WO2024098791A1 - 一种回转动力单元和两级减速回转动力单元以及机器人 - Google Patents

一种回转动力单元和两级减速回转动力单元以及机器人 Download PDF

Info

Publication number
WO2024098791A1
WO2024098791A1 PCT/CN2023/103698 CN2023103698W WO2024098791A1 WO 2024098791 A1 WO2024098791 A1 WO 2024098791A1 CN 2023103698 W CN2023103698 W CN 2023103698W WO 2024098791 A1 WO2024098791 A1 WO 2024098791A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
stage
rotary power
power unit
motor rotor
Prior art date
Application number
PCT/CN2023/103698
Other languages
English (en)
French (fr)
Inventor
王兴兴
杨知雨
Original Assignee
杭州宇树科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州宇树科技有限公司 filed Critical 杭州宇树科技有限公司
Publication of WO2024098791A1 publication Critical patent/WO2024098791A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear

Definitions

  • the present invention relates to the technical field of robot equipment, and in particular to a rotary power unit, a two-stage reduction rotary power unit and a robot.
  • the rotary power unit is the core component of the robot, and its performance directly affects the robot's dynamic performance.
  • the existing rotary power units mostly use a one-stage planetary reduction system, which has a relatively small reduction ratio.
  • the Chinese patent discloses an electric drive joint and a three-degree-of-freedom bionic robot joint integrated module.
  • the electric drive joint includes a housing assembly, a motor assembly, a primary reducer assembly, a secondary reducer assembly, an encoder assembly and a bearing group;
  • the module includes a knee joint unit, a front swing unit, a side expansion unit and a leg unit;
  • the electric drive joint adopts an axial flux motor;
  • the knee joint unit and the front swing joint unit are arranged in the same direction, and the output axis of the side expansion joint unit is arranged orthogonally to the front swing joint axis.
  • the encoder assembly includes an encoder and an encoder pole, the tail end of the output shaft is fixedly connected to the magnetic encoder magnet, and the encoder acquisition board 5.1 is fixed to the housing assembly.
  • the encoder assembly of the above solution can only detect and feedback the state of the output end, but cannot detect and feedback the state of the motor input end (rotor end), which affects the control accuracy of the electric drive rotary unit. If an encoder assembly is directly set at the motor input end, it is necessary to lay cables at both the motor output and input ends, and two routings need to be designed, which will make the wiring of the electric drive rotary unit complicated and the reliability low.
  • the above dual reducer solution does not disclose the cable routing method. If the cables are placed externally, it will affect the cable life and make the wiring of the slewing unit complicated. If the conventional hollow routing setting is adopted, it must directly pass through various components, which poses certain safety hazards.
  • an object of the present invention is to provide a rotary power unit, which is provided with an output angle rotation transmission component, and the status monitoring of the input end and the output end are integrated in one place, so that the output rotation sensor can be arranged together with the input rotation sensor at the front end or the rear end of the rotary power unit. Therefore, it is only necessary to arrange cables at one end of the rotary power unit to realize the status monitoring and feedback of the input end and the output end of the rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the second object of the present invention is to provide a two-stage reduction rotary power unit, set an output angle rotation transmission component, and integrate the status monitoring of the secondary planetary carrier and the motor rotor in one place. Therefore, it is only necessary to arrange cables on the motor rotor to realize the status monitoring and feedback of the input and output of the two-stage reduction rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the third object of the present invention is to provide a two-stage reduction rotary power unit, which has a compact structure and uses a two-stage planetary reduction to increase the reduction ratio.
  • the fourth object of the present invention is to provide a robot with an output angular rotation transmission member, so that the wiring of the electric control system is simple and the reliability is high, and a two-stage planetary reduction is used to increase the reduction ratio.
  • the first technical solution of the present invention is:
  • One of the input end and the output end is equipped with an input rotation sensor, and the other is fixedly connected to an output angle rotation transmission member;
  • the output angle rotation transmission member extends toward the input rotation sensor
  • An output rotation sensor is installed adjacent to the input rotation sensor
  • the output rotation sensor is connected to the output angle rotation transmission member to realize the state detection of the input end and the output end at one end of the rotary power unit.
  • the present invention sets an output angle rotation transmission component to integrate the status monitoring of the input end and the output end, so that the output rotation sensor can be arranged together with the input rotation sensor at the front end or the rear end of the rotary power unit. Therefore, it is only necessary to arrange cables at one end of the rotary power unit to realize the status monitoring and feedback of the input and output ends of the rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the input rotation sensor and the output rotation sensor are respectively a photoelectric sensor, a Hall rotation speed sensor, an encoder or a laser rotation speed sensor.
  • the state monitoring includes posture monitoring and/or angle monitoring and/or rotation speed monitoring.
  • the input and output ends have hollow rotation centers
  • the output angle rotation transmission component is a T-shaped structure with a through hole, and its rod portion is provided with a hollow rotation center, so that the cable can pass through the through hole of the output angle rotation transmission component to avoid the cable being placed outside; at the same time, the cable is isolated from the outside world by the output angle rotation transmission component to avoid contact and wear between the cable and various components, with high safety and a feasible solution.
  • the input end is the rotor of the motor unit or the input end of the reducer unit, which can be a cylindrical structure, a sheet structure, a frame structure, a square structure, or a ring structure.
  • the output end is the output end of the primary planetary reduction mechanism or the secondary planetary reduction mechanism, which can be a cylindrical structure, a sheet structure, a frame structure, a square structure, or a ring structure.
  • a rotary power unit comprises a motor unit and a reducer unit
  • the motor unit is provided with a rotating part
  • the reducer unit is provided with an input end and an output end;
  • the input end is fixedly connected to the rotating part, and an input rotation sensor is installed on one of them;
  • the output end is fixedly connected to an output angle rotation transmission member
  • the output angle rotation transmission member extends from the output end to the input rotation sensor
  • An output rotation sensor is installed adjacent to the input rotation sensor
  • the output rotation sensor is connected to the output angle rotation transmission member to realize the state detection of the input end and the output end at the input end.
  • the input rotation sensor When the input rotation sensor is mounted on the rotating part of the motor unit, the input rotation sensor is a motor rotor rotation sensor; when the input rotation sensor is mounted on the input end of the reducer unit, the input rotation sensor is an input angle rotation sensor.
  • the present invention sets an output angle rotation transmission member at the output end, and aggregates the state monitoring of the output end to the input end or the electronic rotor, so that the output rotation sensor can be arranged together with the input rotation sensor at the rear end (input end) of the rotary power unit. Therefore, it is only necessary to arrange cables at the rear end of the rotary power unit to realize the state monitoring and feedback of the input and output ends of the rotary power unit, thereby making the wiring of the electric control system of the rotary power unit simple, with high reliability and low cost.
  • the third technical solution of the present invention is:
  • a two-stage reduction rotary power unit comprises a base, a motor unit and a reducer unit arranged in the base;
  • the motor unit includes a motor rotor, and the reducer unit includes a primary planetary reduction mechanism and a secondary planetary reduction mechanism;
