WO2024098508A1 - 岩石试件受载过程裂纹的生成扩展精细探查装置及方法 - Google Patents

岩石试件受载过程裂纹的生成扩展精细探查装置及方法 Download PDF

Info

Publication number
WO2024098508A1
WO2024098508A1 PCT/CN2022/139237 CN2022139237W WO2024098508A1 WO 2024098508 A1 WO2024098508 A1 WO 2024098508A1 CN 2022139237 W CN2022139237 W CN 2022139237W WO 2024098508 A1 WO2024098508 A1 WO 2024098508A1
Authority
WO
WIPO (PCT)
Prior art keywords
rock specimen
electrode
parameter
rock
probe
Prior art date
Application number
PCT/CN2022/139237
Other languages
English (en)
French (fr)
Inventor
张平松
刘畅
欧元超
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2024098508A1 publication Critical patent/WO2024098508A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to the field of rock mechanics test monitoring, and in particular to a device and method for finely detecting the generation and expansion of cracks in a rock specimen during a loading process.
  • Rock mechanics tests are an important means of understanding and exploring rock properties.
  • the generation and expansion of cracks in loaded rocks is one of the hot issues in rock mechanics test research.
  • the original conditions, heterogeneity and anisotropy of rocks determine that they will undergo irregular volume expansion and crack expansion when loaded.
  • the fracture process of loaded rocks is irreversible.
  • the generation and expansion of cracks inside and on the surface of rocks are important factors affecting the mechanical and physical properties of rocks. At the same time, it has a significant impact on the migration of water and gas inside the rock. Only by clarifying the generation and expansion laws of cracks in the rock fracture process can we deeply understand the mechanical behavior of loaded rock fracture and then understand the nature of rock fracture.
  • SEM scanning electron microscopy
  • CT scanning are currently the more representative non-destructive testing methods, but both have high requirements on the size of the specimens.
  • the diameter and height do not exceed 50mm, and SEM can only obtain the evolution of cracks on the surface of rock specimens.
  • the energy requirements of the CT machine become higher in order to achieve better resolution. High-energy, high-resolution CT testing machines are a major technical challenge.
  • the rock specimens were analyzed. Before loading, the background physical field of the rock specimens was basically stable. During loading, under the action of force, deformation and cracks occurred inside the rock specimens. These changes led to changes in the physical field of the rock specimens, such as resistivity, wave velocity, etc. At the same time, sound waves were excited at the fracture position. If these changing physical fields and even sound waves can be captured, it will be of great help in obtaining the generation and expansion of cracks in rock specimens. Therefore, it is very necessary to design a device and method for finely detecting the generation and expansion of cracks in rock specimens during loading.
  • the purpose of the present invention is to provide a device and method for fine detection of the generation and extension of cracks in a rock specimen during loading.
  • the device can perform full-process dynamic testing, has a simple structure, is easy to operate, and has a wide range of applications.
  • the coordination of multiple parameters can obtain fine detection of the generation and extension of cracks in a rock specimen during loading, and plays an important role in evaluating the degree of damage evolution of rock specimens, monitoring the complex environment after the rock specimens are added with initial cracks, seepage fields, etc.
  • the present invention provides the following solutions:
  • a fine detection device for crack generation and expansion during a rock specimen loading process comprising: an organic glass frame, a sensor support frame, an electrical parameter acquisition system, an acoustic emission signal acquisition system and a distributed optical fiber acoustic wave acquisition system, a servo press bearing platform and a computer, wherein the organic glass frame is placed in the middle of the servo press bearing platform, a plurality of sensor support frames are arranged inside the organic glass frame, a rock specimen is arranged inside the sensor support frame, the electrical parameter acquisition system and the acoustic emission signal acquisition system are fixedly arranged on the sensor support frame, the distributed optical fiber acoustic wave acquisition system is fixedly arranged on the inner wall of the organic glass frame, the electrical parameter acquisition system, the acoustic emission signal acquisition system and the distributed optical fiber acoustic wave acquisition system are in contact with the rock specimen, and the electrical parameter acquisition system, the acoustic emission signal acquisition system and the distributed optical fiber acoustic wave acquisition system are electrically connected to the computer;
  • the electrical parameter acquisition system is used to collect parameter change characteristics of rock specimens during load fracture
  • the acoustic emission signal acquisition system is used to obtain the spatial position of the internal fracture of the loaded rock specimen
  • the distributed optical fiber acoustic wave acquisition system is used to determine the intensity and three-dimensional spatial position of vibration.
  • the servo press bearing platform is composed of a pressing head device and a bearing platform, the organic glass frame is arranged on the bearing platform, and the pressing head device is arranged directly above the central axis of the organic glass frame.
  • the sensor support skeleton is provided with eight groups, which are evenly arranged inside the organic glass skeleton.
  • the sensor support skeleton includes an upper connector, a probe placer and a lower connector.
  • the organic glass skeleton is hollow cylindrical.
  • the upper connector is equidistantly arranged on the upper side of the organic glass skeleton, and the lower connector is arranged on the lower side of the organic glass skeleton corresponding to the upper connector.
  • the probe placer is arranged between the upper connector and the lower connector.
  • the probe placer is rectangular.
  • the electrical parameter acquisition system is fixedly arranged on eight probe placers, and the acoustic emission signal acquisition system is fixedly arranged on four evenly distributed probe placers.
  • the electrical parameter acquisition system includes a parallel electrical acquisition module, a test electrode, a B electrode, an N electrode and an electrode spring
  • the test electrodes are 32 in total, with one B electrode and one N electrode, four electrode grooves are evenly arranged inside the probe placer, one probe placer is additionally provided with an electrode groove on the top for placing the B electrode, and another probe placer opposite to the probe placer is additionally provided with an electrode groove on the bottom for placing the N electrode
  • the electrode spring is arranged inside the electrode groove
  • the test electrode, B electrode and N electrode are arranged on the top of the electrode spring
  • the test electrode, B electrode and N electrode are in contact with the rock specimen
  • the contact surface between the test electrode, B electrode and N electrode and the rock specimen is a curved surface, and its curvature is the same as the curvature of the curved surface of the rock specimen
  • the test electrode, B electrode and N electrode are electrically connected to the parallel electrical acquisition module
  • the parallel electrical acquisition module is electrically connected to the computer.
  • the acoustic emission signal acquisition system includes an acoustic emission probe, a probe spring and an acoustic emission acquisition module, three probe grooves are evenly arranged inside the probe placement device, the probe spring is arranged inside the probe groove, the acoustic emission probe is arranged on the top of the probe spring, and the probe is in contact with the rock specimen.
  • the contact surface between the acoustic emission probe and the rock specimen is a curved surface, and its curvature is the same as the curvature of the rock specimen curved surface.
  • the acoustic emission probe is electrically connected to the acoustic emission acquisition module, and the acoustic emission acquisition module is electrically connected to the computer.
  • the distributed fiber optic acoustic wave acquisition system includes a multi-channel distributed fiber optic acoustic wave acquisition module and a distributed optical fiber group, the distributed optical fiber group has a total of 6 fibers, wherein distributed optical fibers I-V are spirally arranged at equal intervals on the inner wall of the plexiglass frame, and distributed optical fiber VI is vertically arranged on the inner wall of the plexiglass frame, the distributed optical fiber is a bare fiber with only one layer of coated optical fiber material, the distributed optical fibers I-VI are electrically connected to the multi-channel distributed fiber optic acoustic wave acquisition module, and the multi-channel distributed optical fiber acoustic wave acquisition module is electrically connected to the computer.
  • a soundproof protective cover is arranged outside the device for finely detecting the generation and expansion of cracks during the loading process of the rock specimen.
  • the present invention also provides a method for finely detecting the generation and expansion of cracks in a rock specimen during loading, which is used for the above-mentioned device for finely detecting the generation and expansion of cracks in a rock specimen during loading, and comprises the following steps:
  • Step 1 Place the standard rock specimen inside the device, and adjust the spring to make the test electrode and acoustic emission probe in close contact with the rock specimen;
  • Step 2 Connect all transmission lines, start the pressure head device, give the rock specimen a pre-contact, and then start data pre-collection and pre-processing to ensure that each sensor is in an effective working state;
  • Step 3 Load the rock specimen, and obtain the real-time changes in the resistivity of four circular electrical profiles from top to bottom by collecting electrical parameters.
  • the corresponding performance is high resistance; obtain the spatial position and time of the rock specimen rupture by collecting acoustic emission data; obtain the vibration signal when the rock ruptures by collecting distributed optical fiber acoustic waves, and locate the rupture position and crack size of the loaded rock specimen through the joint cooperation of multiple optical fibers, and record and store the data in real time;
  • Step 4 Through single field parameter analysis method, multi-field parameter joint analysis method and digital core reconstruction method based on field parameters, various parameters are mapped and analyzed to accurately identify the crack propagation of rock specimens.
  • step 4 the single field parameter analysis method is specifically:
  • the single field parameter analysis method refers to analyzing the response of a certain parameter in combination with the loading time-force curve, and its common variable is time: a standard rock specimen is placed in the device, and loaded using a servo device until the standard rock specimen is completely destroyed. The time, axial pressure and parameters to be analyzed are continuously recorded throughout the entire process of the rock specimen being loaded and fractured. A graph is drawn with time as the x-axis and the axial pressure and the corresponding parameters to be analyzed as the double y-axes to obtain the corresponding response curve, and then a basis is provided for the analysis of the rock crack extension mechanism based on the mutation of the parameter.
  • multi-field parameter joint analysis method specifically:
  • the multi-field parameter joint analysis method refers to the comparative analysis of multiple field parameters, with the common variable being time. Multiple field parameters at a certain moment are screened out in turn, and correlation analysis is performed to obtain the response correlation relationship between the parameters: a standard rock specimen is placed in the device and loaded using a servo device until the standard rock specimen is completely destroyed. The time, axial pressure, resistivity, natural potential, electrode current, electrode potential, acoustic wave amplitude, and number of acoustic emission events of the entire process of the rock specimen being loaded and fractured are continuously collected and recorded. Based on the common variable time, the values of each parameter at different moments are counted and correlation analysis is performed;
