WO2024098192A1 - Method, device and computer readable medium for communications - Google Patents

Method, device and computer readable medium for communications Download PDF

Info

Publication number
WO2024098192A1
WO2024098192A1 PCT/CN2022/130302 CN2022130302W WO2024098192A1 WO 2024098192 A1 WO2024098192 A1 WO 2024098192A1 CN 2022130302 W CN2022130302 W CN 2022130302W WO 2024098192 A1 WO2024098192 A1 WO 2024098192A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
sbfd
rbg
communication
resource blocks
Prior art date
Application number
PCT/CN2022/130302
Other languages
French (fr)
Inventor
Xincai LI
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/130302 priority Critical patent/WO2024098192A1/en
Publication of WO2024098192A1 publication Critical patent/WO2024098192A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication, and in particular, to methods, devices and computer readable medium for communications.
  • a device for communication can be designed to operate in a full-duplex mode, in order to improve communication efficiency.
  • a network device in a communication network may enable the full-duplex mode.
  • the network device In the full-duplex mode, the network device is able to transmit the downlink channel and receive the uplink channel simultaneously.
  • a frequency band for example, a Bandwidth Part, BWP for a terminal device
  • BWP Bandwidth Part
  • scheduling frequency resources over the divided subbands may be optimized to save resource waste.
  • SBFD Subband-Full Duplex
  • example embodiments of the present disclosure relate to methods, devices and computer readable medium for communications.
  • a method implemented at a terminal device receives first control information indicating a resource block group (RBG) for a first link direction.
  • a group size of the RBG is determined based on a first frequency subband configured for the first link direction.
  • the terminal device performs, within the RBG, a channel transmission or a channel reception in the first link direction.
  • RBG resource block group
  • a method implemented at a terminal device receives, first control information indicating a rate-matching pattern for SBFD communication. Then, the terminal device performs a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction based on the first control information. The data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
  • a method implemented at a terminal device receives first control information.
  • the first control information indicates a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled.
  • the frequency subband and the other frequency subband are configured for a first link direction.
  • the terminal device performs, within at least one of the first and second plurality of resource blocks, a channel transmission or a channel reception in the first link direction.
  • a method implemented at a network device determines first control information indicating a RBG for a first link direction.
  • a group size of the RBG is determined based on a first frequency subband configured for the first link direction.
  • the network device transmits the first control information to a terminal device.
  • a method implemented at a network device the network device determines first control information indicating a rate-matching pattern for SBFD communication. Then, the network device transmits the first control information to a terminal device.
  • a method implemented at a network device determines first control information.
  • the first control information indicates a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled.
  • the frequency subband and the other frequency subband are configured for a first link direction.
  • the network device transmits the first control information to a terminal device.
  • a terminal device comprising a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method of at least one of the first aspect, the second aspect and the third aspect.
  • a network device comprising a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method of at least one of the fourth aspect, the fifth aspect and the sixth aspect.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method of any one of the first aspect to the sixth aspect.
  • Fig. 1A illustrates an example environment in which some embodiments of the present disclosure can be implemented
  • Fig. 1B illustrates an example of Frequency Domain Resource Allocation (FDRA) in a time unit configured with SBFD communication;
  • FDRA Frequency Domain Resource Allocation
  • Fig. 1C illustrates an example of Frequency Domain Resource Allocation (FDRA) in multiple time units configured with SBFD and non-SBFD communication;
  • FDRA Frequency Domain Resource Allocation
  • Fig. 2 illustrates a signaling process for frequency resource allocation of SBFD communication according to some embodiments of the present disclosure
  • Figs. 3A to 3D illustrate examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure
  • Figs. 4A to 4C illustrate examples frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure
  • Figs. 5A to 5B illustrate examples of VRB to PRB mapping according to some embodiments of the present disclosure
  • Figs. 6A to 6C illustrate other examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure
  • Fig. 7 illustrates a flowchart of an example method implemented at a terminal device according to some embodiments of the present disclosure
  • Fig. 8 illustrates a flowchart of an example method implemented at a terminal device according to some embodiments of the present disclosure
  • Fig. 9 illustrates a flowchart of an example method implemented at a terminal device according to some embodiments of the present disclosure
  • Fig. 10 illustrates a flowchart of an example method implemented at a network device according to some embodiments of the present disclosure
  • Fig. 11 illustrates a flowchart of an example method implemented at a network device according to some embodiments of the present disclosure
  • Fig. 12 illustrates a flowchart of an example method implemented at a network device according to some embodiments of the present disclosure.
  • Fig. 13 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eX
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may be also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal, a wireless device or a reduced capability terminal device.
  • the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • the network device may have the function of network energy saving, Self-Organizing Networks (SON) /Minimization of Drive Tests (MDT) .
  • the terminal may have the function of power saving.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • the subband and the frequency subband may be used interchangeable without any limitation.
  • the group size of a RBG may be also referred to as the RBG size without any limitation.
  • the time unit configured with SBFD communication may be also referred to as SBFD time unit, and the time unit not configured with SBFD communication may be also referred to as non-SBFD time unit.
  • scheduling frequency resources over the divided subbands may be optimized to save resource waste.
  • the subbands divided specifically for different link directions are preconfigured.
  • BWP for a terminal device may be divided into multiple subbands in advance, and one of the multiple subbands is assigned to a certain link direction.
  • the frequency subband is divided in the whole BWP.
  • the network device may indicate to the terminal device a part of frequency resources in one or more subbands configured for the certain link direction.
  • the frequency resources allocated for the channel to be transmitted are indicated in a unit of frequency resource blocks (RBG) .
  • the RBG may comprise multiple frequency resource blocks.
  • the subband is preconfigured in a unit of the resource block. Therefore, if subbands are preconfigured, the frequency domain resource assignment for the channel to be transmitted in the certain direction may be not matched with the preconfigured subbands exactly, since the granularities of the subband and the RBG are not the same (which is also shown in Fig. 1B in detail) .
  • the FDRA scheme should be also adapted finely.
  • a terminal device receives first control information from a network device.
  • the first control information indicates a plurality of RBG for a first link direction, and the group size of the RBG is determined based on a first frequency subband configured for the first link direction.
  • the terminal device performs, within the RBG, a channel transmission or a channel reception in the first link direction.
  • the first link direction may be the uplink direction or the downlink direction.
  • the channel may be any one of Physical Uplink Shared Channel (PUSCH) or the Physical Downlink Shared Channel (PDSCH) .
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • the FDRA for channel transmission of SBFD communication can be matched with the frequency subband exactly. As such, the resource waste can be avoided.
  • Fig. 1A illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
  • the environment 100A which may be a part of a communication network, comprises a network device 110, a terminal device 120 and a terminal device 130.
  • the communication network may include NTN, NR-IoT and/or eMTC.
  • the communication network may include any other possible communication network. It is to be understood that the number of network devices and terminal devices is given only for the purpose of illustration without suggesting any limitations.
  • the communication network may include any suitable number of network devices and/or terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the environment 100.
  • the network device 110 supports the SBFD communication. For example, the network device 110 may transmit PDSCH to the terminal device 120 and receive PUSCH from the terminal device 130 simultaneously.
  • Fig. 1B illustrates an example of FDRA in a time unit configured with SBFD communication.
  • the frequency subbands 140 are preconfigured for Uplink (UL) transmission or reception.
  • the frequency subband 150 is preconfigured for Downlink (DL) reception or transmission.
  • the frequency subbands 160 are preconfigured as guard bands.
  • the blocks at right side represent the RBG division in the corresponding BWP.
  • Fig. 1B For SBFD slot/symbols having ⁇ Downlink-Uplink-Downlink, DUD ⁇ subband frequency pattern, the available DL resources are partitioned into two DL subbands.
  • Resource Assignment (RA) type 0 can be used for allocating non-contiguous RBGs across DL subbands, but the granularity of RBG may be not suitable for the DL or UL subband size or BWP size. This may lead to limitation of scheduling flexibility.
  • an RBG may include RBs for DL and RBs for UL/guard band.
  • the RBG cannot be assigned for PDSCH with current RA type 0 and it may cause a waste of RB resource.
  • FDRA type 0 cannot be supported by fallback DCI format x_0.
  • Fig. 1C illustrates an example of Frequency Domain Resource Allocation (FDRA) in multiple time units configured with SBFD and non-SBFD communication
  • FDRA Frequency Domain Resource Allocation
  • scheduled PDSCH aggregations or repetitions may be across non-SBFD slot (slot n) and SBFD slots (slots n+1, n+2 and n+3) .
  • the PDSCH resources in SBFD slot may overlap with UL subband as shown.
  • the example embodiments of the disclosure propose a method for coordinating the PDSCH aggregations or repetitions and SBFD and non-SBFD slots (or symbols) .
  • a SBFD time unit is the time unit configured with SBFD communication and a non-SBFD time unit not configured with SBFD communication.
  • the time unit at least comprises slot, symbol, frame and/or sub-frame and any other time length.
  • Fig. 2 illustrates a signaling process 200 for frequency resource allocation of SBFD communication according to some embodiments of the present disclosure. For illustrative purposes, the process 200 will be described with reference to FIG. 1.
  • the network device 110 determines control information.
  • the control information indicates a RBG for a first link direction, and a group size of the RBG is determined based on a first frequency subband configured for the first link direction.
  • the group size may be the number of resource blocks included in the RBG. In some other embodiments, the group size may be any other frequency width of the RBG.
  • the first link direction may be the downlink direction. Alternatively, the first link direction may also be the uplink direction.
  • the first frequency subband may be a part of BWP configured to a terminal device. In addition, from the time domain perspective, the first frequency subband may last at least one slot or a symbol.
  • the RGB having the group size adjusted based on the first frequency subband is further discussed with reference to Fig. 3A to 3D.
  • Fig. 3A illustrates an example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • the number of resource blocks in the active BWP is 30 (RB 0 to RB 29) .
  • the BWP has been divided into DL subband, UL subband and another DL subband.
  • the group size of each RBG is fixed or configured identically based on the bandwidth of the BWP comprising the UL subband and the DL subband, and the group size (or granularity) may be not adapted to the frequency subband (as shown by RBG 1, RBG2, RBG 5 in Fig. 3A) . This may cause a mismatch between the frequency subband configured for a certain link direction and the RBG-based frequency allocation.
  • the control information may indicate or schedule a plurality of RBGs.
  • the plurality of RBGs includes the above RBG having the group size that is determined based on the first frequency subband (the UL subband or DL subband as shown in Fig. 3A) . Further, the RBG having the group size determined based on the first frequency subband is located at the ends of the plurality of RBGs. As shown in Fig. 3A, the group size of RBG 0 and RBG 3 are determined based on a preconfigured DL frequency subband. In addition, the group size of RBG 4 is determined based on a preconfigured UL frequency subband. As shown in Fig 3A, the ends of the plurality of RBGs are adjacent to the boundary (upper boundary or lower boundary) of the frequency subband (DL frequency subband or UL frequency subband) .
  • the RBG division can be changed for a time unit configured with SBFD communication.
  • the edge of certain RBG in the DL/UL subband can be handled as fractional RBGs (as similar to the fractional RBG that is adjacent to the boundary of the BWP) .
  • the RBG is separately divided, and the total number of RBGs (N RBG ) for a DL/UL subband and the RBG size of each RBG in the DL/UL subband may be determined as following:
  • the size of the first RBG (the RBG, if there it is, adjacent to one boundary of the frequency) is
  • the size of all other RBGs is P (where P may be also referred to as the configured RBG size) .
  • the above embodiments may be also implemented by replacing the BWP with subband in the RBG definition in TS 38.214 section 5.1.2.2.1 and 6.1.2.2.1.
  • the overlapping between the RBGs allocated for the first link direction and the boundary of the frequency subband configured for the first link direction can be avoided.
  • the resource waste can be avoided.
  • control information may further indicate another plurality of RBGs for a second link direction different from the first link direction.
  • the plurality RBGs for the first link direction and the other plurality RBGs for the second link direction may be independently identified.
  • Fig. 3B illustrates examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • the plurality of RBGs allocated for DL may be indexed independently from the other plurality of RBGs allocated for UL.
  • the RBG index for DL PDSCH FDRA is ordered without considering the RBGs in UL subband and guardband in SBFD symbols.
  • the index of RBG in the UL subband starts from the UL subband boundary. That is, the RBG number in FDRA in DL grant and UL grant is separately defined.
  • a subset of existing RBG may be selected as the candidate RBG sets that can be allocated to the terminal device 120 for PDSCH receiving.
  • the Resource Element (RE) number allocated for this terminal device 120 to calculate the TBS is equal to the RE included in the allocated RBG.
  • the valid bit width for FDRA type 0 for RBG bitmap indication is equal to the configured RBG number.
  • the bitmap field indicating RBGs allocated for the first link direction can be simplified to decrease bit number of the RRC or DCI signaling, since the number of RBGs for the first link direction is smaller than the total number of RBGs in the BWP. It can reduce the valid FDRA overhead for RBG bitmap indication in the DCI.
  • each of the plurality of RBGs may have the same group size that is determined based on the frequency subband.
  • Fig. 3C illustrates examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • the group size of each RBG in the BWP is configured based on the DL/UL frequency subband, rather than the BWP. Only as an example, table 1 shows configurable RBG size based on DL/UL subband size.
  • DL/UL subband PRBs
  • PRBs DL/UL subband
  • PRBs RB set size 1-23 1, 2 24-72 2, 4 73-144 4, 8
  • the configured value is 4.
  • RBG 3 and RBG 6 (which may be allocated for DL) may contain unavailable RBs for UL or guardband, and the unavailable RBs cannot be assigned to the terminal device 120 for PDSCH transmission. Therefore, 4 RBs in RBG 3 or RBG 6 will be wasted.
  • the group size may be based on the DL subband and the configured group size of the RBG is 2, which is shown in the right block column. In this case, compared with the group size determined based on BWP size, RBG 13 is not wasted and can be assigned for PDSCH transmission. This method can alleviate the resource waste.
  • the available resources for the first link direction can be determined implicitly if an allocated RBG overlaps with the boundary of the frequency subband.
  • Fig. 3D illustrate examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • the terminal device 120 may determine the RBs allocated for the first link direction based on both the indicated RBG and the frequency subband (pre-) configured for the first link direction.
  • the control information indicates the RBG index to the terminal device 120, and the group size of the indicated RBG may be still determined based on the BWP.
  • the RBs included in the RBG used for UL direction or guardband cannot be allocated to terminal device 120 for PDSCH transmission. Specifically, if the RBG used for UL direction or guardband includes RBs in the frequency subband configured for the DL direction, these RBs may be determined not to be used for the DL transmission. In an example, if the RBG 6 in Fig.
  • the terminal device 120 may use the RBs (RBs 24, 25 and 26 as shown in left block column) that belongs to the DL frequency subband in the RGB 6 for the PDSCH, and the RB 23 (350) is considered as unavailable for DL.
  • the terminal device 120 may use the RBs (RBs 12, 13 and 14 as shown in left block column) that belongs to the UL frequency subband in the RGB 6 for the PDSCH, and the RB 11 (340) is considered as unavailable for UL.
  • the RBs outside of the DL subband are cancelled, subtracted or punctured in the assigned RBG for PDSCH mapping, or these RBs are considered as invalid RB.
  • the number of resource blocks in the active BWP is 30 (RB 0 to RB 29)
  • RBG3 and RBG6 for PDSCH transmission within SBFD symbols can still be allocated to UE, but only PRB 11/24/25/26 are available for DL PDSCH transmission. In this way, only the RBs in DL subband are considered as the valid RB for PDSCH in the RBG when the RBG is indicated for the PDSCH.
  • the network device 110 transmits (220) the control information to the terminal device 120.
  • the control information may indicate the RBGs for the first link direction in the way as discussed with reference to Figs. 3A to 3D.
  • the control information may be any information for scheduling or configuring the communication between the terminal device 120 and the network device 110.
  • the control information may be DCI, radio resource control, RRC signaling or any other control information.
  • the terminal device 120 performs (230) a channel transmission or the channel reception in the first link direction within the RBG indicated by the first control information.
  • the scheduled PDSCH aggregations or repetitions may be further adjusted.
  • the terminal device 120 may receive another control information scheduling a plurality of channels, for example, multiple PDSCH repetitions scheduled by a single DCI, or multiple SPS PDSCHs.
  • the plurality of channels may be also uplink channels.
  • the embodiments are discussed with reference to the plurality of PDSCH, and the similar issues regarding UL transmission may be handled in the same way.
  • the PDSCH resources in a SBFD time unit may overlap with UL subband (as shown in Fig. 1C) . Therefore, the scheduled PDSCHs should be adjusted.
