WO2023044912A1 - Method, device and computer storage medium of communication - Google Patents

Method, device and computer storage medium of communication Download PDF

Info

Publication number
WO2023044912A1
WO2023044912A1 PCT/CN2021/121032 CN2021121032W WO2023044912A1 WO 2023044912 A1 WO2023044912 A1 WO 2023044912A1 CN 2021121032 W CN2021121032 W CN 2021121032W WO 2023044912 A1 WO2023044912 A1 WO 2023044912A1
Authority
WO
WIPO (PCT)
Prior art keywords
occasions
information
occasion
data transmission
period
Prior art date
Application number
PCT/CN2021/121032
Other languages
French (fr)
Inventor
Xiaohong Zhang
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2021/121032 priority Critical patent/WO2023044912A1/en
Publication of WO2023044912A1 publication Critical patent/WO2023044912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media of communication for resource management.
  • SPS downlink (DL) transmission and Type 1 or 2 configured grant (CG) uplink (UL) transmission are supported and enhanced in new radio (NR) technology. They are beneficial to services with periodic packets in terms of control signaling overhead and scheduling latency, especially for an extended reality (XR) service such as virtual reality (VR) , augmented reality (AR) , cloud gaming, etc..
  • XR extended reality
  • VR virtual reality
  • AR augmented reality
  • cloud gaming etc.
  • multiple SPS or CG transmission occasions may be configured for a terminal device within a period of XR traffic, e.g., by configuring multiple SPS or CG configurations or by configuring multiple transmission occasions within a period. This may cause over-provisioning of transmission occasions. The over-provisioning of transmission occasions will cause resource wasting and reduction of system capacity.
  • embodiments of the present disclosure provide methods, devices and computer storage media of communication for resource management.
  • a method of communication comprises: transmitting, at a first device and to a second device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
  • a method of communication comprises: transmitting, at a first device and to a second device, first information indicating amount of resources to be used in a period.
  • a method of communication comprises: receiving, at a second device and from a first device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period; and determining the set of unused occasions from the information.
  • a method of communication comprises: receiving, at a second device and from a first device, first information indicating amount of resources to be used in a period.
  • a device of communication comprising a processor configured to perform the method according to the first or second aspect of the present disclosure.
  • a device of communication comprising a processor configured to perform the method according to the third or fourth aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the first or second aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the third or fourth aspect of the present disclosure.
  • FIG. 1 illustrates an example communication network in which some embodiments of the present disclosure can be implemented
  • FIG. 2A illustrates a schematic diagram illustrating an example scenario in which some transmission occasions may be skipped according to embodiments of the present disclosure
  • FIG. 2B illustrates a schematic diagram illustrating another example scenario in which some transmission occasions may be skipped according to embodiments of the present disclosure
  • FIG. 2C illustrates a schematic diagram illustrating still another example scenario in which some transmission occasions may be skipped according to embodiments of the present disclosure
  • FIG. 3A illustrates a schematic diagram illustrating a process for communication according to embodiments of the present disclosure
  • FIG. 3B illustrates a schematic diagram illustrating an example reporting of skipped transmission occasions according to embodiments of the present disclosure
  • FIG. 4A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure
  • FIG. 4B illustrates a schematic diagram illustrating an example use of transmission occasions according to embodiments of the present disclosure
  • FIG. 5A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure
  • FIG. 5B illustrates a schematic diagram illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure
  • FIG. 6A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure
  • FIG. 6B illustrates a schematic diagram illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure
  • FIG. 6C illustrates a schematic diagram illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure
  • FIG. 7A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure
  • FIG. 7B illustrates a schematic diagram illustrating an example data retransmission according to embodiments of the present disclosure
  • FIG. 7C illustrates a schematic diagram illustrating another example data retransmission according to embodiments of the present disclosure
  • FIG. 8A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure
  • FIG. 8B illustrates a schematic diagram illustrating an example resource configuration according to embodiments of the present disclosure
  • FIG. 8C illustrates a schematic diagram illustrating another example resource configuration according to embodiments of the present disclosure.
  • FIG. 9 illustrates an example method of communication implemented at a first device in accordance with some embodiments of the present disclosure
  • FIG. 10 illustrates another example method of communication implemented at a first device in accordance with some embodiments of the present disclosure
  • FIG. 11 illustrates an example method of communication implemented at a second device in accordance with some embodiments of the present disclosure
  • FIG. 12 illustrates another example method of communication implemented at a second device in accordance with some embodiments of the present disclosure.
  • FIG. 13 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV)
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a low power node such as a fe
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • Machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the term “occasion” refers to any of the following: 1) a time domain resource and frequency domain resource assigned or granted for a data transmission, for example, the time domain resource may include one or more slots, one or more mini-slots, or one or more symbols; 2) one or more slots in which a DL assignment, UL grant or sidelink grant occurs; 3) one or more symbols in which a DL assignment, UL grant or sidelink grant occurs.
  • symbol refers to an orthogonal frequency division multiplexing (OFDM) symbol or a discrete Fourier transform spread OFDM (DFT-s-OFDM) symbol.
  • slot includes multiple consecutive symbols, e.g., 14 symbols, or 12 symbols.
  • mini-slot includes one or more consecutive symbols, and has less symbol than a slot, e.g., 1, 2, 4, or 7 symbols.
  • data transmission may refer to a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) or a physical sidelink shared channel (PSSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PSSCH physical sidelink shared channel
  • embodiments of the present disclosure provide solutions for resource management so as to overcome the above or other potential issues.
  • a solution for reporting the skipped occasions also referred to as unused occasions herein
  • the resource occupied by skipped occasions may be reallocated for other use or devices.
  • wasting of resources of the unused occasions may be reduced, the over-provision of transmission occasions may be alleviated and system capacity may be improved.
  • a solution for reporting amount of resources to be used in a period so that a proper amount of resources may be configured for subsequent data transmission In this way, the over-provision of transmission occasions may be alleviated and system capacity may be improved.
  • FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented.
  • the communication network 100 may include a first device 110 and a second device 120.
  • the first device 110 may be served by the second device 120.
  • the first device 110 and the second device 120 may communicate with each other via a channel such as a wireless communication channel.
  • the first device 110 may directly communicate with the second device 120.
  • the first device 110 may communicate with the second device via another device (not shown) .
  • the communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , New Radio (NR) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like.
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • NR New Radio
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GERAN GSM EDGE Radio Access Network
  • MTC Machine Type Communication
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • the communication network 100 may include any suitable number of first devices and/or second devices adapted for implementing implementations of the present disclosure.
  • the first device 110 is shown as a terminal device and the second device 120 is shown as a network device.
  • the first device 110 may be a network device and the second device 120 may be a terminal device.
  • the principles and spirits of the present disclosure can be applied to both uplink and downlink transmissions.
  • both the first device 110 and the second device 120 may be terminal devices, and in some embodiments, both the first device 110 and the second device 120 may be network devices.
  • the second device 120 may transmit a configuration regarding a periodicity of occasions for SPS DL transmissions.
  • the first device 110 may receive, from the second device 120, data packets on at least part of the occasions.
  • the second device 120 may transmit a configuration regarding a periodicity of occasions for CG UL transmissions.
  • the first device 110 may transmit, to the second device 120, data packets on at least part of the occasions.
  • the second device 120 may transmit a configuration regarding a periodicity of occasions for CG sidelink transmissions.
  • the first device 110 may receive, from the second device 120, data packets on at least part of the occasions.
  • the second device 120 may transmit, to the first device 110, a configuration regarding a periodicity of occasions for CG sidelink transmissions.
  • the first device 110 may receive from or transmit to a device other than the second device 120 data packets on at least part of the occasions.
  • the second device 120 may transmit, to the first device 110, a configuration regarding an occasion within a period. In some embodiments, the second device 120 may transmit, to the first device 110, a configuration regarding multiple occasions within a period.
  • the maximum number of CG transmission occasions may be semi-statically configured for the largest packet size. This will be described with reference to FIG. 2A.
  • FIG. 2A illustrates a schematic diagram illustrating an example scenario 200A in which some transmission occasions may be skipped according to embodiments of the present disclosure.
  • three periods 210, 220 and 230 with a periodicity P are shown and four occasions are configured within each of the periods 210, 220 and 230.
  • data packets to be transmitted have a medium packet size, and thus only occasions 211 and 212 are used for transmission of the data packets. In this case, occasions 213 and 214 are skipped or unused.
  • data packets to be transmitted have a small packet size, and thus only occasion 221 is used for transmission of the data packets. In this case, occasions 222, 223 and 224 are skipped or unused.
  • data packets to be transmitted have a large packet size, and thus all occasions 231, 232, 233 and 234 are used for transmission of the data packets. In this case, no occasion is skipped or unused. It can be seen that for smaller data packet transmission, some unused CG transmission occasions will be skipped.
  • FIG. 2B illustrates a schematic diagram illustrating another example scenario 200B in which some transmission occasions may be skipped according to embodiments of the present disclosure.
  • data packet 240 arrives and is to be transmitted.
  • Four occasions 241, 242, 243 and 244 are configured within a period with a periodicity P.
  • the occasions 241 and 242 satisfy PDB requirement for the data packet 240, and the occasions 243 and 244 do not satisfy the PDB requirement for the data packet 240.
  • the data packet 240 is only transmitted on the occasions 241 and 242. In this case, the occasions 243 and 244 will be skipped or unused.
  • CG transmission occasions may be over-provided so as to satisfy data traffic with jitter, which means the data packet arriving time fluctuates during a range, the device may select a closest CG transmission occasion for data transmission when a data packet arrives. This will be described with reference to FIG. 2C.
  • FIG. 2C illustrates a schematic diagram illustrating another example scenario 200C in which some transmission occasions may be skipped according to embodiments of the present disclosure.
  • three periods 250, 260 and 270 with a periodicity P are shown and four occasions are configured within each of the periods 250, 260 and 270.
  • the period 250 only an occasion 251 is used for data transmission.
  • the period 260 only an occasion 261 is used for data transmission.
  • the period 270 only an occasion 271 is used for data transmission. In this case, most of the configured occasions will be skipped or unused.
  • embodiments of the present disclosure provide a solution of reporting the unused occasions. This will be described in detail with reference to FIGs. 3A to 7C.
  • FIG. 3A illustrates a schematic diagram illustrating a process 300A for communication according to embodiments of the present disclosure.
  • the process 300A will be described with reference to FIG. 1.
  • the process 300A may involve the first device 110 and the second device 120 as illustrated in FIG. 1. Assuming that the first device 110 is configured with only XR traffic, and the periodicity of XR traffic is known for the first device 110. It is to be understood that this assumption is merely for illustration, and the process 300A may also be carried out without this assumption.
  • the second device 120 may transmit 310, to the first device 110, a configuration indicating a plurality of occasions (for convenience, also referred to as a first plurality of configured occasions herein) within a period.
  • the first device 110 may perform data transmission on at least one occasion in the plurality of occasions.
  • an occasion used for data transmission in the first plurality of configured occasions may be called as a used occasion, and an occasion not used or skipped for data transmission in the first plurality of configured occasions may be called as an unused occasion.
  • the second device 120 may transmit 320, to the first device 110, an indication indicating whether information regarding one or more unused occasions is to be transmitted or reported. In some embodiments, the second device 120 may transmit, to the first device 110, a radio resource control (RRC) configuration indicating whether the information is to be transmitted. In some embodiments, the second device 120 may transmit, to the first device 110, downlink control information (DCI) indicating whether the information is to be transmitted. In some embodiments, the second device 120 may transmit, to the first device 110, a medium access control (MAC) control element (CE) indicating whether the information is to be transmitted. It is to be understood that the indication may be also transmitted in any other suitable ways, and the present disclosure does not limit this aspect.
  • RRC radio resource control
  • DCI downlink control information
  • CE medium access control element
  • the first device 110 Upon receipt of the indication, the first device 110 transmits 330 the information indicating a set of unused occasions in the first plurality of configured occasions.
  • the first device 110 may also transmit the information indicating the set of unused occasions without receiving the indication.
  • the transmission of the information is predefined or preconfigured.
  • the information may comprise an indication of the last occasion used for data transmission (i.e., the last used occasion) in the first plurality of configured occasions.
  • the information may comprise a CG PUSCH occasion index for the last used occasion.
  • the information may comprise a CG configuration index for the last used occasion.
  • the last used occasion may be indicated in any other suitable forms.
  • FIG. 3B illustrates a schematic diagram 300B illustrating an example reporting of skipped transmission occasions according to embodiments of the present disclosure.
  • two periods 311 and 312 are shown and four occasions #0-#3 are configured within each period.
  • occasions #0 and #1 are used for transmission of data packets with a medium packet size.
  • occasion #0 is used for transmission of data packets with a small packet size.
  • Table 1 shows an example of the contents of the information.
  • the transmitted information for the period 311 may be “01”
  • the transmitted information for the period 312 may be “00” .
  • the information may comprise a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
  • the bit mapping indicates whether each of the first plurality of configured occasions is used for data transmission or is skipped.
  • Table 3 shows an example bit mapping for the period 312 of FIG. 3B.
  • FIG. 3B is merely for illustration, and are not intended for limitation.
  • the information may comprise the number of occasions used for data transmission (i.e., the used occasions) in the first plurality of configured occasions.
  • the information may comprise the total number of CG PUSCH occasions that will be used during the current period.
  • the first device 110 may cause the information to be carried by at least one MAC CE of at least one data channel on at least one of the used occasions in the first plurality of configured occasions.
  • the information may be carried by a MAC CE of a data channel (for example, CG PUSCH) on the first occasion used for data transmission (i.e., the first used occasion) .
  • the information may be carried by a MAC CE of a data channel (for example, CG PUSCH) on the last occasion used for data transmission (i.e., the last used occasion) .
  • the information may be carried by a MAC CE of a data channel (for example, CG PUSCH) on each of the occasions used for data transmission (i.e., the used occasions) .
  • the first device 110 may multiplex the information on at least one data channel on at least one of the used occasions in the first plurality of configured occasions.
  • the information may be multiplexed on a data channel (for example, CG PUSCH) on the first occasion used for data transmission (i.e., the first used occasion) .
  • the information may be multiplexed on a data channel (for example, CG PUSCH) on the last occasion used for data transmission (i.e., the last used occasion) .
  • the information may be multiplexed on a data channel (for example, CG PUSCH) on each of the occasions used for data transmission (i.e., the used occasions) .
  • the first device 110 may transmit the information on the first configured occasion in the first plurality of configured occasions.
  • the information may be transmitted on the first configured occasion regardless of whether data transmission is present or not.
  • the second device 120 determines 340 the set of unused occasions from the information. In this way, the set of unused occasions may be reallocated for other use, for example, for other device’s data transmission, then the system capacity is improved.
  • This modification is especially suitable for variable packet size without jitter. This will be described with reference to FIGs. 4A to 4B.
  • FIG. 4A illustrates a schematic diagram illustrating another process 400A for communication according to embodiments of the present disclosure.
  • the process 400A will be described with reference to FIG. 1.
  • the process 400A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the first device 110 may transmit 410 the information with initial transmission on the first configured occasion in the first plurality of configured occasions.
  • the first device 110 may always transmit the first CG PUSCH and the first device 110 may also transmit, in the first CG PUSCH, the information related to unused CG transmission occasions or a buffer status report (BSR) on MAC CE.
