WO2024096158A1 - Vapor cell structure for preventing metal condensation - Google Patents

Vapor cell structure for preventing metal condensation Download PDF

Info

Publication number
WO2024096158A1
WO2024096158A1 PCT/KR2022/017009 KR2022017009W WO2024096158A1 WO 2024096158 A1 WO2024096158 A1 WO 2024096158A1 KR 2022017009 W KR2022017009 W KR 2022017009W WO 2024096158 A1 WO2024096158 A1 WO 2024096158A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell structure
vapor cell
hollow
frame
vapor
Prior art date
Application number
PCT/KR2022/017009
Other languages
French (fr)
Korean (ko)
Inventor
홍현규
홍영표
배인호
유재근
강노원
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2024096158A1 publication Critical patent/WO2024096158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/06Gaseous, i.e. beam masers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B17/00Generation of oscillations using radiation source and detector, e.g. with interposed variable obturator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Definitions

  • the present invention relates to a vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process, and more specifically, to a vapor cell structure in which the transmittance of incident light can be further improved without a separate additional heating means.
  • MEMS Micro-Electro Mechanical Systems
  • the present invention was derived from research conducted as part of the Radio Industry Core Technology Development Project of the Korea IT Planning and Evaluation Institute below.
  • MEMS Micro-Electro Mechanical Systems
  • MEMS Micro-Electro Mechanical Systems
  • MEMS refers to ultra-small precision mechanical systems ranging in size from a few millimeters to several nanometers.
  • MEMS refers to the manufacturing process and technology of ultra-fine mechanical structures such as ultra-high-density integrated circuits manufactured by processing silicon, crystal, glass, etc.
  • the MEMS process can also be used to miniaturize and mass produce atomic vapor cells.
  • the vapor cell is provided in a device that detects the energy level of the atoms so that light waves can be irradiated to the atomic vapors.
  • miniaturized vapor cells can be used in various types of chip-scale devices, including atomic clocks and atomic magnetometers.
  • the above-mentioned vapor cell refers to a cell in which vaporized atoms are mounted in an internal space, and both sides are sealed by transparent glass.
  • the energy state of the atom changes depending on the energy level of the gas atom mounted inside, and absorption or emission of photons may occur.
  • This change in energy state can be used in various fields such as atomic clocks, atomic magnetometers, and gyroscopes.
  • the vapor cell manufactured through the MEMS process has a small area through which light waves pass, and the light waves can only approach two of the six sides (the entrance surface and the exit surface). Accordingly, when a temperature difference occurs between the outside and the center of the frame, gas atoms condense at the center, which is a relatively low temperature point, and inhibit the transmission of light waves to the vapor cell.
  • the development of a vapor cell structure that can prevent metal condensation and improve the transmittance of incident light by mitigating the temperature difference depending on the position of the opening through which light waves pass may be considered.
  • the development of a vapor cell structure that can alleviate temperature deviation by utilizing light waves irradiated for energy level detection without any additional heating means may be considered.
  • Korean Patent Publication No. 10-2018893 discloses a vapor cell and a method of manufacturing the same. Specifically, a vapor cell that seals an internal space by irradiating a laser pulse to a bonding layer of a sealing paste and a method of manufacturing the same are disclosed.
  • this type of vapor cell does not disclose a structure for resolving temperature differences depending on the vapor cell location.
  • Korean Patent Publication No. 10-1709557 discloses a vapor cell equipped with electro-optical functions for a chip-scale atomic clock. Specifically, a vapor cell is disclosed that maintains a constant temperature by applying voltage to a silicon body.
  • this type of vapor cell requires a separate power source and connection configuration to alleviate temperature differences depending on location.
  • Patent Document 1 Korean Patent Publication No. 10-2018893 (2019.09.05.)
  • Patent Document 2 Korean Patent Publication No. 10-1709557 (2017.02.23.)
  • One object of the present invention is to provide a vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process in which the transmittance of incident light can be further improved without a separate additional heating means.
  • MEMS Micro-Electro Mechanical Systems
  • the vapor cell structure according to an embodiment of the present invention is a vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process, and at least one hollow is formed through a portion. frame; a first substrate coupled to one side of the frame to seal one side of the hollow; a second substrate coupled to the other side of the frame to seal the other side of the hollow; and disposed on a side of one of the first substrate and the second substrate opposite to the frame, overlapping the hollow in the extending direction of the hollow, and generating surface plasmon when a light wave within a preset wavelength range is incident. It contains nanoparticles formed from a metal material in which resonance is induced.
  • MEMS Micro-Electro Mechanical Systems
  • the preset wavelength range may be 775 nm or more and 900 nm or less.
  • the nanoparticles include an interior angle formed in a spherical shape with a constant radius; And it may include an outer shell disposed radially outside the inner angle and formed to surround the outer peripheral surface of the inner angle to a certain thickness.
  • the preset wavelength range may be 775 nm or more and 900 nm or less
  • the radius of the inner angle may be 27 nm or more and 28 nm or less
  • the thickness of the outer angle may be 3 nm or more and 4 nm or less.
  • the inner shell may be formed of a silicon dioxide (SiO2) material, and the outer shell may be formed of a gold (Au) material.
  • SiO2 silicon dioxide
  • Au gold
  • the hollow may contain alkaline vapor therein.
  • alkaline vapor may be rubidium (Rb) or cesium (Cs).
  • the frame may be formed of a silicon (Si) material, and the first and second substrates may be formed of a glass material.
  • the vapor cell structure includes a frame, a first substrate, a second substrate, and nanoparticles.
  • the first substrate and the second substrate seal the hollow formed through the frame on both sides.
  • nanoparticles that overlap the hollow in the extending direction of the hollow are disposed on one side of either the first or second substrate.
  • Nanoparticles are heated by inducing surface plasmon resonance when light waves within a preset wavelength range are incident to detect the atomic energy level.
  • the hollow is heated and the temperature difference between the outside of the frame and the vapor cell area can be further reduced.
  • temperature differences depending on location can be more alleviated. Accordingly, gas atoms can be prevented from condensing intensively in a specific area.
  • the transmittance of light waves incident on the vapor cell is further increased and a constant transmittance can be maintained over time.
  • FIG. 1 is a schematic diagram showing the relationship between a vapor cell structure, a light source, and a detector according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the vapor cell structure of FIG. 1.
  • FIG. 3 is an exploded perspective view showing the vapor cell structure of FIG. 1.
  • FIG. 4 is a front cross-sectional view showing the vapor cell structure of FIG. 1.
  • FIG. 5 is a conceptual diagram showing nanoparticles provided in the vapor cell structure of FIG. 1.
  • Figure 6 is a graph showing changes in absorption cross-section and scattering cross-section according to the wavelength of light waves incident on the vapor cell structure.
  • Figure 7 is a conceptual diagram showing temperature distribution according to each position of (a) a vapor cell structure according to the prior art and (b) a vapor cell structure according to an embodiment of the present invention.
  • the vapor cell structure 10 refers to a cell structure in which vaporized atoms are mounted in an internal space and both sides are sealed by transparent glass.
  • the vapor cell structure 10 can be used to detect a change in the energy level of gas atoms mounted therein. Specifically, when a specific light wave is incident on the vapor cell structure 10, the state of the atom may change depending on the energy level of the gas atom mounted therein, and photon absorption or emission may occur.
  • the vapor cell structure 10 receives incident light from the light source 20.
  • incident light generated from the light source 20 may be laser light.