  • the optimization of the scheduled PDSCH aggregations or repetitions is further discussed with reference to Fig. 4A to 4C.
  • Fig. 4A illustrates an example frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure.
  • the time units 410 and 413 are assumed as the non-SBFD time units that are only used for the downlink reception/transmission.
  • the time units 415 and 417 are assumed as SBFD time units that are configured with two DL frequency subbands and one UL frequency subband located between the DL frequency subbands.
  • the time unit 419 is assumed as non-SBFD time unit only used for the uplink transmission/reception.
  • the PDSCH 3 and PDSCH 4 scheduled in the time units 415 and 417 may collide with the frequency subband configured for the uplink direction.
  • the other control information may further indicate a first Modulation and Coding Scheme (MCS) for the PDSCH 1 and PDSCH 2 scheduled in the time units 410 and 413.
  • MCS Modulation and Coding Scheme
  • the other control information may indicate a second MCS for the PDSCH 3 and PDSCH 4 scheduled in the time units 415 and 417.
  • the first MCS is different from the second MCS.
  • the second MCS has a higher MCS order, such that the PDSCHs 3 and 4 may be mapped into the frequency resources that do not overlap with the frequency subband for the UL direction.
  • two MCSs may be configured or included in the other control information.
  • One MCS is used for PDSCH transmission in non-SBFD time units and the other MCS is used for PDSCH transmission in SBFD time units.
  • an MCS offset is configured in the other control information.
  • the terminal device 120 may be indicated that the MCS applied for PDSCH in non-SBFD time units is the MCS in the other control information.
  • the MCS applied for PDSCH in SBFD time units is equal to the MCS in the other control information plus the configured offset.
  • the resource blocks of the UL subband and guardband are predefined to be subtracted in SBFD time units for the PDSCH 3 and PDSCH 4.
  • the other control information may also indicate a first frequency domain resource assignment (FDRA) for the time units 410 and 413, and a second FDRA for the time units 415 and 417.
  • FDRA frequency domain resource assignment
  • Fig. 4B illustrates examples frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure.
  • the time units 420 and 423 are assumed as the non-SBFD time units that are only used for the downlink reception/transmission.
  • the time units 425 and 427 are assumed as SBFD time units that are configured with two DL frequency subbands and one UL frequency subband located between the DL frequency subbands.
  • two FDRAs are included in the other control information or configured by the other control information.
  • One FDRA is defined or indicated for the time units 420 and 423 within the PDSCH aggregation/repetition transmission or the SPS PDSCH and multiple PDSCHs scheduled by single DCI transmission.
  • the other FDRA is defined/indicated for SBFD time units 425 and 427.
  • a frequency offset may be indicated for SBFD time units 425 and 427 to avoid the overlapping between the PDSCH and the frequency subband configured for the UL direction in time units 415 and 417.
  • the frequency offset is configured by RRC or is included in the DL grant. In this way, based on the configuration/indication information, the terminal device 120 automatically adjusts the FDRA for PDSCH receiving between SBFD slots and non-SBFD slots.
  • the spatial filter may be also used to distinguish the SBFD time units and the non-SBFD time units.
  • Fig. 4C illustrates examples frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure.
  • the time units 430 and 433 are assumed as the non-SBFD time units that are only used for the downlink reception/transmission.
  • the time units 435 and 437 are assumed as SBFD time units that are configured with two DL frequency subbands and one UL frequency subband located between the DL frequency subbands.
  • the other control information may indicate a first beam (BEAM 1) 440 for the time units 430 and 433, and a second beam (BEAM 2) 445 for the time units 435 and 437.
  • two different beams (TCI states) may be allocated to the SBFD time unit and non-SBFD time unit, respectively, in the other control information.
  • One beam is defined for PDSCH aggregation/repetition transmission within the non-SBFD time units 430 and 433.
  • the other beam is defined for PDSCH transmission within SBFD time units 435 and 437.
  • a mapping table can be configured for the terminal device 120 through a RRC signaling, and each row in the table includes two TCI states, and a row index is indicated by the other control information scheduling PDSCH slot aggregation/repetition transmission or multiple PDSCH transmission.
  • the first TCI states in this row is the beam used for the PDSCH transmission in non-SBFD time units, and the other TCI states are used for the PDSCH transmission in SBFD time units.
  • the network device 110 may allocate different beams for the SBFD units.
  • the other control information may finely configure or schedule the PDSCHs in the plurality of scheduled channels, in order to avoid the overlapping between the PDSCH in the SBFD time units and the UL subband in the SBFD time units. It is to be understood that the above embodiments discussed with reference to Fig. 4A to 4C may be implemented independently from the frequency allocation for the SBFD communication, without any limitation.
  • the frequency resource allocation for the SBFD communication is discussed on the basis of the RBG granularity.
  • the granularity may be one RB (for example, Downlink resource allocation type 1) .
  • the overlapping between the frequency resources by the control information and the frequency subband can be avoided.
  • the time unit may be divided into discontinuous frequency subbands for the same link direction.
  • the embodiments according to the disclosure provide a scheme for indicating RBs in the SBFD communication in the RB granularity. The rate-matching manner is a direct way.
  • the network device 110 determines (210) control information that indicates a rate-matching pattern for Subband Full Duplex (SBFD) communication.
  • SBFD Subband Full Duplex
  • the rate-matching pattern the resource blocks in the frequency subband configured for the target link direction can be mapped data and the other resources not in this frequency subband can be punctured.
  • the control information indicates that a plurality of consecutive RBs in the BWP is allocated to the first link direction, but the plurality of consecutive RBs comprises RBs in the frequency subband configured for the second link direction different from the first link direction.
  • the rate-matching pattern may be performed by puncturing the RBs in plurality of consecutive RBs that in the frequency subband configured for the second link direction.
  • the rate-matching pattern may be configured in a RBG level. The bandwidth of the RBGs may be equal to the bandwidth of the second subband and the guardband.
  • the rate matching method for PDSCH mapping is extended.
  • the RBG-level rate matching pattern can be used for PDSCH frequency mapping of SBFD time units.
  • the terminal device supporting SBFD communication with the network device 110 may be configured with rateMatchPattern-SBFD.
  • the frequency resource assignment for PDSCH may still use the starting and length scheme.
  • the resource assignment for PDSCH gives the starting RB/RBG index and the number of RBs/RBGs (that is used by RA type 1) .
  • the resource blocks in UL subband may be considered as the RBG, and the corresponding RBG-and-symbol level rate-matching pattern for the PDSCH mapping can be employed.
  • SLIV indication method for Symbol-level indication for example, starting OFDM symbol and number of OFDM symbol
  • RBG level indication e.g., starting RBG and number of RBG for the UL subband and guardband
  • the length of the OFDM symbols for rate matching pattern is equal to the length of the SBFD symbols
  • the BW of the RBGs is equal to the UL subband and the guardband BW.
  • one bit can be included in the DCI, and the one bit indicates whether this rate-matching pattern is enabled or not. If it is enabled, then the value of this one bit can be 1. If the rate-matching pattern is not enabled, the value of this one bit is 0.
  • the rate matching indication bit field may be also included in DCI format 1-0. For example:
  • a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
  • the rate matching pattern periodic should be the same as the SBFD slot periodic configuration, and the rate matching symbols is the same as the SBFD symbols.
  • the network device 110 transmits (220) the control information indicating the rate-matching pattern to the terminal device 120.
  • the terminal device 120 after receiving (220) the control information, the terminal device 120 performs (230) a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction.
  • the data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern, as mentioned above.
  • the RBG-and-symbol level rate-matching pattern may be employed.
  • the terminal device 120 may receive a Demodulation Reference Signal (DMRS) within a second subband configured for a second direction different from the first direction.
  • DMRS Demodulation Reference Signal
  • new terminal device behaviors can be defined for SBFD capable terminal devices, in order to rate match PDSCH DMRS.
  • the DMRS may be still transmitted from the network device 110 in UL subband configured for the terminal device 120 and/or the guard band.
  • an additional indication is introduced to indicate to the terminal device 120 that determines whether DMRS around UL subband and guardband is to be received or not.
  • the above embodiments may be also expressed as:
  • the Virtual Resource Blocks (VRB) -to-Physical Resource Blocks (PRB) mapping rule may be also updated for the SBFD communication.
  • the terminal device 120 performs (230) the channel transmission or the channel reception in the first link direction.
  • VRB for a first link direction may be mapped only to PRB in at least one first frequency subband configured for the first link direction.
  • the VRB-to-PRB mapping rule for the SBFD communication is further discussed with reference to Fig. 5A to 5B.
  • Fig. 5A illustrates an example of VRB to PRB mapping according to some embodiments of the present disclosure.
  • the VRB may be mapped (for example, by the terminal device 120 or the network device 110) to a second PRB having a second index.
  • the second index is equal to the first index plus an index offset value.
  • the index offset value is determined at least based on the number of PRBs in a second frequency subband configured for a second link direction.
  • the left resource blocks are assumed as the VRBs, and the right resource blocks are assumed as the PRBs to be mapped to.
  • the UL subband, guardband and DL subbands are configured in SBFD time units, a new VRB-to PRB-mapping rule is designed for PDSCH FDRA.
  • the BWP has been divided into two DL subbands, UL subband and guard band.
  • the actually mapped PRB index should plus 8 starting from index #8. That is, VRB#8 is mapped to PRB# 16, VRB#9 is mapped to PRB# 17, and VRB#10 is mapped to PRB# 18, and so on.
  • the PDSCH will be not mapped to RBs in the UL subband and guardband.
  • the PRB to be mapped to is one of a first plurality of PRBs comprised in the at least one first frequency subband for the first link direction.
  • the first plurality of PRBs is identified independently from a second plurality of PRBs comprised in a second frequency subband configured for the second link direction.
  • Fig. 5B illustrates examples of VRB to PRB mapping according to some embodiments of the present disclosure.
  • new PRB/VRB index scheme is introduced for the SBFD communication.
  • the VRB number or index may be based on the frequency subbands configured for the first link direction.
  • the VRBs in the subband configured for the second link direction and the guardband are not indexed. That is, the resource blocks in UL subband and the guardband is subtracted when numbering or indexing the VRB/PRB. Therefore, the VRBs and PRBs in the two separate DL subbands are continuously arranged in a SBFD time unit. In this way, the valid FDRA bit number in the control information can be also reduced.
  • the frequency domain resource assignment for the SBFD communication is optimized either by adjusting the configured RBG group size, utilizing rate-matching or changing VRB-PRB mapping rule.
  • the FDRA indicating manner may be also updated, in order to adapt to the characteristics of the SBFD communication.
  • the network device 110 determines (210) control information that indicates a first plurality of resource blocks in a frequency subband.
  • the control information further indicates whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled.
  • the frequency subband and the other frequency subband are configured for the first link direction.
  • the control information is further discussed with reference to Fig. 6A to 6C.
  • Fig. 6A illustrates an example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • the BWP has been divided into two DL subbands (DL subband #1 and DL subband #2) , one UL subband and two guard bands.
  • the first plurality resource blocks is indicated by a first FDRA in the first control information
  • the second plurality resource blocks is indicated by a second FDRA in the first control information
  • the first plurality of resource blocks may be the resource blocks 0-4 in the DL subband #1
  • the second plurality of resource blocks may be resource blocks 0-4 in the DL subband #2.
  • the control information may comprise a bitmap field for indicating whether the first FDRA and/or the second FDRA are enabled.
  • the bitmap filed comprises two bits.
  • the bitmap filed “10” may represent the first FDRA is enabled and the second FDRA is disabled. Accordingly, the first plurality of the resource blocks is allocated for the SBFD communication, and the second plurality of the resource blocks is not allocated.
  • the indexes of resource blocks may be determined independently in different DL subbands.
  • the first FDRA and the second FDRA may be the same FDRA.
  • Whether the first and/or second plurality of resource blocks are enabled to be allocated is determined based on the bitmap filed of two bits. In other words, there is only one FDRA, and this FDRA indicates the resource blocks having the same indexes in different subbands. Whether the indicated resource blocks in different subbands are enabled is based on the bitmap field.
  • the two DL subbands have VRB/PRB number respectively, and the VRB/PRB number start from the lower boundary of each subband.
  • the resource indication value (RIV) method is still used in each DL subband. If two DL subbands are included in a BWP/carrier, then a bitmap field having 2 bit can be defined in the FDRA or the control information, and the bitmap field can be used to determine whether the indicated resource blocks are only in one DL subband or across two DL subband. If the value of the bit field is 10, it means that the resource blocks assigned by the one FDRA are on DL subband#1. If the value of the bit field is 01, it means that the resource blocks assigned by the one FDRA are on DL subband#2.
  • the RIV value is same in each subband.
  • VRB0 ⁇ VRB4 in subband#1 and subband#2 are assigned to terminal device 120 for PDSCH transmissions.
  • the above embodiments may be also expressed as below:
  • a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks. Furthermore, the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
  • Fig. 6B illustrates another example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • a symmetrical FDRA scheme may be used in two DL subbands, in order to implement non-contiguous FDRA across DL subbands in the SBFD time unit.
  • the resource blocks allocated in one DL subband are “reflected” onto the other DL subband.
  • the allocated resource blocks in the two DL subbands are symmetrical relative to the middle frequency of the BWP/carrier.
  • the network device 110 uses FDRA Type 1 to indicate allocated RBs in DL Subband#1, and the indicated RBs are reflected via a symmetric line in the middle of the BWP. In this way, the same number of RBs are allocated in DL Subband#2.
  • the symmetrical FDRA method can be enabled or disabled by, for example, using one bit in the DL Grant or the control information. If the value of this bit is 1, it means that the symmetrical method is enabled, and the PDSCH is mapped to two DL subband (such as the resource blocks 0-4 and 19-23 as shown in Fig. 6B) . In turn, if this bit value is 0, it means that the symmetrical method is disabled, and the PDSCH only mapped to the lowest DL subband.
  • Fig. 6C illustrates a further example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
  • the location of allocated resource blocks in the DL subband #2 may be the location of allocated resource blocks in the DL subband #1 plus a frequency offset.
  • the frequency offset value may be equal to the bandwidth of UL subband and guardband (for example, the number of resource blocks in UL subband and guardband) plus the first DL subband BW (for example, the number of resource blocks in DL subband #1 and guardband) . That is, for the FDRA in the DL subband #2, the allocated resource block may start from the first RB in the DL subband #2.
  • 1 bit in the DL Grant or the control information may be used to indicate whether this offset is used or not. If the value of this bit is equal to 1, then the FDRA for the first link direction may across two DL subbands. If the value of this bit is equal to 0, it means that only the resource blocks in the lowest DL subband is allocated for this PDSCH.
  • Fig. 7 illustrates a flowchart of an example method 700 implemented at a terminal device according to some embodiments of the present disclosure.
  • the method 700 can be implemented at the terminal device 120 shown in FIG. 1.
  • the method 700 will be described with reference to FIG. 1. It is to be understood that the method 700 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 120 receives first control information indicating a resource block group (RBG) for a first link direction.
  • RBG resource block group
  • a group size of the RBG is determined based on a first frequency subband configured for the first link direction.
  • the terminal device 120 performs, within the RBG, a channel transmission or a channel reception in the first link direction.
  • the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprises the RBG.
  • the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband; or each RBG of the first plurality of RBGs has the same group size.
  • the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
  • the method further comprises the terminal device 120 receives second control information scheduling a plurality of channels in the first direction.
  • the second control information further indicates: a first MCS for a first channel in the plurality of channels that is transmitted on a time unit not configured with SBFD communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication.
  • the second MCS is different from the first MCS.
  • the second control information further indicates: a first FDRA for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with SBFD communication.
  • the second FDRA is different from the first FDRA.
  • the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
  • the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
  • FIG. 8 illustrates a flowchart of a method 800 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 800 can be implemented at the terminal device 120 shown in FIG. 1.
  • the method 800 will be described with reference to FIG. 1. It is to be understood that the method 800 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 120 receives first control information indicating a rate-matching pattern for SBFD communication.
  • the terminal device 120 performs, based on the first control information, a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction. Data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
  • a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
  • the first direction is a downlink direction
  • the method further comprises: the terminal device 120 receives a Demodulation Reference Signal (DMRS) within a second frequency subband configured for a second direction different from the first direction.
  • DMRS Demodulation Reference Signal
  • the rate-matching pattern is configured in a RBG level, the RBG comprising a plurality of resource blocks, a bandwidth of the RBGs is equal to a bandwidth of a guardband and a second frequency subband configured for a second direction different from the first direction.
  • the at least one resource block is allocated based on a resource allocation type 1 indicating a plurality of consecutive resource blocks.
