WO2024095883A1 - Modifier for thermoplastic resin, resin composition, and use of rosin resin - Google Patents

Modifier for thermoplastic resin, resin composition, and use of rosin resin Download PDF

Info

Publication number
WO2024095883A1
WO2024095883A1 PCT/JP2023/038658 JP2023038658W WO2024095883A1 WO 2024095883 A1 WO2024095883 A1 WO 2024095883A1 JP 2023038658 W JP2023038658 W JP 2023038658W WO 2024095883 A1 WO2024095883 A1 WO 2024095883A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
rosin
resin
acid
Prior art date
Application number
PCT/JP2023/038658
Other languages
French (fr)
Japanese (ja)
Inventor
翼 伊藤
昭寛 川端
功基 柴地
徹也 柏原
遼 芝原
隆 中谷
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Publication of WO2024095883A1 publication Critical patent/WO2024095883A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
    • C09F1/00Obtaining purification, or chemical modification of natural resins, e.g. oleo-resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to the use of a modifier for thermoplastic resins, a resin composition, and a rosin-based resin.
  • thermoplastic resins are used in a variety of industrial fields, and among them, engineering plastics and super engineering plastics are widely used as automotive materials, electrical and electronic equipment materials, and housing and building materials due to their excellent balance of heat resistance and strength.
  • thermoplastic resins particularly engineering plastics and super engineering plastics, often have high molding temperatures and poor melt fluidity, so additives such as lubricants are usually added to the thermoplastic resin to reduce the apparent flow viscosity during melting and improve molding processability (Patent Documents 1 and 2).
  • thermoplastic resins particularly engineering plastics and super engineering plastics, have high melting points of approximately 200°C or higher, and are melted at high temperatures (250°C or higher).
  • the addition of conventional lubricants can cause smoke during melting.
  • the present invention aims to provide a novel modifier for thermoplastic resins that can suppress smoke generation during melting of the thermoplastic resin and improve the molding processability of the thermoplastic resin.
  • thermoplastic resins that contains a rosin-based resin that has a high mass retention rate after heating at 300°C for two hours and has a specific mixed methylcyclohexaneaniline cloud point (MMAP).
  • MMAP mixed methylcyclohexaneaniline cloud point
  • the present invention has been made to solve at least some of the problems described above, and can be realized in the following aspects or application examples.
  • the mass residual rate after heating at 300° C. for 2 hours is 40% by mass or more,
  • the rosin-based resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of -10 to 20°C. Modifier for thermoplastic resins.
  • (Item 2) A resin composition comprising the modifier according to item 1 and a thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
  • thermoplastic resin further comprises a filler.
  • the range of the values of each physical property, content, etc. may be set as appropriate (for example, by selecting from the values described in each item below).
  • the range of the value ⁇ may be, for example, A3 or less, A2 or less, less than A3, less than A2, A1 or more, A2 or more, greater than A1, greater than A2, A1 to A2 (A1 or more and A2 or less), A1 to A3, A2 to A3, A1 or more and less than A3, A1 or more and less than A2, A2 or more and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A
  • Modifier for thermoplastic resin The present disclosure relates to a modifier for thermoplastic resins (hereinafter also referred to as modifier), which contains a rosin-based resin (hereinafter also referred to as rosin-based resin) having a mass retention rate (hereinafter also referred to as mass retention rate) of 40 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of -10 to 20°C.
  • a rosin-based resin hereinafter also referred to as rosin-based resin having a mass retention rate (hereinafter also referred to as mass retention rate) of 40 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of -10 to 20°C.
  • MMAP mixed methylcyclohexaneaniline cloud point
  • the above modifiers function to improve the fluidity of the thermoplastic resin when melted (fluidity improvers).
  • the rosin-based resin is not particularly limited as long as the mass residual rate and MMAP are within the above-mentioned ranges, and various known resins can be used.
  • the rosin-based resins may be used alone or in combination of two or more.
  • rosin-based resins include, for example, rosin esters, rosin polyols, etc.
  • the rosin esters are not particularly limited, and various known rosin esters can be used. Examples of the rosin esters include unmodified rosin esters, hydrogenated rosin esters, disproportionated rosin esters, polymerized rosin esters, and ⁇ , ⁇ -unsaturated carboxylic acid modified rosin esters. The rosin esters may be used alone or in combination of two or more.
  • Unmodified rosin esters are obtained by reacting natural rosin or refined rosin (hereinafter, natural rosin and refined rosin are collectively referred to as unmodified rosin) with alcohols.
  • natural rosins include, for example, natural rosins (gum rosin, tall oil rosin, wood rosin) derived from Pinus massoniana, slash pine (Pinus elliottii), Pinus merkusii, Caribbean pine (Pinus caribaea), Pinus kesiya, Loblolly pine (Pinus taeda), and Pinus palustris.
  • natural rosins (gum rosin, tall oil rosin, wood rosin) derived from Pinus massoniana, slash pine (Pinus elliottii), Pinus merkusii, Caribbean pine (Pinus caribaea), Pinus kesiya, Loblolly pine (Pinus taeda), and Pinus palustris.
  • the purified rosin can be obtained by using various known means. Specifically, it can be obtained by using various known purification means such as distillation, extraction, recrystallization, and adsorption.
  • the distillation method includes, for example, a method of distilling the natural rosin at a temperature of about 200 to 300°C under a reduced pressure of about 0.01 to 3 kPa.
  • the extraction method includes, for example, a method of making the natural rosin into an alkaline aqueous solution, extracting insoluble unsaponifiable matter with various organic solvents, and then neutralizing the aqueous layer.
  • the recrystallization method includes, for example, a method of dissolving the natural rosin in an organic solvent as a good solvent, then distilling off the solvent to obtain a concentrated solution, and further adding an organic solvent as a poor solvent.
  • good solvents include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, chlorinated hydrocarbon solvents such as chloroform, lower alcohols, ketones such as acetone, and acetate esters such as ethyl acetate.
  • poor solvents include n-hexane, n-heptane, cyclohexane, and isooctane.
  • the adsorption method may, for example, be a method in which the natural rosin in a molten state or the natural rosin in a solution state dissolved in an organic solvent is brought into contact with a porous adsorbent.
  • a porous adsorbent include activated carbon, metal oxides such as alumina, zirconia, silica, molecular sieves, zeolites, and porous clays with fine pores.
  • the purified rosin obtained may be subjected to the disproportionation and hydrogenation operations described below, either alone or in combination of two or more thereof.
  • the purified rosin may be further subjected to a dehydrogenation treatment.
  • the dehydrogenation treatment is not particularly limited, and normal conditions can be adopted.
  • the purified rosin is dehydrogenated in a closed vessel in the presence of a dehydrogenation catalyst at an initial hydrogen pressure of less than 10 kg/cm2, preferably less than 5 kg/cm2, and at a reaction temperature of about 100 to 300°C, preferably in the range of a lower limit of 200°C and an upper limit of 280°C.
  • the dehydrogenation catalyst there are no particular limitations on the dehydrogenation catalyst, and various known catalysts can be used, but preferred examples include palladium-, rhodium-, and platinum-based catalysts, which are usually used supported on a carrier such as silica or carbon.
  • the amount of the catalyst used is usually about 0.01 to 5% by weight, preferably a lower limit of 0.05% by weight and an upper limit of 3% by weight, based on the purified rosin.
  • the alcohols are not particularly limited, and examples thereof include dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimer diol, bisphenol A, and bisphenol F; trihydric alcohols such as glycerin, trimethylolethane, and trimethylolpropane; tetrahydric alcohols such as pentaerythritol and diglycerin; and hexahydric alcohols such as dipentaerythritol.
  • dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimer diol, bisphenol A, and bisphenol F
  • trihydric alcohols such as glycerin, trimethylolethane, and trimethylolpropane
  • tetrahydric alcohols such as pentaerythritol and diglycerin
  • polyhydric alcohols having three or more hydroxyl groups are preferred, in view of the high mass retention rate in the rosin-based resin, and more preferably glycerin, pentaerythritol, diglycerin, and dipentaerythritol.
  • the alcohols may be used alone or in combination of two or more.
  • the alcohols are preferably two or more selected from the group consisting of dihydric alcohols, trihydric alcohols, tetrahydric alcohols, and hexahydric alcohols, because they have a high mass residual rate in the rosin-based resin.
  • the dihydric alcohols are preferably bisphenol A and bisphenol F, because they have a high mass residual rate in the rosin-based resin.
  • the reaction conditions of the unmodified rosin and alcohols are not particularly limited, and various known reaction conditions can be used.
  • the reaction conditions of the unmodified rosin and alcohols may be, for example, the unmodified rosin and alcohols in the presence or absence of a solvent, with an esterification catalyst added as necessary, at about 250 to 280°C for about 1 to 8 hours.
  • the above-mentioned esterification catalyst includes, for example, acid catalysts such as paratoluenesulfonic acid, acetic acid, methanesulfonic acid, hypophosphorous acid, and sulfuric acid; metal hydroxides such as calcium hydroxide and magnesium hydroxide; metal oxides such as calcium oxide and magnesium oxide; and metal salts such as iron chloride and calcium formate.
  • the catalyst may be used alone or in combination of two or more.
  • the reaction since water is produced as a result of the esterification reaction, the reaction can be allowed to proceed while removing the produced water from the system. Considering the color tone of the resulting unmodified rosin ester, it is desirable to carry out the reaction under an inert gas flow. Furthermore, the reaction may be carried out under pressure if necessary.
  • the solvent examples include hexane, cyclohexane, toluene, and xylene.
  • the solvent or unreacted raw materials can be removed by distillation under reduced pressure, if necessary.
  • the amount of the unmodified rosin and alcohols used is such that the OH group of the alcohols/COOH group of the unmodified rosins (equivalent ratio) is about 0.2 to 8, and is preferably about 0.8 to 8, and more preferably about 0.8 to 3, in view of the high mass residual rate in the rosin-based resin.
  • Hydrogenated rosin ester is obtained by subjecting the unmodified rosin described above to a hydrogenation reaction, and then reacting the hydrogenated rosin with alcohols to esterify it.
  • the hydrogenated rosin can be obtained by using various known means. Specifically, for example, the unmodified rosin can be reacted (hydrogenated) by heating under hydrogen pressure in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst various known catalysts such as supported catalysts and metal powders can be used. Supported catalysts include palladium-carbon, rhodium-carbon, ruthenium-carbon, platinum-carbon, etc., and metal powders include nickel and platinum.
  • the amount of the catalyst used is usually about 0.01 to 5 parts by mass, preferably about 0.01 to 2 parts by mass, per 100 parts by mass of the rosin used as the raw material.
  • the hydrogen pressure is about 2 to 20 MPa, preferably about 5 to 20 MPa.
  • the reaction temperature is about 100 to 300°C, preferably about 150°C to 300°C.
  • the hydrogenation may be carried out, if necessary, with the unmodified rosin dissolved in a solvent.
  • a solvent there is no particular limit to the solvent used, as long as it is inert to the reaction and easily dissolves the raw materials and products.
  • cyclohexane, n-hexane, n-heptane, decalin, tetrahydrofuran, dioxane, etc. can be used alone or in combination of two or more.
  • the amount of solvent used but it is usually sufficient to use a solvent so that the solid content is 10% by mass or more, preferably 10 to 70% by mass, relative to the unmodified rosin.
  • the hydrogenated rosin obtained may be subjected to the above-mentioned purification, hydrogenation, and disproportionation operations described below, either alone or in combination of two or more thereof.
  • the hydrogenated rosin may be further subjected to the above-mentioned dehydrogenation treatment.
  • the reaction conditions for the hydrogenated rosin and the alcohols are the same as those for the unmodified rosin ester.
  • the alcohols used in esterifying the hydrogenated rosin are also the same as those described above.
  • the amounts of the hydrogenated rosin and the alcohols used are also the same as those described above.
  • the order of the hydrogenation reaction and the esterification reaction is not limited to the above, and the hydrogenation reaction may be carried out after the esterification reaction.
  • Disproportionated rosin ester is obtained by disproportionating the unmodified rosin described above, and then reacting the resulting disproportionated rosin with alcohols to esterify it.
  • the disproportionated rosin can be obtained by using various known means. Specifically, for example, the unmodified rosin can be reacted (disproportionated) by heating in the presence of a disproportionation catalyst.
  • the disproportionation catalyst include supported catalysts such as palladium-carbon, rhodium-carbon, and platinum-carbon, metal powders such as nickel and platinum, and iodides such as iodine and iron iodide.
  • the amount of the catalyst used is usually about 0.01 to 5 parts by mass, and preferably about 0.01 to 1 part by mass, per 100 parts by mass of the rosin used as the raw material.
  • the reaction temperature is about 100 to 300°C, and preferably about 150 to 290°C.
  • the disproportionated rosin obtained may be subjected to the above-mentioned purification, hydrogenation, and disproportionation operations, either alone or in combination of two or more thereof.
  • the disproportionated rosin may be subjected to the above-mentioned dehydrogenation treatment.
  • the reaction conditions for the disproportionated rosin and the alcohols are the same as those for the unmodified rosin ester.
  • the alcohols used when esterifying the disproportionated rosin are also the same as those described above.
  • the amounts of the disproportionated rosin and the alcohols used are also the same as those described above.
  • the order of the disproportionation reaction and the esterification reaction is not limited to the above, and the disproportionation reaction may be carried out after the esterification reaction.
  • Polymerized rosin ester is obtained by reacting polymerized rosin with alcohols.
  • Polymerized rosin is a rosin derivative that contains dimerized resin acid.
  • the raw material is the unmodified rosin, which is reacted in a solvent such as toluene or xylene containing a catalyst such as sulfuric acid, hydrogen fluoride, aluminum chloride, or titanium tetrachloride at a reaction temperature of about 40 to 160°C for about 1 to 5 hours.
  • a solvent such as toluene or xylene containing a catalyst such as sulfuric acid, hydrogen fluoride, aluminum chloride, or titanium tetrachloride at a reaction temperature of about 40 to 160°C for about 1 to 5 hours.
  • the polymerized rosin may be obtained by subjecting the obtained polymerized rosin to various treatments, such as the above-mentioned purification, hydrogenation, disproportionation, and ⁇ , ⁇ -unsaturated carboxylic acid modification such as acrylation, maleinization, and fumaration, which will be described later.
  • the various treatments may be performed alone or in combination of two or more.
  • the reaction conditions for the polymerized rosin and alcohols are the same as those for the unmodified rosin ester.
  • the amounts of polymerized rosin and alcohols used are also the same as those described above.
  • the unmodified rosin may be used in combination with the polymerized rosin, and these may be reacted with the alcohols.
  • the order of the polymerization reaction and the esterification reaction is not limited to the above, and the polymerization reaction may be carried out after the esterification reaction.
  • ⁇ , ⁇ -unsaturated carboxylic acid modified rosin ester is obtained by reacting ⁇ , ⁇ -unsaturated carboxylic acid modified rosin with alcohols.
  • the above-mentioned ⁇ , ⁇ -unsaturated carboxylic acid modified rosin is obtained by subjecting the above-mentioned unmodified rosin, hydrogenated rosin or disproportionated rosin to an addition reaction with ⁇ , ⁇ -unsaturated carboxylic acid.
  • the ⁇ , ⁇ -unsaturated carboxylic acid is not particularly limited, and various known ⁇ , ⁇ -unsaturated carboxylic acids can be used. Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, muconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, muconic anhydride, and the like.
  • the ⁇ , ⁇ -unsaturated carboxylic acid is preferably acrylic acid, maleic acid, maleic anhydride, or fumaric acid.
  • the amount of the ⁇ , ⁇ -unsaturated carboxylic acid used is usually about 1 to 20 parts by mass, and preferably about 1 to 3 parts by mass, per 100 parts by mass of the unmodified rosin, from the viewpoint of excellent emulsification properties.
  • the ⁇ , ⁇ -unsaturated carboxylic acids may be used alone or in combination of two or more kinds.
  • the method for producing the ⁇ , ⁇ -unsaturated carboxylic acid modified rosin is not particularly limited, but may be, for example, adding the ⁇ , ⁇ -unsaturated carboxylic acid to the unmodified rosin or disproportionated rosin melted under heating, and reacting for about 1 to 9 hours at a temperature of about 180 to 240°C.
  • the reaction may be carried out while blowing an inert gas such as nitrogen into a sealed reaction system.
  • the reaction may use known catalysts such as Lewis acids such as zinc chloride, iron chloride, and tin chloride, and Bronsted acids such as paratoluenesulfonic acid and methanesulfonic acid.
  • the amount of these catalysts used is usually about 0.01 to 10 mass% based on the unmodified rosin.
  • the ⁇ , ⁇ -unsaturated carboxylic acid modified rosin may be an ⁇ , ⁇ -unsaturated carboxylic acid modified rosin that has been further subjected to the above-mentioned hydrogenation.
  • reaction conditions between the ⁇ , ⁇ -unsaturated carboxylic acid modified rosin and alcohols are not particularly limited, but for example, alcohol is added to the ⁇ , ⁇ -unsaturated carboxylic acid modified rosin that has been melted under heating, and the reaction is carried out at a temperature of about 250 to 280°C for about 15 to 20 hours.
  • the reaction may also be carried out while blowing an inert gas such as nitrogen into the sealed reaction system, and the above-mentioned catalyst may also be used.
  • the alcohols used when esterifying the ⁇ , ⁇ -unsaturated carboxylic acid modified rosin are the same as above.
  • the amounts of the ⁇ , ⁇ -unsaturated carboxylic acid modified rosin and alcohols used are also the same as above.
  • the rosin ester obtained may be subjected to various treatments such as the purification, hydrogenation, disproportionation, and dehydrogenation treatment. Moreover, the various treatments may be used alone or in combination of two or more.
  • the rosin ester is preferably at least one selected from the group consisting of hydrogenated rosin ester and disproportionated rosin ester, since the mass retention rate is high.
  • Rosin polyols are the reaction products of reactive components that include rosins and epoxy resins.
  • the rosins are not particularly limited, and various known rosins can be used. Examples of the rosins include the unmodified rosin, hydrogenated rosin, and disproportionated rosin.
  • the epoxy resin is not particularly limited, and various known epoxy resins can be used.
  • the epoxy resin include bisphenol type epoxy resins, novolac type epoxy resins, resorcinol type epoxy resins, phenol aralkyl type epoxy resins, naphthol aralkyl type epoxy resins, aliphatic polyepoxy compounds, alicyclic epoxy compounds, glycidylamine type epoxy compounds, glycidyl ester type epoxy compounds, monoepoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, epoxidized polybutadiene, epoxidized styrene-butadiene-styrene block copolymers, epoxy group-containing polyester resins, epoxy group-containing polyurethane resins, epoxy group-containing acrylic resins, stilbene type epoxy compounds, triazine type epoxy compounds, fluorene type epoxy compounds, triphenolmethane type epoxy compounds, alkyl-modified triphenolmethane type epoxy compounds, dicycl
  • the above-mentioned bisphenol type epoxy resins include, for example, bisphenol A type epoxy resins, bisphenol E type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AD type epoxy resins, hydrogenated bisphenol A type epoxy resins, hydrogenated bisphenol F type epoxy resins, hydrogenated bisphenol AD type epoxy resins, tetrabromobisphenol A type epoxy resins, 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl diglycidyl ether, 2,2-bis(4-( ⁇ -hydroxypropoxy)phenyl)propane diglycidyl ether, etc.
  • novolac type epoxy resin examples include cresol novolac type epoxy resin, phenol novolac type epoxy resin, ⁇ -naphthol novolac type epoxy resin, bisphenol A type novolac type epoxy resin, and brominated phenol novolac type epoxy resin.
  • Examples of the aliphatic polyepoxy compounds include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, diglycerol triglycidyl ether, sorbitol tetraglycidyl ether, and diglycidyl ether.
  • the above alicyclic epoxy compounds include, for example, 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-meta-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexanecarboxylate, methylene bis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol di(3,4-epoxycyclohexylmethyl)ether, ethylene bis(3,4-epoxycyclohexanecarboxylate), lactone-modified 3,4
  • Examples of the glycidylamine type epoxy compounds include tetraglycidyldiaminodiphenylmethane, triglycidyl paraaminophenol, triglycidyl metaaminophenol, and tetraglycidyl metaxylylenediamine.
  • Examples of the glycidyl ester type epoxy compounds include diglycidyl phthalate, diglycidyl hexahydrophthalate, diglycidyl tetrahydrophthalate, triglycidyl trimellitate, etc.
  • the weight average molecular weight (Mw) of the epoxy resin is not particularly limited.
  • the weight average molecular weight of the epoxy resin is, for example, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200, 2,300, 2,400, 2,500, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000, 29,000, 30,000, 31,000, 32,000, 33,000, 34,000, 35,000, 36,000, 37,000, 38,000, 39,000, 40,000, 41,000, 42,000, 43, 00, 2,600, 2,700, 2,800, 2,900, 3,000, 3,100, 3,200, 3,300,
  • the weight average molecular weight of the epoxy resin is preferably 150 or more because the mass residual rate in the rosin-based resin is high. The higher the weight average molecular weight of the epoxy resin, the higher the mass residual rate tends to be. In one embodiment, the weight average molecular weight of the epoxy resin is preferably about 150 to 10,000, more preferably about 150 to 2,000, in order to further improve the fluidity of the thermoplastic resin when melted.
  • the weight average molecular weight is a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • the epoxy equivalent (g/eq) of the epoxy resin is not particularly limited.
  • the epoxy equivalent of the epoxy resin is, for example, 100 g/eq, 150 g/eq, 180 g/eq, 200 g/eq, 300 g/eq, 400 g/eq, 500 g/eq, 600 g/eq, 700 g/eq, 800 g/eq, 900 g/eq, 1,000 g/eq, 1,100 g/eq, 1, 200g/eq, 1,300g/eq, 1,400g/eq, 1,500g/eq, 1,600g/eq, 1,700g/eq, 1,800g/eq, 1,900g/eq, 2,000g/eq, 2,100g/eq, 2,200g/eq, 2,300g/eq, 2,400g/eq, 2,50 0 g/eq, 2,600 g/eq, 2,700 g/eq, 2,800 g/eq, 2,900 g
  • the epoxy equivalent (g/eq) of the epoxy resin is preferably 100 g/eq or more, more preferably 150 g/eq or more, and even more preferably 180 g/eq or more, in view of the high mass residual rate of the rosin-based resin.
  • the epoxy equivalent of the epoxy resin is preferably about 100 to 5,000 g/eq, more preferably about 150 to 1,000 g/eq, and even more preferably about 180 to 500 g/eq, in order to further improve the fluidity of the thermoplastic resin when melted.
  • the reaction components may contain alcohols in addition to the rosins and epoxy resins.
  • the alcohols include the alcohols in the rosin esters.
  • the alcohols are preferably two or more selected from the group consisting of dihydric alcohols, trihydric alcohols, tetrahydric alcohols, and hexahydric alcohols, because the mass residual ratio of the rosin polyol is high.
  • the method for producing the rosin polyol is not particularly limited, and various known methods can be used. Specifically, for example, there is a method in which the rosins and epoxy resins are subjected to a ring-opening addition reaction at 120 to 300°C in a nitrogen stream in the presence or absence of a catalyst.
  • the catalyst examples include amine catalysts such as trimethylamine, triethylamine, tributylamine, benzyldimethylamine, pyridine, and 2-methylimidazole, quaternary ammonium salts such as benzyltrimethylammonium chloride, Lewis acids, boric acid esters, organometallic compounds, organometallic salts, trialkylphosphines, and triarylphosphines.
  • amine catalysts such as trimethylamine, triethylamine, tributylamine, benzyldimethylamine, pyridine, and 2-methylimidazole
  • quaternary ammonium salts such as benzyltrimethylammonium chloride
  • Lewis acids boric acid esters
  • organometallic compounds organometallic salts
  • trialkylphosphines trialkylphosphines
  • triarylphosphines triarylphosphines.
  • a solvent may be used as necessary.
  • the solvent there are no particular limitations on the solvent, so long as it is inert to the reaction and easily dissolves the raw materials and products.
  • Specific examples include aromatic hydrocarbons such as benzene, toluene, and xylene; aliphatic hydrocarbons such as n-hexane; and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane.
  • the amount of the rosins and epoxy resins used is usually such that, assuming that one epoxy group in the epoxy resin is equivalent to two OH groups, the OH groups of the epoxy resin (total of the OH groups present in the epoxy groups and the epoxy resin) / COOH groups of the rosins (equivalent ratio) is about 0.8 to 22, and preferably about 0.8 to 10 because the mass residual rate in the rosin-based resin is high.
  • the rosin-based resin is preferably at least one selected from the group consisting of the rosin esters and rosin polyols, from the viewpoints of suppressing smoke generation when the thermoplastic resin is melted and improving the fluidity of the thermoplastic resin when melted, and more preferably the rosin esters, from the same viewpoints.
  • the mass residual ratio of the rosin-based resin is, for example, 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 7 ...
  • Examples of the mass residual ratio include 1 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, 65 mass%, 64 mass%, 63 mass%, 62 mass%, 61 mass%, 60 mass%, 59 mass%, 58 mass%, 57 mass%, 56 mass%, 55 mass%, 54 mass%, 53 mass%, 52 mass%, 51 mass%, 50 mass%, 49 mass%, 48 mass%, 47 mass%, 46 mass%, 45 mass%, 44 mass%, 43 mass%, 42 mass%, 41 mass%, 40 mass%, etc.
  • the mass residual ratio of the rosin-based resin is preferably 40 mass% or more, more preferably 70 mass% or more, even more preferably 80 mass% or more, even more preferably 90 mass% or more, and particularly preferably 100 mass% from the viewpoint of suppressing smoke generation during melting of the thermoplastic resin.
  • the mass retention rate is measured by the method described in the Examples below.
  • Thermoplastic resins are often processed at temperatures of 250°C or higher.
  • the inventors of the present invention have hypothesized that when a modifier containing a rosin-based resin is used in a thermoplastic resin and smokes when melted, the rosin-based resin has many components that can volatilize and structures that can thermally decompose at the processing temperature, and that the smoke is generated by the volatile components and thermal decomposition products.
  • the inventors of the present invention have evaluated the mass retention rate of rosin-based resins under harsh conditions of heating at a temperature (300°C) equal to or higher than the processing temperature for a long period of time (2 hours), and have found that those with a mass retention rate of 40% or higher have few such components and structures, and therefore smoke generation is suppressed even when used in the processing of thermoplastic resins.
  • rosin-based resins since it is difficult to specify the details of rosin-based resins, such as the components that can volatilize at molding processing temperatures and the structures that can thermally decompose, the inventors have specified rosin-based resins that can suppress smoke generation when the thermoplastic resin is melted by defining the rosin-based resins at the above-mentioned mass residual ratio.
  • the heating conditions are mild, making it difficult to properly evaluate the tendency of rosin-based resins to emit smoke when the thermoplastic resin is melted.
  • the thermoplastic resin emits smoke when melted, the smoke causes equipment and mold contamination, but when the heating time is shorter than 2 hours, it is difficult to properly evaluate the degree of contamination because it is not possible to reflect the equipment and mold contamination that occurs in actual molding processing.