  • a portion of the incident light irradiated to the vapor cell structure 10 is absorbed by atoms inside the vapor cell structure 10, and the remaining portion is emitted toward the detector 30.
  • the detector 30 receives the emitted light that passes through the vapor cell structure 10 and detects changes in the energy level of atoms through it.
  • vapor cell structure 10 includes a frame 110, a substrate 120, and nanoparticles 130.
  • Frame 110 forms the exterior of vapor cell structure 10.
  • the frame 110 is formed in the shape of a square pillar.
  • the frame 110 is not limited to the shape shown and may be formed in various structures in which the hollow 111 can be formed.
  • the frame 110 may be formed in a disk or cylinder shape.
  • the frame 110 may be formed of silicon (Si) material.
  • At least one hollow 111 is formed through a portion of the frame 110. At this time, the side of the hollow 111 is surrounded by the side wall 112. That is, the inner peripheral surface of the hollow 111 is formed by the side wall 112.
  • the hollow 111 forms an optical path for light waves incident on the vapor cell structure 10 and provides a space for accommodating gas atoms.
  • the hollow 111 is formed in a pillar shape that is open on both sides and extends in one direction.
  • the hollow 111 is formed in the shape of a square pillar that is open on the upper and lower sides and extends in the vertical direction.
  • the hollow 111 is not limited to the shape shown and may be formed in various structures that do not interfere with the optical path of light waves incident on the vapor cell structure 10.
  • the hollow 111 may be formed in a cylindrical shape.
  • Gas atoms are accommodated inside the hollow 111.
  • alkaline vapor may be accommodated inside the hollow 111.
  • rubidium (Rb) vapor or cesium (Cs) vapor may be accommodated inside the hollow 111.
  • a buffer gas may be injected into the hollow 111 in addition to the metal gas that is the object of measurement for changes by energy level.
  • a plurality of hollows 111 may be provided in one frame 110.
  • the openings of the hollows 111 are each sealed by a substrate 120, which will be described later.
  • the substrate 120 serves to seal the hollow 111 and maintain high airtightness of the hollow 111.
  • the substrate 120 is bonded to both sides of the frame 110. At this time, the substrate 120 is coupled to the frame 110 so that the hollow 111 formed in the frame 110 can be completely blocked. That is, the substrate 120 overlaps the hollow 111 in the direction in which the hollow 111 extends.
  • the substrate 120 includes a first substrate 121 and a second substrate 122.
  • the first substrate 121 and the second substrate 122 are coupled to the upper and lower surfaces of the frame 110, respectively, to seal the upper and lower openings of the hollow 111.
  • the sides of the hollow 111 are surrounded by the side walls 112, so all sides of the hollow 111 can be completely sealed.
  • the substrate 120 is made of a material with high transparency.
  • the substrate 120 may be formed of a glass material.
  • Nanoparticles 130 are disposed on one side of the substrate 120.
  • Nanoparticles 130 generate heat when surface plasma resonance is induced by incident light.
  • Nanoparticles 130 are disposed on a side opposite to the frame 110 of either the first substrate 121 or the second substrate 122. Preferably, it is placed on the incident surface of either the first substrate 121 or the second substrate 122. In the illustrated embodiment, nanoparticles 130 are disposed on the upper surface of the first substrate 121.
  • Nanoparticles 130 overlap with the hollow 111 of the frame 110 in the extension direction of the hollow 111.
  • the nanoparticles 130 are formed of a metal material that is heated by inducing surface plasma resonance when a light wave within a preset wavelength range is incident to detect the energy level of the atom.
  • the preset wavelength range may be 775 nm or more and 900 nm or less. In another embodiment, the preset wavelength range may be 780 nm.
  • the nanoparticles 130 are arranged to face the hollow 111 of the frame 110 with the substrate 120 interposed therebetween. Accordingly, when the nanoparticles 130 are heated, the heat may be transferred to the hollow 111.
  • the hollow 111 is heated by resonance, and the temperature difference between the outside and the center of the frame 110 can be further reduced. That is, the temperature difference depending on the position of the vapor cell structure 10 can be more alleviated. This can prevent gas atoms from condensing intensively in specific areas. As a result, the transmittance of light waves incident on the vapor cell structure 10 can be further increased.
  • the nanoparticle 130 consists of an inner shell 131 and an outer shell 132.
  • the inner angle 131 is formed in a spherical shape with a constant radius (Rc).
  • the interior cabinet 131 may be formed of silicon dioxide (SiO2).
  • An outer shell 132 is disposed radially outside the inner shell 131.
  • the outer shell 132 is formed to surround the outer peripheral surface of the inner shell 131 with a certain thickness ts. That is, the outer shell 132 is formed in a spherical shape with a certain thickness ts. In one embodiment, the outer shell 132 may be formed of gold (Au) material.
  • the radius (Rc) of the inner angle 131 may be 27 nm or more and 28 nm or less, and the thickness (ts) of the outer angle 132 may be 3 nm or more and 4 nm or less.
  • FIG. 6 shows changes in the absorption cross-section and scattering cross-section depending on the wavelength of the light wave incident on the vapor cell structure 10.
  • the wavelength incident on the vapor cell structure 10 has a large absorption cross-section and a small scattering cross-section. Therefore, most of the light energy loss is used for heating the vapor cell structure 10 through absorption of the nanoparticles 130.
  • the absorption cross-sectional area is about 2.3 x 10-14 m2, which is a relatively large value compared to other wavelengths.
  • the general heating intensity per unit area is 1 mW/mm2 or less, so per unit particle
  • the absorption power will be less than 10-11W. That is, in order to satisfy a heating rate of 1 ⁇ W, approximately 105 unit nanoparticles 130 will need to be provided.
  • the above-mentioned results are only examples, and the size and number of nanoparticles 130 may be derived differently depending on changes in other conditions, such as the material of the nanoparticles 130 and the light wave incident on the vapor cell structure 10. there is.
  • FIG. 7 shows temperature distribution depending on the position of the vapor cell structure 10.
  • Figure 7(a) shows the temperature distribution of the vapor cell structure 10 according to the prior art. That is, it shows the temperature distribution of the vapor cell structure 10 in a state in which the nanoparticles 130 are not disposed.
  • the frame 110 When heat is transferred to the frame 110 of the vapor cell structure 10 of FIG. 7(a), the frame 110 is heated from the outside, generating a temperature difference between the outside and the center.
  • the central hollow 111 In the embodiment shown in Figure 7(a), while the outside of the frame 110 is heated to 100°C, the central hollow 111 is only 94°C, showing a temperature difference of 6°C between the outside and the center. can confirm.
  • Figure 7(b) shows the temperature distribution of the vapor cell structure 10 according to an embodiment of the present invention. That is, it shows the temperature distribution of the vapor cell structure 10 with the nanoparticles 130 disposed on one side of the substrate 120.
  • the central hollow 111 shows a temperature distribution of about 97 to 98°C. In other words, it can be seen that there is a temperature difference of about 2 to 3 degrees Celsius between the outside and the center. Through this, it can be confirmed that the temperature difference depending on the position of the vapor cell structure 10 is more relaxed compared to the embodiment shown in FIG. 7(a). In addition, it can be confirmed that the lowest temperature point, which is a point where metal is likely to condense, is not located on the path of light waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

The present invention relates to a vapor cell structure manufactured by a micro-electro mechanical systems (MEMS) process. Disclosed is a vapor cell structure comprising: a frame having at least one hollow formed through one portion thereof; substrates sealing the respective sides of the hollow; and metal nanoparticles which are disposed on one side of a substrate, overlap the hollow in the direction in which the hollow extends, and when light waves are incident within a preset wavelength range, induce surface plasmon resonance by light waves of the same wavelength in order to detect the atomic energy level. Accordingly, a temperature deviation depending on the location of the vapor cell structure is further alleviated, the phenomenon of metal condensation on the path of the light waves can be prevented, and the transmittance of light waves incident on the vapor cell structure can be further improved.