  • the method further comprises: based on a mapping rule for SBFD communication, the terminal device 120 maps VRB for a first link direction to PRB in at least one first frequency subband configured for the first link direction.
  • the method further comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, the terminal device 120 maps the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value.
  • the index offset value is determined at least based on the number of PRBs in the second frequency subband.
  • the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband.
  • the first plurality of PRBs is identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
  • FIG. 9 illustrates a flowchart of a method 900 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 900 can be implemented at the terminal device 120 shown in FIG. 1.
  • the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 120 receives first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled.
  • the frequency subband and the other frequency subband are configured for a first link direction.
  • the terminal device 120 performs, within at least one of the first and second plurality of resource blocks, a channel transmission or a channel reception in the first link direction.
  • the first plurality resource blocks is indicated by a first FDRA in the first control information
  • the second plurality resource blocks is indicated by a second FDRA in the first control information
  • at least one of the first and second plurality of resource blocks is enabled based on a bitmap field in the first control information.
  • a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
  • the method further comprises, the terminal device 120 performs, within resource blocks of the first and second plurality of resource blocks indicated to be enabled, the channel transmission or the channel reception.
  • FIG. 10 illustrates a flowchart of a method 1000 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1000 can be implemented at the network device 110 shown in FIG. 1.
  • the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 110 determines first control information indicating a RBG for a first link direction, a group size of the RBG being determined based on a first frequency subband configured for the first link direction.
  • the network device 110 transmits the first control information to the terminal device 120.
  • the first control information further indicates a first plurality of RBGs for the first link direction.
  • the first plurality of RBGs comprises the RBG.
  • the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband; or each RBG of the first plurality of RBGs has the same group size.
  • the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
  • the method further comprises: the network device 110 transmits second control information scheduling a plurality of channels in the first direction to the terminal device.
  • the second control information further indicates: a first MCS for a first channel in the plurality of channels that is transmitted on a time unit not configured with SBFD communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication.
  • the second MCS is different from the first MCS.
  • the second control information further indicates: a first FDRA for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with SBFD communication.
  • the second FDRA is different from the first FDRA.
  • the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
  • the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
  • FIG. 11 illustrates a flowchart of a method 1100 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1100 can be implemented at the network device 110 shown in FIG. 1.
  • the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 110 determines first control information indicating a rate-matching pattern for SBFD communication.
  • the network device 110 transmits the first control information to the terminal device 120.
  • a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
  • the first direction is a downlink direction
  • the method further comprises: the network device 110 transmits, to the terminal device 120, a DMRS within a second subband configured for a second direction different from the first direction.
  • the method further comprises: the network device 110 maps, based on a mapping rule for SBFD communication, VRB for a first link direction to PRB in a first frequency subband configured for the first link direction.
  • mapping the VRB to the PRB comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, the network device 110 maps the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value.
  • the index offset value is determined at least based on the number of PRBs in the second frequency subband.
  • the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
  • FIG. 12 illustrates a flowchart of a method 1200 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1200 can be implemented at the network device 110 shown in FIG. 1.
  • the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 110 determines first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled.
  • the frequency subband and the other frequency subband are configured for a first link direction.
  • the network device 110 transmits the first control information to a terminal device.
  • the first plurality resource blocks is indicated by a first FDRA in the first control information
  • the second plurality resource blocks is indicated by a second FDRA in the first control information
  • the at least one plurality of resource blocks the first and second plurality of resource blocks is enabled based on a bitmap field.
  • a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
  • Fig. 13 is a simplified block diagram of a device 1300 that is suitable for implementing some embodiments of the present disclosure.
  • the device 1300 can be considered as a further example embodiment of the terminal device 120 as shown in FIG. 1 or network devices 110 as shown in FIG. 1. Accordingly, the device 1300 can be implemented at or as at least a part of the above network devices or terminal devices.
  • the device 1300 includes a processor 1310, a memory 1320 coupled to the processor 1310, a suitable transmitter (TX) and receiver (RX) 1340 coupled to the processor 1310, and a communication interface coupled to the TX/RX 1340.
  • the memory 1320 stores at least a part of a program 1330.
  • the TX/RX 1340 is for bidirectional communications.
  • the TX/RX 1340 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the gNB or eNB and a relay node (RN)
  • Uu interface for communication between the gNB or eNB and a terminal device.
  • the program 1330 is assumed to include program instructions that, when executed by the associated processor 1310, enable the device 1300 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-12.
  • the embodiments herein may be implemented by computer software executable by the processor 1310 of the device 1300, or by hardware, or by a combination of software and hardware.
  • the processor 1310 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1310 and memory 1320 may form processing means 1350 adapted to implement various embodiments of the present disclosure.
  • the memory 1320 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1320 is shown in the device 1300, there may be several physically distinct memory modules in the device 1300.
  • the processor 1310 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1300 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a terminal device comprises circuitry configured to perform method 700, 800 or 900.
  • a network device comprises circuitry configured to perform method 1000, 1100 or 1200.
  • the components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof.
  • one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium.
  • parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components.
  • FPGAs Field-programmable Gate Arrays
  • ASICs Application-specific Integrated Circuits
  • ASSPs Application-specific Standard Products
  • SOCs System-on-a-chip systems
  • CPLDs Complex Programmable Logic Devices
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 14.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • embodiments of the present disclosure may provide the following solutions.
  • a method of communication comprising: receiving, at a terminal device, first control information indicating a resource block group (RBG) for a first link direction, a group size of the RBG being determined based on a first frequency subband configured for the first link direction; and performing, within the RBG, a channel transmission or a channel reception in the first link direction.
  • RBG resource block group
  • the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprising the RBG, and wherein at least one of: the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband, or each RBG of the first plurality of RBGs has the same group size.
  • the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
  • the method further comprises receiving second control information scheduling a plurality of channels in the first direction.
  • the second control information further indicates: a first Modulation and Coding Scheme (MCS) for a first channel in the plurality of channels that is transmitted on a time unit not configured with Subband Full Duplex (SBFD) communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication, the second MCS being different from the first MCS.
  • MCS Modulation and Coding Scheme
  • the second control information further comprises: a first frequency domain resource assignment (FDRA) for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with SBFD communication, the second FDRA being different from the first FDRA.
  • FDRA frequency domain resource assignment
  • the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
  • the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
  • a method of communication comprising: receiving, at a terminal device, first control information indicating a rate-matching pattern for Subband Full Duplex (SBFD) communication; and performing, based on the first control information, a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction, and wherein data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
  • SBFD Subband Full Duplex
  • a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
  • the method further comprises: receiving a Demodulation Reference Signal (DMRS) within a second frequency subband configured for a second direction different from the first direction.
  • DMRS Demodulation Reference Signal
  • the rate-matching pattern is configured in a resource block group (RBG) level, the RBG comprising a plurality of resource blocks, a bandwidth of the RBGs being equal to a bandwidth of a guardband and a second frequency subband configured for a second direction different from the first direction.
  • RBG resource block group
  • the at least one resource block is allocated based on a resource allocation type 1 indicating a plurality of consecutive resource blocks.
  • mapping based on a mapping rule for Subband Full Duplex (SBFD) communication, Virtual Resource Blocks (VRB) for a first link direction to Physical Resource Blocks (PRB) in at least one first frequency subband configured for the first link direction.
  • SBFD Subband Full Duplex
  • VRB Virtual Resource Blocks
  • PRB Physical Resource Blocks
  • mapping the VRB to the PRB comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, mapping the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value, and wherein the index offset value is determined at least based on the number of PRBs in the second frequency subband.
  • the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
  • a method of communication comprising: receiving, at a terminal device, first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled, the frequency subband and the other frequency subband being configured for a first link direction; and based on the first control information, performing, within at least one of the first and second plurality of resource blocks, a channel transmission or a channel reception in the first link direction.
  • the first plurality resource blocks is indicated by a first FDRA in the first control information
  • the second plurality resource blocks is indicated by a second FDRA in the first control information
  • at least one of the first and second plurality of resource blocks is enabled based on a bitmap field in the first control information
  • a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
  • performing the channel transmission or the channel reception comprises: performing, within resource blocks of the first and second plurality of resource blocks indicated to be enabled, the channel transmission or the channel reception.
  • a method of communication comprising: determining, at a network device, first control information indicating a resource block group (RBG) for a first link direction, a group size of the RBG being determined based on a first frequency subband configured for the first link direction; and transmitting the first control information to a terminal device.
  • RBG resource block group
  • the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprising the RBG, and wherein at least one of: the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband, or each RBG of the first plurality of RBGs has the same group size.
  • the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
  • the second control information further indicates:
  • MCS Modulation and Coding Scheme
  • the second control information further comprises: a first frequency domain resource assignment (FDRA) for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with the SBFD communication, the second FDRA being different from the first FDRA.
  • FDRA frequency domain resource assignment
  • the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
  • the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
  • a method of communication comprising: determining, at a network device, first control information indicating a rate-matching pattern for Subband Full Duplex (SBFD) communication; and transmitting the first control information to a terminal device.
  • SBFD Subband Full Duplex
  • a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
  • the method further comprises: transmitting, to the terminal device, a Demodulation Reference Signal (DMRS) within a second subband configured for a second direction different from the first direction.
  • DMRS Demodulation Reference Signal
  • mapping based on a mapping rule for Subband Full Duplex (SBFD) communication, Virtual Resource Blocks (VRB) for a first link direction to Physical Resource Blocks (PRB) in a first frequency subband configured for the first link direction.
  • SBFD Subband Full Duplex
  • VRB Virtual Resource Blocks
  • PRB Physical Resource Blocks
  • mapping the VRB to the PRB comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, mapping the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value, and wherein the index offset value is determined at least based on the number of PRBs in the second frequency subband.
  • the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
  • a method of communication comprising: determining, at a network device, first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled, the frequency subband and the other frequency subband being configured for a first link direction; and transmitting the first control information to a terminal device.
  • the first plurality resource blocks is indicated by a first FDRA in the first control information
  • the second plurality resource blocks is indicated by a second FDRA in the first control information
  • the at least one plurality of resource blocks the first and second plurality of resource blocks is enabled based on a bitmap field.
  • a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
  • a terminal device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the above method.
  • a network device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method the above method.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for communications. According to embodiments of the present disclosure, a terminal device receives first control information indicating a resource block group (RBG) for a first link direction. A group size of the RBG is determined based on a first frequency subband configured for the first link direction. Then, the terminal device performs, within the RBG, a channel transmission or a channel reception in the first link direction. In this way, the frequency domain resource assignment can be performed appropriately in the SBFD communication.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR COMMUNICATIONS FIELD
Embodiments of the present disclosure generally relate to the field of communication, and in particular, to methods, devices and computer readable medium for communications.
BACKGROUND
With the development of communication technology, a device for communication can be designed to operate in a full-duplex mode, in order to improve communication efficiency. It has been agreed that a network device in a communication network may enable the full-duplex mode. In the full-duplex mode, the network device is able to transmit the downlink channel and receive the uplink channel simultaneously. In this case, a frequency band (for example, a Bandwidth Part, BWP for a terminal device) within the same time domain resource is divided into different subbands and the divided subbands may be configured for a certain link direction. In turn, scheduling frequency resources over the divided subbands may be optimized to save resource waste.
In addition, the coordination of multiple channel transmissions associated with the Subband-Full Duplex (SBFD) communication is also a key aspect.
SUMMARY
In general, example embodiments of the present disclosure relate to methods, devices and computer readable medium for communications.
In a first aspect, there is provided a method implemented at a terminal device. In the method, the terminal device receives first control information indicating a resource block group (RBG) for a first link direction. A group size of the RBG is determined based on a first frequency subband configured for the first link direction. Then, the terminal device performs, within the RBG, a channel transmission or a channel reception in the first link direction.
In a second aspect, there is provided a method implemented at a terminal device. In the method, the terminal device receives, first control information indicating a  rate-matching pattern for SBFD communication. Then, the terminal device performs a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction based on the first control information. The data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
In a third aspect, there is provided a method implemented at a terminal device. In the method, the terminal device receives first control information. The first control information indicates a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled. The frequency subband and the other frequency subband are configured for a first link direction. Then, based on the first control information, the terminal device performs, within at least one of the first and second plurality of resource blocks, a channel transmission or a channel reception in the first link direction.
In a fourth aspect, there is provided a method implemented at a network device. In the method, the network device determines first control information indicating a RBG for a first link direction. A group size of the RBG is determined based on a first frequency subband configured for the first link direction. Then, the network device transmits the first control information to a terminal device.
In a fifth aspect, there is provided a method implemented at a network device. In the method, the network device determines first control information indicating a rate-matching pattern for SBFD communication. Then, the network device transmits the first control information to a terminal device.
In a sixth aspect, there is provided a method implemented at a network device. In the method, the network device determines first control information. The first control information indicates a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled. The frequency subband and the other frequency subband are configured for a first link direction. Then, the network device transmits the first control information to a terminal device.
In a seventh aspect, there is provided a terminal device. The terminal device comprises a processor and a memory coupled to the processor and storing instructions  thereon, the instructions, when executed by the processor, causing the terminal device to perform the method of at least one of the first aspect, the second aspect and the third aspect.
