the third action, executing the step of collecting acceleration data of the person to be tested while maintaining the third action.
  • the evaluation result of vestibular function is determined based on the angular velocity data, including: using a gyroscope sensor to collect angular velocity data while the person to be tested performs the fourth action; based on the angular velocity data, determining the angle between the forward direction of walking forward in the fourth action and the backward direction of walking backward in the fourth action, and determining the evaluation result of vestibular function based on the angle.
  • the first angle may be a preset threshold, for example, the first angle may be determined based on the usage habits of a large number of users; or the first angle may be set by a professional in the electronic device.
  • the first angle is 90 degrees.
  • the above-mentioned angle when the above-mentioned angle is biased toward the right, it is determined that the person to be tested has weakened right vestibular function; when the above-mentioned angle is biased toward the left, it is determined that the person to be tested has weakened left vestibular function.
  • the electronic device can determine the angle between the forward direction of walking forward in the fourth action and the backward direction of walking backward in the fourth action based on the angular velocity data, and the risk detection of the Babinski-Weil II project in vestibular function can be completed without professional equipment or professional personnel.
  • the method while the person to be tested performs the fourth action, before using the gyroscope sensor to collect angular velocity data, the method also includes: outputting fourth interaction guidance information; the fourth interaction guidance information is used to instruct the person to be tested to perform the fourth action.
  • the electronic device can guide the person to be tested to complete the risk detection of the Babinski-Weil II item in vestibular function through the fourth interactive guidance information.
  • the method also includes: outputting first step-by-step guidance information, the first step-by-step guidance information is used to instruct the person to be tested to walk forward in the fourth action; outputting second step-by-step guidance information, the second step-by-step guidance information is used to instruct the person to be tested to walk backward in the fourth action.
  • the method when the fourth action includes walking forward M steps and walking forward N steps backward, after outputting the first step-by-step guidance information, the method also includes: detecting by an acceleration sensor whether the person to be tested has walked forward M steps; if it is detected that M steps have been walked forward, outputting second step-by-step guidance information.
  • the electronic device can guide the person to be tested to complete the risk detection of vestibular function through the first step-by-step guidance information and the second step-by-step guidance information, and can more accurately guide the person to be tested to complete the risk detection of vestibular function, thereby improving the user experience.
  • the evaluation result of vestibular function is determined based on the pupil movement trajectory, including: while the person to be tested performs the fifth action, using a camera to capture the pupil movement trajectory; based on the pupil movement trajectory, determining whether the person to be tested has a nystagmus event; and determining the evaluation result of vestibular function based on the nystagmus event.
  • the electronic device can detect nystagmus events based on the pupil movement trajectory of the person to be tested during the fifth action, and risk detection of eye movement items in vestibular function can be completed without professional equipment or professional personnel.
  • the method also includes: while the person to be tested performs the fifth action, using an inertial sensor to collect acceleration or angular velocity data; when the change in the acceleration or angular velocity data is less than a second threshold, executing a step of determining whether the person to be tested has a nystagmus event based on the pupil movement trajectory.
  • the change in acceleration or angular velocity data is less than the second threshold value, which is used to indicate that there is no head-raising event or head-turning event during the execution of the fifth action by the person to be tested, thereby avoiding the head-raising event or head-turning event of the person to be tested from affecting the pupil movement trajectory, and a more accurate pupil movement trajectory can be obtained, which is conducive to detecting more accurate nystagmus events based on the pupil movement trajectory.
  • determining whether the person to be tested has a nystagmus event includes: detecting the pupil swing data of each light spot that the pupil is fixating on in the pupil movement trajectory; determining a suspected nystagmus detection result corresponding to the pupil movement trajectory based on the pupil swing data of each light spot that the pupil is fixating on in the pupil movement trajectory, the suspected nystagmus detection result including whether the person to be tested has a nystagmus event when the pupil is fixating on each light spot in the pupil movement trajectory; determining whether the person to be tested has a nystagmus event based on the suspected nystagmus detection result.
  • the method also includes: for each light spot that the pupil is fixating on in the pupil movement trajectory, detecting the head posture when the pupil is fixating on the light spot, if the swing direction of the head posture corresponding to the light spot is consistent with the swing direction in the pupil swing data corresponding to the light spot, then removing the detection of whether there is a nystagmus event at the light spot from the suspected nystagmus detection results.
  • the electronic device can calibrate suspected nystagmus events based on the head posture corresponding to the light spot, thereby preventing the head posture from affecting the detection of nystagmus events and effectively improving the accuracy of nystagmus event detection.
  • the method also includes: determining the head deviation trajectory of the person to be tested based on the acceleration or angular velocity data collected during the person to be tested performing the fifth action; using the head deviation trajectory to compensate the pupil movement trajectory to obtain a compensated pupil movement trajectory; and determining whether the person to be tested has insufficient scanning waves based on the compensated pupil movement trajectory and the preset trajectory of the light spot.
  • the electronic device calculates the ratio between the amplitude of the compensated pupil movement trajectory and the amplitude of the preset trajectory of the light spot. If the ratio is in a first value interval, it is determined that the person to be tested has insufficient scanning waves; if the ratio is in a second value interval, it is determined that the person to be tested has overshoot of scanning waves.
  • the electronic device can use the head deviation trajectory to compensate for the pupil movement trajectory.
  • the compensated pupil movement trajectory is more accurate, so that based on the compensated pupil movement trajectory, a more accurate scanning wave undershoot or scanning wave overshoot can be obtained, thereby effectively improving the accuracy of scanning wave detection.
  • the method further includes: outputting fifth interaction guidance information; the fifth interaction guidance information is used to instruct the person to be tested to perform a fifth action.
  • the electronic device can guide the person to be tested to complete the risk detection of the eye movement item in the vestibular function through the fifth interactive guidance information.
  • the method before outputting the fifth interaction guidance information, the method further includes:
  • the step of outputting the fifth interaction guidance information is executed.
  • the electronic device detects the distance between the person to be tested and the light spot through a distance sensor. If the distance between the person to be tested and the light spot is not within a preset range, the electronic device outputs distance adjustment information.
  • the distance adjustment information is used to instruct the person to be tested to adjust the distance between the person to be tested and the light spot, for example, to move closer to the light spot or farther away from the light spot.
  • the electronic device captures a pupil image of the person to be tested through a camera, and if it is detected based on the pupil position in the pupil image and the position of the light spot that the light spot is not within the direct sight range of the person to be tested, the electronic device outputs position adjustment information.
  • the position adjustment information is used to instruct the person to be tested to adjust the pupil position, for example, to move the face upward, downward, leftward, rightward, and so on.
  • the present application provides an electronic device comprising a touch screen, a memory, one or more processors, multiple applications, and one or more programs; wherein the one or more programs are stored in the memory; when the one or more processors execute the one or more programs, the electronic device implements the method described in the first aspect.
  • the electronic device may also include but is not limited to an inertial sensor (such as an acceleration sensor, a gyroscope sensor), a camera, a speaker, etc.
  • an inertial sensor such as an acceleration sensor, a gyroscope sensor
  • the acceleration sensor is used to collect acceleration data while the person to be tested maintains the first action
  • the gyroscope sensor is used to collect angular velocity data while the person to be tested performs the fourth action
  • the camera is used to collect pupil movement trajectory while the person to be tested performs the fifth action
  • the speaker is used to output interaction guidance information (such as first interaction guidance information, second interaction guidance information, third interaction guidance information, fourth interaction guidance information, and fifth interaction guidance information, etc.).
  • the present application provides a computer storage medium, comprising computer instructions, which, when executed on an electronic device, causes the electronic device to execute the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, which, when executed on a computer, enables the computer to execute the method described in the first aspect.
  • FIG1 is a schematic diagram of the structure of an electronic device provided by the present application.
  • FIG2 is a flow chart of a vestibular function risk detection method provided by the present application.
  • FIG3 is a schematic diagram of a human-computer interaction provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a change in acceleration data provided by an embodiment of the present application.
  • FIG5 is a flow chart of another vestibular function risk detection method provided by the present application.
  • FIG6 is a flow chart of another vestibular function risk detection method provided by the present application.
  • FIG7 is a schematic diagram of an angle provided by the implementation of the present application.
  • FIG8 is a flow chart of another vestibular function risk detection method provided by the present application.
  • FIG9 is a flow chart of another vestibular function risk detection method provided by the present application.
  • FIG10 is another schematic diagram of human-computer interaction provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of counting steps based on changes in acceleration data provided by an embodiment of the present application.
  • FIG12 is a flow chart of another vestibular function risk detection method provided by the present application.
  • FIG13 is a schematic diagram of a light spot displayed with a preset trajectory provided by an embodiment of the present application.
  • FIG14 is a schematic diagram of another human-computer interaction provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of a calibration process provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of a compensation process provided by the present application.
  • FIG17 is a schematic diagram of a scenario of a vestibular function risk detection method provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of the structure of another electronic device provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of a software architecture provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as suggesting or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features, and in the description of the embodiments of the present application, unless otherwise specified, "plurality” means two or more.
  • the existing risk detection methods usually require professional equipment or professional personnel to assist, and the threshold for detection is high, which cannot meet the needs of users for detection at any time.
  • the embodiment of the present application provides a risk detection method for vestibular function applied to a portable electronic device, the method specifically comprising: the electronic device collects acceleration data while the person to be tested maintains a first action, collects angular velocity data while the person to be tested performs a fourth action, and collects pupil movement trajectory while the person to be tested performs a fifth action, and determines the vestibular function evaluation result based on at least two of the acceleration data, angular velocity data, and pupil movement trajectory.
  • the vestibular function evaluation result can be determined by a portable electronic device without the assistance of professional equipment or professional personnel, which can meet the user's needs for detection at any time, and facilitates timely taking of corresponding measures to prevent problems before they occur.
  • the vestibular function evaluation result is determined based on at least two of the acceleration data, angular velocity data, and pupil movement trajectory, the vestibular function evaluation result is determined based on a combination of multiple factors, and the vestibular function evaluation result is more accurate.
  • the electronic device 100 is a portable electronic device, including but not limited to wearable electronic devices (such as smart glasses, smart watches, etc.), one or more of a smart phone, a tablet computer, and a laptop computer.
  • wearable electronic devices such as smart glasses, smart watches, etc.
  • a smart phone such as smart phone, a tablet computer, and a laptop computer.
  • FIG1 shows a schematic diagram of the structure of an electronic device 100.
  • the electronic device may include but is not limited to a head posture detection module 101 and a pupil tracking module 102.
  • the head posture detection module 101 is used to detect the pupil of the person to be tested while the person is maintaining the first action.
  • the pupil tracking module 102 is used to collect the pupil movement trajectory when the person to be tested performs the fifth action.
  • the electronic device 100 may further include an interaction guidance module 103, which is used to output interaction guidance information.
  • the following describes relevant embodiments of an electronic device determining an evaluation result of vestibular function according to different data.
  • the acceleration sensor is used to collect acceleration data, and the acceleration data is used to determine whether the person to be tested has a fall event. Based on the fall event, the vestibular function assessment result is determined. Without the need for professional equipment or professional assistance, the risk detection of the closed-eyes upright project in the vestibular function can be completed using a portable electronic device, which can meet the user's needs for detection at any time.
  • Fig. 2 shows a schematic flow chart of a method for risk detection of vestibular function.
  • the method for risk detection of vestibular function includes but is not limited to S201-S205:
  • S201 The electronic device outputs first interaction guidance information.
  • the first interactive guidance information is used to instruct the person to be tested to perform a first action.
  • the first action includes standing upright with eyes closed, feet together, and arms raised to the sides at shoulder level.
  • the first action may also include other similar actions, such as standing upright with eyes closed, feet together, arms hanging naturally to the sides, etc., without limitation.
  • the first interaction guidance information may include voice information output by a speaker.
  • the first interaction guidance information is a voice message output by a speaker of an electronic device, "Please close your eyes, stand with your feet together, and raise your arms to the sides at shoulder level.”
  • the first interaction guidance information may also be in other forms.
  • the first interaction guidance information is not a voice message output by a speaker, but a text message, image information, etc. displayed on a display screen, without limitation.
  • the electronic device may receive a trigger operation of the person to be tested, respond to the trigger operation, start the corresponding risk detection and output the first interactive guidance information.
  • FIG3 (a) shows a human-computer interaction schematic diagram for starting risk detection.
  • the electronic device may display a risk assessment interface 30 for vestibular function, and the risk assessment interface 30 includes an item list 31.
  • the item list 31 may include options corresponding to various risk detection items of vestibular function, for example, the closed-eyes upright option 311 shown in the figure, the Babinski-Weil two-type option 312, etc., and the item list 31 may display some or all of the options corresponding to the risk detection items; the person to be tested may view the hidden part of the item list 31 by sliding operation, for example, the eye movement option 313.
  • the user may input a trigger operation for the closed-eyes upright option 311 in the risk assessment interface 30 (the figure takes a click operation as an example), and the electronic device may receive the trigger operation, and respond to the trigger operation to start the risk detection for the closed-eyes upright item, and output the first interactive guidance information, as shown in FIG3 (a) to FIG3 (b).
  • the electronic device may also display an operation prompt near the option in the item list, and the operation prompt may be used to indicate the trigger operation of starting the risk detection item corresponding to the option.
  • the operation prompt may be used to indicate the trigger operation of starting the risk detection item corresponding to the option.
  • a prompt message 311-1 “Click to enter” is displayed below the option 311 of standing upright with eyes closed.
  • FIG3( c ) shows a schematic diagram of a posture of a person to be tested performing a first action.
  • S203 The electronic device collects acceleration data using the acceleration sensor while the person to be tested maintains the first action.
  • the electronic device (such as the smart glasses 300 shown in the figure) can collect acceleration data using the acceleration sensor while the person to be tested maintains the first action.
  • the acceleration data includes the acceleration modulus and acceleration vector direction of the person to be tested during the first action.
  • the acceleration modulus is used to indicate the instantaneous acceleration magnitude
  • the acceleration vector direction is used to indicate the instantaneous acceleration direction.
  • S204 The electronic device determines whether the person to be tested has a falling event according to the acceleration data of the person to be tested while maintaining the first action.
  • the electronic device determines the change in acceleration data of the person to be tested while the person is maintaining the first action according to the acceleration modulus in the acceleration data, and when the change in the acceleration data is greater than a first threshold, it is determined that the person to be tested has a falling event; when the change in the acceleration data is less than or equal to the first threshold, it is determined that the person to be tested has not a falling event.
  • the first threshold may be a preset threshold, for example, the first threshold may be determined based on the usage habits of a large number of users; or, the first threshold may also be set by a professional in the electronic device.
  • the change of acceleration data may be indicated by one or more of the following data: an average value of acceleration modulus, a variance of acceleration modulus, and a standard deviation of acceleration modulus. It should be noted that the change of acceleration data may be determined based on some or all of the acceleration modulus in the acceleration data.
  • FIG4 takes the case where the change of acceleration data is determined based on the acceleration modulus value of part of the acceleration data as an example.
  • the horizontal axis of FIG4 is used to represent the various moments during which the person to be tested maintains the first action, and the vertical axis is used to represent the acceleration modulus value in the acceleration data.
  • the change of acceleration data is determined based on the acceleration modulus value within the sliding time window 401, and the sliding time window 401 includes the acceleration modulus value of part of the acceleration data.
  • the step of the electronic device collecting acceleration data of the person to be tested during the first action is completed when a falling event is detected, or when it is detected that the timing duration of the timer reaches a preset duration.