  • the correlation analysis of each parameter value is specifically divided into correlation analysis between two parameters, correlation analysis between three parameters and correlation analysis between more than three parameters.
  • the correlation analysis between two parameters is as follows: take one parameter to be analyzed at the loading moment of a certain measuring point as the x-axis, and the other parameter to be analyzed as the y-coordinate to select points, and then perform curve fitting to obtain the corresponding two-parameter correlation curve, and provide a basis for identification of crack generation and extension of the loaded rock specimen according to the slope of the fitting curve;
  • the correlation analysis between three parameters is as follows: take the first parameter to be analyzed at the loading moment of a certain measuring point as the x-axis, the second parameter to be analyzed as the y-coordinate, and the third parameter to be analyzed as the z-coordinate to select points, and then perform surface fitting to obtain a response relationship surface based on three parameters, and provide a basis for identification of crack generation and extension of the loaded rock specimen according to the curvature radius of the fitting surface;
  • the digital core reconstruction method is implemented according to the field parameters, specifically:
  • the geophysical field reconstruction of the digital core is realized according to different physical field parameters: the standard rock specimen is placed in the device, and loaded by the servo device until the standard rock specimen is completely destroyed.
  • the distribution of the parameters to be analyzed at different times at different three-dimensional coordinate points is obtained.
  • the spatial distribution of the parameters to be analyzed at a certain loading time is obtained, that is, the value of the digital core parameter to be analyzed at a certain loading time.
  • Different values of the digital core parameter to be analyzed can be obtained by taking different loading times.
  • the present invention discloses the following technical effects: the device and method for fine detection of crack generation and extension during the loading process of a rock specimen provided by the present invention realize parameters such as resistivity profile, natural potential, current, potential, acoustic emission events and optical fiber vibration signals during the damage process of the rock specimen under uniaxial loading conditions; the whole process dynamic test has a simple device structure and convenient operation, and the coordination of multiple parameters can obtain fine detection of crack generation and extension during the loading process of the rock specimen, which plays an important role in evaluating the degree of damage evolution of the rock specimen; the monitoring device can also be applied to complex environments after the rock specimen is added with initial cracks, seepage fields, etc., and has a wide range of applications; the main frame of the device and the sensor can be reused, which provides assistance for crack detection and prediction in rock engineering.
  • Fig. 1 is a general diagram of the structure of the device of the present invention
  • FIG2 is a vertical cross-sectional view of a device according to an embodiment of the present invention.
  • Fig. 3 is a horizontal cross-sectional view of the test electrode
  • Fig. 4 is a horizontal cross-sectional view of the acoustic emission probe
  • Figure 5 shows the distributed optical fiber deployment method
  • FIG6 is a flow chart of a method according to an embodiment of the present invention.
  • the purpose of the present invention is to provide a device and method for finely detecting the generation and extension of cracks in a rock specimen during loading.
  • the device can perform full-process dynamic testing, has a simple structure, is easy to operate, and has a wide range of applications.
  • the coordination of multiple parameters can obtain fine detection of the generation and extension of cracks in the rock specimen during loading, and plays an important role in evaluating the degree of damage evolution of the rock specimen, monitoring the complex environment after the rock specimen is added with initial cracks, seepage field, etc.
  • the AM method is adopted, that is, the common ground electrode N and the common power supply electrode negative electrode B are arranged separately, and the n electrodes on the measuring line automatically take turns as the power supply electrode A, and the remaining n-1 electrodes are used as electrodes M. Therefore, in the n electrode current and (n-1) ⁇ n electrode potential data. Then, the apparent resistivity value of all electrode distance combinations among the n electrodes is obtained by the three-pole method.
  • is the apparent resistivity
  • AM is the distance between electrode A and electrode M
  • AN is the distance between electrode A and electrode N
  • BM is the distance between electrode B and electrode M
  • BN is the distance between electrode B and electrode N
  • K is the device coefficient.
  • the three-pole method refers to the three electrodes A, M, and N.
  • Formula 2 can be simplified to:
  • the elastic wave signal released by the internal defects propagates from the inside of the specimen to the surface of the specimen, generating weak vibrations.
  • These vibration signals are converted into electrical signals by the acoustic emission probe 22, and then amplified, processed and stored, and stored in the disk in the form of parameters or waveforms.
  • the propagation form of the rock specimen 5 in the rock specimen 5 it can be divided into: longitudinal wave, transverse wave and surface wave.
  • is the density of the material
  • E is the elastic modulus of the material
  • is the Poisson's ratio
  • G is the shear modulus of the material.
  • the signal intensity weakens.
  • the waveform amplitude of this attenuation type has an exponential relationship with the propagation distance.
  • p(x) is the amplitude of the sound wave
  • x is the propagation distance of the sound wave
  • is the attenuation coefficient
  • p0 is the amplitude of the sound wave at the acoustic emission source.
  • optical fiber When the optical fiber is subjected to external vibration, it will produce elastic stretching or compression. The stretching or compression of the optical fiber itself will cause the phase change of the backscattered Rayleigh light, and the phase change is proportional to the length change of the light itself. Therefore, by detecting the phase change of the backscattered Rayleigh light signal, the optical fiber strain and external vibration information can be calculated.
  • the ⁇ mm of the optical fiber length direction strain and the phase change of the backscattered Rayleigh light signal, Optical fiber can be represented as:
  • ⁇ L is the elongation of the fiber gauge length
  • n c is the fiber refractive index
  • ⁇ 1 is the laser wavelength.
  • the fiber gauge degree is one of the most important parameters in distributed fiber technology. For DAS, the smaller the fiber gauge degree, the higher the spatial resolution of the measurement, but the signal-to-noise ratio of the signal is reduced; the larger the fiber gauge degree, the lower the spatial resolution of the measurement, but the signal-to-noise ratio of the signal is higher.
  • the fiber gauge length of DAS can be taken to the sub-meter level, which makes it possible to monitor the distributed fiber acoustic sensing of rock specimen 5.
  • a fine detection device for the generation and extension of cracks in a rock specimen 5 during loading provided by an embodiment of the present invention is characterized in that it comprises: an organic glass skeleton 1, a sensor support skeleton, an electrical parameter acquisition system, an acoustic emission signal acquisition system and a distributed optical fiber acoustic wave acquisition system, a servo press bearing platform 14 and a computer 11, wherein the organic glass skeleton 1 is placed in the middle of the servo press bearing platform 14, a plurality of sensor support skeletons are arranged inside the organic glass skeleton 1, a rock specimen 5 is arranged inside the sensor support skeleton, the electrical parameter acquisition system and the acoustic emission signal acquisition system are fixedly arranged on the sensor support skeleton, the distributed optical fiber acoustic wave acquisition system is fixedly arranged on the inner wall of the organic glass skeleton 1, the electrical parameter acquisition system, the acoustic emission signal acquisition system and the distributed optical fiber acoustic wave
  • the electrical parameter acquisition system is used to collect parameter variation characteristics of the rock specimen 5 during the load fracture process
  • the acoustic emission signal acquisition system is used to obtain the spatial position of the internal fracture of the loaded rock specimen 5;
  • the distributed optical fiber acoustic wave acquisition system is used to determine the intensity and three-dimensional spatial position of vibration.
  • the servo press machine support platform 14 is composed of a pressing head device 12 and the support platform 14 .
  • the organic glass frame 1 is arranged on the support platform 14 .
  • the pressing head device 12 is arranged just above the central axis of the organic glass frame 1 .
  • the sensor support frame is provided with eight groups, which are evenly arranged inside the organic glass frame 1.
  • the sensor support frame includes an upper connector 2, a probe placement device 3 and a lower connector 4.
  • the organic glass frame 1 is hollow cylindrical.
  • the upper connector 2 is evenly arranged on the upper side of the organic glass frame 1.
  • the lower connector 4 is arranged on the lower side of the organic glass frame 1 corresponding to the upper connector 2.
  • the probe placement device 3 is arranged between the upper connector 2 and the lower connector 4.
  • the probe placement device 3 is rectangular.
  • the electrical parameter acquisition system is fixedly arranged on the eight probe placement devices 3, and the acoustic emission signal acquisition system is fixedly arranged on four evenly distributed probe placement devices 3.
  • the main chemical components of the organic glass frame and the probe placement device 3 are polymethyl methacrylate, and the constituent materials of the upper connector 2, the probe placement device 3 and the lower connector 4 are hard plastic.
  • the electrical parameter acquisition system includes a parallel electrical acquisition module 10, a test electrode 18, a B electrode 31, an N electrode 32 and an electrode spring 19. There are 32 test electrodes 18 in total, and there is one B electrode 31 and one N electrode 32. Four electrode grooves are evenly arranged inside the probe placement device. An electrode groove 17 is additionally arranged on the top of one probe placement device for placing the B electrode 31. Another probe placement device opposite to the probe placement device is additionally arranged on the bottom of the electrode groove 17 for placing the N electrode 32. The electrode spring 19 is arranged inside the electrode groove 17. The test electrode 18, B electrode 31 and N electrode 32 are arranged on the top of the electrode spring 19. The test electrode 18, B electrode 31 and N electrode 32 are in contact with the rock specimen 5.
  • the contact surface of the test electrode 18, B electrode 31 and N electrode 32 with the rock specimen 5 is a curved surface, and its curvature is the same as the curvature of the curved surface of the rock specimen 5.
  • the test electrode 18, B electrode 31 and N electrode 32 are in contact with the rock specimen 5.
  • the electrode 32 is electrically connected to the parallel electrical acquisition module 10, and the parallel electrical acquisition module 10 is electrically connected to the computer 11; the test electrode 18 and the electrode spring 19 are arranged in a ring shape in the electrode groove 17, with 8 on each circumference, forming a ring measuring line. A total of 4 ring measuring lines are arranged on the entire device.
  • Each ring measuring line of the electrode device 6 can be measured independently to form a circular test profile; it can also be tested jointly to obtain a three-dimensional electrical parameter distribution. According to the change characteristics of parameters such as natural potential, excitation current, excitation potential, and apparent resistivity of the rock specimen 5 during the load-breaking fracture process, the crack generation and expansion inside and on the surface of the rock specimen 5 can be obtained.
  • the acoustic emission signal acquisition system includes an acoustic emission probe 22, a probe spring 23 and an acoustic emission acquisition module 9.