  • the primary planetary reduction mechanism comprises a primary sun gear, a primary planetary gear, a primary planet carrier and a primary inner gear ring, wherein the primary sun gear is coaxially fixedly connected to the motor rotor, the primary inner gear ring is fixed in the base, the primary planetary gear is meshed between the primary sun gear and the primary inner gear ring, and power is output through the primary planet carrier;
  • the secondary planetary reduction mechanism comprises a secondary sun gear, a secondary planetary gear, a secondary planet carrier and a secondary inner gear ring, wherein the secondary sun gear is coaxially fixedly connected to the primary planet carrier, the secondary inner gear ring is fixed in the base, the secondary planetary gear is meshed between the secondary sun gear and the secondary inner gear ring, and power is output through the secondary planet carrier;
  • a hollow output angle rotation transmission component is coaxially fixedly connected to the secondary planet carrier, and the output angle rotation transmission component extends toward the motor rotor.
  • the present invention sets an output angle rotation transmission component to integrate the status monitoring of the secondary planetary carrier and the motor rotor in one place. Therefore, it is only necessary to arrange cables on the motor rotor to realize the status monitoring and feedback of the input and output of the two-stage reduction rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the present invention provides a two-stage reduction rotary power unit, whose reducer unit adopts two-stage planetary reduction and has a high reduction ratio; and the output stage speed ratio can be flexibly adjusted according to its different operating conditions, such as when used in the hip joint or knee joint of a robot.
  • the rotation center of the motor rotor is recessed inward to form a receiving cavity for accommodating the primary planetary reduction mechanism, so that the joint unit has a compact structure and a small axial size. Furthermore, a receiving cavity for accommodating the primary planetary reduction mechanism is provided inside the rotor, which makes full use of the space, thereby making the overall structure of the rotary power unit more compact and smaller in size.
  • the output angle rotation transmission member passes through the secondary planet carrier, the secondary sun gear, the primary planet carrier, the primary sun gear and the motor rotor, so that the rotary power unit has a compact structure.
  • a support seat is directly fixed in the base, and the primary internal gear ring and the secondary internal gear ring are respectively fixed in the base through the support seat;
  • the motor rotor side end is provided with a motor rotor rotation sensor for obtaining the motor rotor angular rotation and speed signal, and an output rotation sensor for obtaining the output end rotation and speed signal
  • the motor rotor rotation sensor includes a motor rotor encoding ring and a motor rotor encoding PCB board
  • the output rotation sensor includes an output encoding ring and an output rotation encoding PCB board
  • the motor rotor encoding ring is coaxially fixedly connected to the primary sun gear or the motor rotor, the output encoding ring is coaxially fixedly connected to the output angular rotation transmission component, the motor rotor encoding PCB board and the output rotation encoding PCB board are respectively fixed in the base, ensuring that the axis of the joint unit is hollow, so that when it is actually used on a robot, various cables can be connected in the hollow axis of the joint unit.
  • the first-stage sun gear is integrally formed with the motor rotor
  • the second-stage sun gear is integrally formed with the first-stage planet carrier, which has a simple structure, high precision and low cost.
  • the motor unit further comprises a motor stator, and the motor rotor is an inner rotor; the inner rotor motor has a smaller moment of inertia and a higher power density than the outer rotor motor.
  • the primary sun gear is coaxially rotatably connected with the primary planet carrier through two bearings, so that the sun gear and the planet carrier have better coaxiality, longer service life, and a compact structure.
  • the base includes a sensor back cover, an input end base, and an output end base which are fixedly sealed and connected in sequence; an output end cover is fixedly provided on the outside of the secondary planetary frame; the end of the output angular rotation transmission member extends to pass through the sensor back cover; a dynamic sealing assembly is provided between the output end cover and the output end base, and an oil seal assembly or a support bearing is provided between the output angular rotation transmission member and the sensor back cover, so that the joint has better sealing and protection performance.
  • a through hole for accommodating the output angle rotation transmission member is provided at the rotation center of the output end cover and the rotation center of the secondary planetary frame, thereby forming a connection channel that runs through the sensor back cover and the output end cover.
  • a connection channel that runs through the entire rotary power unit is provided to facilitate the passage of cables and reduce external wiring.
  • the center sun gear with the same outer diameter can be correspondingly larger, creating conditions for the middle cavity.
  • the entire rotary power unit has a hollow axis, which can facilitate the passage of various cables.
  • the fourth technical solution of the present invention is:
  • a robot comprises the above-mentioned rotary power unit or the above-mentioned two-stage reduction rotary power unit, and the robot is a quadruped robot, a biped robot or a wheel-legged robot.
  • the present invention sets an output angle rotation transmission component to integrate the status monitoring of the input end and the output end in one place. Therefore, it is only necessary to arrange cables at one end of the rotary power unit to realize the status monitoring and feedback of the input end and the output end of the rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the robot provided by the present invention can adopt a two-stage reduction rotary power unit, and its reducer unit adopts a two-stage planetary reduction with a high reduction ratio; and the output stage speed ratio can be flexibly adjusted according to its different operating conditions, such as when used at the robot's hip joint or knee joint.
  • the present invention has the following beneficial effects:
  • the present invention sets an output angle rotation transmission component to integrate the status monitoring of the input end and the output end, so that the output rotation sensor can be arranged together with the input rotation sensor at the front end or the rear end of the rotary power unit. Therefore, it is only necessary to arrange cables at one end of the rotary power unit to realize the status monitoring and feedback of the input and output ends of the rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the present invention sets an output angle rotation transmission component to integrate the status monitoring of the secondary planetary carrier and the motor rotor in one place. Therefore, it is only necessary to arrange cables on the motor rotor to realize the status monitoring and feedback of the input and output of the two-stage reduction rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the present invention provides a two-stage reduction rotary power unit, whose reducer unit adopts two-stage planetary reduction and has a high reduction ratio; and the output stage speed ratio can be flexibly adjusted according to its different operating conditions, such as use in the hip joint or knee joint of a robot.
  • the robot provided by the present invention can adopt a two-stage reduction rotary power unit, and its reducer unit adopts a two-stage planetary reduction with a high reduction ratio; and the output stage speed ratio can be flexibly adjusted according to its different operating conditions, such as when used at the robot's hip joint or knee joint.
  • FIG1 is a schematic diagram of the overall structure of a two-stage reduction rotary power unit provided by the present invention.
  • FIG2 is an exploded view of a two-stage reduction rotary power unit provided by the present invention.
  • FIG3 is a side view of a two-stage reduction rotary power unit provided by the present invention.
  • Figure 4 is an A-A cross-sectional view of a two-stage reduction rotary power unit provided by the present invention.
  • One of the input end and the output end is equipped with a motor rotor rotation sensor (input rotation sensor), and the other is fixedly connected to an output angle rotation transmission member;