  • the preset duration may be a preset threshold, for example, the preset duration may be determined based on the usage habits of a large number of users; or the preset duration may be set by a professional in the electronic device.
  • S205 Determine the assessment result of vestibular function according to the tilt event.
  • the vestibular function assessment result includes a first assessment result, and the first assessment result is used to indicate that the risk detection of the eyes-closed upright item of the person to be tested has passed; if there is a falling event, it is determined that the vestibular function assessment result includes a second assessment result, and the second assessment result is used to indicate that the risk detection of the eyes-closed upright item of the person to be tested has failed.
  • the electronic device may output the first evaluation result or the second evaluation result.
  • the first evaluation result and the second evaluation result may be voice information output by a speaker, or may be text information output by a display screen.
  • the first evaluation result and the second evaluation result are different numerical values output by the display screen, such as the first evaluation result is a risk value of "0" and the second evaluation result is a risk value of "1"; for another example, the first evaluation result and the second evaluation result are different texts output by the display screen, such as the first evaluation result is "the test passed” and the second evaluation result is "the test failed", as shown in 301 and 302 of (d) of FIG3.
  • the portable electronic device can guide the person to be tested to perform a first action through the first interactive guidance information, and use the acceleration sensor to collect acceleration data while the person to be tested maintains the first action, determine whether the person to be tested has a fall event based on the acceleration data, and determine the vestibular function assessment result based on the fall event.
  • the risk detection of the closed-eyes upright project in the vestibular function can be completed using a portable electronic device, which can meet the user's needs for detection at any time.
  • the electronic device can also determine whether the person under test has a risk of labyrinthine lesions or cerebellar lesions based on two or three acceleration data collected while the person under test maintains the first action, the second action, and the third action, respectively.
  • Fig. 5 shows a schematic flow chart of another risk detection method for vestibular function.
  • the risk detection method for vestibular function includes but is not limited to S501-S510:
  • S501 The electronic device outputs first interaction guidance information.
  • S502 The person to be tested performs a first action indicated by the first interaction guidance information.
  • S503 The electronic device collects acceleration data using the acceleration sensor while the person to be tested maintains the first action.
  • steps S501 - S503 please refer to the relevant embodiment of FIG. 2 , which will not be described in detail.
  • S504 The electronic device outputs second interaction guidance information.
  • the second interaction guidance information is used to instruct the person to be tested to perform a second action.
  • the head of the person to be tested is tilted in different directions in the first action and the second action. For example, in the first action, the head of the person to be tested is facing forward, and in the second action, the head of the person to be tested is tilted to the left.
  • the second interaction guidance information may include voice information output by a speaker.
  • the second interaction guidance information may be voice information output by a speaker, “Please close your eyes, stand with your feet together, raise your arms to the sides at shoulder level, and turn your head 90 degrees to the left.”
  • the second interaction guidance information may also be in other forms.
  • the second interaction guidance information may not be voice information output by a speaker, but may be text information, image information, etc. displayed on a display screen, without limitation.
  • S505 The person to be tested performs a second action indicated by the second interaction guidance information.
  • FIG3( f ) shows a schematic diagram of a posture of a person to be tested performing a second action.
  • S506 The electronic device collects acceleration data using the acceleration sensor while the person to be tested maintains the second action.
  • the electronic device (such as the smart glasses 300 shown in the figure) can collect acceleration data using the acceleration sensor while the person to be tested maintains the second action.
  • the vestibular function risk detection method may further include: detecting, by a gyroscope sensor, whether the person to be tested has performed the second action; if it is detected that the second action has been performed, executing S506.
  • detecting whether the person to be tested has performed the second action by using a gyroscope sensor includes: using the gyroscope sensor to collect angular velocity data during the period when the person to be tested performs the second action, and determining the angle between the starting direction and the ending direction of the second action performed by the person to be tested according to the angular velocity data, and when the angle is an angle of rotation to the left, or the angle is an angle of rotation to the left of 90 degrees, it is detected that the person to be tested has performed the second action. Otherwise, it is detected that it has not been performed.
  • the angle between the starting direction and the ending direction of the second action performed by the person to be measured is obtained based on the time integration of the angular velocity data during the period when the person to be measured performs the second action.
  • S507 The electronic device outputs third interaction guidance information.
  • the third interaction guidance information is used to instruct the person to be tested to perform a third action.
  • the head of the person to be tested is tilted in different directions in the first action, the second action, and the third action. For example, in the first action, the head of the person to be tested is facing forward, and in the second action, the head of the person to be tested is facing forward. In the first action, the head of the person to be tested tilts to the left, and in the third action, the head of the person to be tested tilts to the right.
  • the third interaction guidance information may include voice information output by a speaker.
  • the third interaction guidance information may be voice information output by a speaker, “Please close your eyes, stand with your feet together, raise your arms to the sides at shoulder level, and turn your head 90 degrees to the right.”
  • the third interaction guidance information may also be in other forms.
  • the third interaction guidance information may not be voice information output by a speaker, but may be text information, image information, etc. displayed on a display screen, without limitation.
  • FIG3( h) shows a schematic diagram of a posture of a person to be tested performing a third action.
  • the electronic device (such as the smart glasses 300 shown in the figure) can collect acceleration data using the acceleration sensor while the person to be tested maintains the third action.
  • the vestibular function risk detection method may further include: detecting whether the person to be tested has performed the third action by a gyroscope sensor; if it is detected that the person has performed the third action, then executing S509.
  • a gyroscope sensor if it is detected that the person has performed the third action, then executing S509.
  • the electronic device can execute two or more of steps S501-S503, steps S504-S506, and steps S507-S509.
  • Steps S501-S503, steps S504-S506, and steps S507-S509 are three parallel operations. The present application does not limit the execution order of these three items.
  • the electronic device when the electronic device executes steps S501-S503 and steps S504-S506, the electronic device can first execute steps S501-S503 and then execute steps S504-S506, or can execute steps S501-S503 and steps S504-S506 at the same time; for another example, when the electronic device executes steps When performing steps S501-S503, steps S504-S506 and steps S507-S509, the electronic device may first perform steps S501-S503, then perform steps S504-S506, and finally perform steps S507-S509; it may first perform steps S501-S503 and steps S504-S506 simultaneously, then perform steps S507-S509; it may also perform steps S501-S503, steps S504-S506, and steps S507-S509 simultaneously.
  • S510 The electronic device determines whether the person under test has a risk of labyrinthine lesions or cerebellar lesions based on two or three acceleration data collected when the person under test maintains the first action, the second action, and the third action, respectively.
  • two or three acceleration data collected while the person to be tested maintains a first action, a second action, and a third action respectively, are used to detect corresponding falling events while the person to be tested maintains the first action, the second action, and the third action. If the falling directions of the two or three falling events corresponding to the person to be tested maintains the first action, the second action, and the third action are consistent, it is determined that the person to be tested is at risk of cerebellar lesions; otherwise, there is a risk of labyrinthine lesions.
  • the electronic device can determine the falling direction of the falling event corresponding to the period when the person to be tested maintains the first action based on the acceleration data during the period when the person to be tested maintains the first action. Specifically, the electronic device can detect the falling event corresponding to the period when the person to be tested maintains the first action based on the acceleration data during the period when the person to be tested maintains the first action, and obtain the acceleration direction when the falling event is detected from the acceleration data, and use the acceleration direction as the falling direction of the falling event. Similarly, the electronic device can determine the falling direction of the falling event corresponding to the period when the person to be tested maintains the second action, and the falling direction of the falling event corresponding to the period when the person to be tested maintains the third action.
  • the second evaluation result described in S205 can also be used to indicate that the person to be tested maintains the falling directions of two or three corresponding falling events during the first action, the second action, and the third action, and that the person to be tested is at risk of cerebellar lesions or labyrinthine lesions.
  • the second evaluation result 302-1 is used to indicate that the person to be tested maintains the first action, and the falling directions of the corresponding falling events during the second action and the third action are all “left”, and that the person to be tested is at risk of cerebellar lesions.
  • the second evaluation result 302-2 is used to indicate that the person to be tested maintains the falling direction of the corresponding falling events during the first action as “back”, maintains the falling direction of the corresponding falling events during the second action as “left”, maintains the falling direction of the corresponding falling events during the third action as “right”, and that the person to be tested is at risk of labyrinthine lesions.
  • the portable electronic device can also determine whether the person under test is at risk of labyrinthine lesions or cerebellar lesions based on two or three acceleration data collected from the person under test during the first action, the second action, and the third action, so as to facilitate the person under test to take corresponding measures in time to prevent it.
  • the gyroscope sensor When the person to be tested performs the fourth action, the gyroscope sensor is used to collect angular velocity data, and the angle between the forward direction of walking forward in the fourth action and the backward direction of walking backward in the fourth action is determined based on the angular velocity data; the vestibular function assessment result is determined based on the angle.
  • the risk detection of the Babinski-Weil II project in vestibular function can be completed using portable electronic devices, which can meet the user's needs for detection at any time.
  • Fig. 6 shows a schematic flow chart of another method for risk detection of vestibular function.
  • the method for risk detection of vestibular function includes but is not limited to S601-S605:
  • S601 The electronic device outputs fourth interaction guidance information.
  • the fourth interaction guidance information is used to instruct the person to be tested to perform a fourth action, which includes walking forward and walking backward when already walking forward.
  • the fourth interactive guidance information includes voice information output by a speaker, such as "Please stand upright, keep the direction of your head consistent with the walking direction, close your eyes, walk forward, and then walk back." It should be noted that the fourth interactive guidance information may also be in other forms, for example, the fourth interactive guidance information is not voice information output by a speaker, but text information, image information, etc. displayed on a display screen, without limitation.
  • S602 The person to be tested performs a fourth action indicated by the fourth interaction guidance information.
  • S603 The electronic device collects angular velocity data using a gyroscope sensor while the person to be tested performs the fourth action.
  • the angular velocity data includes the angular velocity modulus and the angular velocity vector direction during the period when the person to be tested performs the fourth action.
  • the angular velocity modulus is used to indicate the instantaneous angular velocity magnitude
  • the angular velocity vector direction is used to indicate the instantaneous angular velocity direction.
  • the electronic device determines, based on the angular velocity data, an angle between a forward direction of walking forward in executing the fourth action and a backward direction of walking backward in executing the fourth action.
  • the angle between the forward direction of walking forward in the fourth action and the backward direction of walking backward in the fourth action is obtained by time-integrating the angular velocity data of the person to be measured during the fourth action.
  • FIG7 shows a schematic diagram of an angle.
  • FIG7 shows a forward direction of walking forward in the fourth action with a solid line with an arrow, and shows a backward direction of walking backward in the fourth action with a dotted line with an arrow.
  • the angle may be biased to the right.
  • the angle may also be biased to the left.
  • S605 Determine the vestibular function evaluation result according to the angle.
  • the first angle can be a preset threshold value.
  • the first angle can be determined based on the usage habits of a large number of users; or, the first angle can also be set by a professional in the electronic device. For example, the first angle is 90 degrees.
  • the fourth risk assessment is also used to indicate that the person to be tested has weakened right vestibular function or weakened left vestibular function.
  • the fourth evaluation result is used to indicate that the person under test has weakened right vestibular function; when the angle is biased to the left
  • the fourth evaluation result is used to indicate that the person under test has weakened left vestibular function.
  • the portable electronic device can determine the angle between the forward direction of walking forward in the fourth action and the backward direction of retreating in the fourth action according to the angular velocity data of the person to be tested during the execution of the fourth action, and determine the evaluation result of the vestibular function according to the angle, without the need for professional equipment.
  • the portable electronic device can guide the person to be tested to complete the risk detection of vestibular function through the fourth interactive guidance information, without the assistance of professionals, and can meet the user's needs for detection at any time.
  • the portable electronic device can also determine whether the person to be tested has weakened right vestibular function or weakened left vestibular function according to the angle between the forward direction of walking forward in the fourth action and the backward direction of retreating in the fourth action, so that the person to be tested can take corresponding measures in time to prevent it before it happens.
  • the portable electronic device can also guide the person to be tested to complete the vestibular function risk detection through the first step-by-step guidance information and the second step-by-step guidance information.
  • FIG8 shows a flow chart of another vestibular function risk detection method. As shown in FIG8, the vestibular function risk detection method includes but is not limited to S801-S807:
  • S801 The electronic device outputs first step-by-step guidance information.
  • the first step-by-step guidance information is used to instruct the person to be tested to walk forward in the fourth action.
  • S802 The person to be tested performs the fourth action of walking forward.
  • S803 The electronic device outputs second step-by-step guidance information.
  • the second step-by-step guidance information is used to instruct the person to be tested to perform the fourth action of retreating.
  • S804 The person to be tested performs the fourth action of moving backward.
  • the electronic device collects angular velocity data using a gyroscope sensor when the person to be tested is walking forward or walking backward after walking forward.
  • the electronic device determines, based on the angular velocity data, an angle between a forward direction of walking forward in executing the fourth action and a backward direction of walking backward in executing the fourth action.
  • S807 Determine the vestibular function assessment result according to the angle.
  • steps S805-S807 please refer to the relevant embodiment of Figure 6, which will not be repeated here.
  • the portable electronic device can guide the user to The test personnel can complete the risk test of vestibular function more accurately to guide the test personnel to complete the risk test of vestibular function and improve the user experience.
  • FIG. 9 shows a flow chart of another risk detection method for vestibular function. As shown in FIG. 9 , the risk detection method for vestibular function includes but is not limited to S901-S907:
  • S901 The electronic device outputs first step-by-step guidance information.
  • the first step-by-step guidance information is used to instruct the person to be tested to walk forward M steps in the fourth action.
  • the first step-by-step guidance information includes voice information output by a speaker.
  • the first step-by-step guidance information is voice information output by a speaker of the electronic device, “Please stand upright, keep the direction of your head consistent with the walking direction, close your eyes, and walk forward M steps.
  • the first step-by-step guidance information may also be in other forms.
  • the first step-by-step guidance information is not voice information output by a speaker, but text information, image information, etc. displayed on a display screen, without limitation.
  • the electronic device may receive a trigger operation of the person to be tested, respond to the trigger operation, start the corresponding risk detection, and output the first step-by-step guidance information corresponding to walking forward M steps in the fourth action.
  • the user may input a trigger operation for the Babinski-Weil II option 312 in the risk assessment interface 30 (the figure takes a click operation as an example), and the electronic device may receive the trigger operation, and respond to the trigger operation to start the risk detection for the Babinski-Weil II item, and output the first step-by-step guidance information, as shown in FIG. 10 (a) to FIG. 10 (b).
  • S902 The person to be tested performs the fourth action of walking forward M steps.
  • FIG10( c ) shows a schematic diagram of a posture of a person to be tested walking forward M steps in the fourth action.
  • S903 The electronic device outputs second step-by-step guidance information.
  • the second step-by-step guidance information is used to instruct the person to be tested to perform the fourth action of stepping back N steps.
  • the second step-by-step guidance information includes voice information output by a speaker.
  • the second step-by-step guidance information is a voice message “Please go back N steps” output by a speaker of the electronic device.
  • the second step-by-step guidance information may also be in other forms.
  • the second step-by-step guidance information is not a voice message output by a speaker, but a text message, image information, etc. displayed on a display screen, without limitation.
  • Figure 11 shows a schematic diagram of counting the number of steps K walked forward by the person to be tested according to the change of the acceleration data. As shown in Figure 11, the horizontal axis of Figure 11 is used to represent the various moments during the period when the person to be tested walks forward, and the vertical axis is used to represent the acceleration modulus value of the acceleration data.
  • the electronic device counts the number of steps K taken by the person to be tested to walk forward according to the change in acceleration data, which can be implemented based on one or more of the following algorithms: threshold method, window peak detection method (WPD), zero crossing statistics (MCC), normalized autocorrelation step statistics (NASC), dynamic time programming (DTW), short-time Fourier transform (STFT), continuous/discrete wavelet transform (CWT/DWT), etc., without limitation.
  • threshold method window peak detection method
  • MCC zero crossing statistics
  • NSC normalized autocorrelation step statistics
  • DTW dynamic time programming
  • STFT short-time Fourier transform
  • CWT/DWT continuous/discrete wavelet transform
  • S904 The person to be tested performs the fourth action of moving back N steps.
  • FIG10( e ) shows a schematic diagram of a posture of a person to be tested taking N steps backward in the fourth action.
  • the vestibular function risk detection method further includes: detecting whether the person to be tested has stepped back N steps by an acceleration sensor, and if it is detected that the person has stepped back N steps, executing S901.
  • S903 For related embodiments, please refer to S903, which will not be described in detail.
  • the electronic device collects angular velocity data using a gyroscope sensor when the person under test repeats Q times of walking forward M steps and walking back N steps after having walked forward M steps.
  • the electronic device determines, based on the angular velocity data, an angle between a forward direction of walking M steps forward in the first execution of the fourth action and a backward direction of walking N steps backward in the last execution of the fourth action.
  • S907 Determine the vestibular function evaluation result according to the angle.
  • steps S905-S907 please refer to the relevant embodiment of Figure 6, which will not be repeated here.
  • the electronic device may output the first assessment result and the second assessment result of the Babinski-Weil II project according to the angle. For example, as shown in FIG10 , the electronic device may output the first assessment result 1001, the second risk result 1002-1 or the second risk result 1003-2. Risk result 1002-2.
  • the portable electronic device can guide the person to be tested to walk forward M steps through the first step-by-step guidance information, and guide the person to be tested to walk back N steps when the person has walked forward M steps through the second step-by-step guidance information, thereby more accurately guiding the person to be tested to complete the risk detection of vestibular function.
  • the pupil movement trajectory is collected by the camera, and based on the pupil movement trajectory, it is determined whether the person to be tested has a nystagmus event; according to the nystagmus event, the vestibular function assessment result is determined.
  • the risk detection of eye movement items in vestibular function can be completed using portable electronic devices, which can meet the user's needs for detection at any time.
  • Fig. 12 shows a schematic flow chart of another method for risk detection of vestibular function.
  • the method for risk detection of vestibular function includes but is not limited to S1201-S1206:
  • S1201 The electronic device outputs fifth interaction guidance information.
  • the fifth interaction guidance information is used to instruct the person to be tested to perform a fifth action, wherein the fifth action includes keeping the head still and gazing at a light spot displayed in a preset track.
  • the light spots displayed with a preset trajectory include light spots displayed with dot traces.
  • the light spots are represented by four-pointed stars, and the electronic device may display the light spots on the display screen in the following order: center ⁇ right ⁇ left ⁇ center ⁇ upper side ⁇ lower side ⁇ center. It should be noted that the light spots displayed with dot traces can be applied to gaze detection of eye movement projects.
  • the light spots displayed with a preset trajectory include light spots displayed with a track, as shown in (b) of FIG. 13 , the electronic device may display the light spots on the display screen according to the waveform diagram shown in the figure.
  • the amplitude and frequency of the waveform diagram may be any value, for example, the amplitude is 33 degrees and the frequency is 0.3 Hz (Hertz). It should be noted that the light spots displayed with a track can be applied to the saccade detection of the eye movement project.
  • the fifth interaction guidance information includes voice information output by a speaker.
  • the fifth interaction guidance information is voice information output by a speaker of the electronic device, “Please keep your head still, do not blink, and look at the displayed light spot.”
  • the fifth interaction guidance information may also be in other forms.
  • the fifth interaction guidance information is not voice information output by a speaker, but text information, image information, etc. displayed on a display screen, without limitation.
  • the vestibular function risk detection method before the electronic device executes S1201, the vestibular function risk detection method further includes: detecting through a distance sensor that the distance between the person to be tested and the light spot is within a preset range, and detecting through a camera that the light spot is within the direct line of sight of the person to be tested.
  • the preset range may be preset, for example, the preset range may be determined based on the usage habits of a large number of users; or, the preset range may also be set by a professional in the electronic device, such as a preset range of 0.5 meters to 1 meter.
  • the direct line of sight range refers to the range that can be seen by the eyes looking directly.
  • the electronic device can adjust the distance between the person to be tested and the light spot to be within a preset range through the following steps:
  • the electronic device detects the distance between the person to be tested and the light spot through the distance sensor.
  • the electronic device outputs distance adjustment information.
  • the distance adjustment information is used to instruct the person to be measured to adjust the distance between the person to be measured and the light spot, for example, to move closer to the light spot or farther away from the light spot.
  • the electronic device can adjust the light spot to be within the direct sight range of the person to be tested by the following steps:
  • the electronic device captures the pupil image of the person to be tested through a camera.
  • the electronic device if it is detected based on the pupil position in the pupil image and the position of the light spot that the light spot is not within the direct vision range of the person to be measured, the electronic device outputs position adjustment information.
  • the position adjustment information is used to instruct the person to be tested to adjust the pupil position, for example, to move the face upward, downward, leftward, rightward, and so on.
  • the electronic device may receive a trigger operation from the person to be tested, respond to the trigger operation, start the corresponding risk detection and output the fifth interactive guidance information.
  • the user may input a trigger operation for the eye movement option 313 in the risk assessment interface 30 (the figure shows a click operation as an example), and the electronic device may receive the trigger operation, respond to the trigger operation, start the risk detection for the eye movement item, and output the fifth interactive guidance information, as shown in FIG. 14 (a) to FIG. 14 (b).
  • FIG14( c ) shows a schematic diagram of a posture of a person to be tested performing the fifth action.
  • using a camera to capture the pupil movement trajectory includes: capturing a pupil sequence image while the person to be tested performs the fifth action, and performing data processing on each frame of the pupil sequence image based on a pupil tracking algorithm to determine the pupil movement trajectory of the person to be tested during the fifth action.
  • the pupil tracking algorithm includes but is not limited to one or more of a sclera-iris edge method, a pupil tracking method, and a pupil-corneal reflection method.
  • the pupil sequence image refers to an image set composed of multiple frames of pupil images continuously captured by a camera and arranged in the order of capture. It should be noted that the present application does not limit the format of the pupil image in the pupil sequence image.
  • the resolution of the pupil image can be any value; such as 600*800, or 3000*4000, etc.
  • the pupil image can be in any color space; such as the pupil image is an RGB image, in which R represents red, G represents green, B represents blue, and so on.
  • the vestibular function risk detection method further includes: using an inertial sensor to collect acceleration or angular velocity data during the period when the person to be tested performs the fifth action; when the change in the acceleration or angular velocity data is less than the second threshold, executing the step of determining whether the person to be tested has a nystagmus event based on the pupil movement trajectory. Otherwise, the electronic device determines that the vestibular function risk detection fails and updates the vestibular function risk value. Please refer to the relevant embodiment of Figure 2, which will not be repeated here.
  • the inertial sensors of electronic devices include acceleration sensors and gyroscope sensors.
  • the acceleration sensors are used to collect acceleration data
  • the gyroscope sensors are used to collect angular velocity data.
  • the change in acceleration or angular velocity data is less than the second threshold value, which is used to indicate that there is no head-raising event or head-turning event during the execution of the fifth action by the person to be tested, thereby avoiding the head-raising event or head-turning event of the person to be tested from affecting the pupil movement trajectory, and a more accurate pupil movement trajectory can be obtained, which is conducive to detecting more accurate nystagmus events based on the pupil movement trajectory.
  • S1204 The electronic device determines whether the person to be tested has a nystagmus event based on the pupil movement trajectory.
  • the pupil swing data of the pupil fixing on the light spot is detected, and based on the pupil swing data of each light spot that the pupil is fixating on in the pupil movement trajectory, the suspected nystagmus detection result corresponding to the pupil movement trajectory is determined, the suspected nystagmus detection result includes whether there is a nystagmus event when the person to be tested fixes on each light spot in the pupil movement trajectory, and based on the suspected nystagmus detection result, it is determined whether there is a nystagmus event in the person to be tested.
  • the pupil swing data includes but is not limited to no swing, left-right swing, up-down swing, repeated rotation of the front-back axis, etc.
  • the pupil swing data of each light spot that the pupil is fixated on in the pupil motion trajectory is determined based on multiple frames of pupil images of the pupil fixating on each light spot, and the multiple frames of pupil images are arranged in the order of acquisition.
  • the pupil motion trajectory includes three frames of pupil images of the pupil fixating on the central light spot, and the electronic device can determine that the pupil fixates on the central light spot and there is left-right swing based on the three frames of images.
  • the suspected nystagmus detection result corresponding to the pupil movement trajectory is determined based on the pupil swing data of each light spot that the pupil is fixating on in the pupil movement trajectory, including: when the pupil swing data of each light spot that the pupil is fixating on in the pupil movement trajectory indicates that each light spot that the pupil is fixating on has any of the following: left-right swing, up-down swing, and repeated rotation of the front-back axis, the corresponding suspected nystagmus detection result is determined, and the suspected nystagmus detection result is used to indicate that the pupil of the person to be tested has a nystagmus event when fixating on the light spot; otherwise, there is no nystagmus event.
  • the pupil swing data indicates that the pupil is fixating on the central light spot and has a left-right swing, and it is determined that the pupil of the person to be tested has a nystagmus event when fixating on the central light spot in the pupil movement trajectory.
  • determining whether the person to be tested has a nystagmus event based on the suspected nystagmus detection result includes: for each light spot that the pupil is fixated on in the pupil movement trajectory, detecting the head posture when the pupil is fixated on the light spot, if the swing direction of the head posture corresponding to the light spot is consistent with the swing direction in the pupil swing data corresponding to the light spot, then removing the detection of whether the light spot has a nystagmus event from the suspected nystagmus detection result.
  • the head posture when the pupil is fixated on the light spot is detected, including: obtaining the acceleration or angular velocity data of each light spot that the pupil is fixated on in the pupil movement trajectory from the acceleration or angular velocity data collected during the person to be tested performing the fifth action, and determining the head posture when the pupil is fixated on the light spot according to the acceleration or angular velocity data.
  • the swing direction of the head posture can be determined based on the direction of the acceleration vector in the acceleration data, can also be determined based on the direction of the angular velocity vector in the angular velocity data, or can also be determined based on the time integration of the angular velocity data, without limitation.
  • the electronic device can calibrate suspected nystagmus events based on the head posture corresponding to the light spot, thereby preventing the head posture from affecting the detection of nystagmus events and effectively improving the accuracy of nystagmus event detection.
  • S1205 Determine the assessment result of vestibular function based on the nystagmus event.
  • the vestibular function assessment result includes a fifth risk result
  • the fifth risk result is used to indicate that the risk detection of the eye movement item of the person to be tested has passed.
  • the pupil movement trajectory the pupil fixates on each light point.
  • the nystagmus direction includes but is not limited to one or more of horizontal nystagmus, vertical nystagmus, and rotational nystagmus.
  • nystagmus intensity refers to the classification according to the nystagmus events of the person to be tested staring at each light spot.
  • the sixth risk result 1402 is the text output by the display screen "horizontal nystagmus, vertical nystagmus, and nystagmus intensity is level II".
  • the vestibular function risk detection method may further include: S1206, the electronic device determines whether the person to be tested has insufficient scanning waves based on the pupil movement trajectory.
  • the electronic device determines the head deviation trajectory of the person to be tested based on the acceleration or angular velocity data collected during the person to be tested performing the fifth action; uses the head deviation trajectory to compensate the pupil movement trajectory to obtain a compensated pupil movement trajectory, and determines whether the person to be tested has insufficient scanning waves based on the compensated pupil movement trajectory and the preset trajectory of the light spot.
  • the head deviation trajectory is obtained by time-integrating the acceleration or angular velocity data of the person to be tested during the fifth action.
  • FIG16 shows the preset trajectory of the light spot and the pupil movement trajectory.
  • FIG16 (b) shows the preset trajectory of the light spot and the pupil movement trajectory after compensation.
  • the electronic device determines whether the person to be tested has insufficient saccadic waves based on the compensated pupil movement trajectory and the preset trajectory of the light spot, including: calculating the ratio between the amplitude of the compensated pupil movement trajectory and the amplitude of the preset trajectory of the light spot, if the ratio is in a first value range, it is determined that the person to be tested has insufficient saccadic waves; if the ratio is in a second value range, it is determined that the person to be tested has overshoot of saccadic waves.
  • the electronic device can determine that the vestibular function assessment result includes a seventh risk result based on the glancing wave detection, and the seventh risk result is used to indicate that the person to be tested has insufficient glancing waves or glancing wave overshoot.
  • the seventh risk result 1403 is the text “Insufficient glancing waves” output by the display screen.
  • the electronic device can use the head deviation trajectory to compensate for the pupil movement trajectory.
  • the compensated pupil movement trajectory is more accurate, so that based on the compensated pupil movement trajectory, a more accurate scanning wave undershoot or scanning wave overshoot can be obtained, thereby effectively improving the accuracy of scanning wave detection.
  • a portable electronic device can detect nystagmus events based on the pupil movement trajectory of the person to be tested during the fifth action, and determine the evaluation result of vestibular function based on the nystagmus event, without the need for professional equipment.
  • the portable electronic device can guide the person to be tested to complete the risk detection of vestibular function through the fifth interactive guidance information, without the assistance of professionals, and can meet the user's needs for detection at any time.
  • the portable electronic device can also detect head-up events or head-turning events based on the acceleration or angular velocity data of the person to be tested during the fifth action, so as to avoid the head-up event or head-turning event of the person to be tested affecting the accuracy of the pupil movement trajectory.
  • the electronic device can also calibrate suspected nystagmus events to avoid the head posture affecting the detection of nystagmus events, effectively improve the accuracy of nystagmus event detection, and compensate for the pupil movement trajectory to effectively improve the accuracy of scanning wave detection.
  • the electronic device determines the evaluation result of vestibular function based on acceleration data, angular velocity data, and pupil movement trajectory.
  • the following describes that the electronic device determines the evaluation result of vestibular function based on at least two of acceleration data, angular velocity data, and pupil movement trajectory.
  • Fig. 17 takes the electronic device determining the vestibular function evaluation result according to acceleration data, angular velocity data, and pupil movement trajectory as an example to elaborate a scenario embodiment of the present application.
  • the vestibular function risk value R is used to represent the vestibular function evaluation result.
  • S1702 The electronic device determines a risk value of vestibular function based on acceleration data collected while the person to be tested maintains the first action.
  • the relevant implementation method can be referred to the embodiment of FIG2 and will not be described in detail.
  • S1703 The electronic device determines a risk value of vestibular function according to the angular velocity data of the person to be tested during the fourth action.
  • the electronic device determines the risk value of vestibular function according to the pupil movement trajectory of the person to be tested during the fifth action.
  • the evaluation result of the vestibular function can be determined by combining the acceleration data, the angular velocity data, and the pupil movement trajectory.
  • FIG. 18 shows a schematic structural diagram of the electronic device 100 .
  • the embodiment is described in detail below by taking the electronic device 100 as an example. It should be understood that the electronic device 100 shown in FIG. 18 is only an example, and the electronic device 100 may have more or fewer components than those shown in FIG. 18, may combine two or more components, or may have different component configurations.
  • the various components shown in the figure may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, a mobile communication module 150, a wireless communication module 160, an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, a sensor module 180, a button 190, a motor 191, an indicator 192, a camera 193, a display screen 194, and a subscriber identification module (SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, a bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange the components differently.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the acceleration sensor 180E and the gyroscope sensor 180B are located in smart glasses, and the camera 193, the proximity light sensor 180G, and the display screen 194 are located in a smart phone.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (AP), a modem processor, a graphics processor (GPU), an image signal processor (ISP), a controller, a memory, a video codec, a digital signal processor (DSP), a baseband processor, and/or a neural-network processing unit (NPU), etc.
  • AP application processor
  • GPU graphics processor
  • ISP image signal processor
  • controller a memory
  • video codec a digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • Different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100.
  • the controller may generate an operation control signal according to the instruction operation code and the timing signal to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory may store instructions or data that the processor 110 has just used or cyclically used. If the processor 110 needs to use the instruction or data again, it may be directly called from the memory. This avoids repeated access, reduces the waiting time of the processor 110, and thus improves the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an inter-integrated circuit (I2C) interface, an inter-integrated circuit sound (I2S) interface, a pulse code modulation (PCM) interface, a universal asynchronous receiver/transmitter (UART) interface, a mobile industry processor interface (MIPI), a general-purpose input/output (GPIO) interface, a subscriber identity module (SIM) interface, and/or a universal serial bus (USB) interface, etc.
  • I2C inter-integrated circuit
  • I2S inter-integrated circuit sound
  • PCM pulse code modulation
  • UART universal asynchronous receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple I2C buses.
  • the processor 110 may be configured to communicate with the processor 110 through different The same I2C bus interface is respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193, etc.
  • the processor 110 can be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 can include multiple I2S buses.
  • the processor 110 can be coupled to the audio module 170 via the I2S bus to achieve communication between the processor 110 and the audio module 170.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 via the I2S interface to achieve the function of answering a call through a Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 can be coupled via a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 via the PCM interface to realize the function of answering calls via a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193.
  • the MIPI interface includes a camera serial interface (CSI), a display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate via the CSI interface to implement the shooting function of the electronic device 100.
  • the processor 110 and the display screen 194 communicate via the DSI interface to implement the display function of the electronic device 100.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display 194, the wireless communication module 160, the audio module 170, the sensor module 180, etc.
  • the GPIO interface can also be configured as an I2C interface, an I2S interface, a UART interface, a MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically can be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and a peripheral device. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices, etc.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is only a schematic illustration and does not constitute a structural limitation on the electronic device 100.
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from a wired charger through the USB interface 130.
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100. While the charging management module 140 is charging the battery 142, it may also power the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle number, battery health status (leakage, impedance), etc.
  • the power management module 141 can also be set in the processor 110.
  • the power management module 141 and the charging management module 140 can also be set in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve the utilization of antennas.
  • antenna 1 can be reused as a diversity antenna for a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide solutions for wireless communications including 2G/3G/4G/5G, etc., applied to the electronic device 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, and filter, amplify, and process the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation through the antenna 1.
  • at least some of the functional modules of the mobile communication module 150 can be set in the processor 110.
  • at least some of the functional modules of the mobile communication module 150 can be set in the same processor 110 as at least some of the modules of the processor 110. Device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 170A, a receiver 170B, etc.), or displays an image or video through a display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless communication solutions including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (BT), global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared (IR) and the like applied to the electronic device 100.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared
  • the wireless communication module 160 can be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, modulates the frequency of the electromagnetic wave signal and performs filtering processing, and sends the processed signal to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, modulate the frequency of the signal, amplify the signal, and convert it into electromagnetic waves for radiation through the antenna 2.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology.
  • the GNSS may include a global positioning system (GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (QZSS) and/or a satellite based augmentation system (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation system
  • the electronic device 100 implements the display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, which connects the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, etc.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED), a flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diodes (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through ISP, camera 193, video codec, GPU, display screen 194 and application processor.
  • ISP is used to process the data fed back by camera 193. For example, when taking a photo, the shutter is opened, and the light is transmitted to the camera photosensitive element through the lens. The light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to ISP for processing and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on the noise and brightness of the image. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, ISP can be set in camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and projects it onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) phototransistor.
  • CMOS complementary metal oxide semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to be converted into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • the DSP converts the digital image signal into an image signal in a standard RGB, YUV or other format.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • the camera 193 can be used to collect pupil movement trajectory when the person to be tested performs the fifth action.
  • the digital signal processor is used to process digital signals, and can process not only digital image signals but also other digital signals. For example, when the electronic device 100 is selecting a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital videos.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in a variety of coding formats, such as the Moving Picture Experts Group (MPEG) MPEG)1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG Moving Picture Experts Group
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • applications such as intelligent cognition of electronic device 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. For example, files such as music and videos can be stored in the external memory card.
  • the internal memory 121 can be used to store computer executable program codes, which include instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running the instructions stored in the internal memory 121.
  • the internal memory 121 may include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the data storage area may store data created during the use of the electronic device 100 (such as audio data, a phone book, etc.), etc.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • UFS universal flash storage
  • the electronic device 100 can implement audio functions such as music playing and recording through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone jack 170D, and the application processor.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 can be arranged in the processor 110, or some functional modules of the audio module 170 can be arranged in the processor 110.
  • the speaker 170A also called a "speaker" is used to convert an audio electrical signal into a sound signal.
  • the electronic device 100 can listen to music or listen to a hands-free call through the speaker 170A.
  • the speaker 170A can be used to output interactive guidance information (such as first interactive guidance information, second interactive guidance information, third interactive guidance information, fourth interactive guidance information, and fifth interactive guidance information, etc.).
  • the receiver 170B also called a "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be received by placing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak by putting their mouth close to microphone 170C to input the sound signal into microphone 170C.
  • the electronic device 100 can be provided with at least one microphone 170C. In other embodiments, the electronic device 100 can be provided with two microphones 170C, which can not only collect sound signals but also realize noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify the sound source, realize directional recording function, etc.
  • the earphone interface 170D is used to connect a wired earphone.
  • the earphone interface 170D may be a USB interface 130, or a 3.5 mm open mobile terminal platform (OMTP) standard interface, etc.
  • OMTP open mobile terminal platform
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A can be set on the display screen 194.
  • the capacitive pressure sensor can be a parallel plate including at least two conductive materials.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance.
  • the electronic device 100 detects the touch operation intensity according to the pressure sensor 180A.
  • the electronic device 100 can also calculate the touch position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities can correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100.
  • the angular velocity of the electronic device 100 around three axes i.e., x, y, and z axes
  • the gyro sensor 180B can be used for anti-shake shooting. For example, when the shutter is pressed, the gyro sensor 180B detects the angle of the electronic device 100 shaking, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the gyro sensor 180B may be used to collect angular velocity data when the person to be measured performs the fourth action.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can use the magnetic sensor 180D to detect the opening and closing of the flip leather case.
  • the electronic device 100 when the electronic device 100 is a flip phone, the electronic device 100 can detect the opening and closing of the flip cover based on the magnetic sensor 180D. According to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, the features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in all directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the electronic device and is applied to applications such as horizontal and vertical screen switching and pedometers.
  • the acceleration sensor 180E can be used to collect acceleration data while the person to be tested maintains the first action.
  • the distance sensor 180F is used to measure the distance.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outward through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode and pocket mode to automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in a pocket to prevent accidental touches.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photography, fingerprint call answering, etc.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 180J to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • the touch sensor 180K is also called a "touch panel”.
  • the touch sensor 180K can be set on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a "touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K can also be set on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can obtain a vibration signal. In some embodiments, the bone conduction sensor 180M can obtain a vibration signal of a vibrating bone block of the vocal part of the human body. The bone conduction sensor 180M can also contact the human pulse to receive a blood pressure beat signal. In some embodiments, the bone conduction sensor 180M can also be set in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can parse out a voice signal based on the vibration signal of the vibrating bone block of the vocal part obtained by the bone conduction sensor 180M to realize a voice function.
  • the application processor can parse the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M to realize a heart rate detection function.
  • the key 190 includes a power key, a volume key, etc.
  • the key 190 may be a mechanical key or a touch key.
  • the electronic device 100 may receive key input and generate key signal input related to user settings and function control of the electronic device 100.
  • Motor 191 can generate vibration prompts.
  • Motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • touch operations acting on different areas of the display screen 194 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminders, receiving messages, alarm clocks, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power changes, messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to and separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195.
  • the electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, and the like. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 can also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, i.e., an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a micro-kernel architecture, a micro-service architecture, or a cloud architecture.
  • the application embodiment takes the Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100.
  • FIG. 19 is a software structure block diagram of the electronic device 100 according to an embodiment of the present application.
  • the layered architecture divides the software into several layers, each with clear roles and division of labor.
  • the layers communicate with each other through software interfaces.
  • the Android system is divided into four layers, from top to bottom: the application layer, the application framework layer, the Android runtime and system library, and the kernel layer.
  • the application layer can include a series of application packages.
  • the application package may include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message, etc.
  • the application framework layer provides application programming interface (API) and programming framework for the applications in the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer may include a window manager, a content provider, a view system, a telephony manager, a resource manager, a notification manager, and the like.
  • the window manager is used to manage window programs.
  • the window manager can obtain the display screen size, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make it accessible to applications.
  • the data may include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying images, etc.
  • the view system can be used to build applications.
  • a display interface can be composed of one or more views.
  • a display interface including a text notification icon can include a view for displaying text and a view for displaying images.
  • the phone manager is used to provide communication functions of the electronic device 100, such as management of call status (including connecting, hanging up, etc.).
  • the resource manager provides various resources for applications, such as localized strings, icons, images, layout files, video files, and so on.
  • the notification manager enables applications to display notification information in the status bar. It can be used to convey notification-type messages and can disappear automatically after a short stay without user interaction. For example, the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also be a notification that appears in the system top status bar in the form of a chart or scroll bar text, such as notifications of applications running in the background, or a notification that appears on the screen in the form of a dialog window. For example, a text message is displayed in the status bar, a prompt sound is emitted, an electronic device vibrates, an indicator light flashes, etc.
  • Android Runtime includes core libraries and virtual machines. Android Runtime is responsible for the scheduling and management of the Android system.
  • the core library consists of two parts: one part is the function that needs to be called by the Java language, and the other part is the Android core library.
  • the application layer and the application framework layer run in a virtual machine.
  • the virtual machine executes the Java files of the application layer and the application framework layer as binary files.
  • the virtual machine is used to perform functions such as object life cycle management, stack management, thread management, security and exception management, and garbage collection.
  • the system library can include multiple functional modules, such as surface manager, media library, 3D graphics processing library (such as OpenGL ES), 2D graphics engine (such as SGL), etc.
  • functional modules such as surface manager, media library, 3D graphics processing library (such as OpenGL ES), 2D graphics engine (such as SGL), etc.
  • the surface manager is used to manage the display subsystem and provide the fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as static image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing.
  • a 2D graphics engine is a drawing engine for 2D drawings.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Developmental Disabilities (AREA)
  • Physiology (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Child & Adolescent Psychology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开了一种前庭功能的风险检测方法及电子设备,可应用于运动健康技术领域,该方法包括:电子设备在待测人员保持第一动作期间采集加速度数据,在待测人员执行第四动作期间采集角速度数据,以及在待测人员执行第五动作期间采集瞳孔运动轨迹,并根据加速度数据,角速度数据以及瞳孔运动轨迹中的至少两项,确定前庭功能的评估结果,无需专业的设备或专业的人员协助,可以满足用户随时检测前庭功能的需求,便于及时采取相应的措施,防范于未然。

Description

前庭功能的风险检测方法及电子设备
本申请要求在2022年11月8日提交中国国家知识产权局、申请号为202211391846.3的中国专利申请的优先权,发明名称为“前庭功能的风险检测方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种前庭功能的风险检测方法及电子设备。
背景技术
平衡能力是人体最基本的运动素质之一,是进行其他体育活动的基础。人体的平衡系统由感知系统,神经系统和运动系统组成。其中,感知系统的核心为前庭功能,主要用于感受人体在空间的旋转加速。前庭功能与人体的空间定向能力、抗晕机能力、眩晕症、平衡障碍等疾病密切相关,因此世界各国普遍都很重视前庭功能的风险检测。
目前,前庭功能的风险检测项目较多,且每个风险检测项目需要专业的设备或者专业的人员协助,检测的门槛较高,无法满足用户随时检测的需求。
发明内容
本申请提供了一种前庭功能的风险检测方法及电子设备,无需专业的设备或专业的人员协助,可以满足用户随时检测的需求,便于及时采取相应的措施,防范于未然。
第一方面,提供了一种前庭功能的风险检测方法,包括:
电子设备在待测人员保持第一动作期间采集加速度数据,在待测人员执行第四动作期间采集角速度数据,以及在待测人员执行第五动作期间采集瞳孔运动轨迹,然后根据该加速度数据,角速度数据以及瞳孔运动轨迹中的至少两项,确定前庭功能的评估结果。
实施第一方面描述的方法,无需专业的设备或者专业人员的辅助,可以满足用户随时检测的需求,便于及时采取相应的措施,防范于未然。除此之外,由于前庭功能的评估结果是基于加速度数据,角速度数据,以及瞳孔运动轨迹中的至少两项确定的,前庭功能的评估结果是综合多方面因素确定的,前庭功能的评估结果更准确。
结合第一方面,在一些实施例中,第一动作包括闭目直立,双脚并拢站立,两手臂向两侧平举与肩齐平。可选的,在其他实施例中,第一动作还可以包括闭目直立,双脚并拢站立,两手臂向两侧自然下垂,等。
该第四动作包括向前行走以及已向前行走时后退。可选的,该第四动作可以包括向前行走M步以及已向前行走M步时后退N步,M,N为正整数;M与N可以相等,例如,M=5,N=5,M与N也可以不等,例如,M=5,N=4。
该第五动作包括在保持头部不动时眼睛注视显示的光点。可选的,该光点包括以点迹显示的光点,或者以航迹显示的光点。
结合第一方面,在一些实施例中,根据加速度数据,确定前庭功能的评估结果,包括:在待测人员保持第一动作期间,利用加速度传感器采集加速度数据,根据加速度数据,确定待测人员是否存在偏倒事件,根据偏倒事件,确定前庭功能的评估结果。
可选的,电子设备根据该加速度数据中加速度模值确定待测人员保持第一动作期间的加速度数据的变化,当该加速度数据的变化大于第一阈值时,确定待测人员存在偏倒事件;当该加速度数据的变化小于或等于第一阈值时,确定待测人员不存在偏倒事件。
可见,该实施例中,电子设备可以根据待测人员保持第一动作期间的加速度数据检测偏倒事件,无需专业的设备或专业的人员,就可完成前庭功能中闭目直立项目的风险检测。
结合第一方面,在一些实施例中,在待测人员保持第一动作期间,利用加速度传感器采集加速度数据之前,该方法还包括:输出第一交互指引信息;第一交互指引信息用于指示待测人员执行第一动作。
可见,该实施例中,电子设备可以通过第一交互指引信息引导待测人员完成前庭功能中闭目直立项目的风险检测。
结合第一方面,在一些实施例中,若存在偏倒事件,该方法还包括:电子设备采集待测人员保持第二动作期间的加速度数据和/或第三动作期间的加速度数据;根据采集的待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,确定待测人员存在迷路病变风险或小脑病变风险。
其中,第一动作、第二动作以及第三动作中待测人员的头部偏向方向不同;例如,第一动作中待测人员的头部正对前方,第二动作中待测人员的头部偏向左侧,第三动作中待测人员的头部偏向右侧。
可选的,若待测人员保持第一动作,第二动作,第三动作期间对应的两个或三个偏倒事件的偏倒方向一致,则确定待测人员存在小脑病变风险,否则,存在迷路病变风险。例如,当待测人员保持第一动作,第二动作以及第三动作期间对应的偏倒事件的偏倒方向均为“左”时,确定待测人员存在小脑病变风险。当待测人员保持第一动作期间对应的偏倒事件的偏倒方向为“后”,保持第二动作期间对应的偏倒事件的偏倒方向为“左”,保持第三动作期间对应的偏倒事件的偏倒方向为“右”,确定待测人员存在迷路病变风险。
可见,该实施例中,电子设备可以根据采集的待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,确定待测人员存在迷路病变风险或小脑病变风险。
结合第一方面,在一些实施例中,在采集待测人员保持第二动作期间的加速度数据和/或第三动作期间的加速度数据之前,该方法还包括:
输出第二交互指引信息,第二交互指引信息用于指示待测人员执行第二动作;和/或,
输出第三交互指引信息,第三交互指引信息用于指示待测人员执行第三动作。
结合第一方面,在一些实施例中,
输出第二交互指引信息之后,该方法还包括:通过陀螺仪传感器检测待测人员是否已执行第二动作;若检测到已执行,则执行的采集待测人员保持第二动作期间的加速度数据的步骤;和/或,
输出第三交互指引信息之后,该方法还包括:通过陀螺仪传感器检测待测人员是否已执行第三动作;若检测到已执行,则执行的采集待测人员保持第三动作期间的加速度数据的步骤。
结合第一方面,在一些实施例中,根据角速度数据,确定前庭功能的评估结果,包括:在待测人员执行第四动作期间,利用陀螺仪传感器采集角速度数据;根据角速度数据,确定执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角,根据夹角确定前庭功能的评估结果。
可选的,该第一角度可以是预设的阈值,例如,第一角度可以是根据大量用户的使用习惯确定的;或者,第一角度可以是由专业的人员在电子设备中设定的。如,第一角度为90度。
可选的,当上述夹角偏向右侧时,确定待测人员存在右侧前庭功能减弱;当上述夹角偏向左侧时,确定待测人员存在左侧前庭功能减弱。
可见,该实施例中,电子设备可以根据角速度数据,确定执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角,无需专业的设备或专业的人员,就可完成前庭功能中巴宾斯基-魏尔二式项目的风险检测。
结合第一方面,在一些实施例中,在待测人员执行第四动作期间,利用陀螺仪传感器采集角速度数据之前,该方法还包括:输出第四交互指引信息;第四交互指引信息用于指示待测人员执行第四动作。
可见,该实施例中,电子设备可以通过第四交互指引信息引导待测人员完成前庭功能中巴宾斯基-魏尔二式项目的风险检测。
结合第一方面,在一些实施例中,该方法还包括:输出第一分步指引信息,第一分步指引信息用于指示待测人员执行第四动作中的向前行走;输出第二分步指引信息,第二分步指引信息用于指示待测人员执行第四动作中的后退。
可选的,当该第四动作包括向前行走M步以及已向前行走时后退N步时,输出第一分步指引信息之后,该方法还包括:通过加速度传感器检测待测人员是否已向前行走M步;若检测到已向前行走M步,则输出第二分步指引信息。
可见,该实施例中,电子设备可以通过第一分步指引信息以及第二分步指引信息引导待测人员完成前庭功能的风险检测,可以更准确的引导待测人员完成前庭功能的风险检测,改善用户体验。
结合第一方面,在一些实施例中,根据瞳孔运动轨迹,确定前庭功能的评估结果,包括:在待测人员执行第五动作期间,利用摄像机采集瞳孔运动轨迹;基于瞳孔运动轨迹,确定待测人员是否存在眼震事件;根据眼震事件,确定前庭功能的评估结果。
可见,该实施例中,电子设备可以根据待测人员执行第五动作期间的瞳孔运动轨迹检测眼震事件,无需专业的设备或专业的人员,就可完成前庭功能中眼动项目的风险检测。
结合第一方面,在一些实施例中,该方法还包括:在待测人员执行第五动作期间,利用惯性传感器采集加速度或角速度数据;当加速度或角速度数据的变化小于第二阈值时,执行的基于瞳孔运动轨迹,确定待测人员是否存在眼震事件的步骤。
可见,该实施方式中,加速度或角速度数据的变化小于第二阈值用于指示待测人员在执行第五动作期间不存在抬头事件或者转头事件,避免待测人员的抬头事件或者转头事件影响瞳孔运动轨迹,可以得到更准确的瞳孔运动轨迹,从而有利于基于该瞳孔运动轨迹检测到更准确的眼震事件。
结合第一方面,在一些实施例中,基于瞳孔运动轨迹,确定待测人员是否存在眼震事件,包括:针对瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点的瞳孔摆动数据;根据瞳孔运动轨迹中瞳孔注视的每个光点的瞳孔摆动数据,确定瞳孔运动轨迹对应的疑似眼震检测结果,疑似眼震检测结果包括待测人员在瞳孔运动轨迹中瞳孔注视每个光点是否存在眼震事件;根据疑似眼震检测结果,确定待测人员是否存在眼震事件。
结合第一方面,在一些实施例中,该方法还包括:针对瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点时的头部姿态,若该光点对应的头部姿态的摆动方向与该光点对应的瞳孔摆动数据中的摆动方向一致,则从疑似眼震检测结果中去除该光点是否存在眼震事件的检测。
可见,该实施方式中,电子设备可以基于光点对应的头部姿态,对疑似眼震事件进行校准处理,避免头部姿态影响眼震事件的检测,有效提升眼震事件检测的准确性。
结合第一方面,在一些实施例中,该方法还包括:根据在待测人员执行第五动作期间采集的加速度或角速度数据,确定待测人员的头部偏移轨迹;利用头部偏移轨迹对瞳孔运动轨迹进行补偿处理,得到补偿后的瞳孔运动轨迹;根据补偿后的瞳孔运动轨迹以及光点的预设轨迹,确定待测人员是否存在扫视波不足。
可选的,电子设备计算补偿后的瞳孔运动轨迹的幅度与光点的预设轨迹的幅度之间的比值,若该比值处于第一取值区间,则确定待测人员存在扫视波不足;若比值处于第二取值区间,则确定待测人员存在扫视波过冲。
可见,该实施方式中,电子设备可以利用头部偏移轨迹对瞳孔运动轨迹进行补偿处理,补偿后的瞳孔运动轨迹更准确,从而基于补偿后的瞳孔运动轨迹可以得到更准确的扫视波不足或者扫视波过冲,有效提升扫视波检测的准确性。
结合第一方面,在一些实施例中,该方法还包括:输出第五交互指引信息;第五交互指引信息用于指示待测人员执行第五动作。
可见,该实施例中,电子设备可以通过第五交互指引信息引导待测人员完成前庭功能中眼动项目的风险检测。
结合第一方面,在一些实施例中,在输出第五交互指引信息之前,该方法还包括:
若通过距离传感器检测待测人员与光点之间的距离处于预设范围内,且通过摄像机检测光点处于待测人员的直视范围内,则执行输出第五交互指引信息的步骤。
可选的,电子设备通过距离传感器检测待测人员与光点之间的距离。若检测待测人员与光点之间的距离未处于预设范围内,则电子设备输出距离调整信息。其中,该距离调整信息用于指示待测人员调整待测人员与光点之间的距离,例如,靠近光点,远离光点。
可选的,电子设备通过摄像机拍摄待测人员的瞳孔图像,若基于该瞳孔图像中的瞳孔位置以及光点的位置检测到光点未处于待测人员的直视范围内,则电子设备输出位置调整信息。其中,该位置调整信息用于指示待测人员调整瞳孔位置,例如,向上移动脸部,向下移动脸部,向左移动脸部,向右移动脸部,等等。
第二方面,本申请提供了一种电子设备,包括触控屏,存储器,一个或多个处理器,多个应用程序,以及一个或多个程序;其中,所述一个或多个程序被存储在所述存储器中;所述一个或多个处理器在执行所述一个或多个程序时,使得所述电子设备实现第一方面所述的方法。
可选的,该电子设备还可以包括但不限于惯性传感器(如加速度传感器,陀螺仪传感器),摄像机,扬声器等。其中,加速度传感器用于在待测人员保持第一动作期间采集加速度数据,陀螺仪传感器用于在待测人员执行第四动作期间采集角速度数据,摄像机用于在待测人员执行第五动作期间采集瞳孔运动轨迹,扬声器用于输出交互指引信息(如第一交互指引信息,第二交互指引信息,第三交互指引信息,第四交互指引信息以及第五交互指引信息等)。
第三方面,本申请提供了一种计算机存储介质,包括计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行第一方面所述的方法。
第四方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第一方面所述的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请实施提供的一种电子设备的结构示意图;
图2是本申请实施提供的一种前庭功能的风险检测方法的流程示意图;
图3是本申请实施例提供的一种人机交互示意图;
图4是本申请实施例提供的一种加速度数据的变化示意图;
图5是本申请实施提供的另一种前庭功能的风险检测方法的流程示意图;
图6是本申请实施提供的再一种前庭功能的风险检测方法的流程示意图;
图7是本申请实施提供的一种夹角示意图;
图8是本申请实施提供的再一种前庭功能的风险检测方法的流程示意图;
图9是本申请实施提供的再一种前庭功能的风险检测方法的流程示意图;
图10是本申请实施例提供的另一种人机交互示意图;
图11是本申请实施例提供的一种基于加速度数据的变化统计步数的示意图;
图12是本申请实施提供的再一种前庭功能的风险检测方法的流程示意图;
图13是本申请实施提供的一种以预设轨迹显示的光点的示意图;
图14是本申请实施例提供的再一种人机交互示意图;
图15是本申请实施例提供的一种校准处理的示意图;
图16是本申请实施提供的一种补偿处理的示意图;
图17是本申请实施例提供的一种前庭功能的风险检测方法的场景示意图;
图18为本申请实施例提供的另一种电子设备的结构示意图;
图19为本申请实施例提供的一种软件架构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
目前,前庭功能的风险检测项目较多,包括但不限于闭目直立项目,巴宾斯基-魏尔二式项目(或者也可称为“五步行走项目”)以及眼动项目中的一项或多项。然而,现有的风险检测方法通常需要专业的设备或者专业的人员协助,检测的门槛较高,无法满足用户随时检测的需求。
本申请实施例提供了一种应用于便携式电子设备的前庭功能的风险检测方法,该方法具体包括:电子设备在待测人员保持第一动作期间采集加速度数据,在待测人员执行第四动作期间采集角速度数据,以及在待测人员执行第五动作期间采集瞳孔运动轨迹,并根据加速度数据、角速度数据以及瞳孔运动轨迹中的至少两项确定前庭功能的评估结果。可以通过便携式的电子设备确定前庭功能的评估结果,无需专业的设备或专业的人员协助,可以满足用户随时检测的需求,便于及时采取相应的措施,防范于未然。除此之外,由于前庭功能的评估结果是基于加速度数据,角速度数据,以及瞳孔运动轨迹中的至少两项确定的,前庭功能的评估结果是综合多方面因素确定的,前庭功能的评估结果更准确。
首先介绍本申请实施例中提供的示例性电子设备100。该电子设备100为便携式的电子设备,包括但不限于可穿戴电子设备(如智能眼镜,智能手表等),智能手机、平板电脑、笔记本电脑中的一项或多项。
图1示出了一种电子设备100的结构示意图。如图1所示,该电子设备可以包括但不限于头部姿态检测模块101,以及瞳孔追踪模块102。其中,头部姿态检测模块101用于在待测人员保持第一动作期间采 集加速度数据,和/或在待测人员执行第四动作期间采集角速度数据;瞳孔追踪模块102用于在待测人员执行第五动作期间采集瞳孔运动轨迹。可选的,在其他实施方式中,电子设备100还可包括交互指引模块103,用于输出交互指引信息。
以下分别阐述电子设备根据不同数据确定前庭功能的评估结果的相关实施例。
1、根据加速度数据,确定前庭功能的评估结果。
在待测人员保持第一动作期间,利用加速度传感器采集加速度数据,根据加速度数据确定待测人员是否存在偏倒事件,根据偏倒事件,确定前庭功能的评估结果。无需专业的设备或者专业的人员协助,利用便携式的电子设备就可完成前庭功能中闭目直立项目的风险检测,可以满足用户随时检测的需求。
图2示出了一种前庭功能的风险检测方法的流程示意图。如图2所示,该前庭功能的风险检测方法包括但不限于S201-S205:
S201:电子设备输出第一交互指引信息。
其中,第一交互指引信息用于指示待测人员执行第一动作。可选的,第一动作包括闭目直立,双脚并拢站立,两手臂向两侧平举与肩齐平。在其他实施例中,第一动作还可以包括其他类似动作,例如闭目直立,双脚并拢站立,两手臂向两侧自然下垂,等,不做限定。
可选的,第一交互指引信息可以包括扬声器输出的语音信息。例如,如图3的(b)所示,第一交互指引信息为电子设备的扬声器输出的语音信息“请受试者闭目,双脚并拢站立,两手臂向两侧平举与肩齐平”。需要说明,第一交互指引信息还可以为其他形式,例如,第一交互指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
一种可选的实施方式中,电子设备可以接收待测人员的触发操作,响应该触发操作,启动对应的风险检测并输出第一交互指引信息。例如,图3的(a)示出了一种启动风险检测的人机交互示意图。如图3的(a)所示,电子设备可显示前庭功能的风险评估界面30,该风险评估界面30包括项目列表31。项目列表31可以包括前庭功能的各个风险检测项目对应的选项,例如,图中所示的闭目直立选项311,巴宾斯基-魏尔二式选项312等,项目列表31中可以显示部分或全部的风险检测项目对应的选项;待测人员可以通过滑动操作查看项目列表31的隐藏部分,例如,眼动选项313。用户可以在风险评估界面30输入针对闭目直立选项311的触发操作(图示以点击操作为例),电子设备可以接收该触发操作,并响应该触发操作启动针对闭目直立项目的风险检测,输出第一交互指引信息,如图3的(a)到图3的(b)所示。
可选的,电子设备还可以在项目列表的选项附近显示操作提示,该操作提示可用于指示启动该选项对应的风险检测项目的触发操作。这样,便于待测人员了解如何快速启动一个选项对应的风险检测项目,减轻记忆负担。例如,如图3的(a)所示,闭目直立选项311的下方显示了提示信息311-1“点击进入”。
S202:待测人员执行第一交互指引信息指示的第一动作。
图3的(c)示出了一种待测人员执行第一动作的姿态示意图。
S203:电子设备在待测人员保持第一动作期间,利用加速度传感器采集加速度数据。
如图3的(c)所示,电子设备(如图所示的智能眼镜300)可在待测人员保持第一动作期间,利用加速度传感器采集加速度数据。
其中,加速度数据包括待测人员保持第一动作期间的加速度模值和加速度矢量方向。加速度模值用于指示瞬时的加速度大小,加速度矢量方向用于指示瞬时的加速度方向。
S204:电子设备根据待测人员保持第一动作期间的加速度数据,确定待测人员是否存在偏倒事件。
一种可选的实施方式中,电子设备根据该加速度数据中加速度模值确定待测人员保持第一动作期间的加速度数据的变化,当该加速度数据的变化大于第一阈值时,确定待测人员存在偏倒事件;当该加速度数据的变化小于或等于第一阈值时,确定待测人员不存在偏倒事件。其中,第一阈值可以是预设的阈值,例如,第一阈值可以是根据大量用户的使用习惯确定的;或者,第一阈值也可以是由专业人员在电子设备中设定的。
可选的,加速度数据的变化可以通过以下一项或多项数据进行指示:加速度模值的平均值,加速度模值的方差,加速度模值的标准差。需要说明,加速度数据的变化可以是基于加速度数据中部分或全部的加速度模值确定的。
图4以加速度数据的变化是基于加速度数据中部分的加速度模值确定的为例。如图4所示,图4的横轴用于表示待测人员保持第一动作期间的各个时刻,纵轴用于表示加速度数据中的加速度模值。加速度数据的变化是基于滑动时间窗401内的加速度模值确定的,滑动时间窗401包括加速度数据中部分的加速度模值。
需要说明,电子设备采集待测人员保持第一动作期间的加速度数据的步骤是在检测到偏倒事件时结束的,或者,是检测到定时器的定时时长达到预设时长时结束的。该预设时长可以是预设的阈值,例如,预设时长可以是根据大量用户的使用习惯确定的;或者,预设时长也可以是由专业的人员在电子设备中设定的。
S205:根据偏倒事件,确定前庭功能的评估结果。
一种可选的实施方式中,若不存在偏倒事件,则确定前庭功能的评估结果包括第一评估结果,第一评估结果用于指示待测人员的闭目直立项目的风险检测通过;若存在偏倒事件,则确定前庭功能的评估结果包括第二评估结果,第二评估结果用于指示待测人员的闭目直立项目的风险检测失败。
可选的,电子设备可以输出第一评估结果或者第二评估结果。第一评估结果和第二评估结果可以是扬声器输出的语音信息,也可以为显示屏输出的文本信息,例如,第一评估结果和第二评估结果为显示屏输出的不同数值,如第一评估结果为风险值“0”,第二评估结果为风险值“1”;又例如,第一评估结果和第二评估结果为显示屏输出的不同文字,如第一评估结果为“该检测通过”,第二评估结果为“该检测失败”,如图3的(d)的301和302所示。
在本申请实施例中,便携式的电子设备可以通过第一交互指引信息引导待测人员执行第一动作,并在待测人员保持第一动作期间,利用加速度传感器采集加速度数据,根据加速度数据确定待测人员是否存在偏倒事件,并根据偏倒事件,确定前庭功能的评估结果。无需专业的设备或者专业的人员协助,利用便携式的电子设备就可完成前庭功能中闭目直立项目的风险检测,可以满足用户随时检测的需求。
在一些实施例中,电子设备还可以根据采集的待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,确定待测人员存在迷路病变风险或小脑病变风险。
图5示出了另一种前庭功能的风险检测方法的流程示意图。如图5所示,该前庭功能的风险检测方法包括但不限于S501-S510:
S501:电子设备输出第一交互指引信息。
S502:待测人员执行第一交互指引信息指示的第一动作。
S503:电子设备在待测人员保持第一动作期间,利用加速度传感器采集加速度数据。
针对步骤S501-S503的阐述请参见图2的相关实施例,不再赘述。
S504:电子设备输出第二交互指引信息。
其中,第二交互指引信息用于指示待测人员执行第二动作。其中,第一动作与第二动作中待测人员的头部偏向方向不同。例如,第一动作中待测人员的头部正对前方,第二动作中待测人员的头部偏向左侧。
可选的,第二交互指引信息可以包括扬声器输出的语音信息。例如,如图3的(e)所示,第二交互指引信息可以为扬声器输出的语音信息“请受试者闭目,双脚并拢站立,两手臂向两侧平举与肩齐平,头部向左转动90度”。需要说明,第二交互指引信息还可以为其他形式,例如,第二交互指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
S505:待测人员执行第二交互指引信息指示的第二动作。
图3的(f)示出了一种待测人员执行第二动作的姿态示意图。
S506:电子设备在待测人员保持第二动作期间,利用加速度传感器采集加速度数据。
如图3的(f)所示,电子设备(如图所示的智能眼镜300)可在待测人员保持第二动作期间,利用加速度传感器采集加速度数据。
可选的,在电子设备执行S506之前,该前庭功能的风险检测方法还可以包括:通过陀螺仪传感器检测待测人员是否已执行第二动作;若检测到已执行,则执行S506。
一种可选的实施方式中,通过陀螺仪传感器检测待测人员是否已执行第二动作包括:利用陀螺仪传感器采集待测人员执行第二动作期间的角速度数据,并根据该角速度数据确定待测人员执行第二动作的起始方向与终止方向之间的夹角,当该夹角为向左旋转的夹角,或该夹角为向左旋转的90度夹角时,检测到待测人员已执行第二动作。否则,检测到未执行。
需要说明,待测人员执行第二动作的起始方向与终止方向之间的夹角是基于待测人员执行第二动作期间的角速度数据的时间积分得到的。
S507:电子设备输出第三交互指引信息。
其中,第三交互指引信息用于指示待测人员执行第三动作。其中,第一动作,第二动作以及第三动作中待测人员的头部偏向方向不同。例如,第一动作中待测人员的头部正对前方,第二动作中待测人员的头 部偏向左侧,第三动作中待测人员的头部偏向右侧。
可选的,第三交互指引信息可以包括扬声器输出的语音信息。例如,如图3的(g)所示,第三交互指引信息可以为扬声器输出的语音信息“请受试者闭目,双脚并拢站立,两手臂向两侧平举与肩齐平,头部向右转动90度”。需要说明,第三交互指引信息还可以为其他形式,例如,第三交互指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
S508:待测人员执行第三交互指引信息指示的第三动作。
图3的(h)示出了一种待测人员执行第三动作的姿态示意图。
S509:电子设备在待测人员保持第三动作期间,利用加速度传感器采集加速度数据。
如图3的(h)所示,电子设备(如图所示的智能眼镜300)可在待测人员保持第三动作期间,利用加速度传感器采集加速度数据。
可选的,在电子设备执行S509之前,该前庭功能的风险检测方法还可以包括:通过陀螺仪传感器检测待测人员是否已执行第三动作;若检测到已执行,则执行S509。相关的实现方式参见S506,不再赘述。
需要说明,电子设备可以执行步骤S501-S503,步骤S504-S506,步骤S507-S509中的两项或多项。步骤S501-S503,步骤S504-S506以及步骤S507-S509是三项并列的操作,本申请对这三项的执行顺序不做限定,例如,在电子设备执行了步骤S501-S503和步骤S504-S506时,电子设备可以先执行步骤S501-S503,再执行步骤S504-S506,也可以同时执行步骤S501-S503和步骤S504-S506;又例如,在电子设备执行了步骤S501-S503,步骤S504-S506和步骤S507-S509时,电子设备可以先执行步骤S501-S503,再执行步骤S504-S506,最后执行步骤S507-S509,也可以先同时执行步骤S501-S503和步骤S504-S506,再执行步骤S507-S509,还可以同时执行步骤S501-S503,步骤S504-S506,和步骤S507-S509。
S510:电子设备根据采集的待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,确定待测人员存在迷路病变风险或小脑病变风险。
一种可选的实施方式中,针对采集的待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,检测待测人员保持第一动作,第二动作,第三动作期间对应的偏倒事件,若待测人员保持第一动作,第二动作,第三动作期间对应的两个或三个偏倒事件的偏倒方向一致,则确定待测人员存在小脑病变风险,否则,存在迷路病变风险。
可选的,电子设备可基于待测人员保持第一动作期间的加速度数据,确定待测人员保持第一动作期间对应的偏倒事件的偏倒方向。具体包括:电子设备可基于待测人员保持第一动作期间的加速度数据,检测待测人员保持第一动作期间对应的偏倒事件,并从该加速度数据中获取,检测到该偏倒事件时的加速度方向,将该加速度方向作为偏倒事件的偏倒方向。同理,电子设备可以确定待测人员保持第二动作期间对应的偏倒事件的偏倒方向,以及待测人员保持第三动作期间对应的偏倒事件的偏倒方向。
一种可选的实施方式中,S205所述的第二评估结果还可以用于指示待测人员保持第一动作,第二动作,第三动作期间对应的两个或三个偏倒事件的偏倒方向,以及待测人员存在小脑病变风险或者存在迷路病变风险。例如,如图3的(d)所示,第二评估结果302-1用于指示待测人员保持第一动作,第二动作以及第三动作期间对应的偏倒事件的偏倒方向均为“左”,且待测人员存在小脑病变风险。或者,第二评估结果302-2用于指示待测人员保持第一动作期间对应的偏倒事件的偏倒方向为“后”,保持第二动作期间对应的偏倒事件的偏倒方向为“左”,保持第三动作期间对应的偏倒事件的偏倒方向为“右”,且待测人员存在迷路病变风险。
可见,本申请实施例中,便携式的电子设备还可以根据采集的待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,确定待测人员存在迷路病变风险或小脑病变风险,便于待测人员及时采取相应的措施,防范于未然。
2、根据角速度数据,确定前庭功能的风险值。
在待测人员执行第四动作期间,利用陀螺仪传感器采集角速度数据,并根据角速度数据,确定执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角;根据夹角,确定前庭功能的评估结果。无需专业的设备或者专业的人员协助,利用便携式的电子设备就可完成前庭功能中巴宾斯基-魏尔二式项目的风险检测,可以满足用户随时检测的需求。
图6示出了再一种前庭功能的风险检测方法的流程示意图。如图6所示,该前庭功能的风险检测方法包括但不限于S601-S605:
S601:电子设备输出第四交互指引信息。
其中,该第四交互指引信息用于指示待测人员执行第四动作。该第四动作包括向前行走,以及已向前行走时后退。
可选的,第四交互指引信息包括扬声器输出的语音信息,例如“请保持直立,保持头部方向与行走方向一致,闭眼,向前行走,然后后退”。需要说明,第四交互指引信息还可以为其他形式,例如,第四交互指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
S602:待测人员执行第四交互指引信息指示的第四动作。
S603:电子设备在待测人员执行第四动作期间,利用陀螺仪传感器采集角速度数据。
其中,角速度数据包括待测人员执行第四动作期间的角速度模值和角速度矢量方向。角速度模值用于指示瞬时的角速度大小,角速度矢量方向用于指示瞬时的角速度方向。
S604:电子设备根据角速度数据,确定执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角。
需要说明,执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角,是对待测人员执行第四动作期间的角速度数据进行时间积分得到的。
图7示出了一种夹角的示意图。图7以带箭头的实线表示执行第四动作中向前行走的前进方向,以带箭头的虚线表示执行第四动作中后退的后退方向,如图7的(a)所示,该夹角可能为偏向右侧的如图7的(b)所示,该夹角也可能为偏向左侧的
S605:根据该夹角,确定前庭功能的评估结果。
一种可选的实施方式中,若该夹角小于或等于第一角度,则确定前庭功能的评估结果包括第三评估结果,该第三评估结果用于指示待测人员的巴宾斯基-魏尔二式项目的风险检测通过;若该夹角大于第一角度,则确定前庭功能的评估结果包括第四评估结果,该第四评估结果用于指示待测人员巴宾斯基-魏尔二式项目的风险检测失败。需要说明,该第一角度可以是预设的阈值,例如,第一角度可以是根据大量用户的使用习惯确定的;或者,第一角度也可以是由专业的人员在电子设备中设定的。如,第一角度为90度。
可选的,第四风险评估还用于提示待测人员存在右侧前庭功能减弱,或者左侧前庭功能减弱。需要说明,当上述夹角为偏向右侧的时,第四评估结果用于指示待测人员存在右侧前庭功能减弱;当上述夹角为偏向左侧的时,第四评估结果用于指示待测人员存在左侧前庭功能减弱。
在本申请实施例中,便携式的电子设备可以根据待测人员执行第四动作期间的角速度数据,确定执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角,并根据该夹角确定前庭功能的评估结果,无需专业的设备。并且,便携式的电子设备可以通过第四交互指引信息引导待测人员完成前庭功能的风险检测,无需专业人员的辅助,可以满足用户随时检测的需求。除此之外,便携式的电子设备还可以根据执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角确定待测人员存在右侧前庭功能减弱或者左侧前庭功能减弱,便于待测人员及时采取相应的措施,防范于未然。
在一些可选的实施方式中,便携式的电子设备还可以通过第一分步指引信息以及第二分步指引信息引导待测人员完成前庭功能的风险检测。图8示出了再一种前庭功能的风险检测方法的流程示意图。如图8所示,该前庭功能的风险检测方法包括但不限于S801-S807:
S801:电子设备输出第一分步指引信息。
其中,该第一分步指引信息用于指示待测人员执行第四动作中的向前行走。
S802:待测人员执行第四动作中的向前行走。
S803:电子设备输出第二分步指引信息。
其中,该第二分步指引信息用于指示待测人员执行第四动作中的后退。
S804:待测人员执行第四动作中的后退。
也就是说,待测人员在已向前行走时后退。
S805:电子设备在待测人员执行向前行走,以及在已向前行走时后退期间,利用陀螺仪传感器采集角速度数据。
S806:电子设备根据角速度数据,确定执行第四动作中向前行走的前进方向与执行第四动作中后退的后退方向之间的夹角。
S807:根据该夹角,确定前庭功能的评估结果。
需要说明,针对步骤S805-S807的相关描述可参见图6的相关实施例,不再赘述。
在本申请实施例中,便携式的电子设备可以分别通过第一分步指引信息以及第二分步指引信息引导待 测人员完成前庭功能的风险检测,可以更准确的引导待测人员完成前庭功能的风险检测,改善用户体验。
另一些可选的实施方式中,第四动作还可包括向前行走M步,以及在已向前行走M步时后退N步,M,N为正整数;M与N可以相等,例如M=5,N=5,M与N也可以不等,例如,M=5,N=4。图9示出了再一种前庭功能的风险检测方法的流程示意图。如图9所示,该前庭功能的风险检测方法包括但不限于S901-S907:
S901:电子设备输出第一分步指引信息。
其中,该第一分步指引信息用于指示待测人员执行第四动作中的向前行走M步。
可选的,第一分步指引信息包括扬声器输出的语音信息,例如,如图10的(b)所示,第一分步指引信息为电子设备的扬声器输出的语音信息“请保持直立,保持头部方向与行走方向一致,闭眼,向前行走M步。需要说明,第一分步指引信息还可以为其他形式,例如,第一分步指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
一种可选的实施方式中,电子设备可以接收待测人员的触发操作,响应该触发操作,启动对应的风险检测并输出执行第四动作中的向前行走M步对应的第一分步指引信息。例如,用户可以在风险评估界面30输入针对巴宾斯基-魏尔二式选项312的触发操作(图示以点击操作为例),电子设备可以接收该触发操作,并响应该触发操作启动针对巴宾斯基-魏尔二式项目的风险检测,输出第一分步指引信息,如图10的(a)到图10的(b)所示。
S902:待测人员执行第四动作中的向前行走M步。
图10的(c)示出了一种待测人员执行第四动作中的向前行走M步的姿态示意图。
S903:电子设备输出第二分步指引信息。
其中,该第二分步指引信息用于指示待测人员执行第四动作中的后退N步。
可选的,第二分步指引信息包括扬声器输出的语音信息,例如,如图10的(d)所示,第二分步指引信息为电子设备的扬声器输出的语音信息“请后退N步”。需要说明,第二分步指引信息还可以为其他形式,例如,第二分步指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
一种可选的实施方式中,该前庭功能的风险检测方法还包括:通过加速度传感器检测待测人员是否已向前行走M步,若检测到已向前行走M步,则执行S903。具体的,在待测人员执行第四动作中的向前行走M步期间,利用加速度传感器采集加速度数据,根据加速度数据的变化统计待测人员向前行走的步数K;当K=M时,检测到已向前行走M步。其中,K为正整数。图11示出了一种根据加速度数据的变化统计待测人员向前行走的步数K的示意图,如图11所示,图11的横轴用于表示待测人员向前行走期间的各个时刻,纵轴用于表示加速度数据的加速度模值。
可选的,电子设备根据加速度数据的变化统计待测人员向前行走的步数K,可以基于以下一种或多种算法实现:阈值法,窗口峰值检测法(WPD),过零统计(MCC),归一化自相关步数统计(NASC),动态时间规划(DTW),短时傅里叶变换(STFT),连续/离散小波变换(CWT/DWT)等等,不做限定。
S904:待测人员执行第四动作中的后退N步。
图10的(e)示出了一种待测人员执行第四动作中的后退N步的姿态示意图。
可选的,待测人员还可以重复执行步骤S901-S904,直至待测人员重复执行Q次第四动作,Q为正整数,例如,Q=1,或者,Q=5。
一种可选的实施方式中,在待测人员重复执行了多次第四动作时,该前庭功能的风险检测方法还包括:通过加速度传感器检测待测人员是否已后退N步,若检测到已后退N步,则执行S901。相关实施例可以参见S903,不再赘述。
S905:电子设备在待测人员重复执行Q次向前行走M步,以及在已向前行走M步时后退N步期间,利用陀螺仪传感器采集角速度数据。
S906:电子设备根据角速度数据,确定首次执行第四动作中向前行走M步的前进方向与最后一次执行第四动作中后退N步的后退方向之间的夹角。
S907:根据该夹角,确定前庭功能的评估结果。
需要说明,针对步骤S905-S907的相关描述可参见图6的相关实施例,不再赘述。
一种可选的实施方式中,电子设备可以根据该夹角输出巴宾斯基-魏尔二式项目的第一评估结果和第二评估结果。例如,如图10所示,电子设备可以输出第一评估结果1001,第二风险结果1002-1或者第二风 险结果1002-2。
在本申请实施例中,便携式的电子设备可以通过第一分步指引信息引导待测人员向前行走M步,以及通过第二分步指引信息引导在待测人员已向前行走M步时后退N步,可以更准确的引导待测人员完成前庭功能的风险检测。
3、根据瞳孔运动轨迹,确定前庭功能的风险值。
在待测人员执行第五动作期间,利用摄像机采集瞳孔运动轨迹,基于瞳孔运动轨迹,确定待测人员是否存在眼震事件;根据眼震事件,确定前庭功能的评估结果。无需专业的设备或者专业的人员协助,利用便携式的电子设备就可完成前庭功能中眼动项目的风险检测,可以满足用户随时检测的需求。
图12示出了再一种前庭功能的风险检测方法的流程示意图。如图12所示,该前庭功能的风险检测方法包括但不限于S1201-S1206:
S1201:电子设备输出第五交互指引信息。
其中,该第五交互指引信息用于指示待测人员执行第五动作。该第五动作包括保持头部不动时眼睛注视以预设轨迹显示的光点。
可选的,以预设轨迹显示的光点包括以点迹显示的光点。如图13的(a)所示,用四角星表示光点,电子设备可按照以下顺序依次在显示屏上显示光点:中央→右侧→左侧→中央→上侧→下侧→中央。需要说明,以点迹显示的光点可以应用于眼动项目的凝视检测中。
可选的,以预设轨迹显示的光点包括以航迹显示的光点,如图13的(b)所示,电子设备可按照图示的波形图在显示屏上显示光点。该波形图可以的幅度和频率可以为任意值,例如,幅度为33度,频率0.3Hz(赫兹)。需要说明,以航迹显示的光点可以应用于眼动项目的扫视检测中。
可选的,第五交互指引信息包括扬声器输出的语音信息,例如,如图14的(b)所示,第五交互指引信息为电子设备的扬声器输出的语音信息“请保持头部不动,不要眨眼,眼睛注视显示的光点”。需要说明,第五交互指引信息还可以为其他形式,例如,第五交互指引信息不为扬声器输出的语音信息,而是显示在显示屏上的文本信息,图像信息等,不做限定。
一种可选的实施方式中,在电子设备执行S1201之前,该前庭功能的风险检测方法还包括:通过距离传感器检测待测人员与光点之间的距离处于预设范围内,且通过摄像机检测所述光点处于待测人员的直视范围内。其中,预设范围可以是预设的,例如,预设范围可以是根据大量用户的使用习惯确定的;或者,预设范围也可以是由专业的人员在电子设备中设定的,如预设范围为0.5米-1米。其中,直视范围是指眼睛直视所能看到的范围。
可选的,电子设备可通过以下步骤调整待测人员与光点之间的距离处于预设范围内:
s11,电子设备通过距离传感器检测待测人员与光点之间的距离。
s12,若检测待测人员与光点之间的距离未处于预设范围内,则电子设备输出距离调整信息。
其中,该距离调整信息用于指示待测人员调整待测人员与光点之间的距离,例如,靠近光点,远离光点。
重复执行s11-s12,直至电子设备检测到待测人员与光点之间的距离处于预设范围内。
可选的,电子设备可通过以下步骤调整光点处于待测人员的直视范围内:
s21,电子设备通过摄像机拍摄待测人员的瞳孔图像。
s22,若基于该瞳孔图像中的瞳孔位置以及光点的位置检测到光点未处于待测人员的直视范围内,则电子设备输出位置调整信息。
其中,该位置调整信息用于指示待测人员调整瞳孔位置,例如,向上移动脸部,向下移动脸部,向左移动脸部,向右移动脸部,等等。
重复执行s21-s22,直至电子设备检测到光点处于待测人员的直视范围内。
一种可选的实施方式中,电子设备可以接收待测人员的触发操作,响应该触发操作,启动对应的风险检测并输出第五交互指引信息。例如,用户可以在风险评估界面30输入针对眼动选项313的触发操作(图示以点击操作为例),电子设备可以接收该触发操作,并响应该触发操作启动针对眼动项目的风险检测,输出第五交互指引信息,如图14的(a)到图14的(b)所示。
S1202:待测人员执行第五动作。
图14的(c)示出了一种待测人员执行第五动作的姿态示意图。
S1203:在待测人员执行第五动作期间,利用摄像机采集瞳孔运动轨迹。
一种可选的实施方式中,在待测人员执行第五动作期间,利用摄像机采集瞳孔运动轨迹包括:在待测人员执行第五动作期间采集瞳孔序列图像,并基于瞳孔追踪算法对瞳孔序列图像的各帧瞳孔图像进行数据处理,确定待测人员执行第五动作期间的瞳孔运动轨迹。
可选的,该瞳孔追踪算法包括但不限于巩膜-虹膜边缘法、瞳孔追踪方法、瞳孔-角膜反射法中的一种或多种。
其中,瞳孔序列图像是指由摄像机连续采集到的多帧瞳孔图像按照采集先后顺序进行排列所构成的图像集。需要说明,本申请对瞳孔序列图像中的瞳孔图像的格式不做限定,例如,瞳孔图像的分辨率可以是任意值;如600*800,或者3000*4000,等等。又例如,瞳孔图像可以位于任意颜色空间;如瞳孔图像为RGB图像,其中,R表示红色、G表示绿色、B表示蓝色等等。
一种可选的实施方式中,该前庭功能的风险检测方法还包括:在待测人员执行第五动作期间,利用惯性传感器采集加速度或角速度数据;当加速度或角速度数据的变化小于第二阈值时,执行基于瞳孔运动轨迹,确定待测人员是否存在眼震事件的步骤。否则,电子设备确定前庭功能的风险检测失败,更新前庭功能的风险值。可参见图2的相关实施例,不再赘述。
需要说明,电子设备的惯性传感器包括加速度传感器和陀螺仪传感器,加速度传感器用于采集加速度数据,陀螺仪传感器用于采集角速度数据。
可见,该实施方式中,加速度或角速度数据的变化小于第二阈值用于指示待测人员在执行第五动作期间不存在抬头事件或者转头事件,避免待测人员的抬头事件或者转头事件影响瞳孔运动轨迹,可以得到更准确的瞳孔运动轨迹,从而有利于基于该瞳孔运动轨迹检测到更准确的眼震事件。
S1204:电子设备基于瞳孔运动轨迹,确定待测人员是否存在眼震事件。
一种可选的实施方式中,针对瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点的瞳孔摆动数据,根据瞳孔运动轨迹中瞳孔注视的每个光点的瞳孔摆动数据,确定瞳孔运动轨迹对应的疑似眼震检测结果,疑似眼震检测结果包括待测人员在瞳孔运动轨迹中瞳孔注视每个光点是否存在眼震事件,根据疑似眼震检测结果,确定待测人员是否存在眼震事件。
可选的,瞳孔摆动数据包括但不限于无摆动,左右摆动,上下摆动,前后轴反复转动,等等。其中,瞳孔运动轨迹中瞳孔注视的每个光点的瞳孔摆动数据是基于瞳孔注视每个光点的多帧瞳孔图像确定的,该多帧瞳孔图像按照采集先后顺序进行排列。例如,如图15的(a)所示,瞳孔运动轨迹中包括瞳孔注视中央光点的三帧瞳孔图像,电子设备可以基于该三帧图像确定瞳孔注视中央光点存在左右摆动。
一种可选的实施方式中,根据瞳孔运动轨迹中瞳孔注视的每个光点的瞳孔摆动数据,确定瞳孔运动轨迹对应的疑似眼震检测结果,包括:当瞳孔运动轨迹中瞳孔注视的每个光点的瞳孔摆动数据指示瞳孔注视的每个光点存在左右摆动,上下摆动,前后轴反复转动中任意一种时,确定对应的疑似眼震检测结果,该疑似眼震检测结果用于指示待测人员的瞳孔注视该光点存在眼震事件;否则,不存在眼震事件。例如,如图15的(a)所示,瞳孔摆动数据指示瞳孔注视中央光点存在左右摆动,确定待测人员在瞳孔运动轨迹中瞳孔注视中央光点存在眼震事件。
可选的,根据疑似眼震检测结果,确定待测人员是否存在眼震事件包括:针对瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点时的头部姿态,若该光点对应的头部姿态的摆动方向与该光点对应的瞳孔摆动数据中的摆动方向一致,则从疑似眼震检测结果中去除该光点是否存在眼震事件的检测。例如,如图15的(b)所示,若中央光点对应的头部姿态的摆动方向为左右摆动,如图15的(a)所示,中央光点对应的瞳孔摆动数据中的摆动方向为左右摆动,则从疑似眼震检测结果中去除中央光点是否存在眼震事件的检测,即确定待测人员在瞳孔运动轨迹中瞳孔注视中央光点不存在眼震事件。
一种可选的实施方式中,针对瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点时的头部姿态,包括:从待测人员执行第五动作期间,采集的加速度或角速度数据中,获取瞳孔运动轨迹中瞳孔注视的每个光点的加速度或角速度数据,根据加速度或角速度数据确定瞳孔注视该光点时的头部姿态。需要说明,头部姿态的摆动方向可以是基于加速度数据中加速度矢量方向确定的,还可以是基于角速度数据中角速度矢量方向确定的,也可以是基于对角速度数据进行时间积分确定的,不做限定。
可见,该实施方式中,电子设备可以基于光点对应的头部姿态,对疑似眼震事件进行校准处理,避免头部姿态影响眼震事件的检测,有效提升眼震事件检测的准确性。
S1205:根据眼震事件,确定前庭功能的评估结果。
一种可选的实施方式中,若不存在眼震事件,则确定前庭功能的评估结果包括第五风险结果,该第五风险结果用于指示待测人员的眼动项目的风险检测通过。可选的,在瞳孔运动轨迹中瞳孔注视每个光点均 不存在眼震事件时,确定不存在眼震事件。另一种可选的实施方式中,若在瞳孔运动轨迹中瞳孔注视任一光点存在眼震事件,则确定存在眼震事件,并确定前庭功能的评估结果包括第六风险结果,该第六风险结果用于指示待测人员眼动项目的风险检测失败。可选的,该第六风险结果还可用于指示待测人员的眼震方向和/或眼震强度。其中,眼震方向包括但不限于水平眼震,垂直眼震,旋转眼震中的一种或多种。需要说明,水平眼震是指存在瞳孔运动轨迹中瞳孔注视一个或多个光点存在左右摆动,垂直眼震是指存在瞳孔运动轨迹中瞳孔注视一个或多个光点存在上下摆动,旋转眼震是指存在瞳孔运动轨迹中瞳孔注视一个或多个光点存在前后轴反复转动。其中,眼震强度是指按照待测人员注视各个光点的眼震事件进行划分,例如,当待测人员在注视快相侧(左侧光点和/或右侧光点)出现眼震事件时,为Ⅰ级;当待测人员在凝视快相侧(左侧光点和/或右侧),以及中央光点出现眼震事件时,为Ⅱ级;当待测人员在凝视快相侧(左侧光点和/或右侧光点),中央光点以及慢向侧(上侧光点和/或下侧光点)均出现眼震事件时,为Ⅲ级。例如,如图14的(d)所示,第六风险结果1402为显示屏输出的文字“存在水平眼震,垂直眼震,且眼震强度为Ⅱ级”。
一种可选的实施方式中,该前庭功能的风险检测方法还可包括:S1206,电子设备基于瞳孔运动轨迹,确定待测人员是否存在扫视波不足。
可选的,电子设备根据在待测人员执行第五动作期间采集的加速度或角速度数据,确定待测人员的头部偏移轨迹;利用头部偏移轨迹对瞳孔运动轨迹进行补偿处理,得到补偿后的瞳孔运动轨迹,根据补偿后的瞳孔运动轨迹以及光点的预设轨迹,确定待测人员是否存在扫视波不足。需要说明,头部偏移轨迹是对待测人员执行第五动作期间的加速度或角速度数据进行时间积分得到的。
下面结合图16的波形图阐述补偿处理。用实线表示光点的预设轨迹,用虚线表示瞳孔运动轨迹,用点虚线表示补偿后的瞳孔运动轨迹,图16的(a)示出了光点的预设轨迹,以及瞳孔运动轨迹。图16的(b)示出了光点的预设轨迹,以及补偿后的瞳孔运动轨迹。
可选的,电子设备根据补偿后的瞳孔运动轨迹以及光点的预设轨迹,确定待测人员是否存在扫视波不足包括:计算补偿后的瞳孔运动轨迹的幅度与光点的预设轨迹的幅度之间的比值,若该比值处于第一取值区间,则确定待测人员存在扫视波不足;若比值处于第二取值区间,则确定待测人员存在扫视波过冲。
一种可选的实施方式中,电子设备可以根据扫视波检测确定前庭功能的评估结果包括第七风险结果,该第七风险结果用于指示待测人员存在扫视波不足或者扫视波过冲。例如,如图14的(d)所示,第七风险结果1403为显示屏输出的文字“扫视波不足”。
可见,该实施方式中,电子设备可以利用头部偏移轨迹对瞳孔运动轨迹进行补偿处理,补偿后的瞳孔运动轨迹更准确,从而基于补偿后的瞳孔运动轨迹可以得到更准确的扫视波不足或者扫视波过冲,有效提升扫视波检测的准确性。
在本申请实施例中,便携式的电子设备可以根据待测人员执行第五动作期间的瞳孔运动轨迹检测眼震事件,并根据眼震事件确定前庭功能的评估结果,无需专业的设备。并且,便携式的电子设备可以通过第五交互指引信息引导待测人员完成前庭功能的风险检测,无需专业人员的辅助,可以满足用户随时检测的需求。除此之外,便携式的电子设备还可以根据待测人员执行第五动作期间的加速度或角速度数据检测抬头事件或者转头事件,避免待测人员的抬头事件或者转头事件影响瞳孔运动轨迹的准确性。同时,电子设备还可以对疑似眼震事件进行校准处理,避免头部姿态影响眼震事件的检测,有效提升眼震事件检测的准确性,以及对瞳孔运动轨迹进行补偿处理,有效提升扫视波检测的准确性。
前述实施例描述了电子设备分别根据加速度数据,角速度数据,以及瞳孔运动轨迹确定前庭功能的评估结果。下面阐述电子设备根据加速度数据,角速度数据,以及瞳孔运动轨迹中的至少两项确定前庭功能的评估结果。
图17以电子设备根据加速度数据,角速度数据,以及瞳孔运动轨迹中的三项确定前庭功能的评估结果为例,详细阐述本申请的一种场景实施例。示例性的,用前庭功能的风险值R表示前庭功能的评估结果。
S1701,电子设备初始化前庭功能的风险值(以R=0为例)。
S1702,电子设备根据在待测人员保持第一动作期间采集的加速度数据,确定前庭功能的风险值。
可选的,若基于待测人员保持第一动作期间的加速度数据检测到偏倒事件,则电子设备确定风险检测失败,更新前庭功能的风险值,即R=R+1;否则,确定风险检测通过,不更新前庭功能的风险值,即R=R。相关实现方式可参见图2的实施例,不再赘述。
S1703,电子设备根据待测人员执行第四动作期间的角速度数据,确定前庭功能的风险值。
可选的,若基于待测人员执行第四动作期间的角速度数据,检测到执行第四动作中向前行走的前进方 向与执行第四动作中后退的后退方向之间的夹角大于第一角度,则电子设备确定风险检测失败,更新前庭功能的风险值,即R=R+1;否则,确定风险检测通过,不更新前庭功能的风险值,即R=R。相关实现方式可参见图5,图6和图8的实施例,不再赘述。
S1704,电子设备根据待测人员执行第五动作期间的瞳孔运动轨迹确定前庭功能的风险值。
可选的,若基于待测人员执行第五动作期间的瞳孔运动轨迹检测到眼震事件,则电子设备确定风险检测失败,更新前庭功能的风险值,即R=R+1;否则,确定风险检测通过,不更新前庭功能的风险值,即R=R。
一种可选的实施方式中,电子设备还可根据前庭功能的风险值输出对应的风险提示信息。例如,当R=0时,电子设备输出的风险提示信息用于指示前庭功能无风险,当R=1时,电子设备输出的风险提示信息用于指示前庭功能存在疑似风险,当R>=2时,电子设备输出的风险提示信息用于指示前庭功能存在高风险。需要说明,该前庭功能的风险值以及对应的风险提示信息仅仅作为示例性说明,不构成限定。
可见,在本申请实施例中,可以结合加速度数据,角速度数据,以及瞳孔运动轨迹中的三项确定前庭功能的评估结果。
图18示出了电子设备100的结构示意图。
下面以电子设备100为例对实施例进行具体说明。应该理解的是,图18所示电子设备100仅是一个范例,并且电子设备100可以具有比图18中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。例如,加速度传感器180E和陀螺仪传感器180B位于智能眼镜中,摄像头193,接近光传感器180G和显示屏194位于智能手机中。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不 同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个 器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
可选的,该摄像头193可以用于在待测人员执行第五动作期间采集瞳孔运动轨迹。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group, MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。可选的,该扬声器170A可用于输出交互引导信息(如第一交互引导信息,第二交互引导信息,第三交互引导信息,第四交互引导信息以及第五交互引导信息等)。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,等。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
可选的,该陀螺仪传感器180B可以用于在待测人员执行第四动作期间采集角速度数据。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而 根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
可选的,该加速度传感器180E可以用于在待测人员保持第一动作期间采集加速度数据。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本 申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。
图19是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图19所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图19所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种前庭功能的风险检测方法,其特征在于,所述方法包括:
    在待测人员保持第一动作期间采集加速度数据,在所述待测人员执行第四动作期间采集角速度数据,以及在所述待测人员执行第五动作期间采集瞳孔运动轨迹;
    根据所述加速度数据,所述角速度数据以及所述瞳孔运动轨迹中的至少两项,确定前庭功能的评估结果。
  2. 如权利要求1所述的方法,其特征在于,
    所述第一动作包括闭目直立,双脚并拢站立,两手臂向两侧平举与肩齐平;
    所述第四动作包括向前行走,以及已向前行走时后退;
    所述第五动作包括在保持头部不动时眼睛注视显示的光点。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述加速度数据,确定前庭功能的评估结果,包括:
    在所述待测人员保持所述第一动作期间,利用加速度传感器采集加速度数据;
    根据所述加速度数据,确定所述待测人员是否存在偏倒事件;
    根据所述偏倒事件,确定前庭功能的评估结果。
  4. 如权利要求3所述的方法,其特征在于,在所述待测人员保持所述第一动作期间,利用加速度传感器采集加速度数据之前,所述方法还包括:
    输出第一交互指引信息;所述第一交互指引信息用于指示所述待测人员执行所述第一动作。
  5. 如权利要求3所述的方法,其特征在于,若存在偏倒事件,所述方法还包括:
    采集待测人员保持第二动作期间的加速度数据和/或第三动作期间的加速度数据;所述第一动作、所述第二动作以及所述第三动作中所述待测人员的头部偏向方向不同;
    根据采集的所述待测人员分别保持第一动作、第二动作、第三动作期间的两个或三个加速度数据,确定所述待测人员存在迷路病变风险或小脑病变风险。
  6. 如权利要求5所述的方法,其特征在于,在所述采集待测人员保持第二动作期间的加速度数据和/或第三动作期间的加速度数据之前,所述方法还包括:
    输出第二交互指引信息,所述第二交互指引信息用于指示所述待测人员执行所述第二动作;和/或,
    输出第三交互指引信息,所述第三交互指引信息用于指示所述待测人员执行所述第三动作。
  7. 如权利要求6所述的方法,其特征在于,
    输出第二交互指引信息之后,所述方法还包括:
    通过陀螺仪传感器检测所述待测人员是否已执行所述第二动作;
    若检测到已执行,则执行所述的采集待测人员保持第二动作期间的加速度数据的步骤;和/或,
    输出第三交互指引信息之后,所述方法还包括:
    通过陀螺仪传感器检测所述待测人员是否已执行所述第三动作;
    若检测到已执行,则执行所述的采集待测人员保持第三动作期间的加速度数据的步骤。
  8. 如权利要求2所述的方法,其特征在于,所述根据所述角速度数据,确定前庭功能的评估结果,包括:
    在所述待测人员执行所述第四动作期间,利用陀螺仪传感器采集角速度数据;
    根据所述角速度数据,确定执行所述第四动作中向前行走的前进方向与执行所述第四动作中后退的后退方向之间的夹角;
    根据所述夹角,确定前庭功能的评估结果。
  9. 如权利要求8所述的方法,其特征在于,在所述待测人员执行所述第四动作期间,利用陀螺仪传感 器采集角速度数据之前,所述方法还包括:
    输出第四交互指引信息;所述第四交互指引信息用于指示所述待测人员执行所述第四动作。
  10. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    输出第一分步指引信息,所述第一分步指引信息用于指示所述待测人员执行所述第四动作中的向前行走;
    输出第二分步指引信息,所述第二分步指引信息用于指示所述待测人员执行所述第四动作中的后退。
  11. 如权利要求2所述的方法,其特征在于,所述根据所述瞳孔运动轨迹,确定前庭功能的评估结果,包括:
    在所述待测人员执行第五动作期间,利用摄像机采集瞳孔运动轨迹;
    基于所述瞳孔运动轨迹,确定所述待测人员是否存在眼震事件;
    根据所述眼震事件,确定前庭功能的评估结果。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    在所述待测人员执行所述第五动作期间,利用惯性传感器采集加速度或角速度数据;
    当所述加速度或角速度数据的变化小于第二阈值时,执行所述的基于所述瞳孔运动轨迹,确定所述待测人员是否存在眼震事件的步骤。
  13. 如权利要求11或12所述的方法,其特征在于,所述基于所述瞳孔运动轨迹,确定所述待测人员是否存在眼震事件,包括:
    针对所述瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点的瞳孔摆动数据;
    根据所述瞳孔运动轨迹中瞳孔注视的每个光点的瞳孔摆动数据,确定所述瞳孔运动轨迹对应的疑似眼震检测结果,所述疑似眼震检测结果包括所述待测人员在所述瞳孔运动轨迹中瞳孔注视每个光点是否存在眼震事件;
    根据所述疑似眼震检测结果,确定所述待测人员是否存在眼震事件。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    针对所述瞳孔运动轨迹中瞳孔注视的每个光点,检测瞳孔注视该光点时的头部姿态,若该光点对应的头部姿态的摆动方向与该光点对应的瞳孔摆动数据中的摆动方向一致,则从所述疑似眼震检测结果中去除该光点是否存在眼震事件的检测。
  15. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    根据在所述待测人员执行所述第五动作期间采集的加速度或角速度数据,确定所述待测人员的头部偏移轨迹;
    利用所述头部偏移轨迹对所述瞳孔运动轨迹进行补偿处理,得到补偿后的瞳孔运动轨迹;
    根据补偿后的瞳孔运动轨迹以及所述光点的预设轨迹,确定所述待测人员是否存在扫视波不足。
  16. 如权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    输出第五交互指引信息;所述第五交互指引信息用于指示所述待测人员执行所述第五动作。
  17. 如权利要求16所述的方法,其特征在于,在所述输出第五交互指引信息之前,所述方法还包括:
    若通过距离传感器检测所述待测人员与所述光点之间的距离处于预设范围内,且通过所述摄像机检测所述光点处于所述待测人员的直视范围内,则执行所述输出第五交互指引信息的步骤。
  18. 一种电子设备,包括触控屏,存储器,一个或多个处理器,多个应用程序,以及一个或多个程序;其中,所述一个或多个程序被存储在所述存储器中;其特征在于,所述一个或多个处理器在执行所述一个或多个程序时,使得所述电子设备实现如权利要求1至17任一项所述的方法。
  19. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1至17任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至17任一项所述的方法。
PCT/CN2023/127429 2022-11-08 2023-10-28 前庭功能的风险检测方法及电子设备 WO2024099121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211391846.3A CN118000660A (zh) 2022-11-08 2022-11-08 前庭功能的风险检测方法及电子设备
CN202211391846.3 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024099121A1 true WO2024099121A1 (zh) 2024-05-16

Family

ID=90945037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127429 WO2024099121A1 (zh) 2022-11-08 2023-10-28 前庭功能的风险检测方法及电子设备

Country Status (2)

Country Link
CN (1) CN118000660A (zh)
WO (1) WO2024099121A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011250A1 (en) * 2000-07-19 2002-01-31 Stewart Kendal L. Procedure for evaluating vestibular dysfunction
WO2005112557A2 (en) * 2004-05-04 2005-12-01 Epley John M Head-stabilized medical apparatus, system and methodology
RU2480155C1 (ru) * 2011-12-01 2013-04-27 Государственное Научное Учреждение "Научно-Практический Центр Профилактической И Клинической Медицины" Государственного Управления Делами Способ оценки состояния вестибуло-моторной проекции и система для его осуществления
CN108771532A (zh) * 2018-06-06 2018-11-09 苏州桑德欧声听觉技术有限公司 用于前庭检测的移动终端的制造方法、移动终端
CN110974181A (zh) * 2019-12-27 2020-04-10 中国人民解放军陆军特色医学中心 一种前庭平衡功能测试垫
CN111345783A (zh) * 2020-03-26 2020-06-30 山东大学 基于惯性传感器的前庭功能紊乱检测系统
CN113633257A (zh) * 2021-07-29 2021-11-12 佛山市第一人民医院(中山大学附属佛山医院) 基于虚拟现实的前庭功能检查方法、系统、设备及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011250A1 (en) * 2000-07-19 2002-01-31 Stewart Kendal L. Procedure for evaluating vestibular dysfunction
WO2005112557A2 (en) * 2004-05-04 2005-12-01 Epley John M Head-stabilized medical apparatus, system and methodology
RU2480155C1 (ru) * 2011-12-01 2013-04-27 Государственное Научное Учреждение "Научно-Практический Центр Профилактической И Клинической Медицины" Государственного Управления Делами Способ оценки состояния вестибуло-моторной проекции и система для его осуществления
CN108771532A (zh) * 2018-06-06 2018-11-09 苏州桑德欧声听觉技术有限公司 用于前庭检测的移动终端的制造方法、移动终端
CN110974181A (zh) * 2019-12-27 2020-04-10 中国人民解放军陆军特色医学中心 一种前庭平衡功能测试垫
CN111345783A (zh) * 2020-03-26 2020-06-30 山东大学 基于惯性传感器的前庭功能紊乱检测系统
CN113633257A (zh) * 2021-07-29 2021-11-12 佛山市第一人民医院(中山大学附属佛山医院) 基于虚拟现实的前庭功能检查方法、系统、设备及介质

Also Published As

Publication number Publication date
CN118000660A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2020259452A1 (zh) 一种移动终端的全屏显示方法及设备
CN115866121B (zh) 应用界面交互方法、电子设备和计算机可读存储介质
US20220176200A1 (en) Method for Assisting Fitness and Electronic Apparatus
EP3907981B1 (en) Recording frame rate control method and related apparatus
US20230276014A1 (en) Photographing method and electronic device
CN115016869B (zh) 帧率调整方法、终端设备及帧率调整系统
CN114466128B (zh) 目标用户追焦拍摄方法、电子设备及存储介质
US11272116B2 (en) Photographing method and electronic device
WO2022042766A1 (zh) 信息显示方法、终端设备及计算机可读存储介质
WO2021008589A1 (zh) 一种应用的运行方法及电子设备
WO2021143391A1 (zh) 基于视频通话的共享屏幕方法及移动设备
CN115525372B (zh) 显示界面的方法和装置
CN113688019B (zh) 响应时长检测方法及装置
WO2022052786A1 (zh) 皮肤敏感度的显示方法、装置、电子设备及可读存储介质
WO2021052388A1 (zh) 一种视频通信方法及视频通信装置
CN113542574A (zh) 变焦下的拍摄预览方法、终端、存储介质及电子设备
US20230402150A1 (en) Adaptive Action Evaluation Method, Electronic Device, and Storage Medium
WO2024099121A1 (zh) 前庭功能的风险检测方法及电子设备
WO2022078116A1 (zh) 笔刷效果图生成方法、图像编辑方法、设备和存储介质
WO2022017270A1 (zh) 外表分析的方法和电子设备
WO2022033344A1 (zh) 视频防抖方法、终端设备和计算机可读存储介质
WO2021244186A1 (zh) 用户健康管控方法和电子设备
CN114639114A (zh) 视力检测方法及电子设备
CN113970965A (zh) 消息显示方法和电子设备
RU2782255C1 (ru) Способ управления частотой кадров записи и соответствующее устройство