  • BSR buffer status report
  • the second device 120 may transmit 411 an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions. For example, the second device 120 may transmit DCI to activate the one or more subsequent configured occasions.
  • the second device 120 may transmit DCI to activate the one or more subsequent configured occasions.
  • any other suitable ways are also feasible.
  • the first device 110 may perform 412 subsequent transmissions on the one or more subsequent configured occasions. That is, the first device 110 will transmit the remaining data on the activated occasions, the un-activated occasions will be allocated for data transmission for other devices.
  • FIG. 4B illustrates a schematic diagram 400B illustrating an example use of transmission occasions according to embodiments of the present disclosure.
  • four occasions #0-#3 are configured within a period shown.
  • the first device 110 transmits the information 421 along with initial data transmission 420.
  • the first device 120 receives DCI 422 for activating the occasions #1 and #2.
  • the first device 110 transmits subsequent transmissions 423 and 424 on the occasions #1 and #2.
  • a second plurality of configured occasions are configured to be associated with the first plurality of configured occasions. That is, a resource bundle (i.e., one-to-one mapping) is formed between an occasion in the second plurality of configured occasions and an occasion in the first plurality of configured occasions. Then a used occasion in the first plurality of configured occasions is indicated by a scheduling request (SR) transmitted on an occasion in the second plurality of configured occasions bundled with the used occasion.
  • SR scheduling request
  • FIG. 5A illustrates a schematic diagram illustrating another process 500A for communication according to embodiments of the present disclosure.
  • the process 500A will be described with reference to FIG. 1.
  • the process 500A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the second device 120 may transmit 510, to the first device 110, a configuration regarding a second plurality of configured occasions.
  • Each occasion in the second plurality of occasions is associated with an occasion in the first plurality of configured occasions and is earlier than the occasion in the first plurality of configured occasions.
  • the second device 120 may configure, for the first device 110, a resource bundle between a CG PUSCH occasion for data transmission and a CG PUCCH occasion for SR transmission, the CG PUCCH occasion being earlier than the CG PUSCH occasion.
  • the PUCCH occasion may be 1-2 symbol short PUCCH format, e.g., PF0.
  • the time gap between PUCCH occasion for SR and PUSCH occasion for data transmission may be configured by the second device 120.
  • the first device 110 may transmit a SR on one of the second plurality of configured occasions if the associated one of the first plurality of configured occasions will be used for data transmission. For example, the first device 110 may transmit a SR on the CG PUCCH occasion if the associated CG PUSCH occasion will be used. The first device 110 doesn’t need to wait a UL grant transmission from the second device and directly transmit UL data on CG PUSCH, which reduces the scheduling latency.
  • the first device 110 may transmit 520 a SR to the second device 120 on an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission (i.e., the first used occasion) in the first plurality of configured occasions.
  • the first device 110 may transmit 520’ a SR to the second device 120 on a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission (i.e., a set of used occasions) in the first plurality of configured occasions.
  • FIG. 5B illustrates a schematic diagram 500B illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure.
  • four CG PUSCH occasions are configured within each period with a periodicity P, and each CG PUSCH occasion is associated with a CG PUCCH occasion.
  • CG PUSCH occasions 531, 532, 533 and 534 in the first period are associated with CG PUCCH occasions 541, 542, 543 and 544 respectively.
  • CG PUSCH occasions 535, 536, 537 and 538 in the second period are associated with CG PUCCH occasions 545, 546, 547 and 548 respectively.
  • CG PUSCH occasion is shown as being adjacent with the associated CG PUCCH occasion in this example, the present disclosure does not limit this aspect. In other embodiments, the CG PUSCH occasion may be spaced from the associated CG PUCCH occasion.
  • CG PUSCH occasions 531 and 532 are used for data transmission in the first period
  • CG PUSCH occasion 537 is used for data transmission in the second period.
  • a SR will be transmitted on each of the occasions 541 and 542 in the first period
  • a SR will be transmitted on the occasion 547 in the second period.
  • other skipped CG PUSCH occasions may be scheduled for other devices by the second device 120.
  • the first device 110 may inform the second device 120 of the used or unused CG PUSCH occasions in the first plurality of configured occasions by some implicit ways. For example, the first device 110 may use different DMRS sequence for generating DMRS signal of CG PUSCH to differentiate whether the CG PUSCH occasion is transmitted or skipped (i.e., used or unused) . Of course, any other similar ways are also feasible.
  • the unused resources may also be informed to the second device 120, and may be reallocated for other use. Accordingly, the system capacity may be improved.
  • the second device 110 may schedule retransmission for all transmission occasions as the second device 110 does not know how many data transmissions the first device 110 transmitted. This will lead to a huge waste of resources.
  • Modification 3 is designed to improve spectrum efficiency of data retransmission due to miss detection of data transmission.
  • the first device 110 may transmit, to the second device 120, the information indicating the set of unused occasions in the first plurality of configured occasions on the first plurality of configured occasions respectively. That is, the information may be transmitted on each occasion in the first plurality of configured occasions. More detailed description will be given with reference to FIGs. 6A to 6C.
  • FIG. 6A illustrates a schematic diagram illustrating another process 600A for communication according to embodiments of the present disclosure.
  • the process 600A will be described with reference to FIG. 1.
  • the process 600A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the first device 110 may transmit 610, at an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. For example, if data traffic has jitter and only one occasion will be used, the first device 110 may transmit, at each occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. For clarity, an example will be described with reference to FIG. 6B.
  • FIG. 6B illustrates a schematic diagram 600B illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure.
  • four CG PUSCH occasions are configured within each period with a periodicity P.
  • indications 621, 622, 623 and 624 are transmitted respectively.
  • the indication 621 indicates whether the CG PUSCH occasion 611 is used for data transmission.
  • the indication 622 indicates whether the CG PUSCH occasion 612 is used for data transmission.
  • the indication 623 indicates whether the CG PUSCH occasion 613 is used for data transmission.
  • the indication 624 indicates whether the CG PUSCH occasion 614 is used for data transmission.
  • the CG PUSCH occasion 611 is used for data transmission, and other CG PUSCH occasions 612-614 are not used for data transmission.
  • the indication 621 may be “1”
  • the indications 622-624 may be “0” respectively.
  • indications 625, 626, 627 and 628 are transmitted respectively.
  • the CG PUSCH occasion 616 is used for data transmission, and other CG PUSCH occasions 615, 617 and 618 are not used for data transmission.
  • the indication 626 may be “1”
  • the indications 625, 627 and 628 may be “0” respectively.
  • the indications may also adopt any other suitable forms.
  • the first device 110 may transmit 610’, at an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. For example, if data traffic has a variable packet size but has no jitter, the first device 110 may transmit, at each occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. For clarity, an example will be described with reference to FIG. 6C.
  • FIG. 6C illustrates a schematic diagram 600C illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure.
  • four CG PUSCH occasions are configured within each period with a periodicity P.
  • indications 641, 642, 643 and 644 are transmitted respectively.
  • the indications 641-644 may be the same indication indicating whether the CG PUSCH occasions 631-634 are used for data transmission.
  • the CG PUSCH occasions 631-633 are used for data transmission, and the CG PUSCH occasion 634 is not used for data transmission.
  • bits comprised in each of the indications 641-644 may be “1110” .
  • indications 645, 646, 647 and 648 are transmitted respectively.
  • the CG PUSCH occasion 635 is used for data transmission, and the CG PUSCH occasions 636-638 are not used for data transmission.
  • bits comprised in each of the indications 645-648 may be “1000” .
  • the indications may also adopt any other suitable forms.
  • the information may be always mapped in the first x symbols of a data transmission on an occasion.
  • x 1 or 2.
  • the information may be mapped in any other suitable ways, and the present disclosure does not limit this aspect.
  • each occasion may use the same or different redundancy versions (RVs) . If different RVs are used, the corresponding RV may be also comprised in the information and transmitted to the second device 120.
  • RVs redundancy versions
  • the second device 120 may schedule 620 the remaining symbols in a data channel of an occasion having no data transmission for other use.
  • the second device 120 may still schedule, for other use, the remaining symbols in a data channel of an occasion having no data transmission. In this way, reliability of transmission of the information indicating the unused occasions is improved.
  • Modification 4 is also designed to improve spectrum efficiency of data retransmission due to miss detection of data transmission.
  • modification 4 a step-by-step retransmission scheduling is provided. The detailed description will be given with reference to FIGs. 7A to 7C.
  • FIG. 7A illustrates a schematic diagram illustrating another process 700A for communication according to embodiments of the present disclosure.
  • the process 700A will be described with reference to FIG. 1.
  • the process 700A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the second device 120 may transmit 710, to the first device 110, an indication of a dynamically scheduled resource for data retransmission along with a set of HARQ process IDs associated with the first plurality of configured occasions.
  • the set of HARQ process IDs may comprise only one HARQ process ID for the first plurality of configured occasions.
  • the set of HARQ process IDs may comprise more than one HARQ process ID for the first plurality of configured occasions.
  • the first device 110 will retransmit the miss-detected data on the dynamically scheduled resource with the information indicating the used/unused occasions.
  • the first device 110 may retransmit 720, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first transmission in the set of HARQ process ID.
  • the set of data transmissions are data transmissions previously performed on the first plurality of configured occasions.
  • the first device 110 may retransmit the data on the first actually transmitted CG PUSCH in the period.
  • the information indicating the unused occasions and a HARQ process ID corresponding to the first actually transmitted CG PUSCH may be multiplexed on the dynamically scheduled resource.
  • the first device 110 may firstly retransmit, on the dynamically scheduled resource, a data transmission associated with the lowest or largest HARQ process ID in the set of data transmissions.
  • the information indicating the unused occasions and a HARQ process ID corresponding to the data transmission may be multiplexed on the dynamically scheduled resource.
  • the second device 120 may determine 730 whether need to schedule another PUSCH resource for data retransmission. Since the second device doesn’t need to schedule PUSCH resource for retransmission of all CG PUSCH occasions in a period, the resource wasting can be lightened. For clarity, some examples will be described with reference to FIGs. 7B and 7C.
  • FIG. 7B illustrates a schematic diagram 700B illustrating an example data retransmission according to embodiments of the present disclosure.
  • four CG PUSCH occasions 741, 742, 743 and 744 are configured within a period with a periodicity P.
  • HARQ process numbers (HPNs) for the CG PUSCH occasions 741, 742, 743 and 744 are 1, 2, 3 and 4 respectively.
  • HPNs HARQ process numbers
  • DCI 745 is received from the second device 120.
  • the DCI 745 may comprise an indication of PUSCH resource 747.
  • the first device 110 may retransmit, on the PUSCH resource 747, the data previously transmitted on the occasion 742, and multiplex, on the PUSCH resource 747, the information 746 indicating the unused occasions 741, 743 and 744.
  • the information 746 may indicate that the number of used occasions is 1.
  • FIG. 7C illustrates a schematic diagram 700C illustrating another example data retransmission according to embodiments of the present disclosure.
  • four CG PUSCH occasions 751, 752, 753 and 754 are configured within a period with a periodicity P. Assuming that HPNs for the CG PUSCH occasions 751, 752, 753 and 754 are 1, 2, 3 and 4 respectively. In this example, the CG PUSCH occasions 752 and 753 are actually used for data transmission but are miss-detected by the second device 120.
  • DCI 755 is received from the second device 120.
  • the DCI 755 may comprise an indication of PUSCH resource 757.
  • the second device 120 may schedule the further resource for the first device 110 by DCI 758.
  • the DCI 758 may comprise an indication of PUSCH resource 759.
  • the first device 110 may retransmit, on the PUSCH resource 759, the data previously transmitted on the occasion 753.
  • the first device 110 may also multiplex, on the PUSCH resource 759, the information (not shown) indicating the unused occasions 751 and 754.
  • the information may indicate that the number of used occasions is 2.
  • the information may be not multiplexed on the PUSCH resource 759 as the second device 120 has known this information. Based on the information 756 and the HPN, the second device 120 may know that no further data transmission needs to be retransmitted and thus no further resource needs to be dynamically scheduled for data transmission.
  • the second device 120 may dynamically schedule resources for the data retransmission based on the actual packet size. Then resources are saved at the expense of increased latency.
  • Embodiments of the present disclosure also provide a solution for reporting amount of resources to be used in a future period. This will be described in details with reference to FIGs. 8A to 8C.
  • FIG. 8A illustrates a schematic diagram illustrating another process 800A for communication according to embodiments of the present disclosure.
  • the process 800A will be described with reference to FIG. 1.
  • the process 800A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the first device 110 transmits 810, to the second device 120, information (for convenience, also referred to as first information herein) indicating amount of resources to be used in a period.
  • information for convenience, also referred to as first information herein
  • the first device 110 has the capability to anticipate the resources to be required during a period in future.
  • the first information may comprise the volume of a packet to be transmitted in the period.
  • the first information may comprise an expected resource allocation parameter in the period, e.g., the time domain resource, modulation and coding scheme (MCS) or the like.
  • the first information may comprise an expected reliability parameter in the period, for example, an expected block error rate (BLER) or the like.
  • the first information may comprise a range of arriving time of the packet. It is to be understood that the first information may comprise any other suitable information.
  • the first device 110 may periodically transmit the first information based on a RRC configuration. In some embodiments, the first device 110 may transmit the first information in response to receiving a dynamic indication from the second device 120, the dynamic indication indicating the transmission of the first information. For example, if more devices are connected to the second device 120, the second device 120 may transmit the dynamic indication so as to improve the system capacity.
  • the first information may be transmitted along with a data transmission. In some embodiments, the first information may be transmitted separately from a data transmission.
  • the second device 120 may decide to update a CG configuration for the period, for example, update the resource allocation for each CG transmission occasion.
  • the second device 120 may transmit 820, to the first device, second information indicating update of a CG configuration for the period.
  • the second device may transmit the second information by DCI.
  • any other suitable ways are also feasible.
  • the first device 110 may perform 830 a data transmission in the period. Some examples will be described with reference to FIGs. 8B and 8C.
  • FIG. 8B illustrates a schematic diagram 800B illustrating an example resource configuration according to embodiments of the present disclosure.
  • the first information is transmitted along with a data transmission.
  • FIG. 8B there periods with a periodicity P are shown.
  • data transmission 820 is transmitted along with first information 821.
  • the first information 821 indicates amount of resources to be used in the second period.
  • DCI 830 is received from the second device 120.
  • the DCI 830 updates CG configuration for data transmission 840 on the second period.
  • the resources allocated for the data transmission 840 is adjusted to be smaller than that allocated for the data transmission 820.
  • the data transmission 840 is transmitted along with first information 841.
  • the first information 840 indicates amount of resources to be used in the third period. In this example, there is no further update for resources for data transmission 850 on the third period. Then the data transmission 850 is transmitted along with first information 851.
  • the first information 851 indicates amount of resources to be used in the next period.
  • FIG. 8C illustrates a schematic diagram 800C illustrating an example resource configuration according to embodiments of the present disclosure.
  • the first information is transmitted separately from a data transmission.
  • FIG. 8C there periods with a periodicity P are shown.
  • data transmission 830 is transmitted.
  • data transmission 840 is transmitted on a PUSCH and first information 850 is transmitted on a PUCCH.
  • the first information 850 indicates amount of resources to be used in the third period.
  • DCI 860 is received from the second device 120.
  • the DCI 860 updates CG configuration for data transmission 870 on the third period.
  • the resources allocated for the data transmission 870 is adjusted to be smaller than that allocated for the data transmission 840 and the data transmission 830. Then the data transmission 870 is transmitted based on the adjusted resources.
  • a CG configuration for the first device 110 may be dynamically updated by the second device 120 based on real-time requirements for the first device 110.
  • the over-provision of CG transmission occasions will be alleviated and the system capacity will be improved.
  • embodiments of the present disclosure provide methods of communication implemented at a first device and a second device. These methods will be described below with reference to FIGs. 9 to 12.
  • FIG. 9 illustrates an example method 900 of communication implemented at a first device in accordance with some embodiments of the present disclosure.
  • the method 900 may be performed at the first device 110 as shown in FIG. 1.