  • the output angle rotation transmission member extends toward the motor rotor rotation sensor (input rotation sensor);
  • the adjacent motor rotor rotation sensor (input rotation sensor) is equipped with an output rotation sensor;
  • the output rotation sensor is connected to the output angle rotation transmission member to realize the state detection of the input end and the output end at one end of the rotary power unit.
  • the output angle rotation transmission member is a ring-shaped structure, a rod-shaped structure, a cage-shaped structure, a T-shaped structure, or an arc-shaped structure.
  • the present invention sets an output angle rotation transmission component to integrate the status monitoring of the input end and the output end, so that the output rotation sensor can be arranged together with the motor rotor rotation sensor (input rotation sensor) at the front end or the rear end of the rotary power unit. Therefore, it is only necessary to arrange cables at one end of the rotary power unit to realize the status monitoring and feedback of the input and output ends of the rotary power unit, thereby making the wiring of the electronic control system of the rotary power unit simple, with high reliability and low cost.
  • the motor rotor rotation sensor, the input rotation sensor, and the output rotation sensor are respectively a photoelectric sensor, a Hall rotation speed sensor, an encoder, or a laser rotation speed sensor.
  • a rotary power unit comprises a motor unit and a reducer unit
  • the motor unit is provided with a rotating part
  • the reducer unit is provided with an input end and an output end;
  • the input end is fixedly connected to the rotating part, and a motor rotor rotation sensor (input rotation sensor) is installed on one of them;
  • the output end is fixedly connected to an output angle rotation transmission member
  • the output angle rotation transmission member extends from the output end toward the motor rotor rotation sensor
  • the adjacent motor rotor rotation sensor (input rotation sensor) is equipped with an output rotation sensor;
  • the output rotation sensor is connected to the output angle rotation transmission member to realize the state detection of the input end and the output end at the input end.
  • a specific embodiment of the two-stage reduction rotary power unit of the present invention is:
  • a two-stage reduction rotary power unit comprising a base 1, a motor unit and a reducer unit arranged in the base 1;
  • the motor unit comprises a motor rotor 41
  • the reducer unit comprises a primary planetary reduction mechanism 2 and a secondary planetary reduction mechanism 3
  • the primary planetary reduction mechanism 2 comprises a primary sun gear 21, a primary planetary gear 22, a primary planetary carrier 23 and a primary inner gear ring 24, the primary sun gear 21 is coaxially fixedly connected with the motor rotor 41, the primary inner gear ring 24 is fixed in the base 1, the primary planetary gear 22 It is meshed between the primary sun gear 21 and the primary inner gear ring 24, and power is output through the primary planet carrier 23
  • the secondary planetary reduction mechanism 3 includes a secondary sun gear 31, a secondary planetary gear 32, a secondary planet carrier 33 and a secondary inner gear ring 34, the secondary sun gear 31 is coaxially fixedly connected to the primary planet carrier 23, the secondary inner gear ring 34 is fixed in the base 1, the secondary planetary gear 32 is me
  • a hollow output angle rotation transmission member 5 is coaxially fixedly connected to the secondary planet carrier 33, and the output angle rotation transmission member 5 passes through the secondary planet carrier 33, the secondary sun gear 31, the primary planet carrier 23, the primary sun gear 21 and the motor rotor 41.
  • the output angle rotation transmission member 5 is provided to synchronously transmit the rotation information of the output end of the rotary power unit to the input end, so that the motor rotor rotation sensor 6 and the output rotation sensor 7 are integrated at one end of the input end, avoiding the external placement of the internal control cable of the rotary power unit.
  • the motor rotor 41 is provided with a motor rotor rotation sensor 6 for obtaining the input end angular rotation and speed signal, and an output rotation sensor 7 for obtaining the output end angular rotation and speed signal.
  • the motor rotor rotation sensor 6 includes a motor rotor encoding ring 61 and a motor rotor encoding PCB board 62
  • the output rotation sensor 7 includes an output encoding ring 71 and an output rotation encoding PCB board 72;
  • the motor rotor encoding ring 61 is coaxially fixedly connected to the primary sun gear 21 or the motor rotor 41, and the output encoding ring 71 is coaxially fixedly connected to the output angular rotation transmission member 5, and the motor rotor encoding PCB board 62 and the output rotation encoding PCB board 72 are respectively fixed in the base 1.
  • the motor rotor rotation sensor 6 and the output rotation sensor 7 are provided to facilitate direct measurement of the angle of the output end of the rotary power unit, and the output rotation sensor 7 is provided on the same side of the motor rotor rotation sensor 6, which has a simple and convenient structure and low cost.
  • the primary sun gear 21 is integrally formed with the motor rotor 41, and the secondary sun gear 31 is integrally formed with the primary planet carrier 23;
  • the motor unit further includes a motor stator 42, and the motor rotor 41 is an inner rotor; the motor rotor 41 is recessed inward at the rotation center to form an accommodating chamber 8 for accommodating the primary planetary reduction mechanism 2.
  • the inner rotor motor has a smaller moment of inertia and a higher power density than the outer rotor motor, and the rotor is provided with an accommodating chamber 8 for accommodating the primary planetary reduction mechanism 2, which makes full use of the space, thereby making the overall structure of the rotary power unit more compact and smaller in size.
  • a support seat 9 is directly fixed in the base 1, and the primary inner gear ring 24 and the secondary inner gear ring 34 are fixed in the base 1 through the support seat 9 respectively; a buffer protrusion 91 and a buffer recess 92 that match each other are provided between the primary inner gear ring 24 and the support seat 9, and between the secondary inner gear ring 34 and the support seat 9. A buffer protrusion 91 and a buffer recess 92 that match each other are provided between the primary inner gear ring 24 and the support seat 9, and between the secondary inner gear ring 34 and the support seat 9.
  • the primary inner gear ring 24 and the secondary inner gear ring 34 can respectively rotate relative to the support seat 9, thereby absorbing a part of the impact energy, and preventing the rotary power unit from causing structural damage to the components due to external impact.
  • the base 1 includes a sensor back cover 11, an end base input end base 12, and an output end base 13, which are fixedly sealed and connected in sequence.
  • An output end cover 103 is fixedly arranged on the outside of the secondary planet carrier 33, and the end of the output angle rotation transmission member 5 extends to penetrate the sensor back cover 11;
  • a dynamic seal assembly 10 is arranged between the output end cover 103 and the output end base 131, and an oil seal assembly 101 is arranged between the output angle rotation transmission member 5 and the sensor back cover 11.
  • the dynamic seal assembly 10 and the oil seal assembly 101 are arranged at the connection, so that the rotary power unit has good waterproofness.
  • a compact mechanical seal ring is arranged on the output end side of the rotary power unit to prevent dust or water from entering the rotary power unit.
  • the rotation center of the output end cover 103 and the rotation center of the secondary planetary carrier 33 are both provided with through holes connected to the output angle rotation transmission member 5, thereby forming a connection channel 102 that runs through the sensor back cover 11 and the output end cover 103.
  • the connection channel 102 that runs through the entire rotary power unit is provided to facilitate the passage of cables and reduce external wiring.
  • the center sun gear under the same outer diameter can be correspondingly larger, creating conditions for the middle cavity.
  • the entire rotary power unit has a hollow axis, which can facilitate the passage of various cables.
  • a robot comprises the above-mentioned two-stage reduction rotary power unit.
  • the fixed connection or fixed connection method can be screw connection, welding, riveting, plugging, or connection through a third component, and technical personnel in this field can choose according to actual conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Retarders (AREA)