Description

금속 응결 방지를 위한 증기 셀 구조체Vapor cell structure to prevent metal condensation
본 발명은 MEMS(Micro-Electro Mechanical Systems) 공정으로 제조된 증기 셀 구조체에 관한 것으로, 보다 구체적으로, 별도의 추가적인 가열 수단 없이 입사광의 투과율이 보다 향상될 수 있는 증기 셀 구조체에 관한 것이다.The present invention relates to a vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process, and more specifically, to a vapor cell structure in which the transmittance of incident light can be further improved without a separate additional heating means.
본 발명은 아래의 정보통신기획평가원의 전파산업핵심기술개발사업의 일환으로 수행한 연구로부터 도출된 것이다.The present invention was derived from research conducted as part of the Radio Industry Core Technology Development Project of the Korea IT Planning and Evaluation Institute below.
[과제관리(전문)기관명] 정보통신기획평가원[Project management (professional) organization name] Information and Communications Planning and Evaluation Institute
[연구사업명] 전파산업핵심기술개발사업(162554313013125002531305)[Research Project Name] Radio Industry Core Technology Development Project (162554313013125002531305)
[연구과제명] 비금속 기반 초고감도 전기장 검출 기술개발[Research project name] Development of non-metal-based ultra-sensitive electric field detection technology
[과제수행기관명] 한국표준과학연구원[Name of project carrying out organization] Korea Research Institute of Standards and Science
[기여율] 1/1[Contribution rate] 1/1
[연구기간] 2021.04.01 ~ 2022.12.31[Research period] 2021.04.01 ~ 2022.12.31
MEMS(Micro-Electro Mechanical Systems)란, 수 mm에서 수 nm에 이르는 크기의 초소형 정밀 기계 시스템을 의미한다. 일반적으로, MEMS는 실리콘이나 수정, 유리 등을 가공하여 제조되는 초고밀도 집적 회로 등 초미세 기계 구조물의 제조 공정 및 그 기술을 가리킨다.MEMS (Micro-Electro Mechanical Systems) refers to ultra-small precision mechanical systems ranging in size from a few millimeters to several nanometers. In general, MEMS refers to the manufacturing process and technology of ultra-fine mechanical structures such as ultra-high-density integrated circuits manufactured by processing silicon, crystal, glass, etc.
MEMS 공정은 원자 증기 셀(vapor cell)을 소형화하고 대량 생산하기 위한 용도로도 활용될 수 있다. 증기 셀은 원자의 에너지 레벨을 감지하는 장치에 구비되어 광파가 원자 증기에 조사될 수 있도록 한다. 특히, 소형화된 증기 셀은 원자 시계, 원자 자력계를 포함한 다양한 종류의 칩 스케일 기기에 이용될 수 있다.The MEMS process can also be used to miniaturize and mass produce atomic vapor cells. The vapor cell is provided in a device that detects the energy level of the atoms so that light waves can be irradiated to the atomic vapors. In particular, miniaturized vapor cells can be used in various types of chip-scale devices, including atomic clocks and atomic magnetometers.
상술한 증기 셀은 내부 공간에 기화된 원자가 실장되되 양면이 투명한 유리에 의하여 밀봉되는 셀을 의미한다. 증기 셀에 특정 광파가 입사되면, 내부에 실장되는 기체 원자의 에너지 준위에 따라 원자의 에너지 상태가 변화되고 광자의 흡수 또는 방출이 발생될 수 있다. 이와 같은 에너지 상태 변화는 원자 시계, 원자 자력계, 자이로스코프 등 여러 분야에서 활용될 수 있다. 다만, 에너지 상태 변화를 보다 정밀하게 감지하고 장기적인 동작 신뢰성을 확보하기 위하여는, 증기 셀 내에서 응결된 금속이 광파의 진행을 방해하지 않도록 하여 원자에 입사되는 광파의 투과율을 높게 유지시킬 필요가 있다.The above-mentioned vapor cell refers to a cell in which vaporized atoms are mounted in an internal space, and both sides are sealed by transparent glass. When a specific light wave is incident on a vapor cell, the energy state of the atom changes depending on the energy level of the gas atom mounted inside, and absorption or emission of photons may occur. This change in energy state can be used in various fields such as atomic clocks, atomic magnetometers, and gyroscopes. However, in order to detect changes in energy state more precisely and ensure long-term operational reliability, it is necessary to maintain a high transmittance of light waves incident on atoms by preventing the metal condensed within the vapor cell from interfering with the progress of light waves. .
그러나, MEMS 공정으로 제조된 증기 셀은 광파가 통과하는 면적이 작고, 광파가 6면 중 2면(입사면, 출사면)에 대하여만 접근될 수 있다. 이에 따라, 프레임의 외측과 중심부 간 온도 차이가 발생되면 상대적 저온 지점인 중심부에 기체 원자가 응결되며, 증기 셀에 대한 광파의 투과를 저해한다.However, the vapor cell manufactured through the MEMS process has a small area through which light waves pass, and the light waves can only approach two of the six sides (the entrance surface and the exit surface). Accordingly, when a temperature difference occurs between the outside and the center of the frame, gas atoms condense at the center, which is a relatively low temperature point, and inhibit the transmission of light waves to the vapor cell.
따라서, 광파가 통과하는 개구부의 위치에 따른 온도 편차가 완화되어 금속 응결 현상이 방지될 수 있고 입사광의 투과율이 향상될 수 있는 증기 셀 구조체의 개발이 고려될 수 있을 것이다. 특히, 별도의 추가적인 가열 수단 없이 에너지 레벨 감지를 위해 조사되는 광파를 활용하여 온도 편차를 완화할 수 있는 증기 셀 구조체의 개발이 고려될 수 있을 것이다.Therefore, the development of a vapor cell structure that can prevent metal condensation and improve the transmittance of incident light by mitigating the temperature difference depending on the position of the opening through which light waves pass may be considered. In particular, the development of a vapor cell structure that can alleviate temperature deviation by utilizing light waves irradiated for energy level detection without any additional heating means may be considered.
한국등록특허공보 제10-2018893호는 증기 셀 및 이를 제조하는 방법을 개시한다. 구체적으로, 실링 페이스트의 접합층에 레이저 펄스를 조사하여 내부 공간을 밀봉하는 증기 셀 및 이를 제조하는 방법을 개시한다.Korean Patent Publication No. 10-2018893 discloses a vapor cell and a method of manufacturing the same. Specifically, a vapor cell that seals an internal space by irradiating a laser pulse to a bonding layer of a sealing paste and a method of manufacturing the same are disclosed.
그런데, 이러한 유형의 증기 셀은, 증기 셀 위치에 따른 온도 편차를 해결하기 위한 구조는 개시하지 않는다.However, this type of vapor cell does not disclose a structure for resolving temperature differences depending on the vapor cell location.
한국등록특허공보 제10-1709557호는 칩 스케일 원자 시계를 위한 전기 광학 기능이 구비된 증기 셀을 개시한다. 구체적으로, 실리콘 몸체에 전압을 인가하여 일정한 온도를 유지시키는 증기 셀을 개시한다.Korean Patent Publication No. 10-1709557 discloses a vapor cell equipped with electro-optical functions for a chip-scale atomic clock. Specifically, a vapor cell is disclosed that maintains a constant temperature by applying voltage to a silicon body.
그런데, 이러한 유형의 증기 셀은, 위치에 따른 온도 편차를 완화하기 위하여 별도의 전원 및 연결 구성이 요구된다.However, this type of vapor cell requires a separate power source and connection configuration to alleviate temperature differences depending on location.
(특허문헌 1) 한국등록특허공보 제10-2018893호 (2019.09.05.)(Patent Document 1) Korean Patent Publication No. 10-2018893 (2019.09.05.)
(특허문헌 2) 한국등록특허공보 제10-1709557호 (2017.02.23.)(Patent Document 2) Korean Patent Publication No. 10-1709557 (2017.02.23.)
본 발명의 일 목적은, 별도의 추가적인 가열 수단 없이 입사광의 투과율이 보다 향상될 수 있는 MEMS(Micro-Electro Mechanical Systems) 공정으로 제조된 증기 셀 구조체를 제공하는 것이다.One object of the present invention is to provide a vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process in which the transmittance of incident light can be further improved without a separate additional heating means.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제들로 한정되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below. will be.
상기 목적을 달성하기 위해, 본 발명의 실시 예에 따른 증기 셀 구조체는, MEMS(Micro-Electro Mechanical Systems) 공정으로 제조된 증기 셀(vapor cell) 구조체로서, 일 부분에 적어도 하나의 중공이 관통 형성되는 프레임; 상기 프레임의 일 면과 결합되어 상기 중공의 일 측을 밀폐하는 제1 기판; 상기 프레임의 타 면과 결합되어 상기 중공의 타 측을 밀폐하는 제2 기판; 및 상기 제1 기판 및 제2 기판 중 어느 하나의 상기 프레임과 반대되는 면에 배치되되, 상기 중공과 상기 중공의 연장 방향으로 중첩되며, 기 설정된 파장 범위 내 광파가 입사되면 표면 플라스몬(plasmon) 공명이 유도되는 금속 소재로 형성되는 나노 입자를 포함한다.In order to achieve the above object, the vapor cell structure according to an embodiment of the present invention is a vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process, and at least one hollow is formed through a portion. frame; a first substrate coupled to one side of the frame to seal one side of the hollow; a second substrate coupled to the other side of the frame to seal the other side of the hollow; and disposed on a side of one of the first substrate and the second substrate opposite to the frame, overlapping the hollow in the extending direction of the hollow, and generating surface plasmon when a light wave within a preset wavelength range is incident. It contains nanoparticles formed from a metal material in which resonance is induced.