  • the mass residual rate of the rosin-based resin is less than 40 mass%, when it is used in a thermoplastic resin, it tends to emit a lot of smoke when melted.
  • the MMAP of the rosin-based resin may be, for example, 20°C, 19°C, 18°C, 17°C, 15°C, 14°C, 13°C, 12°C, 11°C, 10°C, 9°C, 8°C, 7°C, 6°C, 5°C, 4°C, 3°C, 2°C, 1°C, 0°C, -1°C, -2°C, -3°C, -4°C, -5°C, -6°C, -7°C, -8°C, -9°C, or -10°C.
  • the MMAP of the rosin-based resin is preferably -10 to 20°C, more preferably -8 to 18°C, in order to improve the fluidity of the thermoplastic resin when melted.
  • the MMAP of the rosin-based resin is less than -10°C or more than 20°C, the flowability of the thermoplastic resin when melted tends to decrease.
  • the rosin-based resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP.
  • Examples of the color tone of the rosin-based resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen.
  • the color tone of the rosin-based resin is preferably about 10 to 400 Hazen, and more preferably about 10 to 200 Hazen, in terms of suppressing coloring. In this disclosure, color tone is measured in Hazen units according to JIS K 0071-1, and in Gardner units according to JIS K 0071-2.
  • the acid value (mgKOH/g) of the rosin-based resin is, for example, 200 mgKOH/g, 195 mgKOH/g, 190 mgKOH/g, 185 mgKOH/g, 180 mgKOH/g, 175 mgKOH/g, 170 mgKOH/g, 165 mgKOH/g, 160 mgKOH/g, 155 mgKOH/g, 150 mgKOH/g, 145 mgKOH/g, 140 mgKOH/g, 135 mgKOH/g, 130 mgKOH/g, 125 mgKOH/g, 120 mgKOH/g, 115 mgKOH/g, 110 mgKOH/g, 10 5mgKOH/g, 100mgKOH/g, 95mgKOH/g, 90mgKOH/g, 85mgKOH/g, 80mgKOH/g, 75mgKOH/g, 70mgKOH/g, 65mgKOH/g, 60mgKOH/g, 55mgKOH
  • the acid value of the rosin resin is preferably 200 mgKOH/g or less, more preferably 50 mgKOH/g or less, even more preferably 20 mgKOH/g or less, even more preferably 15 mgKOH/g or less, even more preferably 10 mgKOH/g or less, even more preferably 0.1 mgKOH/g or less, and particularly preferably 0 mgKOH/g, in order to further suppress smoke generation during melting of the thermoplastic resin.
  • the acid value is a value measured according to JIS K0070.
  • the weight average molecular weight of the rosin-based resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, 800, 700, 600, etc.
  • the weight average molecular weight of the rosin resin is preferably 600 or more, more preferably 700 or more, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted, and more preferably 600 or more.
  • the weight average molecular weight of the rosin resin is preferably about 600 to 4,000, more preferably about 600 to 3,000, even more preferably about 600 to 2,500, and particularly preferably about 700 to 2,500, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when melted.
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the rosin-based resin may contain any of various known additives, provided that the effects of the present invention are not impaired.
  • additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers.
  • the additives may be used alone or in combination of two or more.
  • the modifier may contain any of various known additives as long as the effects of the present invention are not impaired.
  • additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers.
  • the additives may be used alone or in combination of two or more.
  • the content of the additive is preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the rosin resin.
  • thermoplastic resins (Use of modifiers for thermoplastic resins)
  • the above-mentioned modifier can be used for various known thermoplastic resins.
  • the thermoplastic resin may be used alone or in combination of two or more. Examples of the thermoplastic resin include those described below.
  • the above modifier is preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether, and polyolefin resin, and more preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyamide 66, polyamide 6, polycarbonate, modified polyphenylene ether resin, polyethylene, and polypropylene, in order to further improve the fluidity during melting.
  • the modifier contains the rosin-based resin, and is therefore preferably used for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
  • the amount of the modifier used is not particularly limited.
  • the amount of the modifier used may be 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted. In one embodiment, the amount of the modifier used is preferably about 0.1 to 20 parts by mass, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted.
  • the amount of the modifier used may be, for example, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by weight, 14 parts by weight, 13 parts by weight, 12 parts by weight, 11 parts by weight, 10 parts by weight, 9 parts by weight, 8 parts by weight, 7 parts by weight, 6 parts by weight, 5 parts by weight, 4 parts by weight, 3 parts by weight, 2 parts by weight, 1 part by weight, 0.9 parts by weight, 0.8 parts by weight, 0.7 parts by weight, 0.6 parts by weight, 0.5 parts by weight, 0.4 parts by weight, 0.3 parts by weight, 0.2 parts by weight, 0.1 parts by weight, etc., per 100 parts by weight of the thermoplastic resin.
  • the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted.
  • the amount of the modifier used is preferably about 0.1 to 20 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
  • the modifier when used in a thermoplastic resin containing a filler, which will be described later, it can improve the mechanical properties of a molded body of the thermoplastic resin compared to when the modifier is not used. Although the details are unclear, it is presumed that the modifier improves the interfacial adhesion between the thermoplastic resin and the filler, thereby improving the mechanical properties of the molded body.
  • the method of using the modifier is not particularly limited.
  • the modifier is added to a mixer together with a thermoplastic resin, and melt-kneaded in the mixer.
  • the mixer include a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc.
  • the temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
  • the present disclosure relates to a resin composition containing the above-mentioned modifier (or the above-mentioned rosin-based resin) and a thermoplastic resin.
  • thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • thermoplastic resin examples include polyolefin resins, styrene resins, ABS resins, polyamides, polyesters, polycarbonates, polyacetals, phenoxy resins, polymethyl methacrylate resins, polyphenylene ethers, polyphenylene sulfides, polyamide-imides, polyimides, polyether-imides, liquid crystal polymers, polyether-ether ketones, polyether-sulfones, polysulfones, polyarylates, and fluororesins.
  • the polyolefin resin is not particularly limited, and various known polyolefin resins can be used.
  • the polyolefin resins may be used alone or in combination of two or more.
  • the polyolefin resins include, for example, homopolymers of ⁇ -olefins having about 2 to 8 carbon atoms, such as ethylene, propylene, and 1-butene; binary or ternary (co)polymers of the above-mentioned ⁇ -olefins; binary or ternary (co)polymers of the above-mentioned ⁇ -olefins with ⁇ -olefins having about 9 to 18 carbon atoms, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, (meth)acrylic acid esters, vinyl acetate, and the like.
  • Examples of the ⁇ -olefins having about 2 to 18 carbon atoms include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, and 1-octadecene.
  • Examples of the conjugated dienes and non-conjugated dienes include butadiene, isoprene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene.
  • unsaturated carboxylic acids examples include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride.
  • the unsaturated carboxylic acids may be neutralized with a base or the like.
  • Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, isooctyl (meth)acrylate, etc. Two or more of these ⁇ -olefins, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, and (meth)acrylic acid esters may be used.
  • the polyolefin resins include, for example, ethylene resins such as polyethylene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-heptene copolymer, and ethylene-1-octene copolymer; propylene resins such as polypropylene, propylene-ethylene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene-4-methyl-1-pentene copolymer, and propylene-ethylene-1-hexene copolymer; 1-butene resins such as 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer; and 4-methyl-1-pentene resins such as 4-methyl-1-pentene homopolymer and
  • the styrene-based resin is not particularly limited, and various known styrene-based resins can be used.
  • the styrene-based resins may be used alone or in combination of two or more.
  • styrene resin examples include resins obtained by polymerizing a styrene compound and, if necessary, other compounds copolymerizable therewith in the presence or absence of a rubber polymer.
  • styrene compound examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like.
  • Examples of other compounds copolymerizable with the styrene compound include vinyl cyanide compounds, acrylic acid esters, methacrylic acid esters, epoxy group-containing methacrylic acid esters, maleimide compounds, ⁇ , ⁇ -unsaturated carboxylic acids and their anhydrides, and the like.
  • Examples of the rubber polymer include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and ⁇ -olefins, copolymers of ethylene and unsaturated carboxylic acid esters, ethylene, propylene, and non-conjugated diene terpolymers, and acrylic rubbers.
  • the styrene-based compound, the other compound copolymerizable with the styrene-based compound, and the rubber polymer may be used alone or in combination of two or more.
  • the styrene-based resin is preferably polystyrene.
  • polyamide The polyamide is not particularly limited, and various known polyamides can be used. The polyamides may be used alone or in combination of two or more.
  • the polyamide is a resin made of a polymer having an amide bond, and is made from amino acids, lactams, or diamines and dicarboxylic acids as the main raw materials.
  • the polyamide may be a polyamide homopolymer or copolymer derived from these raw materials, either alone or in the form of a mixture. Two or more of these raw materials may also be used in combination.
  • amino acids examples include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and para-aminomethylbenzoic acid.
  • lactams examples include ⁇ -caprolactam and ⁇ -laurolactam.
  • diamines examples include aliphatic diamines, aromatic diamines, alicyclic diamines, etc.
  • examples of the aliphatic diamines include tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-/2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, etc.
  • aromatic diamines examples include metaxylylene diamine, paraxylylene diamine, etc.
  • alicyclic diamines examples include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, and aminoethylpiperazine.
  • Examples of the dicarboxylic acid include aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • Examples of the aliphatic dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid.
  • Examples of the alicyclic dicarboxylic acids include hexahydroterephthalic acid and hexahydroisophthalic acid.
  • polyamide resins include, for example, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polypentamethylene adipamide (polyamide 56), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polypentamethylene sebacamide (polyamide 510), polyhexamethylene dodecamide (polyamide 612), and polyundecane amide (polyamide 11).
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polypentamethylene adipamide polyamide 56
  • polytetramethylene adipamide polyamide 46
  • polyhexamethylene sebacamide polyamide 610
  • polypentamethylene sebacamide polyamide 510
  • polyhexamethylene dodecamide polyamide 612
  • polyundecane amide polyamide 11
  • polydodecanamide polyamide 12
  • polynonane terephthalamide polyamide 9T
  • polycaproamide/polyhexamethylene terephthalamide copolymer polyamide 6/6T
  • polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer polyamide 66/6T
  • polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer polyamide 6T/6I
  • polyhexamethylene terephthalamide/polydodecanamide copolymer polyamide 6T/12
  • polyhexamethylene adipamide/polyhexamethylene terephthalamide/polydodecanamide copolymer polyamide 6T/12
  • the polyamide is preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T, polyamide 6/66 copolymer, polyamide 6/12 copolymer, and from the same viewpoint, more preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T.
  • polyester The polyester is not particularly limited, and various known polyesters can be used. The polyester may be used alone or in combination of two or more.
  • the polyester may be a polymer or copolymer obtained by a condensation reaction of a polycarboxylic acid (or an ester-forming derivative thereof) and a polyhydric alcohol (or an ester-forming derivative thereof) as the main components, or a mixture thereof.
  • a polycarboxylic acid or an ester-forming derivative thereof
  • a polyhydric alcohol or an ester-forming derivative thereof
  • two or more types of polycarboxylic acids and polyhydric alcohols may be used in combination.
  • the polycarboxylic acids include, for example, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, tricarboxylic acids, and ester-forming derivatives thereof.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • Examples of aliphatic dicarboxylic acids include adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid.
  • Examples of alicyclic dicarboxylic acids include 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Examples of tricarboxylic acids include trimellitic acid.
  • the polyhydric alcohols include, for example, aliphatic glycols, alicyclic diols, aromatic diols, trimethylolpropane, pentaerythritol, glycerol, and ester-forming derivatives thereof.
  • the aliphatic glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol.
  • the alicyclic diols include, for example, cyclopentanediol, cyclohexanediol, and hydrogenated bisphenol A.
  • the aromatic diols include, for example, bisphenol A ethylene oxide (1 mol to 100 mol) adducts, bisphenol A propylene oxide (1 mol to 100 mol) adducts, and xylene glycol.
  • polyesters examples include polybutylene terephthalate, polybutylene (terephthalate/isophthalate), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/5-sodium sulfoisophthalate), polybutylene (terephthalate/5-sodium sulfoisophthalate), polyethylene naphthalate, and polycyclohexanedimethylene terephthalate.
  • the polyester is preferably polybutylene terephthalate, polybutylene (terephthalate/adipate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/adipate), polyethylene naphthalate, or polycyclohexanedimethylene terephthalate, more preferably polyethylene terephthalate or polybutylene terephthalate.
  • the polycarbonate is not particularly limited, and various known polycarbonates can be used.
  • the polycarbonates may be used alone or in combination of two or more.
  • the polycarbonate may be, for example, one obtained by reacting an aromatic dihydroxy compound with a carbonate precursor.
  • the polycarbonate may be linear or may have a branched structure.
  • the aromatic dihydroxy compounds include, for example, bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxydiaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, hydroquinones, resorcinol, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxybenzophenone, etc.
  • the aromatic dihydroxy compounds may be used alone or in combination of two or more.
  • bis(hydroxyaryl)alkanes examples include 2,2-bis(4-hydroxyphenyl)propane (also known as bisphenol A), tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)decane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)dec ...
  • Examples of the bis(hydroxyaryl)cycloalkane include 1,1-bis(4-hydroxyphenyl)cyclohexane (also known as bisphenol Z), 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclooctane, and 9,9-bis(4-hydroxyphenyl)fluorene.
  • 1,1-bis(4-hydroxyphenyl)cyclohexane also known as bisphenol Z
  • 1,1-bis(4-hydroxyphenyl)cyclopentane 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
  • 1,1-bis(4-hydroxyphenyl)cyclohexane 1,1-bis(4-hydroxyphenyl)cyclooctane
  • the dihydroxydiaryl ethers include, for example, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc.
  • the dihydroxydiaryl sulfides include, for example, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, etc.
  • the dihydroxydiaryl sulfoxides include, for example, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc.
  • the dihydroxydiaryl sulfones include, for example, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, etc.
  • the carbonate precursor may be, for example, a carbonyl halide, a carbonic acid diester, etc.
  • One type of carbonate precursor may be used alone, or two or more types may be used in combination.
  • the carbonyl halides include, for example, phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds.
  • the carbonyl halides may be used alone or in combination of two or more.
  • the above carbonic acid diesters include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, and dinaphthyl carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, di-tert-butyl carbonate, and dicyclohexyl carbonate; biscarbonates of dihydroxy compounds, carbonates of dihydroxy compounds such as cyclic carbonates, and the like.
  • One type of carbonic acid ester may be used alone, or two or more types may be used in combination.
  • polycarbonates can be produced, for example, by interfacial polymerization, melt transesterification, solid-phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds.
  • the polycarbonate may be a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), or a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Two or more of these polycarbonates may be used.
  • the polyphenylene ether is not particularly limited, and various known polyphenylene ethers can be used.
  • the polyphenylene ethers may be used alone or in combination of two or more.
  • the polyphenylene ether may be, for example, a homopolymer or copolymer consisting of a repeating unit represented by the following general formula (1):
  • R1, R2, R3, and R4 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, or an aryl group which may have a substituent, and n represents the number of repetitions.
  • Examples of the homopolymer represented by the above general formula (1) include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, etc.
  • copolymers examples include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
  • the method for producing the polyphenylene ether is not particularly limited, and can be obtained by using various known means. Specific examples include the production methods described in U.S. Pat. Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and JP-B-63-152628, etc.
  • the polyphenylene ether may contain various other phenylene ether units as partial structures within the scope of the present invention.
  • the phenylene ether units include 2-(dialkylaminomethyl)-6-methylphenylene ether units and 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units.
  • a small amount of diphenoquinone or the like may be bonded to the main chain of the polyphenylene ether resin.
  • it may be a polyphenylene ether resin modified with maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, anhydrides thereof, or unsaturated dicarboxylic acids in which one or two of the two carboxyl groups are esterified, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, styrene, epoxidized natural fats and oils, unsaturated alcohols of the general formula CnH2n-3OH (n is a positive integer) such as allyl alcohol, 4-penten-1-ol, and 1,4-pentadiene-3-ol, or unsaturated alcohols of the general formula CnH2n-5OH, CnH2n-7OH (n is a positive integer).
  • modified polyphenylene ether resins may be used alone or in combination of two or more.
  • the melting point of the modified polyphenylene ether resin is defined as the peak top temperature of the peak observed in a temperature-heat flow graph obtained when the temperature is raised at 20°C/min in measurement with a differential scanning calorimeter (DSC), and if there are multiple peak top temperatures, it is defined as the highest temperature among them.
  • the polyphenylene ether may contain resin components other than polyphenylene ether, such as aromatic vinyl polymers and polyamides.
  • aromatic vinyl polymers include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, and acrylonitrile-styrene copolymers.
  • the content of polyphenylene ether is typically 70% by mass or more, preferably 80% by mass or more, based on the total amount of polyphenylene ether and polystyrene.
  • modified polyphenylene ether resins include, for example, "Iupiace” (registered trademark) manufactured by Mitsubishi Engineering Plastics Corporation, "NORYL” (registered trademark) manufactured by SABIC Corporation, and "Zylon” (registered trademark) manufactured by Asahi Kasei Corporation.
  • the polyphenylene sulfide is not particularly limited, and various known polyphenylene sulfides can be used.
  • the polycarbonate may be used alone or in combination of two or more kinds.
  • the polyphenylene sulfide can be obtained, for example, by reacting a polyhalogenated aromatic compound with a sulfidizing agent in a polar organic solvent.
  • the polyhalogenated aromatic compound may, for example, be p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, or 1-methoxy-2,5-dichlorobenzene, with p-dichlorobenzene being preferred. It is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer, but it is preferred to use a p-dihalogenated aromatic compound as the main component.
  • Examples of the sulfidizing agent include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
  • Examples of the alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred.
  • Examples of the alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these, with sodium hydrosulfide being preferred.
  • These alkali metal sulfides and hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides.
  • the sulfidizing agents may be used alone or in combination of two or more.
  • the sulfidizing agent may also be an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; or an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide.
  • the alkali metal hydroxide is preferably sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, or a mixture of two or more of these
  • the alkaline earth metal hydroxide is, for example, calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and preferably sodium hydroxide.
  • the polyphenylene sulfide can be produced in high yields by recovering and post-treating. Specifically, it can be produced by the method of obtaining a polymer with a relatively small molecular weight described in JP-B-45-3368, or the method of obtaining a polymer with a relatively large molecular weight described in JP-B-52-12240 and JP-A-61-7332.
  • the polyphenylene sulfide resin obtained by the above method can be used after various treatments such as crosslinking/polymerization by heating in air, heat treatment in an inert gas atmosphere such as nitrogen or under reduced pressure, washing with organic solvents, hot water, acid aqueous solutions, and activation with functional group-containing compounds such as acid anhydrides, amines, isocyanates, and functional group-containing disulfide compounds.
  • polyphenylene sulfide products include, for example, “TORELINA” (registered trademark) manufactured by Toray Industries, Inc., “DIC.PPS” (registered trademark) manufactured by DIC Corporation, and “DURAFIDE” (registered trademark) manufactured by Polyplastics Co., Ltd.
  • the liquid crystal polymer is not particularly limited, and various known liquid crystal polymers can be used.
  • the liquid crystal polymer may be used alone or in combination of two or more kinds.
  • the liquid crystal polymer may be, for example, a liquid crystal polyester or a liquid crystal polyester amide.
  • the liquid crystal polyester may be, but is not limited to, an aromatic polyester.
  • the liquid crystal polyester may be, for example, a fully aromatic polyester made using only aromatic compounds as raw material monomers.
  • the liquid crystal polyester amide may be, but is not limited to, an aromatic polyester amide.
  • the liquid crystal polyester amide may be, for example, a fully aromatic polyester amide made using only aromatic compounds as raw material monomers.
  • the liquid crystal polymer may be, for example, a polyester partially containing aromatic polyester or aromatic polyester amide in the same molecular chain.
  • the aromatic polyester is not particularly limited, but may be, for example, (1) Polyesters consisting essentially of one or more aromatic hydroxycarboxylic acids and their derivatives; (2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) a polyester composed of one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof; (3) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (c) Polyesters composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
  • the aromatic polyester amide is not particularly limited, but may be, for example, (1) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof; (c) a polyesteramide comprising one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof; (2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof; (c) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (d) polyesteramides composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above-mentioned components, if necessary.
  • the aromatic hydroxycarboxylic acid may be, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, or 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, or
  • aromatic hydroxycarboxylic acids include alkyl, alkoxy, or halogen-substituted derivatives of aromatic hydroxycarboxylic acids such as 2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxy
  • aromatic diols include, for example, aromatic diols such as 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 4,4'-dihydroxyterphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenoxy)ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis(4-hydroxyphenyl)propane, and bis(4-hydroxyphenyl)methane, as well as alkyl, alkoxy, or halogen-substituted aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcinol, and 4-
  • aromatic dicarboxylic acids include, for example, aromatic dicarboxylic acids such as terephthalic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, isophthalic acid, diphenylether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, and 1,6-naphthalenedicarboxylic acid, and alkyl, alk
  • aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, and 4-amino-4'-hydroxydiphenyl sulfide.
  • aromatic diamine examples include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N,N'-dimethyl-1,4-phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), and 4,4'-diaminodiphenyl ether (oxydianiline).
  • the aromatic polyester is more preferably an aromatic polyester having the aromatic hydroxycarboxylic acid as a constituent component. In one embodiment, the aromatic polyester amide is more preferably an aromatic polyester amide having the aromatic hydroxycarboxylic acid as a constituent component.
  • the method for producing the liquid crystal polymer is not particularly limited, and can be obtained by using various known means.
  • the liquid crystal polymer can be produced by known methods such as direct polymerization or transesterification using the above-mentioned raw material monomer compound (or a mixture of raw material monomers).
  • melt polymerization, solution polymerization, slurry polymerization, solid-phase polymerization, or a combination of two or more of these is used, and melt polymerization or a combination of melt polymerization and solid-phase polymerization is preferably used.
  • a compound capable of forming an ester it may be used in the polymerization in its original form, or it may be modified from a precursor to a derivative capable of forming an ester using an acylating agent or the like in a stage prior to polymerization.
  • the acylating agent include carboxylic anhydrides such as acetic anhydride.
  • catalysts may be used in the polymerization.
  • catalysts include metal salt catalysts such as potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris(2,4-pentanedionato)cobalt(III), and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of catalyst used is usually about 0.001 to 1% by mass, and preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers.
  • the liquid crystal polymer is preferably a liquid crystal polyester, which provides a resin composition with excellent heat resistance and high strength, and more preferably a wholly aromatic polyester, which provides the same.
  • the thermoplastic resin in the resin composition preferably includes at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether, and polyolefin resin, and more preferably includes at least one selected from the group consisting of polyamide 66, polyamide 6, polycarbonate, modified polyphenylene ether resin, polyethylene, and polypropylene, in view of excellent fluidity when the resin composition is melted.
  • the resin composition contains the above-mentioned modifier, which suppresses smoke generation during melting and provides excellent fluidity during melting, even when the molding temperature is high, for example, when engineering plastics or super engineering plastics are used as the thermoplastic resin.
  • the resin composition may optionally contain a filler.
  • the filler is not particularly limited, and various known fillers can be used.
  • the filler may be used alone or in combination of two or more.
  • the filler may be, for example, spherical, needle-like, fibrous, or plate-like.
  • the above-mentioned fillers include, for example, fibers, crystalline silica, fused silica, calcium silicate, silica sand, talc, kaolin, mica, clay, bentonite, sericite, calcium carbonate, magnesium carbonate, glass beads, glass flakes, glass microballoons, molybdenum disulfide, wollastonite, calcium polyphosphate, graphite, metal powder, metal flakes, metal ribbons, metal oxides (alumina, zinc oxide, titanium oxide, etc.), cellulose powder (cellulose particles), carbon powder, graphite, carbon flakes, scaly carbon, carbon nanotubes, etc.
  • Specific examples of metals constituting the metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
  • the above-mentioned fibers are not particularly limited, and various known fibers can be used.
  • the above-mentioned fibers include glass fibers; alumina fibers; organic fibers such as polyester fibers, polyamide fibers, polyimide fibers, polyvinyl alcohol modified fibers, polyvinyl chloride fibers, polyolefin (polyethylene, polypropylene) fibers, fluororesin fibers, polybenzimidazole fibers, acrylic fibers, phenolic fibers, polyamide fibers, aramid fibers, cellulose (nano) fibers, liquid crystal polymer (liquid crystal polyester, liquid crystal polyester amide) fibers, polyether ketone fibers, polyether sulfone fibers, polyphenylene ether fibers, and polyphenylene sulfide fibers; and metal fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • the above-mentioned fibers may be used alone or in combination of two or more
  • the fibers preferably include at least one type selected from the group consisting of glass fibers and organic fibers, and more preferably include at least one type selected from the group consisting of glass fibers and cellulose fibers.
  • the filler preferably contains at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder, and cellulose fiber, in order to provide excellent mechanical properties to the resin composition.
  • the melt viscosity of the resin composition was very high due to the fillers, which sometimes resulted in extremely poor moldability.
  • the resin composition of the present disclosure uses the above-mentioned modifier, which reduces the melt viscosity even when the resin composition contains the above-mentioned fillers, resulting in excellent moldability.
  • the use of the modifier improves the mechanical properties of the molded article compared to when no modifier is used. Although the details are unclear, it is presumed that the modifier improves the interfacial adhesion between the thermoplastic resin and the filler, improving the mechanical properties of the molded article.
  • the resin composition may contain any additives as long as the effects of the present invention are not impaired.
  • the additives include flame retardants, electrical conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, colorants, dyes, foaming agents, foam inhibitors, coupling agents, inorganic pigments, organic pigments, flow improvers other than the rosin-based resins, and light stabilizers.
  • the content of the modifier in the resin composition is not particularly limited.
  • the content of the modifier in the resin composition is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the modifier in the resin composition is preferably 0.1 parts by mass or more relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted, and is preferably 20 parts by mass or less relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is further suppressed.
  • the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is further suppressed, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
  • the content of the modifier in the resin composition is not particularly limited.
  • the content of the modifier in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the modifier in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass.
  • the content of the rosin-based resin in the resin composition is not particularly limited.
  • the content of the rosin-based resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the rosin-based resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide superior fluidity when the resin composition is melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide superior fluidity when the resin composition is melted and to further suppress smoke generation when the resin composition is melted.
  • the content of the rosin-based resin in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide superior fluidity when the resin composition is melted and to further suppress smoke generation when the resin composition is melted, and is more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
  • the content of the rosin-based resin in the resin composition is not particularly limited.
  • the content of the rosin-based resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the rosin-based resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the rosin-based resin in the resin composition is preferably about 0.1 to 20 parts by mass, more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the filler in the resin composition is not particularly limited.
  • the content of the filler in the resin composition may be, for example, 150 parts by mass, 140 parts by mass, 130 parts by mass, 120 parts by mass, 110 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the filler in the resin composition is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, relative to 100 parts by mass of thermoplastic resin, in terms of excellent fluidity when the resin composition is melted.
  • the content of the additive in the resin composition is not particularly limited.
  • the content of the additive in the resin composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0.5 parts by mass, 0.1 parts by mass, 0.05 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.001 parts by mass, etc., relative to 100 parts by mass of the resin composition.