In an eighth aspect, there is provided a network device. The network device comprises a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method of at least one of the fourth aspect, the fifth aspect and the sixth aspect.
In a ninth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method of any one of the first aspect to the sixth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of example embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1A illustrates an example environment in which some embodiments of the present disclosure can be implemented;
Fig. 1B illustrates an example of Frequency Domain Resource Allocation (FDRA) in a time unit configured with SBFD communication;
Fig. 1C illustrates an example of Frequency Domain Resource Allocation (FDRA) in multiple time units configured with SBFD and non-SBFD communication;
Fig. 2 illustrates a signaling process for frequency resource allocation of SBFD communication according to some embodiments of the present disclosure;
Figs. 3A to 3D illustrate examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure;
Figs. 4A to 4C illustrate examples frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some  embodiments of the present disclosure;
Figs. 5A to 5B illustrate examples of VRB to PRB mapping according to some embodiments of the present disclosure;
Figs. 6A to 6C illustrate other examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure;
Fig. 7 illustrates a flowchart of an example method implemented at a terminal device according to some embodiments of the present disclosure;
Fig. 8 illustrates a flowchart of an example method implemented at a terminal device according to some embodiments of the present disclosure;
Fig. 9 illustrates a flowchart of an example method implemented at a terminal device according to some embodiments of the present disclosure;
Fig. 10 illustrates a flowchart of an example method implemented at a network device according to some embodiments of the present disclosure;
Fig. 11 illustrates a flowchart of an example method implemented at a network device according to some embodiments of the present disclosure;
Fig. 12 illustrates a flowchart of an example method implemented at a network device according to some embodiments of the present disclosure; and
Fig. 13 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may be also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal, a wireless device or a reduced capability terminal device.
As used herein, the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head  (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information. The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The network device may have the function of network energy saving, Self-Organizing Networks (SON) /Minimization of Drive Tests (MDT) . The terminal may have the function of power saving.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first  network device and the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its  (or their) accompanying software and/or firmware. In this disclosure, the subband and the frequency subband may be used interchangeable without any limitation. The group size of a RBG may be also referred to as the RBG size without any limitation. The time unit configured with SBFD communication may be also referred to as SBFD time unit, and the time unit not configured with SBFD communication may be also referred to as non-SBFD time unit.
As mentioned above, scheduling frequency resources over the divided subbands may be optimized to save resource waste. In some situations, the subbands divided specifically for different link directions are preconfigured. For example, in the SBFD communication, BWP for a terminal device may be divided into multiple subbands in advance, and one of the multiple subbands is assigned to a certain link direction. The frequency subband is divided in the whole BWP. Once the network device is to schedule channel transmission in the certain link direction, the network device may indicate to the terminal device a part of frequency resources in one or more subbands configured for the certain link direction. In one solution (for example, Downlink resource allocation type 0) , the frequency resources allocated for the channel to be transmitted are indicated in a unit of frequency resource blocks (RBG) . The RBG may comprise multiple frequency resource blocks. However, the subband is preconfigured in a unit of the resource block. Therefore, if subbands are preconfigured, the frequency domain resource assignment for the channel to be transmitted in the certain direction may be not matched with the preconfigured subbands exactly, since the granularities of the subband and the RBG are not the same (which is also shown in Fig. 1B in detail) .
In addition, if scheduling a plurality of channels across multiple slots configured with SBFD or non-SBFD communication, the FDRA scheme should be also adapted finely.
At least for solving the above technical issues, the example embodiments of the disclosure propose a mechanism for FDRA for SBFD communication. In this mechanism, a terminal device receives first control information from a network device. The first control information indicates a plurality of RBG for a first link direction, and the group size of the RBG is determined based on a first frequency subband configured for the first link direction. Then, the terminal device performs, within the RBG, a channel transmission or a channel reception in the first link direction. In some examples, the first link direction may be the uplink direction or the downlink direction. The channel may be any one of Physical Uplink Shared Channel (PUSCH) or the Physical Downlink Shared Channel  (PDSCH) .
In this way, since the group size of the RBG is adjusted based on the frequency subband preconfigured for a certain link direction, the FDRA for channel transmission of SBFD communication can be matched with the frequency subband exactly. As such, the resource waste can be avoided.
For illustrative purposes, principle and example embodiments of the present disclosure will be described below with reference to Figs. 1A-6C. However, it is to be noted that these embodiments are given to enable the skilled in the art to understand inventive concepts of the present disclosure and implement the solution as proposed herein, and not intended to limit scope of the present application in any way.
Fig. 1A illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
The environment 100A, which may be a part of a communication network, comprises a network device 110, a terminal device 120 and a terminal device 130. In some embodiments, the communication network may include NTN, NR-IoT and/or eMTC. In some other embodiments, the communication network may include any other possible communication network. It is to be understood that the number of network devices and terminal devices is given only for the purpose of illustration without suggesting any limitations. The communication network may include any suitable number of network devices and/or terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the environment 100. Without any limitation, the network device 110 supports the SBFD communication. For example, the network device 110 may transmit PDSCH to the terminal device 120 and receive PUSCH from the terminal device 130 simultaneously.
Fig. 1B illustrates an example of FDRA in a time unit configured with SBFD communication.
As shown in Fig. 1B, the frequency subbands 140 are preconfigured for Uplink (UL) transmission or reception. The frequency subband 150 is preconfigured for Downlink (DL) reception or transmission. Further, the frequency subbands 160 are preconfigured as guard bands. Further, the blocks at right side represent the RBG division in the corresponding BWP. As shown in Fig. 1B, there may be a RBG (for example, RBG  170) crossing the boundary of the frequency subband (for example, one of the frequency subbands 140) . This may cause that the available resource blocks in the RBG 170 cannot be used in the channel transmission.
In a specific situation, as shown in Fig. 1B, for SBFD slot/symbols having {Downlink-Uplink-Downlink, DUD} subband frequency pattern, the available DL resources are partitioned into two DL subbands. For example, Resource Assignment (RA) type 0 can be used for allocating non-contiguous RBGs across DL subbands, but the granularity of RBG may be not suitable for the DL or UL subband size or BWP size. This may lead to limitation of scheduling flexibility. In Fig. 1B, when the subband/guard band boundary is not aligned with RBG boundary, an RBG may include RBs for DL and RBs for UL/guard band. To avoid PDSCH to be overlapped with UL subband and guard band, the RBG cannot be assigned for PDSCH with current RA type 0 and it may cause a waste of RB resource. In addition, FDRA type 0 cannot be supported by fallback DCI format x_0.
As mentioned above, multiple scheduled channel transmissions may across a plurality of time units configured with SBFD communication or non-SBFD communication. Fig. 1C illustrates an example of Frequency Domain Resource Allocation (FDRA) in multiple time units configured with SBFD and non-SBFD communication
As shown in Fig. 1C, scheduled PDSCH aggregations or repetitions (as shown by180 and 181) may be across non-SBFD slot (slot n) and SBFD slots (slots n+1, n+2 and n+3) . In this case, the PDSCH resources in SBFD slot may overlap with UL subband as shown. The example embodiments of the disclosure propose a method for coordinating the PDSCH aggregations or repetitions and SBFD and non-SBFD slots (or symbols) . In this disclosure, a SBFD time unit is the time unit configured with SBFD communication and a non-SBFD time unit not configured with SBFD communication. Without any limitation, the time unit at least comprises slot, symbol, frame and/or sub-frame and any other time length.
Fig. 2 illustrates a signaling process 200 for frequency resource allocation of SBFD communication according to some embodiments of the present disclosure. For illustrative purposes, the process 200 will be described with reference to FIG. 1.
In the signaling process 200, the network device 110 determines control information. The control information indicates a RBG for a first link direction, and a group size of the RBG is determined based on a first frequency subband configured for the  first link direction. In some embodiments, the group size may be the number of resource blocks included in the RBG. In some other embodiments, the group size may be any other frequency width of the RBG. In some embodiments, the first link direction may be the downlink direction. Alternatively, the first link direction may also be the uplink direction. In some embodiments, the first frequency subband may be a part of BWP configured to a terminal device. In addition, from the time domain perspective, the first frequency subband may last at least one slot or a symbol. For illustrative purposes, the RGB having the group size adjusted based on the first frequency subband is further discussed with reference to Fig. 3A to 3D.
Fig. 3A illustrates an example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure. As shown in Fig. 3D, it is assumed that the number of resource blocks in the active BWP is 30 (RB 0 to RB 29) . The BWP has been divided into DL subband, UL subband and another DL subband.
As mentioned above, in one solution, the group size of each RBG is fixed or configured identically based on the bandwidth of the BWP comprising the UL subband and the DL subband, and the group size (or granularity) may be not adapted to the frequency subband (as shown by RBG 1, RBG2, RBG 5 in Fig. 3A) . This may cause a mismatch between the frequency subband configured for a certain link direction and the RBG-based frequency allocation.
In some embodiments of this disclosure, the control information may indicate or schedule a plurality of RBGs. The plurality of RBGs includes the above RBG having the group size that is determined based on the first frequency subband (the UL subband or DL subband as shown in Fig. 3A) . Further, the RBG having the group size determined based on the first frequency subband is located at the ends of the plurality of RBGs. As shown in Fig. 3A, the group size of RBG 0 and RBG 3 are determined based on a preconfigured DL frequency subband. In addition, the group size of RBG 4 is determined based on a preconfigured UL frequency subband. As shown in Fig 3A, the ends of the plurality of RBGs are adjacent to the boundary (upper boundary or lower boundary) of the frequency subband (DL frequency subband or UL frequency subband) .
In a specific example, for a SBFD aware terminal device (for example, the terminal device 120) , the RBG division can be changed for a time unit configured with  SBFD communication. The edge of certain RBG in the DL/UL subband can be handled as fractional RBGs (as similar to the fractional RBG that is adjacent to the boundary of the BWP) . In each DL/UL subband, the RBG is separately divided, and the total number of RBGs (N RBG) for a DL/UL subband and the RBG size of each RBG in the DL/UL subband may be determined as following:
Figure PCTCN2022130302-appb-000001
where
- the size of the first RBG (the RBG, if there it is, adjacent to one boundary of the frequency) is
Figure PCTCN2022130302-appb-000002
- the size of last RBG (another RBG, if there it is, adjacent to another boundary of the frequency) is
Figure PCTCN2022130302-appb-000003
if
Figure PCTCN2022130302-appb-000004
Figure PCTCN2022130302-appb-000005
and P otherwise,
- the size of all other RBGs is P (where P may be also referred to as the configured RBG size) .
In Fig. 3A, the first and the last RBG in the DL/UL subband, such as RBG 0 (310) , RBG 3 (320) , RBG 4 (330) , RBG 7 and RBG 8 may include the number of RBs that is smaller than the configured RBG size P=4. The above embodiments may be also implemented by replacing the BWP with subband in the RBG definition in TS 38.214 section 5.1.2.2.1 and 6.1.2.2.1.
In this way, the overlapping between the RBGs allocated for the first link direction and the boundary of the frequency subband configured for the first link direction can be avoided. As such, the resource waste can be avoided.
In addition, in some embodiments, the control information may further indicate another plurality of RBGs for a second link direction different from the first link direction. The plurality RBGs for the first link direction and the other plurality RBGs for the second link direction may be independently identified. Fig. 3B illustrates examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 3B, the plurality of RBGs allocated for DL (in the DL subbands) may be indexed independently from the other plurality of RBGs allocated for UL. Specifically, the RBG index for DL PDSCH FDRA is ordered without considering the RBGs in UL subband and guardband in SBFD symbols. Moreover, the index of RBG in  the UL subband starts from the UL subband boundary. That is, the RBG number in FDRA in DL grant and UL grant is separately defined. Alternatively, through a RRC configuration, a subset of existing RBG may be selected as the candidate RBG sets that can be allocated to the terminal device 120 for PDSCH receiving. For TBS determination, the Resource Element (RE) number allocated for this terminal device 120 to calculate the TBS is equal to the RE included in the allocated RBG. In this way, the valid bit width for FDRA type 0 for RBG bitmap indication is equal to the configured RBG number.
As such, the bitmap field indicating RBGs allocated for the first link direction can be simplified to decrease bit number of the RRC or DCI signaling, since the number of RBGs for the first link direction is smaller than the total number of RBGs in the BWP. It can reduce the valid FDRA overhead for RBG bitmap indication in the DCI.
In addition to the RBG having the group size determined based on the frequency subband is located at ends or alternatively, each of the plurality of RBGs may have the same group size that is determined based on the frequency subband. Fig. 3C illustrates examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 3C, for SBFD aware terminal device and FDRA type 0, the group size of each RBG in the BWP is configured based on the DL/UL frequency subband, rather than the BWP. Only as an example, table 1 shows configurable RBG size based on DL/UL subband size.
Table 1
DL/UL subband (PRBs) RB set size (PRBs)
1-23 1, 2
24-72 2, 4
73-144 4, 8
For example, in Fig. 3C, if the RBG size is determined or configured based on the whole BWP size (comprising the two DL subbands and UL subband) , the configured value is 4. In this case, as shown in the middle block column, RBG 3 and RBG 6 (which may be allocated for DL) may contain unavailable RBs for UL or guardband, and the unavailable RBs cannot be assigned to the terminal device 120 for PDSCH transmission.  Therefore, 4 RBs in RBG 3 or RBG 6 will be wasted. In turn, the group size may be based on the DL subband and the configured group size of the RBG is 2, which is shown in the right block column. In this case, compared with the group size determined based on BWP size, RBG 13 is not wasted and can be assigned for PDSCH transmission. This method can alleviate the resource waste.
Alternatively, without adjusting the group size of the RBG, the available resources for the first link direction can be determined implicitly if an allocated RBG overlaps with the boundary of the frequency subband.
Fig. 3D illustrate examples of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 3D, the terminal device 120 may determine the RBs allocated for the first link direction based on both the indicated RBG and the frequency subband (pre-) configured for the first link direction.
In the example of Fig. 3D, the control information (for example, downlink control information, DCI) indicates the RBG index to the terminal device 120, and the group size of the indicated RBG may be still determined based on the BWP. However, the RBs included in the RBG used for UL direction or guardband cannot be allocated to terminal device 120 for PDSCH transmission. Specifically, if the RBG used for UL direction or guardband includes RBs in the frequency subband configured for the DL direction, these RBs may be determined not to be used for the DL transmission. In an example, if the RBG 6 in Fig. 3D is allocated for the PDSCH by the first downlink control information, the terminal device 120 may use the RBs ( RBs  24, 25 and 26 as shown in left block column) that belongs to the DL frequency subband in the RGB 6 for the PDSCH, and the RB 23 (350) is considered as unavailable for DL. In turn, if the RBG 3 in Fig. 3D is allocated for the PUSCH by the first downlink control information, the terminal device 120 may use the RBs ( RBs  12, 13 and 14 as shown in left block column) that belongs to the UL frequency subband in the RGB 6 for the PDSCH, and the RB 11 (340) is considered as unavailable for UL.
That is, the RBs outside of the DL subband (or included in UL and guardband) are cancelled, subtracted or punctured in the assigned RBG for PDSCH mapping, or these RBs are considered as invalid RB. As shown in Fig. 3D, it is assumed that the number of resource blocks in the active BWP is 30 (RB 0 to RB 29) , RBG3 and RBG6 for PDSCH  transmission within SBFD symbols can still be allocated to UE, but only PRB 11/24/25/26 are available for DL PDSCH transmission. In this way, only the RBs in DL subband are considered as the valid RB for PDSCH in the RBG when the RBG is indicated for the PDSCH.
Alternatively, the above embodiments discussed with reference to Fig. 3D may be also expressed as below:
Figure PCTCN2022130302-appb-000006
Still referring to Fig. 2, the network device 110 transmits (220) the control information to the terminal device 120. The control information may indicate the RBGs for the first link direction in the way as discussed with reference to Figs. 3A to 3D. In this disclosure, the control information may be any information for scheduling or configuring the communication between the terminal device 120 and the network device 110. For example, the control information may be DCI, radio resource control, RRC signaling or any other control information. Then, the terminal device 120 performs (230) a channel transmission or the channel reception in the first link direction within the RBG indicated by the first control information.
In addition to the above frequency resource allocation for the SBFD communication, in the case that scheduled PDSCH aggregations or repetitions are across non-SBFDs (slot n) slots and SBFD slot, the scheduled PDSCH aggregations or repetitions may be further adjusted.
In some embodiments, the terminal device 120 may receive another control information scheduling a plurality of channels, for example, multiple PDSCH repetitions scheduled by a single DCI, or multiple SPS PDSCHs. In some other embodiments, the plurality of channels may be also uplink channels. Without any limitation, the  embodiments are discussed with reference to the plurality of PDSCH, and the similar issues regarding UL transmission may be handled in the same way. In some situations, the PDSCH resources in a SBFD time unit may overlap with UL subband (as shown in Fig. 1C) . Therefore, the scheduled PDSCHs should be adjusted. For illustrative purposes, the optimization of the scheduled PDSCH aggregations or repetitions is further discussed with reference to Fig. 4A to 4C.