  • the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the first device 110 transmits, to the second device 120, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
  • the information may comprise an indication of the last occasion used for data transmission in the first plurality of configured occasions. In some embodiments, the information may comprise a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. In some embodiments, the information may comprise the number of occasions used for data transmission in the first plurality of configured occasions.
  • the information indicating the set of unused occasions may comprise any combination of the above information or any other suitable information or combination of information.
  • the first device 110 may cause the information to be carried by at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions.
  • the at least one of occasions used for data transmission may comprise the first occasion used for data transmission.
  • the first device 110 may multiplex the information on at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions.
  • the first device 110 may transmit the information on the first configured occasion in the first plurality of configured occasions.
  • the at least one of occasions used for data transmission may comprise the last occasion used for data transmission. In some embodiments, the at least one of occasions used for data transmission may comprise each of the occasions used for data transmission.
  • the first device 110 may receive, from the second device 120, an indication indicating whether the information is to be transmitted, and transmit the information in response to the indication indicating that the information is to be transmitted.
  • the indication may comprise a RRC configuration indicating whether the information is to be transmitted.
  • the indication may comprise DCI indicating whether the information is to be transmitted.
  • the indication may comprise a MAC CE indicating whether the information is to be transmitted.
  • the indication may adopt any combination of the above forms or any other suitable forms.
  • the first device 110 may transmit, to the second device 120, the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In these embodiments, the first device 110 may further receive, from the second device 120, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions, and perform subsequent transmission on the one or more subsequent configured occasions. In this way, resource wasting may be efficiently reduced, and the system capacity may be improved accordingly.
  • the first device 110 may receive, from the second device 120, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions.
  • the first device 110 may transmit a SR to the second device 120 on an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasions.
  • the first device 110 may transmit a SR to the second device 120 on a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
  • the unused resources may also be informed to the network side, and may be reallocated for other use. Accordingly, the system capacity may be improved.
  • the first device 110 may transmit the information on the first plurality of configured occasions respectively. In some embodiments, the first device 110 may transmit, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. In some embodiments, the first device 110 may transmit, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. In this way, reliability of transmission of the information indicating the unused occasions is improved.
  • the first device 110 may receive, from the second device 120, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions.
  • the first device 110 may retransmit, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first transmission in the set of HARQ process ID, the set of data transmissions being previously performed on the first plurality of configured occasions. In this way, step-by-step retransmission scheduling may be achieved. Resources for the data retransmission may be dynamically scheduled based on the actual packet size, and thus resource wasting is reduced.
  • the information of the unused occasions is reported and the unused occasions may be reallocated for other use.
  • the over-provision of configured occasions may be alleviated and the system capacity may be improved.
  • FIG. 10 illustrates another example method 1000 of communication implemented at a first device in accordance with some embodiments of the present disclosure.
  • the method 1000 may be performed at the first device 110 as shown in FIG. 1.
  • the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the first device 110 transmits, to the second device 120, first information indicating amount of resources to be used in a period.
  • the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet.
  • the first information may also comprise any other suitable information.
  • the first device 110 may periodically transmit the first information based on a RRC configuration. In some embodiments, the first device 110 may transmit the first information in response to receiving a dynamic indication from the second device, the dynamic indication indicating the transmission of the first information.
  • the first device 110 may further receive from the second device, second information indicating update of a CG configuration for the period, and perform a transmission in the period based on the updated CG configuration.
  • a CG configuration for a terminal side may be dynamically updated based on real-time requirements for the terminal side.
  • FIG. 11 illustrates an example method 1100 of communication implemented at a second device in accordance with some embodiments of the present disclosure.
  • the method 1100 may be performed at the second device 120 as shown in FIG. 1.
  • the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the second device 120 receives, from the first device 110, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
  • the information may comprise at least one of the following: an indication of the last occasion used for data transmission in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or the number of occasions used for data transmission in the first plurality of configured occasions.
  • the second device 120 may obtain the information from at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions. In some embodiments, the second device 120 may obtain the information from at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions. In some embodiments, the second device 120 may obtain the information on the first configured occasion in the first plurality of configured occasions. In some embodiments, the at least one of occasions used for data transmission may comprise one of the following: the first occasion used for data transmission, the last occasion used for data transmission, or each of the occasions used for data transmission.
  • the second device 120 may transmit, to the first device 110, an indication indicating whether the information is to be transmitted; and receive the information in response to the indication indicating that the information is to be transmitted.
  • the indication may comprise at least one of the following: a RRC configuration indicating whether the information is to be transmitted, DCI indicating whether the information is to be transmitted, or a MAC CE indicating whether the information is to be transmitted.
  • the second device 120 determines the set of unused occasions from the information. In this way, the set of unused occasions may be reallocated for other use.
  • the second device 120 may receive, from the first device 110, the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In these embodiments, the second device 120 may transmit, to the first device 110, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions, and receive, from the first device 110, subsequent transmission on the one or more subsequent configured occasions.
  • the second device 120 may transmit, to the first device 110, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions.
  • the second device 120 may receive a SR from the first device 110 on an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasion.
  • the second device 120 may receive a SR from the first device 110 on a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
  • the second device 120 may receive the information on the first plurality of configured occasions respectively. In some embodiments, the second device 120 may receive, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. In some embodiments, the second device 120 may receive, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
  • the second device 120 may transmit, to the first device 110, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions.
  • the second device 120 may receive, on the dynamically scheduled resource, a data retransmission with at least one of the information and a HARQ process ID corresponding to the data retransmission in the set of HARQ process IDs, and determine, based on the at least one of the information and the HARQ process ID, whether a further resource is dynamically scheduled for data retransmission.
  • the unused CG transmission occasions may be reallocated for other use, and the system capacity may be improved.
  • FIG. 12 illustrates another example method 1200 of communication implemented at a second device in accordance with some embodiments of the present disclosure.
  • the method 1200 may be performed at the second device 120 as shown in FIG. 1.
  • the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the second device 120 receives, from the first device 110, first information indicating amount of resources to be used in a period.
  • the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet.
  • the second device 120 may periodically receive the first information based on a RRC configuration.
  • the second device 120 may further transmit, to the first device 110, an indication indicating the transmission of the first information.
  • the second device 120 may further transmit, to the first device 110, second information indicating update of a CG configuration for the period.
  • a proper amount of resources may be configured by the network side based on real-time requirements of the terminal side.
  • resource wasting may be significantly reduced, and system capacity may be improved.
  • FIG. 13 is a simplified block diagram of a device 1300 that is suitable for implementing embodiments of the present disclosure.
  • the device 1300 can be considered as a further example implementation of the first device 110 or the second device 120 as shown in FIG. 1. Accordingly, the device 1300 can be implemented at or as at least a part of the first device 110 or the second device 120.
  • the device 1300 includes a processor 1310, a memory 1320 coupled to the processor 1310, a suitable transmitter (TX) and receiver (RX) 1340 coupled to the processor 1310, and a communication interface coupled to the TX/RX 1340.
  • the memory 1310 stores at least a part of a program 1330.
  • the TX/RX 1340 is for bidirectional communications.
  • the TX/RX 1340 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • RN relay node
  • Uu interface for communication between the eNB/gNB and a terminal device.
  • the program 1330 is assumed to include program instructions that, when executed by the associated processor 1310, enable the device 1300 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 3A to 12.
  • the embodiments herein may be implemented by computer software executable by the processor 1310 of the device 1300, or by hardware, or by a combination of software and hardware.
  • the processor 1310 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1310 and memory 1320 may form processing means 1350 adapted to implement various embodiments of the present disclosure.
  • the memory 1320 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1320 is shown in the device 1300, there may be several physically distinct memory modules in the device 1300.
  • the processor 1310 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1300 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a first device comprises circuitry configured to: transmit, to a second device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
  • the information may comprise at least one of the following: an indication of the last occasion used for data transmission in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or the number of occasions used for data transmission in the first plurality of configured occasions.
  • the circuitry may be configured to transmit the information by at least one of the following: causing the information to be carried by at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; multiplexing the information on at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; or transmitting the information on the first configured occasion in the first plurality of configured occasions.
  • the at least one of occasions used for data transmission may comprise one of the following: the first occasion used for data transmission, the last occasion used for data transmission, or each of the occasions used for data transmission.
  • the circuitry may be configured to transmit the information by receiving, from the second device, an indication indicating whether the information is to be transmitted; and transmitting the information in response to the indication indicating that the information is to be transmitted.
  • the indication may comprise at least one of the following: a RRC configuration indicating whether the information is to be transmitted, DCI indicating whether the information is to be transmitted, or a MAC CE indicating whether the information is to be transmitted.
  • the circuitry may be configured to transmit the information by transmitting the information with initial transmission on the first configured occasion in the first plurality of configured occasions.
  • the circuitry may be further configured to: receive, from the second device, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions; and perform subsequent transmission on the one or more subsequent configured occasions.
  • the circuitry may be configured to transmit the information by receiving, from the second device, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions; and transmitting a SR to the second device on one of the following: an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasions, or a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
  • the circuitry may be configured to transmit the information by transmitting the information on the first plurality of configured occasions respectively. In some embodiments, the circuitry may be configured to transmit the information on the first plurality of configured occasions respectively by transmitting, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission; or transmitting, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
  • the circuitry may be further configured to: receive, from the second device, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions; and retransmit, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first transmission in the set of HARQ process ID, the set of data transmissions being previously performed on the first plurality of configured occasions.
  • a first device comprises a circuitry configured to transmit, to a second device, first information indicating amount of resources to be used in a period.
  • the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet.
  • the circuitry may be configured to transmit the first information by: periodically transmitting the first information based on a RRC configuration; or transmitting the first information in response to receiving a dynamic indication from the second device, the dynamic indication indicating the transmission of the first information.
  • the circuitry may be further configured to: receive, from the second device, second information indicating update of a CG configuration for the period; and perform a transmission in the period based on the updated CG configuration.
  • a second device comprises a circuitry configured to: receive, from a first device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period; and determine the set of unused occasions from the information.
  • the information may comprise at least one of the following: an indication of the last occasion used for data transmission in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or the number of occasions used for data transmission in the first plurality of configured occasions.
  • the circuitry may be configured to receive the information by at least one of the following: obtaining the information from at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; obtaining the information from at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; or obtaining the information on the first configured occasion in the first plurality of configured occasions.
  • the at least one of occasions used for data transmission may comprise one of the following: the first occasion used for data transmission, the last occasion used for data transmission, or each of the occasions used for data transmission.
  • the circuitry may be configured to receive the information by:transmitting, to the first device, an indication indicating whether the information is to be transmitted; and receiving the information in response to the indication indicating that the information is to be transmitted.
  • the indication may comprise at least one of the following: a RRC configuration indicating whether the information is to be transmitted, DCI indicating whether the information is to be transmitted, or a MAC CE indicating whether the information is to be transmitted.
  • the circuitry may be configured to receive the information by receiving, from the first device, the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In these embodiments, the circuitry may be further configured to: transmit, to the first device, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions; and receive, from the first device, subsequent transmission on the one or more subsequent configured occasions.
  • the circuitry may be configured to receive the information by: transmitting, to the first device, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions; and receiving a SR from the first device on one of the following: an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasion, or a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
  • the circuitry may be configured to receive the information by receiving the information on the first plurality of configured occasions respectively. In some embodiments, the circuitry may be configured to receive the information on the first plurality of configured occasions respectively by: receiving, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission; or receiving, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
  • the circuitry may be further configured to: in accordance with a determination that no data transmission on the first plurality of configured occasions in a period is successfully received, transmit, to the first device, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions; receive, on the dynamically scheduled resource, a data retransmission with at least one of the information and a HARQ process ID corresponding to the data retransmission in the set of HARQ process IDs; and determine, based on the at least one of the information and the HARQ process ID, whether a further resource is dynamically scheduled for data retransmission.
  • a second device comprises a circuitry configured to receive, from a first device, first information indicating amount of resources to be used in a period.
  • the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet.
  • the circuitry may be configured to receive the first information by periodically receiving the first information based on a RRC configuration.
  • the circuitry may be further configured to transmit, to the first device, an indication indicating the transmission of the first information. In some embodiments, the circuitry may be further configured to transmit, to the first device, second information indicating update of a CG configuration for the period.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGs. 3A to 12.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for communication. A first device transmits, to a second device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period. In this way, wasting of resources of the unused occasions may be reduced, the over-provision of transmission occasions may be alleviated and system capacity may be improved.