또한, 상기 기 설정된 파장 범위는, 775nm 이상 900nm 이하일 수 있다.Additionally, the preset wavelength range may be 775 nm or more and 900 nm or less.
또한, 상기 나노 입자는, 일정 반지름의 구 형상으로 형성되는 내각; 및 상기 내각의 방사상 외측에 배치되고, 상기 내각의 외주면을 일정 두께로 감싸도록 형성되는 외각을 포함할 수 있다.In addition, the nanoparticles include an interior angle formed in a spherical shape with a constant radius; And it may include an outer shell disposed radially outside the inner angle and formed to surround the outer peripheral surface of the inner angle to a certain thickness.
또한, 상기 기 설정된 파장 범위는, 775nm 이상 900nm 이하이고, 상기 내각의 반지름은, 27nm 이상 28nm 이하이며, 상기 외각의 두께는, 3nm 이상 4nm 이하일 수 있다.In addition, the preset wavelength range may be 775 nm or more and 900 nm or less, the radius of the inner angle may be 27 nm or more and 28 nm or less, and the thickness of the outer angle may be 3 nm or more and 4 nm or less.
또한, 상기 내각은, 이산화규소(SiO2) 소재로 형성되고, 상기 외각은, 금(Au) 소재로 형성될 수 있다.Additionally, the inner shell may be formed of a silicon dioxide (SiO2) material, and the outer shell may be formed of a gold (Au) material.
또한, 상기 중공은, 그 내부에 알칼리 증기가 수용될 수 있다.Additionally, the hollow may contain alkaline vapor therein.
또한, 상기 알칼리 증기는 루비듐(Rb) 또는 세슘(Cs)일 수 있다.Additionally, the alkaline vapor may be rubidium (Rb) or cesium (Cs).
또한, 상기 프레임은, 실리콘(Si) 소재로 형성되고, 상기 제1 기판 및 제2 기판은, 유리 소재로 형성될 수 있다.Additionally, the frame may be formed of a silicon (Si) material, and the first and second substrates may be formed of a glass material.
본 발명의 다양한 효과 중, 상술한 해결 수단을 통해 얻을 수 있는 효과는 다음과 같다.Among the various effects of the present invention, the effects that can be obtained through the above-described solution are as follows.
본 발명의 실시 예에 따른 증기 셀 구조체는 프레임, 제1 기판, 제2 기판 및 나노 입자를 포함한다. 제1 기판 및 제2 기판은 프레임에 관통 형성된 중공을 양측에서 밀폐한다. 이때, 제1 기판 및 제2 기판 중 어느 하나의 일 면에는 상기 중공과 상기 중공의 연장 방향으로 중첩되는 나노 입자가 배치된다. 나노 입자는 기 설정된 파장 범위 내 광파가 원자 에너지 레벨 감지를 위하여 입사되면, 표면 플라스몬(plasmon) 공명이 유도되어 가열된다.The vapor cell structure according to an embodiment of the present invention includes a frame, a first substrate, a second substrate, and nanoparticles. The first substrate and the second substrate seal the hollow formed through the frame on both sides. At this time, nanoparticles that overlap the hollow in the extending direction of the hollow are disposed on one side of either the first or second substrate. Nanoparticles are heated by inducing surface plasmon resonance when light waves within a preset wavelength range are incident to detect the atomic energy level.
따라서, 입사광이 조사됨에 따라 상기 중공이 가열되며 프레임 외측과 증기 셀 영역의 온도 차가 보다 감소될 수 있다. 즉, 위치에 따른 온도 편차가 보다 완화될 수 있다. 이에 따라, 기체 원자가 특정 구역에 집중적으로 응결되는 것이 방지될 수 있다. 결과적으로, 증기 셀로 입사되는 광파의 투과율이 보다 증가되고 시간이 지나도 일정한 투과율이 유지될 수 있다.Therefore, as incident light is irradiated, the hollow is heated and the temperature difference between the outside of the frame and the vapor cell area can be further reduced. In other words, temperature differences depending on location can be more alleviated. Accordingly, gas atoms can be prevented from condensing intensively in a specific area. As a result, the transmittance of light waves incident on the vapor cell is further increased and a constant transmittance can be maintained over time.
본 발명의 효과는 이상에서 언급한 효과들로 한정되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 발명의 실시 예에 따른 증기 셀 구조체와 광원 및 검출기의 관계를 도시하는 개략도이다.1 is a schematic diagram showing the relationship between a vapor cell structure, a light source, and a detector according to an embodiment of the present invention.
도 2는 도 1의 증기 셀 구조체를 도시하는 사시도이다.FIG. 2 is a perspective view showing the vapor cell structure of FIG. 1.
도 3은 도 1의 증기 셀 구조체를 도시하는 분해사시도이다.FIG. 3 is an exploded perspective view showing the vapor cell structure of FIG. 1.
도 4는 도 1의 증기 셀 구조체를 도시하는 정단면도이다.FIG. 4 is a front cross-sectional view showing the vapor cell structure of FIG. 1.
도 5는 도 1의 증기 셀 구조체에 구비되는 나노 입자를 도시하는 개념도이다.FIG. 5 is a conceptual diagram showing nanoparticles provided in the vapor cell structure of FIG. 1.
도 6은 증기 셀 구조체로 입사되는 광파의 파장에 따른 흡수 단면적 및 산란 단면적 변화를 도시하는 그래프이다.Figure 6 is a graph showing changes in absorption cross-section and scattering cross-section according to the wavelength of light waves incident on the vapor cell structure.
도 7은 (a) 종래 기술에 따른 증기 셀 구조체 및 (b) 본 발명의 실시 예에 따른 증기 셀 구조체 각각의 위치에 따른 온도 분포를 도시하는 개념도이다.Figure 7 is a conceptual diagram showing temperature distribution according to each position of (a) a vapor cell structure according to the prior art and (b) a vapor cell structure according to an embodiment of the present invention.
이하, 본 발명의 실시 예에 따른 증기 셀 구조체(10)를 도면을 참고하여 보다 상세하게 설명한다.Hereinafter, the vapor cell structure 10 according to an embodiment of the present invention will be described in more detail with reference to the drawings.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.In the following description, in order to clarify the characteristics of the present invention, descriptions of some components may be omitted.
본 명세서에서는 서로 다른 실시 예라도 동일한 구성에 대해서는 동일한 참조 번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.In this specification, the same reference numbers are assigned to the same components even in different embodiments, and duplicate descriptions thereof are omitted.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않는다.The attached drawings are only intended to facilitate understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the attached drawings.
단수의 표현은 문맥상 명백하게 다르기 뜻하지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly dictates otherwise.
이하에서는, 도 1을 참조하여 본 발명의 실시 예에 따른 증기 셀 구조체(10)에 대하여 설명한다.Hereinafter, the vapor cell structure 10 according to an embodiment of the present invention will be described with reference to FIG. 1.
본 발명의 실시 예에 따른 증기 셀 구조체(10)는 내부 공간에 기화된 원자가 실장되되 양면이 투명한 유리에 의하여 밀봉되는 셀 구조체를 의미한다.The vapor cell structure 10 according to an embodiment of the present invention refers to a cell structure in which vaporized atoms are mounted in an internal space and both sides are sealed by transparent glass.
증기 셀 구조체(10)는 내부에 실장된 기체 원자의 에너지 레벨 변화량을 감지하는 데 이용될 수 있다. 구체적으로, 증기 셀 구조체(10)에 특정 광파가 입사되면 내부에 실장된 기체 원자의 에너지 준위에 따라 원자의 상태가 변화될 수 있고, 광자의 흡수 또는 방출이 발생될 수 있다.The vapor cell structure 10 can be used to detect a change in the energy level of gas atoms mounted therein. Specifically, when a specific light wave is incident on the vapor cell structure 10, the state of the atom may change depending on the energy level of the gas atom mounted therein, and photon absorption or emission may occur.
증기 셀 구조체(10)는 광원(20)으로부터 입사광을 조사받는다. 일 실시 예에서, 광원(20)에서 발생되는 입사광은 레이저광일 수 있다.The vapor cell structure 10 receives incident light from the light source 20. In one embodiment, incident light generated from the light source 20 may be laser light.
증기 셀 구조체(10)에 조사된 입사광의 일부는 증기 셀 구조체(10) 내부의 원자에 흡수되고, 나머지 일부는 검출기(30)를 향하여 출사된다. 검출기(30)는 증기 셀 구조체(10)를 투과한 출사광을 수신하고, 이를 통해 원자의 에너지 레벨 변화를 검출한다.A portion of the incident light irradiated to the vapor cell structure 10 is absorbed by atoms inside the vapor cell structure 10, and the remaining portion is emitted toward the detector 30. The detector 30 receives the emitted light that passes through the vapor cell structure 10 and detects changes in the energy level of atoms through it.
이하에서는, 도 2 내지 도 5를 참조하여 증기 셀 구조체(10)의 구성 요소에 대하여 보다 상세하게 설명한다.Hereinafter, the components of the vapor cell structure 10 will be described in more detail with reference to FIGS. 2 to 5.