  • the content of the additive in the resin composition is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and even more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the resin composition.
  • the method for producing the resin composition is not particularly limited, and various known methods can be adopted.
  • the method for producing the resin composition includes a method in which the modifier (or the rosin-based resin), the thermoplastic resin, and, if necessary, the filler and the additives are mixed in advance using various mixers such as a tumbler mixer or a Henschel mixer, and then melt-kneaded using a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader.
  • the temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
  • the use of the above modifier or the above rosin-based resin increases the fluidity of the resin composition when melt-kneaded, resulting in excellent productivity. Furthermore, in the production of resin compositions containing fillers, the filler makes the melt viscosity of the resin composition very high, resulting in an extremely low fluidity when melt-kneaded. However, when the above modifier or the above rosin-based resin is used, the fluidity of the resin composition when melt-kneaded is increased, even in the production of resin compositions containing fillers.
  • the molded article of the present disclosure can be obtained by molding the resin composition by various known molding methods.
  • the shape of the molded article is not particularly limited and can be appropriately selected according to the use and purpose of the molded article, and examples thereof include plate-like, plate-like, rod-like, sheet-like, film-like, cylindrical, annular, circular, elliptical, polygonal, irregular, hollow, frame-like, box-like, and panel-like shapes.
  • the method for molding the molded body is not particularly limited, and any conventionally known molding method can be used. Specific examples include injection molding, injection compression molding, extrusion molding, stretch film molding, inflation molding, profile extrusion, transfer molding, hollow molding, gas-assisted hollow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), press molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, and pressure molding. Of these, it is preferable that molding is performed by injection molding. Examples of injection molding machines include well-known injection molding machines such as ultra-high speed injection molding machines and injection compression molding machines.
  • the above molded products can be used for a variety of purposes, including automobile parts, electrical and electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products.
  • the rosin-based resin can be used as a modifier for a thermoplastic resin.
  • the rosin-based resin is used in a thermoplastic resin, the flowability of the thermoplastic resin during melting is improved.
  • the thermoplastic resin is not particularly limited, and examples thereof include those mentioned above.
  • the rosin-based resin is preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether, and polyolefin-based resins, from the viewpoint of further improving the fluidity during melting, and more preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyamide 66, polyamide 6, polycarbonate, modified polyphenylene ether resin, polyethylene, and polypropylene.
  • the rosin-based resin is preferably used as a modifier for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
  • the amount of the rosin-based resin used as a modifier for the thermoplastic resin is not particularly limited. Examples of the amount of the rosin-based resin used include the amount of the modifier used described above.
  • the rosin-based resin when used as a modifier for a thermoplastic resin containing a filler, it can improve the mechanical properties of a molded body of the thermoplastic resin compared to when the rosin-based resin is not used. Although the details are unclear, it is presumed that the rosin-based resin improves the interfacial adhesion between the thermoplastic resin and the filler, thereby improving the mechanical properties of the molded body.
  • the present disclosure provides the following: (Item A1) The mass residual rate after heating at 300° C. for 2 hours is 40% by mass or more, Mixed methylcyclohexaneaniline cloud point (MMAP) is -10 to 20°C; Contains rosin-based resins Modifier for thermoplastic resins. (Item A2) The modifier for thermoplastic resins according to the above item, wherein the rosin-based resin is at least one selected from the group consisting of rosin esters and rosin polyols. (Item A3) The thermoplastic resin modifier according to the above item, wherein the rosin esters are made from polyhydric alcohols having three or more hydroxyl groups.
  • MMAP Mixed methylcyclohexaneaniline cloud point
  • the rosin polyol is made from an epoxy resin having a weight average molecular weight of 150 to 2,000.
  • the rosin-based resin has a mass residual rate of 70 mass% or more after heating at 300°C for 2 hours.
  • thermoplastic resin (Item A7) The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of -8 to 18°C. (Item A8) 2. The modifier for thermoplastic resin according to any one of the preceding items, wherein the rosin-based resin has a color tone of 10 to 200 Hazen. (Item A9) 2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 200 mg KOH/g or less. (Item A10) 2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 50 mg KOH/g or less. (Item A11) 2.
  • MMAP mixed methylcyclohexaneaniline cloud point
  • thermoplastic resin modifier according to claim 1 wherein the rosin resin has an acid value of 20 mg KOH/g or less.
  • (Item A12) 2.
  • (Item A13) 2.
  • (Item A15) The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 600 to 4,000.
  • (Item A16) The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 600 to 3,000.
  • (Item A17) The modifier for thermoplastic resin according to any one of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 600 to 2,500.
  • (Item A18) The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 700 to 2,500.
  • a resin composition comprising the modifier of any of the preceding items and a thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
  • the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
  • the content of the modifier is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
  • the content of the modifier is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 120 parts by mass or less per 100 parts by mass of the thermoplastic resin.
  • the rosin-based resin according to any one of the preceding items as a modifier for use in a thermoplastic resin.
  • the thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
  • thermoplastic resin further comprises a filler.
  • filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
  • item A30 The use of any of the above items A26 to A29, wherein the amount of the rosin-based resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
  • (Item A34) The use of the above item A32 or A33, wherein the resin composition further comprises a filler.
  • the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
  • (Item A36) The use of any one of the above items A32 to A35, wherein the amount of the rosin-based resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
  • the modifier for thermoplastic resins provided in this disclosure can be used in thermoplastic resins to improve their fluidity when melted, thereby improving their moldability.
  • the modifier when used in thermoplastic resins, can also suppress smoke generation when melted.
  • a shaking autoclave was charged with 200 parts of the purified disproportionated rosin ester and 2.5 parts of palladium carbon. After oxygen was removed from the system, the system was pressurized to 100 kg/ cm2 with hydrogen and heated to 260° C., and a hydrogenation reaction was carried out at the same temperature for 3.5 hours to obtain a hydrogenated rosin ester having an acid value of 13.3 mgKOH/g and a weight average molecular weight of 730.
  • Production Example 2 200g of Chinese hydrogenated rosin (manufactured by Guangxi Wuzhou Richeng Forest Chemical Co., Ltd.), 2.5g of 5% palladium alumina powder (manufactured by N.E. Chemcat Co., Ltd.), and 200g of cyclohexane were charged into a 1L autoclave, and after removing oxygen from the system, the system was pressurized to 7MPa with hydrogen, and then heated to 210°C. After reaching the temperature, the system was repressurized and maintained at 9MPa, and hydrogenation reaction was carried out for 5 hours.
  • a 1-L autoclave was charged with 170 g of the obtained rosin ester, 1.3 g of 5% palladium carbon (water content: 50%), and 170 g of cyclohexane, and after removing oxygen from the system, the system was pressurized to 7 MPa with hydrogen and then heated to 200° C. After reaching the temperature, the system was repressurized and maintained at 9 MPa, and a hydrogenation reaction was carried out for 5 hours. The solvent was filtered off, and then cyclohexane was removed under reduced pressure to obtain a hydrogenated rosin ester having an acid value of 10.6 mgKOH/g and a weight average molecular weight of 780.
  • Production Example 4 A reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube and a water vapor inlet tube was charged with 100 parts of Chinese gum rosin and 5 parts of maleic anhydride, and reacted for 2 hours at 220°C under a nitrogen gas stream, after which 13.8 parts of pentaerythritol was charged and the temperature was raised to 280°C and reacted at the same temperature for 14 hours to complete the esterification. The reaction vessel was then depressurized to remove moisture and the like, yielding a maleic acid-modified rosin ester with an acid value of 42.0 mgKOH/g and a weight average molecular weight of 2,470.
  • a shaking autoclave was charged with 200 parts of the purified rosin ester and 1 part of palladium carbon, and after removing oxygen from the system, the system was pressurized to 100 kg/ cm2 with hydrogen and heated to 260° C.
  • a hydrogenation reaction was carried out at the same temperature for 3 hours to obtain a hydrogenated rosin ester having an acid value of 12.8 mgKOH/g and a weight average molecular weight of 1,000.
  • a reaction vessel equipped with a stirrer, reflux condenser, thermometer, nitrogen inlet tube, and water vapor inlet tube was 68 parts of polymerized rosin (acid value 150 mgKOH/g, softening point 142° C.) and 32 parts of rosin (acid value 172 mgKOH/g, softening point 77° C.) were charged and melted at 215° C.
  • 11.5 parts of pentaerythritol were charged, and the temperature was increased to 250° C. and reacted at the same temperature for 3 hours, and then the temperature was further increased to 275° C. and reacted at the same temperature for 9 hours.
  • a polymerized rosin ester having an acid value of 6.6 mgKOH/g and a weight average molecular weight of 2,400 was obtained by subjecting it to a reduced pressure treatment for 4 hours.
  • Production Example 8 A reaction apparatus equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube was charged with 200 parts of disproportionated rosin and heated under a nitrogen stream until completely melted, after which 113 parts of bisphenol A type polymeric epoxy resin (epoxy equivalent: 170) was added with stirring, and 0.1 part of 2-methylimidazole was added at 150° C. and the mixture was allowed to react at 160° C. for 4 hours to obtain a rosin polyol having an acid value of 0.1 mgKOH/g and a weight average molecular weight of 860.
  • bisphenol A type polymeric epoxy resin epoxy equivalent: 170
  • Production Example 9 A reaction apparatus equipped with a thermometer, a stirrer, a cooling tube, and a nitrogen inlet tube was charged with 300 parts of disproportionated rosin and heated under a nitrogen stream until completely melted, after which 113 parts of bisphenol A type polymeric epoxy resin (epoxy equivalent: 170) was added with stirring, and 0.1 part of 2-methylimidazole was added at 150° C. and the mixture was allowed to react at 160° C. for 4 hours to obtain a rosin polyol having an acid value of 45.2 mgKOH/g and a weight average molecular weight of 720.
  • bisphenol A type polymeric epoxy resin epoxy equivalent: 170
  • Comparative Example 4 1,000 parts of Chinese gum rosin (acid value 170, softening point 74°C, color tone 6 Gardner) and 500 parts of xylene were placed in a Kolben, heated and dissolved, after which about 350 parts of xylene was distilled off, then 350 parts of cyclohexane was added and cooled to room temperature. When about 100 parts of crystals were produced by cooling, the supernatant was transferred to another Kolben and further recrystallized at room temperature, after which the supernatant was removed and washed with 100 parts of cyclohexane, and the solvent was distilled off to obtain 700 parts of purified rosin.
  • Comparative Production Example 5 100 parts of Chinese hydrogenated rosin (manufactured by Guangxi Wuzhou Richeng Forest Chemical Co., Ltd.) and 300 parts of methanol were charged into a 1L autoclave, and after removing oxygen from the system, the temperature was raised to 290°C. The internal pressure of the autoclave reached a maximum of 14 MPa. The reaction was allowed to proceed for 2 hours while blowing the contents every 20 minutes. The resulting reaction liquid was concentrated using a rotary evaporator, and then 5 parts of calcium hydroxide were added to perform simple distillation.
  • the weight average molecular weight (Mw) of the rosin resins of Production Examples 1 to 9 and Comparative Production Examples 1 and 3 to 5 was calculated as a polystyrene equivalent value obtained from a calibration curve of standard polystyrene by gel permeation chromatography (GPC). The GPC method was measured under the following conditions. The results are shown in Table 1.
  • the weight average molecular weight (Mw) of the rosin resin of Comparative Production Example 2 was calculated as a polystyrene equivalent value from a calibration curve of standard polystyrene by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Thermogravimetric differential thermal analysis (TG/DTA) and thermogravimetric analysis (TGA) can be used to measure the heat loss at temperatures of 1%, 3%, and 5% weight loss (1% weight loss temperature, 3% weight loss temperature, 5% weight loss temperature) at heating rates of 5°C/min and 10°C/min, etc.
  • TG/DTA Thermogravimetric differential thermal analysis
  • TGA thermogravimetric analysis
  • the 5% weight loss temperature of the rosin-based resin of Production Example 5 is 267°C
  • the rosin-based resin of Comparative Production Example 2 has a 5% weight loss temperature of 256°C, so there is not a large difference between the two, but as can be seen from Table 1, the mass retention rate (%) after heating at 300°C for two hours is 86% for the rosin-based resin of Production Example 5, while it is 10% for the rosin-based resin of Comparative Production Example 2, showing a large difference.
  • the pellets using the rosin-based resin of Production Example 5 suppressed smoke generation, but the pellets using the rosin-based resin of Comparative Production Example 2 generated a lot of smoke.
  • the 5% weight loss temperature of the rosin-based resins of Production Example 5 and Comparative Production Example 2 was measured using a simultaneous differential thermal and gravimetric analyzer (manufactured by Hitachi High-Tech Science Corporation, device name "STA7200") in a nitrogen atmosphere with a sample amount of 10 mg, a measurement temperature of 30 to 500°C, a heating rate of 10°C/min, and a nitrogen flow rate of 250 ml/min, to determine the temperature at which the sample weight decreased by 5%.
  • a simultaneous differential thermal and gravimetric analyzer manufactured by Hitachi High-Tech Science Corporation, device name "STA7200
  • Example 1 100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Corporation, product name "Iupiace AH40") and 3 parts of the rosin-based resin of Production Example 1 as a modifier were added to a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250° C., and formed into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • Example 2 The same preparation as in Example 1 was carried out to obtain pellets, except that in Example 1, 5 parts of the rosin-based resin of Production Example 1 was used as the modifier.
  • Example 3 to 10 The same preparation as in Example 1 was carried out, except that the rosin-based resin in Production Example 1 was changed to the rosin-based resins in Production Examples 2 to 9 as the modifier, to obtain pellets.
  • Comparative Example 1 100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Corporation, product name "Iupiace AH40") was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250° C., and molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • Comparative Examples 2 to 6 The same preparation as in Example 1 was carried out, except that the rosin-based resin of Production Example 1 was replaced with the rosin-based resins of Comparative Production Examples 1 to 5 as the modifier, to obtain pellets.
  • the rate of increase in MFR of the pellets of Examples 1 to 10 and Comparative Examples 2 to 6 relative to the MFR of Comparative Example 1 (blank) was evaluated according to the following criteria. The results are shown in Table 2. The greater the rate of increase in MFR, the better the moldability, and a rating of ⁇ indicates practical use without any problems.
  • The increase in MFR compared to blank is 30% or more.
  • The increase in MFR compared to blank is 10% or more but less than 30%.
  • The increase in MFR compared to blank is less than 10%.
  • Table 2 The blending amounts in Table 2 are values in parts by mass. The abbreviations and notes in Table 2 are as follows. *Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured. mPPE: modified polyphenylene ether resin, product name "Iupiace AH40", manufactured by Global Polyacetal Co., Ltd.
  • Example 10 100 parts of polyamide (manufactured by Asahi Kasei Corporation, product name "Leona 1700S”) and 5 parts of the rosin-based resin of Production Example 1 as a modifier were put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 290° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 290° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • Example 11 Example 10 was repeated to obtain pellets, except that 8 parts of the rosin resin of Production Example 1 was used as the modifier.
  • Example 12 to 17 The same preparation as in Example 10 was carried out to obtain pellets, except that the rosin-based resin of Production Example 1 was replaced with the rosin-based resins of Production Examples 2 to 4, 6, and 8 to 9 as the modifier.
  • Comparative Example 7 100 parts of polyamide (manufactured by Asahi Kasei Corporation, product name "Leona 1700S”) was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 290° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 290° C., and molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • Comparative Example 8 Example 10 was repeated to obtain pellets, except that the rosin resin of Production Example 1 was used as the modifier instead of the rosin resin of Comparative Production Example 5.
  • the increase rate of MFR of the pellets of Examples 10 to 17 and Comparative Example 8 relative to the MFR of Comparative Example 7 (blank) was evaluated according to the following criteria. The results are shown in Table 3. The larger the increase rate of MFR, the more excellent the moldability.
  • The increase in MFR compared to blank is 300% or more.
  • The increase in MFR compared to blank is 150% or more but less than 300%.
  • The increase in MFR compared to blank is less than 150%.
  • Example 18 70 parts of polypropylene (manufactured by SunAllomer Co., Ltd., product name "PMB60A”), 30 parts of cellulose fiber (manufactured by Rettenmeyer, product name "Arbocel BC1000”), and 5 parts of the rosin-based resin of Production Example 3 as a modifier were put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”), and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 190 ° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was taken out of the kneading device, hot pressed at 200 ° C., molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
  • Example 18 was repeated to obtain pellets, except that the rosin resin of Production Example 3 was replaced with the rosin resins of Production Examples 6, 8 and 9 as the modifier.
  • Comparative Example 9 70 parts of polypropylene (manufactured by SunAllomer Co., Ltd., product name "PMB60A”) and 30 parts of cellulose fiber (manufactured by Rettenmeyer, product name "Arbocel BC1000”) were put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 190°C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was taken out of the kneading device, hot pressed at 200°C, molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • Comparative Examples 10 to 11 Example 18 was repeated to obtain pellets, except that the rosin resin of Production Example 3 was replaced with the rosin resins of Comparative Production Examples 1 and 5 as the modifier.
  • the increase rate of MFR of the pellets of Examples 18 to 21 and Comparative Examples 10 to 11 relative to the MFR of Comparative Example 9 (blank) was evaluated according to the following criteria. The results are shown in Table 4. The larger the increase rate of MFR, the more excellent the moldability. ⁇ : The increase in MFR compared to the blank was 100% or more. ⁇ : The increase in MFR compared to the blank was 50% or more but less than 100%. ⁇ : The increase in MFR compared to the blank was less than 50%.
  • the prepared rectangular test pieces were subjected to bending stress (MPa) measurement in accordance with JIS K7171 using a Tensilon universal testing machine (product name "RTG-1210", manufactured by A&D Co., Ltd.) at a support distance of 64 mm, a test speed of 2 mm/min, a temperature of 23°C, and an RH environment of 50%.
  • MPa bending stress
  • Table 4 The blending amounts in Table 4 are values in parts by mass. The abbreviations and notes in Table 4 are as follows. *Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
  • PP Polypropylene, product name "PMB60A”, manufactured by SunAllomer Co., Ltd.
  • Cellulose Cellulose fiber, product name "Arbocel BC1000", manufactured by Rettenmeyer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A modifier for a thermoplastic resin that contains a rosin resin having a mass residual rate after heating for two hours at 300°C of 40 mass% or more and a mixed methylcyclohexane aniline cloud point (MMAP) of from -10 to 20°C.

Description

熱可塑性樹脂用の改質剤、樹脂組成物及びロジン系樹脂の使用Use of modifier for thermoplastic resin, resin composition and rosin-based resin
  本発明は、熱可塑性樹脂用の改質剤、樹脂組成物及びロジン系樹脂の使用に関する。 The present invention relates to the use of a modifier for thermoplastic resins, a resin composition, and a rosin-based resin.
熱可塑性樹脂は、工業的に様々な分野で用いられており、その中でも、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックは、その優れた耐熱性と、強度のバランスから自動車材料、電気電子機器材料、住宅・建材材料として幅広く利用されている。一方で、上記熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックは、成形加工温度が高く、溶融流動性に劣るものが多いため、通常は、熱可塑性樹脂に滑剤等の添加剤を添加することにより、溶融時における見かけの流動粘度を低下させて、成形加工性を向上させている(特許文献1、2)。 Thermoplastic resins are used in a variety of industrial fields, and among them, engineering plastics and super engineering plastics are widely used as automotive materials, electrical and electronic equipment materials, and housing and building materials due to their excellent balance of heat resistance and strength. However, the above-mentioned thermoplastic resins, particularly engineering plastics and super engineering plastics, often have high molding temperatures and poor melt fluidity, so additives such as lubricants are usually added to the thermoplastic resin to reduce the apparent flow viscosity during melting and improve molding processability (Patent Documents 1 and 2).
特開2012-009754号公報JP 2012-009754 A 特開2004-137423号公報JP 2004-137423 A
しかしながら、熱可塑性樹脂においては、従来の滑剤を用いた場合であっても、溶融時の流動性が未だに不十分であり、成形加工性に劣るものがある。また、熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックにおいては、それらの融点が凡そ200℃以上と高いため、高温下(250℃以上)にて溶融させるが、従来の滑剤を添加すると溶融の際に発煙が生じる場合がある。 However, even when conventional lubricants are used, some thermoplastic resins still have insufficient fluidity when melted, resulting in poor moldability. Furthermore, thermoplastic resins, particularly engineering plastics and super engineering plastics, have high melting points of approximately 200°C or higher, and are melted at high temperatures (250°C or higher). However, the addition of conventional lubricants can cause smoke during melting.
そこで、本発明は、熱可塑性樹脂の溶融時の発煙を抑制し、熱可塑性樹脂の成形加工性を向上し得る、新規な熱可塑性樹脂用の改質剤を提供することを目的とする。 The present invention aims to provide a novel modifier for thermoplastic resins that can suppress smoke generation during melting of the thermoplastic resin and improve the molding processability of the thermoplastic resin.
 本発明者は、鋭意検討を重ねた結果、300℃で2時間加熱後の質量残留率が高く、特定の混合メチルシクロヘキサンアニリン曇点(MMAP)を有するロジン系樹脂を含む熱可塑性樹脂用の改質剤によって、上記課題を解決することを見出した。 After extensive research, the inventors discovered that the above problems could be solved by using a modifier for thermoplastic resins that contains a rosin-based resin that has a high mass retention rate after heating at 300°C for two hours and has a specific mixed methylcyclohexaneaniline cloud point (MMAP).
なお、本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least some of the problems described above, and can be realized in the following aspects or application examples.
(項目1)
300℃で2時間加熱後の質量残留率が40質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、-10~20℃である
ロジン系樹脂を含む、
熱可塑性樹脂用の改質剤。
(Item 1)
The mass residual rate after heating at 300° C. for 2 hours is 40% by mass or more,
The rosin-based resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of -10 to 20°C.
Modifier for thermoplastic resins.
(項目2)
項目1に記載の改質剤及び熱可塑性樹脂を含む、樹脂組成物。
(Item 2)
A resin composition comprising the modifier according to item 1 and a thermoplastic resin.
(項目3)
前記熱可塑性樹脂が、ポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む、項目2に記載の樹脂組成物。
(Item 3)
3. The resin composition according to item 2, wherein the thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
(項目4)
更に、フィラーを含む、項目2又は3に記載の樹脂組成物。
(Item 4)
4. The resin composition according to item 2 or 3, further comprising a filler.
(項目5)
前記フィラーが、ガラス繊維、カーボン粉末、炭酸カルシウム、セルロース粉末及びセルロース繊維からなる群より選ばれる少なくとも1種を含む、項目4に記載の樹脂組成物。
(Item 5)
5. The resin composition according to item 4, wherein the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
(項目6)
熱可塑性樹脂に用いる改質剤としての、項目1に記載のロジン系樹脂の使用。
(Item 6)
2. Use of the rosin-based resin according to claim 1 as a modifier for thermoplastic resins.
(項目7)
前記熱可塑性樹脂が、更にフィラーを含む、項目6に記載の使用。
(Item 7)
7. The use according to claim 6, wherein the thermoplastic resin further comprises a filler.
(項目8)
熱可塑性樹脂を含む樹脂組成物を製造するための、項目1に記載のロジン系樹脂の使用。
(Item 8)
2. Use of the rosin-based resin according to claim 1 for producing a resin composition containing a thermoplastic resin.
(項目9)
前記樹脂組成物が、更にフィラーを含む、項目8に記載の使用。
(Item 9)
9. The use according to claim 8, wherein the resin composition further comprises a filler.
 本開示の全体にわたり、各物性値、含有量等の数値の範囲は、適宜(例えば下記の各項目に記載の値から選択して)設定され得る。具体的には、数値αの例示がA3、A2、A1(A3>A2>A1とする)である場合、数値αの範囲は、例えば、A3以下、A2以下、A3未満、A2未満、A1以上、A2以上、A1より大きい、A2より大きい、A1~A2(A1以上A2以下)、A1~A3、A2~A3、A1以上A3未満、A1以上A2未満、A2以上A3未満、A1より大きくA3未満、A1より大きくA2未満、A2より大きくA3未満、A1より大きくA3以下、A1より大きくA2以下、A2より大きくA3以下等が挙げられる。なお、本開示において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。以下では、本開示の構成要素や製造方法等について詳細に説明する。 Throughout this disclosure, the range of the values of each physical property, content, etc. may be set as appropriate (for example, by selecting from the values described in each item below). Specifically, when the examples of the value α are A3, A2, and A1 (A3>A2>A1), the range of the value α may be, for example, A3 or less, A2 or less, less than A3, less than A2, A1 or more, A2 or more, greater than A1, greater than A2, A1 to A2 (A1 or more and A2 or less), A1 to A3, A2 to A3, A1 or more and less than A3, A1 or more and less than A2, A2 or more and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, and so on. In this disclosure, the word "to" is used to mean that the values described before and after it are included as the lower and upper limits. Below, the components and manufacturing methods of this disclosure will be described in detail.
[熱可塑性樹脂用の改質剤]
 本開示は、300℃で2時間加熱後の質量残留率(以下、質量残留率とも記す。)が40質量%以上であり、混合メチルシクロヘキサンアニリン曇点(MMAP)(以下、MMAPとも記す。)が-10~20℃であるロジン系樹脂(以下、ロジン系樹脂とも記す)を含む、熱可塑性樹脂用の改質剤(以下、改質剤とも記す)に関する。
[Modifier for thermoplastic resin]
The present disclosure relates to a modifier for thermoplastic resins (hereinafter also referred to as modifier), which contains a rosin-based resin (hereinafter also referred to as rosin-based resin) having a mass retention rate (hereinafter also referred to as mass retention rate) of 40 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of -10 to 20°C.
 上記改質剤は、熱可塑性樹脂に用いることにより、熱可塑性樹脂における溶融時の流動性を向上し得るように機能(流動性向上剤)する。 When used in thermoplastic resins, the above modifiers function to improve the fluidity of the thermoplastic resin when melted (fluidity improvers).
<ロジン系樹脂>
上記ロジン系樹脂は、質量残留率及びMMAPが上記範囲であるものであれば、特に限定されず、各種公知のものを使用できる。上記ロジン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
<Rosin-based resin>
The rosin-based resin is not particularly limited as long as the mass residual rate and MMAP are within the above-mentioned ranges, and various known resins can be used. The rosin-based resins may be used alone or in combination of two or more.
上記ロジン系樹脂は、例えば、ロジンエステル類、ロジンポリオール等を含む。 The above-mentioned rosin-based resins include, for example, rosin esters, rosin polyols, etc.
(ロジンエステル類)
 上記ロジンエステル類は、特に限定されず、各種公知のものを使用できる。上記ロジンエステル類は、例えば、未変性ロジンエステル、水素化ロジンエステル、不均化ロジンエステル、重合ロジンエステル、α,β―不飽和カルボン酸変性ロジンエステル等が挙げられる。上記ロジンエステル類は、1種を単独で又は2種以上を組み合わせても良い。
(rosin esters)
The rosin esters are not particularly limited, and various known rosin esters can be used. Examples of the rosin esters include unmodified rosin esters, hydrogenated rosin esters, disproportionated rosin esters, polymerized rosin esters, and α,β-unsaturated carboxylic acid modified rosin esters. The rosin esters may be used alone or in combination of two or more.