Description

METHOD, DEVICE AND COMPUTER STORAGE MEDIUM OF COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media of communication for resource management.
BACKGROUND
SPS downlink (DL) transmission and  Type  1 or 2 configured grant (CG) uplink (UL) transmission are supported and enhanced in new radio (NR) technology. They are beneficial to services with periodic packets in terms of control signaling overhead and scheduling latency, especially for an extended reality (XR) service such as virtual reality (VR) , augmented reality (AR) , cloud gaming, etc..
Typically, to satisfy requirements of these services such as high data rate, high reliability and low latency, multiple SPS or CG transmission occasions may be configured for a terminal device within a period of XR traffic, e.g., by configuring multiple SPS or CG configurations or by configuring multiple transmission occasions within a period. This may cause over-provisioning of transmission occasions. The over-provisioning of transmission occasions will cause resource wasting and reduction of system capacity.
SUMMARY
In general, embodiments of the present disclosure provide methods, devices and computer storage media of communication for resource management.
In a first aspect, there is provided a method of communication. The method comprises: transmitting, at a first device and to a second device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
In a second aspect, there is provided a method of communication. The method comprises: transmitting, at a first device and to a second device, first information indicating amount of resources to be used in a period.
In a third aspect, there is provided a method of communication. The method comprises: receiving, at a second device and from a first device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period; and determining the set of unused occasions from the information.
In a fourth aspect, there is provided a method of communication. The method comprises: receiving, at a second device and from a first device, first information indicating amount of resources to be used in a period.
In a fifth aspect, there is provided a device of communication. The device comprises a processor configured to perform the method according to the first or second aspect of the present disclosure.
In a sixth aspect, there is provided a device of communication. The device comprises a processor configured to perform the method according to the third or fourth aspect of the present disclosure.
In a seventh aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the first or second aspect of the present disclosure.
In an eighth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the third or fourth aspect of the present disclosure.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1 illustrates an example communication network in which some embodiments of the present disclosure can be implemented;
FIG. 2A illustrates a schematic diagram illustrating an example scenario in which some transmission occasions may be skipped according to embodiments of the present disclosure;
FIG. 2B illustrates a schematic diagram illustrating another example scenario in which some transmission occasions may be skipped according to embodiments of the present disclosure;
FIG. 2C illustrates a schematic diagram illustrating still another example scenario in which some transmission occasions may be skipped according to embodiments of the present disclosure;
FIG. 3A illustrates a schematic diagram illustrating a process for communication according to embodiments of the present disclosure;
FIG. 3B illustrates a schematic diagram illustrating an example reporting of skipped transmission occasions according to embodiments of the present disclosure;
FIG. 4A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure;
FIG. 4B illustrates a schematic diagram illustrating an example use of transmission occasions according to embodiments of the present disclosure;
FIG. 5A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure;
FIG. 5B illustrates a schematic diagram illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure;
FIG. 6A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure;
FIG. 6B illustrates a schematic diagram illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure;
FIG. 6C illustrates a schematic diagram illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure;
FIG. 7A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure;
FIG. 7B illustrates a schematic diagram illustrating an example data retransmission  according to embodiments of the present disclosure;
FIG. 7C illustrates a schematic diagram illustrating another example data retransmission according to embodiments of the present disclosure;
FIG. 8A illustrates a schematic diagram illustrating another process for communication according to embodiments of the present disclosure;
FIG. 8B illustrates a schematic diagram illustrating an example resource configuration according to embodiments of the present disclosure;
FIG. 8C illustrates a schematic diagram illustrating another example resource configuration according to embodiments of the present disclosure;
FIG. 9 illustrates an example method of communication implemented at a first device in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates another example method of communication implemented at a first device in accordance with some embodiments of the present disclosure;
FIG. 11 illustrates an example method of communication implemented at a second device in accordance with some embodiments of the present disclosure;
FIG. 12 illustrates another example method of communication implemented at a second device in accordance with some embodiments of the present disclosure; and
FIG. 13 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and  scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
The term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from  numerous collected data for a specific function, and can be used to predict some information.
The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’  The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
In the context of the present application, the term “occasion” refers to any of the following: 1) a time domain resource and frequency domain resource assigned or granted for a data transmission, for example, the time domain resource may include one or more slots, one or more mini-slots, or one or more symbols; 2) one or more slots in which a DL assignment, UL grant or sidelink grant occurs; 3) one or more symbols in which a DL assignment, UL grant or sidelink grant occurs.
In the context of the present application, the term “symbol” refers to an orthogonal frequency division multiplexing (OFDM) symbol or a discrete Fourier transform spread OFDM (DFT-s-OFDM) symbol. The term “slot” includes multiple consecutive symbols, e.g., 14 symbols, or 12 symbols. The term “mini-slot” includes one or more consecutive symbols, and has less symbol than a slot, e.g., 1, 2, 4, or 7 symbols.
In the context of the present application, the term “data transmission” may refer to a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) or a physical sidelink shared channel (PSSCH) .
As mentioned above, the over-provisioning of transmission occasions (for convenience, also referred to as occasions hereinafter) will cause resource wasting and reduction of system capacity as some occasions are skipped.
In view of this, embodiments of the present disclosure provide solutions for resource management so as to overcome the above or other potential issues. In one aspect, there is provided a solution for reporting the skipped occasions (also referred to as unused occasions herein) so that the resource occupied by skipped occasions may be reallocated for other use or devices. In this way, wasting of resources of the unused occasions may be  reduced, the over-provision of transmission occasions may be alleviated and system capacity may be improved.
In another aspect, there is provided a solution for reporting amount of resources to be used in a period so that a proper amount of resources may be configured for subsequent data transmission. In this way, the over-provision of transmission occasions may be alleviated and system capacity may be improved.
Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
EXAMPLE OF COMMUNICATION NETWORK
FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 may include a first device 110 and a second device 120. In some embodiments, the first device 110 may be served by the second device 120. The first device 110 and the second device 120 may communicate with each other via a channel such as a wireless communication channel. In some embodiments, the first device 110 may directly communicate with the second device 120. In some embodiments, the first device 110 may communicate with the second device via another device (not shown) .
The communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , New Radio (NR) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like. The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
It is to be understood that the number of devices in FIG. 1 is given for the purpose of illustration without suggesting any limitations to the present disclosure. The communication network 100 may include any suitable number of first devices and/or  second devices adapted for implementing implementations of the present disclosure.
For illustration, the first device 110 is shown as a terminal device and the second device 120 is shown as a network device. Merely for illustration purpose and without suggesting any limitations as to the scope of the present disclosure, some embodiments will be described in the context where the first device 110 is a terminal device and the second device 120 is a network device. It is to be understood that, in other embodiments, the first device 110 may be a network device and the second device 120 may be a terminal device. In other words, the principles and spirits of the present disclosure can be applied to both uplink and downlink transmissions. Further, in some embodiments, both the first device 110 and the second device 120 may be terminal devices, and in some embodiments, both the first device 110 and the second device 120 may be network devices.
In some embodiments, the second device 120 may transmit a configuration regarding a periodicity of occasions for SPS DL transmissions. In this case, the first device 110 may receive, from the second device 120, data packets on at least part of the occasions. In some embodiments, the second device 120 may transmit a configuration regarding a periodicity of occasions for CG UL transmissions. In this case, the first device 110 may transmit, to the second device 120, data packets on at least part of the occasions. In some embodiments, the second device 120 may transmit a configuration regarding a periodicity of occasions for CG sidelink transmissions. In this case, the first device 110 may receive, from the second device 120, data packets on at least part of the occasions. In some embodiments, the second device 120 may transmit, to the first device 110, a configuration regarding a periodicity of occasions for CG sidelink transmissions. In this case, the first device 110 may receive from or transmit to a device other than the second device 120 data packets on at least part of the occasions.
In some embodiments, the second device 120 may transmit, to the first device 110, a configuration regarding an occasion within a period. In some embodiments, the second device 120 may transmit, to the first device 110, a configuration regarding multiple occasions within a period.
In some scenarios, in order to satisfy variable uplink (UL) data packet transmission, the maximum number of CG transmission occasions may be semi-statically configured for the largest packet size. This will be described with reference to FIG. 2A. FIG. 2A illustrates a schematic diagram illustrating an example scenario 200A in which some  transmission occasions may be skipped according to embodiments of the present disclosure.
As shown in FIG. 2A, three  periods  210, 220 and 230 with a periodicity P are shown and four occasions are configured within each of the  periods  210, 220 and 230. In the period 210, data packets to be transmitted have a medium packet size, and thus only  occasions  211 and 212 are used for transmission of the data packets. In this case,  occasions  213 and 214 are skipped or unused. In the period 220, data packets to be transmitted have a small packet size, and thus only occasion 221 is used for transmission of the data packets. In this case, occasions 222, 223 and 224 are skipped or unused. In the period 230, data packets to be transmitted have a large packet size, and thus all  occasions  231, 232, 233 and 234 are used for transmission of the data packets. In this case, no occasion is skipped or unused. It can be seen that for smaller data packet transmission, some unused CG transmission occasions will be skipped.
In some scenarios, if a CG transmission occasion for a packet does not satisfy packet delay budget (PDB) requirement, the packet will be dropped. This will be described with reference to FIG. 2B. FIG. 2B illustrates a schematic diagram illustrating another example scenario 200B in which some transmission occasions may be skipped according to embodiments of the present disclosure.
As shown in FIG. 2B, data packet 240 arrives and is to be transmitted. Four  occasions  241, 242, 243 and 244 are configured within a period with a periodicity P. The  occasions  241 and 242 satisfy PDB requirement for the data packet 240, and the  occasions  243 and 244 do not satisfy the PDB requirement for the data packet 240. Thus, the data packet 240 is only transmitted on the  occasions  241 and 242. In this case, the  occasions  243 and 244 will be skipped or unused.
In some scenarios, CG transmission occasions may be over-provided so as to satisfy data traffic with jitter, which means the data packet arriving time fluctuates during a range, the device may select a closest CG transmission occasion for data transmission when a data packet arrives. This will be described with reference to FIG. 2C. FIG. 2C illustrates a schematic diagram illustrating another example scenario 200C in which some transmission occasions may be skipped according to embodiments of the present disclosure.
As shown in FIG. 2C, three  periods  250, 260 and 270 with a periodicity P are shown and four occasions are configured within each of the  periods  250, 260 and 270. In the period 250, only an occasion 251 is used for data transmission. In the period 260, only  an occasion 261 is used for data transmission. In the period 270, only an occasion 271 is used for data transmission. In this case, most of the configured occasions will be skipped or unused.
In view of the above scenarios, embodiments of the present disclosure provide a solution of reporting the unused occasions. This will be described in detail with reference to FIGs. 3A to 7C.
EXAMPLE IMPLEMENTATION OF REPORTING UNUSED OCCASIONS
FIG. 3A illustrates a schematic diagram illustrating a process 300A for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 300A will be described with reference to FIG. 1. The process 300A may involve the first device 110 and the second device 120 as illustrated in FIG. 1. Assuming that the first device 110 is configured with only XR traffic, and the periodicity of XR traffic is known for the first device 110. It is to be understood that this assumption is merely for illustration, and the process 300A may also be carried out without this assumption.
As shown in FIG. 3A, the second device 120 may transmit 310, to the first device 110, a configuration indicating a plurality of occasions (for convenience, also referred to as a first plurality of configured occasions herein) within a period. The first device 110 may perform data transmission on at least one occasion in the plurality of occasions.
For convenience, in the context of the present disclosure, an occasion used for data transmission in the first plurality of configured occasions may be called as a used occasion, and an occasion not used or skipped for data transmission in the first plurality of configured occasions may be called as an unused occasion.
In some embodiments, the second device 120 may transmit 320, to the first device 110, an indication indicating whether information regarding one or more unused occasions is to be transmitted or reported. In some embodiments, the second device 120 may transmit, to the first device 110, a radio resource control (RRC) configuration indicating whether the information is to be transmitted. In some embodiments, the second device 120 may transmit, to the first device 110, downlink control information (DCI) indicating whether the information is to be transmitted. In some embodiments, the second device 120 may transmit, to the first device 110, a medium access control (MAC) control element (CE) indicating whether the information is to be transmitted. It is to be understood that  the indication may be also transmitted in any other suitable ways, and the present disclosure does not limit this aspect.
Upon receipt of the indication, the first device 110 transmits 330 the information indicating a set of unused occasions in the first plurality of configured occasions. Of course, the first device 110 may also transmit the information indicating the set of unused occasions without receiving the indication. For example, the transmission of the information is predefined or preconfigured.
In some embodiments, the information may comprise an indication of the last occasion used for data transmission (i.e., the last used occasion) in the first plurality of configured occasions. For example, the information may comprise a CG PUSCH occasion index for the last used occasion. As another example, the information may comprise a CG configuration index for the last used occasion. Of course, the last used occasion may be indicated in any other suitable forms.
FIG. 3B illustrates a schematic diagram 300B illustrating an example reporting of skipped transmission occasions according to embodiments of the present disclosure. In this example of FIG. 3B, two  periods  311 and 312 are shown and four occasions #0-#3 are configured within each period. In the period 311, occasions #0 and #1 are used for transmission of data packets with a medium packet size. In the period 312, occasion #0 is used for transmission of data packets with a small packet size.
Assuming that the information indicating the set of unused occasions is the last used occasion. Table 1 shows an example of the contents of the information.
Table 1 An Example of Contents of Information
Information bits CG occasion index of the last used occasion
00 #0
01 #1
10 #2
11 #3
Thus, in the example of FIG. 3B, the transmitted information for the period 311 may be “01” , and the transmitted information for the period 312 may be “00” .
In some embodiments, the information may comprise a bit mapping indicating  whether the first plurality of configured occasions are used for data transmission. In other words, the bit mapping indicates whether each of the first plurality of configured occasions is used for data transmission or is skipped. Some examples will be described below still with reference to FIG. 3B. Table 2 shows an example bit mapping for the period 311 of FIG. 3B.
Table 2 An Example Bit Mapping for Period 311
CG occasion index # 0 #1 #2 #3
Whether Data transmission is done or not 1 1 0 0
Table 3 shows an example bit mapping for the period 312 of FIG. 3B.
Table 3 An Example Bit Mapping for Period 312
CG occasion index # 0 #1 #2 #3
Whether Data transmission is done or not 1 0 0 0
It is to be understood that the above examples of FIG. 3B are merely for illustration, and are not intended for limitation.
In some embodiments, the information may comprise the number of occasions used for data transmission (i.e., the used occasions) in the first plurality of configured occasions. For example, the information may comprise the total number of CG PUSCH occasions that will be used during the current period.
In some embodiments, the first device 110 may cause the information to be carried by at least one MAC CE of at least one data channel on at least one of the used occasions in the first plurality of configured occasions. For example, the information may be carried by a MAC CE of a data channel (for example, CG PUSCH) on the first occasion used for data transmission (i.e., the first used occasion) . As another example, the information may be carried by a MAC CE of a data channel (for example, CG PUSCH) on the last occasion used for data transmission (i.e., the last used occasion) . As still another example, the information may be carried by a MAC CE of a data channel (for example, CG PUSCH) on each of the occasions used for data transmission (i.e., the used occasions) .
In some embodiments, the first device 110 may multiplex the information on at least one data channel on at least one of the used occasions in the first plurality of configured occasions. For example, the information may be multiplexed on a data channel (for example, CG PUSCH) on the first occasion used for data transmission (i.e., the first  used occasion) . As another example, the information may be multiplexed on a data channel (for example, CG PUSCH) on the last occasion used for data transmission (i.e., the last used occasion) . As still another example, the information may be multiplexed on a data channel (for example, CG PUSCH) on each of the occasions used for data transmission (i.e., the used occasions) .
In some embodiments, the first device 110 may transmit the information on the first configured occasion in the first plurality of configured occasions. In other words, the information may be transmitted on the first configured occasion regardless of whether data transmission is present or not.
Return to FIG. 3A, upon receipt of the information, the second device 120 determines 340 the set of unused occasions from the information. In this way, the set of unused occasions may be reallocated for other use, for example, for other device’s data transmission, then the system capacity is improved.
For the transmission of the information indicating the set of unused occasions, some other embodiments will be described below in connection with Modifications 1 to 4.
Modification 1
This modification is especially suitable for variable packet size without jitter. This will be described with reference to FIGs. 4A to 4B.
FIG. 4A illustrates a schematic diagram illustrating another process 400A for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 400A will be described with reference to FIG. 1. The process 400A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
As shown in FIG. 4A, the first device 110 may transmit 410 the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In some embodiments, the first device 110 may always transmit the first CG PUSCH and the first device 110 may also transmit, in the first CG PUSCH, the information related to unused CG transmission occasions or a buffer status report (BSR) on MAC CE.
Upon receipt of the information or BSR, the second device 120 may transmit 411 an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions. For example, the second device 120 may transmit DCI to activate the one or more subsequent configured occasions. Of course, any other  suitable ways are also feasible.
Upon receipt of the indication for activating the one or more subsequent configured occasions, the first device 110 may perform 412 subsequent transmissions on the one or more subsequent configured occasions. That is, the first device 110 will transmit the remaining data on the activated occasions, the un-activated occasions will be allocated for data transmission for other devices.