Abstract

一种两级减速回转动力单元,包括基座(1)、设于基座内的电机单元和减速器单元;电机单元包括电机转子(41);减速器单元包括一级行星减速机构(2)和二级行星减速机构(3);二级行星减速机构包括二级太阳轮(31)、二级行星轮(32)、二级行星架(33)和二级内齿圈(34);与二级行星架同轴固接有中空的输出角旋转传递件(5),输出角旋转传递件向电机转子延伸。该回转动力单元设置了输出角旋转传递件,将二级行星架和电机转子的状态监测汇总在一处,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。同时,还采用两级行星减速,减速比高;并且输出级速比可以根据其不同的使用工况,例如用在机器人髋关节或膝关节处的不同,进行灵活调整。还涉及回转动力单元以及机器人。

Description

一种回转动力单元和两级减速回转动力单元以及机器人 技术领域
本发明涉及机器人设备技术领域,尤其涉及了一种回转动力单元和两级减速回转动力单元以及机器人。
背景技术
回转动力单元是机器人的核心部件,其性能直接影响到机器人的动力性能。但是现有的回转动力单元多采用一级行星减速系统,减速比较小。
中国专利(公布号CN 114789761 A)公开了一种电驱动关节及三自由度仿生机器人关节集成模组,电驱动关节,包括外壳总成、电机总成、一级减速器总成、二级减速器总成、编码器总成和轴承组;模组包括膝关节单元、前摆单元、侧展单元及腿部单元;电驱动关节采用轴向磁通电机;膝关节单元与前摆关节单元同向布置,侧展关节单元输出轴线与前摆关节轴线正交布置。编码器总成包括编码器、编码器磁极,输出轴尾端与磁编码器磁体固联,编码器采集板5.1固定于外壳总成上。
但上述方案的编码器总成只能对输出端状态进行检测和反馈,无法对电机输入端(转子端)状态进行检测和反馈,影响电驱动回转单元的控制精度。如果直接在电机输入端再设置一编码器总成,就需要在电机输出端和输入端同时布置线缆,并需要设计两路走线,将导致电驱动回转单元的布线复杂,可靠性低。
进一步,上述双减速器方案没有公开线缆的走线方式,如果线缆外置,将会影响线缆寿命,并使得回转单元的布线复杂;如果采用常规的中空走线设置,要直接穿过各种部件,存在一定安全隐患。
本背景技术中公开的信息仅用于理解本发明构思的背景,因此它可以包括不构成现有技术的信息。
发明内容
针对上述问题或上述问题之一,本发明的目的一在于提供一种回转动力单元,设置输出角旋转传递件,将输入端和输出端的状态监测汇总在一处,使得输出旋转传感器,可以和输入旋转传感器,一起设在回转动力单元的前端部或后端部,因此只需要在回转动力单元的一端布置线缆,即可实现回转动力单元输入端和输出端的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
针对上述问题或上述问题之一,本发明的目的二在于提供一种两级减速回转动力单元,设置输出角旋转传递件,将二级行星架和电机转子的状态监测汇总在一处,因此只需要在电机转子布置线缆,即可实现两级减速回转动力单元输入和输出的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
针对上述问题或上述问题之一,本发明的目的三在于提供一种两级减速回转动力单元,其结构紧凑,使用两级行星减速,增大减速比。
本发明的目的四在于提供一种机器人,设置输出角旋转传递件,使得电控系统布线简单,可靠性高,并使用两级行星减速,增大了减速比。
为实现上述目的之一,本发明的第一种技术方案为:
一种回转动力单元,
包括输入端和输出端;
所述输入端与输出端,两者择一装配输入旋转传感器,另一固接一输出角旋转传递件;
所述输出角旋转传递件向输入旋转传感器延伸;
相邻输入旋转传感器的位置,装配有输出旋转传感器;
所述输出旋转传感器与输出角旋转传递件相连接,以实现在回转动力单元的一端完成输入端和输出端的状态检测。
本发明经过不断探索以及试验,设置输出角旋转传递件,将输入端和输出端的状态监测汇总在一处,使得输出旋转传感器,可以和输入旋转传感器,一起设在回转动力单元的前端部或后端部,因此只需要在回转动力单元的一端布置线缆,即可实现回转动力单元输入端和输出端的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
所述输入旋转传感器和输出旋转传感器分别为光电式传感器或霍尔转速传感器或编码器或激光转速传感器。
所述状态监测包括位姿监测或/和角度监测或/和转速监测。
作为优选技术措施:
输入端和输出端开设中空的回转中心;
所述输出角旋转传递件为设有贯通孔的T型结构,其杆部穿设中空的回转中心,进而线缆可以从输出角旋转传递件的贯通孔中穿过,避免线缆外置;同时线缆通过输出角旋转传递件与外界相隔离,避免线缆与各种部件相接触以及磨损,安全性高,方案切实可行。
进一步,所述输入端为电机单元的转子或减速器单元的输入端,其可以为圆柱状结构或片状结构或框架结构或方形结构或环状结构。
更进一步,所述输出端为一级行星减速机构或二级行星减速机构的输出端,其可以为圆柱状结构或片状结构或框架结构或方形结构或环状结构。
为实现上述目的之一,本发明的第二种技术方案为:
一种回转动力单元,包括电机单元和减速器单元;
所述电机单元设有旋转部;
所述减速器单元设有输入端和输出端;
所述输入端与旋转部固接,两者择一装配输入旋转传感器;
所述输出端固接一输出角旋转传递件;
所述输出角旋转传递件从输出端向输入旋转传感器延伸;
相邻输入旋转传感器的位置,装配有输出旋转传感器;
所述输出旋转传感器与输出角旋转传递件相连接,以实现在输入端完成输入端和输出端的状态检测。
当输入旋转传感器装配在电机单元的旋转部时,输入旋转传感器为电机转子旋转传感器;当输入旋转传感器装配在减速器单元的输入端时,输入旋转传感器为输入角旋转传感器。
本发明经过不断探索以及试验,在输出端设置输出角旋转传递件,将输出端的状态监测汇总到输入端或电子转子处,使得输出旋转传感器,可以和输入旋转传感器,一起设在回转动力单元的后端部(输入端),因此只需要在回转动力单元的后端布置线缆,即可实现回转动力单元输入端和输出端的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。为实现上述目的之一,本发明的第三种技术方案为:
一种两级减速回转动力单元,包括基座、设于所述基座内的电机单元和减速器单元;
所述电机单元包括电机转子,所述减速器单元包括一级行星减速机构和二级行星减速机构;
所述一级行星减速机构包括一级太阳轮、一级行星轮、一级行星架和一级内齿圈,所述一级太阳轮与所述电机转子同轴固定连接,所述一级内齿圈固定于所述基座内,所述一级行星轮啮合于所述一级太阳轮和所述一级内齿圈之间,通过所述一级行星架输出动力;
所述二级行星减速机构包括二级太阳轮、二级行星轮、二级行星架和二级内齿圈,所述二级太阳轮与所述一级行星架同轴固定连接,所述二级内齿圈固定于所述基座内,所述二级行星轮啮合于所述二级太阳轮和所述二级内齿圈之间,通过所述二级行星架输出动力;
与所述二级行星架同轴固接有中空的输出角旋转传递件,所述输出角旋转传递件向电机转子延伸。
本发明经过不断探索以及试验,设置输出角旋转传递件,将二级行星架和电机转子的状态监测汇总在一处,因此只需要在电机转子布置线缆,即可实现两级减速回转动力单元输入和输出的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
同时,本发明提供的一种两级减速回转动力单元,其减速器单元采用两级行星减速,减速比高;并且输出级速比可以根据其不同的使用工况,例如用在机器人髋关节或膝关节处的不同,进行灵活调整。
作为优选技术措施:
所述电机转子回转中心处向内凹陷形成容纳所述一级行星减速机构的容纳腔,使得关节单元结构紧凑,轴向尺寸小。进一步,转子内部设有容纳一级行星减速机构的容纳腔,充分利用了空间,进而使回转动力单元的整体结构更紧凑,体积更小。
或/和,所述输出角旋转传递件贯穿所述二级行星架、所述二级太阳轮、所述一级行星架、所述一级太阳轮以及所述电机转子,使得回转动力单元结构紧凑。
作为优选技术措施:所述基座内直接固定有支撑座,所述一级内齿圈、所述二级内齿圈分别通过所述支撑座固定于所述基座内;
所述一级内齿圈与所述支撑座之间、所述二级内齿圈与所述支撑座之间均设有相互配合的缓冲凸起部和缓冲凹陷部。
作为优选技术措施:
所述电机转子侧端设有获取电机转子角旋转及速度信号的电机转子旋转传感器、获取输出端旋转及速度信号的输出旋转传感器,所述电机转子旋转传感器包括电机转子编码环和电机转子编码PCB板,所述输出旋转传感器包括输出编码环和输出旋转编码PCB板;
所述电机转子编码环与所述一级太阳轮或所述电机转子同轴固定连接,所述输出编码环与所述输出角旋转传递件同轴固定连接,所述电机转子编码PCB板和所述输出旋转编码PCB板分别固定于所述基座内,保证了关节单元轴线中空,以便实际在机器人上应用时,可以在关节单元的中空轴线中穿接各种线缆。
作为优选技术措施:所述一级太阳轮与所述电机转子一体成型,所述二级太阳轮与所述一级行星架一体成型,结构简单,精度高,成本低。
所述电机单元还包括电机定子,所述电机转子为内转子;采用内转子电机,相比外转子电机其转动惯量更小且功率密度大。或/和,所述一级太阳轮通过两个轴承,与所述一级行星架同轴旋转连接,使得太阳轮与行星架的同轴度较好,寿命长,结构紧凑。
作为优选技术措施:所述基座包括依次固定密封连接的传感器后盖、输入端基座、输出端基座,所述二级行星架外侧固定设有输出端盖,所述输出角旋转传递件端部延伸至贯穿所述传感器后盖;所述输出端盖与所述输出端基座之间设有动密封组件,所述输出角旋转传递件与所述传感器后盖之间设有油封组件或支撑轴承,可以使得关节具有较好的密封防护性能。
或/和,所述输出端盖的回转中心处、所述二级行星架的回转中心处均设有容纳所述输出角旋转传递件的通孔,从而形成贯穿所述传感器后盖和所述输出端盖的连接通道。设置贯穿整个回转动力单元的连接通道,方便线缆穿过,减少外部走线。并且,由于采用了两级减速系统,相比一级减速系统,相同外径下中心太阳轮可以相应变大,为中部空腔创造条件。并且整个回转动力单元具有中空轴线,可以方便各种线缆穿行通过。
为实现上述目的之一,本发明的第四种技术方案为:
一种机器人,包括上述的回转动力单元或上述的一种两级减速回转动力单元,机器人为四足机器人或两足机器人或轮足机器人。
本发明经过不断探索以及试验,设置输出角旋转传递件,将输入端和输出端的状态监测汇总在一处,因此只需要在回转动力单元的一端布置线缆,即可实现回转动力单元输入端和输出端的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
进一步,本发明提供的机器人,可采用两级减速回转动力单元,其减速器单元采用两级行星减速,减速比高;并且输出级速比可以根据其不同的使用工况,例如用在机器人髋关节或膝关节处的不同,进行灵活调整。
相比现有技术,本发明的有益效果在于:
本发明经过不断探索以及试验,设置输出角旋转传递件,将输入端和输出端的状态监测汇总在一处,使得输出旋转传感器,可以和输入旋转传感器,一起设在回转动力单元的前端部或后端部,因此只需要在回转动力单元的一端布置线缆,即可实现回转动力单元输入端和输出端的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
进一步,本发明经过不断探索以及试验,设置输出角旋转传递件,将二级行星架和电机转子的状态监测汇总在一处,因此只需要在电机转子布置线缆,即可实现两级减速回转动力单元输入和输出的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
再进一步,本发明提供的一种两级减速回转动力单元,其减速器单元采用两级行星减速,减速比高;并且输出级速比可以根据其不同的使用工况,例如用在机器人髋关节或膝关节处的不同,进行灵活调整。
更进一步,本发明提供的机器人,可采用两级减速回转动力单元,其减速器单元采用两级行星减速,减速比高;并且输出级速比可以根据其不同的使用工况,例如用在机器人髋关节或膝关节处的不同,进行灵活调整。
下面结合附图和具体实施方式对本发明作进一步详细说明。
附图说明
图1是本发明提供的一种两级减速回转动力单元整体结构示意图;
图2是本发明提供的一种两级减速回转动力单元的爆炸图;
图3是本发明提供的一种两级减速回转动力单元的侧视图;
图4是本发明提供的一种两级减速回转动力单元的A-A剖视图。
图中:1、基座;11、传感器后盖;12、输入端基座;13、输出端基座;2、一级行星减速机构;21、一级太阳轮;22、一级行星轮;23、一级行星架;24、一级内齿圈;3、二级行星减速机构;31、二级太阳轮;32、二级行星轮;33、二级行星架;34、二级内齿圈;41、电机转子;42、电机定子;5、输出角旋转传递件;6、电机转子旋转传感器;61、电机转子编码环;62、电机转子编码PCB板;7、输出旋转传感器;71、输出编码环;72、输出旋转编码PCB板;8、容纳腔;9、支撑座;91、缓冲凸起部;92、缓冲凹陷部;10、动密封组件;101、油封组件;102、连接通道;103、输出端盖。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