Fig. 4A illustrates an example frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 4A, the  time units  410 and 413 are assumed as the non-SBFD time units that are only used for the downlink reception/transmission. The  time units  415 and 417 are assumed as SBFD time units that are configured with two DL frequency subbands and one UL frequency subband located between the DL frequency subbands. Further, the time unit 419 is assumed as non-SBFD time unit only used for the uplink transmission/reception.
Further, the PDSCH 3 and PDSCH 4 scheduled in the  time units  415 and 417 may collide with the frequency subband configured for the uplink direction. In some embodiments, the other control information may further indicate a first Modulation and Coding Scheme (MCS) for the PDSCH 1 and PDSCH 2 scheduled in the  time units  410 and 413. In addition, the other control information may indicate a second MCS for the PDSCH 3 and PDSCH 4 scheduled in the  time units  415 and 417. The first MCS is different from the second MCS. For example, the second MCS has a higher MCS order, such that the  PDSCHs  3 and 4 may be mapped into the frequency resources that do not overlap with the frequency subband for the UL direction.
Specifically, two MCSs may be configured or included in the other control information. One MCS is used for PDSCH transmission in non-SBFD time units and the other MCS is used for PDSCH transmission in SBFD time units. Alternatively, an MCS offset is configured in the other control information. The terminal device 120 may be indicated that the MCS applied for PDSCH in non-SBFD time units is the MCS in the other control information. In addition, the MCS applied for PDSCH in SBFD time units is equal to the MCS in the other control information plus the configured offset. In some embodiments, if the PDSCH 3 and PDSCH 4 overlap with the UL subband and guardband,  the resource blocks of the UL subband and guardband are predefined to be subtracted in SBFD time units for the PDSCH 3 and PDSCH 4.
Alternatively, the other control information may also indicate a first frequency domain resource assignment (FDRA) for the  time units  410 and 413, and a second FDRA for the  time units  415 and 417. Fig. 4B illustrates examples frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 4B, the  time units  420 and 423 are assumed as the non-SBFD time units that are only used for the downlink reception/transmission. The  time units  425 and 427 are assumed as SBFD time units that are configured with two DL frequency subbands and one UL frequency subband located between the DL frequency subbands. Specifically, two FDRAs are included in the other control information or configured by the other control information. One FDRA is defined or indicated for the  time units  420 and 423 within the PDSCH aggregation/repetition transmission or the SPS PDSCH and multiple PDSCHs scheduled by single DCI transmission. In turn, the other FDRA is defined/indicated for  SBFD time units  425 and 427. Alternatively, a frequency offset may be indicated for  SBFD time units  425 and 427 to avoid the overlapping between the PDSCH and the frequency subband configured for the UL direction in  time units  415 and 417. In some embodiments, the frequency offset is configured by RRC or is included in the DL grant. In this way, based on the configuration/indication information, the terminal device 120 automatically adjusts the FDRA for PDSCH receiving between SBFD slots and non-SBFD slots.
Alternatively, the spatial filter may be also used to distinguish the SBFD time units and the non-SBFD time units. Fig. 4C illustrates examples frequency resource allocation in multiple time units configured with SBFD and non-SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 4C, the  time units  430 and 433 are assumed as the non-SBFD time units that are only used for the downlink reception/transmission. The time units 435 and 437 are assumed as SBFD time units that are configured with two DL frequency subbands and one UL frequency subband located between the DL frequency subbands. In some embodiments, the other control information may indicate a first beam (BEAM 1) 440 for the  time units  430 and 433, and a second beam (BEAM 2) 445 for the time units 435  and 437. Specifically, two different beams (TCI states) may be allocated to the SBFD time unit and non-SBFD time unit, respectively, in the other control information. One beam is defined for PDSCH aggregation/repetition transmission within the  non-SBFD time units  430 and 433. In turn, the other beam is defined for PDSCH transmission within SBFD time units 435 and 437.
In an example, a mapping table can be configured for the terminal device 120 through a RRC signaling, and each row in the table includes two TCI states, and a row index is indicated by the other control information scheduling PDSCH slot aggregation/repetition transmission or multiple PDSCH transmission. Further, the first TCI states in this row is the beam used for the PDSCH transmission in non-SBFD time units, and the other TCI states are used for the PDSCH transmission in SBFD time units. As an example, based on determining the UL beam is used for the non-SBFD time units, the network device 110 may allocate different beams for the SBFD units.
As mentioned above, the other control information may finely configure or schedule the PDSCHs in the plurality of scheduled channels, in order to avoid the overlapping between the PDSCH in the SBFD time units and the UL subband in the SBFD time units. It is to be understood that the above embodiments discussed with reference to Fig. 4A to 4C may be implemented independently from the frequency allocation for the SBFD communication, without any limitation.
In the above embodiments, the frequency resource allocation for the SBFD communication is discussed on the basis of the RBG granularity.
Still referring to Fig. 2, alternatively, in another solution for the allocating frequency resource of a SBFD time unit, the granularity may be one RB (for example, Downlink resource allocation type 1) . As such, the overlapping between the frequency resources by the control information and the frequency subband can be avoided. However, in the other solution, only consecutive RBs can be indicated in the control information. In turn, the time unit may be divided into discontinuous frequency subbands for the same link direction. The embodiments according to the disclosure provide a scheme for indicating RBs in the SBFD communication in the RB granularity. The rate-matching manner is a direct way.
In the signaling 200, the network device 110 determines (210) control information that indicates a rate-matching pattern for Subband Full Duplex (SBFD) communication.  In the rate-matching pattern, the resource blocks in the frequency subband configured for the target link direction can be mapped data and the other resources not in this frequency subband can be punctured. Only as an example, the control information indicates that a plurality of consecutive RBs in the BWP is allocated to the first link direction, but the plurality of consecutive RBs comprises RBs in the frequency subband configured for the second link direction different from the first link direction. Then, the rate-matching pattern may be performed by puncturing the RBs in plurality of consecutive RBs that in the frequency subband configured for the second link direction. In some embodiments, the rate-matching pattern may be configured in a RBG level. The bandwidth of the RBGs may be equal to the bandwidth of the second subband and the guardband.
That is, the rate matching method for PDSCH mapping is extended. The RBG-level rate matching pattern can be used for PDSCH frequency mapping of SBFD time units. The terminal device supporting SBFD communication with the network device 110 may be configured with rateMatchPattern-SBFD.
The frequency resource assignment for PDSCH may still use the starting and length scheme. The resource assignment for PDSCH gives the starting RB/RBG index and the number of RBs/RBGs (that is used by RA type 1) . The resource blocks in UL subband may be considered as the RBG, and the corresponding RBG-and-symbol level rate-matching pattern for the PDSCH mapping can be employed.
Furthermore, SLIV indication method for Symbol-level indication (for example, starting OFDM symbol and number of OFDM symbol) and RBG level indication (e.g., starting RBG and number of RBG for the UL subband and guardband) can be used for this RBG-level rate matching pattern configuration. The length of the OFDM symbols for rate matching pattern is equal to the length of the SBFD symbols, and the BW of the RBGs is equal to the UL subband and the guardband BW. In addition, one bit can be included in the DCI, and the one bit indicates whether this rate-matching pattern is enabled or not. If it is enabled, then the value of this one bit can be 1. If the rate-matching pattern is not enabled, the value of this one bit is 0.
In some embodiments, the rate matching indication bit field may be also included in DCI format 1-0. For example:
Figure PCTCN2022130302-appb-000007
Figure PCTCN2022130302-appb-000008
In some embodiments, a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication. For example, the rate matching pattern periodic should be the same as the SBFD slot periodic configuration, and the rate matching symbols is the same as the SBFD symbols.
Then, the network device 110 transmits (220) the control information indicating the rate-matching pattern to the terminal device 120. In turn, at the terminal device 120, after receiving (220) the control information, the terminal device 120 performs (230) a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction. The data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern, as mentioned above. For example, the RBG-and-symbol level rate-matching pattern may be employed.
In addition, the terminal device 120 may receive a Demodulation Reference Signal (DMRS) within a second subband configured for a second direction different from the first direction. For example, new terminal device behaviors can be defined for SBFD capable terminal devices, in order to rate match PDSCH DMRS. The DMRS may be still transmitted from the network device 110 in UL subband configured for the terminal device 120 and/or the guard band. In this case, an additional indication is introduced to indicate to the terminal device 120 that determines whether DMRS around UL subband and guardband is to be received or not. Alternatively, the above embodiments may be also expressed as:
Figure PCTCN2022130302-appb-000009
In addition, the Virtual Resource Blocks (VRB) -to-Physical Resource Blocks (PRB) mapping rule may be also updated for the SBFD communication. As mentioned above, the terminal device 120 performs (230) the channel transmission or the channel reception in the first link direction. In some embodiments, based on a mapping rule for the SBFD communication, VRB for a first link direction may be mapped only to PRB in at least one first frequency subband configured for the first link direction. For illustrative purposes, the VRB-to-PRB mapping rule for the SBFD communication is further discussed with reference to Fig. 5A to 5B.
Fig. 5A illustrates an example of VRB to PRB mapping according to some embodiments of the present disclosure. In some embodiments, based on determining that a first PRB having a first index corresponding to the VRB is located in a frequency subband configured for the second link direction (which is different from the first link direction) , the VRB may be mapped (for example, by the terminal device 120 or the network device 110) to a second PRB having a second index. The second index is equal to the first index plus an index offset value. Moreover, the index offset value is determined at least based on the number of PRBs in a second frequency subband configured for a second link direction.
As shown in Fig. 5A, the left resource blocks are assumed as the VRBs, and the right resource blocks are assumed as the PRBs to be mapped to. In an example, if the UL subband, guardband and DL subbands are configured in SBFD time units, a new VRB-to PRB-mapping rule is designed for PDSCH FDRA. In this new rule: for i <= n, the mapped #PRB (i) = #VRB (i) . For i > n, the mapped #PRB (j) = #VRB (i + an offset value N) , wherein N = the number of RBs included in the UL subband and guardband, and n is the last VRB index in the lowest DL subband (for example, n=7) .
As shown in Fig 5A, the BWP has been divided into two DL subbands, UL subband and guard band. For PDSCH resource assignment, in the case that VRBs are mapped to PRBs in a non-interleaving manner, the actually mapped PRB index should plus 8 starting from index #8. That is, VRB#8 is mapped to PRB# 16, VRB#9 is mapped to PRB# 17, and VRB#10 is mapped to PRB# 18, and so on. The PDSCH will be not mapped to RBs in the UL subband and guardband.
Alternatively, in some embodiments, the PRB to be mapped to is one of a first plurality of PRBs comprised in the at least one first frequency subband for the first link  direction. The first plurality of PRBs is identified independently from a second plurality of PRBs comprised in a second frequency subband configured for the second link direction.
Fig. 5B illustrates examples of VRB to PRB mapping according to some embodiments of the present disclosure. Specifically, new PRB/VRB index scheme is introduced for the SBFD communication. In non-interleaved VRB-to-PRB mapping, the VRB number or index may be based on the frequency subbands configured for the first link direction. The VRBs in the subband configured for the second link direction and the guardband are not indexed. That is, the resource blocks in UL subband and the guardband is subtracted when numbering or indexing the VRB/PRB. Therefore, the VRBs and PRBs in the two separate DL subbands are continuously arranged in a SBFD time unit. In this way, the valid FDRA bit number in the control information can be also reduced.
In the above embodiments, the frequency domain resource assignment for the SBFD communication is optimized either by adjusting the configured RBG group size, utilizing rate-matching or changing VRB-PRB mapping rule. Alternatively, the FDRA indicating manner may be also updated, in order to adapt to the characteristics of the SBFD communication.
Still referring to Fig. 2, the network device 110 determines (210) control information that indicates a first plurality of resource blocks in a frequency subband. The control information further indicates whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled. The frequency subband and the other frequency subband are configured for the first link direction. For illustrative purposes, the control information is further discussed with reference to Fig. 6A to 6C.
Fig. 6A illustrates an example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure. As shown in Fig. 6A, the BWP has been divided into two DL subbands (DL subband #1 and DL subband #2) , one UL subband and two guard bands.
In some embodiments, the first plurality resource blocks is indicated by a first FDRA in the first control information, and the second plurality resource blocks is indicated by a second FDRA in the first control information. The first plurality of resource blocks may be the resource blocks 0-4 in the DL subband #1, and the second plurality of resource blocks may be resource blocks 0-4 in the DL subband #2. In this way, the resource blocks  in different DL subbands may be indicated flexibly. In addition, the control information may comprise a bitmap field for indicating whether the first FDRA and/or the second FDRA are enabled. In an example, the bitmap filed comprises two bits. The bitmap filed “10” may represent the first FDRA is enabled and the second FDRA is disabled. Accordingly, the first plurality of the resource blocks is allocated for the SBFD communication, and the second plurality of the resource blocks is not allocated. Alternatively, there may be two RIVs in the FDRA which each corresponds to a subband, respectively.
Alternatively, in some embodiments, the indexes of resource blocks may be determined independently in different DL subbands. In this case, the first FDRA and the second FDRA may be the same FDRA. Whether the first and/or second plurality of resource blocks are enabled to be allocated is determined based on the bitmap filed of two bits. In other words, there is only one FDRA, and this FDRA indicates the resource blocks having the same indexes in different subbands. Whether the indicated resource blocks in different subbands are enabled is based on the bitmap field.
In a specific example, the two DL subbands have VRB/PRB number respectively, and the VRB/PRB number start from the lower boundary of each subband. The resource indication value (RIV) method is still used in each DL subband. If two DL subbands are included in a BWP/carrier, then a bitmap field having 2 bit can be defined in the FDRA or the control information, and the bitmap field can be used to determine whether the indicated resource blocks are only in one DL subband or across two DL subband. If the value of the bit field is 10, it means that the resource blocks assigned by the one FDRA are on DL subband#1. If the value of the bit field is 01, it means that the resource blocks assigned by the one FDRA are on DL subband#2. If the value of the bit field is 11, it means that the resource blocks assigned by the one FDRA are on DL subband#1 and DL subband#2. If two subbands are assigned for terminal device 120, then the RIV value is same in each subband. As shown in Fig. 6A, VRB0~VRB4 in subband#1 and subband#2 are assigned to terminal device 120 for PDSCH transmissions. Alternatively, the above embodiments may be also expressed as below:
Figure PCTCN2022130302-appb-000010
Figure PCTCN2022130302-appb-000011
Alternatively, in some embodiments, a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks. Furthermore, the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
Fig. 6B illustrates another example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 6B, a symmetrical FDRA scheme may be used in two DL subbands, in order to implement non-contiguous FDRA across DL subbands in the SBFD time unit. In this method, the resource blocks allocated in one DL subband are “reflected” onto the other DL subband. The allocated resource blocks in the two DL subbands are symmetrical relative to the middle frequency of the BWP/carrier.
For example, the network device 110 uses FDRA Type 1 to indicate allocated RBs in DL Subband#1, and the indicated RBs are reflected via a symmetric line in the middle of the BWP. In this way, the same number of RBs are allocated in DL Subband#2. In addition, the symmetrical FDRA method can be enabled or disabled by, for example, using one bit in the DL Grant or the control information. If the value of this bit is 1, it means that the symmetrical method is enabled, and the PDSCH is mapped to two DL subband (such as the resource blocks 0-4 and 19-23 as shown in Fig. 6B) . In turn, if this bit value is 0, it means that the symmetrical method is disabled, and the PDSCH only mapped to the lowest DL subband.
Fig. 6C illustrates a further example of frequency resource allocation in a time configured with SBFD communication according to some embodiments of the present disclosure.
As shown in Fig. 6C, the location of allocated resource blocks in the DL subband #2 may be the location of allocated resource blocks in the DL subband #1 plus a frequency offset. The frequency offset value may be equal to the bandwidth of UL subband and guardband (for example, the number of resource blocks in UL subband and guardband) plus the first DL subband BW (for example, the number of resource blocks in DL subband #1 and guardband) . That is, for the FDRA in the DL subband #2, the allocated resource block  may start from the first RB in the DL subband #2. In addition, 1 bit in the DL Grant or the control information may be used to indicate whether this offset is used or not. If the value of this bit is equal to 1, then the FDRA for the first link direction may across two DL subbands. If the value of this bit is equal to 0, it means that only the resource blocks in the lowest DL subband is allocated for this PDSCH.
Without any limitation, it is to be understood that the embodiments as discussed above may be implemented in any combination manner of the embodiments.
Fig. 7 illustrates a flowchart of an example method 700 implemented at a terminal device according to some embodiments of the present disclosure. The method 700 can be implemented at the terminal device 120 shown in FIG. 1. For the purpose of discussion, the method 700 will be described with reference to FIG. 1. It is to be understood that the method 700 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 710, the terminal device 120 receives first control information indicating a resource block group (RBG) for a first link direction. A group size of the RBG is determined based on a first frequency subband configured for the first link direction.
At 720, the terminal device 120 performs, within the RBG, a channel transmission or a channel reception in the first link direction.
In some embodiments, the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprises the RBG. In some embodiments, the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband; or each RBG of the first plurality of RBGs has the same group size.
In some embodiments, the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
In some embodiments, the method further comprises the terminal device 120 receives second control information scheduling a plurality of channels in the first direction.
In some embodiments, the second control information further indicates: a first MCS for a first channel in the plurality of channels that is transmitted on a time unit not  configured with SBFD communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication. The second MCS is different from the first MCS.
In some embodiments, the second control information further indicates: a first FDRA for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with SBFD communication. The second FDRA is different from the first FDRA.
In some embodiments, the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
In some embodiments, the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
FIG. 8 illustrates a flowchart of a method 800 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. The method 800 can be implemented at the terminal device 120 shown in FIG. 1. For the purpose of discussion, the method 800 will be described with reference to FIG. 1. It is to be understood that the method 800 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 810, the terminal device 120 receives first control information indicating a rate-matching pattern for SBFD communication. At 820, the terminal device 120 performs, based on the first control information, a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction. Data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
In some embodiments, a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
In some embodiments, the first direction is a downlink direction, and the method further comprises: the terminal device 120 receives a Demodulation Reference Signal (DMRS) within a second frequency subband configured for a second direction different from the first direction.
In some embodiments, the rate-matching pattern is configured in a RBG level, the RBG comprising a plurality of resource blocks, a bandwidth of the RBGs is equal to a bandwidth of a guardband and a second frequency subband configured for a second direction different from the first direction.
In some embodiments, the at least one resource block is allocated based on a resource allocation type 1 indicating a plurality of consecutive resource blocks.
In some embodiments, the method further comprises: based on a mapping rule for SBFD communication, the terminal device 120 maps VRB for a first link direction to PRB in at least one first frequency subband configured for the first link direction.
In some embodiments, the method further comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, the terminal device 120 maps the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value. The index offset value is determined at least based on the number of PRBs in the second frequency subband.
In some embodiments, the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband. The first plurality of PRBs is identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
FIG. 9 illustrates a flowchart of a method 900 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. The method 900 can be implemented at the terminal device 120 shown in FIG. 1. For the purpose of discussion, the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 910, the terminal device 120 receives first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled. The frequency subband and the other frequency subband are configured for a first link direction.
At 920, based on the first control information, the terminal device 120 performs, within at least one of the first and second plurality of resource blocks, a channel  transmission or a channel reception in the first link direction.
In some embodiments, the first plurality resource blocks is indicated by a first FDRA in the first control information, and the second plurality resource blocks is indicated by a second FDRA in the first control information, and at least one of the first and second plurality of resource blocks is enabled based on a bitmap field in the first control information.
In some embodiments, a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
In some embodiments, the method further comprises, the terminal device 120 performs, within resource blocks of the first and second plurality of resource blocks indicated to be enabled, the channel transmission or the channel reception.
FIG. 10 illustrates a flowchart of a method 1000 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 1000 can be implemented at the network device 110 shown in FIG. 1. For the purpose of discussion, the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 1010, the network device 110 determines first control information indicating a RBG for a first link direction, a group size of the RBG being determined based on a first frequency subband configured for the first link direction.
At 1020, the network device 110 transmits the first control information to the terminal device 120.
In some embodiments, the first control information further indicates a first plurality of RBGs for the first link direction. The first plurality of RBGs comprises the RBG. In some embodiments, the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband; or each RBG of the first plurality of RBGs has the same group size.
In some embodiments, the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently  identified.
In some embodiments, the method further comprises: the network device 110 transmits second control information scheduling a plurality of channels in the first direction to the terminal device.
In some embodiments, the second control information further indicates: a first MCS for a first channel in the plurality of channels that is transmitted on a time unit not configured with SBFD communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication. The second MCS is different from the first MCS.
In some embodiments, the second control information further indicates: a first FDRA for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with SBFD communication. The second FDRA is different from the first FDRA.
In some embodiments, the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
In some embodiments, the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
FIG. 11 illustrates a flowchart of a method 1100 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 1100 can be implemented at the network device 110 shown in FIG. 1. For the purpose of discussion, the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 1110, the network device 110 determines first control information indicating a rate-matching pattern for SBFD communication. At 1120, the network device 110 transmits the first control information to the terminal device 120.
In some embodiments, a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
In some embodiments, the first direction is a downlink direction, and the method further comprises: the network device 110 transmits, to the terminal device 120, a DMRS within a second subband configured for a second direction different from the first direction.
In some embodiments, the method further comprises: the network device 110 maps, based on a mapping rule for SBFD communication, VRB for a first link direction to PRB in a first frequency subband configured for the first link direction.
In some embodiments, mapping the VRB to the PRB comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, the network device 110 maps the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value. The index offset value is determined at least based on the number of PRBs in the second frequency subband.
In some embodiments, the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
FIG. 12 illustrates a flowchart of a method 1200 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 1200 can be implemented at the network device 110 shown in FIG. 1. For the purpose of discussion, the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 1210, the network device 110 determines first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled. The frequency subband and the other frequency subband are configured for a first link direction. At 1220, the network device 110 transmits the first control information to a terminal device.
In some embodiments, the first plurality resource blocks is indicated by a first FDRA in the first control information, and the second plurality resource blocks is indicated by a second FDRA in the first control information, and the at least one plurality of resource blocks the first and second plurality of resource blocks is enabled based on a bitmap field.
In some embodiments, a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
Fig. 13 is a simplified block diagram of a device 1300 that is suitable for implementing some embodiments of the present disclosure. The device 1300 can be considered as a further example embodiment of the terminal device 120 as shown in FIG. 1 or network devices 110 as shown in FIG. 1. Accordingly, the device 1300 can be implemented at or as at least a part of the above network devices or terminal devices.
As shown, the device 1300 includes a processor 1310, a memory 1320 coupled to the processor 1310, a suitable transmitter (TX) and receiver (RX) 1340 coupled to the processor 1310, and a communication interface coupled to the TX/RX 1340. The memory 1320 stores at least a part of a program 1330. The TX/RX 1340 is for bidirectional communications. The TX/RX 1340 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
The program 1330 is assumed to include program instructions that, when executed by the associated processor 1310, enable the device 1300 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-12. The embodiments herein may be implemented by computer software executable by the processor 1310 of the device 1300, or by hardware, or by a combination of software and hardware. The processor 1310 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1310 and memory 1320 may form processing means 1350 adapted to implement various embodiments of the present disclosure.
The memory 1320 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic  memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1320 is shown in the device 1300, there may be several physically distinct memory modules in the device 1300. The processor 1310 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1300 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a terminal device comprises circuitry configured to perform  method  700, 800 or 900.
In some embodiments, a network device comprises circuitry configured to perform  method  1000, 1100 or 1200.
The components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In one embodiment, one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium. In addition to or instead of machine-executable instructions, parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs) , Application-specific Integrated Circuits (ASICs) , Application-specific Standard Products (ASSPs) , System-on-a-chip systems (SOCs) , Complex Programmable Logic Devices (CPLDs) , and the like.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples,  hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 14. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage  device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific embodiment details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
In summary, embodiments of the present disclosure may provide the following solutions.
A method of communication, comprising: receiving, at a terminal device, first control information indicating a resource block group (RBG) for a first link direction, a group size of the RBG being determined based on a first frequency subband configured for the first link direction; and performing, within the RBG, a channel transmission or a channel reception in the first link direction.
In one embodiment, wherein the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprising the RBG, and wherein at least one of: the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband, or each RBG of the first plurality of RBGs has the same group size.
In one embodiment, wherein the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently  identified.
In one embodiment, the method further comprises receiving second control information scheduling a plurality of channels in the first direction.
In one embodiment, wherein the second control information further indicates: a first Modulation and Coding Scheme (MCS) for a first channel in the plurality of channels that is transmitted on a time unit not configured with Subband Full Duplex (SBFD) communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication, the second MCS being different from the first MCS.
In one embodiment, wherein the second control information further comprises: a first frequency domain resource assignment (FDRA) for a time unit not configured with SBFD communication; and a second FDRA for another time unit configured with SBFD communication, the second FDRA being different from the first FDRA.
In one embodiment, wherein the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
In one embodiment, wherein the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
A method of communication, comprising: receiving, at a terminal device, first control information indicating a rate-matching pattern for Subband Full Duplex (SBFD) communication; and performing, based on the first control information, a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction, and wherein data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
In one embodiment, wherein a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
In one embodiment, wherein the first direction is a downlink direction, and the method further comprises: receiving a Demodulation Reference Signal (DMRS) within a  second frequency subband configured for a second direction different from the first direction.
In one embodiment, wherein the rate-matching pattern is configured in a resource block group (RBG) level, the RBG comprising a plurality of resource blocks, a bandwidth of the RBGs being equal to a bandwidth of a guardband and a second frequency subband configured for a second direction different from the first direction.
In one embodiment, wherein the at least one resource block is allocated based on a resource allocation type 1 indicating a plurality of consecutive resource blocks.
In one embodiment, further comprising: mapping, based on a mapping rule for Subband Full Duplex (SBFD) communication, Virtual Resource Blocks (VRB) for a first link direction to Physical Resource Blocks (PRB) in at least one first frequency subband configured for the first link direction.
In one embodiment, wherein mapping the VRB to the PRB comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, mapping the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value, and wherein the index offset value is determined at least based on the number of PRBs in the second frequency subband.
In one embodiment, wherein the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
A method of communication, comprising: receiving, at a terminal device, first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled, the frequency subband and the other frequency subband being configured for a first link direction; and based on the first control information, performing, within at least one of the first and second plurality of resource blocks, a channel transmission or a channel reception in the first link direction.
In one embodiment, wherein the first plurality resource blocks is indicated by a first FDRA in the first control information, and the second plurality resource blocks is indicated by a second FDRA in the first control information, and at least one of the first and  second plurality of resource blocks is enabled based on a bitmap field in the first control information.
In one embodiment, wherein a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
In one embodiment, wherein performing the channel transmission or the channel reception comprises: performing, within resource blocks of the first and second plurality of resource blocks indicated to be enabled, the channel transmission or the channel reception.
A method of communication, comprising: determining, at a network device, first control information indicating a resource block group (RBG) for a first link direction, a group size of the RBG being determined based on a first frequency subband configured for the first link direction; and transmitting the first control information to a terminal device.
In one embodiment, wherein the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprising the RBG, and wherein at least one of: the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband, or each RBG of the first plurality of RBGs has the same group size.
In one embodiment, wherein the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
In one embodiment, further comprising transmitting second control information scheduling a plurality of channels in the first direction to the terminal device.
In one embodiment, wherein the second control information further indicates:
a first Modulation and Coding Scheme (MCS) for a first channel in the plurality of channels that is transmitted on a time unit not configured with Subband Full Duplex (SBFD) communication; and a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication, the second MCS being different from the first MCS.
In one embodiment, wherein the second control information further comprises: a first frequency domain resource assignment (FDRA) for a time unit not configured with  SBFD communication; and a second FDRA for another time unit configured with the SBFD communication, the second FDRA being different from the first FDRA.
In one embodiment, wherein the second control information further indicates: a first beam for a time unit not configured with SBFD communication; and a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
In one embodiment, wherein the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
A method of communication, comprising: determining, at a network device, first control information indicating a rate-matching pattern for Subband Full Duplex (SBFD) communication; and transmitting the first control information to a terminal device.
In one embodiment, wherein a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
In one embodiment, wherein the first direction is a downlink direction, and the method further comprises: transmitting, to the terminal device, a Demodulation Reference Signal (DMRS) within a second subband configured for a second direction different from the first direction.
In one embodiment, further comprising: mapping, based on a mapping rule for Subband Full Duplex (SBFD) communication, Virtual Resource Blocks (VRB) for a first link direction to Physical Resource Blocks (PRB) in a first frequency subband configured for the first link direction.
In one embodiment, wherein mapping the VRB to the PRB comprises: based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, mapping the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value, and wherein the index offset value is determined at least based on the number of PRBs in the second frequency subband.
In one embodiment, wherein the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband  configured for a second link direction.
A method of communication, comprising: determining, at a network device, first control information indicating a first plurality of resource blocks in a frequency subband and whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled, the frequency subband and the other frequency subband being configured for a first link direction; and transmitting the first control information to a terminal device.
In one embodiment, wherein the first plurality resource blocks is indicated by a first FDRA in the first control information, and the second plurality resource blocks is indicated by a second FDRA in the first control information, and the at least one plurality of resource blocks the first and second plurality of resource blocks is enabled based on a bitmap field.
In one embodiment, wherein a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
A terminal device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the above method.
A network device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method the above method.
A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the above method.

Claims (20)

  1. A method of communication, comprising:
    receiving, at a terminal device, first control information indicating a resource block group (RBG) for a first link direction, wherein a group size of the RBG is determined based on a first frequency subband configured for the first link direction; and
    performing, within the RBG, a channel transmission or a channel reception in the first link direction.
  2. The method of claim 1, wherein the first control information further indicates a first plurality of RBGs for the first link direction, the first plurality of RBGs comprising the RBG, and wherein at least one of:
    the RBG is located at ends of the first plurality of RBGs, the ends being adjacent to a boundary of the first frequency subband, or
    each RBG of the first plurality of RBGs has the same group size.
  3. The method of claim 2, wherein the first control information further indicates a second plurality of RBGs for a second link direction different from the first link direction, and wherein the first plurality RBGs and the second plurality RBGs are independently identified.
  4. The method of claim 1, further comprising receiving second control information scheduling a plurality of channels in the first direction.
  5. The method of claim 4, wherein the second control information further indicates:
    a first Modulation and Coding Scheme (MCS) for a first channel in the plurality of channels that is transmitted on a time unit not configured with Subband Full Duplex (SBFD) communication; and
    a second MCS for a second channel in the plurality of channels that is transmitted on another time unit configured with the SBFD communication, the second MCS being different from the first MCS.
  6. The method of claim 4, wherein the second control information further comprises:
    a first frequency domain resource assignment (FDRA) for a time unit not configured with SBFD communication; and
    a second FDRA for another time unit configured with SBFD communication, the second FDRA being different from the first FDRA.
  7. The method of claim 4, wherein the second control information further indicates:
    a first beam for a time unit not configured with SBFD communication; and
    a second beam for another time unit configured with SBFD communication, the first beam being different from the second beam.
  8. The method of any of claims 1 to 7, wherein the RBG is indicated by a bitmap field in the first control information and the group size is the number of resource block comprised in a resource block group.
  9. A method of communication, comprising:
    receiving, at a terminal device, first control information indicating a rate-matching pattern for Subband Full Duplex (SBFD) communication; and
    performing, based on the first control information, a channel transmission or a channel reception in a first link direction over at least one resource block allocated for a first link direction, and wherein data for the channel transmission or channel reception is rate-matched over the at least one resource block based on the rate-matching pattern.
  10. The method of claim 9, wherein a periodic of the rate-matching pattern is equal to a periodic of a time unit configured with the SBFD communication.
  11. The method of claim 9, wherein the first direction is a downlink direction, and the method further comprises:
    receiving a Demodulation Reference Signal (DMRS) within a second frequency subband configured for a second direction different from the first direction.
  12. The method of claim 9, wherein the rate-matching pattern is configured in a resource block group (RBG) level, the RBG comprising a plurality of resource blocks, a bandwidth of the RBGs being equal to a bandwidth of a guardband and a second frequency subband configured for a second direction different from the first direction.
  13. The method of any of claims 9 to 12, wherein the at least one resource block is allocated based on a resource allocation type 1 indicating a plurality of consecutive resource blocks.
  14. The method of any of claims 9 to 13, further comprising:
    mapping, based on a mapping rule for Subband Full Duplex (SBFD) communication, Virtual Resource Blocks (VRB) for a first link direction to Physical Resource Blocks (PRB) in at least one first frequency subband configured for the first link direction.
  15. The method of claim 14, wherein mapping the VRB to the PRB comprises:
    based on determining that a first PRB having a first index corresponding to the VRB is located in a second frequency subband configured for a second link direction, mapping the VRB to a second PRB having a second index, the second index being equal to the first index plus an index offset value, and
    wherein the index offset value is determined at least based on the number of PRBs in the second frequency subband.
  16. The method of claim 14, wherein the PRB is one of a first plurality of PRBs comprised in the at least one first frequency subband, the first plurality of PRBs being identified independently from a second plurality of PRBs comprised in a second frequency subband configured for a second link direction.
  17. A method of communication, comprising:
    receiving, at a terminal device, first control information indicating a first plurality of resource blocks in a frequency subband and indicating whether at least one of the first plurality of resource blocks or a second plurality of resource blocks in another frequency subband is enabled, the frequency subband and the other frequency subband being configured for a first link direction; and
    based on the first control information, performing, within at least one of the first and second plurality of resource blocks, a channel transmission or a channel reception in the first link direction.
  18. The method of claim 17, wherein the first plurality of resource blocks is indicated by a first FDRA in the first control information, and the second plurality of resource blocks is indicated by a second FDRA in the first control information, and at least one of the first and second plurality of resource blocks is enabled based on a bitmap field in the first control information.
  19. The method of claim 17, wherein a location of the second plurality of resource blocks is determined based on the first plurality of resource blocks, and the second plurality resource block is enabled based on an enabling indication for the other frequency subband.
  20. The method of claim 18 or 19, wherein performing the channel transmission or the channel reception comprises:
    performing, within resource blocks of the first and second plurality of resource blocks indicated to be enabled, the channel transmission or the channel reception.
PCT/CN2022/130302 2022-11-07 2022-11-07 Method, device and computer readable medium for communications WO2024098192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130302 WO2024098192A1 (en) 2022-11-07 2022-11-07 Method, device and computer readable medium for communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130302 WO2024098192A1 (en) 2022-11-07 2022-11-07 Method, device and computer readable medium for communications

Publications (1)

Publication Number Publication Date
WO2024098192A1 true WO2024098192A1 (en) 2024-05-16

Family

ID=91031747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130302 WO2024098192A1 (en) 2022-11-07 2022-11-07 Method, device and computer readable medium for communications

Country Status (1)

Country Link
WO (1) WO2024098192A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225656A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Vrb-to-prb allocation for disjoint bwp segments
US20210360664A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Joint shared channel timing allocation in downlink control information
US20210377938A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
US20220104245A1 (en) * 2020-09-28 2022-03-31 Qualcomm Incorporated Control channel designs for dynamic full duplex enabling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225656A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Vrb-to-prb allocation for disjoint bwp segments
US20210360664A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Joint shared channel timing allocation in downlink control information
US20210377938A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
US20220104245A1 (en) * 2020-09-28 2022-03-31 Qualcomm Incorporated Control channel designs for dynamic full duplex enabling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Subband non-overlapping full duplex for NR duplex evolution", 3GPP DRAFT; R1-2203904, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153242 *

Similar Documents

Publication Publication Date Title
CN116830703A (en) Unified transmission configuration indicator in a multi-transmission reception point environment
WO2023184273A1 (en) Method, device and computer storage medium of communication
WO2023044912A1 (en) Method, device and computer storage medium of communication
WO2024098192A1 (en) Method, device and computer readable medium for communications
WO2024130610A1 (en) Method, device and computer readable medium for communications
WO2024020814A1 (en) Method, device and computer readable medium for communications
WO2023122996A1 (en) Method, device and computer readable medium for communication
WO2023077310A1 (en) Method, device and computer readable medium for communication
WO2024026641A1 (en) Methods, terminal devices and computer readable medium for communication
WO2024092843A1 (en) Methods, devices and medium for communication
WO2024016132A1 (en) Method, device and computer readable medium for sidelink communications
WO2024060246A1 (en) Method, device and computer storage medium of communication
WO2024021136A1 (en) Methods, terminal devices and computer readable medium for communication
WO2023178625A1 (en) Methods, devices and computer readable media for communications
WO2024060088A1 (en) Method, device, and medium for communication
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
WO2023087315A1 (en) Methods, devices, and computer readable medium for communication
WO2023137721A1 (en) Methods, devices, and computer readable medium for communication
WO2023137726A1 (en) Method, device and computer readable medium for communication
WO2024065771A1 (en) Methods, devices and medium for communication
WO2023070592A1 (en) Method, device and computer readable medium for communications
WO2024065200A1 (en) Method, device and computer storage medium of communication
WO2023115349A1 (en) Methods, devices, and computer readable medium for communication
WO2024103363A1 (en) Method, device and computer storage medium of communication
WO2023178695A1 (en) Method, device and computer readable medium for communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964671

Country of ref document: EP

Kind code of ref document: A1