FIG. 4B illustrates a schematic diagram 400B illustrating an example use of transmission occasions according to embodiments of the present disclosure. In this example of FIG. 4B, four occasions #0-#3 are configured within a period shown. On the occasion #0, the first device 110 transmits the information 421 along with initial data transmission 420. The first device 120 receives DCI 422 for activating the occasions #1 and #2. Then the first device 110 transmits  subsequent transmissions  423 and 424 on the occasions #1 and #2.
In this way, resource wasting may be efficiently reduced, and the system capacity may be improved accordingly.
Modification 2
In this modification, a second plurality of configured occasions are configured to be associated with the first plurality of configured occasions. That is, a resource bundle (i.e., one-to-one mapping) is formed between an occasion in the second plurality of configured occasions and an occasion in the first plurality of configured occasions. Then a used occasion in the first plurality of configured occasions is indicated by a scheduling request (SR) transmitted on an occasion in the second plurality of configured occasions bundled with the used occasion. This will be described with reference to FIGs. 5A to 5B.
FIG. 5A illustrates a schematic diagram illustrating another process 500A for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 500A will be described with reference to FIG. 1. The process 500A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
As shown in FIG. 5A, the second device 120 may transmit 510, to the first device 110, a configuration regarding a second plurality of configured occasions. Each occasion in the second plurality of occasions is associated with an occasion in the first plurality of configured occasions and is earlier than the occasion in the first plurality of configured occasions. For example, the second device 120 may configure, for the first device 110, a  resource bundle between a CG PUSCH occasion for data transmission and a CG PUCCH occasion for SR transmission, the CG PUCCH occasion being earlier than the CG PUSCH occasion. In one example, the PUCCH occasion may be 1-2 symbol short PUCCH format, e.g., PF0. In another example, the time gap between PUCCH occasion for SR and PUSCH occasion for data transmission may be configured by the second device 120.
The first device 110 may transmit a SR on one of the second plurality of configured occasions if the associated one of the first plurality of configured occasions will be used for data transmission. For example, the first device 110 may transmit a SR on the CG PUCCH occasion if the associated CG PUSCH occasion will be used. The first device 110 doesn’t need to wait a UL grant transmission from the second device and directly transmit UL data on CG PUSCH, which reduces the scheduling latency.
In some embodiments, the first device 110 may transmit 520 a SR to the second device 120 on an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission (i.e., the first used occasion) in the first plurality of configured occasions. In some embodiments, the first device 110 may transmit 520’ a SR to the second device 120 on a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission (i.e., a set of used occasions) in the first plurality of configured occasions.
FIG. 5B illustrates a schematic diagram 500B illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure. In this example of FIG. 5B, four CG PUSCH occasions are configured within each period with a periodicity P, and each CG PUSCH occasion is associated with a CG PUCCH occasion. As shown in FIG. 5B,  CG PUSCH occasions  531, 532, 533 and 534 in the first period are associated with  CG PUCCH occasions  541, 542, 543 and 544 respectively.  CG PUSCH occasions  535, 536, 537 and 538 in the second period are associated with CG PUCCH occasions 545, 546, 547 and 548 respectively. It is to be understood that although a CG PUSCH occasion is shown as being adjacent with the associated CG PUCCH occasion in this example, the present disclosure does not limit this aspect. In other embodiments, the CG PUSCH occasion may be spaced from the associated CG PUCCH occasion.
In this example of FIG. 5B,  CG PUSCH occasions  531 and 532 are used for data  transmission in the first period, and CG PUSCH occasion 537 is used for data transmission in the second period. In this case, a SR will be transmitted on each of the  occasions  541 and 542 in the first period, and a SR will be transmitted on the occasion 547 in the second period. Then other skipped CG PUSCH occasions may be scheduled for other devices by the second device 120.
In some embodiments, the first device 110 may inform the second device 120 of the used or unused CG PUSCH occasions in the first plurality of configured occasions by some implicit ways. For example, the first device 110 may use different DMRS sequence for generating DMRS signal of CG PUSCH to differentiate whether the CG PUSCH occasion is transmitted or skipped (i.e., used or unused) . Of course, any other similar ways are also feasible.
In this way, the unused resources may also be informed to the second device 120, and may be reallocated for other use. Accordingly, the system capacity may be improved.
Modification 3
In some scenarios, if a part of transmission occasions are used for data transmission but the data transmission is miss-detected by the second device 110, the second device 110 may schedule retransmission for all transmission occasions as the second device 110 does not know how many data transmissions the first device 110 transmitted. This will lead to a huge waste of resources.
Modification 3 is designed to improve spectrum efficiency of data retransmission due to miss detection of data transmission. In modification 3, the first device 110 may transmit, to the second device 120, the information indicating the set of unused occasions in the first plurality of configured occasions on the first plurality of configured occasions respectively. That is, the information may be transmitted on each occasion in the first plurality of configured occasions. More detailed description will be given with reference to FIGs. 6A to 6C.
FIG. 6A illustrates a schematic diagram illustrating another process 600A for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 600A will be described with reference to FIG. 1. The process 600A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
As shown in FIG. 6A, in some embodiments, the first device 110 may transmit 610, at an occasion in the first plurality of configured occasions, an indication indicating  whether the occasion is used for data transmission. For example, if data traffic has jitter and only one occasion will be used, the first device 110 may transmit, at each occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. For clarity, an example will be described with reference to FIG. 6B.
FIG. 6B illustrates a schematic diagram 600B illustrating another example reporting of skipped transmission occasions according to embodiments of the present disclosure. In this example of FIG. 6B, four CG PUSCH occasions are configured within each period with a periodicity P. As shown in FIG. 6B, on  CG PUSCH occasions  611, 612, 613 and 614 in the first period,  indications  621, 622, 623 and 624 are transmitted respectively. The indication 621 indicates whether the CG PUSCH occasion 611 is used for data transmission. The indication 622 indicates whether the CG PUSCH occasion 612 is used for data transmission. The indication 623 indicates whether the CG PUSCH occasion 613 is used for data transmission. The indication 624 indicates whether the CG PUSCH occasion 614 is used for data transmission. In this example of FIG. 6B, the CG PUSCH occasion 611 is used for data transmission, and other CG PUSCH occasions 612-614 are not used for data transmission. For example, the indication 621 may be “1” , and the indications 622-624 may be “0” respectively.
Similarly, on  CG PUSCH occasions  615, 616, 617 and 618 in the second period,  indications  625, 626, 627 and 628 are transmitted respectively. In this example of FIG. 6B, the CG PUSCH occasion 616 is used for data transmission, and other  CG PUSCH occasions  615, 617 and 618 are not used for data transmission. For example, the indication 626 may be “1” , and the  indications  625, 627 and 628 may be “0” respectively. Of course, the indications may also adopt any other suitable forms.
Return to FIG. 6A, in some alternative embodiments, the first device 110 may transmit 610’, at an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. For example, if data traffic has a variable packet size but has no jitter, the first device 110 may transmit, at each occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. For clarity, an example will be described with reference to FIG. 6C.
FIG. 6C illustrates a schematic diagram 600C illustrating another example  reporting of skipped transmission occasions according to embodiments of the present disclosure. In this example of FIG. 6C, four CG PUSCH occasions are configured within each period with a periodicity P. As shown in FIG. 6C, on CG PUSCH occasions 631,632, 633 and 634 in the first period,  indications  641, 642, 643 and 644 are transmitted respectively. The indications 641-644 may be the same indication indicating whether the CG PUSCH occasions 631-634 are used for data transmission. In this example of FIG. 6C, the CG PUSCH occasions 631-633 are used for data transmission, and the CG PUSCH occasion 634 is not used for data transmission. For example, bits comprised in each of the indications 641-644 may be “1110” .
Similarly, on CG PUSCH occasions 635,636, 637 and 638 in the second period,  indications  645, 646, 647 and 648 are transmitted respectively. In this example of FIG. 6C, the CG PUSCH occasion 635 is used for data transmission, and the CG PUSCH occasions 636-638 are not used for data transmission. For example, bits comprised in each of the indications 645-648 may be “1000” . Of course, the indications may also adopt any other suitable forms.
In some embodiments, as shown in FIGs. 6B and 6C, the information may be always mapped in the first x symbols of a data transmission on an occasion. For example, x=1 or 2. Of course, the information may be mapped in any other suitable ways, and the present disclosure does not limit this aspect. In some embodiments, each occasion may use the same or different redundancy versions (RVs) . If different RVs are used, the corresponding RV may be also comprised in the information and transmitted to the second device 120.
Return to FIG. 6A, upon receipt of the information, the second device 120 may schedule 620 the remaining symbols in a data channel of an occasion having no data transmission for other use.
It can be seen that although all configured occasions are used by the first device 110 for transmission of the information, but the second device 120 may still schedule, for other use, the remaining symbols in a data channel of an occasion having no data transmission. In this way, reliability of transmission of the information indicating the unused occasions is improved.
Modification 4
This modification is an alternative for Modification 3. That is, Modification 4 is  also designed to improve spectrum efficiency of data retransmission due to miss detection of data transmission. In modification 4, a step-by-step retransmission scheduling is provided. The detailed description will be given with reference to FIGs. 7A to 7C.
FIG. 7A illustrates a schematic diagram illustrating another process 700A for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 700A will be described with reference to FIG. 1. The process 700A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
As shown in FIG. 7A, if no data transmission on the first plurality of configured occasions in a period is successfully received, the second device 120 may transmit 710, to the first device 110, an indication of a dynamically scheduled resource for data retransmission along with a set of HARQ process IDs associated with the first plurality of configured occasions. In some embodiments, the set of HARQ process IDs may comprise only one HARQ process ID for the first plurality of configured occasions. In some embodiments, the set of HARQ process IDs may comprise more than one HARQ process ID for the first plurality of configured occasions.
The first device 110 will retransmit the miss-detected data on the dynamically scheduled resource with the information indicating the used/unused occasions. In some embodiments, the first device 110 may retransmit 720, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first transmission in the set of HARQ process ID. The set of data transmissions are data transmissions previously performed on the first plurality of configured occasions. For example, the first device 110 may retransmit the data on the first actually transmitted CG PUSCH in the period. The information indicating the unused occasions and a HARQ process ID corresponding to the first actually transmitted CG PUSCH may be multiplexed on the dynamically scheduled resource.
Alternatively, instead of the first data transmission, the first device 110 may firstly retransmit, on the dynamically scheduled resource, a data transmission associated with the lowest or largest HARQ process ID in the set of data transmissions. In this case, the information indicating the unused occasions and a HARQ process ID corresponding to the data transmission may be multiplexed on the dynamically scheduled resource.
Based on the received information and HARQ process ID, the second device 120  may determine 730 whether need to schedule another PUSCH resource for data retransmission. Since the second device doesn’t need to schedule PUSCH resource for retransmission of all CG PUSCH occasions in a period, the resource wasting can be lightened. For clarity, some examples will be described with reference to FIGs. 7B and 7C.
FIG. 7B illustrates a schematic diagram 700B illustrating an example data retransmission according to embodiments of the present disclosure. In this example of FIG. 7B, four  CG PUSCH occasions  741, 742, 743 and 744 are configured within a period with a periodicity P. Assuming that HARQ process numbers (HPNs) for the  CG PUSCH occasions  741, 742, 743 and 744 are 1, 2, 3 and 4 respectively. In this example, only the CG PUSCH occasion 742 is actually used for data transmission but is miss-detected by the second device 120.
As shown in FIG. 7B, DCI 745 is received from the second device 120. For example, the DCI 745 may comprise an indication of PUSCH resource 747. The DCI 745 may also comprise HPN=1 and new data indicator (NDI) =1 to indicate retransmission for data transmission in the first period. It can be known that the PUSCH resource 747 is scheduled for retransmission of data transmission on the occasions 741,742, 743 and 744.
The first device 110 may retransmit, on the PUSCH resource 747, the data previously transmitted on the occasion 742, and multiplex, on the PUSCH resource 747, the information 746 indicating the  unused occasions  741, 743 and 744. For example, the information 746 may indicate that the number of used occasions is 1. The first device 110 may also multiplex, on the PUSCH resource 747, a HPN (i.e., HPN=2) corresponding to the data transmission previously transmitted on the occasion 742. Based on the information 746, the second device 120 may know that no further data transmission needs to be retransmitted and thus no further resource needs to be dynamically scheduled for data transmission.
FIG. 7C illustrates a schematic diagram 700C illustrating another example data retransmission according to embodiments of the present disclosure. In this example of FIG. 7C, four  CG PUSCH occasions  751, 752, 753 and 754 are configured within a period with a periodicity P. Assuming that HPNs for the  CG PUSCH occasions  751, 752, 753 and 754 are 1, 2, 3 and 4 respectively. In this example, the  CG PUSCH occasions  752 and 753 are actually used for data transmission but are miss-detected by the second device 120.
As shown in FIG. 7C, DCI 755 is received from the second device 120. For example, the DCI 755 may comprise an indication of PUSCH resource 757. The DCI 755 may also comprise HPN=1 and NDI=1 to indicate retransmission for data transmission in the first period. It can be known that the PUSCH resource 757 is scheduled for retransmission of data transmission on the  occasions  751, 752, 753 and 754. Based on the information 756, for example, the information 756 may indicate that the number of used occasions is 2 and the HARQ process ID (HPN) =2 for the first data transmission, the second device 120 may know that there is further data transmission to be retransmitted and thus a further resource needs to be dynamically scheduled for data transmission. Thus, the second device 120 may schedule the further resource for the first device 110 by DCI 758.
For example, the DCI 758 may comprise an indication of PUSCH resource 759. The DCI 758 may also comprise HPN=3 and NDI=1 to indicate retransmission for data transmission in the first period. It can be known that the PUSCH resource 759 is scheduled for retransmission of data transmission on the occasion 753.
The first device 110 may retransmit, on the PUSCH resource 759, the data previously transmitted on the occasion 753. The first device 110 may multiplex, on the PUSCH resource 759, a HPN (i.e., HPN=3) corresponding to the data transmission previously transmitted on the occasion 753. In some embodiments, the first device 110 may also multiplex, on the PUSCH resource 759, the information (not shown) indicating the  unused occasions  751 and 754. For example, the information may indicate that the number of used occasions is 2. Of course, the information may be not multiplexed on the PUSCH resource 759 as the second device 120 has known this information. Based on the information 756 and the HPN, the second device 120 may know that no further data transmission needs to be retransmitted and thus no further resource needs to be dynamically scheduled for data transmission.
With the step-by-step retransmission scheduling described above, the second device 120 may dynamically schedule resources for the data retransmission based on the actual packet size. Then resources are saved at the expense of increased latency.
EXAMPLE IMPLEMENTATION OF REPORTING REQUIRED AMOUNT OF RESOURCES
Embodiments of the present disclosure also provide a solution for reporting amount of resources to be used in a future period. This will be described in details with reference to FIGs. 8A to 8C.
FIG. 8A illustrates a schematic diagram illustrating another process 800A for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 800A will be described with reference to FIG. 1. The process 800A may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
As shown in FIG. 8A, the first device 110 transmits 810, to the second device 120, information (for convenience, also referred to as first information herein) indicating amount of resources to be used in a period. For example, the first device 110 has the capability to anticipate the resources to be required during a period in future.
In some embodiments, the first information may comprise the volume of a packet to be transmitted in the period. In some embodiments, the first information may comprise an expected resource allocation parameter in the period, e.g., the time domain resource, modulation and coding scheme (MCS) or the like. In some embodiments, the first information may comprise an expected reliability parameter in the period, for example, an expected block error rate (BLER) or the like. In some embodiments, the first information may comprise a range of arriving time of the packet. It is to be understood that the first information may comprise any other suitable information.
In some embodiments, the first device 110 may periodically transmit the first information based on a RRC configuration. In some embodiments, the first device 110 may transmit the first information in response to receiving a dynamic indication from the second device 120, the dynamic indication indicating the transmission of the first information. For example, if more devices are connected to the second device 120, the second device 120 may transmit the dynamic indication so as to improve the system capacity.
In some embodiments, the first information may be transmitted along with a data transmission. In some embodiments, the first information may be transmitted separately from a data transmission.
Based on the first information, the second device 120 may decide to update a CG configuration for the period, for example, update the resource allocation for each CG transmission occasion. In some embodiments, the second device 120 may transmit 820, to the first device, second information indicating update of a CG configuration for the period. For example, the second device may transmit the second information by DCI. For example, the DCI may be scrambled by CS-RNTI with NDI=0, and the HPN field in the  DCI may indicate a CG configuration index. Of course, any other suitable ways are also feasible.
Based on the updated CG configuration, the first device 110 may perform 830 a data transmission in the period. Some examples will be described with reference to FIGs. 8B and 8C.
FIG. 8B illustrates a schematic diagram 800B illustrating an example resource configuration according to embodiments of the present disclosure. In this example, the first information is transmitted along with a data transmission.
As shown in FIG. 8B, there periods with a periodicity P are shown. In the first period, data transmission 820 is transmitted along with first information 821. The first information 821 indicates amount of resources to be used in the second period. Then DCI 830 is received from the second device 120. The DCI 830 updates CG configuration for data transmission 840 on the second period. In this example, the resources allocated for the data transmission 840 is adjusted to be smaller than that allocated for the data transmission 820.
Then the data transmission 840 is transmitted along with first information 841. The first information 840 indicates amount of resources to be used in the third period. In this example, there is no further update for resources for data transmission 850 on the third period. Then the data transmission 850 is transmitted along with first information 851. The first information 851 indicates amount of resources to be used in the next period.
FIG. 8C illustrates a schematic diagram 800C illustrating an example resource configuration according to embodiments of the present disclosure. In this example, the first information is transmitted separately from a data transmission.
As shown in FIG. 8C, there periods with a periodicity P are shown. In the first period, data transmission 830 is transmitted. In the second period, data transmission 840 is transmitted on a PUSCH and first information 850 is transmitted on a PUCCH. The first information 850 indicates amount of resources to be used in the third period. Then DCI 860 is received from the second device 120. The DCI 860 updates CG configuration for data transmission 870 on the third period. In this example, the resources allocated for the data transmission 870 is adjusted to be smaller than that allocated for the data transmission 840 and the data transmission 830. Then the data transmission 870 is transmitted based on the adjusted resources.