도시된 실시 예에서, 증기 셀 구조체(10)는 프레임(110), 기판(120) 및 나노 입자(130)를 포함한다.In the illustrated embodiment, vapor cell structure 10 includes a frame 110, a substrate 120, and nanoparticles 130.
프레임(110)은 증기 셀 구조체(10)의 외관을 형성한다. Frame 110 forms the exterior of vapor cell structure 10.
도시된 실시 예에서, 프레임(110)은 사각기둥 형상으로 형성된다. 그러나, 프레임(110)은 도시된 형상에 한정되지 않고 중공(111)이 형성될 수 있는 다양한 구조로 형성될 수 있다. 예를 들어, 프레임(110)은 원판 또는 원기둥 형상으로 형성될 수 있다.In the illustrated embodiment, the frame 110 is formed in the shape of a square pillar. However, the frame 110 is not limited to the shape shown and may be formed in various structures in which the hollow 111 can be formed. For example, the frame 110 may be formed in a disk or cylinder shape.
일 실시 예에서, 프레임(110)은 실리콘(Si) 소재로 형성될 수 있다.In one embodiment, the frame 110 may be formed of silicon (Si) material.
프레임(110)의 일 부분에는 적어도 하나의 중공(111)이 관통 형성된다. 이때, 중공(111)의 측면은 측벽(112)에 의하여 둘러싸인다. 즉, 측벽(112)에 의하여 중공(111)의 내주면이 형성된다.At least one hollow 111 is formed through a portion of the frame 110. At this time, the side of the hollow 111 is surrounded by the side wall 112. That is, the inner peripheral surface of the hollow 111 is formed by the side wall 112.
중공(111)은 증기 셀 구조체(10)로 입사되는 광파의 광경로를 형성하고, 기체 원자가 수용되는 공간을 제공한다.The hollow 111 forms an optical path for light waves incident on the vapor cell structure 10 and provides a space for accommodating gas atoms.
중공(111)은 양측이 개구되고 일 방향으로 연장되는 기둥 형상으로 형성된다. 도시된 실시 예에서, 중공(111)은 상하측이 개구되고 상하 방향으로 연장되는 사각기둥 형상으로 형성된다. 그러나, 중공(111)은 도시된 형상에 한정되지 않고 증기 셀 구조체(10)로 입사되는 광파의 광경로를 방해하지 않는 다양한 구조로 형성될 수 있다. 예를 들어, 중공(111)은 원기둥 형상으로 형성될 수 있다.The hollow 111 is formed in a pillar shape that is open on both sides and extends in one direction. In the illustrated embodiment, the hollow 111 is formed in the shape of a square pillar that is open on the upper and lower sides and extends in the vertical direction. However, the hollow 111 is not limited to the shape shown and may be formed in various structures that do not interfere with the optical path of light waves incident on the vapor cell structure 10. For example, the hollow 111 may be formed in a cylindrical shape.
중공(111) 내부에는 기체 원자가 수용된다. 일 실시 예에서, 중공(111) 내부에는 알칼리 증기가 수용될 수 있다. 다른 일 실시 예에서, 중공(111) 내부에는 루비듐(Rb) 증기 또는 세슘(Cs) 증기가 수용될 수 있다.Gas atoms are accommodated inside the hollow 111. In one embodiment, alkaline vapor may be accommodated inside the hollow 111. In another embodiment, rubidium (Rb) vapor or cesium (Cs) vapor may be accommodated inside the hollow 111.
또한, 중공(111) 내부에는 에너지 레별 변화의 측정 대상인 금속 기체 외에도 버퍼 가스가 투입될 수 있다.Additionally, a buffer gas may be injected into the hollow 111 in addition to the metal gas that is the object of measurement for changes by energy level.
일 실시 예에서, 중공(111)은 하나의 프레임(110)에 복수 개 구비될 수 있다.In one embodiment, a plurality of hollows 111 may be provided in one frame 110.
중공(111)의 개구는 각각 후술하는 기판(120)에 의하여 밀폐된다.The openings of the hollows 111 are each sealed by a substrate 120, which will be described later.
기판(120)은 중공(111)을 밀봉하여 중공(111)의 고기밀성을 유지시키는 역할을 수행한다.The substrate 120 serves to seal the hollow 111 and maintain high airtightness of the hollow 111.
기판(120)은 프레임(110)의 양면에 접합 결합된다. 이때, 기판(120)은 프레임(110)에 형성된 중공(111)이 완전히 차단될 수 있도록 프레임(110)과 결합된다. 즉, 기판(120)은 중공(111)과 중공(111)의 연장 방향으로 중첩된다.The substrate 120 is bonded to both sides of the frame 110. At this time, the substrate 120 is coupled to the frame 110 so that the hollow 111 formed in the frame 110 can be completely blocked. That is, the substrate 120 overlaps the hollow 111 in the direction in which the hollow 111 extends.
도시된 실시 예에서, 기판(120)은 제1 기판(121) 및 제2 기판(122)을 포함한다.In the illustrated embodiment, the substrate 120 includes a first substrate 121 and a second substrate 122.
제1 기판(121) 및 제2 기판(122)은 각각 프레임(110)의 상면 및 저면과 결합되어, 중공(111)의 상측 개구 및 하측 개구를 밀폐한다. 중공(111)의 측면은 측벽(112)에 의하여 둘러싸이는 바, 중공(111)의 모든 면이 완벽하게 밀봉될 수 있다.The first substrate 121 and the second substrate 122 are coupled to the upper and lower surfaces of the frame 110, respectively, to seal the upper and lower openings of the hollow 111. The sides of the hollow 111 are surrounded by the side walls 112, so all sides of the hollow 111 can be completely sealed.
기판(120)은 투과도가 높은 소재로 형성된다. 일 실시 예에서, 기판(120)은 유리 소재로 형성될 수 있다.The substrate 120 is made of a material with high transparency. In one embodiment, the substrate 120 may be formed of a glass material.
기판(120)의 일 면에는 나노 입자(130)가 배치된다. Nanoparticles 130 are disposed on one side of the substrate 120.
나노 입자(130)는 입사광에 의하여 표면 플라스마(plasmon) 공명이 유도되면 열을 발생시킨다. Nanoparticles 130 generate heat when surface plasma resonance is induced by incident light.
나노 입자(130)는 제1 기판(121) 및 제2 기판(122) 중 어느 하나의 프레임(110)과 반대되는 면에 배치된다. 바람직하게는, 제1 기판(121) 및 제2 기판(122) 중 어느 하나의 입사면에 배치된다. 도시된 실시 예에서, 나노 입자(130)는 제1 기판(121)의 상면에 배치된다. Nanoparticles 130 are disposed on a side opposite to the frame 110 of either the first substrate 121 or the second substrate 122. Preferably, it is placed on the incident surface of either the first substrate 121 or the second substrate 122. In the illustrated embodiment, nanoparticles 130 are disposed on the upper surface of the first substrate 121.
나노 입자(130)는 프레임(110)의 중공(111)과 중공(111)의 연장 방향으로 중첩된다. Nanoparticles 130 overlap with the hollow 111 of the frame 110 in the extension direction of the hollow 111.
나노 입자(130)는 원자의 에너지 레벨을 감지하기 위하여 기 설정된 파장 범위 내 광파가 입사되면 표면 플라스마 공명이 유도되어 가열되는 금속 소재로 형성된다. 일 실시 예에서, 상기 기 설정된 파장 범위는 775nm 이상 900nm 이하일 수 있다. 다른 일 실시 예에서, 상기 기 설정된 파장 범위는 780nm일 수 있다.The nanoparticles 130 are formed of a metal material that is heated by inducing surface plasma resonance when a light wave within a preset wavelength range is incident to detect the energy level of the atom. In one embodiment, the preset wavelength range may be 775 nm or more and 900 nm or less. In another embodiment, the preset wavelength range may be 780 nm.
나노 입자(130)는 기판(120)을 사이에 두고 프레임(110)의 중공(111)과 마주하도록 배치된다. 이에 따라, 나노 입자(130)가 가열되면 중공(111)으로 해당 열이 전달될 수 있다.The nanoparticles 130 are arranged to face the hollow 111 of the frame 110 with the substrate 120 interposed therebetween. Accordingly, when the nanoparticles 130 are heated, the heat may be transferred to the hollow 111.
따라서, 입사광이 조사됨에 따라 중공(111)이 공명에 의하여 가열되며 프레임(110)의 외측과 중심의 온도 차가 보다 감소될 수 있다. 즉, 증기 셀 구조체(10)의 위치에 따른 온도 편차가 보다 완화될 수 있다. 이를 통해 기체 원자가 특정 구역에 집중적으로 응결되는 현상이 방지될 수 있다. 결과적으로, 증기 셀 구조체(10)로 입사되는 광파의 투과율이 보다 증가될 수 있다.Therefore, as the incident light is irradiated, the hollow 111 is heated by resonance, and the temperature difference between the outside and the center of the frame 110 can be further reduced. That is, the temperature difference depending on the position of the vapor cell structure 10 can be more alleviated. This can prevent gas atoms from condensing intensively in specific areas. As a result, the transmittance of light waves incident on the vapor cell structure 10 can be further increased.
도 5에 도시된 실시 예에서, 나노 입자(130)는 내각(131) 및 외각(132)으로 구성된다.In the embodiment shown in Figure 5, the nanoparticle 130 consists of an inner shell 131 and an outer shell 132.
내각(131)은 일정 반지름(Rc)의 구 형상으로 형성된다. 일 실시 예에서, 내각(131)은 이산화규소(SiO2) 소재로 형성될 수 있다.The inner angle 131 is formed in a spherical shape with a constant radius (Rc). In one embodiment, the interior cabinet 131 may be formed of silicon dioxide (SiO2).
내각(131)의 방사상 외측에는 외각(132)이 배치된다.An outer shell 132 is disposed radially outside the inner shell 131.