  • the acoustic emission probe 22 and the probe spring 23 are arranged in a ring shape in the probe groove 21, with 4 on each circumference, a total of 12 acoustic emission probe 22 channels, the probe spring 23 is arranged inside the probe groove 21, the acoustic emission probe 22 is arranged on the top of the probe spring 23, and the acoustic emission probe 22 is in contact with the rock specimen 5.
  • the contact surface between the acoustic emission probe 22 and the rock specimen 5 is a curved surface, and its curvature is the same as the curvature of the curved surface of the rock specimen 5.
  • the acoustic emission probe 22 is electrically connected to the acoustic emission acquisition module 9 through a connecting line 24, and the acoustic emission acquisition module 9 is electrically connected to the computer 11; the acoustic emission probe 22 device 7 records and saves rock fracture events in real time. By processing the acoustic emission data, the spatial position of the fracture inside the loaded rock specimen 5 can be obtained, and then the evolution of the crack can be obtained.
  • a layer of insulating paint is evenly coated on the outside of the electrode spring 19 and the probe spring 23 .
  • the distributed fiber optic acoustic wave acquisition system includes a multi-channel distributed fiber optic acoustic wave acquisition module 8 and a distributed optical fiber group 15, wherein the distributed optical fiber group 15 has a total of 6 fibers, wherein distributed optical fibers I-V are arranged in an equidistant spiral on the inner wall of the organic glass frame, and distributed optical fiber VI30 is arranged vertically on the inner wall of the organic glass frame.
  • the distributed optical fiber is a bare fiber with only one layer of coated optical fiber material, and has a diameter of about 100 ⁇ m.
  • the distributed optical fibers I-VI are electrically connected to the multi-channel distributed fiber optic acoustic wave acquisition module 8 through jumpers 16, and the multi-channel distributed optical fiber acoustic wave acquisition module 8 is electrically connected to the computer 11; the distributed optical fiber group 15 monitors vibration signals by causing phase changes due to vibration, and the cooperation of multiple optical fibers can determine the intensity and three-dimensional spatial position of the vibration, thereby obtaining the generation and expansion of cracks inside and on the surface of the rock specimen 5.
  • a soundproof protective cover 13 is arranged outside the device to isolate external noise interference and protect test personnel.
  • the embodiment of the present invention further provides a method for finely detecting the generation and expansion of cracks in a rock specimen during loading, which is used in the above-mentioned device for finely detecting the generation and expansion of cracks in a rock specimen during loading, and comprises the following steps:
  • Step 1 Place the sensor support frame and the multi-parameter dynamic acquisition system on the servo press bearing platform 14, and then place the standard rock specimen 5 inside the device. Adjust the spring to make the test electrode 18 and the acoustic emission probe 22 in close contact with the rock specimen 5. If necessary, apply conductive glue evenly between the test electrode 18 and the rock specimen 5, and apply vaseline evenly between the acoustic emission probe 22 and the rock specimen 5 to enhance coupling, and install the sound insulation protective cover 13;
  • Step 2 Connect all transmission lines, start the servo press, give the rock specimen 5 a pre-contact, and then start data pre-collection and pre-processing to ensure that each sensor is in an effective working state;
  • Step 3 Load the rock specimen 5, and record and store the data in real time; obtain the real-time change of the resistivity of the four circular electrical profiles from top to bottom by collecting electrical parameters: when cracks appear inside the rock specimen 5, the corresponding performance is high resistance; by collecting acoustic emission data, the spatial position and time of the rupture of the rock specimen 5 can be obtained; by collecting distributed optical fiber acoustic waves, the vibration signal when the rock is broken can be obtained, and the rupture position and crack size of the loaded rock specimen 5 can be located through the joint cooperation between multiple optical fibers;
  • Step 4 Through single field parameter analysis method, multi-field parameter joint analysis method and digital core reconstruction method based on field parameters, various parameters are mapped and analyzed to accurately identify the crack propagation of rock specimens.
  • a high-speed camera or a 3D-DIC camera can be appropriately added to take photos and record the entire process of the fracture.
  • a single field parameter analysis method is specifically as follows:
  • a standard rock specimen 5 with a diameter of 50 mm and a height of 100 mm is placed in the device, and loaded using the servo press platform.
  • the axial loading rate is controlled to be 0.1 kN/s until the rock specimen 5 is completely destroyed.
  • the loading process takes t.
  • the servo press platform can record the change of the axial pressure (F) during the entire loading process.
  • the electrode current (I) is continuously collected to obtain the change of the electrode current (I) during the entire loading process; with time (t) as the x-axis, the axial pressure (F) and the rock specimen electrode current (I) as the double y-axes, a time-force-electrode current response curve is obtained, and then the analysis of the rock crack extension mechanism is provided according to the sudden change of a certain parameter; similarly, the time-force-resistivity curve, the time-force-natural potential curve, the time-force-excitation potential curve, the time-force-strain curve, the time-force-acoustic wave amplitude and the time-force-acoustic emission parameter curve can be obtained, and the crack change mechanism of the loaded rock specimen can be precisely identified from different parameter angles.
  • the multi-field parameter joint analysis method is specifically:
  • a standard rock specimen 5 with a diameter of 50 mm and a height of 100 mm was placed in the device and loaded using the servo press platform.
  • the axial loading rate was controlled to be 0.1 kN/s until the rock specimen 5 was completely destroyed.
  • the loading process took t.
  • the servo press platform could record the changes in the axial pressure (F) during the entire loading process.
  • the multi-parameter testing device could obtain the resistivity ( ⁇ ) and natural potential of the rock specimen 5 during the entire loading and rupture process.
  • the correlation analysis among the three parameters of electrode current (I), acoustic wave amplitude (D) and acoustic emission event number (n) is carried out. Points are taken with electrode current (I) as x-coordinate, acoustic wave amplitude (D) as y-coordinate and acoustic emission event number (n) as z-coordinate, and then surface fitting is performed to obtain the response relationship surface based on the three parameters. According to the curvature radius of the fitting surface, the identification basis for the crack generation and extension of the loaded rock specimen is provided.
  • multiple linear regression analysis or multiple nonlinear regression analysis can be carried out based on SPASS software.
  • SPASS software Through the joint analysis of multiple parameters, it can provide a reference for the detailed exploration of the generation and expansion of cracks in rock specimens.
  • the digital core reconstruction method is implemented according to the field parameters, specifically:
  • a standard rock specimen 5 with a diameter of 50 mm and a height of 100 mm is placed in the device and loaded using a servo press bearing platform.
  • the axial loading rate is controlled to be 0.1 kN/s until the rock specimen 5 is completely destroyed.
  • the loading process takes time t.
  • the servo press bearing platform can record the change of the axial pressure (F) throughout the loading process.
  • the electrode current (I) is continuously collected to obtain the change of the electrode current (I) throughout the loading process.
  • the distribution of lithological electrode current at different times is obtained, such as the electrode current corresponding to the measuring point (x 1 , y 1 , z 1 ) is I 1 , the resistivity corresponding to the measuring point (x 2 , y 2 , z 2 ) is I 2 , ..., the electrode current corresponding to the measuring point (x m , y m , z m ) is I m
  • the spatial distribution of the core electrode current value at a certain loading moment is obtained, that is, the digital core electrode current value at a certain loading moment.
  • Different digital core electrode current values can be obtained at different loading moments.
  • models such as digital core resistivity and digital core natural potential can be obtained.
  • the digital core can intuitively show the crack generation and expansion of the rock specimen during the loading process.
  • the establishment of a digital core library of big data geophysical parameters can provide assistance for the prediction of cracks in loaded cores.
  • the present invention can obtain the electrical parameters, acoustic emission parameters, stress parameters and magnetic parameters of the rock specimen 5 during the fracturing process, and depict the hydraulic fracturing parameter response process of the rock specimen 5 from four different field parameters.
  • the Origin software can be used to obtain the joint response characteristic curve of the four parameters.
  • the response characteristics of different parameters at different stages of the load fracture of the rock specimen 5 are different.
  • Comparative analysis of response characteristics between parameters When the present invention obtains multiple field parameters, the field parameters have a certain correlation. By constructing correlation analysis between parameters using SPASS, the correlation between field parameters can be further understood. Correlation analysis methods include neural networks, regression analysis, variance analysis, joint analysis, etc. By constructing correlation analysis between parameters, the joint response mechanism between parameters can be further understood.
  • the device of the present invention can help to obtain parameter response characteristics and fracture precursor information in real time through multi-dimensional and multi-parameter coordinated testing of the rock specimen 5 during the loading process.
  • mathematical modeling and prediction can be performed on the expansion and penetration of the cracks in the rock specimen 5 according to massive monitoring data. This plays an important role in predicting the occurrence of fracture.
  • Construction of dynamic deformation and destruction digital core We can obtain the three-dimensional distribution of the fracture field through multi-field collaborative testing. For example, the electrical method test can obtain the three-dimensional distribution of the electrical parameters of the rock specimen 5. According to the scanning or parameter test results, we can construct a three-dimensional digital core.
  • the construction of a three-dimensional digital core can be a single parameter construction or a data fusion construction. Through the construction of digital cores, the visualization of the deformation, destruction, crack initiation and expansion of the rock specimen 5 is greatly improved.
  • the device and method for fine detection of crack generation and extension during the loading process of a rock specimen realize parameters such as resistivity profile, natural potential, current, potential, acoustic emission events and optical fiber vibration signals during the damage process of the rock specimen under uniaxial loading conditions; the whole process dynamic test has a simple device structure and convenient operation, and the coordination of multiple parameters can obtain fine detection of crack generation and extension during the loading process of the rock specimen, which plays an important role in evaluating the degree of damage evolution of the rock specimen; the monitoring device can also be applied to complex environments after the rock specimen is added with initial cracks, seepage fields, etc., and has a wide range of applications; the main frame of the device and the sensor can be reused, which provides assistance for crack detection and prediction in rock engineering.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种岩石试件(5)受载过程裂纹的生成扩展精细探查装置及方法,该装置包括:有机玻璃骨架(1)、传感器支撑骨架、多参数动态采集系统、伺服压力机承载台(14)及计算机,伺服压力机承载台(14)中间放置有机玻璃骨架(1),有机玻璃骨架(1)的内部设置有多个传感器支撑骨架,传感器支撑骨架的内部设置有岩石试件(5),传感器支撑骨架上固定设置多参数动态采集系统,多参数动态采集系统接触岩石试件(5),多参数动态采集系统及伺服压力机承载台(14)电性连接计算机。该岩石试件(5)受载过程裂纹的生成扩展精细探查装置及方法,动态测试,多种参数协同获得岩石试件(5)受载过程中裂纹生成和扩展情况,在评价岩石试件(5)损伤演化程度等方面有重要作用。