With such information indicating amount of resources to be used in a future period, a CG configuration for the first device 110 may be dynamically updated by the second device 120 based on real-time requirements for the first device 110. Thus, the over-provision of CG transmission occasions will be alleviated and the system capacity will be improved.
It is to be understood that although the above description is described in connection with CG configuration or CG transmission occasions, embodiments of the present disclosure may also apply to SPS configuration or SPS transmission occasions. The present disclosure does not limit this aspect.
EXAMPLE IMPLEMENTATION OF METHODS
Accordingly, embodiments of the present disclosure provide methods of communication implemented at a first device and a second device. These methods will be described below with reference to FIGs. 9 to 12.
FIG. 9 illustrates an example method 900 of communication implemented at a first device in accordance with some embodiments of the present disclosure. For example, the method 900 may be performed at the first device 110 as shown in FIG. 1. For the purpose of discussion, in the following, the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 910, the first device 110 transmits, to the second device 120, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
In some embodiments, the information may comprise an indication of the last occasion used for data transmission in the first plurality of configured occasions. In some embodiments, the information may comprise a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. In some embodiments, the information may comprise the number of occasions used for data transmission in the first plurality of configured occasions. Of course, the information indicating the set of unused occasions may comprise any combination of the above information or any other suitable information or combination of information.
In some embodiments, the first device 110 may cause the information to be carried  by at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions. In some embodiments, the at least one of occasions used for data transmission may comprise the first occasion used for data transmission. In some embodiments, the first device 110 may multiplex the information on at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions. In some embodiments, the first device 110 may transmit the information on the first configured occasion in the first plurality of configured occasions.
In some embodiments, the at least one of occasions used for data transmission may comprise the last occasion used for data transmission. In some embodiments, the at least one of occasions used for data transmission may comprise each of the occasions used for data transmission.
In some embodiments, the first device 110 may receive, from the second device 120, an indication indicating whether the information is to be transmitted, and transmit the information in response to the indication indicating that the information is to be transmitted. In some embodiments, the indication may comprise a RRC configuration indicating whether the information is to be transmitted. In some embodiments, the indication may comprise DCI indicating whether the information is to be transmitted. In some embodiments, the indication may comprise a MAC CE indicating whether the information is to be transmitted. Of course, the indication may adopt any combination of the above forms or any other suitable forms.
In some embodiments, the first device 110 may transmit, to the second device 120, the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In these embodiments, the first device 110 may further receive, from the second device 120, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions, and perform subsequent transmission on the one or more subsequent configured occasions. In this way, resource wasting may be efficiently reduced, and the system capacity may be improved accordingly.
In some embodiments, the first device 110 may receive, from the second device 120, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured  occasions. In these embodiments, the first device 110 may transmit a SR to the second device 120 on an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasions. Alternatively, the first device 110 may transmit a SR to the second device 120 on a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions. In this way, the unused resources may also be informed to the network side, and may be reallocated for other use. Accordingly, the system capacity may be improved.
In some embodiments, the first device 110 may transmit the information on the first plurality of configured occasions respectively. In some embodiments, the first device 110 may transmit, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. In some embodiments, the first device 110 may transmit, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission. In this way, reliability of transmission of the information indicating the unused occasions is improved.
In some embodiments, the first device 110 may receive, from the second device 120, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions. In these embodiments, the first device 110 may retransmit, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first transmission in the set of HARQ process ID, the set of data transmissions being previously performed on the first plurality of configured occasions. In this way, step-by-step retransmission scheduling may be achieved. Resources for the data retransmission may be dynamically scheduled based on the actual packet size, and thus resource wasting is reduced.
With the method of FIG. 9, the information of the unused occasions is reported and the unused occasions may be reallocated for other use. Thus, the over-provision of configured occasions may be alleviated and the system capacity may be improved.
FIG. 10 illustrates another example method 1000 of communication implemented  at a first device in accordance with some embodiments of the present disclosure. For example, the method 1000 may be performed at the first device 110 as shown in FIG. 1. For the purpose of discussion, in the following, the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 1010, the first device 110 transmits, to the second device 120, first information indicating amount of resources to be used in a period. In some embodiments, the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet. Of course, the first information may also comprise any other suitable information.
In some embodiments, the first device 110 may periodically transmit the first information based on a RRC configuration. In some embodiments, the first device 110 may transmit the first information in response to receiving a dynamic indication from the second device, the dynamic indication indicating the transmission of the first information.
In some embodiments, the first device 110 may further receive from the second device, second information indicating update of a CG configuration for the period, and perform a transmission in the period based on the updated CG configuration.
With the method of FIG. 10, information indicating amount of resources to be used in a future period is reported to the network side, and then a CG configuration for a terminal side may be dynamically updated based on real-time requirements for the terminal side. Thus, the over-provision of CG transmission occasions will be alleviated and the system capacity will be improved.
FIG. 11 illustrates an example method 1100 of communication implemented at a second device in accordance with some embodiments of the present disclosure. For example, the method 1100 may be performed at the second device 120 as shown in FIG. 1. For the purpose of discussion, in the following, the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
As shown in FIG. 11, at block 1110, the second device 120 receives, from the first  device 110, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
In some embodiments, the information may comprise at least one of the following: an indication of the last occasion used for data transmission in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or the number of occasions used for data transmission in the first plurality of configured occasions.
In some embodiments, the second device 120 may obtain the information from at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions. In some embodiments, the second device 120 may obtain the information from at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions. In some embodiments, the second device 120 may obtain the information on the first configured occasion in the first plurality of configured occasions. In some embodiments, the at least one of occasions used for data transmission may comprise one of the following: the first occasion used for data transmission, the last occasion used for data transmission, or each of the occasions used for data transmission.
In some embodiments, the second device 120 may transmit, to the first device 110, an indication indicating whether the information is to be transmitted; and receive the information in response to the indication indicating that the information is to be transmitted. In some embodiments, the indication may comprise at least one of the following: a RRC configuration indicating whether the information is to be transmitted, DCI indicating whether the information is to be transmitted, or a MAC CE indicating whether the information is to be transmitted.
At block 1120, the second device 120 determines the set of unused occasions from the information. In this way, the set of unused occasions may be reallocated for other use.
In some embodiments, the second device 120 may receive, from the first device 110, the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In these embodiments, the second device 120 may transmit, to the first device 110, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions, and receive, from the  first device 110, subsequent transmission on the one or more subsequent configured occasions.
In some embodiments, the second device 120 may transmit, to the first device 110, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions. In these embodiments, the second device 120 may receive a SR from the first device 110 on an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasion. Alternatively, the second device 120 may receive a SR from the first device 110 on a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
In some embodiments, the second device 120 may receive the information on the first plurality of configured occasions respectively. In some embodiments, the second device 120 may receive, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission. In some embodiments, the second device 120 may receive, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
In some embodiments, if no data transmission on the first plurality of configured occasions in a period is successfully received, the second device 120 may transmit, to the first device 110, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions. In these embodiments, the second device 120 may receive, on the dynamically scheduled resource, a data retransmission with at least one of the information and a HARQ process ID corresponding to the data retransmission in the set of HARQ process IDs, and determine, based on the at least one of the information and the HARQ process ID, whether a further resource is dynamically scheduled for data retransmission.
With the method 1100, the unused CG transmission occasions may be reallocated for other use, and the system capacity may be improved.
FIG. 12 illustrates another example method 1200 of communication implemented at a second device in accordance with some embodiments of the present disclosure. For example, the method 1200 may be performed at the second device 120 as shown in FIG. 1. For the purpose of discussion, in the following, the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
As shown in FIG. 12, at block 1210, the second device 120 receives, from the first device 110, first information indicating amount of resources to be used in a period. In some embodiments, the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet. In some embodiments, the second device 120 may periodically receive the first information based on a RRC configuration.
In some embodiments, the second device 120 may further transmit, to the first device 110, an indication indicating the transmission of the first information.
In some embodiments, the second device 120 may further transmit, to the first device 110, second information indicating update of a CG configuration for the period.
With the method of FIG. 12, a proper amount of resources may be configured by the network side based on real-time requirements of the terminal side. Thus resource wasting may be significantly reduced, and system capacity may be improved.
EXAMPLE IMPLEMENTATION OF DEVICE
FIG. 13 is a simplified block diagram of a device 1300 that is suitable for implementing embodiments of the present disclosure. The device 1300 can be considered as a further example implementation of the first device 110 or the second device 120 as shown in FIG. 1. Accordingly, the device 1300 can be implemented at or as at least a part of the first device 110 or the second device 120.
As shown, the device 1300 includes a processor 1310, a memory 1320 coupled to the processor 1310, a suitable transmitter (TX) and receiver (RX) 1340 coupled to the processor 1310, and a communication interface coupled to the TX/RX 1340. The memory 1310 stores at least a part of a program 1330. The TX/RX 1340 is for bidirectional communications. The TX/RX 1340 has at least one antenna to facilitate communication,  though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
The program 1330 is assumed to include program instructions that, when executed by the associated processor 1310, enable the device 1300 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 3A to 12. The embodiments herein may be implemented by computer software executable by the processor 1310 of the device 1300, or by hardware, or by a combination of software and hardware. The processor 1310 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1310 and memory 1320 may form processing means 1350 adapted to implement various embodiments of the present disclosure.
The memory 1320 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1320 is shown in the device 1300, there may be several physically distinct memory modules in the device 1300. The processor 1310 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1300 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a first device comprises circuitry configured to: transmit, to a second device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
In some embodiments, the information may comprise at least one of the following: an indication of the last occasion used for data transmission in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or the number of occasions used for data transmission in the first plurality of configured occasions.
In some embodiments, the circuitry may be configured to transmit the information by at least one of the following: causing the information to be carried by at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; multiplexing the information on at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; or transmitting the information on the first configured occasion in the first plurality of configured occasions. In some embodiments, the at least one of occasions used for data transmission may comprise one of the following: the first occasion used for data transmission, the last occasion used for data transmission, or each of the occasions used for data transmission.
In some embodiments, the circuitry may be configured to transmit the information by receiving, from the second device, an indication indicating whether the information is to be transmitted; and transmitting the information in response to the indication indicating that the information is to be transmitted. In some embodiments, the indication may comprise at least one of the following: a RRC configuration indicating whether the information is to be transmitted, DCI indicating whether the information is to be transmitted, or a MAC CE indicating whether the information is to be transmitted.
In some embodiments, the circuitry may be configured to transmit the information by transmitting the information with initial transmission on the first configured occasion in the first plurality of configured occasions. In these embodiments, the circuitry may be further configured to: receive, from the second device, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions; and perform subsequent transmission on the one or more subsequent configured occasions.
In some embodiments, the circuitry may be configured to transmit the information by receiving, from the second device, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the  occasion in the first plurality of configured occasions; and transmitting a SR to the second device on one of the following: an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasions, or a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
In some embodiments, the circuitry may be configured to transmit the information by transmitting the information on the first plurality of configured occasions respectively. In some embodiments, the circuitry may be configured to transmit the information on the first plurality of configured occasions respectively by transmitting, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission; or transmitting, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
In some embodiments, the circuitry may be further configured to: receive, from the second device, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions; and retransmit, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first transmission in the set of HARQ process ID, the set of data transmissions being previously performed on the first plurality of configured occasions.
In some embodiments, a first device comprises a circuitry configured to transmit, to a second device, first information indicating amount of resources to be used in a period. In some embodiments, the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet.
In some embodiments, the circuitry may be configured to transmit the first information by: periodically transmitting the first information based on a RRC configuration; or transmitting the first information in response to receiving a dynamic indication from the second device, the dynamic indication indicating the transmission of the  first information.
In some embodiments, the circuitry may be further configured to: receive, from the second device, second information indicating update of a CG configuration for the period; and perform a transmission in the period based on the updated CG configuration.
In some embodiments, a second device comprises a circuitry configured to: receive, from a first device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period; and determine the set of unused occasions from the information. In some embodiments, the information may comprise at least one of the following: an indication of the last occasion used for data transmission in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or the number of occasions used for data transmission in the first plurality of configured occasions.
In some embodiments, the circuitry may be configured to receive the information by at least one of the following: obtaining the information from at least one MAC CE of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; obtaining the information from at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; or obtaining the information on the first configured occasion in the first plurality of configured occasions. In some embodiments, the at least one of occasions used for data transmission may comprise one of the following: the first occasion used for data transmission, the last occasion used for data transmission, or each of the occasions used for data transmission.
In some embodiments, the circuitry may be configured to receive the information by:transmitting, to the first device, an indication indicating whether the information is to be transmitted; and receiving the information in response to the indication indicating that the information is to be transmitted. In some embodiments, the indication may comprise at least one of the following: a RRC configuration indicating whether the information is to be transmitted, DCI indicating whether the information is to be transmitted, or a MAC CE indicating whether the information is to be transmitted.
In some embodiments, the circuitry may be configured to receive the information by receiving, from the first device, the information with initial transmission on the first  configured occasion in the first plurality of configured occasions. In these embodiments, the circuitry may be further configured to: transmit, to the first device, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions; and receive, from the first device, subsequent transmission on the one or more subsequent configured occasions.
In some embodiments, the circuitry may be configured to receive the information by: transmitting, to the first device, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions; and receiving a SR from the first device on one of the following: an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasion, or a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
In some embodiments, the circuitry may be configured to receive the information by receiving the information on the first plurality of configured occasions respectively. In some embodiments, the circuitry may be configured to receive the information on the first plurality of configured occasions respectively by: receiving, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission; or receiving, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
In some embodiments, the circuitry may be further configured to: in accordance with a determination that no data transmission on the first plurality of configured occasions in a period is successfully received, transmit, to the first device, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions; receive, on the dynamically scheduled resource, a data retransmission with at least one of the information and a HARQ process ID corresponding to the data retransmission in the set of HARQ process IDs; and determine, based on the at least one of the information and the HARQ process ID, whether a further resource is dynamically scheduled for data retransmission.
In some embodiments, a second device comprises a circuitry configured to receive, from a first device, first information indicating amount of resources to be used in a period. In some embodiments, the first information may comprise at least one of the following: the volume of a packet to be transmitted in the period, an expected resource allocation parameter in the period, an expected reliability parameter in the period, or a range of arriving time of the packet. In some embodiments, the circuitry may be configured to receive the first information by periodically receiving the first information based on a RRC configuration.
In some embodiments, the circuitry may be further configured to transmit, to the first device, an indication indicating the transmission of the first information. In some embodiments, the circuitry may be further configured to transmit, to the first device, second information indicating update of a CG configuration for the period.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or  controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGs. 3A to 12. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (33)