외각(132)은 내각(131)의 외주면을 일정 두께(ts)로 감싸도록 형성된다. 즉, 외각(132)은 일정 두께(ts)를 갖는 구각 형상으로 형성된다. 일 실시 예에서, 외각(132)은 금(Au) 소재로 형성될 수 있다.The outer shell 132 is formed to surround the outer peripheral surface of the inner shell 131 with a certain thickness ts. That is, the outer shell 132 is formed in a spherical shape with a certain thickness ts. In one embodiment, the outer shell 132 may be formed of gold (Au) material.
일 실시 예에서, 내각(131)의 반지름(Rc)은 27nm 이상 28nm 이하이고, 외각(132)의 두께(ts)는 3nm 이상 4nm 이하일 수 있다.In one embodiment, the radius (Rc) of the inner angle 131 may be 27 nm or more and 28 nm or less, and the thickness (ts) of the outer angle 132 may be 3 nm or more and 4 nm or less.
이하에서는, 도 6을 참조하여 증기 셀 구조체(10)를 가열하기 위하여 요구되는 나노 입자(130)의 조건에 대하여 설명한다.Hereinafter, the conditions of the nanoparticles 130 required to heat the vapor cell structure 10 will be described with reference to FIG. 6.
도 6은 증기 셀 구조체(10)로 입사되는 광파의 파장에 따른 흡수 단면적 및 산란 단면적 변화를 도시한다.FIG. 6 shows changes in the absorption cross-section and scattering cross-section depending on the wavelength of the light wave incident on the vapor cell structure 10.
증기 셀 구조체(10)에 입사되는 파장은, 흡수 단면적이 크고 산란 단면적이 작다. 따라서, 광에너지 손실의 대부분은 나노 입자(130)의 흡수를 통한 증기 셀 구조체(10)의 가열에 사용된다.The wavelength incident on the vapor cell structure 10 has a large absorption cross-section and a small scattering cross-section. Therefore, most of the light energy loss is used for heating the vapor cell structure 10 through absorption of the nanoparticles 130.
도 6에 도시된 그래프에 따르면, 입사광의 파장이 약 780nm인 경우 흡수 단면적은 약 2.3 x 10-14 m2로, 다른 파장과 비교하였을 때 상대적으로 큰 값을 갖는다.According to the graph shown in FIG. 6, when the wavelength of incident light is about 780 nm, the absorption cross-sectional area is about 2.3 x 10-14 m2, which is a relatively large value compared to other wavelengths.
나노 입자(130)의 내각(131) 반지름(Rc)이 27.8nm, 외각(132) 두께(ts)가 3.7nm이라고 가정할 때, 일반적인 단위 면적 당 가열 강도가 1mW/mm2 이하인 바, 단위 입자 당 흡수력은 10-11W 이하일 것이다. 즉, 1μW의 가열율을 만족하기 위하여는 약 105개의 단위 나노 입자(130)가 구비되어야 할 것이다.Assuming that the inner angle 131 radius (Rc) of the nanoparticle 130 is 27.8 nm and the outer angle 132 thickness (ts) is 3.7 nm, the general heating intensity per unit area is 1 mW/mm2 or less, so per unit particle The absorption power will be less than 10-11W. That is, in order to satisfy a heating rate of 1 μW, approximately 105 unit nanoparticles 130 will need to be provided.
다만, 상술한 결과는 예시에 불과하고, 나노 입자(130)의 크기 및 개수는 나노 입자(130)의 소재, 증기 셀 구조체(10)로 입사되는 광파 등 기타 조건이 변화됨에 따라 다르게 도출될 수 있다.However, the above-mentioned results are only examples, and the size and number of nanoparticles 130 may be derived differently depending on changes in other conditions, such as the material of the nanoparticles 130 and the light wave incident on the vapor cell structure 10. there is.
이하에서는, 도 7을 참조하여 나노 입자(130)의 배치 여부에 따른 증기 셀 구조체(10)의 온도 분포 변화에 대하여 설명한다.Hereinafter, the change in temperature distribution of the vapor cell structure 10 depending on whether the nanoparticles 130 are disposed will be described with reference to FIG. 7.
도 7은 증기 셀 구조체(10)의 위치에 따른 온도 분포를 도시한다.FIG. 7 shows temperature distribution depending on the position of the vapor cell structure 10.
도 7(a)는 종래 기술에 따른 증기 셀 구조체(10)의 온도 분포도를 나타낸다. 즉, 나노 입자(130)가 배치되지 않은 상태의 증기 셀 구조체(10)의 온도 분포도를 나타낸다.Figure 7(a) shows the temperature distribution of the vapor cell structure 10 according to the prior art. That is, it shows the temperature distribution of the vapor cell structure 10 in a state in which the nanoparticles 130 are not disposed.
도 7(a)의 증기 셀 구조체(10)의 프레임(110)에 열이 전달되면, 프레임(110)의 외측부터 가열되어 외측과 중심부 간 온도 차가 발생된다. 도 7(a)에 도시된 실시 예에서, 프레임(110)의 외측이 100℃로 가열되는 동안 중심부인 중공(111)은 94℃에 불과하며, 외측과 중심부 간 6℃의 온도 차를 보이고 있음을 확인할 수 있다.When heat is transferred to the frame 110 of the vapor cell structure 10 of FIG. 7(a), the frame 110 is heated from the outside, generating a temperature difference between the outside and the center. In the embodiment shown in Figure 7(a), while the outside of the frame 110 is heated to 100°C, the central hollow 111 is only 94°C, showing a temperature difference of 6°C between the outside and the center. can confirm.
도 7(b)는 본 발명의 실시 예에 따른 증기 셀 구조체(10)의 온도 분포도를 나타낸다. 즉, 기판(120)의 일 면에 나노 입자(130)가 배치된 상태의 증기 셀 구조체(10)의 온도 분포도를 나타낸다.Figure 7(b) shows the temperature distribution of the vapor cell structure 10 according to an embodiment of the present invention. That is, it shows the temperature distribution of the vapor cell structure 10 with the nanoparticles 130 disposed on one side of the substrate 120.
도 7(b)의 증기 셀 구조체(10)에 원자의 에너지 레벨 감지를 위해 기 설정된 파장 범위 내 광파가 조사되면, 나노 입자(130)에 표면 플라스마 공명이 유도되어 나노 입자(130) 주변부의 온도가 상승된다. 나노 입자(130)는 중공(111)과 중공(111)의 연장 방향으로 중첩되는 바, 나노 입자(130)가 가열되면 중공(111) 또한 함께 온도가 상승된다. 이에 따라, 프레임(110)의 외측과 중심부 간 온도 차가 감소될 수 있다.When light waves within a preset wavelength range for detecting the energy level of atoms are irradiated to the vapor cell structure 10 of FIG. 7(b), surface plasma resonance is induced in the nanoparticles 130, thereby increasing the temperature around the nanoparticles 130. rises. The nanoparticles 130 overlap the hollow 111 in the direction in which the hollow 111 extends. When the nanoparticles 130 are heated, the temperature of the hollow 111 also increases. Accordingly, the temperature difference between the outside and the center of the frame 110 can be reduced.
도 7(b)에 도시된 실시 예에서, 프레임(110)의 외측이 100℃로 가열되는 동안 중심부인 중공(111)은 약 97~98℃의 온도 분포를 보인다. 즉, 외측과 중심부 간 약 2~3℃의 온도 차를 보이고 있음을 확인할 수 있다. 이를 통해, 증기 셀 구조체(10)의 위치에 따른 온도 편차가 도 7(a)에 도시된 실시 예와 비교하였을 때 보다 완화되었음을 확인할 수 있다. 또한, 금속이 응결되기 쉬운 지점인 온도 최저점이 광파의 이동 경로 상에 위치되지 않음을 확인할 수 있다.In the embodiment shown in FIG. 7(b), while the outside of the frame 110 is heated to 100°C, the central hollow 111 shows a temperature distribution of about 97 to 98°C. In other words, it can be seen that there is a temperature difference of about 2 to 3 degrees Celsius between the outside and the center. Through this, it can be confirmed that the temperature difference depending on the position of the vapor cell structure 10 is more relaxed compared to the embodiment shown in FIG. 7(a). In addition, it can be confirmed that the lowest temperature point, which is a point where metal is likely to condense, is not located on the path of light waves.
결과적으로, 나노 입자(130)가 기판(120)을 사이에 두고 중공(111)과 마주하도록 배치됨에 따라, 기체 원자의 특정 구역에 대한 집중적 응결이 방지되고 입사광의 투과율이 증가됨이 예측될 수 있을 것이다.As a result, it can be expected that as the nanoparticles 130 are arranged to face the hollow 111 with the substrate 120 in between, intensive condensation of gas atoms in a specific area is prevented and the transmittance of incident light is increased. will be.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 본 발명은 상기 설명된 실시 예들의 구성에 한정되는 것이 아니다.Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to the configuration of the above-described embodiments.
또한, 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해, 이하의 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 다양하게 수정 및 변경될 수 있다.In addition, the present invention can be modified and changed in various ways by those skilled in the art to which the present invention pertains without departing from the spirit and scope of the present invention as set forth in the claims below.
더 나아가, 상기 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.Furthermore, the above embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made.
(부호의 설명)(Explanation of symbols)
10: 증기 셀 구조체10: Vapor cell structure
110: 프레임110: frame
111: 중공111: hollow
112: 측벽112: side wall
120: 기판120: substrate
121: 제1 기판121: first substrate
122: 제2 기판122: second substrate
130: 나노 입자130: Nanoparticles
131: 내각131: Cabinet
132: 외각132: outer shell
20: 광원20: light source
30: 검출기30: detector

Claims (8)

  1. MEMS(Micro-Electro Mechanical Systems) 공정으로 제조된 증기 셀(vapor cell) 구조체로서,A vapor cell structure manufactured through a MEMS (Micro-Electro Mechanical Systems) process,
    일 부분에 적어도 하나의 중공이 관통 형성되는 프레임;A frame having at least one hollow formed through one portion;
    상기 프레임의 일 면과 결합되어 상기 중공의 일 측을 밀폐하는 제1 기판;a first substrate coupled to one side of the frame to seal one side of the hollow;
    상기 프레임의 타 면과 결합되어 상기 중공의 타 측을 밀폐하는 제2 기판; 및a second substrate coupled to the other side of the frame to seal the other side of the hollow; and
    상기 제1 기판 및 제2 기판 중 어느 하나의 상기 프레임과 반대되는 면에 배치되되, 상기 중공과 상기 중공의 연장 방향으로 중첩되며, 기 설정된 파장 범위 내 광파가 입사되면 표면 플라스몬(plasmon) 공명이 유도되는 금속 소재로 형성되는 나노 입자를 포함하는,It is disposed on a side of either the first substrate or the second substrate opposite to the frame, and overlaps the hollow in the extending direction of the hollow, and when a light wave within a preset wavelength range is incident, surface plasmon resonance occurs. Containing nanoparticles formed from this derived metal material,
    증기 셀 구조체.Vapor cell structure.
  2. 제1항에 있어서,According to paragraph 1,
    상기 기 설정된 파장 범위는,The preset wavelength range is,
    775nm 이상 900nm 이하인,775 nm or more and 900 nm or less,
    증기 셀 구조체.Vapor cell structure.
  3. 제1항에 있어서,According to paragraph 1,
    상기 나노 입자는,The nanoparticles are,
    일정 반지름의 구 형상으로 형성되는 내각; 및An interior angle formed in the shape of a sphere of constant radius; and
    상기 내각의 방사상 외측에 배치되고, 상기 내각의 외주면을 일정 두께로 감싸도록 형성되는 외각을 포함하는,An outer shell disposed radially outside the inner angle and formed to surround the outer peripheral surface of the inner angle to a certain thickness,
    증기 셀 구조체.Vapor cell structure.
  4. 제3항에 있어서,According to clause 3,
    상기 기 설정된 파장 범위는,The preset wavelength range is,
    775nm 이상 900nm 이하이고,775 nm or more and 900 nm or less,
    상기 내각의 반지름은,The radius of the interior angle is,
    27nm 이상 28nm 이하이며,27nm or more and 28nm or less,
    상기 외각의 두께는,The thickness of the outer shell is,
    3nm 이상 4nm 이하인,3 nm or more and 4 nm or less,
    증기 셀 구조체.Vapor cell structure.
  5. 제3항에 있어서,According to clause 3,
    상기 내각은,The above cabinet is:
    이산화규소(SiO2) 소재로 형성되고,It is made of silicon dioxide (SiO2) material,
    상기 외각은,The outer shell is,
    금(Au) 소재로 형성되는,Formed from gold (Au) material,
    증기 셀 구조체.Vapor cell structure.
  6. 제1항에 있어서,According to paragraph 1,
    상기 중공은,The hollow is,
    그 내부에 알칼리 증기가 수용되는,Alkaline vapor is accommodated therein,
    증기 셀 구조체.Vapor cell structure.
  7. 제6항에 있어서,According to clause 6,
    상기 알칼리 증기는 루비듐(Rb) 또는 세슘(Cs)인,The alkaline vapor is rubidium (Rb) or cesium (Cs),
    증기 셀 구조체.Vapor cell structure.
  8. 제1항에 있어서,According to paragraph 1,
    상기 프레임은,The frame is,
    실리콘(Si) 소재로 형성되고,Made of silicon (Si) material,
    상기 제1 기판 및 제2 기판은,The first and second substrates are:
    유리 소재로 형성되는,Formed from glass material,
    증기 셀 구조체.Vapor cell structure.
PCT/KR2022/017009 2022-11-02 2022-11-02 Vapor cell structure for preventing metal condensation WO2024096158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0144168 2022-11-02
KR1020220144168A KR20240062536A (en) 2022-11-02 2022-11-02 Vapor cell structure for preventing condensation of metal

Publications (1)

Publication Number Publication Date
WO2024096158A1 true WO2024096158A1 (en) 2024-05-10

Family

ID=90930776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017009 WO2024096158A1 (en) 2022-11-02 2022-11-02 Vapor cell structure for preventing metal condensation

Country Status (2)

Country Link
KR (1) KR20240062536A (en)
WO (1) WO2024096158A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100166976A1 (en) * 2008-12-30 2010-07-01 Industrial Technology Research Institute Method of manufacturing core-shell nanostructure
KR101709557B1 (en) * 2015-07-30 2017-02-23 한국과학기술원 Vapor cell with electro-optical function for chip-scale atomic clock
KR101825532B1 (en) * 2016-10-04 2018-02-06 한국원자력연구원 Method for detecting radiation and apparatus
US20220019011A1 (en) * 2018-11-13 2022-01-20 University Of Bath An enclosure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018893B1 (en) 2019-02-11 2019-09-05 국방과학연구소 Vapor cell and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100166976A1 (en) * 2008-12-30 2010-07-01 Industrial Technology Research Institute Method of manufacturing core-shell nanostructure
KR101709557B1 (en) * 2015-07-30 2017-02-23 한국과학기술원 Vapor cell with electro-optical function for chip-scale atomic clock
KR101825532B1 (en) * 2016-10-04 2018-02-06 한국원자력연구원 Method for detecting radiation and apparatus
US20220019011A1 (en) * 2018-11-13 2022-01-20 University Of Bath An enclosure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATHANASIOS LALIOTIS; BING-SUI LU; MARTIAL DUCLOY; DAVID WILKOWSKI: "Atom-surface physics: A review", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 13 July 2021 (2021-07-13), 201 Olin Library Cornell University Ithaca, NY 14853, XP091088646, DOI: 10.1116/5.0063701 *

Also Published As

Publication number Publication date
KR20240062536A (en) 2024-05-09

Similar Documents

Publication Publication Date Title
Fonck et al. Multichannel grazing-incidence spectrometer for plasma impurity diagnosis: SPRED
WO2024096158A1 (en) Vapor cell structure for preventing metal condensation
WO2023113261A1 (en) Magnetic levitation rotation apparatus and substrate processing apparatus using same
WO2024085437A1 (en) In-chamber type thin film analysis device
Tam et al. Polarization reversal of Rayleigh scattering near a 2P32, 12− 2S12 resonance doublet
WO2019203451A1 (en) Liquid crystal x-ray detector
WO2013162187A1 (en) Floating device and floating method
WO2017123075A1 (en) Method for manufacturing substrate for surface-enhanced raman analysis using oligomer dielectric layer
WO2018128467A1 (en) Liquid lens
WO2023033264A1 (en) Gas sensor using uv led
WO2018226004A1 (en) Method for manufacturing pellicle
WO2019203452A1 (en) Liquid crystal x-ray detector and manufacturing method therefor
WO2021157838A1 (en) Voc detection pid gas sensor device
Tsai et al. Radiation effects on a low‐thermal‐expansion glass ceramic
WO2021006676A1 (en) Substrate processing apparatus
WO2021060634A1 (en) Delay energy analyzer
WO2015093690A1 (en) Different radiation measuring sensor and manufacturing method thereof
WO2023128565A1 (en) Epitaxial process semiconductor manufacturing device
Šegedin et al. Tandem-ABALONE™ photosensors with 2× 2π acceptance for neutrino astronomy
WO2022145930A1 (en) Substrate heat treatment device using laser light emitter
WO2023195717A1 (en) Analysis method for semiconductor element, and analysis device therefor
WO2022145875A1 (en) Substrate annealing apparatus using laser-light-emitting device
WO2023106550A1 (en) Active radiation control window
WO2019182406A1 (en) Reflector and light sintering apparatus comprising same
WO2023101425A1 (en) Particle measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964537

Country of ref document: EP

Kind code of ref document: A1