需要说明的是,当两个元件“固定连接”或“固接”或“转动连接”时,两个元件可以直接连接或者也可以存在居中的元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“前”、“后”、“上”、“下”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“或/和”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明回转动力单元的第一种具体实施例:
一种回转动力单元,
包括输入端和输出端;
所述输入端与输出端,两者择一装配电机转子旋转传感器(输入旋转传感器),另一固接一输出角旋转传递件;
所述输出角旋转传递件向电机转子旋转传感器(输入旋转传感器)延伸;
相邻电机转子旋转传感器(输入旋转传感器)装配输出旋转传感器;
所述输出旋转传感器与输出角旋转传递件相连接,以实现在回转动力单元的一端完成输入端和输出端的状态检测。
输出角旋转传递件为环状结构或杆状结构或者笼状结构或者T型结构或弧状结构。
本发明经过不断探索以及试验,设置输出角旋转传递件,将输入端和输出端的状态监测汇总在一处,使得输出旋转传感器,可以和电机转子旋转传感器(输入旋转传感器),一起设在回转动力单元的前端部或后端部,因此只需要在回转动力单元的一端布置线缆,即可实现回转动力单元输入端和输出端的状态监测和反馈,从而使得回转动力单元的电控系统布线简单,可靠性高,成本低。
所述电机转子旋转传感器以及输入旋转传感器、输出旋转传感器分别为光电式传感器或霍尔转速传感器或编码器或激光转速传感器。
本发明回转动力单元的第二具体实施例:
一种回转动力单元,包括电机单元和减速器单元;
所述电机单元设有旋转部;
所述减速器单元设有输入端和输出端;
所述输入端与旋转部固接,两者择一装配电机转子旋转传感器(输入旋转传感器);
所述输出端固接一输出角旋转传递件;
所述输出角旋转传递件从输出端向电机转子旋转传感器延伸;
相邻电机转子旋转传感器(输入旋转传感器)装配输出旋转传感器;
所述输出旋转传感器与输出角旋转传递件相连接,以实现在输入端完成输入端和输出端的状态检测。
如图1、图2、图3、图4所示,本发明两级减速回转动力单元的一种具体实施例:
一种两级减速回转动力单元,包括基座1、设于所述基座1内的电机单元和减速器单元;所述电机单元包括电机转子41,所述减速器单元包括一级行星减速机构2和二级行星减速机构3;所述一级行星减速机构2包括一级太阳轮21、一级行星轮22、一级行星架23和一级内齿圈24,所述一级太阳轮21与所述电机转子41同轴固定连接,所述一级内齿圈24固定于所述基座1内,所述一级行星轮22啮合于所述一级太阳轮21和所述一级内齿圈24之间,通过所述一级行星架23输出动力;所述二级行星减速机构3包括二级太阳轮31、二级行星轮32、二级行星架33和二级内齿圈34,所述二级太阳轮31与所述一级行星架23同轴固定连接,所述二级内齿圈34固定于所述基座1内,所述二级行星轮32啮合于所述二级太阳轮31和所述二级内齿圈34之间,通过所述二级行星架33输出动力。
本发明增设输出角旋转传递件5的一种具体实施例:
与所述二级行星架33同轴固接有中空的输出角旋转传递件5,所述输出角旋转传递件5贯穿所述二级行星架33、所述二级太阳轮31、所述一级行星架23、所述一级太阳轮21以及所述电机转子41。设置输出角旋转传递件5,将回转动力单元输出端的回转信息同步传递到输入端,实现了在输入端一端集成电机转子旋转传感器6和输出旋转传感器7,避免了回转动力单元内部控制线缆的外置。
本发明增设传感器的一种具体实施例:
所述电机转子41侧端设有获取输入端角旋转及速度信号的电机转子旋转传感器6、获取输出端角旋转及速度信号的输出旋转传感器7,所述电机转子旋转传感器6包括电机转子编码环61和电机转子编码PCB板62,所述输出旋转传感器7包括输出编码环71和输出旋转编码PCB板72;所述电机转子编码环61与所述一级太阳轮21或所述电机转子41同轴固定连接,所述输出编码环71与所述输出角旋转传递件5同轴固定连接,所述电机转子编码PCB板62和所述输出旋转编码PCB板72分别固定于所述基座1内。设置有电机转子旋转传感器6和输出旋转传感器7,方便直接测量回转动力单元输出端的角度,且输出旋转传感器7设置在于电机转子旋转传感器6的同一侧,结构简单方便,成本低。
本发明输入端结构的一种具体实施例:
所述一级太阳轮21与所述电机转子41一体成型,所述二级太阳轮31与所述一级行星架23一体成型;所述电机单元还包括电机定子42,所述电机转子41为内转子;所述电机转子41回转中心处向内凹陷形成容纳所述一级行星减速机构2的容纳腔8。采用内转子电机,相比外转子电机其转动惯量更小且功率密度大,转子内部设有容纳一级行星减速机构2的容纳腔8,充分利用了空间,进而使回转动力单元的整体结构更紧凑,体积更小。
本发明支撑结构的一种具体实施例:
所述基座1内直接固定有支撑座9,所述一级内齿圈24、所述二级内齿圈34分别通过所述支撑座9固定于所述基座1内;所述一级内齿圈24与所述支撑座9之间、所述二级内齿圈34与所述支撑座9之间均设有相互配合的缓冲凸起部91和缓冲凹陷部92。一级内齿圈24和支撑座9之间,二级内齿圈34和支撑座9之间均设置相配合的缓冲凸起部91和缓冲凹陷部92,在使用过程中,当外部的冲击力传递到回转动力单元内部时,一级内齿圈24、二级内齿圈34能分别相对支撑座9产生转动,进而吸收一部分冲击能量,防止回转动力单元因外部的冲击而产生零部件的结构损坏。
本发明设置密封结构的一种具体实施例:
所述基座1包括依次固定密封连接的传感器后盖11、端基座输入端基座12、输出端基座13,所述二级行星架33外侧固定设有输出端盖103,所述输出角旋转传递件5端部延伸至贯穿所述传感器后盖11;所述输出端盖103与所述输出端基座131之间设有动密封组件10,所述输出角旋转传递件5与所述传感器后盖11之间设有油封组件101。在连接处设置动密封组件10和油封组件101,使回转动力单元具有良好的防水性。并且回转动力单元的输出端侧设置有结构紧凑的机械密封圈,防止沙尘或水等进入回转动力单元。
本发明中空走线的一种具体实施例:
所述输出端盖103的回转中心处、所述二级行星架33的回转中心处均设有与所述输出角旋转传递件5相连通的通孔,进而形成贯穿所述传感器后盖11和所述输出端盖103的连接通道102。设置贯穿整个回转动力单元的连接通道102,方便线缆穿过,减少外部走线。并且,由于采用了两级减速系统,相比一级减速系统,相同外径下中心太阳轮可以相应变大,为中部空腔创造条件。并且整个回转动力单元具有中空轴线,可以方便各种线缆穿行通过。
本发明机器人的一种具体实施例:
一种机器人,包括上述的一种两级减速回转动力单元。
本申请中,固接或固定连接方式可以为螺接或焊接或铆接或插接或通过第三个部件进行连接,本领域技术人员可根据实际情况进行选择。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种回转动力单元,其特征在于,
    包括输入端和输出端;
    所述输入端与输出端,两者择一装配输入旋转传感器,另一固接一输出角旋转传递件(5);
    所述输出角旋转传递件(5)向输入旋转传感器延伸;
    相邻输入旋转传感器的位置,装配有输出旋转传感器;
    所述输出旋转传感器与输出角旋转传递件(5)相连接,以实现在回转动力单元的一端完成输入端和输出端的状态检测。
  2. 如权利要求1所述的一种回转动力单元,其特征在于,
    输入端和输出端开设中空的回转中心;
    所述输出角旋转传递件(5)为设有贯通孔的T型结构,其杆部穿设中空的回转中心。
  3. 一种回转动力单元,其特征在于,包括电机单元和减速器单元;
    所述电机单元设有旋转部;
    所述减速器单元设有输入端和输出端;
    所述输入端与旋转部固接,两者择一装配输入旋转传感器;
    所述输出端固接一输出角旋转传递件(5);
    所述输出角旋转传递件(5)从输出端向输入旋转传感器延伸;
    相邻输入旋转传感器的位置,装配有输出旋转传感器;
    所述输出旋转传感器与输出角旋转传递件(5)相连接,以实现在输入端完成输入端和输出端的状态检测。
  4. 一种两级减速回转动力单元,其特征在于,包括基座(1)、设于所述基座(1)内的电机单元和减速器单元;
    所述电机单元包括电机转子(41),所述减速器单元包括一级行星减速机构(2)和二级行星减速机构(3);
    所述一级行星减速机构(2)包括一级太阳轮(21)、一级行星轮(22)、一级行星架(23)和一级内齿圈(24),所述一级太阳轮(21)与所述电机转子(41)同轴固定连接,所述一级内齿圈(24)固定于所述基座(1)内,所述一级行星轮(22)啮合于所述一级太阳轮(21)和所述一级内齿圈(24)之间,通过所述一级行星架(23)输出动力;
    所述二级行星减速机构(3)包括二级太阳轮(31)、二级行星轮(32)、二级行星架(33)和二级内齿圈(34),所述二级太阳轮(31)与所述一级行星架(23)同轴固定连接,所述二级内齿圈(34)固定于所述基座(1)内,所述二级行星轮(32)啮合于所述二级太阳轮(31)和所述二级内齿圈(34)之间,通过所述二级行星架(33)输出动力;
    与所述二级行星架(33)同轴固接有中空的输出角旋转传递件(5),所述输出角旋转传递件(5)向电机转子(41)延伸。
  5. 如权利要求4所述的一种两级减速回转动力单元,其特征在于,
    所述电机转子(41)回转中心处向内凹陷形成容纳所述一级行星减速机构(2)的容纳腔(8);
    或/和,所述输出角旋转传递件(5)贯穿所述二级行星架(33)、所述二级太阳轮(31)、所述一级行星架(23)、所述一级太阳轮(21)以及所述电机转子(41);
    所述输出角旋转传递件(5)为环状结构或杆状结构或者笼状结构或者T型结构或弧状结构。
  6. 如权利要求5所述的一种两级减速回转动力单元,其特征在于,所述基座(1)内直接固定有支撑座(9),所述一级内齿圈(24)、所述二级内齿圈(34)分别通过所述支撑座(9)固定于所述基座(1)内;
    所述一级内齿圈(24)与所述支撑座(9)之间、所述二级内齿圈(34)与所述支撑座(9)之间均设有相互配合的缓冲凸起部(91)和缓冲凹陷部(92)。
  7. 如权利要求4所述的一种两级减速回转动力单元,其特征在于,
    所述电机转子(41)侧端设有获取电机转子角旋转及速度信号的电机转子旋转传感器(6)、获取输出端旋转及速度信号的输出旋转传感器(7),所述电机转子旋转传感器(6)包括电机转子编码环(61)和电机转子编码PCB板(62),所述输出旋转传感器(7)包括输出编码环(71)和输出旋转编码PCB板(72);
    所述电机转子编码环(61)与所述一级太阳轮(21)或所述电机转子(41)同轴固定连接,所述输出编码环(71)与所述输出角旋转传递件(5)同轴固定连接,所述电机转子编码PCB板(62)和输出旋转编码PCB板(72)分别固定于所述基座(1)内。
  8. 如权利要求4-7任一所述的一种两级减速回转动力单元,其特征在于,所述一级太阳轮(21)与所述电机转子(41)一体成型,所述二级太阳轮(31)与所述一级行星架(23)一体成型;
    所述电机单元还包括电机定子(42),所述电机转子(41)为内转子;
    或/和,所述一级太阳轮(21)通过两个轴承,与所述一级行星架(23)同轴旋转连接。
  9. 如权利要求8所述的一种两级减速回转动力单元,其特征在于,所述基座(1)包括依次固定密封连接的传感器后盖(11)、输入端基座(12)、输出端基座(13),所述二级行星架(33)外侧固定设有输出端盖(103),所述输出角旋转传递件(5)端部延伸至贯穿所述传感器后盖(11);所述输出端盖(103)与所述输出端基座(13)之间设有动密封组件(10),所述输出角旋转传递件(5)与所述传感器后盖(11)之间设有油封组件(101)或支撑轴承;
    或/和,所述输出端盖(103)的回转中心处、所述二级行星架(33)的回转中心处均设有容纳所述输出角旋转传递件(5)的通孔,从而形成贯穿所述传感器后盖(11)和所述输出端盖(103)的连接通道(102)。
  10. 一种机器人,其特征在于,包括如权利要求1-3任一所述的回转动力单元或如权利要求4-9任一所述的一种两级减速回转动力单元,机器人为四足机器人或两足机器人或轮足机器人。
PCT/CN2023/103698 2022-11-11 2023-06-29 一种回转动力单元和两级减速回转动力单元以及机器人 WO2024098791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211412204.7 2022-11-11
CN202211412204.7A CN116104913A (zh) 2022-11-11 2022-11-11 一种回转动力单元和两级减速回转动力单元以及机器人