  1. A method of communication, comprising:
    transmitting, at a first device and to a second device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period.
  2. The method of claim 1, wherein the information comprises at least one of the following:
    an indication of the last occasion used for data transmission in the first plurality of configured occasions,
    a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or
    the number of occasions used for data transmission in the first plurality of configured occasions.
  3. The method of claim 1, wherein transmitting the information comprises at least one of the following:
    causing the information to be carried by at least one medium access control (MAC) control element (CE) of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions;
    multiplexing the information on at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; or
    transmitting the information on the first configured occasion in the first plurality of configured occasions.
  4. The method of claim 3, wherein the at least one of occasions used for data transmission comprises one of the following:
    the first occasion used for data transmission,
    the last occasion used for data transmission, or
    each of the occasions used for data transmission.
  5. The method of claim 1, wherein transmitting the information comprises:
    receiving, from the second device, an indication indicating whether the information is to be transmitted; and
    transmitting the information in response to the indication indicating that the information is to be transmitted.
  6. The method of claim 5, wherein the indication comprises at least one of the following:
    a radio resource control (RRC) configuration indicating whether the information is to be transmitted,
    downlink control information (DCI) indicating whether the information is to be transmitted, or
    a medium access control (MAC) control element (CE) indicating whether the information is to be transmitted.
  7. The method of claim 1, wherein transmitting the information comprises transmitting the information with initial transmission on the first configured occasion in the first plurality of configured occasions, and wherein the method further comprises:
    receiving, from the second device, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions; and
    performing subsequent transmission on the one or more subsequent configured occasions.
  8. The method of claim 1, wherein transmitting the information comprises:
    receiving, from the second device, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions; and
    transmitting a scheduling request (SR) to the second device on one of the following:
    an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasions, or
    a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
  9. The method of claim 1, wherein transmitting the information comprises:
    transmitting the information on the first plurality of configured occasions respectively.
  10. The method of claim 9, wherein transmitting the information on the first plurality of configured occasions respectively comprises:
    transmitting, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission; or
    transmitting, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
  11. The method of claim 1, further comprising:
    receiving, from the second device, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions; and
    retransmitting, on the dynamically scheduled resource, the first data transmission in a set of data transmissions while multiplexing, on the dynamically scheduled resource, at least one of the information and a HARQ process ID corresponding to the first data transmission, the set of data transmissions being previously performed on the first plurality of configured occasions.
  12. A method of communication, comprising:
    transmitting, at a first device and to a second device, first information indicating amount of resources to be used in a period.
  13. The method of claim 12, wherein the first information comprises at least one of the following:
    the volume of a packet to be transmitted in the period,
    an expected resource allocation parameter in the period,
    an expected reliability parameter in the period, or
    a range of arriving time of the packet.
  14. The method of claim 12, wherein transmitting the first information comprises:
    periodically transmitting the first information based on a radio resource control  (RRC) configuration; or
    transmitting the first information in response to receiving a dynamic indication from the second device, the dynamic indication indicating the transmission of the first information.
  15. The method of claim 12, further comprising:
    receiving, from the second device, second information indicating update of a configured grant (CG) configuration for the period; and
    performing a transmission in the period based on the updated CG configuration.
  16. A method of communication, comprising:
    receiving, at a second device and from a first device, information indicating a set of unused occasions in a first plurality of configured occasions, the first plurality of configured occasions being configured within a period; and
    determining the set of unused occasions from the information.
  17. The method of claim 16, wherein the information comprises at least one of the following:
    an indication of the last occasion used for data transmission in the first plurality of configured occasions,
    a bit mapping indicating whether the first plurality of configured occasions are used for data transmission, or
    the number of occasions used for data transmission in the first plurality of configured occasions.
  18. The method of claim 16, wherein receiving the information comprises at least one of the following:
    obtaining the information from at least one medium access control (MAC) control element (CE) of at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions;
    obtaining the information from at least one data channel on at least one of occasions used for data transmission in the first plurality of configured occasions; or
    obtaining the information on the first configured occasion in the first plurality of configured occasions.
  19. The method of claim 18, wherein the at least one of occasions used for data transmission comprises one of the following:
    the first occasion used for data transmission,
    the last occasion used for data transmission, or
    each of the occasions used for data transmission.
  20. The method of claim 16, wherein receiving the information comprises:
    transmitting, to the first device, an indication indicating whether the information is to be transmitted; and
    receiving the information in response to the indication indicating that the information is to be transmitted.
  21. The method of claim 20, wherein the indication comprises at least one of the following:
    a radio resource control (RRC) configuration indicating whether the information is to be transmitted,
    downlink control information (DCI) indicating whether the information is to be transmitted, or
    a medium access control (MAC) control element (CE) indicating whether the information is to be transmitted.
  22. The method of claim 16, wherein receiving the information comprises:
    receiving, from the first device, the information with initial transmission on the first configured occasion in the first plurality of configured occasions, and wherein the method further comprises:
    transmitting, to the first device, an indication for activating one or more subsequent configured occasions in the first plurality of configured occasions; and
    receiving, from the first device, subsequent transmission on the one or more subsequent configured occasions.
  23. The method of claim 16, wherein receiving the information comprises:
    transmitting, to the first device, a configuration regarding a second plurality of configured occasions, each occasion in the second plurality of occasions being associated  with an occasion in the first plurality of configured occasions and being earlier than the occasion in the first plurality of configured occasions; and
    receiving a scheduling request (SR) from the first device on one of the following:
    an occasion in the second plurality of configured occasions, the occasion in the second plurality of configured occasions being associated with the first occasion used for data transmission in the first plurality of configured occasion, or
    a set of occasions in the second plurality of occasions, the set of occasions being associated with a set of occasions used for data transmission in the first plurality of configured occasions.
  24. The method of claim 16, wherein receiving the information comprises:
    receiving the information on the first plurality of configured occasions respectively.
  25. The method of claim 24, wherein receiving the information on the first plurality of configured occasions respectively comprises:
    receiving, on an occasion in the first plurality of configured occasions, an indication indicating whether the occasion is used for data transmission; or
    receiving, on an occasion in the first plurality of configured occasions, a bit mapping indicating whether the first plurality of configured occasions are used for data transmission.
  26. The method of claim 16, further comprising:
    in accordance with a determination that no data transmission on the first plurality of configured occasions in a period is successfully received, transmitting, to the first device, an indication of a dynamically scheduled resource for data retransmission with a set of HARQ process IDs, the set of HARQ process IDs being associated with the first plurality of configured occasions;
    receiving, on the dynamically scheduled resource, a data retransmission with at least one of the information and a HARQ process ID corresponding to the data retransmission in the set of HARQ process IDs; and
    determining, based on the at least one of the information and the HARQ process ID, whether a further resource is dynamically scheduled for data retransmission.
  27. A method of communication, comprising:
    receiving, at a second device and from a first device, first information indicating amount of resources to be used in a period.
  28. The method of claim 27, wherein the first information comprises at least one of the following:
    the volume of a packet to be transmitted in the period,
    an expected resource allocation parameter in the period,
    an expected reliability parameter in the period, or
    a range of arriving time of the packet.
  29. The method of claim 27, wherein receiving the first information comprises:
    periodically receiving the first information based on a radio resource control (RRC) configuration.
  30. The method of claim 27, further comprising:
    transmitting, to the first device, an indication indicating the transmission of the first information.
  31. The method of claim 27, further comprising:
    transmitting, to the first device, second information indicating update of a configured grant (CG) configuration for the period.
  32. A device of communication, comprising:
    a processor configured to perform the method according to any of claims 1 to 11 or claims 12-15.
  33. A device of communication, comprising:
    a processor configured to perform the method according to any of claims 16 to 26 or claims 27-31.
PCT/CN2021/121032 2021-09-27 2021-09-27 Method, device and computer storage medium of communication WO2023044912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121032 WO2023044912A1 (en) 2021-09-27 2021-09-27 Method, device and computer storage medium of communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121032 WO2023044912A1 (en) 2021-09-27 2021-09-27 Method, device and computer storage medium of communication