 未変性ロジンエステルは、天然ロジン、精製ロジン(以下、天然ロジンと精製ロジンをまとめて未変性ロジンともいう)にアルコール類を反応させて得られる。 Unmodified rosin esters are obtained by reacting natural rosin or refined rosin (hereinafter, natural rosin and refined rosin are collectively referred to as unmodified rosin) with alcohols.
上記天然ロジンは、例えば、馬尾松(Pinus  massoniana)、スラッシュ松(Pinus  elliottii)、メルクシ松(Pinus  merkusii)、カリビア松(Pinus  caribaea)、思茅松(Pinus  kesiya)、テーダ松(Pinus  taeda)及び大王松(Pinus  palustris)等に由来する天然ロジン(ガムロジン、トール油ロジン、ウッドロジン)が挙げられる。 The above-mentioned natural rosins include, for example, natural rosins (gum rosin, tall oil rosin, wood rosin) derived from Pinus massoniana, slash pine (Pinus elliottii), Pinus merkusii, Caribbean pine (Pinus caribaea), Pinus kesiya, Loblolly pine (Pinus taeda), and Pinus palustris.
上記精製ロジンは、各種公知の手段を用いて得ることができる。具体的には、例えば、蒸留法、抽出法、再結晶法、吸着法等の各種公知の精製手段を用いて得ることができる。蒸留法は、例えば、上記天然ロジンを通常200~300℃程度の温度、0.01~3kPa程度の減圧下で蒸留する方法等が挙げられる。抽出法は、例えば、上記天然ロジンをアルカリ水溶液とし、不溶性の不ケン化物を各種の有機溶媒により抽出した後に水層を中和する方法等が挙げられる。再結晶法は、例えば、上記天然ロジンを良溶媒としての有機溶媒に溶解し、ついで溶媒を留去して濃厚な溶液とし、更に貧溶媒としての有機溶媒を添加する方法等が挙げられる。良溶媒は、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒、クロロホルムなどの塩素化炭化水素溶媒、低級アルコール、アセトンなどのケトン類、酢酸エチルなどの酢酸エステル類等が挙げられる。貧溶媒は、例えばn-ヘキサン、n-ヘプタン、シクロヘキサン、イソオクタン等が挙げられる。吸着法は、例えば、溶融状態の上記天然ロジン又は有機溶媒に溶解させた溶液状の上記天然ロジンを、多孔質吸着剤に接触させる方法等が挙げられる。多孔質吸着剤は、例えば、活性炭、金属酸化物、たとえばアルミナ、ジルコニア、シリカ、モレキュラーシーブス、ゼオライト、微細孔の多孔質クレー等が挙げられる。 The purified rosin can be obtained by using various known means. Specifically, it can be obtained by using various known purification means such as distillation, extraction, recrystallization, and adsorption. The distillation method includes, for example, a method of distilling the natural rosin at a temperature of about 200 to 300°C under a reduced pressure of about 0.01 to 3 kPa. The extraction method includes, for example, a method of making the natural rosin into an alkaline aqueous solution, extracting insoluble unsaponifiable matter with various organic solvents, and then neutralizing the aqueous layer. The recrystallization method includes, for example, a method of dissolving the natural rosin in an organic solvent as a good solvent, then distilling off the solvent to obtain a concentrated solution, and further adding an organic solvent as a poor solvent. Examples of good solvents include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, chlorinated hydrocarbon solvents such as chloroform, lower alcohols, ketones such as acetone, and acetate esters such as ethyl acetate. Examples of poor solvents include n-hexane, n-heptane, cyclohexane, and isooctane. The adsorption method may, for example, be a method in which the natural rosin in a molten state or the natural rosin in a solution state dissolved in an organic solvent is brought into contact with a porous adsorbent. Examples of the porous adsorbent include activated carbon, metal oxides such as alumina, zirconia, silica, molecular sieves, zeolites, and porous clays with fine pores.
また、上記精製ロジンとしては、得られた精製ロジンに、更に後述の不均化、後述の水素化の各操作を単独で、又は2種以上を組み合わせて行ってもよい。 Furthermore, the purified rosin obtained may be subjected to the disproportionation and hydrogenation operations described below, either alone or in combination of two or more thereof.
 また、色調を向上させることを目的に、上記精製ロジンに対して、さらに脱水素化処理を行ってもよい。脱水素化処理は、特に限定されず、通常の条件を採用できる。脱水素化処理は、例えば、上記精製ロジンを脱水素化触媒の存在下、密閉容器中で水素初圧10kg/cm2未満、好ましくは5kg/cm2未満、反応温度100~300℃程度、好ましくは下限200℃、上限280℃の範囲で行う。脱水素化触媒としては特に制限なく各種公知のものを使用できるが、好ましくはパラジウム系、ロジウム系、白金系の触媒を例示でき、通常シリカ、カーボンなどの担体に担持して使用される。また、該触媒の使用量は、上記精製ロジンに対して通常0.01~5重量%程度、好ましくは下限0.05重量%、上限3重量%とされる。 In order to improve the color tone, the purified rosin may be further subjected to a dehydrogenation treatment. The dehydrogenation treatment is not particularly limited, and normal conditions can be adopted. For example, the purified rosin is dehydrogenated in a closed vessel in the presence of a dehydrogenation catalyst at an initial hydrogen pressure of less than 10 kg/cm2, preferably less than 5 kg/cm2, and at a reaction temperature of about 100 to 300°C, preferably in the range of a lower limit of 200°C and an upper limit of 280°C. There are no particular limitations on the dehydrogenation catalyst, and various known catalysts can be used, but preferred examples include palladium-, rhodium-, and platinum-based catalysts, which are usually used supported on a carrier such as silica or carbon. The amount of the catalyst used is usually about 0.01 to 5% by weight, preferably a lower limit of 0.05% by weight and an upper limit of 3% by weight, based on the purified rosin.
 上記アルコール類としては、特に限定されず、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ダイマージオール、ビスフェノールA、ビスフェノールF等の2価のアルコール類、グリセリン、トリメチロールエタン、トリメチロールプロパンなどの3価のアルコール類、ペンタエリスリトール、ジグリセリンなどの4価のアルコール類、ジペンタエリスリトールなどの6価のアルコール類等が挙げられる。1つの実施形態において、上記ロジン系樹脂における上記質量残留率が高い点から、好ましくは3つ以上の水酸基を有する多価アルコール類が挙げられ、より好ましくはグリセリン、ペンタエリスリトール、ジグリセリン、ジペンタエリスリトールが挙げられる。上記アルコール類は、1種を単独で、又は2種以上を併用しても良い。 The alcohols are not particularly limited, and examples thereof include dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimer diol, bisphenol A, and bisphenol F; trihydric alcohols such as glycerin, trimethylolethane, and trimethylolpropane; tetrahydric alcohols such as pentaerythritol and diglycerin; and hexahydric alcohols such as dipentaerythritol. In one embodiment, polyhydric alcohols having three or more hydroxyl groups are preferred, in view of the high mass retention rate in the rosin-based resin, and more preferably glycerin, pentaerythritol, diglycerin, and dipentaerythritol. The alcohols may be used alone or in combination of two or more.
1つの実施形態において、上記アルコール類は、上記ロジン系樹脂における上記質量残留率が高い点から、好ましくは2価のアルコール類、3価のアルコール類、4価のアルコール類及び6価アルコール類からなる群より選択される2種以上を使用することが挙げられる。1つの実施形態において、上記2価のアルコール類は、同様の点から、好ましくはビスフェノールA、ビスフェノールFが挙げられる。 In one embodiment, the alcohols are preferably two or more selected from the group consisting of dihydric alcohols, trihydric alcohols, tetrahydric alcohols, and hexahydric alcohols, because they have a high mass residual rate in the rosin-based resin. In one embodiment, the dihydric alcohols are preferably bisphenol A and bisphenol F, because they have a high mass residual rate in the rosin-based resin.
 上記未変性ロジンとアルコール類との反応条件は、特に限定されず、各種公知の反応条件を採用できる。上記未変性ロジンとアルコール類との反応条件は、例えば、該未変性ロジン及びアルコール類を溶媒の存在下又は不存在下に、必要によりエステル化触媒を加え、250~280℃程度で、1~8時間程度で行えば良い。 The reaction conditions of the unmodified rosin and alcohols are not particularly limited, and various known reaction conditions can be used. The reaction conditions of the unmodified rosin and alcohols may be, for example, the unmodified rosin and alcohols in the presence or absence of a solvent, with an esterification catalyst added as necessary, at about 250 to 280°C for about 1 to 8 hours.
上記エステル化触媒は、例えば、パラトルエンスルホン酸、酢酸、メタンスルホン酸、次亜リン酸、硫酸などの酸触媒;水酸化カルシウム、水酸化マグネシウムなどの金属水酸化物;酸化カルシウム、酸化マグネシウムなどの金属酸化物;塩化鉄、ギ酸カルシウム等の金属塩などが挙げられる。触媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。また、エステル化反応の結果、水が生成するので、該反応は生成した水を系外に除きながら進行させることができる。得られる未変性ロジンエステルの色調を考慮すれば、不活性ガス気流下で反応を行うことが望ましい。また、該反応は、必要があれば加圧下で行ってもよい。 The above-mentioned esterification catalyst includes, for example, acid catalysts such as paratoluenesulfonic acid, acetic acid, methanesulfonic acid, hypophosphorous acid, and sulfuric acid; metal hydroxides such as calcium hydroxide and magnesium hydroxide; metal oxides such as calcium oxide and magnesium oxide; and metal salts such as iron chloride and calcium formate. The catalyst may be used alone or in combination of two or more. Furthermore, since water is produced as a result of the esterification reaction, the reaction can be allowed to proceed while removing the produced water from the system. Considering the color tone of the resulting unmodified rosin ester, it is desirable to carry out the reaction under an inert gas flow. Furthermore, the reaction may be carried out under pressure if necessary.
上記溶媒としては、例えば、ヘキサン、シクロヘキサン、トルエン、キシレンなどが挙げられる。なお、溶媒を使用した場合には、必要に応じて、溶媒又は未反応の原料を減圧留去することができる。 Examples of the solvent include hexane, cyclohexane, toluene, and xylene. When a solvent is used, the solvent or unreacted raw materials can be removed by distillation under reduced pressure, if necessary.
1つの実施形態において、上記未変性ロジン及びアルコール類の使用量は、アルコール類のOH基/未変性ロジン類のCOOH基(当量比)が0.2~8程度が挙げられ、上記ロジン系樹脂における上記質量残留率が高い点から、好ましくは0.8~8程度が挙げられ、より好ましくは0.8~3程度が挙げられる。 In one embodiment, the amount of the unmodified rosin and alcohols used is such that the OH group of the alcohols/COOH group of the unmodified rosins (equivalent ratio) is about 0.2 to 8, and is preferably about 0.8 to 8, and more preferably about 0.8 to 3, in view of the high mass residual rate in the rosin-based resin.
 水素化ロジンエステルは、上記未変性ロジンを水素化反応させて得られる水素化ロジンに、更にアルコール類を反応させてエステル化させたものである。 Hydrogenated rosin ester is obtained by subjecting the unmodified rosin described above to a hydrogenation reaction, and then reacting the hydrogenated rosin with alcohols to esterify it.
上記水素化ロジンを得る方法としては、各種公知の手段を用いて得ることができる。具体的には、例えば、水素化触媒の存在下、水素加圧下で上記未変性ロジンを加熱して反応(水素化)させればよい。水素化触媒としては、担持触媒、金属粉末等、各種公知のものを使用することができる。担持触媒としては、パラジウム-カーボン、ロジウム-カーボン、ルテニウム-カーボン、白金-カーボン等が挙げられ、金属粉末としては、ニッケル、白金等が挙げられる。1つの実施形態において、該触媒の使用量は、原料となるロジン100質量部に対して通常0.01~5質量部程度が挙げられ、好ましくは0.01~2質量部程度が挙げられる。1つの実施形態において、水素圧は2~20MPa程度が挙げられ、好ましくは5~20MPa程度が挙げられる。1つの実施形態において、反応温度は100~300℃程度が挙げられ、好ましくは150℃~300℃程度が挙げられる。 The hydrogenated rosin can be obtained by using various known means. Specifically, for example, the unmodified rosin can be reacted (hydrogenated) by heating under hydrogen pressure in the presence of a hydrogenation catalyst. As the hydrogenation catalyst, various known catalysts such as supported catalysts and metal powders can be used. Supported catalysts include palladium-carbon, rhodium-carbon, ruthenium-carbon, platinum-carbon, etc., and metal powders include nickel and platinum. In one embodiment, the amount of the catalyst used is usually about 0.01 to 5 parts by mass, preferably about 0.01 to 2 parts by mass, per 100 parts by mass of the rosin used as the raw material. In one embodiment, the hydrogen pressure is about 2 to 20 MPa, preferably about 5 to 20 MPa. In one embodiment, the reaction temperature is about 100 to 300°C, preferably about 150°C to 300°C.
上記水素化は、必要に応じて、上記未変性ロジンを溶剤に溶解した状態で行ってもよい。使用する溶剤は特に限定されないが、反応に不活性で原料や生成物が溶解しやすい溶剤であればよい。具体的には、例えば、シクロヘキサン、n-ヘキサン、n-ヘプタン、デカリン、テトラヒドロフラン、ジオキサン等を1種または2種以上を組み合わせて使用できる。溶剤の使用量は特に制限されないが、通常、上記未変性ロジンに対して固形分が10質量%以上、好ましくは10~70質量%程度の範囲となるように用いればよい。 The hydrogenation may be carried out, if necessary, with the unmodified rosin dissolved in a solvent. There is no particular limit to the solvent used, as long as it is inert to the reaction and easily dissolves the raw materials and products. Specifically, for example, cyclohexane, n-hexane, n-heptane, decalin, tetrahydrofuran, dioxane, etc. can be used alone or in combination of two or more. There is no particular limit to the amount of solvent used, but it is usually sufficient to use a solvent so that the solid content is 10% by mass or more, preferably 10 to 70% by mass, relative to the unmodified rosin.
また、上記水素化ロジンとしては、得られた水素化ロジンに、更に上記精製、水素化、後述の不均化の各操作を単独で、又は2種以上を組み合わせて行ってもよい。 In addition, the hydrogenated rosin obtained may be subjected to the above-mentioned purification, hydrogenation, and disproportionation operations described below, either alone or in combination of two or more thereof.
 また、色調を向上させることを目的に、上記水素化ロジンに対して、さらに上記の脱水素化処理を行ってもよい。 In addition, in order to improve the color tone, the hydrogenated rosin may be further subjected to the above-mentioned dehydrogenation treatment.
 上記水素化ロジンと、アルコール類との反応条件としては、上記未変性ロジンエステルと同様である。また、上記水素化ロジンをエステル化する際に用いるアルコール類も、上記同様である。さらに、上記水素化ロジンとアルコール類の使用量についても、上記同様である。 The reaction conditions for the hydrogenated rosin and the alcohols are the same as those for the unmodified rosin ester. The alcohols used in esterifying the hydrogenated rosin are also the same as those described above. Furthermore, the amounts of the hydrogenated rosin and the alcohols used are also the same as those described above.
なお、上記水素化反応と上記エステル化反応の順番は、上記に限定されず、エステル化反応の後に、水素化反応を行ってもよい。 The order of the hydrogenation reaction and the esterification reaction is not limited to the above, and the hydrogenation reaction may be carried out after the esterification reaction.
 不均化ロジンエステルは、上記未変性ロジンを不均化反応させて得られる不均化ロジンに、更にアルコール類を反応させてエステル化させたものである。 Disproportionated rosin ester is obtained by disproportionating the unmodified rosin described above, and then reacting the resulting disproportionated rosin with alcohols to esterify it.
上記不均化ロジンを得る方法としては、各種公知の手段を用いて得ることができる。具体的には、例えば、上記未変性ロジンを不均化触媒の存在下に加熱して反応(不均化)させればよい。不均化触媒としては、パラジウム-カーボン、ロジウム-カーボン、白金-カーボン等の担持触媒、ニッケル、白金等の金属粉末、ヨウ素、ヨウ化鉄等のヨウ化物等、各種公知のものを例示しうる。1つの実施形態において、該触媒の使用量は、原料となるロジン100質量部に対して通常0.01~5質量部程度が挙げられ、好ましくは0.01~1質量部程度が挙げられる。1つの実施形態において、反応温度は100~300℃程度が挙げられ、好ましくは150℃~290℃程度が挙げられる。 The disproportionated rosin can be obtained by using various known means. Specifically, for example, the unmodified rosin can be reacted (disproportionated) by heating in the presence of a disproportionation catalyst. Examples of the disproportionation catalyst include supported catalysts such as palladium-carbon, rhodium-carbon, and platinum-carbon, metal powders such as nickel and platinum, and iodides such as iodine and iron iodide. In one embodiment, the amount of the catalyst used is usually about 0.01 to 5 parts by mass, and preferably about 0.01 to 1 part by mass, per 100 parts by mass of the rosin used as the raw material. In one embodiment, the reaction temperature is about 100 to 300°C, and preferably about 150 to 290°C.
また、上記不均化ロジンとしては、得られた不均化ロジンに、更に上記精製、水素化、不均化の各操作を単独で、又は2種以上を組み合わせて行ってもよい。 Furthermore, the disproportionated rosin obtained may be subjected to the above-mentioned purification, hydrogenation, and disproportionation operations, either alone or in combination of two or more thereof.
 また、色調を向上させることを目的に、上記不均化ロジンに対して、さらに上記の脱水素化処理を行ってもよい。 In addition, in order to improve the color tone, the disproportionated rosin may be subjected to the above-mentioned dehydrogenation treatment.
 上記不均化ロジンと、アルコール類との反応条件としては、上記未変性ロジンエステルと同様である。また、上記不均化ロジンをエステル化する際に用いるアルコール類も、上記同様である。さらに、上記不均化ロジンとアルコール類の使用量についても、上記同様である。 The reaction conditions for the disproportionated rosin and the alcohols are the same as those for the unmodified rosin ester. The alcohols used when esterifying the disproportionated rosin are also the same as those described above. Furthermore, the amounts of the disproportionated rosin and the alcohols used are also the same as those described above.
なお、上記不均化反応と上記エステル化反応の順番は、上記に限定されず、エステル化反応の後に、不均化反応を行ってもよい。 The order of the disproportionation reaction and the esterification reaction is not limited to the above, and the disproportionation reaction may be carried out after the esterification reaction.
 重合ロジンエステルは、重合ロジンにアルコール類を反応させて得られる。重合ロジンとは、二量化された樹脂酸を含むロジン誘導体である。 Polymerized rosin ester is obtained by reacting polymerized rosin with alcohols. Polymerized rosin is a rosin derivative that contains dimerized resin acid.
 上記重合ロジンを製造する方法としては、公知の方法を採用することができる。具体的には、例えば、原料として、上記未変性ロジンを硫酸、フッ化水素、塩化アルミニウム、四塩化チタン等の触媒を含むトルエン、キシレン等の溶媒中、反応温度40~160℃程度で、1~5時間程度反応させる方法等が挙げられる。  A publicly known method can be used to produce the polymerized rosin. Specifically, for example, the raw material is the unmodified rosin, which is reacted in a solvent such as toluene or xylene containing a catalyst such as sulfuric acid, hydrogen fluoride, aluminum chloride, or titanium tetrachloride at a reaction temperature of about 40 to 160°C for about 1 to 5 hours.
 また、上記重合ロジンとしては、得られた重合ロジンに、上記精製、水素化、不均化、並びに、後述するアクリル化、マレイン化及びフマル化等のα,β―不飽和カルボン酸変性等の各種処理を施したものを使用しても良い。また、各種処理は、単独であっても2種以上を組み合わせても良い。 The polymerized rosin may be obtained by subjecting the obtained polymerized rosin to various treatments, such as the above-mentioned purification, hydrogenation, disproportionation, and α,β-unsaturated carboxylic acid modification such as acrylation, maleinization, and fumaration, which will be described later. The various treatments may be performed alone or in combination of two or more.
 上記重合ロジンと、アルコール類との反応条件としては、上記未変性ロジンエステルと同様である。また、上記重合ロジンとアルコール類の使用量についても、上記同様である。さらに、上記重合ロジンに、更に上記未変性ロジンを併用して、それらをアルコール類と反応させてもよい。 The reaction conditions for the polymerized rosin and alcohols are the same as those for the unmodified rosin ester. The amounts of polymerized rosin and alcohols used are also the same as those described above. Furthermore, the unmodified rosin may be used in combination with the polymerized rosin, and these may be reacted with the alcohols.
 重合ロジンをエステル化する際に用いるアルコール類は上記同様である。 The alcohols used when esterifying polymerized rosin are the same as those described above.
なお、上記重合反応と上記エステル化反応の順番は、上記に限定されず、エステル化反応の後に、重合反応を行ってもよい。 The order of the polymerization reaction and the esterification reaction is not limited to the above, and the polymerization reaction may be carried out after the esterification reaction.
 α,β―不飽和カルボン酸変性ロジンエステルは、α,β-不飽和カルボン酸変性ロジンにアルコール類を反応させて得られる。 α,β-unsaturated carboxylic acid modified rosin ester is obtained by reacting α,β-unsaturated carboxylic acid modified rosin with alcohols.
 上記α,β―不飽和カルボン酸変性ロジンは、上記未変性ロジン、水素化ロジン又は不均化ロジンにα,β-不飽和カルボン酸を付加反応させて得られる。 The above-mentioned α,β-unsaturated carboxylic acid modified rosin is obtained by subjecting the above-mentioned unmodified rosin, hydrogenated rosin or disproportionated rosin to an addition reaction with α,β-unsaturated carboxylic acid.
 上記α,β-不飽和カルボン酸としては、特に限定されず、各種公知のものを使用できる。具体的には、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ムコン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ムコン酸等が挙げられる。1つの実施形態において、上記α,β-不飽和カルボン酸は、好ましくはアクリル酸、マレイン酸、無水マレイン酸、フマル酸が挙げられる。1つの実施形態において、α,β-不飽和カルボン酸の使用量は、乳化性に優れる点から、通常は、上記未変性ロジン100質量部に対して1~20質量部程度が挙げられ、好ましくは1~3質量部程度が挙げられる。上記α,β-不飽和カルボン酸は1種を単独で、又は2種以上を併用しても良い。 The α,β-unsaturated carboxylic acid is not particularly limited, and various known α,β-unsaturated carboxylic acids can be used. Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, muconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, muconic anhydride, and the like. In one embodiment, the α,β-unsaturated carboxylic acid is preferably acrylic acid, maleic acid, maleic anhydride, or fumaric acid. In one embodiment, the amount of the α,β-unsaturated carboxylic acid used is usually about 1 to 20 parts by mass, and preferably about 1 to 3 parts by mass, per 100 parts by mass of the unmodified rosin, from the viewpoint of excellent emulsification properties. The α,β-unsaturated carboxylic acids may be used alone or in combination of two or more kinds.
 上記α,β-不飽和カルボン酸変性ロジンの製造方法としては、特に限定されないが、例えば、加熱下で溶融させた上記未変性ロジン又は不均化ロジンに、上記α,β-不飽和カルボン酸を加えて、温度180~240℃程度で、1~9時間程度で反応させることが挙げられる。また、上記反応は、密閉した反応系内に窒素等の不活性ガスを吹き込みながら行っても良い。さらに上記反応では、例えば、塩化亜鉛、塩化鉄、塩化スズ等のルイス酸や、パラトルエンスルホン酸、メタンスルホン酸等のブレンステッド酸等の公知の触媒を使用してもよい。これら触媒の使用量は、上記未変性ロジンに対して通常0.01~10質量%程度である。 The method for producing the α,β-unsaturated carboxylic acid modified rosin is not particularly limited, but may be, for example, adding the α,β-unsaturated carboxylic acid to the unmodified rosin or disproportionated rosin melted under heating, and reacting for about 1 to 9 hours at a temperature of about 180 to 240°C. The reaction may be carried out while blowing an inert gas such as nitrogen into a sealed reaction system. Furthermore, the reaction may use known catalysts such as Lewis acids such as zinc chloride, iron chloride, and tin chloride, and Bronsted acids such as paratoluenesulfonic acid and methanesulfonic acid. The amount of these catalysts used is usually about 0.01 to 10 mass% based on the unmodified rosin.
また、上記α,β-不飽和カルボン酸変性ロジンとしては、α,β-不飽和カルボン酸変性ロジンに、さらに上記水素化を施したものを使用しても良い。 The α,β-unsaturated carboxylic acid modified rosin may be an α,β-unsaturated carboxylic acid modified rosin that has been further subjected to the above-mentioned hydrogenation.
 上記α,β-不飽和カルボン酸変性ロジンと、アルコール類との反応条件としては、特に限定されないが、例えば、加熱下で溶融させたα,β-不飽和カルボン酸変性ロジンに、アルコールを加えて、温度250~280℃程度で、15~20時間程度で反応させることが挙げられる。また、上記反応は、密閉した反応系内に窒素等の不活性ガスを吹き込みながら行っても良く、前述の触媒を使用してもよい。  The reaction conditions between the α,β-unsaturated carboxylic acid modified rosin and alcohols are not particularly limited, but for example, alcohol is added to the α,β-unsaturated carboxylic acid modified rosin that has been melted under heating, and the reaction is carried out at a temperature of about 250 to 280°C for about 15 to 20 hours. The reaction may also be carried out while blowing an inert gas such as nitrogen into the sealed reaction system, and the above-mentioned catalyst may also be used.
 α,β-不飽和カルボン酸変性ロジンをエステル化する際に用いるアルコール類は上記同様である。また、上記α,β-不飽和カルボン酸変性ロジンとアルコール類の使用量についても、上記同様である。 The alcohols used when esterifying the α,β-unsaturated carboxylic acid modified rosin are the same as above. The amounts of the α,β-unsaturated carboxylic acid modified rosin and alcohols used are also the same as above.
また、上記未変性ロジンエステル、上記水素化ロジンエステル、上記不均化ロジンエステル、上記重合ロジンエステル及び上記α,β―不飽和カルボン酸変性ロジンエステルとしては、得られたそれらロジンエステルに対して、更に上記精製、水素化、不均化、脱水素処理等の各種処理を施したものを使用しても良い。また、各種処理は、単独であっても2種以上を組み合わせても良い。 Furthermore, as the unmodified rosin ester, the hydrogenated rosin ester, the disproportionated rosin ester, the polymerized rosin ester, and the α,β-unsaturated carboxylic acid modified rosin ester, the rosin ester obtained may be subjected to various treatments such as the purification, hydrogenation, disproportionation, and dehydrogenation treatment. Moreover, the various treatments may be used alone or in combination of two or more.
 1つの実施形態において、上記ロジンエステル類は、上記質量残留率が高い点から、好ましくは水素化ロジンエステル及び不均化ロジンエステルからなる群より選択される少なくとも1種が挙げられる。 In one embodiment, the rosin ester is preferably at least one selected from the group consisting of hydrogenated rosin ester and disproportionated rosin ester, since the mass retention rate is high.
(ロジンポリオール)
ロジンポリオールは、ロジン類及びエポキシ樹脂を含む反応成分の反応物である。
(rosin polyol)
Rosin polyols are the reaction products of reactive components that include rosins and epoxy resins.
上記ロジン類は、特に限定されず、各種公知のものを使用できる。上記ロジン類は、例えば、上記未変性ロジン、水素化ロジン、不均化ロジン等が挙げられる。 The rosins are not particularly limited, and various known rosins can be used. Examples of the rosins include the unmodified rosin, hydrogenated rosin, and disproportionated rosin.
上記エポキシ樹脂は、特に限定されず、各種公知のものを使用できる。上記エポキシ樹脂は、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂肪族ポリエポキシ化合物、脂環式エポキシ化合物、グリシジルアミン型エポキシ化合物、グリシジルエステル型エポキシ化合物、モノエポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン-スチレンブロック共重合体、エポキシ基含有ポリエステル樹脂、エポキシ基含有ポリウレタン樹脂、エポキシ基含有アクリル樹脂、スチルベン型エポキシ化合物、トリアジン型エポキシ化合物、フルオレン型エポキシ化合物、トリフェノールメタン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アリールアルキレン型エポキシ化合物、トリヒドロキシビフェニルトリグリシジルエーテル、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタンテトラグリシジルエーテル等が挙げられる。 The epoxy resin is not particularly limited, and various known epoxy resins can be used. Examples of the epoxy resin include bisphenol type epoxy resins, novolac type epoxy resins, resorcinol type epoxy resins, phenol aralkyl type epoxy resins, naphthol aralkyl type epoxy resins, aliphatic polyepoxy compounds, alicyclic epoxy compounds, glycidylamine type epoxy compounds, glycidyl ester type epoxy compounds, monoepoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, epoxidized polybutadiene, epoxidized styrene-butadiene-styrene block copolymers, epoxy group-containing polyester resins, epoxy group-containing polyurethane resins, epoxy group-containing acrylic resins, stilbene type epoxy compounds, triazine type epoxy compounds, fluorene type epoxy compounds, triphenolmethane type epoxy compounds, alkyl-modified triphenolmethane type epoxy compounds, dicyclopentadiene type epoxy compounds, aryl alkylene type epoxy compounds, trihydroxybiphenyl triglycidyl ether, 1,1,2,2-tetra(4-hydroxyphenyl)ethane tetraglycidyl ether, and the like.
上記ビスフェノール型エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、水添ビスフェノールAD型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニルジグリシジルエーテル、2,2-ビス(4-(β-ヒドロキシプロポキシ)フェニル)プロパンジグリシジルエーテル等が挙げられる。 The above-mentioned bisphenol type epoxy resins include, for example, bisphenol A type epoxy resins, bisphenol E type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AD type epoxy resins, hydrogenated bisphenol A type epoxy resins, hydrogenated bisphenol F type epoxy resins, hydrogenated bisphenol AD type epoxy resins, tetrabromobisphenol A type epoxy resins, 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl diglycidyl ether, 2,2-bis(4-(β-hydroxypropoxy)phenyl)propane diglycidyl ether, etc.
上記ノボラック型エポキシ樹脂は、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等が挙げられる。 Examples of the novolac type epoxy resin include cresol novolac type epoxy resin, phenol novolac type epoxy resin, α-naphthol novolac type epoxy resin, bisphenol A type novolac type epoxy resin, and brominated phenol novolac type epoxy resin.
上記脂肪族ポリエポキシ化合物は、例えば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジクリシジルエーテル、ネオペンチルグルコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリセロールトリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、ジグリシジルエーテル等が挙げられる。 Examples of the aliphatic polyepoxy compounds include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, diglycerol triglycidyl ether, sorbitol tetraglycidyl ether, and diglycidyl ether.
上記脂環式エポキシ化合物は、例えば、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンジグリシジルエーテル等が挙げられる。 The above alicyclic epoxy compounds include, for example, 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-meta-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexanecarboxylate, methylene bis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol di(3,4-epoxycyclohexylmethyl)ether, ethylene bis(3,4-epoxycyclohexanecarboxylate), lactone-modified 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, 2,2-bis(4-hydroxycyclohexyl)propane diglycidyl ether, and the like.
上記グリシジルアミン型エポキシ化合物は、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、テトラグリシジルメタキシリレンジアミン等が挙げられる。 Examples of the glycidylamine type epoxy compounds include tetraglycidyldiaminodiphenylmethane, triglycidyl paraaminophenol, triglycidyl metaaminophenol, and tetraglycidyl metaxylylenediamine.
上記グリシジルエステル型エポキシ化合物は、例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート、トリグリシジルトリメリッテート等が挙げられる。 Examples of the glycidyl ester type epoxy compounds include diglycidyl phthalate, diglycidyl hexahydrophthalate, diglycidyl tetrahydrophthalate, triglycidyl trimellitate, etc.
上記エポキシ樹脂の重量平均分子量(Mw)は、特に限定されない。上記エポキシ樹脂の重量平均分子量は、例えば、100、150、200、300、400、500、600、700、800、900、1,000、1,100、1,200、1,300、1,400、1,500、1,600、1,700、1,800、1,900、2,000、2,100、2,200、2,300、2,400、2,500、2,600、2,700、2,800、2,900、3,000、3,100、3,200、3,300、3,400、3,500、3,600、3,700、3,800、3,900、4,000、4,100、4,200、4,300、4,400、4,500、4,600、4,700、4,800、4,900、5,000、5,000、5,100、5,200、5,300、5,400、5,500、5,600、5,700、5,800、5,900、6,000、6,100、6,200、6,300、6,400、6,500、6,600、6,700、6,800、6,900、7,000、7,100、7,200、7,300、7,400、7,500、7,600、7,700、7,800、7,900、8,000、8,100、8,200、8,300、8,400、8,500、8,600、8,700、8,800、8,900、9,000、9,100、9,200、9,300、9,400、9,500、9,600、9,700、9,800、9,900、10,000等が挙げられる。1つの実施形態において、上記エポキシ樹脂の重量平均分子量は、上記ロジン系樹脂における上記質量残留率が高い点から、好ましくは150以上が挙げられる。上記エポキシ樹脂の重量平均分子量が高い程、上記質量残留率は高い傾向にある。1つの実施形態において、上記エポキシ樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における流動性をより向上させる点から、好ましくは150~10,000程度が挙げられ、より好ましくは150~2,000程度が挙げられる。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight (Mw) of the epoxy resin is not particularly limited. The weight average molecular weight of the epoxy resin is, for example, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200, 2,300, 2,400, 2,500, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000, 29,000, 30,000, 31,000, 32,000, 33,000, 34,000, 35,000, 36,000, 37,000, 38,000, 39,000, 40,000, 41,000, 42,000, 43, 00, 2,600, 2,700, 2,800, 2,900, 3,000, 3,100, 3,200, 3,300, 3,400, 3,500, 3,600, 3,700, 3,800, 3,900, 4,000, 4,100, 4,200, 4,300, 4,400, 4,500, 4,600, 4,700, 4,800, 4,900, 5,000, 5,0 00, 5,100, 5,200, 5,300, 5,400, 5,500, 5,600, 5,700, 5,800, 5,900, 6,000, 6,100, 6,200, 6,300, 6,400, 6,500, 6,600, 6,700, 6,800, 6,900, 7,000, 7,100, 7,200, 7,300, 7,400, 7,500, 7, Examples of the weight average molecular weight of the epoxy resin include 600, 7,700, 7,800, 7,900, 8,000, 8,100, 8,200, 8,300, 8,400, 8,500, 8,600, 8,700, 8,800, 8,900, 9,000, 9,100, 9,200, 9,300, 9,400, 9,500, 9,600, 9,700, 9,800, 9,900, and 10,000. In one embodiment, the weight average molecular weight of the epoxy resin is preferably 150 or more because the mass residual rate in the rosin-based resin is high. The higher the weight average molecular weight of the epoxy resin, the higher the mass residual rate tends to be. In one embodiment, the weight average molecular weight of the epoxy resin is preferably about 150 to 10,000, more preferably about 150 to 2,000, in order to further improve the fluidity of the thermoplastic resin when melted. The weight average molecular weight is a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
上記エポキシ樹脂のエポキシ当量(g/eq)は、特に限定されない。上記エポキシ樹脂のエポキシ当量は、例えば、100g/eq、150g/eq、180g/eq、200g/eq、300g/eq、400g/eq、500g/eq、600g/eq、700g/eq、800g/eq、900g/eq、1,000g/eq、1,100g/eq、1,200g/eq、1,300g/eq、1,400g/eq、1,500g/eq、1,600g/eq、1,700g/eq、1,800g/eq、1,900g/eq、2,000g/eq、2,100g/eq、2,200g/eq、2,300g/eq、2,400g/eq、2,500g/eq、2,600g/eq、2,700g/eq、2,800g/eq、2,900g/eq、3,000g/eq、3,100g/eq、3,200g/eq、3,300g/eq、3,400g/eq、3,500g/eq、3,600g/eq、3,700g/eq、3,800g/eq、3,900g/eq、4,000g/eq、4,100g/eq、4,200g/eq、4,300g/eq、4,400g/eq、4,500g/eq、4,600g/eq、4,700g/eq、4,800g/eq、4,900g/eq、5,000g/eq等が挙げられる。1つの実施形態において、上記エポキシ樹脂のエポキシ当量(g/eq)は、上記ロジン系樹脂の上記質量残留率が高い点から、好ましくは100g/eq以上が挙げられ、より好ましくは150g/eq以上が挙げられ、さらに好ましくは180g/eq以上が挙げられる。上記エポキシ樹脂のエポキシ当量が高い程、上記質量残留率は高い傾向にある。1つの実施形態において、上記エポキシ樹脂のエポキシ当量は、熱可塑性樹脂の溶融時における流動性をより向上させる点から、好ましくは100~5,000g/eq程度が挙げられ、より好ましくは150~1,000g/eq程度が挙げられ、さらに好ましくは180~500g/eq程度が挙げられる。 The epoxy equivalent (g/eq) of the epoxy resin is not particularly limited. The epoxy equivalent of the epoxy resin is, for example, 100 g/eq, 150 g/eq, 180 g/eq, 200 g/eq, 300 g/eq, 400 g/eq, 500 g/eq, 600 g/eq, 700 g/eq, 800 g/eq, 900 g/eq, 1,000 g/eq, 1,100 g/eq, 1, 200g/eq, 1,300g/eq, 1,400g/eq, 1,500g/eq, 1,600g/eq, 1,700g/eq, 1,800g/eq, 1,900g/eq, 2,000g/eq, 2,100g/eq, 2,200g/eq, 2,300g/eq, 2,400g/eq, 2,50 0 g/eq, 2,600 g/eq, 2,700 g/eq, 2,800 g/eq, 2,900 g/eq, 3,000 g/eq, 3,100 g/eq, 3,200 g/eq, 3,300 g/eq, 3,400 g/eq, 3,500 g/eq, 3,600 g/eq, 3,700 g/eq, 3,800 g/eq, 3,900 g/eq, 4,000 g/eq, 4,100 g/eq, 4,200 g/eq, 4,300 g/eq, 4,400 g/eq, 4,500 g/eq, 4,600 g/eq, 4,700 g/eq, 4,800 g/eq, 4,900 g/eq, 5,000 g/eq, etc. In one embodiment, the epoxy equivalent (g/eq) of the epoxy resin is preferably 100 g/eq or more, more preferably 150 g/eq or more, and even more preferably 180 g/eq or more, in view of the high mass residual rate of the rosin-based resin. The higher the epoxy equivalent of the epoxy resin, the higher the mass residual rate tends to be. In one embodiment, the epoxy equivalent of the epoxy resin is preferably about 100 to 5,000 g/eq, more preferably about 150 to 1,000 g/eq, and even more preferably about 180 to 500 g/eq, in order to further improve the fluidity of the thermoplastic resin when melted.
上記反応成分は、上記ロジン類及びエポキシ樹脂以外に、アルコール類を含み得る。当該アルコール類は、例えば、上記ロジンエステル類におけるアルコール類等が挙げられる。1つの実施形態において、上記アルコール類は、ロジンポリオールの上記質量残留率が高い点から、好ましくは2価のアルコール類、3価のアルコール類、4価のアルコール類及び6価アルコール類からなる群より選択される2種以上が挙げられる The reaction components may contain alcohols in addition to the rosins and epoxy resins. Examples of the alcohols include the alcohols in the rosin esters. In one embodiment, the alcohols are preferably two or more selected from the group consisting of dihydric alcohols, trihydric alcohols, tetrahydric alcohols, and hexahydric alcohols, because the mass residual ratio of the rosin polyol is high.
上記ロジンポリオールの製造方法は、特に限定されず、各種公知の方法を採用できる。具体的には、例えば、触媒存在下又は不存在下に、窒素気流下において、上記ロジン類とエポキシ樹脂とを120~300℃で開環付加反応させる方法が挙げられる。 The method for producing the rosin polyol is not particularly limited, and various known methods can be used. Specifically, for example, there is a method in which the rosins and epoxy resins are subjected to a ring-opening addition reaction at 120 to 300°C in a nitrogen stream in the presence or absence of a catalyst.
上記触媒としては、例えばトリメチルアミン、トリエチルアミン、トリブチルアミン、ベンジルジメチルアミン、ピリジン、2-メチルイミダゾールなどのアミン系触媒、ベンジルトリメチルアンモニウムクロライドなどの第4アンモニウム塩、ルイス酸、ホウ酸エステル、有機金属化合物、有機金属塩、トリアルキルホスフィン類、トリアリールホスフィン類等が挙げられる。 Examples of the catalyst include amine catalysts such as trimethylamine, triethylamine, tributylamine, benzyldimethylamine, pyridine, and 2-methylimidazole, quaternary ammonium salts such as benzyltrimethylammonium chloride, Lewis acids, boric acid esters, organometallic compounds, organometallic salts, trialkylphosphines, and triarylphosphines.
上記開環付加反応においては、必要に応じて、溶剤を使用してもよい。溶剤は、特に限定されないが、反応に不活性で原料や生成物が溶解しやすい溶剤であればよい。具体的には、例えば、ベンゼン、トルエン、キシレン等の芳香族系炭化水素;n-ヘキサン等の脂肪族系炭化水素;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンなどの脂環族系炭化水素等が挙げられる。 In the above ring-opening addition reaction, a solvent may be used as necessary. There are no particular limitations on the solvent, so long as it is inert to the reaction and easily dissolves the raw materials and products. Specific examples include aromatic hydrocarbons such as benzene, toluene, and xylene; aliphatic hydrocarbons such as n-hexane; and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane.
1つの実施形態において、上記ロジン類及び上記エポキシ樹脂の使用量については、通常、上記エポキシ樹脂中の1個のエポキシ基をOH基2個に相当するとして、エポキシ樹脂のOH基(エポキシ基及びエポキシ樹脂中に存在するOH基の合計)/ロジン類のCOOH基(当量比)が0.8~22程度が挙げられ、上記ロジン系樹脂における上記質量残留率が高い点から、好ましくは0.8~10程度が挙げられる。 In one embodiment, the amount of the rosins and epoxy resins used is usually such that, assuming that one epoxy group in the epoxy resin is equivalent to two OH groups, the OH groups of the epoxy resin (total of the OH groups present in the epoxy groups and the epoxy resin) / COOH groups of the rosins (equivalent ratio) is about 0.8 to 22, and preferably about 0.8 to 10 because the mass residual rate in the rosin-based resin is high.
 1つの実施形態において、上記ロジン系樹脂は、熱可塑性樹脂の溶融時における発煙を抑制し、熱可塑性樹脂の溶融時における流動性を向上させる点から、好ましくは上記ロジンエステル類及び上記ロジンポリオールからなる群から選択される少なくとも1種が挙げられ、同様の点から、より好ましくは上記ロジンエステル類が挙げられる。 In one embodiment, the rosin-based resin is preferably at least one selected from the group consisting of the rosin esters and rosin polyols, from the viewpoints of suppressing smoke generation when the thermoplastic resin is melted and improving the fluidity of the thermoplastic resin when melted, and more preferably the rosin esters, from the same viewpoints.
(ロジン系樹脂の物性)
上記ロジン系樹脂の上記質量残留率は、例えば、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%、90質量%、89質量%、88質量%、87質量%、86質量%、85質量%、84質量%、83質量%、82質量%、81質量%、80質量%、79質量%、78質量%、77質量%、76質量%、75質量%、74質量%、73質量%、72質量%、71質量%、70質量%、69質量%、68質量%、67質量%、66質量%、65質量%、64質量%、63質量%、62質量%、61質量%、60質量%、59質量%、58質量%、57質量%、56質量%、55質量%、54質量%、53質量%、52質量%、51質量%、50質量%、49質量%、48質量%、47質量%、46質量%、45質量%、44質量%、43質量%、42質量%、41質量%、40質量%等が挙げられる。1つの実施形態において、上記ロジン系樹脂の上記質量残留率は、熱可塑性樹脂の溶融時における発煙を抑制し得る点から、好ましくは40質量%以上が挙げられ、より好ましくは70質量%以上であるのが挙げられ、さらに好ましくは80質量%以上が挙げられ、さらに好ましくは90質量%以上であるのが挙げられ、特に好ましくは100質量%であるのが挙げられる。上記ロジン系樹脂の上記質量残留率が高い程、熱可塑性樹脂の溶融時における発煙をより抑制し得る。
(Physical properties of rosin-based resin)
The mass residual ratio of the rosin-based resin is, for example, 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 7 ... Examples of the mass residual ratio include 1 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, 65 mass%, 64 mass%, 63 mass%, 62 mass%, 61 mass%, 60 mass%, 59 mass%, 58 mass%, 57 mass%, 56 mass%, 55 mass%, 54 mass%, 53 mass%, 52 mass%, 51 mass%, 50 mass%, 49 mass%, 48 mass%, 47 mass%, 46 mass%, 45 mass%, 44 mass%, 43 mass%, 42 mass%, 41 mass%, 40 mass%, etc. In one embodiment, the mass residual ratio of the rosin-based resin is preferably 40 mass% or more, more preferably 70 mass% or more, even more preferably 80 mass% or more, even more preferably 90 mass% or more, and particularly preferably 100 mass% from the viewpoint of suppressing smoke generation during melting of the thermoplastic resin. The higher the mass residual ratio of the rosin-based resin, the more effectively it is possible to suppress smoke generation during melting of the thermoplastic resin.
なお、本開示において、上記質量残留率は、後述の実施例に記載の方法で測定されるものである。 In this disclosure, the mass retention rate is measured by the method described in the Examples below.
熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックにおいては、それらの成形加工温度は250℃以上である場合が多い。本発明者らは、熱可塑性樹脂にロジン系樹脂を含む改質剤を用いて、その溶融時において発煙する場合、当該ロジン系樹脂が成形加工温度において揮発し得る成分及び熱分解し得る構造を多く有しているために、その揮発成分及び熱分解物により発煙が生じると推察した。そして、本発明者らは、ロジン系樹脂について、成形加工温度と同等又はそれ以上の温度(300℃)で、且つ長時間(2時間)加熱する過酷な条件下での質量残留率を評価し、その質量残留率が40%以上のものは、そのような成分や構造が少ないために、熱可塑性樹脂の成形加工において使用しても発煙が抑制されることを見出した。 Thermoplastic resins, particularly engineering plastics and super engineering plastics, are often processed at temperatures of 250°C or higher. The inventors of the present invention have hypothesized that when a modifier containing a rosin-based resin is used in a thermoplastic resin and smokes when melted, the rosin-based resin has many components that can volatilize and structures that can thermally decompose at the processing temperature, and that the smoke is generated by the volatile components and thermal decomposition products. The inventors of the present invention have evaluated the mass retention rate of rosin-based resins under harsh conditions of heating at a temperature (300°C) equal to or higher than the processing temperature for a long period of time (2 hours), and have found that those with a mass retention rate of 40% or higher have few such components and structures, and therefore smoke generation is suppressed even when used in the processing of thermoplastic resins.
そして、ロジン系樹脂においては、成形加工温度において揮発し得る成分や熱分解し得る構造について、その詳細は多岐にわたり特定するのは困難であるため、本発明者らは、上記質量残留率でロジン系樹脂を規定することにより、熱可塑性樹脂の溶融時における発煙を抑制し得るものを特定している。 In addition, since it is difficult to specify the details of rosin-based resins, such as the components that can volatilize at molding processing temperatures and the structures that can thermally decompose, the inventors have specified rosin-based resins that can suppress smoke generation when the thermoplastic resin is melted by defining the rosin-based resins at the above-mentioned mass residual ratio.
 なお、上記質量残留率において加熱温度が300℃より低い場合、及び/又は、加熱時間が2時間より短い場合、加熱条件が温和なために、ロジン系樹脂においては、熱可塑性樹脂の溶融時における発煙の傾向を適切に評価することが困難となる。また、熱可塑性樹脂の溶融時に発煙する場合、発煙による装置汚れ・金型汚れが発生するが、加熱時間が2時間より短いと、実際の成形加工における装置汚れ・金型汚れを反映できないため、それら汚れ具合を適切に評価することが困難となる。 When the heating temperature is lower than 300°C and/or the heating time is shorter than 2 hours at the above mass retention rate, the heating conditions are mild, making it difficult to properly evaluate the tendency of rosin-based resins to emit smoke when the thermoplastic resin is melted. In addition, when the thermoplastic resin emits smoke when melted, the smoke causes equipment and mold contamination, but when the heating time is shorter than 2 hours, it is difficult to properly evaluate the degree of contamination because it is not possible to reflect the equipment and mold contamination that occurs in actual molding processing.
上記ロジン系樹脂の上記質量残留率が40質量%未満である場合は、熱可塑性樹脂に使用すると、その溶融時において発煙が多く発生する傾向にある。 If the mass residual rate of the rosin-based resin is less than 40 mass%, when it is used in a thermoplastic resin, it tends to emit a lot of smoke when melted.
上記ロジン系樹脂のMMAPは、例えば、20℃、19℃、18℃、17℃、15℃、14℃、13℃、12℃、11℃、10℃、9℃、8℃、7℃、6℃、5℃、4℃、3℃、2℃、1℃、0℃、-1℃、-2℃、-3℃、-4℃、-5℃、-6℃、-7℃、-8℃、-9℃、-10℃等が挙げられる。1つの実施形態において、上記ロジン系樹脂のMMAPは、熱可塑性樹脂の溶融時における流動性を向上させる点から、好ましくは-10~20℃が挙げられ、より好ましくは-8~18℃であるのが挙げられる。 The MMAP of the rosin-based resin may be, for example, 20°C, 19°C, 18°C, 17°C, 15°C, 14°C, 13°C, 12°C, 11°C, 10°C, 9°C, 8°C, 7°C, 6°C, 5°C, 4°C, 3°C, 2°C, 1°C, 0°C, -1°C, -2°C, -3°C, -4°C, -5°C, -6°C, -7°C, -8°C, -9°C, or -10°C. In one embodiment, the MMAP of the rosin-based resin is preferably -10 to 20°C, more preferably -8 to 18°C, in order to improve the fluidity of the thermoplastic resin when melted.
なお、本開示において、上記MMAPは、後述の実施例に記載の方法で測定されるものである。 Note that in this disclosure, the above MMAP is measured by the method described in the Examples below.
上記ロジン系樹脂のMMAPが-10℃未満である場合、又は、MMAPが20℃超である場合、熱可塑性樹脂の溶融時における流動性が低下する傾向にある。 If the MMAP of the rosin-based resin is less than -10°C or more than 20°C, the flowability of the thermoplastic resin when melted tends to decrease.
上記ロジン系樹脂は、上記質量残留率及びMMAP以外の物性は特に限定されない。上記ロジン系樹脂の色調は、例えば、400ハーゼン、350ハーゼン、300ハーゼン、250ハーゼン、200ハーゼン、150ハーゼン、100ハーゼン、95ハーゼン、90ハーゼン、85ハーゼン、80ハーゼン、75ハーゼン、70ハーゼン、65ハーゼン、60ハーゼン、55ハーゼン、50ハーゼン、45ハーゼン、40ハーゼン、35ハーゼン、30ハーゼン、25ハーゼン、20ハーゼン、15ハーゼン、10ハーゼン、5ハーゼン等が挙げられる。1つの実施形態において、上記ロジン系樹脂の色調は、着色が抑制される点から、好ましくは10~400ハーゼン程度が挙げられ、より好ましくは10~200ハーゼン程度が挙げられる。なお、本開示において、色調は、ハーゼン単位はJIS K 0071-1に準拠して、ガードナー単位はJIS K 0071-2に準拠して測定されたものである。 The rosin-based resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP. Examples of the color tone of the rosin-based resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen. In one embodiment, the color tone of the rosin-based resin is preferably about 10 to 400 Hazen, and more preferably about 10 to 200 Hazen, in terms of suppressing coloring. In this disclosure, color tone is measured in Hazen units according to JIS K 0071-1, and in Gardner units according to JIS K 0071-2.
上記ロジン系樹脂の酸価(mgKOH/g)は、例えば、200mgKOH/g、195mgKOH/g、190mgKOH/g、185mgKOH/g、180mgKOH/g、175mgKOH/g、170mgKOH/g、165mgKOH/g、160mgKOH/g、155mgKOH/g、150mgKOH/g、145mgKOH/g、140mgKOH/g、135mgKOH/g、130mgKOH/g、125mgKOH/g、120mgKOH/g、115mgKOH/g、110mgKOH/g、105mgKOH/g、100mgKOH/g、95mgKOH/g、90mgKOH/g、85mgKOH/g、80mgKOH/g、75mgKOH/g、70mgKOH/g、65mgKOH/g、60mgKOH/g、55mgKOH/g、50mgKOH/g、49mgKOH/g、48mgKOH/g、47mgKOH/g、46mgKOH/g、45mgKOH/g、44mgKOH/g、43mgKOH/g、42mgKOH/g、41mgKOH/g、40mgKOH/g、39mgKOH/g、38mgKOH/g、37mgKOH/g、36mgKOH/g、35mgKOH/g、34mgKOH/g、33mgKOH/g、32mgKOH/g、31mgKOH/g、30mgKOH/g、29mgKOH/g、28mgKOH/g、27mgKOH/g、26mgKOH/g、25mgKOH/g、24mgKOH/g、23mgKOH/g、22mgKOH/g、21mgKOH/g、20mgKOH/g、19mgKOH/g、18mgKOH/g、17mgKOH/g、16mgKOH/g、15mgKOH/g、14mgKOH/g、13mgKOH/g、12mgKOH/g、11mgKOH/g、10mgKOH/g、9mgKOH/g、8mgKOH/g、7mgKOH/g、6mgKOH/g、5mgKOH/g、4mgKOH/g、3mgKOH/g、2mgKOH/g、1mgKOH/g、0.9mgKOH/g、0.8mgKOH/g、0.7mgKOH/g、0.6mgKOH/g、0.5mgKOH/g、0.4mgKOH/g、0.3mgKOH/g、0.2mgKOH/g、0.1mgKOH/g、0mgKOH/g等が挙げられる。1つの実施形態において、上記ロジン系樹脂の酸価は、熱可塑性樹脂の溶融時における発煙をより抑制する点から、好ましくは200mgKOH/g以下が挙げられ、より好ましくは50mgKOH/g以下が挙げられ、さらに好ましくは20mgKOH/g以下が挙げられ、さらに好ましくは15mgKOH/g以下が挙げられ、さらに好ましくは10mgKOH/g以下が挙げられ、さらに好ましくは0.1mgKOH/g以下が挙げられ、特に好ましくは0mgKOH/gが挙げられる。なお、本開示において、酸価は、JIS K0070により測定した値である。 The acid value (mgKOH/g) of the rosin-based resin is, for example, 200 mgKOH/g, 195 mgKOH/g, 190 mgKOH/g, 185 mgKOH/g, 180 mgKOH/g, 175 mgKOH/g, 170 mgKOH/g, 165 mgKOH/g, 160 mgKOH/g, 155 mgKOH/g, 150 mgKOH/g, 145 mgKOH/g, 140 mgKOH/g, 135 mgKOH/g, 130 mgKOH/g, 125 mgKOH/g, 120 mgKOH/g, 115 mgKOH/g, 110 mgKOH/g, 10 5mgKOH/g, 100mgKOH/g, 95mgKOH/g, 90mgKOH/g, 85mgKOH/g, 80mgKOH/g, 75mgKOH/g, 70mgKOH/g, 65mgKOH/g, 60mgKOH/g, 55mgKOH/g, 50mgKOH/g, 49mgKOH/g, 48mgKOH/g, 47mgKOH/g, 46mgKOH/g, 45mgKOH/g, 44mgKOH/g, 43mgKOH/g, 42mgKOH/g, 41mgKOH/g, 40mgKOH/g, 39mgKOH/g, 38mgKOH/g , 37mgKOH/g, 36mgKOH/g, 35mgKOH/g, 34mgKOH/g, 33mgKOH/g, 32mgKOH/g, 31mgKOH/g, 30mgKOH/g, 29mgKOH/g, 28mgKOH/g, 27mgKOH/g, 26mgKOH/g, 25mgKOH/g, 24mgKOH/g, 23mgKOH/g, 22mgKOH/g, 21mgKOH/g, 20mgKOH/g, 19mgKOH/g, 18mgKOH/g, 17mgKOH/g, 16mgKOH/g, 15mgKOH/g, 14mgKOH /g, 13 mgKOH/g, 12 mgKOH/g, 11 mgKOH/g, 10 mgKOH/g, 9 mgKOH/g, 8 mgKOH/g, 7 mgKOH/g, 6 mgKOH/g, 5 mgKOH/g, 4 mgKOH/g, 3 mgKOH/g, 2 mgKOH/g, 1 mgKOH/g, 0.9 mgKOH/g, 0.8 mgKOH/g, 0.7 mgKOH/g, 0.6 mgKOH/g, 0.5 mgKOH/g, 0.4 mgKOH/g, 0.3 mgKOH/g, 0.2 mgKOH/g, 0.1 mgKOH/g, and 0 mgKOH/g. In one embodiment, the acid value of the rosin resin is preferably 200 mgKOH/g or less, more preferably 50 mgKOH/g or less, even more preferably 20 mgKOH/g or less, even more preferably 15 mgKOH/g or less, even more preferably 10 mgKOH/g or less, even more preferably 0.1 mgKOH/g or less, and particularly preferably 0 mgKOH/g, in order to further suppress smoke generation during melting of the thermoplastic resin. In this disclosure, the acid value is a value measured according to JIS K0070.
上記ロジン系樹脂の酸価が低い程、高温時におけるロジン系樹脂の脱炭酸が抑制される傾向にあるため、上記質量残留率は高い傾向にある。また、同様の点から、上記ロジン系樹脂に含まれるカルボキシル基(COOH)のモル数が少ない程、上記質量残留率は高い傾向にある。 The lower the acid value of the rosin-based resin, the more likely it is that decarboxylation of the rosin-based resin at high temperatures is suppressed, and the higher the mass retention rate. For the same reason, the lower the number of moles of carboxyl groups (COOH) contained in the rosin-based resin, the higher the mass retention rate.
上記ロジン系樹脂の酸価が高い程、上記MMAPは低い傾向にある。また、上記ロジン系樹脂に含まれるカルボキシル基(COOH)のモル数が多い程、MMAPは低い傾向にある。 The higher the acid value of the rosin-based resin, the lower the MMAP tends to be. Also, the more moles of carboxyl groups (COOH) contained in the rosin-based resin, the lower the MMAP tends to be.
上記ロジン系樹脂の重量平均分子量は、例えば、4,000、3,900、3,800、3,700、3,600、3,500、3,400、3,300、3,200、3,100、3,000、2,900、2,800、2,700、2,600、2,500、2,400、2,300、2,200、2,100、2,000、1,900、1,800、1,700、1,600、1,500、1,400、1,300、1,200、1,100、1,000、900、800、700、600等が挙げられる。1つの実施形態において、上記ロジン系樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における発煙をより抑制する点から、好ましくは600以上が挙げられ、より好ましくは700以上が挙げられる。1つの実施形態において、上記ロジン系樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における発煙をより抑制し、熱可塑性樹脂の溶融時における流動性をより向上させる点から、好ましくは600~4,000程度が挙げられ、より好ましくは600~3,000程度が挙げられ、さらに好ましくは600~2,500程度が挙げられ、特に好ましくは700~2,500程度が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the rosin-based resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, 800, 700, 600, etc. In one embodiment, the weight average molecular weight of the rosin resin is preferably 600 or more, more preferably 700 or more, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted, and more preferably 600 or more. In one embodiment, the weight average molecular weight of the rosin resin is preferably about 600 to 4,000, more preferably about 600 to 3,000, even more preferably about 600 to 2,500, and particularly preferably about 700 to 2,500, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when melted. In this disclosure, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
上記ロジン系樹脂の重量平均分子量が高い程、上記質量残留率は高い傾向にある。また、上記ロジン系樹脂の重量平均分子量が高い程、上記MMAPは高い傾向にあり、当該重量平均分子量が低い程、当該MMAPは低い傾向にある。 The higher the weight average molecular weight of the rosin-based resin, the higher the mass retention rate tends to be. Also, the higher the weight average molecular weight of the rosin-based resin, the higher the MMAP tends to be, and the lower the weight average molecular weight, the lower the MMAP tends to be.
1つの実施形態において、上記ロジン系樹脂は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、脱水剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。 In one embodiment, the rosin-based resin may contain any of various known additives, provided that the effects of the present invention are not impaired. Examples of additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers. The additives may be used alone or in combination of two or more.
(添加剤)
1つの実施形態において、上記改質剤は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、脱水剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。1つの実施形態において、上記添加剤の含有量は、上記ロジン系樹脂100質量部に対して、好ましくは0.5~10質量部が挙げられる。
(Additive)
In one embodiment, the modifier may contain any of various known additives as long as the effects of the present invention are not impaired. Examples of additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers. The additives may be used alone or in combination of two or more. In one embodiment, the content of the additive is preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the rosin resin.
(熱可塑性樹脂用の改質剤の使用)
上記改質剤は、各種公知の熱可塑性樹脂に対して用いることができる。熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせても良い。熱可塑性樹脂は、例えば、後述のものが挙げられる。
(Use of modifiers for thermoplastic resins)
The above-mentioned modifier can be used for various known thermoplastic resins. The thermoplastic resin may be used alone or in combination of two or more. Examples of the thermoplastic resin include those described below.
 1つの実施形態において、上記改質剤は、溶融時における流動性をより向上させる点から、好ましくはポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む熱可塑性樹脂に使用され、より好ましくはポリアミド66、ポリアミド6、ポリカーボネート、変性ポリフェニレンエーテル樹脂、ポリエチレン及びポリプロピレンからなる群から選択される少なくとも1種を含む熱可塑性樹脂に使用される。 In one embodiment, the above modifier is preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether, and polyolefin resin, and more preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyamide 66, polyamide 6, polycarbonate, modified polyphenylene ether resin, polyethylene, and polypropylene, in order to further improve the fluidity during melting.
1つの実施形態において、上記改質剤は、上記ロジン系樹脂を含むため、好ましくは成形加工温度の高い熱可塑性樹脂、特に好ましくは、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックに用いられる。 In one embodiment, the modifier contains the rosin-based resin, and is therefore preferably used for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
上記改質剤の使用量は、特に限定されない。上記改質剤の使用量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~5質量部程度が挙げられる。 The amount of the modifier used is not particularly limited. For example, the amount of the modifier used may be 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted. In one embodiment, the amount of the modifier used is preferably about 0.1 to 20 parts by mass, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted.
また、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは5~10質量部程度が挙げられる。 In addition, when a filler described below is used in combination with the thermoplastic resin, the amount of the modifier used may be, for example, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by weight, 14 parts by weight, 13 parts by weight, 12 parts by weight, 11 parts by weight, 10 parts by weight, 9 parts by weight, 8 parts by weight, 7 parts by weight, 6 parts by weight, 5 parts by weight, 4 parts by weight, 3 parts by weight, 2 parts by weight, 1 part by weight, 0.9 parts by weight, 0.8 parts by weight, 0.7 parts by weight, 0.6 parts by weight, 0.5 parts by weight, 0.4 parts by weight, 0.3 parts by weight, 0.2 parts by weight, 0.1 parts by weight, etc., per 100 parts by weight of the thermoplastic resin. In one embodiment, when a filler described later is used in combination with the thermoplastic resin, the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted. In one embodiment, when a filler described later is used in combination with the thermoplastic resin, the amount of the modifier used is preferably about 0.1 to 20 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
また、上記改質剤は、後述するフィラーを含む熱可塑性樹脂に使用した場合、上記改質剤を使用しない場合に比べて、熱可塑性樹脂の成形体の機械的特性を向上し得る。その詳細は不明だが、上記改質剤が熱可塑性樹脂と当該フィラーとの界面密着性を改善することにより、成形体の機械的特性を向上させると推察される。 In addition, when the modifier is used in a thermoplastic resin containing a filler, which will be described later, it can improve the mechanical properties of a molded body of the thermoplastic resin compared to when the modifier is not used. Although the details are unclear, it is presumed that the modifier improves the interfacial adhesion between the thermoplastic resin and the filler, thereby improving the mechanical properties of the molded body.
 上記改質剤の使用方法は、特に限定されない。上記改質剤の使用方法は、例えば、混合機に、熱可塑性樹脂と共に改質剤を添加し、当該混合機で溶融混練する方法等が挙げられる。上記混合機は、例えば、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー等が挙げられる。当該溶融混練の温度は、特に制限されないが、通常、熱可塑性樹脂の融点-30℃~融点+30℃の範囲である。 The method of using the modifier is not particularly limited. For example, the modifier is added to a mixer together with a thermoplastic resin, and melt-kneaded in the mixer. Examples of the mixer include a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. The temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
[樹脂組成物]
本開示は、上記改質剤(又は上記ロジン系樹脂)及び熱可塑性樹脂を含む樹脂組成物に関する。
[Resin composition]
The present disclosure relates to a resin composition containing the above-mentioned modifier (or the above-mentioned rosin-based resin) and a thermoplastic resin.
<熱可塑性樹脂>
上記熱可塑性樹脂は、特に限定されず、各種公知のものを使用できる。上記熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせても良い。
<Thermoplastic resin>
The thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used. The thermoplastic resins may be used alone or in combination of two or more.
 上記熱可塑性樹脂は、例えば、ポリオレフィン系樹脂、スチレン系樹脂、ABS樹脂、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、フェノキシ樹脂、ポリメチルメタクリレート樹脂、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、液晶ポリマー、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリアリレート、フッ素樹脂等が挙げられる。 Examples of the thermoplastic resin include polyolefin resins, styrene resins, ABS resins, polyamides, polyesters, polycarbonates, polyacetals, phenoxy resins, polymethyl methacrylate resins, polyphenylene ethers, polyphenylene sulfides, polyamide-imides, polyimides, polyether-imides, liquid crystal polymers, polyether-ether ketones, polyether-sulfones, polysulfones, polyarylates, and fluororesins.
(ポリオレフィン系樹脂)
上記ポリオレフィン系樹脂は、特に限定されず、各種公知のものを使用できる。上記ポリオレフィン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
(Polyolefin resin)
The polyolefin resin is not particularly limited, and various known polyolefin resins can be used. The polyolefin resins may be used alone or in combination of two or more.
上記ポリオレフィン系樹脂は、例えば、エチレン、プロピレン、1-ブテン等の炭素数2~8程度のα-オレフィンの単独重合体;前記α-オレフィンの二元又は三元の(共)重合体;前記α-オレフィンと、炭素数9~18程度のα-オレフィン、共役ジエン、非共役ジエン、不飽和カルボン酸、(メタ)アクリル酸エステル及び酢酸ビニル等との二元又は三元の(共)重合体等が挙げられる。 The polyolefin resins include, for example, homopolymers of α-olefins having about 2 to 8 carbon atoms, such as ethylene, propylene, and 1-butene; binary or ternary (co)polymers of the above-mentioned α-olefins; binary or ternary (co)polymers of the above-mentioned α-olefins with α-olefins having about 9 to 18 carbon atoms, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, (meth)acrylic acid esters, vinyl acetate, and the like.
上記炭素数2~18程度のα-オレフィンは、例えば、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-オクタデセン等が挙げられる。上記共役ジエン、非共役ジエンは、例えば、ブタジエン、イソプレン、エチリデンノルボルネン、ジシクロペンタジエン、1,5-ヘキサジエン等が挙げられる。上記不飽和カルボン酸は、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。また、上記不飽和カルボン酸は、塩基等により中和されていてもよい。上記(メタ)アクリル酸エステルは、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸イソオクチル等が挙げられる。これらα-オレフィン、共役ジエン、非共役ジエン、不飽和カルボン酸、(メタ)アクリル酸エステルは、2種以上を用いてもよい。 Examples of the α-olefins having about 2 to 18 carbon atoms include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, and 1-octadecene. Examples of the conjugated dienes and non-conjugated dienes include butadiene, isoprene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene. Examples of the unsaturated carboxylic acids include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride. The unsaturated carboxylic acids may be neutralized with a base or the like. Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, isooctyl (meth)acrylate, etc. Two or more of these α-olefins, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, and (meth)acrylic acid esters may be used.
 上記ポリオレフィン系樹脂は、例えば、ポリエチレン、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-プロピレン-1-ブテン共重合体、エチレン-4-メチル-1-ペンテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-ヘプテン共重合体、エチレン-1-オクテン共重合体等のエチレン系樹脂;ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-4-メチル-1-ペンテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体等のプロピレン系樹脂;1-ブテン単独重合体、1-ブテン-エチレン共重合体、1-ブテン-プロピレン共重合体等の1-ブテン系樹脂;4-メチル-1-ペンテン単独重合体、4-メチル-1-ペンテン-エチレン共重合体等の4-メチル-1-ペンテン系樹脂等が挙げられる。 The polyolefin resins include, for example, ethylene resins such as polyethylene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-heptene copolymer, and ethylene-1-octene copolymer; propylene resins such as polypropylene, propylene-ethylene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene-4-methyl-1-pentene copolymer, and propylene-ethylene-1-hexene copolymer; 1-butene resins such as 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer; and 4-methyl-1-pentene resins such as 4-methyl-1-pentene homopolymer and 4-methyl-1-pentene-ethylene copolymer.
(スチレン系樹脂)
上記スチレン系樹脂は、特に限定されず、各種公知のものを使用できる。上記スチレン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
(styrene resin)
The styrene-based resin is not particularly limited, and various known styrene-based resins can be used. The styrene-based resins may be used alone or in combination of two or more.
  上記スチレン系樹脂は、例えば、ゴム質重合体存在下又は非存在下で、スチレン系化合物と必要に応じてこれらと共重合可能な他の化合物とを重合して得られる樹脂等が挙げられる。上記スチレン系化合物は、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等が挙げられる。上記スチレン系化合物と共重合可能な他の化合物は、例えば、シアン化ビニル化合物、アクリル酸エステル、メタクリル酸エステル、エポキシ基含有メタクリル酸エステル、マレイミド系化合物、α、β-不飽和カルボン酸及びその無水物等が挙げられる。上記ゴム質重合体は、例えば、ポリブタジエン、ポリイソプレン、ジエン系共重合体、エチレンとα-オレフィンとの共重合体、エチレンと不飽和カルボン酸エステルとの共重合体、エチレンとプロピレンと非共役ジエンターポリマー、アクリル系ゴム等が挙げられる。上記スチレン系化合物、上記スチレン系化合物と共重合可能な他の化合物及び上記ゴム質重合体は、1種を単独で、又は2種以上を併用してもよい。1つの実施形態において、上記スチレン系樹脂は、好ましくはポリスチレンが挙げられる。 Examples of the styrene resin include resins obtained by polymerizing a styrene compound and, if necessary, other compounds copolymerizable therewith in the presence or absence of a rubber polymer. Examples of the styrene compound include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like. Examples of other compounds copolymerizable with the styrene compound include vinyl cyanide compounds, acrylic acid esters, methacrylic acid esters, epoxy group-containing methacrylic acid esters, maleimide compounds, α,β-unsaturated carboxylic acids and their anhydrides, and the like. Examples of the rubber polymer include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and α-olefins, copolymers of ethylene and unsaturated carboxylic acid esters, ethylene, propylene, and non-conjugated diene terpolymers, and acrylic rubbers. The styrene-based compound, the other compound copolymerizable with the styrene-based compound, and the rubber polymer may be used alone or in combination of two or more. In one embodiment, the styrene-based resin is preferably polystyrene.
(ポリアミド)
上記ポリアミドは、特に限定されず、各種公知のものを使用できる。上記ポリアミドは、1種を単独で又は2種以上を組み合わせても良い。
(polyamide)
The polyamide is not particularly limited, and various known polyamides can be used. The polyamides may be used alone or in combination of two or more.
  上記ポリアミドは、アミド結合を有する高分子からなる樹脂のことであり、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる原料とするものである。上記ポリアミドは、これら原料から誘導されるポリアミドホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。また、これら原料は2種以上を併用してもよい。 The polyamide is a resin made of a polymer having an amide bond, and is made from amino acids, lactams, or diamines and dicarboxylic acids as the main raw materials. The polyamide may be a polyamide homopolymer or copolymer derived from these raw materials, either alone or in the form of a mixture. Two or more of these raw materials may also be used in combination.
 上記アミノ酸は、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸等が挙げられる。 Examples of the above amino acids include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and para-aminomethylbenzoic acid.
 上記ラクタムは、例えば、ε-カプロラクタム、ω-ラウロラクタム等が挙げられる。 Examples of the lactams include ε-caprolactam and ω-laurolactam.
 上記ジアミンは、例えば、脂肪族ジアミン、芳香族ジアミン、脂環族ジアミン等が挙げられる。脂肪族ジアミンは、例えば、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン等が挙げられる。芳香族ジアミンは、例えば、メタキシレンジアミン、パラキシリレンジアミン等が挙げられる。脂環族ジアミンは、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジン等挙げられる。 Examples of the diamines include aliphatic diamines, aromatic diamines, alicyclic diamines, etc. Examples of the aliphatic diamines include tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-/2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, etc. Examples of the aromatic diamines include metaxylylene diamine, paraxylylene diamine, etc. Examples of alicyclic diamines include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, and aminoethylpiperazine.
 上記ジカルボン酸は、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、脂環族ジカルボン酸等が挙げられる。脂肪族ジカルボン酸は、例えば、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸等が挙げられる。芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等が挙げられる。脂環族ジカルボン酸は、例えば、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等が挙げられる。 Examples of the dicarboxylic acid include aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids. Examples of the aliphatic dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid. Examples of the alicyclic dicarboxylic acids include hexahydroterephthalic acid and hexahydroisophthalic acid.
  上記ポリアミド樹脂は、例えば、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリノナンテレフタルアミド(ポリアミド9T)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ポリアミド6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリキシリレンアジパミド(ポリアミドXD6)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/5T)およびこれらの混合物ないし共重合体などが挙げられる。 The above polyamide resins include, for example, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polypentamethylene adipamide (polyamide 56), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polypentamethylene sebacamide (polyamide 510), polyhexamethylene dodecamide (polyamide 612), and polyundecane amide (polyamide 11). , polydodecanamide (polyamide 12), polynonane terephthalamide (polyamide 9T), polycaproamide/polyhexamethylene terephthalamide copolymer (polyamide 6/6T), polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer (polyamide 66/6T), polyhexamethylene adipamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6I), polyhexamethylene adipamide/ Polyhexamethylene isophthalamide/polycaproamide copolymer (polyamide 66/6I/6), polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide 6T/6I), polyhexamethylene terephthalamide/polydodecanamide copolymer (polyamide 6T/12), polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide Polyamide 66/6T/6I), polyxylylene adipamide (polyamide XD6), polymetaxylylene adipamide (polyamide MXD6), polyhexamethylene terephthalamide/poly-2-methylpentamethylene terephthalamide copolymer (polyamide 6T/M5T), polyhexamethylene terephthalamide/polypentamethylene terephthalamide copolymer (polyamide 6T/5T), and mixtures or copolymers thereof.
 1つの実施形態において、上記ポリアミドは、好ましくはポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド9T、ポリアミド6/66コポリマー、ポリアミド6/12コポリマーが挙げられ、同様の点から、より好ましくはポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド9Tが挙げられる。 In one embodiment, the polyamide is preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T, polyamide 6/66 copolymer, polyamide 6/12 copolymer, and from the same viewpoint, more preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T.
(ポリエステル)
上記ポリエステルは、特に限定されず、各種公知のものを使用できる。上記ポリエステルは、1種を単独で又は2種以上を組み合わせても良い。
(polyester)
The polyester is not particularly limited, and various known polyesters can be used. The polyester may be used alone or in combination of two or more.
上記ポリエステルは、多価カルボン酸(あるいは、そのエステル形成性誘導体)と多価アルコール(あるいはそのエステル形成性誘導体)とを主成分とする縮合反応により得られる重合体ないしは共重合体、あるいはこれらの混合物が挙げられる。また、多価カルボン酸及び多価アルコールは、それぞれ2種以上を併用してもよい。 The polyester may be a polymer or copolymer obtained by a condensation reaction of a polycarboxylic acid (or an ester-forming derivative thereof) and a polyhydric alcohol (or an ester-forming derivative thereof) as the main components, or a mixture thereof. In addition, two or more types of polycarboxylic acids and polyhydric alcohols may be used in combination.
上記多価カルボン酸は、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環式ジカルボン酸、トリカルボン酸およびこれらのエステル形成性誘導体等が挙げられる。芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸等が挙げられる。脂肪族ジカルボン酸は、例えば、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸等が挙げられる。脂環式ジカルボン酸は、例えば、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。トリカルボン酸は、例えば、トリメリット酸等が挙げられる。 The polycarboxylic acids include, for example, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, tricarboxylic acids, and ester-forming derivatives thereof. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfoisophthalic acid. Examples of aliphatic dicarboxylic acids include adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid. Examples of alicyclic dicarboxylic acids include 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of tricarboxylic acids include trimellitic acid.
上記多価アルコールは、例えば、脂肪族グリコール、脂環式ジオール、芳香族ジオール、トリメチロールプロパン、ペンタエリスリトール、グリセロールおよびこれらのエステル形成性誘導体等が挙げられる。上記脂肪族グリコールは、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等が挙げられる。上記脂環式ジオールは、例えば、シクロペンタンジオール、シクロヘキサンジオール、水素化ビスフェノールA等が挙げられる。上記芳香族ジオールは、例えば、ビスフェノールAエチレンオキシド(1モル~100モル)付加物、ビスフェノールAプロピレンオキシド(1モル~100モル)付加物、キシレングリコール等が挙げられる。 The polyhydric alcohols include, for example, aliphatic glycols, alicyclic diols, aromatic diols, trimethylolpropane, pentaerythritol, glycerol, and ester-forming derivatives thereof. The aliphatic glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol. The alicyclic diols include, for example, cyclopentanediol, cyclohexanediol, and hydrogenated bisphenol A. The aromatic diols include, for example, bisphenol A ethylene oxide (1 mol to 100 mol) adducts, bisphenol A propylene oxide (1 mol to 100 mol) adducts, and xylene glycol.
上記ポリエステルは、例えば、ポリブチレンテレフタレート、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリブチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリエチレンナフタレ-ト、ポリシクロヘキサンジメチレンテレフタレート等が挙げられる。 Examples of the polyester include polybutylene terephthalate, polybutylene (terephthalate/isophthalate), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/5-sodium sulfoisophthalate), polybutylene (terephthalate/5-sodium sulfoisophthalate), polyethylene naphthalate, and polycyclohexanedimethylene terephthalate.
1つの実施形態において、上記ポリエステルは、好ましくはポリブチレンテレフタレート、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/アジペート)、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレートが挙げられ、より好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレートが挙げられる。 In one embodiment, the polyester is preferably polybutylene terephthalate, polybutylene (terephthalate/adipate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/adipate), polyethylene naphthalate, or polycyclohexanedimethylene terephthalate, more preferably polyethylene terephthalate or polybutylene terephthalate.
(ポリカーボネート)
上記ポリカーボネートは、特に限定されず、各種公知のものを使用できる。上記ポリカーボネートは、1種を単独で又は2種以上を組み合わせても良い。
(Polycarbonate)
The polycarbonate is not particularly limited, and various known polycarbonates can be used. The polycarbonates may be used alone or in combination of two or more.
 上記ポリカーボネートは、例えば、芳香族ジヒドロキシ化合物とカーボネート前駆体とを反応させることにより得られるものが挙げられる。また、上記ポリカーボネートは、直鎖状でもよく、分岐構造を有していても良い。 The polycarbonate may be, for example, one obtained by reacting an aromatic dihydroxy compound with a carbonate precursor. The polycarbonate may be linear or may have a branched structure.
  上記芳香族ジヒドロキシ化合物は、例えば、ビス(ヒドロキシアリール)アルカン、ビス(ヒドロキシアリール)シクロアルカン、ジヒドロキシジアリールエーテル、ジヒドロキシジアリールスルフィド、ジヒドロキシジアリールスルホキシド、ジヒドロキシジアリールスルホン、ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシベンゾフェノン等が挙げられる。該芳香族ジヒドロキシ化合物は、1種を単独で、又は2種以上を併用してもよい。 The aromatic dihydroxy compounds include, for example, bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxydiaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, hydroquinones, resorcinol, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxybenzophenone, etc. The aromatic dihydroxy compounds may be used alone or in combination of two or more.
  上記ビス(ヒドロキシアリール)アルカンは、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(所謂ビスフェノールA)、テトラブロモビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)デカン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン,2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン等が挙げられる。 Examples of the bis(hydroxyaryl)alkanes include 2,2-bis(4-hydroxyphenyl)propane (also known as bisphenol A), tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)decane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)dec ... , 1-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3-phenyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, etc.
  上記ビス(ヒドロキシアリール)シクロアルカンは、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(所謂ビスフェノールZ)、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1,-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等が挙げられる。 Examples of the bis(hydroxyaryl)cycloalkane include 1,1-bis(4-hydroxyphenyl)cyclohexane (also known as bisphenol Z), 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclooctane, and 9,9-bis(4-hydroxyphenyl)fluorene.
  上記ジヒドロキシジアリールエーテルは、例えば、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等が挙げられる。上記ジヒドロキシジアリールスルフィドは、例えば、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等が挙げられる。上記ジヒドロキシジアリールスルホキシドは、例えば、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等が挙げられる。上記ジヒドロキシジアリールスルホンは、例えば、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等が挙げられる。 The dihydroxydiaryl ethers include, for example, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc. The dihydroxydiaryl sulfides include, for example, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, etc. The dihydroxydiaryl sulfoxides include, for example, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc. The dihydroxydiaryl sulfones include, for example, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, etc.
  上記カーボネート前駆体は、例えば、カルボニルハライド、炭酸ジエステル等が挙げられる。該カーボネート前駆体は、1種を単独で、又は2種以上を併用してもよい。 The carbonate precursor may be, for example, a carbonyl halide, a carbonic acid diester, etc. One type of carbonate precursor may be used alone, or two or more types may be used in combination.
  上記カルボニルハライドは、例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。該カルボニルハライドは、1種を単独で、又は2種以上を併用してもよい。 The carbonyl halides include, for example, phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds. The carbonyl halides may be used alone or in combination of two or more.
  上記炭酸ジエステルは、例えば、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジ-tert-ブチルカーボネート、ジシクロヘキシルカーボネート等のジアルキルカーボネート;ジヒドロキシ化合物のビスカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。該炭酸エステルは、1種を単独で、又は2種以上を併用してもよい。 The above carbonic acid diesters include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, and dinaphthyl carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, di-tert-butyl carbonate, and dicyclohexyl carbonate; biscarbonates of dihydroxy compounds, carbonates of dihydroxy compounds such as cyclic carbonates, and the like. One type of carbonic acid ester may be used alone, or two or more types may be used in combination.
上記ポリカーボネートの製造方法は、例えば、界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法等が挙げられる。 The above-mentioned polycarbonates can be produced, for example, by interfacial polymerization, melt transesterification, solid-phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds.
  また、上記ポリカーボネートは、三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂であってもよいし、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂であってもよいし、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂であってもよいし、かかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂であってもよい。これらポリカーボネートは、2種以上を用いてもよい。   The polycarbonate may be a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), or a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Two or more of these polycarbonates may be used.
(ポリフェニレンエーテル)
上記ポリフェニレンエーテルは、特に限定されず、各種公知のものを使用できる。ポリフェニレンエーテルは、1種を単独で又は2種以上を組み合わせても良い。
(Polyphenylene ether)
The polyphenylene ether is not particularly limited, and various known polyphenylene ethers can be used. The polyphenylene ethers may be used alone or in combination of two or more.
 上記ポリフェニレンエーテルは、例えば、下記一般式(1)で表される繰り返し単位からなる単独重合体、或いは共重合体等が挙げられる。 The polyphenylene ether may be, for example, a homopolymer or copolymer consisting of a repeating unit represented by the following general formula (1):
(式(1)中、R1、R2、R3、R4はそれぞれ独立して、水素原子、ハロゲン原子、置換基を有していても良いアルキル基、アルコキシ基又は置換基を有していても良いアリール基であり、nは繰り返し数である。) (In formula (1), R1, R2, R3, and R4 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, or an aryl group which may have a substituent, and n represents the number of repetitions.)
  上記一般式(1)で表される単独重合体としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル等が挙げられる。   Examples of the homopolymer represented by the above general formula (1) include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, etc.
  又、共重合体としては、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体等が挙げられる。 Examples of copolymers include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
上記ポリフェニレンエーテルの製造方法は、特に限定されず、各種公知の手段を用いて得ることができる。具体的には、例えば、米国特許第3306874号明細書、同第3306875号明細書、同第3257357号明細書、同第3257358号明細書、特開昭50-51197号公報、特公昭52-17880号公報、及び同63-152628号公報等に記載された製造方法等が挙げられる。 The method for producing the polyphenylene ether is not particularly limited, and can be obtained by using various known means. Specific examples include the production methods described in U.S. Pat. Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and JP-B-63-152628, etc.
上記ポリフェニレンエーテルは、本発明の効果を損なわない範囲において、他の種々のフェニレンエーテルユニットを部分構造として含んでいてもよい。前記フェニレンエーテルユニットとしては、例えば、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテルユニットや、2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテルユニット等が挙げられる。また、上記ポリフェニレンエーテル樹脂の主鎖中にジフェノキノン等が少量結合したものであっても良い。更には、マレイン酸、フマル酸、クロロマレイン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸及びこれらの酸無水物等やこれら不飽和ジカルボン酸の2個のカルボキシル基のうちの1個または2個がエステルになっているもの、アリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタアクリレート、ステアリルアクリレート、スチレン、エポキシ化天然油脂等、アリルアルコール、4-ペンテン-1-オール、1,4-ペンタジエン-3-オールなどの一般式CnH2n-3OH(nは正の整数)の不飽和アルコール、一般式CnH2n-5OH、CnH2n-7OH(nは正の整数)等の不飽和アルコール等によって変性されているポリフェニレンエーテル樹脂であっても良い。これら変性されたポリフェニレンエーテル樹脂は、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。また、上記の変性されたポリフェニレンエーテル樹脂の融点は、示差熱走査型熱量計(DSC)の測定において、20℃/分で昇温するときに得られる温度-熱流量グラフで観測されるピークのピークトップ温度で定義され、ピークトップ温度が複数ある場合にはその内の最高の温度で定義される。 The polyphenylene ether may contain various other phenylene ether units as partial structures within the scope of the present invention. Examples of the phenylene ether units include 2-(dialkylaminomethyl)-6-methylphenylene ether units and 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units. In addition, a small amount of diphenoquinone or the like may be bonded to the main chain of the polyphenylene ether resin. Furthermore, it may be a polyphenylene ether resin modified with maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, anhydrides thereof, or unsaturated dicarboxylic acids in which one or two of the two carboxyl groups are esterified, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, styrene, epoxidized natural fats and oils, unsaturated alcohols of the general formula CnH2n-3OH (n is a positive integer) such as allyl alcohol, 4-penten-1-ol, and 1,4-pentadiene-3-ol, or unsaturated alcohols of the general formula CnH2n-5OH, CnH2n-7OH (n is a positive integer). These modified polyphenylene ether resins may be used alone or in combination of two or more. In addition, the melting point of the modified polyphenylene ether resin is defined as the peak top temperature of the peak observed in a temperature-heat flow graph obtained when the temperature is raised at 20°C/min in measurement with a differential scanning calorimeter (DSC), and if there are multiple peak top temperatures, it is defined as the highest temperature among them.
  上記ポリフェニレンエーテルは、芳香族ビニル系重合体、ポリアミド等のポリフェニレンエーテル以外の樹脂成分を含有しても良い。芳香族ビニル系重合体としては、例えば、アタクティックポリスチレン、ハイインパクトポリスチレン、シンジオタクティックポリスチレン、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びアクリロニトリル-スチレン共重合体等が挙げられる。 The polyphenylene ether may contain resin components other than polyphenylene ether, such as aromatic vinyl polymers and polyamides. Examples of aromatic vinyl polymers include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, and acrylonitrile-styrene copolymers.
1つの実施形態において、上記ポリフェニレンエーテルが、ポリフェニレンエーテル及びポリスチレンを含む混合物(いわゆる変性ポリフェニレンエーテル樹脂)である場合、ポリフェニレンエーテルの含有量は、ポリフェニレンエーテルとポリスチレンとの合計量に対して、通常70質量%以上が挙げられ、好ましくは80質量%以上が挙げられる。 In one embodiment, when the polyphenylene ether is a mixture containing polyphenylene ether and polystyrene (so-called modified polyphenylene ether resin), the content of polyphenylene ether is typically 70% by mass or more, preferably 80% by mass or more, based on the total amount of polyphenylene ether and polystyrene.
上記変性ポリフェニレンエーテル樹脂の市販品は、例えば、三菱エンジニアリングプラスチックス(株)製「ユピエース」(登録商標)、SABIC社製「NORYL」(登録商標)、旭化成(株)製「ザイロン」(登録商標)等が挙げられる。 Commercially available modified polyphenylene ether resins include, for example, "Iupiace" (registered trademark) manufactured by Mitsubishi Engineering Plastics Corporation, "NORYL" (registered trademark) manufactured by SABIC Corporation, and "Zylon" (registered trademark) manufactured by Asahi Kasei Corporation.
(ポリフェニレンサルファイド)
上記ポリフェニレンサルファイドは、特に限定されず、各種公知のものを使用できる。上記ポリカーボネートは、1種を単独で又は2種以上を組み合わせても良い。
(Polyphenylene sulfide)
The polyphenylene sulfide is not particularly limited, and various known polyphenylene sulfides can be used. The polycarbonate may be used alone or in combination of two or more kinds.
上記ポリフェニレンサルファイドは、例えば、ポリハロゲン芳香族化合物とスルフィド化剤とを極性有機溶媒中で反応させて得られるものが挙げられる。 The polyphenylene sulfide can be obtained, for example, by reacting a polyhalogenated aromatic compound with a sulfidizing agent in a polar organic solvent.
上記ポリハロゲン芳香族化合物は、例えば、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3,5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼン等が挙げられ、好ましくはp-ジクロロベンゼンが用いられる。また、異なる2種以上のポリハロゲン芳香族化合物を組み合わせて共重合体とすることも可能であるが、p-ジハロゲン芳香族化合物を主要成分とすることが好ましい。 The polyhalogenated aromatic compound may, for example, be p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, or 1-methoxy-2,5-dichlorobenzene, with p-dichlorobenzene being preferred. It is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer, but it is preferred to use a p-dihalogenated aromatic compound as the main component.
 上記スルフィド化剤は、例えば、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素等が挙げられる。上記アルカリ金属硫化物は、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。上記アルカリ金属水硫化物は、例えば、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物及び水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。上記スルフィド化剤は、1種を単独で、又は2種以上を併用してもよい。 Examples of the sulfidizing agent include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide. Examples of the alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred. Examples of the alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these, with sodium hydrosulfide being preferred. These alkali metal sulfides and hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides. The sulfidizing agents may be used alone or in combination of two or more.
 また、上記スルフィド化剤は、アルカリ金属水硫化物とアルカリ金属水酸化物から調製されるアルカリ金属硫化物;水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から調製されるアルカリ金属硫化物等も用いることができる。 The sulfidizing agent may also be an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; or an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide.
 なお、上記スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。1つの実施形態において、アルカリ金属水酸化物は、好ましくは水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物が挙げられ、アルカリ土類金属水酸化物は、例えば、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、好ましくは水酸化ナトリウムが挙げられる。 It is also possible to use an alkali metal hydroxide and/or an alkaline earth metal hydroxide together with the sulfidizing agent. In one embodiment, the alkali metal hydroxide is preferably sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, or a mixture of two or more of these, and the alkaline earth metal hydroxide is, for example, calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and preferably sodium hydroxide.
上記ポリフェニレンサルファイドは、回収および後処理することで、高収率で製造することができる。具体的には、特公昭45-3368号公報に記載される比較的分子量の小さな重合体を得る方法、あるいは特公昭52-12240号公報や特開昭61-7332号公報に記載される比較的分子量の大きな重合体を得る方法などによっても製造できる。前記の方法で得られたポリフェニレンスルフィド樹脂を空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水、酸水溶液などによる洗浄、酸無水物、アミン、イソシアネート、官能基含有ジスルフィド化合物などの官能基含有化合物による活性化など種々の処理を施した上で使用することもできる。 The polyphenylene sulfide can be produced in high yields by recovering and post-treating. Specifically, it can be produced by the method of obtaining a polymer with a relatively small molecular weight described in JP-B-45-3368, or the method of obtaining a polymer with a relatively large molecular weight described in JP-B-52-12240 and JP-A-61-7332. The polyphenylene sulfide resin obtained by the above method can be used after various treatments such as crosslinking/polymerization by heating in air, heat treatment in an inert gas atmosphere such as nitrogen or under reduced pressure, washing with organic solvents, hot water, acid aqueous solutions, and activation with functional group-containing compounds such as acid anhydrides, amines, isocyanates, and functional group-containing disulfide compounds.
上記ポリフェニレンサルファイドの市販品は、例えば、東レ(株)製“トレリナ”(登録商標)、DIC(株)製“DIC.PPS”(登録商標)、ポリプラスチックス(株)製“ジュラファイド”(登録商標)等が挙げられる。 Commercially available polyphenylene sulfide products include, for example, "TORELINA" (registered trademark) manufactured by Toray Industries, Inc., "DIC.PPS" (registered trademark) manufactured by DIC Corporation, and "DURAFIDE" (registered trademark) manufactured by Polyplastics Co., Ltd.
(液晶ポリマー)
上記液晶ポリマーは、特に限定されず、各種公知のものを使用できる。液晶ポリマーは、1種を単独で又は2種以上を組み合わせても良い。
(Liquid Crystal Polymer)
The liquid crystal polymer is not particularly limited, and various known liquid crystal polymers can be used. The liquid crystal polymer may be used alone or in combination of two or more kinds.
上記液晶ポリマーは、例えば、液晶ポリエステル、液晶ポリエステルアミド等が挙げられる。液晶ポリエステルは、特に限定されないが、例えば、芳香族ポリエステル等が挙げられる。1つの実施形態において、液晶ポリエステルは、好ましくは原料モノマーとして芳香族化合物のみを用いて成る全芳香族ポリエステルが挙げられる。液晶ポリエステルアミドは、特に限定されないが、例えば、芳香族ポリエステルアミド等が挙げられる。1つの実施形態において、液晶ポリエステルアミドは、好ましくは原料モノマーとして芳香族化合物のみを用いて成る全芳香族ポリエステルアミドが挙げられる。また、上記液晶ポリマーとしては、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルを用いることもできる。 The liquid crystal polymer may be, for example, a liquid crystal polyester or a liquid crystal polyester amide. The liquid crystal polyester may be, but is not limited to, an aromatic polyester. In one embodiment, the liquid crystal polyester may be, for example, a fully aromatic polyester made using only aromatic compounds as raw material monomers. The liquid crystal polyester amide may be, but is not limited to, an aromatic polyester amide. In one embodiment, the liquid crystal polyester amide may be, for example, a fully aromatic polyester amide made using only aromatic compounds as raw material monomers. In addition, the liquid crystal polymer may be, for example, a polyester partially containing aromatic polyester or aromatic polyester amide in the same molecular chain.
上記芳香族ポリエステルは、特に限定されないが、例えば、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上とからなるポリエステル;
(3)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステル等、が挙げられる。
The aromatic polyester is not particularly limited, but may be, for example,
(1) Polyesters consisting essentially of one or more aromatic hydroxycarboxylic acids and their derivatives;
(2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) a polyester composed of one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof;
(3) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(c) Polyesters composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
上記芳香族ポリエステルアミドは、特に限定されないが、例えば、
(1)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、
(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド等、が挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
The aromatic polyester amide is not particularly limited, but may be, for example,
(1) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof;
(c) a polyesteramide comprising one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof;
(2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof;
(c) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(d) polyesteramides composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above-mentioned components, if necessary.
 上記芳香族ヒドロキシカルボン酸は、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-1-ナフトエ酸等の芳香族ヒドロキシカルボン酸、または3-メチル-4-ヒドロキシ安息香酸、3,5-ジメチル-4-ヒドロキシ安息香酸、2,6-ジメチル-4-ヒドロキシ安息香酸、3-メトキシ-4-ヒドロキシ安息香酸、3,5-ジメトキシ-4-ヒドロキシ安息香酸、6-ヒドロキシ-5-メチル-2-ナフトエ酸、6-ヒドロキシ-5-メトキシ-2-ナフトエ酸、2-クロロ-4-ヒドロキシ安息香酸、3-クロロ-4-ヒドロキシ安息香酸、2,3-ジクロロ-4-ヒドロキシ安息香酸、3,5-ジクロロ-4-ヒドロキシ安息香酸、2,5-ジクロロ-4-ヒドロキシ安息香酸、3-ブロモ-4-ヒドロキシ安息香酸、6-ヒドロキシ-5-クロロ-2-ナフトエ酸、6-ヒドロキシ-7-クロロ-2-ナフトエ酸、6-ヒドロキシ-5,7-ジクロロ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸のアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 The aromatic hydroxycarboxylic acid may be, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, or 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, or Examples of aromatic hydroxycarboxylic acids include alkyl, alkoxy, or halogen-substituted derivatives of aromatic hydroxycarboxylic acids such as 2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxybenzoic acid, 2,5-dichloro-4-hydroxybenzoic acid, 3-bromo-4-hydroxybenzoic acid, 6-hydroxy-5-chloro-2-naphthoic acid, 6-hydroxy-7-chloro-2-naphthoic acid, and 6-hydroxy-5,7-dichloro-2-naphthoic acid.
上記芳香族ジオールは、例えば、4,4'-ジヒドロキシビフェニル、3,3'-ジヒドロキシビフェニル、4,4'-ジヒドロキシテルフェニル、ハイドロキノン、レゾルシン、2,6-ナフタレンジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェノキシ)エタン、3,3'-ジヒドロキシジフェニルエーテル、1,6-ナフタレンジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン等の芳香族ジオール、またはクロロハイドロキノン、メチルハイドロキノン、tert-ブチルハイドロキノン、フェニルハイドロキノン、メトキシハイドロキノン、フェノキシハイドロキノン、4-クロロレゾルシン、4-メチルレゾルシン等の芳香族ジオールのアルキル、アルコキシまたはハロゲン置換体が挙げられる。 The above aromatic diols include, for example, aromatic diols such as 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 4,4'-dihydroxyterphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenoxy)ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis(4-hydroxyphenyl)propane, and bis(4-hydroxyphenyl)methane, as well as alkyl, alkoxy, or halogen-substituted aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcinol, and 4-methylresorcinol.
上記芳香族ジカルボン酸は、例えば、テレフタル酸、4,4'-ビフェニルジカルボン酸、4,4'-トリフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルエーテル-4,4'-ジカルボン酸、ジフェノキシエタン-4,4'-ジカルボン酸、ジフェノキシブタン-4,4'-ジカルボン酸、ジフェニルエタン-4,4'-ジカルボン酸、イソフタル酸、ジフェニルエーテル-3,3'-ジカルボン酸、ジフェノキシエタン-3,3'-ジカルボン酸、ジフェニルエタン-3,3'-ジカルボン酸、1,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、またはクロロテレフタル酸、ジクロロテレフタル酸、ブロモテレフタル酸、メチルテレフタル酸、ジメチルテレフタル酸、エチルテレフタル酸、メトキシテレフタル酸、エトキシテレフタル酸等で代表される上記芳香族ジカルボン酸のアルキル、アルコキシまたはハロゲン置換体が挙げられる。 The above aromatic dicarboxylic acids include, for example, aromatic dicarboxylic acids such as terephthalic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, isophthalic acid, diphenylether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, and 1,6-naphthalenedicarboxylic acid, and alkyl, alkoxy, or halogen-substituted derivatives of the above aromatic dicarboxylic acids, such as chloroterephthalic acid, dichloroterephthalic acid, bromoterephthalic acid, methylterephthalic acid, dimethylterephthalic acid, ethylterephthalic acid, methoxyterephthalic acid, and ethoxyterephthalic acid.
上記芳香族ヒドロキシアミンは、例えば、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、2-クロロ-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4'-ヒドロキシビフェニル、4-アミノ-4'-ヒドロキシジフェニルエーテル、4-アミノ-4'-ヒドロキシジフェニルメタン、4-アミノ-4'-ヒドロキシジフェニルスルフィド等が挙げられる。
上記芳香族ジアミンは、例えば、1,4-フェニレンジアミン、N-メチル-1,4-フェニレンジアミン、N,N'-ジメチル-1,4-フェニレンジアミン、4,4'-ジアミノフェニルスルフィド(チオジアニリン)、4,4'-ジアミノジフェニルスルホン、2,5-ジアミノトルエン、4,4'-エチレンジアニリン、4,4'-ジアミノジフェノキシエタン、4,4'-ジアミノジフェニルメタン(メチレンジアニリン)、4,4'-ジアミノジフェニルエーテル(オキシジアニリン)等が挙げられる。
Examples of the aromatic hydroxyamine include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, and 4-amino-4'-hydroxydiphenyl sulfide.
Examples of the aromatic diamine include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N,N'-dimethyl-1,4-phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), and 4,4'-diaminodiphenyl ether (oxydianiline).
1つの実施形態において、上記芳香族ポリエステルは、より好ましくは上記芳香族ヒドロキシカルボン酸を構成成分として有する芳香族ポリエステルが挙げられる。1つの実施形態において、上記芳香族ポリエステルアミドは、より好ましくは上記芳香族ヒドロキシカルボン酸を構成成分として有する芳香族ポリエステルアミドが挙げられる。 In one embodiment, the aromatic polyester is more preferably an aromatic polyester having the aromatic hydroxycarboxylic acid as a constituent component. In one embodiment, the aromatic polyester amide is more preferably an aromatic polyester amide having the aromatic hydroxycarboxylic acid as a constituent component.
上記液晶ポリマーの製造方法は、特に限定されず、各種公知の手段を用いて得ることができる。具体的には、例えば、上述した原料モノマー化合物(又は原料モノマーの混合物)を用いて、直接重合法やエステル交換法を用いて、公知の方法で製造することができるが、通常は、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する化合物である場合は、そのままの形で重合に用いてもよく、また、重合の前段階でアシル化剤等を用いて前駆体から該エステル形成能を有する誘導体に変性されたものを用いてもよい。アシル化剤としては、無水酢酸等の無水カルボン酸等を挙げることができる。 The method for producing the liquid crystal polymer is not particularly limited, and can be obtained by using various known means. Specifically, for example, the liquid crystal polymer can be produced by known methods such as direct polymerization or transesterification using the above-mentioned raw material monomer compound (or a mixture of raw material monomers). Usually, melt polymerization, solution polymerization, slurry polymerization, solid-phase polymerization, or a combination of two or more of these is used, and melt polymerization or a combination of melt polymerization and solid-phase polymerization is preferably used. In the case of a compound capable of forming an ester, it may be used in the polymerization in its original form, or it may be modified from a precursor to a derivative capable of forming an ester using an acylating agent or the like in a stage prior to polymerization. Examples of the acylating agent include carboxylic anhydrides such as acetic anhydride.
上記重合に際しては、種々の触媒を使用してもよい。当該触媒は、例えば、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。触媒の使用量は、通常はモノマーの全質量に対して、約0.001~1質量%であり、特に、約0.01~0.2質量%が好ましい。 Various catalysts may be used in the polymerization. Examples of such catalysts include metal salt catalysts such as potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris(2,4-pentanedionato)cobalt(III), and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine. The amount of catalyst used is usually about 0.001 to 1% by mass, and preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers.
 1つの実施形態において、上記液晶ポリマーは、樹脂組成物の耐熱性及び高強度に優れる点から、好ましくは液晶ポリエステルが挙げられ、同様の点から、より好ましくは全芳香族ポリエステルが挙げられる。 In one embodiment, the liquid crystal polymer is preferably a liquid crystal polyester, which provides a resin composition with excellent heat resistance and high strength, and more preferably a wholly aromatic polyester, which provides the same.
 1つの実施形態において、上記樹脂組成物における熱可塑性樹脂としては、樹脂組成物の溶融時における流動性に優れる点から、好ましくはポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含むことが挙げられ、より好ましくはポリアミド66、ポリアミド6、ポリカーボネート、変性ポリフェニレンエーテル樹脂、ポリエチレン及びポリプロピレンからなる群から選択される少なくとも1種を含むことが挙げられる。 In one embodiment, the thermoplastic resin in the resin composition preferably includes at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether, and polyolefin resin, and more preferably includes at least one selected from the group consisting of polyamide 66, polyamide 6, polycarbonate, modified polyphenylene ether resin, polyethylene, and polypropylene, in view of excellent fluidity when the resin composition is melted.
 上記樹脂組成物は、その成形温度が高い場合、例えば、熱可塑性樹脂としてエンジニアリングプラスチックやスーパーエンジニアリングプラスチックを使用した場合であっても、上記改質剤を含むことにより、溶融時における発煙が抑制され、且つ溶融時における流動性に優れている。 The resin composition contains the above-mentioned modifier, which suppresses smoke generation during melting and provides excellent fluidity during melting, even when the molding temperature is high, for example, when engineering plastics or super engineering plastics are used as the thermoplastic resin.
(フィラー)
1つの実施形態において、上記樹脂組成物は、任意で、フィラーを含み得る。フィラーは、特に限定されず、各種公知のものを使用できる。フィラーは、1種を単独で又は2種以上を組み合わせても良い。
(Filler)
In one embodiment, the resin composition may optionally contain a filler. The filler is not particularly limited, and various known fillers can be used. The filler may be used alone or in combination of two or more.
 上記フィラーの形状は、例えば、球状、針状、繊維状、板状等が挙げられる。 The filler may be, for example, spherical, needle-like, fibrous, or plate-like.
上記フィラーは、例えば、繊維、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、ケイ砂、タルク、カオリン、マイカ、クレー、ベントナイト、セリサイト、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、二硫化モリブデン、ワラストナイト、ポリリン酸カルシウム、グラファイト、金属粉、金属フレーク、金属リボン、金属酸化物(アルミナ、酸化亜鉛、酸化チタン等)、セルロース粉末(セルロース粒子)、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、カーボンナノチューブ等が挙げられる。なお、金属粉、金属フレーク、金属リボンを構成する金属の具体例としては、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。 The above-mentioned fillers include, for example, fibers, crystalline silica, fused silica, calcium silicate, silica sand, talc, kaolin, mica, clay, bentonite, sericite, calcium carbonate, magnesium carbonate, glass beads, glass flakes, glass microballoons, molybdenum disulfide, wollastonite, calcium polyphosphate, graphite, metal powder, metal flakes, metal ribbons, metal oxides (alumina, zinc oxide, titanium oxide, etc.), cellulose powder (cellulose particles), carbon powder, graphite, carbon flakes, scaly carbon, carbon nanotubes, etc. Specific examples of metals constituting the metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
上記繊維は、特に限定されず各種公知のものを使用できる。上記繊維は、例えば、ガラス繊維;アルミナ繊維;ポリエステル繊維、ポリアミド繊維、ポリイミド繊維、ポリビニルアルコール変性繊維、ポリ塩化ビニル繊維、ポリオレフィン(ポリエチレン、ポリプロピレン)繊維、フッ素樹脂系繊維、ポリベンゾイミダゾール繊維、アクリル繊維、フェノール繊維、ポリアミド繊維、アラミド繊維、セルロース(ナノ)繊維、液晶ポリマー(液晶ポリエステル、液晶ポリエステルアミド)繊維、ポリエーテルケトン繊維、ポリエーテルスルホン繊維、ポリフェニレンエーテル繊維、ポリフェニレンサルファイド繊維等の有機繊維;鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる金属繊維等が挙げられる。上記繊維は、1種を単独で使用してもよく、2種以上を併用してもよい。 The above-mentioned fibers are not particularly limited, and various known fibers can be used. Examples of the above-mentioned fibers include glass fibers; alumina fibers; organic fibers such as polyester fibers, polyamide fibers, polyimide fibers, polyvinyl alcohol modified fibers, polyvinyl chloride fibers, polyolefin (polyethylene, polypropylene) fibers, fluororesin fibers, polybenzimidazole fibers, acrylic fibers, phenolic fibers, polyamide fibers, aramid fibers, cellulose (nano) fibers, liquid crystal polymer (liquid crystal polyester, liquid crystal polyester amide) fibers, polyether ketone fibers, polyether sulfone fibers, polyphenylene ether fibers, and polyphenylene sulfide fibers; and metal fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel. The above-mentioned fibers may be used alone or in combination of two or more types.