Description

岩石试件受载过程裂纹的生成扩展精细探查装置及方法 技术领域
本发明涉及岩石力学试验监测领域,特别是涉及一种岩石试件受载过程裂纹的生成扩展精细探查装置及方法。
背景技术
岩石力学试验是认识、探究岩石属性的重要手段。受载岩石裂纹生成和扩展是岩石力学试验研究的热点问题之一,岩石的原生条件、非均质和各向异性的特点决定了其受载时会发生非规律的体积膨胀和裂纹扩展。受载岩石的破裂过程是不可逆的,岩石内部和表面裂纹的生成和扩展是影响岩石力学性质、物理性质的重要因素。同时,又对岩石内部水分和气体的运移产生重大的影响。厘清岩石破裂过程裂纹的生成和扩展规律,才能深入的了解受载岩石致裂的力学行为,进而认识岩石致裂的本质。
对于岩石裂纹的动态发育的检测,SEM(扫描电子显微镜法)和CT扫描是当下比较有代表性的无损检测方式,但两者对试件的尺寸要求较高,一般直径和高度均不超过50mm,且SEM只能获取岩石试件表面裂纹演化情况,CT随着检测试件的加大,为达到较好的分辨率,对CT机的能量要求就越高,高能、高分辨率的CT试验机是一大技术难题。
对岩石试件进行分析,加载前,岩石试件的背景物理场是基本稳定的。加载时,在力的作用下,岩石试件内部发生了变形和裂纹的生成,这些变化导致了岩石试件物理场的改变,例如电阻率、波速等,同时,破裂位置会激发出声波。若这些变化的物理场乃至声波能够被捕捉到,那对获取岩石试件裂纹的生成和扩展具有重大帮助。因此,设计一种岩石试件受载过程裂纹的生成扩展精细探查装置及方法是十分必要的。
发明内容
本发明的目的是提供一种岩石试件受载过程裂纹的生成扩展精细探查装置及方法,全程动态测试,装置结构简单、操作便捷,应用范围较广,多种参数协同可获得岩石试件受载过程中裂纹生成、扩展的精细探查,在评价岩石试 件损伤演化程度、监测岩石试件附加初始裂隙、渗流场等后的复杂环境等方面具有重要作用。
为实现上述目的,本发明提供了如下方案:
一种岩石试件受载过程裂纹的生成扩展精细探查装置,包括:有机玻璃骨架、传感器支撑骨架、电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统、伺服压力机承载台及计算机,所述伺服压力机承载台中间放置所述有机玻璃骨架,所述有机玻璃骨架的内部设置有多个传感器支撑骨架,所述传感器支撑骨架的内部设置有岩石试件,所述传感器支撑骨架上固定设置所述电性参数采集系统及声发射信号采集系统,所述有机玻璃骨架内壁固定设置所述分布式光纤声波采集系统,所述电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统接触岩石试件,所述电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统电性连接计算机;
所述电性参数采集系统用于收集岩石试件受载破裂过程中的参量变化特征;
所述声发射信号采集系统用于获取受载岩石试件内部破裂产生的空间位置;
所述分布式光纤声波采集系统用于确定振动发生的强度以及三维空间位置。
可选的,所述伺服压力机承载台由压头装置及承载台组成,所述承载台上设置所述有机玻璃骨架,所述有机玻璃骨架的中轴线正上方设置所述压头装置。
可选的,所述传感器支撑骨架设置有八组,分别均匀设置在所述有机玻璃骨架的内部,所述传感器支撑骨架包括上部连接器、探头安置器及下部连接器,所述有机玻璃骨架呈空心圆柱型,所述有机玻璃骨架内部的上侧等距设置所述上部连接器,所述有机玻璃骨架内部的下侧对应所述上部连接器设置所述下部连接器,所述上部连接器及下部连接器之间设置所述探头安置器,所述探头安置器为长方形,八个所述探头安置器上固定设置所述电性参数采集系统,其中四个均匀分布的探头安置器上固定设置所述声发射信号采集系统。
可选的,所述电性参数采集系统包括并行电法采集模块、测试电极、B电 极、N电极及电极弹簧,所述测试电极共32个,所述B电极、N电极各一个,所述探头安置器的内部均匀设置有四个电极凹槽,一个所述探头安置器顶部额外设置有一个电极凹槽,用于放置B电极,与该探头安置器相对的另一个探头安置器底部额外设置有一个电极凹槽,用于放置N电极,所述电极凹槽的内部设置所述电极弹簧,所述电极弹簧的顶部设置所述测试电极、B电极及N电极,所述测试电极、B电极及N电极与岩石试件接触,所述测试电极、B电极及N电极与岩石试件的接触面为曲面,其曲率与岩石试件曲面曲率相同,所述测试电极、B电极及N电极电性连接所述并行电法采集模块,所述并行电法采集模块电性连接所述计算机。
可选的,所述声发射信号采集系统包括声发射探头、探头弹簧及声发射采集模块,所述探头安置器的内部均匀设置有三个探头凹槽,所述探头凹槽的内部设置所述探头弹簧,所述探头弹簧的顶部设置所述声发射探头,所述与岩石试件接触,所述声发射探头与岩石试件的接触面为曲面,其曲率与岩石试件曲面曲率相同,所述声发射探头电性连接所述声发射采集模块,所述声发射采集模块电性连接所述计算机。
可选的,所述分布式光纤声波采集系统包括多通道分布式光纤声波采集模块及分布式光纤组,所述分布式光纤组共6根,其中,分布式光纤I-V等间距螺旋布置在有机玻璃框架的内壁上,分布式光纤VI垂直布置在有机玻璃框架的内壁上,所述分布式光纤为裸纤外仅一层涂敷的光纤材料,所述分布式光纤I-VI分别电性连接所述多通道分布式光纤声波采集模块,所述多通道分布式光纤声波采集模块电性连接所述计算机。
优选的,在岩石试件受载过程裂纹的生成扩展精细探查装置外部安置隔音保护罩。
本发明还提供了一种岩石试件受载过程裂纹的生成、扩展精细探查方法,用于上述的一种岩石试件受载过程裂纹的生成、扩展精细探查装置,包括如下步骤:
步骤1:将标准岩石试件置于装置内部,通过调节弹簧使测试电极和声发射探头与岩石试件接触紧密;
步骤2:连接好所有传输线,启动压头装置,给岩石试件一个预接触,之 后开始数据的预采集和预处理,确保各个传感器处于有效工作状态;
步骤3:对岩石试件进行加载,通过对电性参数的采集,获取从上到下四个圆形电剖面的电阻率实时变化情况,其中,当岩石试件内部出现裂纹时,相应的表现为高阻;通过对声发射数据的采集,获取岩石试件破裂发生的空间位置和时刻;通过对分布式光纤声波的采集,获取岩石破裂时的振动信号,通过多光纤之间的共同协作,实现受载岩石试件破裂位置和裂隙大小的定位,同时对数据实时记录和存储;
步骤4:通过单一场参数分析法、多场参数联合分析法和根据场参数实现重构数字岩心法对各参数进行成图、分析,精细判识岩石试件裂纹扩展情况。
可选的,步骤4中,单一场参数分析法,具体为:
单一场参数分析法是指结合加载的时-力曲线分析某一参数的响应情况,其共同变量是时间:将标准岩石试件置于装置中,利用伺服装置进行加载直至标准岩石试件完全破坏,连续采集岩石试件受载破裂全程记录时间、轴向压力及待分析参数,以时间为x轴,轴向压力及相应待分析参数为双y轴进行成图,获得相应响应曲线,进而根据该参量的突变为岩石裂纹延展机制的分析提供依据。
可选的,多场参数联合分析法,具体为:
多场参数联合分析法是指对多场参数间进行对比分析,共同变量为时间,依次筛选出某一时刻的多个场参数,进行相关性分析,得到参量间的响应相关关系:将标准岩石试件置于装置中,利用伺服装置进行加载,直至标准岩石试件完全破坏,连续采集记录岩石试件受载破裂全程的时间、轴向压力、电阻率、自然电位、电极电流、电极电位、声波振幅及声发射事件数,根据共同的变量时间,统计不同时刻的各参数值并进行相关性分析;
对各参数值进行相关性分析具体分两参量间相关性分析、三参量间相关性分析及三个以上参量间相关性分析,两参量间相关性分析具体为:以某一测点加载时刻的一个待分析参数为x轴,另一个待分析参数为y坐标进行取点,然后进行曲线拟合,获得相应两参数相关关系曲线,根 据拟合曲线的斜率为受载岩石试件的裂纹产生和延展提供判识依据;三参量间相关性分析具体为:以某一测点加载时刻的第一个待分析参数为x轴,第二个待分析参数为y坐标,第三个待分析参数为z坐标进行取点,然后进行曲面拟合,获得基于三参量的响应关系曲面,根据拟合曲面的曲率半径为受载岩石试件的裂纹产生和延展提供判识依据;三个以上参量的相关性分析,基于SPASS软件,开展多元线性回归分析或多元非线性回归分析,通过多参量的联合分析,为岩石试件裂纹的生成和扩展精细探查提供参考。
可选的,根据场参数实现重构数字岩心法,具体为:
根据不同物理场参数实现数字岩心的地球物理场重建:将标准岩石试件置于装置中,利用伺服装置进行加载直至标准岩石试件完全破坏,通过连续测试,获取不同时刻的待分析参数在不同三维坐标点的分布情况,据此,获得某一加载时刻的待分析参数的空间分布情况,即某一加载时刻的数字岩心待分析参数值,取不同的加载时刻,可获得不同的数字岩心待分析参数值。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的岩石试件受载过程裂纹的生成扩展精细探查装置及方法,实现了单轴加载条件下岩石试件损伤过程中的电阻率剖面、自然电位、电流、电位、声发射事件和光纤振动信号等参数;全程动态测试,装置结构简单、操作便捷,多种参数协同可获得岩石试件受载过程中裂纹生成、扩展的精细探查,对评价岩石试件损伤演化程度具有重要作用;监测装置还可应用于岩石试件附加初始裂隙、渗流场等后的复杂环境,应用范围较广;装置主体骨架及传感器可以重复使用,为岩体工程的裂隙探查及预测提供帮助。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明装置结构总图;
图2为本发明的一种实施例的装置垂直剖面图;
图3为测试电极所在水平剖面图;
图4为声发射探头所在水平剖面图;
图5为分布式光纤布设方式;
图6为本发明的一种实施例的方法流程图。
附图标记:1、有机玻璃骨架;2、上部连接器;3、探头安置器;4、下部连接器;5、岩石试件;6、电极装置;7、声发射探头装置;8、多通道分布式光纤声波采集模块;9、声发射采集模块;10、并行电法采集模块;11、笔记本电脑;12、压头装置;13、隔音保护罩;14、承载台;15、分布式光纤组;16、跳线;17、电极凹槽;18、测试电极;19、电极弹簧;20、导线;21、探头凹槽;22、声发射探头;23、探头弹簧;24、连接线;25、分布式光纤Ⅰ;26、分布式光纤Ⅱ;27、分布式光纤Ⅲ;28、分布式光纤Ⅳ;29、分布式光纤Ⅴ;30、分布式光纤Ⅵ;31、B电极;32、N电极。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种岩石试件受载过程裂纹的生成扩展精细探查装置及方法,全程动态测试,装置结构简单、操作便捷,应用范围较广,多种参数协同可获得岩石试件受载过程中裂纹生成、扩展的精细探查,在评价岩石试件损伤演化程度、监测岩石试件附加初始裂隙、渗流场等后的复杂环境等方面具有重要作用。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明的技术原理如下:
1.并行电法监测原理
采用AM法,即公共地电极N与公共供电电极负极B单独布设,测线上n个电极自动轮流作为供电电极A,其余n-1个电极作为电极M。所以,在n个 电极电流和(n-1)×n个电极电位数据。进而,利用三极法在n个电极中的所有电极距排列组合的视电阻率值。
Figure PCTCN2022139237-appb-000001
式中,ρ为视电阻率,AM为电极A和电极M之间的距离,AN为电极A和电极N之间的距离,BM为电极B和电极M之间的距离,BN为电极B和电极N之间的距离,K为装置系数。
其中,
Figure PCTCN2022139237-appb-000002
三极法是指A、M、N三个电极,MN间距很小时,公式2可简化为:
Figure PCTCN2022139237-appb-000003
即当MN远小于AO时(O为MN中点)
Figure PCTCN2022139237-appb-000004
Figure PCTCN2022139237-appb-000005
就是过M和N两等位面的平距面积,MN则是等位面M和N之间的距离。
2.声发射监测原理
受载的岩石试件5发生损伤时,其内部产生缺陷而释放的弹性波信号经过试件内部传播到试件表面后,产生微弱的振动,这些振动信号经声发射探头22转化为电信号,再经过信号放大、处理和存储,以参数或者波形的方式存储于磁盘中。根据岩石试件5在岩石试件5中的传播形式可分为:纵波、横波和表面波。
2.1纵波
纵波(P波)的传播方向与质点振动方向一致,波速表达式为:
Figure PCTCN2022139237-appb-000006
式中,ρ为材料的密度,E为材料的弹性模量,σ为泊松比。
2.2横波
纵波(S波)的传播方向与质点振动方向垂直,波速表达式为:
Figure PCTCN2022139237-appb-000007
式中,G为材料的切变模量。
2.3声发射衰减
弹性波在介质中传播一定距离后,信号强度减弱,该种衰减类型的波形振幅与传播距离呈指数型的关系。
p(x)=p 0e -δx   (公式7)
式中,p(x)为声波的振幅;x为声波的传播距离;δ为衰减系数;p 0为声发射源处的声波振幅。
3.DAS
当光纤受到外部振动作用时会产生弹性拉伸或压缩,光纤本身的拉伸或压缩会引起后向散射瑞利光的相位变化,且相位变化与光线本身的长度变化成比例。因此,通过探测后向散射瑞利光信号的相位变化,可以计算出光纤应变和外界振动信息。光纤长度方向应变的ε mm与后向瑞利散射光信号的相位变化,
Figure PCTCN2022139237-appb-000008
光纤可表示为:
Figure PCTCN2022139237-appb-000009
其中δL为光纤标定长度(gauge length)的伸长量,n c是光纤折射率,λ 1是激光波长。光纤标定程度是分布式光纤技术中最重要的参量之一。对于DAS来说,光纤标定程度越小其测量的空间分辨率越高,但信号的信噪比降低;光纤标定程度越大其测量的空间分辨率越低,但信号的信噪比越高。DAS的光纤标定长度可以取到亚米级别,这为岩石试件5的分布式光纤声学传感监测提供了可能。
如图1、图2所示,本发明实施例提供的一种岩石试件5受载过程裂纹的生成扩展精细探查装置,其特征在于,包括:有机玻璃骨架1、传感器支撑骨架、电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统、伺 服压力机承载台14及计算机11,所述伺服压力机承载台14中间放置所述有机玻璃骨架1,所述有机玻璃骨架1的内部设置有多个传感器支撑骨架,所述传感器支撑骨架的内部设置有岩石试件5,所述传感器支撑骨架上固定设置所述电性参数采集系统及声发射信号采集系统,所述有机玻璃骨架1内壁固定设置所述分布式光纤声波采集系统,所述电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统接触岩石试件5,所述电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统电性连接计算机11;
所述电性参数采集系统用于收集岩石试件5受载破裂过程中的参量变化特征;
所述声发射信号采集系统用于获取受载岩石试件5内部破裂产生的空间位置;
所述分布式光纤声波采集系统用于确定振动发生的强度以及三维空间位置。
所述伺服压力机承载台14由压头装置12及承载台14组成,所述承载台14上设置所述有机玻璃骨架1,所述有机玻璃骨架1的中轴线正上方设置所述压头装置12。
所述传感器支撑骨架设置有八组,分别均匀设置在所述有机玻璃骨架1的内部,所述传感器支撑骨架包括上部连接器2、探头安置器3及下部连接器4,所述有机玻璃骨架1呈空心圆柱型,所述有机玻璃骨架1内部的上侧等距设置所述上部连接器2,所述有机玻璃骨架1内部的下侧对应所述上部连接器2设置所述下部连接器4,所述上部连接器2及下部连接器4之间设置所述探头安置器3,所述探头安置器3为长方形,八个所述探头安置器3上固定设置所述电性参数采集系统,其中四个均匀分布的探头安置器3上固定设置所述声发射信号采集系统。所述有机玻璃框架及探头安置器3的主要化学成分是聚甲基丙烯酸甲酯,所述上部连接器2和探头安置器3和下部连接器4的构成材料为硬质塑料。
所述电性参数采集系统包括并行电法采集模块10、测试电极18、B电极31、N电极32及电极弹簧19,所述测试电极18共32个,所述B电极31、N电极32各一个,所述探头安置器的内部均匀设置有四个电极凹槽,一个所述 探头安置器顶部额外设置有一个电极凹槽17,用于放置B电极31,与该探头安置器相对的另一个探头安置器底部额外设置有一个电极凹槽17,用于放置N电极32,所述电极凹槽17的内部设置所述电极弹簧19,所述电极弹簧19的顶部设置所述测试电极18、B电极31及N电极32,所述测试电极18、B电极31及N电极32与岩石试件5接触,所述测试电极18、B电极31及N电极32与岩石试件5的接触面为曲面,其曲率与岩石试件5曲面曲率相同,所述测试电极18、B电极31及N电极32电性连接所述并行电法采集模块10,所述并行电法采集模块10电性连接所述计算机11;所述测试电极18及电极弹簧19环型布置于所述电极凹槽17内,每个圆周上有8个,构成一条环形测线,整个装置上共布置了4条环形测线,所述电极装置6的每条环形测线可独立测量,形成一个圆形测试剖面;也可以联合测试,得到三维电性参数展布,根据岩石试件5受载破裂过程中的自然电位、激励电流、激励电位、视电阻率等参量变化特征,可获得岩石试件5内部以及表面的裂纹生成和扩展情况。