Publications (1)

Publication Number Publication Date
WO2023044912A1 true WO2023044912A1 (en) 2023-03-30

Family

ID=85719911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121032 WO2023044912A1 (en) 2021-09-27 2021-09-27 Method, device and computer storage medium of communication

Country Status (1)

Country Link
WO (1) WO2023044912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087746A1 (en) * 2023-07-17 2024-05-02 Lenovo (Beijing) Limited Configured grant transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314977A (en) * 2016-04-07 2019-02-05 诺基亚技术有限公司 Semi-continuous resource allocation enhancing for V2X communication
WO2020029175A1 (en) * 2018-08-09 2020-02-13 Zte Corporation Pre-configured dedicated resource for idle mode transmissions
CN112187416A (en) * 2019-07-05 2021-01-05 华为技术有限公司 Communication method, device and system
US20210029705A1 (en) * 2019-07-23 2021-01-28 Qualcomm Incorporated Conditional negative acknowledgement transmission in multi-component carrier communication
US20210259042A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Discontinuous reception command over sidelink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314977A (en) * 2016-04-07 2019-02-05 诺基亚技术有限公司 Semi-continuous resource allocation enhancing for V2X communication
WO2020029175A1 (en) * 2018-08-09 2020-02-13 Zte Corporation Pre-configured dedicated resource for idle mode transmissions
CN112187416A (en) * 2019-07-05 2021-01-05 华为技术有限公司 Communication method, device and system
US20210029705A1 (en) * 2019-07-23 2021-01-28 Qualcomm Incorporated Conditional negative acknowledgement transmission in multi-component carrier communication
US20210259042A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Discontinuous reception command over sidelink

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Approaches comparison of supporting TSN periodicities of non-integer CG- SPS periodicities", 3GPP DRAFT; R2-1915993, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051817548 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087746A1 (en) * 2023-07-17 2024-05-02 Lenovo (Beijing) Limited Configured grant transmission

Similar Documents

Publication Publication Date Title
US11832089B2 (en) Systems and methods for multicast resource allocation
US11191123B2 (en) Method and device for performing uplink transmission
JP7074764B2 (en) Transmission direction configuration method, device and system
JP2022520920A (en) Methods, terminal devices, network devices, and programs
US11601920B2 (en) Methods and apparatuses for multiple transmission and reception point (multi-TRP) physical uplink control channel (PUCCH) scheme determination
US20220078803A1 (en) Scheduling serving cells with signaling message
CN109392117B (en) Scheduling request configuration method in orthogonal frequency division multiplexing system
WO2023044912A1 (en) Method, device and computer storage medium of communication
WO2023184273A1 (en) Method, device and computer storage medium of communication
US20220239448A1 (en) Methods, devices and computer storage media for communication
WO2019095378A1 (en) Backhaul transmission between network devices
WO2022217606A1 (en) Communication methods, terminal device, network device, and computer-readable media
US20230269709A1 (en) Physical uplink control channel resource indication for dynamic time division duplex
WO2023056629A1 (en) Method, device and computer storage medium of communication
WO2024098192A1 (en) Method, device and computer readable medium for communications
WO2024011453A1 (en) Method, device and computer storage medium of communication
WO2024103363A1 (en) Method, device and computer storage medium of communication
WO2024065771A1 (en) Methods, devices and medium for communication
WO2024103364A1 (en) Method, device and computer storage medium of communication
WO2024060246A1 (en) Method, device and computer storage medium of communication
WO2024026641A1 (en) Methods, terminal devices and computer readable medium for communication
WO2024152214A1 (en) Device, method and computer readable medium for radio link resource configuration
WO2023077310A1 (en) Method, device and computer readable medium for communication
CN113302963B (en) Scheduling serving cells with signaling messages
WO2022133658A1 (en) Method, device and computer storage medium of communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE