WO2024098938A1 - 网络存储功能故障检测及容灾方法及相关设备 - Google Patents

网络存储功能故障检测及容灾方法及相关设备 Download PDF

Info

Publication number
WO2024098938A1
WO2024098938A1 PCT/CN2023/117840 CN2023117840W WO2024098938A1 WO 2024098938 A1 WO2024098938 A1 WO 2024098938A1 CN 2023117840 W CN2023117840 W CN 2023117840W WO 2024098938 A1 WO2024098938 A1 WO 2024098938A1
Authority
WO
WIPO (PCT)
Prior art keywords
nrf
disaster recovery
fault
network
storage function
Prior art date
Application number
PCT/CN2023/117840
Other languages
English (en)
French (fr)
Inventor
刘柳
李嘉慧
龙彪
孙悦
刘佳一凡
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2024098938A1 publication Critical patent/WO2024098938A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data

Definitions

  • the present disclosure relates to the field of 5G mobile communication network technology, and in particular to a network storage function fault detection and disaster recovery method and related equipment.
  • NRF Network Function Repository Function
  • NF Network Function
  • the present invention provides a network storage function fault detection and disaster recovery method and related equipment, and provides a solution for NRF disaster recovery deployment scenarios.
  • a network storage function fault detection and disaster recovery method is provided, which is applied to a first network storage function NRF, and the method includes: receiving a first subscription request from a first network function NF, the first subscription request is sent by the first NF to the first NRF after sending a first registration request to a second NRF; after determining that a fault occurs in the second NRF, sending a fault notification to the first NF, so that the first NF responds to the fault notification and migrates to the first NRF for disaster recovery.
  • the first subscription request is used to subscribe to a fault notification service of the second NRF.
  • the first subscription request is an NF registration request.
  • the method further includes: in the case where the interaction between the second NF and the second NRF fails, determining that the second NRF is faulty; the second NF is a NF registered with the second NRF or subscribed to a service of the second NRF.
  • the situation where the interaction between the second NF and the second NRF fails includes one or more of the following: the second NF fails to register with the second NRF, the second NF fails to de-register with the second NRF, the second NF fails to subscribe to the second NRF, and the second NF fails to subscribe to the second NRF.
  • the method after determining that the second NRF fails, the method also includes: searching for one or more target NFs, where the target NF is a NF registered with the second NRF or subscribed to the service of the second NRF; sending a fault notification to the one or more target NFs so that the target NF can be migrated to the first NRF for disaster recovery.
  • disaster recovery migration to the first NRF includes re-registering the NF served by the second NRF through the first NRF and/or subscribing to the service.
  • the method further includes: performing information synchronization with the second NRF.
  • a network storage function fault detection and disaster recovery method is provided, which is applied to a first network function NF, and the method includes: after the first NF sends a first registration request to the second network storage function NRF, sending a first subscription request to the first NRF; receiving a fault notification sent by the first NRF, the fault notification is sent by the first NRF after determining that a fault occurs in the second NRF; in response to the fault notification, disaster recovery migration to the first NRF.
  • the first subscription request is used to subscribe to a fault notification service of the second NRF.
  • the method further includes: in case of a failure in interaction with the second NRF, determining that the second NRF is faulty; and in case of determining that the second NRF is faulty, performing disaster recovery migration to the first NRF.
  • a network storage function NRF including a request receiving module and a notification sending module.
  • a request receiving module configured to receive a first subscription request from a first network function NF, the first subscription request being sent by the first NF to the first NRF after sending a first registration request to the second NRF;
  • the notification sending module is configured to send a fault notification to the first NF after determining that the second NRF fails, so that the first NF responds to the fault notification and performs disaster recovery migration to the first NRF.
  • a network function NF including a request sending module, a notification receiving module and a disaster recovery migration module.
  • the request sending module is configured to send a first subscription request to the first NRF after the first NF sends a first registration request to the second network storage function NRF;
  • a notification receiving module configured to receive a fault notification sent by the first NRF, the fault notification being sent by the first NRF after determining that a fault occurs in the second NRF;
  • the disaster recovery migration module is configured to perform disaster recovery migration to the first NRF in response to the fault notification.
  • a communication system comprising:
  • a plurality of network functions NF wherein the plurality of network functions NF are registered with a second network storage function NRF or subscribe to a service of the second network storage function NRF; the plurality of network functions NF include a first network function NF and a second network function NF;
  • the second network storage function NRF is synchronized with the first network storage function NRF information
  • the first network storage function NRF is configured to execute the above-mentioned network storage function fault detection and disaster recovery method.
  • an electronic device including: a memory for storing instructions; a processor for calling the instructions stored in the memory to implement the above-mentioned network storage function fault detection and disaster recovery method.
  • a computer-readable storage medium on which computer instructions are stored.
  • the computer instructions are executed by a processor, the above-mentioned network storage function fault detection and disaster recovery method is implemented.
  • a computer program product stores instructions, and when the instructions are executed by a computer, the computer implements the above-mentioned network storage function failure detection and disaster recovery method.
  • a chip comprising at least one processor and an interface
  • At least one processor is used to execute program instructions to implement the above-mentioned network storage function fault detection and disaster recovery method.
  • the first network function NF subscribes to the fault notification service of the second NRF to the first network storage function NRF, and uses the first NRF to determine whether the second NRF sends a fault. In this way, when the first NRF has discovered the fault of the second NRF through other NFs, the first NF can quickly know the fault of the first NRF through the second NRF, without having to determine whether the first NRF has a fault by itself.
  • FIG1 shows a flow chart of a method for network storage function fault detection and disaster recovery in an embodiment of the present disclosure
  • FIG2 shows a flow chart of another method for network storage function failure detection and disaster recovery in an embodiment of the present disclosure
  • FIG3 shows a flow chart of another method for network storage function fault detection and disaster recovery in an embodiment of the present disclosure
  • FIG4 shows a flow chart of a method for fault detection and disaster recovery of a network storage function applied to a network function NF in an embodiment of the present disclosure
  • FIG5 shows a flow chart of a network storage function fault detection and disaster recovery method applied to a network storage function NRF in an embodiment of the present disclosure
  • FIG6 shows a schematic diagram of the structure of a communication system in an embodiment of the present disclosure
  • FIG7 shows a schematic diagram of the structure of a network function NF in an embodiment of the present disclosure
  • FIG8 shows a schematic diagram of the structure of a network storage function NRF in an embodiment of the present disclosure
  • FIG. 9 shows a structural block diagram of an electronic device in an embodiment of the present disclosure.
  • each NF needs to wait until the interaction with the NRF occurs before detecting the NRF failure. After that, the NF needs to establish interaction with the backup NRF one by one, which will affect the functions and processes of multiple NFs.
  • FIG. 1 shows a flow chart of a method for detecting and recovering network storage function faults in an embodiment of the present disclosure. As shown in FIG. 1 , the method for detecting and recovering network storage function faults in an embodiment of the present disclosure includes the following steps:
  • the first subscription request is used to subscribe to the fault notification service of the second NRF.
  • the first subscription request may be a NF registration request.
  • the first NRF may also be referred to as a backup NRF, and the second NRF may also be referred to as an original NRF.
  • the first NF registers with the second NRF or subscribes to the service of the second NRF, and the first NRF is the backup NRF of the second NRF.
  • the second NRF fails, the NF registered with the second NRF or subscribes to the service of the second NRF can be migrated to the first NRF.
  • the first NRF sends a failure notification to the first NF.
  • the first NF responds to the fault notification and performs disaster recovery migration to the first NRF.
  • the first NF establishes interaction with the first NRF and migrates to the first NRF for disaster recovery.
  • the network storage function fault detection and disaster recovery method of the disclosed embodiment is applicable to 5G network systems.
  • the first NF subscribes to a fault notification service from the first NRF.
  • the fault notification service is a notification service for a second NRF fault.
  • the first NRF sends information about the second NRF fault to the NFs that have subscribed to the fault notification service, including the first NF.
  • the first NF can be any NF in the 5G system architecture.
  • the 5G system architecture may include the following NFs:
  • the Authentication Server Function is responsible for processing user authentication data
  • Access and Mobility Management Function is responsible for user mobility and access management
  • DN operator services Internet access or third-party services
  • Unstructured Data Storage Function stores unstructured data of any NF, such as session ID and status data used by AMF and SMF;
  • the Network Exposure Function (NEF) is responsible for opening network data to the outside world;
  • the Network Slice Selection Function is responsible for managing information related to network slicing
  • PCF Policy Control Function
  • Session Management Function is responsible for user session management
  • Unified Data Management is responsible for the unified processing of front-end data, including user identification, user contract data, authentication data, etc.
  • UTR Unified Data Repository
  • the User Plane Function (UPF) is fully responsible for the routing and forwarding functions of the user plane;
  • the application function is responsible for interacting with the 3GPP core network to provide services
  • SEPP Security Edge Protection Proxy
  • NWDAF Network Data Analytics Function
  • the disclosed embodiment proposes that the NF subscribes to the first NRF for the fault notification of the second NRF. After determining that the second NRF has failed, the first NRF proactively sends the fault notification to the NFs registered with the second NRF or subscribed to the second NRF service, and proactively triggers the NRF disaster recovery migration of these NFs, migrating these registered/subscribed NFs to the first NRF.
  • the disclosed embodiment uses the first NRF to determine whether the second NRF has sent a fault, and sends the fault notification to the NF registered with the second NRF or subscribed to the second NRF service. This avoids the need for these NFs to determine whether the second NRF has a fault, allowing these NFs to quickly know the fault of the second NRF and migrate to the first NRF.
  • the fault notification is sent to the first NF when the interaction between the second NF and the second NRF fails and the first NRF determines that the second NRF is faulty.
  • the second NF is a NF registered with the second NRF or subscribed to the service of the second NRF.
  • the situation where the interaction between the second NF and the second NRF fails includes one or more of the following:
  • the second NF fails to register with the second NRF, the second NF fails to de-register with the second NRF, the second NF fails to subscribe to the second NRF, and the second NF fails to de-subscribe to the second NRF.
  • the above method may further include:
  • a second NRF failure may be determined in the following cases:
  • the first NF receives a fault notification sent by the first NRF, and/or the interaction between the first NF and the original NRF fails.
  • the fault notification may be sent to the first NF when the interaction between the second NF and the second NRF fails and the first NRF determines that the second NRF is faulty.
  • the first NF can determine whether the second NRF is faulty by receiving a notification from the first NRF, or can determine whether the second NRF is faulty through interaction between itself and the second NRF.
  • the first NRF may also search for a target NF, where the target NF is a NF registered with the second NRF or subscribed to a service of the second NRF.
  • the number of target NFs is not limited and may be one or more.
  • the first NRF may send a fault notification to the target NF so that the target NF can be migrated to the first NRF for disaster recovery.
  • disaster recovery migration to the first NRF includes re-registering the NF served by the second NRF through the first NRF for NF and/or service subscription.
  • FIG2 shows a flow chart of a method for detecting and recovering network storage function faults in an embodiment of the present disclosure.
  • the method for detecting and recovering network storage function faults in an embodiment of the present disclosure includes the following steps:
  • the first NF registers with the second NRF or subscribes to the service of the second NRF.
  • the first NF subscribes to the first NRF for the fault notification service of the second NRF.
  • the first NRF After the first NF subscribes, the first NRF will send the fault information of the second NRF to the first NF in a timely manner.
  • the first NF may determine whether the second NRF fails by interacting with the second NRF, that is, the following steps S204-S205.
  • the first NF fails to interact with the second NRF, and it is found that the second NRF is faulty.
  • the first NF disaster recovery is migrated to the first NRF.
  • FIG3 shows a flow chart of a method for detecting and recovering network storage function faults in an embodiment of the present disclosure.
  • the method for detecting and recovering network storage function faults in an embodiment of the present disclosure includes the following steps:
  • the second NF fails to interact with the second NRF, and it is found that the second NRF is faulty.
  • the first NF and the second NF register with the original NRF or subscribe to the second NRF service, and the first NF subscribes to the fault notification service of the second NRF from the first NRF.
  • the second NF can also subscribe to the fault notification service of the second NRF from the first NRF.
  • Information synchronization is performed between the second NRF and the first NRF.
  • the second NF disaster recovery migrates to the first NRF.
  • the first NRF determines that the second NRF fails, and then searches for information related to the NF registered/subscribed in the second NRF, and finds the target NF registered in the second NRF or subscribed to the service of the second NRF.
  • a second NRF failure notification is sent to the target NF (including the first NF).
  • the first NF disaster recovery migrates to the first NRF.
  • the network storage function fault detection and disaster recovery method comprises: a first network function
  • the NF can subscribe to the fault notification service of the second NRF from the first network storage function NRF, and use the first NRF to determine whether the second NRF sends a fault. In this way, if the first NRF has discovered the fault of the second NRF through other NFs, the first NF can quickly know the fault of the second NRF through the first NRF, without having to determine whether the second NRF has a fault by itself.
  • a network storage function fault detection and disaster recovery method is also provided in an embodiment of the present disclosure, which is applied to a first network function NF.
  • the network storage function fault detection and disaster recovery method provided in an embodiment of the present disclosure includes the following steps:
  • a fault notification sent by the first NRF is received, where the fault notification is sent by the first NRF after determining that a fault occurs in the second NRF;
  • a network storage function fault detection and disaster recovery method is also provided in the embodiment of the present disclosure, which is applied to the first network storage function NRF.
  • the network storage function fault detection and disaster recovery method provided in the embodiment of the present disclosure includes the following steps:
  • a first subscription request is received from a first network function NF, where the first subscription request is sent by the first NF to the first NRF after the first NF sends a first registration request to the second NRF;
  • a failure notification is sent to the first NF, so that the first NF responds to the failure notification and performs disaster recovery migration to the first NRF.
  • the first network function NF subscribes to the fault notification service of the second NRF from the first network storage function NRF, and uses the first NRF to determine whether the second NRF sends a fault. In this way, when the first NRF has discovered the fault of the second NRF through other NFs, the first NF can quickly know the fault of the second NRF through the first NRF, without having to determine whether the second NRF has a fault by itself.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • certain steps may be omitted, multiple steps may be combined into one step, and/or one step may be decomposed into multiple steps.
  • the communication system provided in the embodiment of the present disclosure includes a plurality of network functions NF 610, a second network storage function NRF 620, and a first network storage function NRF 630.
  • the plurality of network functions NF 610 are registered with the second network storage function NRF or subscribe to the service of the second network storage function NRF.
  • the plurality of network functions NF 610 include a first network function NF 611 and a second network function NF 612.
  • the first NF 611 is used to send a first subscription request to the first NRF 630, where the first subscription request is used to subscribe to a fault notification service of the second NRF 620; receive a fault notification sent by the first NRF 630, where the fault notification is sent by the first NRF 630 after determining that a fault occurs in the second NRF 620; and in response to the fault notification, perform disaster recovery migration to the first NRF 630.
  • the second network storage function NRF 620 synchronizes information with the first network storage function NRF 630.
  • the first network storage function NRF 630 is configured to receive a first subscription request from the first network function NF 611, and the first subscription request is used to subscribe to the fault notification service of the second NRF 620; after determining that the second NRF 620 has a fault, a fault notification is sent to the first NF 611, so that the first NF 611 responds to the fault notification and migrates to the first NRF 630 for disaster recovery.
  • the fault notification is sent to the first NF 611 when the interaction between the second NF 612 and the second NRF 620 fails and the first NRF 630 determines that the second NRF 620 has failed; the second NF 612 is a NF registered with the second NRF 620 or subscribed to the service of the second NRF 620.
  • the first NF 611 is further configured to determine that the second NRF 620 is faulty in case of a failure in interaction with the second NRF 620; and to perform disaster recovery migration to the first NRF 630 in case of a determination that the second NRF 620 is faulty.
  • the first NRF 630 determines that the second NRF has failed, the first NRF 630 is also used to find the second NF 612, where the second NF 612 is a NF registered with the second NRF 620 or subscribed to the service of the second NRF 612; then, the first NRF 630 sends a fault notification to the second NF to enable the second NF to migrate to the backup NRF for disaster recovery.
  • a network function NF is also provided in the embodiment of the present disclosure, as shown below: Since the principle of solving the problem in the network function NF embodiment is similar to that in the above method embodiment, the implementation of the network function NF embodiment can refer to the implementation of the above method embodiment, and the repeated parts will not be repeated.
  • FIG. 7 shows a schematic diagram of a network function NF in an embodiment of the present disclosure.
  • the network function NF 700 includes:
  • the request sending module 702 is configured to send a first subscription request to the first NRF after the first NF sends a first registration request to the second network storage function NRF;
  • the notification receiving module 704 is configured to receive a fault notification sent by the first NRF, where the fault notification is sent by the first NRF after determining that the second NRF has a fault;
  • the disaster recovery migration module 706 is configured to perform disaster recovery migration to the first NRF in response to the failure notification.
  • the first subscription request is used to subscribe to a fault notification service of the second NRF.
  • the network function NF 700 may also include:
  • a fault determination module configured to determine that the second NRF is faulty if the interaction with the second NRF fails
  • the second migration module is configured to perform disaster recovery migration to the first NRF when it is determined that the second NRF fails.
  • a network storage function NRF is also provided in the embodiment of the present disclosure, as shown in FIG8 , the network storage function NRF 800 includes:
  • the request receiving module 802 is configured to receive a first subscription request from the first network function NF, where the first subscription request is sent by the first NF to the first NRF after sending the first registration request to the second NRF;
  • the notification sending module 804 is configured to send a fault notification to the first NF after determining that the second NRF has a fault, so that the first NF responds to the fault notification and performs disaster recovery migration to the first NRF.
  • the first subscription request is used to subscribe to a fault notification service of the second NRF.
  • the first subscription request is a NF registration request.
  • the network storage function NRF 800 may also include:
  • the second fault determination module is configured to determine whether the interaction between the second NF and the second NRF fails. In this case, it is determined that the second NRF is faulty; the second NF is a NF registered with the second NRF or subscribed to the service of the second NRF.
  • the situation where the interaction between the second NF and the second NRF fails includes one or more of the following:
  • the second NF fails to register with the second NRF, the second NF fails to de-register with the second NRF, the second NF fails to subscribe to the second NRF, and the second NF fails to de-subscribe to the second NRF.
  • the network storage function NRF 800 may also include:
  • a search module is configured to search for one or more target NFs after determining that the second NRF fails, where the target NF is a NF registered with the second NRF or subscribed to a service of the second NRF;
  • the notification module is configured to send a fault notification to one or more target NFs, so that the target NFs can be migrated to the first NRF for disaster recovery.
  • disaster recovery migration to the first NRF includes re-registering the NF served by the second NRF through the first NRF for NF and/or service subscription.
  • the network storage function NRF 800 may further include:
  • the synchronization module is used to synchronize information with the second NRF.
  • the electronic device provided by the embodiment of the present disclosure is described below with reference to Fig. 9.
  • the electronic device 900 shown in Fig. 9 is only an example and should not bring any limitation to the functions and application scope of the embodiment of the present disclosure.
  • Fig. 9 shows a schematic diagram of the architecture of an electronic device 900 provided by an embodiment of the present disclosure.
  • the electronic device 900 includes but is not limited to: at least one processor 910 and at least one memory 920 .
  • the memory 920 is used to store instructions.
  • the memory 920 may include a readable medium in the form of a volatile storage unit, such as a random access memory unit (RAM) 9201 and/or a cache memory unit 9202 , and may further include a read-only memory unit (ROM) 9203 .
  • RAM random access memory unit
  • ROM read-only memory unit
  • the memory 920 may also include a program/utility 9204 having a set (at least one) of program modules 9205, such program modules 9205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • program modules 9205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • the memory 920 may store an operating system.
  • the operating system may be a real-time operating system (RTX), LINUX, UNIX, WINDOWS, or OS X.
  • RTX real-time operating system
  • LINUX LINUX
  • UNIX UNIX
  • WINDOWS WINDOWS
  • OS X OS X
  • data may also be stored in the memory 920 .
  • the processor 910 may read data stored in the memory 920 , where the data may be stored at the same storage address as the instruction, or the data may be stored at a different storage address than the instruction.
  • the processor 910 is configured to call the instructions stored in the memory 920 to implement the steps of various exemplary embodiments of the present disclosure described in the above “Exemplary Method” section of this specification.
  • the processor 910 may perform the following steps of the above method embodiment:
  • a fault notification is sent to the first NF, so that the first NF responds to the fault notification and migrates to the first NRF for disaster recovery.
  • disaster recovery migration is performed to the first NRF.
  • processor 910 may be a general-purpose processor or a special-purpose processor.
  • the processor 910 may include one or more processing cores, and the processor 910 executes various functional applications and data processing by running instructions.
  • processor 910 may include a central processing unit (CPU) and/or a baseband processor.
  • CPU central processing unit
  • baseband processor may include a baseband processor.
  • the processor 910 may determine an instruction according to the priority identifier and/or function category information carried in each control instruction.
  • processor 910 and the memory 920 may be provided separately or integrated together.
  • the processor 910 and the memory 920 can be integrated on a single board or a system on chip (SOC).
  • SOC system on chip
  • the electronic device 900 is in the form of a general-purpose computing device.
  • the electronic device 900 may further include a bus 930 .
  • Bus 930 may be a bus representing one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus architectures.
  • the electronic device 900 may also communicate with one or more external devices 940 (e.g., keyboards, pointing devices, Bluetooth devices, etc.), one or more devices that enable a user to interact with the electronic device 900, and/or any device that enables the electronic device 900 to communicate with one or more other computing devices (e.g., routers, modems, etc.). Such communication may be performed through an input/output (I/O) interface 950.
  • I/O input/output
  • the electronic device 900 can also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN) and/or a public network, such as the Internet) through the network adapter 960 .
  • networks eg, a local area network (LAN), a wide area network (WAN) and/or a public network, such as the Internet.
  • LAN local area network
  • WAN wide area network
  • Internet public network
  • the network adapter 960 communicates with other modules of the electronic device 900 through the bus 930 .
  • electronic device 900 can be used in conjunction with electronic device 900, including but not limited to: microcode, device drivers, redundant processing units, external disks, etc. Drive arrays, RAID systems, tape drives, and data backup storage systems, etc.
  • the structure illustrated in the embodiment of the present disclosure does not constitute a specific limitation on the electronic device 900.
  • the electronic device 900 may include more or fewer components than those shown in FIG. 9 , or combine certain components, or separate certain components, or arrange the components differently.
  • the components shown in FIG. 9 may be implemented in hardware, software, or a combination of software and hardware.
  • the present disclosure also provides a computer-readable storage medium on which computer instructions are stored.
  • the computer instructions are executed by a processor, the network storage function fault detection and disaster recovery method described in the above method embodiment is implemented.
  • the computer-readable storage medium in the embodiments of the present disclosure is a computer instruction that can be sent, propagated or transmitted for use by or in conjunction with an instruction execution system, apparatus or device.
  • computer readable storage media are non-volatile storage media.
  • more specific examples of computer-readable storage media in the present disclosure may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, a USB flash drive, a mobile hard disk, or any suitable combination of the foregoing.
  • the computer-readable storage medium may include a data signal propagated in a baseband or as a part of a carrier wave, in which computer instructions (readable program codes) are carried.
  • Such a propagated data signal may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • computing instructions contained on a computer-readable storage medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • the embodiments of the present disclosure also provide a computer program product, which stores instructions. When the instructions are executed by a computer, the computer implements the network storage function fault detection and disaster recovery method described in the above method embodiment.
  • the above instructions may be program codes.
  • the program codes may be written in any combination of one or more programming languages.
  • the programming language includes object-oriented programming languages, such as Java, C++, etc., and also includes conventional procedural programming languages, such as "C" language or similar programming languages.
  • the program code may execute entirely on the user's computing device, partly on the user's computing device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device or entirely on the remote computing device or server.
  • the remote computing device may be connected to the user computing device through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • the embodiment of the present disclosure also provides a chip, including at least one processor and an interface;
  • At least one processor is used to execute program instructions to implement the network storage function fault detection and disaster recovery method described in the above method embodiment.
  • the chip may further include a memory, which is used to store program instructions and data, and the memory is located inside or outside the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Hardware Redundancy (AREA)

Abstract

本公开提供了一种网络存储功能故障检测及容灾方法及相关设备,涉及5G移动通信网络技术领域。该方法包括:接收来自第一网络功能NF的第一订阅请求,第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;在确定第二NRF发生故障后,向第一NF发送故障通知,以使第一NF响应于故障通知,容灾迁移到第一NRF。根据本公开实施例,在第一NRF已经通过其它NF发现第二NRF故障的情况下,第一NF便能够通过第一NRF快速知道第二NRF故障,无需自行判断第二NRF是否发生故障。 (图4)

Description

网络存储功能故障检测及容灾方法及相关设备
相关申请的交叉引用
本公开要求于2022年11月11日提交的申请号为202211414176.2、名称为“网络存储功能故障检测及容灾方法及相关设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及5G移动通信网络技术领域,尤其涉及一种网络存储功能故障检测及容灾方法及相关设备。
背景技术
NRF(Network Function Repository Function,网络存储功能),用来进行NF(Network Function,网络功能)登记、管理、状态检测,实现所有NF的自动化管理。每个NF启动时,要到NRF进行注册登记才能提供服务,登记信息包括NF类型、地址、服务列表等。相关技术中还没有针对NRF容灾部署场景的解决方案。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种网络存储功能故障检测及容灾方法及相关设备,提供了一种针对NRF容灾部署场景的解决方案。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供了一种网络存储功能故障检测及容灾方法,应用于第一网络存储功能NRF,方法包括:接收来自第一网络功能NF的第一订阅请求,第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;在确定第二NRF发生故障后,向第一NF发送故障通知,以使第一NF响应于故障通知,容灾迁移到第一NRF。
在本公开的一个实施例中,第一订阅请求用于订阅第二NRF的故障通知服务。
在本公开的一个实施例中,第一订阅请求为NF注册请求。
在本公开的一个实施例中,方法还包括:在第二NF与第二NRF之间交互失败的情况下,确定第二NRF故障;第二NF为注册在第二NRF或订阅了第二NRF服务的NF。
在本公开的一个实施例中,第二NF与第二NRF之间交互失败的情况,包括如下一种或多种:第二NF向第二NRF注册失败、第二NF向第二NRF去注册失败、第二NF向第二NRF订阅失败、第二NF向第二NRF去订阅失败。
在本公开的一个实施例中,在确定第二NRF故障后,方法还包括:查找一个或多个目标NF,目标NF为注册在第二NRF或订阅了第二NRF服务的NF;向一个或多个目标NF,发送故障通知,以使目标NF容灾迁移到第一NRF。
在本公开的一个实施例中,容灾迁移到第一NRF,包括将第二NRF服务的NF重新通过第一NRF来进行NF注册和/或服务订阅。
在本公开的一个实施例中,方法还包括:与第二NRF之间进行信息同步。
根据本公开的另一个方面,提供一种网络存储功能故障检测及容灾方法,应用于第一网络功能NF,方法包括:在第一NF向第二网络存储功能NRF发送第一注册请求后,向第一NRF发送第一订阅请求;接收第一NRF发送的故障通知,故障通知是第一NRF在确定第二NRF发生故障后发送的;响应于故障通知,容灾迁移到第一NRF。
在本公开的一个实施例中,第一订阅请求用于订阅第二NRF的故障通知服务。
在本公开的一个实施例中,方法还包括:在与第二NRF之间交互失败的情况下,确定第二NRF故障;在确定第二NRF故障的情况下,容灾迁移到第一NRF。
根据本公开的另一个方面,提供一种网络存储功能NRF,包括请求接收模块和通知发送模块。
请求接收模块,被配置为接收来自第一网络功能NF的第一订阅请求,第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;
通知发送模块,被配置为在确定第二NRF发生故障后,向第一NF发送故障通知,以使第一NF响应于故障通知,容灾迁移到第一NRF。
根据本公开的另一个方面,提供一种网络功能NF,包括请求发送模块、通知接收模块和容灾迁移模块。
请求发送模块,被配置为在第一NF向第二网络存储功能NRF发送第一注册请求后,向第一NRF发送第一订阅请求;
通知接收模块,被配置为接收第一NRF发送的故障通知,故障通知是第一NRF在确定第二NRF发生故障后发送的;
容灾迁移模块,被配置为响应于故障通知,容灾迁移到第一NRF。
根据本公开的另一个方面,提供一种通信系统,包括:
多个网络功能NF,多个网络功能NF注册在第二网络存储功能NRF或订阅了第二网络存储功能NRF的服务;多个网络功能NF,包括第一网络功能NF和第二网络功能NF;
第二网络存储功能NRF,与第一网络存储功能NRF信息同步;
第一网络存储功能NRF,被配置为执行上述的网络存储功能故障检测及容灾方法。
根据本公开的又一个方面,提供一种电子设备,包括:存储器,用于存储指令;处理器,用于调用所述存储器中存储的指令,实现上述的网络存储功能故障检测及容灾方法。
根据本公开的又一个方面,提供一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令被处理器执行时实现上述的网络存储功能故障检测及容灾方法。
根据本公开的又一个方面,提供一种计算机程序产品,计算机程序产品存储有指令,所述指令在由计算机执行时,使得计算机实施上述的网络存储功能故障检测及容灾方法。
根据本公开的又一个方面,提供一种芯片,包括至少一个处理器和接口;
接口,用于为至少一个处理器提供程序指令或者数据;
至少一个处理器用于执行程序指令,以实现上述的网络存储功能故障检测及容灾方法。
本公开实施例所提供的网络存储功能故障检测及容灾方法及相关设备,第一网络功能NF向第一网络存储功能NRF订阅第二NRF的故障通知服务,采用第一NRF来判断第二NRF是否发送故障,如此,在第一NRF已经通过其它NF发现第二NRF故障的情况下,第一NF便可以通过第二NRF快速知道第一NRF故障,无需自行判断第一NRF是否发生故障。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开实施例中一种网络存储功能故障检测及容灾方法流程图;
图2示出本公开实施例中另一种网络存储功能故障检测及容灾方法流程图;
图3示出本公开实施例中又一种网络存储功能故障检测及容灾方法流程图;
图4示出本公开实施例中一种应用于网络功能NF的网络存储功能故障检测及容灾方法流程图;
图5示出本公开实施例中一种应用于网络存储功能NRF的网络存储功能故障检测及容灾方法流程图;
图6示出本公开实施例中一种通信系统的结构示意图;
图7示出本公开实施例中一种网络功能NF的结构示意图;
图8示出本公开实施例中一种网络存储功能NRF的结构示意图;
图9示出本公开实施例中一种电子设备的结构框图。
具体实施方式
下面将参考附图更全面地描述示例实施方式。
需要说明的是,示例实施方式能够以多种形式实施,不应被理解为限于在此阐述的范例。
发明人发现,当前3GPP标准中尚未定义专门的NRF failure流程。若参考3GPP在TS 23.527中定义了服务化架构下NF failure的检测方法,则NRF failure的检测和通知还需要借助备用NRF,而备用NRF在刚确认原NRF failure的时候,尚未和原NRF的注册/订阅NF建立交互,无法把原NRF故障信息通知给NF。
而如果通过NF与原NRF交互流程中检测NRF故障,则每个NF均需要等到与NRF交互发生时,才能检测到NRF的故障,之后NF需一一和备用NRF建立交互,这将影响到多个NF的功能和流程。
下面结合附图及实施例对本示例实施方式进行详细说明。
图1示出本公开实施例中一种网络存储功能故障检测及容灾方法流程图,如图1所示,本公开实施例中提供的网络存储功能故障检测及容灾方法,包括如下步骤:
在S102中,在第一NF向第二NRF发送第一注册请求后,向第一NRF发送第一订阅请求。
第一订阅请求用于订阅第二NRF的故障通知服务。第一订阅请求可以是NF注册请求。
第一NRF也可以称为备用NRF,第二NRF也可以称为原NRF。
在一些实施例中,第一NF注册到第二NRF或订阅第二NRF服务,第一NRF为第二NRF的备份NRF,在第二NRF故障时,注册到第二NRF或订阅第二NRF服务的NF可以迁移至第一NRF。
在S104中,第一NRF在确定第二NRF发生故障后,向第一NF发送故障通知。
在S106中,第一NF响应于故障通知,容灾迁移到第一NRF。
在第二NRF故障的情况下,第一NF与第一NRF建立交互,容灾迁移到第一NRF。
需要说明的是,在第二NRF正常期间,第二NRF与第二NRF间可以进行信息同步。
本公开实施例的网络存储功能故障检测及容灾方法适用于5G网络系统。
本公开实施例中第一NF向第一NRF订阅故障通知服务,该故障通知服务是针对第二NRF故障的通知服务,在第二NRF故障时,第一NRF会将第二NRF故障的信息发送至订阅了该故障通知服务的NF,包括第一NF。
第一NF,可以是5G系统架构的任一NF。
5G系统架构,可以包括如下NF:
鉴权服务器功能(Authentication Server Function,AUSF)负责用户鉴权数据相关的处理;
接入和移动性管理功能(Access and Mobility Management Function,AMF)负责用户的移动性和接入管理;
数据网络(Data Network,DN)运营商服务,互联网接入或第三方服务;
非结构化数据存储功能(Unstructured Data Storage Function,UDSF)存储任何NF的非结构化数据,例如AMF和SMF使用的会话ID、状态数据;
网络开放功能(Network Exposure Function,NEF)负责对外开放网络数据;
网络切片选择功能(Network Slice Selection Function,NSSF)负责管理网络切片相关的信息;
策略控制功能(Policy Control Function,PCF)负责策略控制;
会话管理功能(Session Management Function,SMF)负责用户会话管理;
统一数据管理(Unified Data Management,UDM)负责前台数据的统一处理,包括用户标识、用户签约数据、鉴权数据等;
统一数据存储(Unified Data Repository,UDR)存储结构化数据;
用户平面功能(User Plane Function,UPF)全权负责用户面的路由和转发功能;
应用功能(Application Function,AF)负责与3GPP核心网交互以提供服务;
安全边缘保护代理(Security Edge Protection Proxy,SEPP)负责PLMN间控制平面接口的信令消息过滤和监管,以及拓扑隐藏;
网络数据分析功能(Network Data Analytics Function,NWDAF)运营商 管理的网络分析逻辑功能,提供负载级别分析。
本公开实施例在现有NF failure发现机制上,提出了NF向第一NRF订阅第二NRF的故障通知,第一NRF在判断出第二NRF故障后,主动把故障通知发送给注册在第二NRF或订阅了第二NRF服务的NF,并主动触发这些NF的NRF容灾迁移,把这些注册/订阅NF迁移到第一NRF上。
本公开实施例采用第一NRF来判断第二NRF是否发送故障,并把故障通知发送给注册在第二NRF或订阅第二NRF服务的NF。这样避免了这些NF需要各自判断第二NRF是否发生故障,能让这些NF快速知道第二NRF故障,并迁移到第一NRF上。
在一些实施例中,故障通知是在第二NF与第二NRF之间交互失败,第一NRF确定第二NRF故障时,发送至第一NF的。
第二NF为注册在第二NRF或订阅了第二NRF服务的NF。
在一些实施例中,第二NF与第二NRF之间交互失败的情况,包括如下一种或多种:
第二NF向第二NRF注册失败、第二NF向第二NRF去注册失败、第二NF向第二NRF订阅失败、第二NF向第二NRF去订阅失败。
在一些实施例中,上述方法还可以包括:
在与第二NRF之间交互失败的情况下,确定第二NRF故障;
在确定第二NRF故障的情况下,容灾迁移到第一NRF。
在一些实施例中,在如下情况下,可以确定第二NRF故障:
第一NF接收到第一NRF发送的故障通知,和/或,第一NF与原NRF之间交互失败。其中,故障通知可以是在第二NF与第二NRF之间交互失败,第一NRF确定第二NRF故障时,发送至第一NF的。
也就是说,第一NF可以通过接收第一NRF的通知,来确定第二NRF是否故障,也可以通过自身与第二NRF之间的交互来确定第二NRF是否故障。
在一些实施例中,第一NRF在确定第二NRF故障后,还可以查找目标NF,目标NF为注册在第二NRF或订阅了第二NRF服务的NF,目标NF的数量不限,可以是一个或多个;然后,第一NRF可以向目标NF,发送故障通知,以使目标NF容灾迁移到第一NRF。
在一些实施例中,容灾迁移到第一NRF,包括将第二NRF服务的NF重新通过第一NRF来进行NF注册和/或服务订阅。
图2示出本公开实施例中一种网络存储功能故障检测及容灾方法流程图,如图2所示,本公开实施例中提供的网络存储功能故障检测及容灾方法,包括如下步骤:
在S201中,第一NF注册到第二NRF或订阅第二NRF服务。
在S202中,第一NF向第一NRF订阅第二NRF的故障通知服务。
第一NF订阅后,第一NRF会及时将第二NRF的故障信息发送至第一NF。
在S203中,NRF间信息同步,也就是第二NRF和第一NRF之间进行信息同步。
在第二NRF故障之后,第一NF可以通过与第二NRF之间的交互来确定第二NRF是否故障,也就是下面的步骤S204-S205。
在S204中,第一NF与第二NRF交互失败,发现第二NRF故障。
在S205中,第一NF容灾迁移到第一NRF。
图3示出本公开实施例中一种网络存储功能故障检测及容灾方法流程图,如图3所示,本公开实施例中提供的网络存储功能故障检测及容灾方法,包括如下步骤:
在S301中,第二NF与第二NRF交互失败,发现第二NRF故障。
需要说明的是,在S301之前,第一NF和第二NF注册到原NRF或订阅第二NRF服务,且第一NF向第一NRF订阅第二NRF的故障通知服务。第二NF也可以向第一NRF订阅第二NRF的故障通知服务。第二NRF和第一NRF之间进行信息同步。
在S302中,第二NF容灾迁移到第一NRF。
在S303中,第一NRF确定第二NRF故障,然后查找第二NRF中注册/订阅的NF相关信息,找到注册在第二NRF或订阅了第二NRF服务的目标NF。
在S304中,向目标NF(包括第一NF)发送第二NRF故障通知。
在S305中,第一NF容灾迁移到第一NRF。
本公开实施例所提供的网络存储功能故障检测及容灾方法,第一网络功 能NF向第一网络存储功能NRF订阅第二NRF的故障通知服务,采用第一NRF来判断第二NRF是否发送故障,如此,在第一NRF已经通过其它NF发现第二NRF故障的情况下,第一NF便可以通过第一NRF快速知道第二NRF故障,无需自行判断第二NRF是否发生故障。
基于同一发明构思,本公开实施例中还提供了一种网络存储功能故障检测及容灾方法,应用于第一网络功能NF,如图4所示,本公开实施例中提供的网络存储功能故障检测及容灾方法,包括如下步骤:
在S402中,在第一NF向第二NRF发送第一注册请求后,向第一NRF发送第一订阅请求;
在S404中,接收第一NRF发送的故障通知,故障通知是第一NRF在确定第二NRF发生故障后发送的;
在S406中,响应于故障通知,容灾迁移到第一NRF。
基于同一发明构思,本公开实施例中还提供了一种网络存储功能故障检测及容灾方法,应用于第一网络存储功能NRF,如图5所示,本公开实施例中提供的网络存储功能故障检测及容灾方法,包括如下步骤:
在S502中,接收来自第一网络功能NF的第一订阅请求,第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;
在S504中,在确定第二NRF发生故障后,向第一NF发送故障通知,以使第一NF响应于故障通知,容灾迁移到第一NRF。
本公开实施例所提供的网络存储功能故障检测及容灾方法,第一网络功能NF向第一网络存储功能NRF订阅第二NRF的故障通知服务,采用第一NRF来判断第二NRF是否发送故障,如此,在第一NRF已经通过其它NF发现第二NRF故障的情况下,第一NF便可以通过第一NRF快速知道第二NRF故障,无需自行判断第二NRF是否发生故障。
在本公开实施例中,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本公开中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。
在一些实施例中,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
基于同一发明构思,本公开实施例中还提供了一种通信系统,如图6所示,本公开实施例中提供的通信系统,包括多个网络功能NF 610、第二网络存储功能NRF 620、第一网络存储功能NRF 630。多个网络功能NF 610,注册在第二网络存储功能NRF或订阅了第二网络存储功能NRF的服务。多个网络功能NF 610,包括第一网络功能NF 611和第二网络功能NF 612。
在一个实施例中,第一NF 611,用于向第一NRF 630发送第一订阅请求,第一订阅请求用于订阅第二NRF 620的故障通知服务;接收第一NRF 630发送的故障通知,故障通知是第一NRF 630在确定第二NRF 620发生故障后发送的;响应于故障通知,容灾迁移到第一NRF 630。
第二网络存储功能NRF 620,与第一网络存储功能NRF 630信息同步。
第一网络存储功能NRF 630,被配置为接收来自第一网络功能NF 611的第一订阅请求,第一订阅请求用于订阅第二NRF 620的故障通知服务;在确定第二NRF 620发生故障后,向第一NF 611发送故障通知,以使第一NF 611响应于故障通知,容灾迁移到第一NRF 630。
在一些实施例中,故障通知是在第二NF 612与第二NRF 620之间交互失败,第一NRF 630确定第二NRF 620故障时,发送至第一NF 611的;第二NF 612为注册在第二NRF 620或订阅了第二NRF 620服务的NF。
在一些实施例中,第一NF 611,还被配置为在与第二NRF 620之间交互失败的情况下,确定第二NRF 620故障;在确定第二NRF 620故障的情况下,容灾迁移到第一NRF 630。
在一些实施例中,在第一NRF 630确定第二NRF故障后,第一NRF 630还用于查找第二NF 612,第二NF 612为注册在第二NRF 620或订阅了第二NRF 612服务的NF;然后,第一NRF 630向第二NF,发送故障通知,以使第二NF容灾迁移到备用NRF。
基于同一发明构思,本公开实施例中还提供了一种网络功能NF,如下面 的实施例所述。由于该网络功能NF实施例解决问题的原理与上述方法实施例相似,因此该网络功能NF实施例的实施可以参见上述方法实施例的实施,重复之处不再赘述。
图7示出本公开实施例中一种网络功能NF示意图,如图7所示,该网络功能NF 700,包括:
请求发送模块702,被配置为在第一NF向第二网络存储功能NRF发送第一注册请求后,向第一NRF发送第一订阅请求;
通知接收模块704,被配置为接收第一NRF发送的故障通知,故障通知是第一NRF在确定第二NRF发生故障后发送的;
容灾迁移模块706,被配置为响应于故障通知,容灾迁移到第一NRF。
在一些实施例中,第一订阅请求用于订阅第二NRF的故障通知服务。
在一些实施例中,该网络功能NF 700,还可以包括:
故障确定模块,被配置为在与第二NRF之间交互失败的情况下,确定第二NRF故障;
第二迁移模块,被配置为在确定第二NRF故障的情况下,容灾迁移到第一NRF。
关于上述实施例中的网络功能NF,其中各个模块执行操作的具体方式已经在有关该网络存储功能故障检测及容灾方法的实施例中进行了详细描述,此处将不做详细阐述说明。
基于同一发明构思,本公开实施例中还提供了一种网络存储功能NRF,如图8所示,该网络存储功能NRF 800,包括:
请求接收模块802,被配置为接收来自第一网络功能NF的第一订阅请求,第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;
通知发送模块804,被配置为在确定第二NRF发生故障后,向第一NF发送故障通知,以使第一NF响应于故障通知,容灾迁移到第一NRF。
在一些实施例中,第一订阅请求用于订阅第二NRF的故障通知服务。
在一些实施例中,第一订阅请求为NF注册请求。
在一些实施例中,该网络存储功能NRF 800,还可以包括:
第二故障确定模块,被配置为在第二NF与第二NRF之间交互失败的 情况下,确定第二NRF故障;第二NF为注册在第二NRF或订阅了第二NRF服务的NF。
在一些实施例中,第二NF与第二NRF之间交互失败的情况,包括如下一种或多种:
第二NF向第二NRF注册失败、第二NF向第二NRF去注册失败、第二NF向第二NRF订阅失败、第二NF向第二NRF去订阅失败。
在一些实施例中,该网络存储功能NRF 800,还可以包括:
查找模块,被配置为在确定第二NRF故障后,查找一个或多个目标NF,目标NF为注册在第二NRF或订阅了第二NRF服务的NF;
通知模块,被配置为向一个或多个目标NF,发送故障通知,以使目标NF容灾迁移到第一NRF。
在一些实施例中,容灾迁移到第一NRF,包括将第二NRF服务的NF重新通过第一NRF来进行NF注册和/或服务订阅。
在一些实施例中,该网络存储功能NRF 800,还可以还包括:
同步模块,用于与第二NRF之间进行信息同步。
关于上述实施例中的网络存储功能NRF,其中各个模块执行操作的具体方式已经在有关该网络存储功能故障检测及容灾方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。
实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
下面参照图9来描述本公开实施例提供的电子设备。图9显示的电子设备900仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
图9示出本本公实施例提供的一种电子设备900的架构示意图。如图9所示,该电子设备900包括但不限于:至少一个处理器910、至少一个存储器920。
存储器920,用于存储指令。
在一些实施例中,存储器920可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)9201和/或高速缓存存储单元9202,还可以进一步包括只读存储单元(ROM)9203。
在一些实施例中,存储器920还可以包括具有一组(至少一个)程序模块9205的程序/实用工具9204,这样的程序模块9205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
在一些实施例中,存储器920可存储操作系统。该操作系统可以是实时操作系统(Real Time eXecutive,RTX)、LINUX、UNIX、WINDOWS或OS X之类的操作系统。
在一些实施例中,存储器920中还可以存储有数据。
作为一个示例,处理器910可以读取存储器920中存储的数据,该数据可以与指令存储在相同的存储地址,该数据也可以与指令存储在不同的存储地址。
处理器910,用于调用存储器920中存储的指令,实现本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理器910可以执行上述方法实施例的如下步骤:
接收来自第一网络功能NF的第一订阅请求,第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;
在确定第二NRF发生故障后,向第一NF发送故障通知,以使第一NF响应于故障通知,容灾迁移到第一NRF。
或,执行上述方法实施例的如下步骤:
在第一NF向第二网络存储功能NRF发送第一注册请求后,向第一NRF 发送第一订阅请求;
接收第一NRF发送的故障通知,故障通知是第一NRF在确定第二NRF发生故障后发送的;
响应于故障通知,容灾迁移到第一NRF。
需要说明的是,上述处理器910可以是通用处理器或者专用处理器。处理器910可以包括一个或者一个以上处理核心,处理器910通过运行指令执行各种功能应用以及数据处理。
在一些实施例中,处理器910可以包括中央处理器(central processing unit,CPU)和/或基带处理器。
在一些实施例中,处理器910可以根据各个控制指令中携带的优先级标识和/或功能类别信息确定一个指令。
本公开中,处理器910和存储器920可以单独设置,也可以集成在一起。
作为一个示例,处理器910和存储器920可以集成在单板或者系统级芯片(system on chip,SOC)上。
如图9所示,电子设备900以通用计算设备的形式表现。电子设备900还可以包括总线930。
总线930可以为表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、图形加速端口、处理器或者使用多种总线结构中的任意总线结构的局域总线。
电子设备900也可以与一个或多个外部设备940(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备900交互的设备通信,和/或与使得该电子设备900能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口950进行。
并且,电子设备900还可以通过网络适配器960与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。
如图9所示,网络适配器960通过总线930与电子设备900的其它模块通信。
应当明白,尽管图中未示出,可以结合电子设备900使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘 驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
可以理解的是,本公开实施例示意的结构并不构成对电子设备900的具体限定。在本公开另一些实施例中,电子设备900可以包括比图9所示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图9所示的部件可以以硬件,软件或软件和硬件的组合实现。
本公开还提供了一种计算机可读存储介质,其上存储有计算机指令,计算机指令被处理器执行时实现上述方法实施例描述的网络存储功能故障检测及容灾方法。
本公开实施例中计算机可读存储介质,为可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的计算机指令。
作为一个示例,计算机可读存储介质是非易失性存储介质。
在一些实施例中,本公开中的计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、U盘、移动硬盘或者上述的任意合适的组合。
本公开实施例中,计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机指令(可读程序代码)。
这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。
在一些示例中,计算机可读存储介质上包含的计算指令可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
本公开实施例还提供一种计算机程序产品,计算机程序产品存储有指令,指令在由计算机执行时,使得计算机实施上述方法实施例描述的网络存储功能故障检测及容灾方法。
上述指令可以是程序代码。在具体实施时,程序代码可以由一种或多种程序设计语言的任意组合来编写。
程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。
程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
本公开实施例还提供了一种芯片,包括至少一个处理器和接口;
接口,用于为至少一个处理器提供程序指令或者数据;
至少一个处理器用于执行程序指令,以实现上述方法实施例描述的网络存储功能故障检测及容灾方法。
在一些实施例中,该芯片还可以包括存储器,该存储器,用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。
本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (17)

  1. 一种网络存储功能故障检测及容灾方法,应用于第一网络存储功能NRF,所述方法包括:
    接收来自第一网络功能NF的第一订阅请求,所述第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;
    在确定所述第二NRF发生故障后,向所述第一NF发送故障通知,以使所述第一NF响应于所述故障通知,容灾迁移到所述第一NRF。
  2. 根据权利要求1所述的方法,所述第一订阅请求用于订阅所述第二NRF的故障通知服务。
  3. 根据权利要求1所述的方法,所述第一订阅请求为NF注册请求。
  4. 根据权利要求1所述的方法,所述方法还包括:
    在第二NF与所述第二NRF之间交互失败的情况下,确定所述第二NRF故障;所述第二NF为注册在所述第二NRF或订阅了所述第二NRF服务的NF。
  5. 根据权利要求1所述的方法,其中,所述第二NF与所述第二NRF之间交互失败的情况,包括如下一种或多种:
    第二NF向所述第二NRF注册失败、第二NF向所述第二NRF去注册失败、第二NF向所述第二NRF订阅失败、第二NF向所述第二NRF去订阅失败。
  6. 根据权利要求1所述的方法,其中,所述在确定所述第二NRF故障后,所述方法还包括:
    查找一个或多个目标NF,所述目标NF为注册在所述第二NRF或订阅了所述第二NRF服务的NF;
    向所述一个或多个目标NF,发送故障通知,以使所述目标NF容灾迁移到所述第一NRF。
  7. 根据权利要求1或6所述的方法,所述容灾迁移到所述第一NRF, 包括将所述第二NRF服务的NF重新通过所述第一NRF来进行NF注册和/或服务订阅。
  8. 根据权利要求1所述的方法,所述方法还包括:
    与所述第二NRF之间进行信息同步。
  9. 一种网络存储功能故障检测及容灾方法,应用于第一网络功能NF,所述方法包括:
    在第一NF向第二网络存储功能NRF发送第一注册请求后,向第一NRF发送第一订阅请求;
    接收所述第一NRF发送的故障通知,所述故障通知是所述第一NRF在确定所述第二NRF发生故障后发送的;
    响应于所述故障通知,容灾迁移到所述第一NRF。
  10. 根据权利要求9所述的方法,所述第一订阅请求用于订阅所述第二NRF的故障通知服务。
  11. 根据权利要求9所述的方法,所述方法还包括:
    在与所述第二NRF之间交互失败的情况下,确定所述第二NRF故障;
    在确定所述第二NRF故障的情况下,容灾迁移到所述第一NRF。
  12. 一种网络存储功能NRF,包括:
    请求接收模块,被配置为接收来自第一网络功能NF的第一订阅请求,所述第一订阅请求是第一NF在向第二NRF发送第一注册请求后发送至第一NRF的;
    通知发送模块,被配置为在确定所述第二NRF发生故障后,向所述第一NF发送故障通知,以使所述第一NF响应于所述故障通知,容灾迁移到所述第一NRF。
  13. 一种网络功能NF,包括:
    请求发送模块,被配置为在第一NF向第二网络存储功能NRF发送第一 注册请求后,向第一NRF发送第一订阅请求;
    通知接收模块,被配置为接收所述第一NRF发送的故障通知,所述故障通知是所述第一NRF在确定所述第二NRF发生故障后发送的;
    容灾迁移模块,被配置为响应于所述故障通知,容灾迁移到所述第一NRF。
  14. 一种通信系统,包括:
    多个网络功能NF,所述多个网络功能NF注册在第二网络存储功能NRF或订阅了所述第二网络存储功能NRF的服务;所述多个网络功能NF,包括第一网络功能NF和第二网络功能NF;
    所述第二网络存储功能NRF,与第一网络存储功能NRF信息同步;
    所述第一网络存储功能NRF,被配置为执行权利要求1-11任一项所述网络存储功能故障检测及容灾方法。
  15. 一种电子设备,包括:
    存储器,用于存储指令;
    处理器,用于调用所述存储器中存储的指令,实现如权利要求1-11任一项所述网络存储功能故障检测及容灾方法。
  16. 一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令被处理器执行时实现权利要求1-11中任意一项所述网络存储功能故障检测及容灾方法。
  17. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1-11中任意一项所述网络存储功能故障检测及容灾方法。
PCT/CN2023/117840 2022-11-11 2023-09-08 网络存储功能故障检测及容灾方法及相关设备 WO2024098938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211414176.2 2022-11-11
CN202211414176.2A CN118042449A (zh) 2022-11-11 2022-11-11 网络存储功能故障检测及容灾方法及相关设备

Publications (1)

Publication Number Publication Date
WO2024098938A1 true WO2024098938A1 (zh) 2024-05-16

Family

ID=90999132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117840 WO2024098938A1 (zh) 2022-11-11 2023-09-08 网络存储功能故障检测及容灾方法及相关设备

Country Status (2)

Country Link
CN (1) CN118042449A (zh)
WO (1) WO2024098938A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147687A1 (zh) * 2020-01-22 2021-07-29 华为技术有限公司 一种通信的方法及装置和系统
CN113452547A (zh) * 2020-03-24 2021-09-28 诺基亚通信公司 实现容错多nrf网络拓扑
US20220240171A1 (en) * 2021-01-22 2022-07-28 Oracle International Corporation Methods, systems, and computer readable media for optimized routing of messages relating to existing network function (nf) subscriptions using an intermediate forwarding nf repository function (nrf)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147687A1 (zh) * 2020-01-22 2021-07-29 华为技术有限公司 一种通信的方法及装置和系统
CN113452547A (zh) * 2020-03-24 2021-09-28 诺基亚通信公司 实现容错多nrf网络拓扑
US20220240171A1 (en) * 2021-01-22 2022-07-28 Oracle International Corporation Methods, systems, and computer readable media for optimized routing of messages relating to existing network function (nf) subscriptions using an intermediate forwarding nf repository function (nrf)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUE SONG, CHINA MOBILE: "Discussion on 5GC restoration improvement", 3GPP DRAFT; C4-225291; TYPE DISCUSSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP CT 4, no. Toulouse, FR; 20221114 - 20221118, 4 November 2022 (2022-11-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052214890 *
YUE SONG, CHINA MOBILE: "Discussion on 5GC restoration improving", 3GPP DRAFT; C4-224314; TYPE DISCUSSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP CT 4, no. Online; 20220818 - 20220826, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052186693 *

Also Published As

Publication number Publication date
CN118042449A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN112003961B (zh) 一种kubernetes中资源暴露方法、系统、设备以及介质
EP3664372B1 (en) Network management method and related device
US8214823B2 (en) Cluster system, process for updating software, service provision node, and computer-readable medium storing service provision program
JP5031218B2 (ja) コンピュータクラスタのノードのフェールオーバー範囲
JP6466003B2 (ja) Vnfフェイルオーバの方法及び装置
US20180316594A1 (en) Dynamic update of virtual network topology
US11706080B2 (en) Providing dynamic serviceability for software-defined data centers
WO2019184164A1 (zh) 自动部署Kubernetes从节点的方法、装置、终端设备及可读存储介质
CN108696581B (zh) 分布式信息的缓存方法、装置、计算机设备以及存储介质
EP3125117A1 (en) Update management system and update management method
US20070260721A1 (en) Physical server discovery and correlation
WO2019001312A1 (zh) 实现告警关联的方法、装置以及计算机可读存储介质
EP3886481A1 (en) Method for achieving disaster recovery and related device
US10120779B1 (en) Debugging of hosted computer programs
CN104158707A (zh) 一种检测并处理集群脑裂的方法和装置
WO2017190339A1 (zh) 故障处理方法及装置
WO2024098938A1 (zh) 网络存储功能故障检测及容灾方法及相关设备
CN114726789A (zh) 流量管理、配置流量管理策略的方法、装置、设备及介质
EP4344259A1 (en) Session binding relationship processing method and apparatus, electronic device, and readable medium
JP2002366381A (ja) オブジェクトの動的入替え処理方法
US20240070002A1 (en) Hang detection models and management for heterogenous applications in distributed environments
EP4149062A1 (en) Deployment method and apparatus for virtualized network service
CN113612813B (zh) 分布式跨网络访问方法、装置、系统及存储介质
CN112636955A (zh) 堆叠双挂处理方法及装置
US11579949B2 (en) Device application support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887632

Country of ref document: EP

Kind code of ref document: A1