所述声发射信号采集系统包括声发射探头22、探头弹簧23及声发射采集模块9,所述声发射探头22及探头弹簧23环型布置于所述探头凹槽21内,每个圆周上有4个,共12个声发射探头22通道,所述探头凹槽21的内部设置所述探头弹簧23,所述探头弹簧23的顶部设置所述声发射探头22,所述与岩石试件5接触,所述声发射探头22与岩石试件5的接触面为曲面,其曲率与岩石试件5曲面曲率相同,所述声发射探头22通过连接线24电性连接所述声发射采集模块9,所述声发射采集模块9电性连接所述计算机11;所述声发射探头22装置7对岩石破裂事件进行实时的记录和保存,通过对声发射数据的处理,可以获取受载岩石试件5内部破裂产生的空间位置,进而获取裂隙的演化情况。
所述电极弹簧19及探头弹簧23外部均匀涂抹一层绝缘漆。
所述分布式光纤声波采集系统包括多通道分布式光纤声波采集模块8及分布式光纤组15,所述分布式光纤组15共6根,其中,分布式光纤I-V等间距螺旋布置在有机玻璃框架的内壁上,分布式光纤VI30垂直布置在有机玻璃框架的内壁上,所述分布式光纤为裸纤外仅一层涂敷的光纤材料,直径约100μm,所述分布式光纤I-VI分别通过跳线16电性连接所述多通道分布式光 纤声波采集模块8,所述多通道分布式光纤声波采集模块8电性连接所述计算机11;所述分布式光纤组15通过振动引起相位变化来监测振动信号,多根光纤协作可确定振动发生的强度以及三维空间位置,进而获取岩石试件5内部和表面的裂隙生成和扩展情况。
在装置外部安置隔音保护罩13,用于隔绝外界噪声干扰和保护试验人员。
本发明实施例还提供了一种岩石试件受载过程裂纹的生成、扩展精细探查方法,用于上述的一种岩石试件受载过程裂纹的生成、扩展精细探查装置,包括如下步骤:
步骤1:将传感器支撑骨架及多参数动态采集系统放在伺服压力机承载台14上,再将标准岩石试件5置于装置内部,通过调节弹簧使测试电极18和声发射探头22与岩石试件5接触紧密,必要时可以在测试电极18与岩石试件5间均匀涂抹导电胶,声发射探头22和岩石试件5间均匀涂抹凡士林增强耦合,安置好隔音保护罩13;
步骤2:连接好所有传输线,启动伺服压力机,给岩石试件5一个预接触,之后开始数据的预采集和预处理,确保各个传感器处于有效工作状态;
步骤3:对岩石试件5进行加载,同时对数据实时记录和存储;通过对电性参数的采集,获取从上到下四个圆形电剖面的电阻率实时变化情况:当岩石试件5内部出现裂纹时,相应的表现为高阻;通过对声发射数据的采集,可获得岩石试件5破裂发生的空间位置和时刻;通过对分布式光纤声波的采集,可以获得岩石破裂时的振动信号,通过多光纤之间的共同协作,实现受载岩石试件5破裂位置和裂隙大小的定位;
步骤4:通过单一场参数分析法、多场参数联合分析法和根据场参数实现重构数字岩心法对各参数进行成图、分析,精细判识岩石试件裂纹扩展情况。
为增强对岩石试件5变形破坏的图像捕捉,可适当增加高速相机或3D-DIC相机,对破裂全程进行拍照记录。
对于本发明的一种实施例,单一场参数分析法,具体为:
分析标准岩石试件的电极电流(I):将直径50mm,高100mm的标准岩石试件5置于装置中,利用伺服压力机承载台进行加载,控制轴向加载速率为0.1kN/s,直至岩石试件5完全破坏,加载过程耗时为t,伺服压力机承载台可 以记录加载全程的轴向压力(F)的变化,在时间(t)内,对电极电流(I)进行连续采集,获取加载全程的电极电流(I)的变化;以时间(t)为x轴,轴向压力(F)和岩石试件电极电流(I)为双y轴进行成图,获得时-力-电极电流响应曲线,进而根据某一参量的突变为岩石裂纹延展机制的分析提供帮助;同理,可获得时-力-电阻率曲线、时-力-自然电位曲线、时-力-激励电位曲线、时-力-应变曲线、时-力-声波振幅和时-力-声发射参数曲线等,从不同参量角度精细判识受载岩石试件裂纹变化机制。
对于本发明的一种实施例,多场参数联合分析法,具体为:
将直径50mm,高100mm的标准岩石试件5置于装置中,利用伺服压力机承载台进行加载,控制轴向加载速率为0.1kN/s,直至岩石试件5完全破坏,加载过程耗时为t,伺服压力机承载台可以记录加载全程的轴向压力(F)的变化,由多参数测试装置可获得岩石试件5受载破裂全程的电阻率(ρ)、自然电位
Figure PCTCN2022139237-appb-000010
电极电流(I)、电极电位(U)、声波振幅(D)和声发射事件数(n);对电极电流(I)和声发射事件数(n)进行两参量间相关性分析,获取某一测点加载时刻t的电极电流(I)和声发射事件数(n)的连续变化数据,以电极电流(I)为x坐标、声发射事件数(n)为y坐标进行取点,然后进行曲线拟合,即可获取电极电流(I)和声发射事件数(n)的相关关系曲线,根据拟合曲线的斜率为受载岩石试件的裂纹产生和延展提供判识依据;
对电极电流(I)、声波振幅(D)和声发射事件数(n)进行三参量间相关性分析,以电极电流(I)为x坐标、声波振幅(D)为y坐标和声发射事件数(n)为z坐标进行取点,然后进行曲面拟合,可获取基于三参量的响应关系曲面,根据拟合曲面的曲率半径为受载岩石试件的裂纹产生和延展提供判识依据;
对于三个以上参量的相关性分析,可基于SPASS软件,开展多元线性回归分析或多元非线性回归分析等,通过多参量的联合分析,为岩石试件裂纹的生成和扩展精细探查提供参考
对于本发明的一种实施例,根据场参数实现重构数字岩心法,具体为:
将直径50mm,高100mm的标准岩石试件5置于装置中,利用伺服压力机承载台进行加载,控制轴向加载速率为0.1kN/s,直至岩石试件5完全破坏, 加载过程耗时为t,伺服压力机承载台可以记录加载全程的轴向压力(F)的变化,在时间(t)内,对电极电流(I)进行连续采集,获取加载全程的电极电流(I)的变化,通过连续测试,获取不同时刻的岩性电极电流分布情况,如测点(x 1,y 1,z 1)对应的电极电流为I 1,测点(x 2,y 2,z 2)对应的电阻率为I 2,……,测点(x m,y m,z m)对应的电极电流为I m,据此,获得某一加载时刻的岩心电极电流值空间分布情况,即某一加载时刻的数字岩心电极电流值,取不同的加载时刻,可获得不同的数字岩心电极电流值;同理,可以获得数字岩心电阻率、数字岩心自然电位等模型,数字岩心可以直观看出岩石试件受载过程裂纹生成、扩展情况,同时,建立大数据地球物理参量数字岩芯库,可为受载岩心裂纹预测提供帮助。
数据处理与分析方法:
1.多场测试结果的对比分析:通过本发明可以获取岩石试件5压裂过程中的电性参数、声发射参数、应力参数以及磁性参数,从四个不同的场参数出发,描绘岩石试件5的水力压裂参数响应过程。在以时间变量为共同变量下,可以用Origin软件获取四种参量的联合响应特征曲线。不同的参数在岩石试件5受载破裂不同阶段的响应特征是不同的,通过构建多参数评价体系,可以灵敏捕捉各阶段岩石试件5水力压裂场参数响应特征。
2参数间的响应特征对比分析:本发明在获得多场参数时,场参数之间具备一定的相关性,通过SPASS构建参数间的相关性分析,可以进一步认识场参数间的关联度。相关性分析方法包括神经网络、回归分析、方差分析、联合分析等,通过构建参数间的相关性分析,可以进一步了解参数间的联合响应机制。
3.预测分析:本发明装置通过对岩石试件5受载过程的多维度、多参数协同测试,对于实时获取参数响应特征,破裂前兆信息具有一定的帮助。在多尺度、多参数基础上,可以根据海量监测数据,对岩石试件5裂隙的扩展以及贯通进行数学建模和预测。这对预测破裂情况的发生具有重要的作用。
4.动态变形、破坏数字岩芯的构建:我们通过多场协同测试可以获得裂隙场的三维展布,例如电法测试可以获取岩石试件5电性参数的三维展布等。根据扫描或者参数测试结果,我们可以构建三维数字岩芯。三位数字岩心的构建可以是单一参数的构建,可以为数据融合后的构建。通过数字岩心的构建,大 大提高岩石试件5的变形破坏、裂纹萌生、扩展的可视化程度。