Publications (1)

Publication Number Publication Date
WO2024098791A1 true WO2024098791A1 (zh) 2024-05-16

Family

ID=86264534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103698 WO2024098791A1 (zh) 2022-11-11 2023-06-29 一种回转动力单元和两级减速回转动力单元以及机器人

Country Status (2)

Country Link
CN (1) CN116104913A (zh)
WO (1) WO2024098791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116104913A (zh) * 2022-11-11 2023-05-12 杭州宇树科技有限公司 一种回转动力单元和两级减速回转动力单元以及机器人

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037490U (zh) * 1989-06-12 1991-01-24
CN208845648U (zh) * 2018-08-07 2019-05-10 杭州宇树科技有限公司 一种电驱动回转动力单元以及应用其的一种四足机器人
US20190160658A1 (en) * 2016-07-26 2019-05-30 Eth Zurich Joint unit, joint system, robot for manipulation and/or transportation, robotic exoskeleton system and method for manipulation and/or transportation
CN209491760U (zh) * 2018-12-19 2019-10-15 浙江双环传动机械股份有限公司 高集成度机电控一体化机器人关节模组
CN111890345A (zh) * 2020-07-15 2020-11-06 北京圆海传智科技有限公司 一种高转矩密度机器人驱动关节模组
CN111890410A (zh) * 2020-07-01 2020-11-06 北京工业大学 一种具备运行状态监测功能的驱控一体化协作机器人关节
CN113305877A (zh) * 2021-06-08 2021-08-27 南方科技大学 电驱动关节模组和机器人
CN114102659A (zh) * 2021-12-06 2022-03-01 之江实验室 一种基于行星减速器的一体化机器人驱动关节
CN218761165U (zh) * 2022-11-11 2023-03-28 杭州宇树科技有限公司 一种回转动力单元和两级减速回转动力单元以及机器人
CN116104913A (zh) * 2022-11-11 2023-05-12 杭州宇树科技有限公司 一种回转动力单元和两级减速回转动力单元以及机器人

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037490U (zh) * 1989-06-12 1991-01-24
US20190160658A1 (en) * 2016-07-26 2019-05-30 Eth Zurich Joint unit, joint system, robot for manipulation and/or transportation, robotic exoskeleton system and method for manipulation and/or transportation
CN208845648U (zh) * 2018-08-07 2019-05-10 杭州宇树科技有限公司 一种电驱动回转动力单元以及应用其的一种四足机器人
CN209491760U (zh) * 2018-12-19 2019-10-15 浙江双环传动机械股份有限公司 高集成度机电控一体化机器人关节模组
CN111890410A (zh) * 2020-07-01 2020-11-06 北京工业大学 一种具备运行状态监测功能的驱控一体化协作机器人关节
CN111890345A (zh) * 2020-07-15 2020-11-06 北京圆海传智科技有限公司 一种高转矩密度机器人驱动关节模组
CN113305877A (zh) * 2021-06-08 2021-08-27 南方科技大学 电驱动关节模组和机器人
CN114102659A (zh) * 2021-12-06 2022-03-01 之江实验室 一种基于行星减速器的一体化机器人驱动关节
CN218761165U (zh) * 2022-11-11 2023-03-28 杭州宇树科技有限公司 一种回转动力单元和两级减速回转动力单元以及机器人
CN116104913A (zh) * 2022-11-11 2023-05-12 杭州宇树科技有限公司 一种回转动力单元和两级减速回转动力单元以及机器人

Also Published As

Publication number Publication date
CN116104913A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2024098791A1 (zh) 一种回转动力单元和两级减速回转动力单元以及机器人
US11969895B2 (en) Highly integrated high-performance robot joint unit
WO2021062636A1 (zh) 机器人及其集成关节
CN107186751B (zh) 一种协作机器人模块化球关节
CN208845648U (zh) 一种电驱动回转动力单元以及应用其的一种四足机器人
JP2012070558A (ja) 電気機械装置およびそれを用いたアクチュエーター、モーター
CN106826906B (zh) 一种无力矩传感器的机械臂模块化关节
JP2012147541A (ja) 電気機械装置およびそれを用いたアクチュエーター、モーター、ロボット、ロボットハンド。
CN115008497B (zh) 一种基于谐波减速机的紧凑型机器人关节模组
CN218761165U (zh) 一种回转动力单元和两级减速回转动力单元以及机器人
WO2004016401A1 (en) A robot wrist comprising a drive unit incorporated in a tilt
CN114102659B (zh) 一种基于行星减速器的一体化机器人驱动关节
CN111360869A (zh) 用于超动态仿生机器人的并联驱动关节和机器人
CN113602378A (zh) 一种仿生四足机器人
CN111555546A (zh) 一种四足机器人专用低成本控制直流电机
CN110076822A (zh) 用于行进装置的一体式关节
WO2015039610A1 (zh) 带一级变速的同轴电机
CN110722595B (zh) 机器人一体化驱动关节模组
CN114043523B (zh) 一种模块化机器人关节
CN111452083A (zh) 一种具有力/位检测的一体化关节式驱控模块
CN216299344U (zh) 一种关节动力单元及应用其的机械臂
CN112033592B (zh) 一种机器人关节力矩标定试验装置
WO2023065655A1 (zh) 一种关节动力单元及应用其的机械臂
CN215749257U (zh) 关节模组及具有其的机器人
CN211415236U (zh) 基于双定子无框力矩电机的驱动关节及工业机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887487

Country of ref document: EP

Kind code of ref document: A1