本发明提供的岩石试件受载过程裂纹的生成扩展精细探查装置及方法,实现了单轴加载条件下岩石试件损伤过程中的电阻率剖面、自然电位、电流、电位、声发射事件和光纤振动信号等参数;全程动态测试,装置结构简单、操作便捷,多种参数协同可获得岩石试件受载过程中裂纹生成、扩展的精细探查,对评价岩石试件损伤演化程度具有重要作用;监测装置还可应用于岩石试件附加初始裂隙、渗流场等后的复杂环境,应用范围较广;装置主体骨架及传感器可以重复使用,为岩体工程的裂隙探查及预测提供帮助。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,包括:有机玻璃骨架、传感器支撑骨架、电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统、伺服压力机承载台及计算机,所述伺服压力机承载台中间放置所述有机玻璃骨架,所述有机玻璃骨架的内部设置有多个传感器支撑骨架,所述传感器支撑骨架的内部设置有岩石试件,所述传感器支撑骨架上固定设置所述电性参数采集系统及声发射信号采集系统,所述有机玻璃骨架内壁固定设置所述分布式光纤声波采集系统,所述电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统接触岩石试件,所述电性参数采集系统、声发射信号采集系统及分布式光纤声波采集系统电性连接计算机;
    所述电性参数采集系统用于收集岩石试件受载破裂过程中的参量变化特征;
    所述声发射信号采集系统用于获取受载岩石试件内部破裂产生的空间位置;
    所述分布式光纤声波采集系统用于确定振动发生的强度以及三维空间位置。
  2. 根据权利要求1所述的岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,所述伺服压力机承载台由压头装置及承载台组成,所述承载台上设置所述有机玻璃骨架,所述有机玻璃骨架的中轴线正上方设置所述压头装置。
  3. 根据权利要求2所述的岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,所述传感器支撑骨架设置有八组,分别均匀设置在所述有机玻璃骨架的内部,所述传感器支撑骨架包括上部连接器、探头安置器及下部连接器,所述有机玻璃骨架呈空心圆柱型,所述有机玻璃骨架内部的上侧等距设置所述上部连接器,所述有机玻璃骨架内部的下侧对应所述上部连接器设置所述下部连接器,所述上部连接器及下部连接器之间设置所述探头安置器,所述探头安置器为长方形,八个所述探头安置器上固定设置所述电性参数采集系统,其中四个均匀分布的探头安置器上固定设置所述声发射信号采集系统。
  4. 根据权利要求3所述的岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,所述电性参数采集系统包括并行电法采集模块、测试电极、 B电极、N电极及电极弹簧,所述测试电极共32个,所述B电极、N电极各一个,所述探头安置器的内部均匀设置有四个电极凹槽,一个所述探头安置器顶部额外设置有一个电极凹槽,用于放置B电极,与该探头安置器相对的另一个探头安置器底部额外设置有一个电极凹槽,用于放置N电极,所述电极凹槽的内部设置所述电极弹簧,所述电极弹簧的顶部设置所述测试电极、B电极及N电极,所述测试电极、B电极及N电极与岩石试件接触,所述测试电极、B电极及N电极与岩石试件的接触面为曲面,其曲率与岩石试件曲面曲率相同,所述测试电极、B电极及N电极电性连接所述并行电法采集模块,所述并行电法采集模块电性连接所述计算机。
  5. 根据权利要求3所述的岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,所述声发射信号采集系统包括声发射探头、探头弹簧及声发射采集模块,所述探头安置器的内部均匀设置有三个探头凹槽,所述探头凹槽的内部设置所述探头弹簧,所述探头弹簧的顶部设置所述声发射探头,所述与岩石试件接触,所述声发射探头与岩石试件的接触面为曲面,其曲率与岩石试件曲面曲率相同,所述声发射探头电性连接所述声发射采集模块,所述声发射采集模块电性连接所述计算机。
  6. 根据权利要求3所述的岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,所述分布式光纤声波采集系统包括多通道分布式光纤声波采集模块及分布式光纤组,所述分布式光纤组共6根,其中,分布式光纤I-V等间距螺旋布置在有机玻璃框架的内壁上,分布式光纤VI垂直布置在有机玻璃框架的内壁上,所述分布式光纤为裸纤外仅一层涂敷的光纤材料,所述分布式光纤I-VI分别电性连接所述多通道分布式光纤声波采集模块,所述多通道分布式光纤声波采集模块电性连接所述计算机。
  7. 一种岩石试件受载过程裂纹的生成、扩展精细探查方法,应用于权利要求1-6所述的岩石试件受载过程裂纹的生成扩展精细探查装置,其特征在于,包括如下步骤:
    步骤1:将标准岩石试件置于装置内部,通过调节弹簧使测试电极和声发射探头与岩石试件接触紧密;
    步骤2:连接好所有传输线,启动压头装置,给岩石试件一个预接触,之 后开始数据的预采集和预处理,确保各个传感器处于有效工作状态;
    步骤3:对岩石试件进行加载,通过对电性参数的采集,获取从上到下四个圆环形电剖面的电阻率实时变化情况,其中,当岩石试件内部出现裂纹时,相应的表现为高阻;通过对声发射数据的采集,获取岩石试件破裂发生的空间位置和时刻;通过对分布式光纤声波的采集,获取岩石破裂时的振动信号,通过多光纤之间的共同协作,实现受载岩石试件破裂位置和裂隙大小的定位,同时对数据实时记录和存储;
    步骤4:通过单一场参数分析法、多场参数联合分析法和根据场参数实现重构数字岩心法对各参数进行成图、分析,精细判识岩石试件裂纹扩展情况。
  8. 根据权利要求7所述的岩石试件受载过程裂纹的生成扩展精细探查方法,其特征在于,步骤4中,单一场参数分析法,具体为:
    单一场参数分析法是指结合加载的时-力曲线分析某一参数的响应情况,其共同变量是时间:将标准岩石试件置于装置中,利用伺服装置进行加载直至标准岩石试件完全破坏,连续采集岩石试件受载破裂全程记录时间、轴向压力及待分析参数,以时间为x轴,轴向压力及相应待分析参数为双y轴进行成图,获得相应响应曲线,进而根据该参量的突变为岩石裂纹延展机制的分析提供依据。
  9. 根据权利要求7所述的岩石试件受载过程裂纹的生成扩展精细探查方法,其特征在于,步骤4中,多场参数联合分析法,具体为:
    多场参数联合分析法是指对多场参数间进行对比分析,共同变量为时间,依次筛选出某一时刻的多个场参数,进行相关性分析,得到参量间的响应相关关系:将标准岩石试件置于装置中,利用伺服装置进行加载,直至标准岩石试件完全破坏,连续采集记录岩石试件受载破裂全程的时间、轴向压力、电阻率、自然电位、电极电流、电极电位、声波振幅及声发射事件数,根据共同的变量时间,统计不同时刻的各参数值并进行相关性分析;
    对各参数值进行相关性分析具体分两参量间相关性分析、三参量间相关性分析及三个以上参量间相关性分析,两参量间相关性分析具体为: 以某一测点加载时刻的一个待分析参数为x轴,另一个待分析参数为y坐标进行取点,然后进行曲线拟合,获得相应两参数相关关系曲线,根据拟合曲线的斜率为受载岩石试件的裂纹产生和延展提供判识依据;三参量间相关性分析具体为:以某一测点加载时刻的第一个待分析参数为x轴,第二个待分析参数为y坐标,第三个待分析参数为z坐标进行取点,然后进行曲面拟合,获得基于三参量的响应关系曲面,根据拟合曲面的曲率半径为受载岩石试件的裂纹产生和延展提供判识依据;三个以上参量的相关性分析,基于SPASS软件,开展多元线性回归分析或多元非线性回归分析,通过多参量的联合分析,为岩石试件裂纹的生成和扩展精细探查提供参考。
  10. 根据权利要求7所述的岩石试件受载过程裂纹的生成扩展精细探查方法,其特征在于,步骤4中,根据场参数实现重构数字岩心法,具体为:
    根据不同物理场参数实现数字岩心的地球物理场重建:将标准岩石试件置于装置中,利用伺服装置进行加载直至标准岩石试件完全破坏,通过连续测试,获取不同时刻的待分析参数在不同三维坐标点的分布情况,据此,获得某一加载时刻的待分析参数的空间分布情况,即某一加载时刻的数字岩心待分析参数值,取不同的加载时刻,可获得不同的数字岩心待分析参数值。
PCT/CN2022/139237 2022-11-08 2022-12-15 岩石试件受载过程裂纹的生成扩展精细探查装置及方法 WO2024098508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211392316.0 2022-11-08
CN202211392316.0A CN115901446A (zh) 2022-11-08 2022-11-08 岩石试件受载过程裂纹的生成扩展精细探查装置及方法

Publications (1)

Publication Number Publication Date
WO2024098508A1 true WO2024098508A1 (zh) 2024-05-16

Family

ID=86479807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139237 WO2024098508A1 (zh) 2022-11-08 2022-12-15 岩石试件受载过程裂纹的生成扩展精细探查装置及方法

Country Status (2)

Country Link
CN (1) CN115901446A (zh)
WO (1) WO2024098508A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117969244B (zh) * 2024-04-02 2024-06-28 中国地质大学(北京) 一种岩心抗压强度测试装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520317A (zh) * 2009-04-10 2009-09-02 山东大学 基于光纤应变传感的岩石变形破裂三维动态测试系统
CN103033565A (zh) * 2012-12-07 2013-04-10 山东大学 岩样破裂过程的声发射与电阻率联合监测装置及监测方法
CN103868993A (zh) * 2014-03-24 2014-06-18 长江水利委员会长江科学院 岩石三轴单样法多级屈服点的声学判别方法及装置
CN104977234A (zh) * 2015-06-23 2015-10-14 安徽理工大学 承压岩石破坏失稳过程与动态渗透特性试验装置及方法
CN105547849A (zh) * 2016-03-01 2016-05-04 安徽理工大学 大尺寸层状承压岩石真三轴加卸载试验装置及测试方法
US20170131192A1 (en) * 2015-11-06 2017-05-11 Baker Hughes Incorporated Determining the imminent rock failure state for improving multi-stage triaxial compression tests
CN106772678A (zh) * 2016-12-16 2017-05-31 安徽理工大学 一种岩层变形破坏特征的井孔多参量探查方法
CN106918629A (zh) * 2017-03-02 2017-07-04 河海大学 一种岩石特性测试系统及其岩石损伤演化测试方法
CN109991315A (zh) * 2018-07-31 2019-07-09 安徽理工大学 一种判别工程现场不同层位岩性的声发射方法及系统
CN110487635A (zh) * 2019-09-05 2019-11-22 安徽理工大学 一种加载状态下岩芯电阻率及波速的快速测试系统及方法
CN110487634A (zh) * 2019-09-05 2019-11-22 安徽理工大学 一种加载状态下岩芯应变、电阻率精细测试的系统与方法
CN111122323A (zh) * 2019-12-31 2020-05-08 太原理工大学 锚杆对围岩动静载荷作用下阻裂机理的试验装置及方法
CN111982695A (zh) * 2020-08-27 2020-11-24 安徽理工大学 一种煤岩介质状态转变程度评价装置及使用方法
CN112595598A (zh) * 2020-11-24 2021-04-02 西安科技大学 倾斜层状煤岩体力-声-光-波一体化测试装置及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520317A (zh) * 2009-04-10 2009-09-02 山东大学 基于光纤应变传感的岩石变形破裂三维动态测试系统
CN103033565A (zh) * 2012-12-07 2013-04-10 山东大学 岩样破裂过程的声发射与电阻率联合监测装置及监测方法
CN103868993A (zh) * 2014-03-24 2014-06-18 长江水利委员会长江科学院 岩石三轴单样法多级屈服点的声学判别方法及装置
CN104977234A (zh) * 2015-06-23 2015-10-14 安徽理工大学 承压岩石破坏失稳过程与动态渗透特性试验装置及方法
US20170131192A1 (en) * 2015-11-06 2017-05-11 Baker Hughes Incorporated Determining the imminent rock failure state for improving multi-stage triaxial compression tests
CN105547849A (zh) * 2016-03-01 2016-05-04 安徽理工大学 大尺寸层状承压岩石真三轴加卸载试验装置及测试方法
CN106772678A (zh) * 2016-12-16 2017-05-31 安徽理工大学 一种岩层变形破坏特征的井孔多参量探查方法
CN106918629A (zh) * 2017-03-02 2017-07-04 河海大学 一种岩石特性测试系统及其岩石损伤演化测试方法
CN109991315A (zh) * 2018-07-31 2019-07-09 安徽理工大学 一种判别工程现场不同层位岩性的声发射方法及系统
CN110487635A (zh) * 2019-09-05 2019-11-22 安徽理工大学 一种加载状态下岩芯电阻率及波速的快速测试系统及方法
CN110487634A (zh) * 2019-09-05 2019-11-22 安徽理工大学 一种加载状态下岩芯应变、电阻率精细测试的系统与方法
CN111122323A (zh) * 2019-12-31 2020-05-08 太原理工大学 锚杆对围岩动静载荷作用下阻裂机理的试验装置及方法
CN111982695A (zh) * 2020-08-27 2020-11-24 安徽理工大学 一种煤岩介质状态转变程度评价装置及使用方法
CN112595598A (zh) * 2020-11-24 2021-04-02 西安科技大学 倾斜层状煤岩体力-声-光-波一体化测试装置及方法

Also Published As

Publication number Publication date
CN115901446A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
Ai et al. Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test
US10488368B2 (en) Integration of digital image correlation with acoustic emission
Rose et al. Ultrasonic guided wave inspection concepts for steam generator tubing
Hsiao et al. Detecting flaws in concrete blocks using the impact-echo method
Ingraham et al. Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses
Li et al. A novel acoustic emission monitoring method of cross‐section precise localization of defects and wire breaking of parallel wire bundle
WO2024098508A1 (zh) 岩石试件受载过程裂纹的生成扩展精细探查装置及方法
US20130058448A1 (en) Vibro-acoustic sensors for materials characterization and related methods and systems
CN110487634B (zh) 一种加载状态下岩芯应变、电阻率精细测试的系统与方法
Zang et al. Experimental investigation of the fracture and damage evolution characteristics of flawed coal based on electric potential and acoustic emission parameter analyses
Wu et al. Crack diagnosis method for a cantilevered beam structure based on modal parameters
Li et al. Mechanical and acoustic responses of brittle geomaterials with a hole under a compressive disturbance
CN106645399A (zh) 一种复合材料损伤检测评估方法和系统
CN112595598A (zh) 倾斜层状煤岩体力-声-光-波一体化测试装置及方法
CN112285651B (zh) 基于特征提取矩阵相似度识别复合材料冲击源位置的方法及系统
CN109521101A (zh) 一种基于岩石实时破坏的信息采集装置及方法
CN210690242U (zh) 一种加载状态下岩芯应变、电阻率精细测试的系统
CN205353018U (zh) 一种利用超声波探测岩石各向异性的简易实验装置
Yu et al. Acoustic emission enabled particle size estimation via low stress-varied axial interface shearing
CN112179987B (zh) 一种长距离薄板结构微缺陷的无损检测方法
Si et al. Performance evaluation of granite rock based on the quantitative piezoceramic sensing technique
Kline Acoustic emission signal characterization
Hu et al. The Influence of Mechanical Heterogeneity of Grain Boundary on Mechanical and Microcracking Behavior of Granite Under Mode I Loading Using a Grain-Based Model
Suwal et al. Upgrading disk transducer to measure elastic waves on coarse-grained granular materials: development and performance revelation
CN111487128A (zh) 一种描述混凝土-围岩粘结面压剪损伤的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964973

Country of ref document: EP

Kind code of ref document: A1