1つの実施形態において、上記繊維は、好ましくはガラス繊維及び有機繊維からなる群より選ばれる少なくとも1種を含むことが挙げられ、より好ましくはガラス繊維及びセルロース繊維からなる群より選ばれる少なくとも1種を含むことが挙げられる。 In one embodiment, the fibers preferably include at least one type selected from the group consisting of glass fibers and organic fibers, and more preferably include at least one type selected from the group consisting of glass fibers and cellulose fibers.
 1つの実施形態において、上記フィラーは、樹脂組成物の機械的特性に優れる点から、好ましくはガラス繊維、カーボン粉末、炭酸カルシウム、セルロース粉末及びセルロース繊維からなる群より選ばれる少なくとも1種を含むことが挙げられる。 In one embodiment, the filler preferably contains at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder, and cellulose fiber, in order to provide excellent mechanical properties to the resin composition.
従来、上記フィラーを含む樹脂組成物においては、当該フィラーにより、樹脂組成物の溶融粘度が非常に高くなるため、成形加工性が極端に劣ってしまう場合があったが、本開示の樹脂組成物は、上記改質剤を用いることにより、上記フィラーを含む場合であっても、その溶融粘度が低くなるため、成形加工性に優れる。 In the past, in resin compositions containing the above-mentioned fillers, the melt viscosity of the resin composition was very high due to the fillers, which sometimes resulted in extremely poor moldability. However, the resin composition of the present disclosure uses the above-mentioned modifier, which reduces the melt viscosity even when the resin composition contains the above-mentioned fillers, resulting in excellent moldability.
 また、上記樹脂組成物が上記フィラーを含む場合、上記改質剤を用いることにより、改質剤を使用しない場合に比べて、その成形体の機械的特性が向上する。その詳細は不明だが、上記改質剤により上記熱可塑性樹脂と上記フィラーとの界面密着性が改善し、成形体の機械的特性が向上することが推察される。 In addition, when the resin composition contains the filler, the use of the modifier improves the mechanical properties of the molded article compared to when no modifier is used. Although the details are unclear, it is presumed that the modifier improves the interfacial adhesion between the thermoplastic resin and the filler, improving the mechanical properties of the molded article.
(添加剤)
1つの実施形態において、上記樹脂組成物は、本発明の効果を損なわない限りにおいて、任意で、添加剤を含んでいてもよい。添加剤は、例えば、難燃剤、導電付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、着色剤、染料、発泡剤、制泡剤、カップリング剤、無機顔料、有機顔料、上記ロジン系樹脂以外の流動性改良剤、光安定剤等が挙げられる。
(Additive)
In one embodiment, the resin composition may contain any additives as long as the effects of the present invention are not impaired. Examples of the additives include flame retardants, electrical conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, colorants, dyes, foaming agents, foam inhibitors, coupling agents, inorganic pigments, organic pigments, flow improvers other than the rosin-based resins, and light stabilizers.
(各成分の含有量)
上記樹脂組成物に上記フィラーが含まれない場合、上記樹脂組成物における上記改質剤の含有量は、特に限定されない。上記樹脂組成物における上記改質剤の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~5質量部程度が挙げられる。
(Content of each ingredient)
When the resin composition does not contain the filler, the content of the modifier in the resin composition is not particularly limited.The content of the modifier in the resin composition is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the modifier in the resin composition is preferably 0.1 parts by mass or more relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted, and is preferably 20 parts by mass or less relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is further suppressed. In one embodiment, the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is further suppressed, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記改質剤の含有量は、特に限定されない。上記樹脂組成物における上記改質剤の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは2~10質量部程度が挙げられる。 When the resin composition contains the filler, the content of the modifier in the resin composition is not particularly limited. The content of the modifier in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, when the resin composition contains the filler, the content of the modifier in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass.
上記樹脂組成物に上記フィラーが含まれない場合、上記樹脂組成物における上記ロジン系樹脂の含有量は、特に限定されない。上記樹脂組成物における上記ロジン系樹脂の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記ロジン系樹脂の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記ロジン系樹脂の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~5質量部程度が挙げられる。 When the resin composition does not contain the filler, the content of the rosin-based resin in the resin composition is not particularly limited. The content of the rosin-based resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the rosin-based resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide superior fluidity when the resin composition is melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide superior fluidity when the resin composition is melted and to further suppress smoke generation when the resin composition is melted. In one embodiment, the content of the rosin-based resin in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide superior fluidity when the resin composition is melted and to further suppress smoke generation when the resin composition is melted, and is more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記ロジン系樹脂の含有量は、特に限定されない。上記樹脂組成物における上記ロジン系樹脂の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記ロジン系樹脂の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記ロジン系樹脂の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは2~10質量部程度が挙げられる。 When the resin composition contains the filler, the content of the rosin-based resin in the resin composition is not particularly limited. The content of the rosin-based resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, when the resin composition contains the filler, the content of the rosin-based resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the rosin-based resin in the resin composition is preferably about 0.1 to 20 parts by mass, more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
 上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物におけるフィラーの含有量は、特に限定されない。上記樹脂組成物におけるフィラーの含有量は、例えば、熱可塑性樹脂100質量部に対して、150質量部、140質量部、130質量部、120質量部、110質量部、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、5質量部、1質量部、0質量部等が挙げられる。1つの実施形態において、上記樹脂組成物におけるフィラーの含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは150質量部以下が挙げられ、より好ましくは120質量部以下が挙げられる。 When the resin composition contains the filler, the content of the filler in the resin composition is not particularly limited. The content of the filler in the resin composition may be, for example, 150 parts by mass, 140 parts by mass, 130 parts by mass, 120 parts by mass, 110 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the filler in the resin composition is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, relative to 100 parts by mass of thermoplastic resin, in terms of excellent fluidity when the resin composition is melted.
上記樹脂組成物における上記添加剤の含有量は、特に限定されない。上記樹脂組成物における上記添加剤の含有量は、例えば、上記樹脂組成物100質量部に対して、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、5質量部、1質量部、0.5質量部、0.1質量部、0.05質量部、0.01質量部、0.005質量部、0.001質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記添加剤の含有量は、上記樹脂組成物100質量部に対して、好ましくは0.001質量部以上が挙げられ、より好ましくは0.005質量部以上が挙げられ、さらに好ましくは0.01質量部以上が挙げられる。1つの実施形態において、上記樹脂組成物における上記添加剤の含有量は、上記樹脂組成物100質量部に対して、好ましくは100質量部以下が挙げられ、より好ましくは50質量部以下が挙げられる。 The content of the additive in the resin composition is not particularly limited. The content of the additive in the resin composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0.5 parts by mass, 0.1 parts by mass, 0.05 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.001 parts by mass, etc., relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and even more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the resin composition.
(樹脂組成物の製造方法)
 上記樹脂組成物の製造方法は、特に限定されず、各種公知の方法を採用できる。上記樹脂組成物の製造方法は、例えば、上記改質剤(又は上記ロジン系樹脂)、上記熱可塑性樹脂、並びに必要に応じて上記フィラー及び上記添加剤を、タンブラーミキサーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。当該溶融混練の温度は、特に制限されないが、通常、上記熱可塑性樹脂の融点-30℃~融点+30℃の範囲である。
(Method for producing resin composition)
The method for producing the resin composition is not particularly limited, and various known methods can be adopted. For example, the method for producing the resin composition includes a method in which the modifier (or the rosin-based resin), the thermoplastic resin, and, if necessary, the filler and the additives are mixed in advance using various mixers such as a tumbler mixer or a Henschel mixer, and then melt-kneaded using a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader. The temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
 上記樹脂組成物の製造においては、上記改質剤又は上記ロジン系樹脂を使用することにより、樹脂組成物の溶融混練時における流動性が高くなるため、生産性に優れる。また、従来、フィラーを含む樹脂組成物の製造においては、フィラーによって樹脂組成物の溶融粘度が非常に高くなるため、溶融混練時における流動性が極端に低下するが、上記改質剤又は上記ロジン系樹脂を使用すると、フィラーを含む樹脂組成物の製造においても、溶融混練時における流動性が高くなる。 In the production of the above resin composition, the use of the above modifier or the above rosin-based resin increases the fluidity of the resin composition when melt-kneaded, resulting in excellent productivity. Furthermore, in the production of resin compositions containing fillers, the filler makes the melt viscosity of the resin composition very high, resulting in an extremely low fluidity when melt-kneaded. However, when the above modifier or the above rosin-based resin is used, the fluidity of the resin composition when melt-kneaded is increased, even in the production of resin compositions containing fillers.
また、上記樹脂組成物の製造においては、上記改質剤又は上記ロジン系樹脂を使用しても、溶融混練時における発煙が抑制されている。 In addition, when producing the resin composition, even if the modifier or the rosin-based resin is used, smoke generation during melt kneading is suppressed.
[成形体]
  本開示の成形体は、各種公知の成形法により、上記樹脂組成物を成形して得られる。成形体の形状としては、特に制限はなく、成形体の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。
[Molded body]
The molded article of the present disclosure can be obtained by molding the resin composition by various known molding methods. The shape of the molded article is not particularly limited and can be appropriately selected according to the use and purpose of the molded article, and examples thereof include plate-like, plate-like, rod-like, sheet-like, film-like, cylindrical, annular, circular, elliptical, polygonal, irregular, hollow, frame-like, box-like, and panel-like shapes.
  上記成形体を成形する方法としては、特に制限されず、従来公知の成形法を採用できる。具体的には、例えば、射出成形法、射出圧縮成形法、押出成形法、延伸フィルム成形、インフレーション成形、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、プレス成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。中でも、成形は射出成形法により行われることが好ましい。射出成形機としては、超高速射出成形機、射出圧縮成形機等の公知の射出成形機等が挙げられる。 The method for molding the molded body is not particularly limited, and any conventionally known molding method can be used. Specific examples include injection molding, injection compression molding, extrusion molding, stretch film molding, inflation molding, profile extrusion, transfer molding, hollow molding, gas-assisted hollow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), press molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, and pressure molding. Of these, it is preferable that molding is performed by injection molding. Examples of injection molding machines include well-known injection molding machines such as ultra-high speed injection molding machines and injection compression molding machines.
  上記成形体は、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。 The above molded products can be used for a variety of purposes, including automobile parts, electrical and electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products.
[熱可塑性樹脂用の改質剤としての使用]
 上記ロジン系樹脂は、熱可塑性樹脂に用いる改質剤として使用することができる。上記ロジン系樹脂を熱可塑性樹脂に使用すると、熱可塑性樹脂の溶融時における流動性を向上させる。熱可塑性樹脂は、特に限定されず、例えば、前述のものが挙げられる。
[Use as a modifier for thermoplastic resins]
The rosin-based resin can be used as a modifier for a thermoplastic resin. When the rosin-based resin is used in a thermoplastic resin, the flowability of the thermoplastic resin during melting is improved. The thermoplastic resin is not particularly limited, and examples thereof include those mentioned above.
 1つの実施形態において、上記ロジン系樹脂は、溶融時における流動性をより向上させる点から、好ましくはポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む熱可塑性樹脂に用いる改質剤として使用され、より好ましくはポリアミド66、ポリアミド6、ポリカーボネート、変性ポリフェニレンエーテル樹脂、ポリエチレン及びポリプロピレンからなる群から選択される少なくとも1種を含む熱可塑性樹脂に用いる改質剤として使用される。 In one embodiment, the rosin-based resin is preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether, and polyolefin-based resins, from the viewpoint of further improving the fluidity during melting, and more preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyamide 66, polyamide 6, polycarbonate, modified polyphenylene ether resin, polyethylene, and polypropylene.
1つの実施形態において、上記ロジン系樹脂は、好ましくは成形加工温度が高い熱可塑性樹脂、特に好ましくはエンジニアリングプラスチックやスーパーエンジニアリングプラスチックに用いる改質剤として使用される。 In one embodiment, the rosin-based resin is preferably used as a modifier for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
熱可塑性樹脂に用いる改質剤としての上記ロジン系樹脂の使用量は、特に限定されない。当該ロジン系樹脂の使用量は、例えば、上述した上記改質剤の使用量等が挙げられる。 The amount of the rosin-based resin used as a modifier for the thermoplastic resin is not particularly limited. Examples of the amount of the rosin-based resin used include the amount of the modifier used described above.
また、上記ロジン系樹脂は、フィラーを含む熱可塑性樹脂に用いる改質剤として使用する場合、上記ロジン系樹脂を使用しない場合に比べて、熱可塑性樹脂の成形体の機械的特性を向上し得る。その詳細は不明だが、上記ロジン系樹脂が熱可塑性樹脂と当該フィラーとの界面密着性を改善することにより、成形体の機械的特性を向上させると推察される。 In addition, when the rosin-based resin is used as a modifier for a thermoplastic resin containing a filler, it can improve the mechanical properties of a molded body of the thermoplastic resin compared to when the rosin-based resin is not used. Although the details are unclear, it is presumed that the rosin-based resin improves the interfacial adhesion between the thermoplastic resin and the filler, thereby improving the mechanical properties of the molded body.
 本開示により以下の項目が提供される。
(項目A1)
300℃で2時間加熱後の質量残留率が40質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、-10~20℃である、
ロジン系樹脂を含む、
熱可塑性樹脂用の改質剤。
(項目A2)
前記ロジン系樹脂が、ロジンエステル類及びロジンポリオールからなる群から選択される少なくとも1種である、上記項目の熱可塑性樹脂用の改質剤。
(項目A3)
前記ロジンエステル類が、3つ以上の水酸基を有する多価アルコール類を原料とするロジンエステル類である、上記項目の熱可塑性樹脂用の改質剤。
(項目A4)
前記ロジンエステル類が、水素化ロジンエステル及び不均化ロジンエステルからなる群より選択される少なくとも1種である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A5)
前記ロジンポリオールが、重量平均分子量が150~2,000であるエポキシ樹脂を原料とするロジンポリオールである、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A6)
前記ロジン系樹脂の300℃で2時間加熱後の質量残留率が、70質量%以上である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A7)
前記ロジン系樹脂の混合メチルシクロヘキサンアニリン曇点(MMAP)が、-8~18℃である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A8)
前記ロジン系樹脂の色調が、10~200ハーゼンである、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A9)
前記ロジン系樹脂の酸価が、200mgKOH/g以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A10)
前記ロジン系樹脂の酸価が、50mgKOH/g以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A11)
前記ロジン系樹脂の酸価が、20mgKOH/g以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A12)
前記ロジン系樹脂の酸価が、15mgKOH/g以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A13)
前記ロジン系樹脂の酸価が、10mgKOH/g以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A14)
前記ロジン系樹脂の酸価が、0.1mgKOH/g以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A15)
前記ロジン系樹脂の重量平均分子量が、600~4,000である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A16)
前記ロジン系樹脂の重量平均分子量が、600~3,000である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A17)
前記ロジン系樹脂の重量平均分子量が、600~2,500である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A18)
前記ロジン系樹脂の重量平均分子量が、700~2,500である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A19)
上記項目のいずれかの改質剤及び熱可塑性樹脂を含む、樹脂組成物。
(項目A20)
前記熱可塑性樹脂が、ポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む、上記項目の樹脂組成物。
(項目A21)
更に、フィラーを含む、上記項目のいずれかの樹脂組成物。
(項目A22)
前記フィラーが、ガラス繊維、カーボン粉末、炭酸カルシウム、セルロース粉末及びセルロース繊維からなる群より選ばれる少なくとも1種を含む、上記項目の樹脂組成物。
(項目A23)
前記改質剤の含有量が、熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目のいずれかの樹脂組成物。
(項目A24)
前記改質剤の含有量が、熱可塑性樹脂100質量部に対して、0.5~15質量部であり、前記フィラーの含有量が、熱可塑性樹脂100質量部に対して、120質量部以下である、上記項目のいずれかの樹脂組成物。
(項目A25)
上記項目のいずれかの樹脂組成物を成形して得られる、成形体。
(項目A26)
熱可塑性樹脂に用いる改質剤としての、上記項目のいずれかのロジン系樹脂の使用。
(項目A27)
前記熱可塑性樹脂が、ポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む、項目A26の使用。
(項目A28)
前記熱可塑性樹脂が、更にフィラーを含む、上記項目A26又は項目A27の使用。
(項目A29)
前記フィラーが、ガラス繊維、カーボン粉末、炭酸カルシウム、セルロース粉末及びセルロース繊維からなる群より選ばれる少なくとも1種を含む、上記項目A28の使用。
(項目A30)
前記ロジン系樹脂の使用量が、前記熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目A26~A29のいずれかの使用。
(項目A31)
前記ロジン系樹脂の使用量が、熱可塑性樹脂100質量部に対して、0.5~15質量部であり、前記フィラーの含有量が、熱可塑性樹脂100質量部に対して、120質量部以下である、上記項目A28~A30のいずれかの使用。
(項目A32)
熱可塑性樹脂を含む樹脂組成物を製造するための、上記項目のいずれかのロジン系樹脂の使用。
(項目A33)
前記熱可塑性樹脂が、ポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む、項目A32の使用。
(項目A34)
前記樹脂組成物が、更にフィラーを含む、上記項目A32又は項目A33の使用。
(項目A35)
前記フィラーが、ガラス繊維、カーボン粉末、炭酸カルシウム、セルロース粉末及びセルロース繊維からなる群より選ばれる少なくとも1種を含む、上記項目A34の使用。
(項目A36)
前記ロジン系樹脂の使用量が、前記熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目A32~A35のいずれかの使用。
(項目A37)
前記ロジン系樹脂の使用量が、熱可塑性樹脂100質量部に対して、0.5~15質量部であり、前記フィラーの含有量が、熱可塑性樹脂100質量部に対して、120質量部以下である、上記項目A34~A36のいずれかの使用。
The present disclosure provides the following:
(Item A1)
The mass residual rate after heating at 300° C. for 2 hours is 40% by mass or more,
Mixed methylcyclohexaneaniline cloud point (MMAP) is -10 to 20°C;
Contains rosin-based resins
Modifier for thermoplastic resins.
(Item A2)
The modifier for thermoplastic resins according to the above item, wherein the rosin-based resin is at least one selected from the group consisting of rosin esters and rosin polyols.
(Item A3)
The thermoplastic resin modifier according to the above item, wherein the rosin esters are made from polyhydric alcohols having three or more hydroxyl groups.
(Item A4)
The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin esters are at least one selected from the group consisting of hydrogenated rosin esters and disproportionated rosin esters.
(Item A5)
The modifier for thermoplastic resin according to any one of the preceding items, wherein the rosin polyol is made from an epoxy resin having a weight average molecular weight of 150 to 2,000.
(Item A6)
The modifier for thermoplastic resin according to any one of the preceding items, wherein the rosin-based resin has a mass residual rate of 70 mass% or more after heating at 300°C for 2 hours.
(Item A7)
The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of -8 to 18°C.
(Item A8)
2. The modifier for thermoplastic resin according to any one of the preceding items, wherein the rosin-based resin has a color tone of 10 to 200 Hazen.
(Item A9)
2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 200 mg KOH/g or less.
(Item A10)
2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 50 mg KOH/g or less.
(Item A11)
2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 20 mg KOH/g or less.
(Item A12)
2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 15 mg KOH/g or less.
(Item A13)
2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 10 mgKOH/g or less.
(Item A14)
2. The thermoplastic resin modifier according to claim 1, wherein the rosin resin has an acid value of 0.1 mg KOH/g or less.
(Item A15)
The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 600 to 4,000.
(Item A16)
The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 600 to 3,000.
(Item A17)
The modifier for thermoplastic resin according to any one of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 600 to 2,500.
(Item A18)
The modifier for thermoplastic resin according to any of the preceding items, wherein the rosin-based resin has a weight average molecular weight of 700 to 2,500.
(Item A19)
A resin composition comprising the modifier of any of the preceding items and a thermoplastic resin.
(Item A20)
The resin composition according to the above item, wherein the thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
(Item A21)
The resin composition of any of the preceding items, further comprising a filler.
(Item A22)
The resin composition according to the above item, wherein the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
(Item A23)
The resin composition according to any one of the preceding items, wherein the content of the modifier is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A24)
The content of the modifier is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 120 parts by mass or less per 100 parts by mass of the thermoplastic resin.
(Item A25)
A molded article obtained by molding any one of the resin compositions described above.
(Item A26)
2. Use of the rosin-based resin according to any one of the preceding items as a modifier for use in a thermoplastic resin.
(Item A27)
The use of item A26, wherein the thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
(Item A28)
The use of the above item A26 or A27, wherein the thermoplastic resin further comprises a filler.
(Item A29)
The use of the above item A28, wherein the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
(Item A30)
The use of any of the above items A26 to A29, wherein the amount of the rosin-based resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A31)
The use of any of the above items A28 to A30, wherein the amount of the rosin-based resin used is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 120 parts by mass or less per 100 parts by mass of the thermoplastic resin.
(Item A32)
Use of the rosin-based resin according to any of the preceding items for producing a resin composition containing a thermoplastic resin.
(Item A33)
The use of item A32, wherein the thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
(Item A34)
The use of the above item A32 or A33, wherein the resin composition further comprises a filler.
(Item A35)
The use of the above item A34, wherein the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder and cellulose fiber.
(Item A36)
The use of any one of the above items A32 to A35, wherein the amount of the rosin-based resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A37)
The use of any of the above items A34 to A36, wherein the amount of the rosin-based resin used is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 120 parts by mass or less per 100 parts by mass of the thermoplastic resin.
本開示で提供する熱可塑性樹脂用の改質剤は、熱可塑性樹脂に用いることにより、その溶融時の流動性を向上させて、成形加工性を向上し得る。また、上記改質剤は、熱可塑性樹脂に用いても、その溶融時における発煙を抑制し得る。 The modifier for thermoplastic resins provided in this disclosure can be used in thermoplastic resins to improve their fluidity when melted, thereby improving their moldability. In addition, when used in thermoplastic resins, the modifier can also suppress smoke generation when melted.
以下、本発明の実施例を示し、本発明をさらに詳細に説明するが、本発明はこれらの実
施例に限定されるものではない。なお、例中の「部」および「%」とあるのは、それぞれ
「質量部」および「質量%」を表す。
The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples. In the examples, "parts" and "%" represent "parts by mass" and "% by mass", respectively.
<ロジン系樹脂の製造>
製造例1
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、中国産ガムロジン(酸価170.0mgKOH/g、軟化点74℃、色調7ガードナー)1000部、触媒としてパラジウムカーボン(パラジウム担持量5%、含水率50%)0.3部を仕込み、窒素シール下、275℃で5時間撹拌して不均化反応を行ない、酸価155.0mgKOH/g、色調7ガードナーの不均化ロジンを得た。次に、該不均化ロジンを窒素シール下に5mmHgの減圧下で蒸留し、得られた主留を精製不均化ロジンとした。
<Production of Rosin Resin>
Production Example 1
A reaction apparatus equipped with a thermometer, a stirrer, a reflux condenser, a nitrogen inlet tube, and a pressure reducing device was charged with 1,000 parts of Chinese gum rosin (acid value 170.0 mg KOH/g, softening point 74° C., color tone 7 Gardner) and 0.3 parts of palladium carbon (palladium loading 5%, water content 50%) as a catalyst, and a disproportionation reaction was carried out by stirring at 275° C. for 5 hours under a nitrogen blanket, to obtain a disproportionated rosin with an acid value of 155.0 mg KOH/g and a color tone 7 Gardner. Next, the disproportionated rosin was distilled under a nitrogen blanket under a reduced pressure of 5 mmHg, and the obtained main fraction was used as a purified disproportionated rosin.
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、上記精製不均化ロジン(酸価180.0mgKOH/g、軟化点84℃、色調4ガードナー)500部を仕込み、窒素シール下で185℃に昇温し、溶融攪拌下、200℃でグリセリン57部を加えたのち、280℃まで昇温し、同温度で14時間エステル化反応を行い、酸価2.8mgKOH/g、色調5ガードナーの精製不均化ロジンエステル522部を得た。 500 parts of the above purified disproportionated rosin (acid value 180.0 mg KOH/g, softening point 84°C, color tone 4 Gardner) was charged into a reaction vessel equipped with a thermometer, a stirrer, a reflux condenser, a nitrogen inlet tube, and a pressure reducing device, and the temperature was raised to 185°C under a nitrogen seal. 57 parts of glycerin were added at 200°C while melting and stirring, and the temperature was then raised to 280°C. An esterification reaction was carried out at the same temperature for 14 hours, yielding 522 parts of purified disproportionated rosin ester with an acid value of 2.8 mg KOH/g and color tone 5 Gardner.
振とう式オートクレーブに、上記精製不均化ロジンエステル200部とパラジウムカーボン2.5部を仕込み、系内の酸素を除去した後、系内を水素にて100Kg/cmに加圧し260℃まで昇温し、同温度で3.5時間水素添加反応を行い、酸価13.3mgKOH/g、重量平均分子量730の水素化ロジンエステルを得た。 A shaking autoclave was charged with 200 parts of the purified disproportionated rosin ester and 2.5 parts of palladium carbon. After oxygen was removed from the system, the system was pressurized to 100 kg/ cm2 with hydrogen and heated to 260° C., and a hydrogenation reaction was carried out at the same temperature for 3.5 hours to obtain a hydrogenated rosin ester having an acid value of 13.3 mgKOH/g and a weight average molecular weight of 730.
製造例2
中国水添ロジン(広西梧州日成林産化工有限公司製)200g、5%パラジウムアルミナ粉末(エヌ・イー ケムキャット社製)2.5g、及びシクロヘキサン200gを1Lオートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて7MPaに加圧後、210℃まで昇温した。温度到達後、系内を再加圧し、9MPaを保ち、5時間水素添加反応を行い、溶剤ろ別後、減圧下にてシクロヘキサンを除去し、酸価172.0mgKOH/gのロジン191gを得た。次いで、攪拌装置、冷却管および窒素導入管を備えた反応装置にロジン180gを仕込み、200℃まで溶融した後、グリセリン22gを仕込み、280℃で12時間反応させて、酸価10.7mgKOH/gのロジンエステル173gを得た。得られたロジンエステルを1Lオートクレーブに170g 、5%パラジウムカーボン(含水率50%)を1.3g、シクロヘキサンを170g仕込み、系内の酸素を除去した後、系内を水素にて7MPaに加圧後、200℃まで昇温した。温度到達後、系内を再加圧し、9MPaを保ち、5時間水素添加反応を行い、溶剤ろ別後、減圧下にてシクロヘキサンを除去し、酸価10.6 mgKOH/g、重量平均分子量780の水素化ロジンエステルを得た。
Production Example 2
200g of Chinese hydrogenated rosin (manufactured by Guangxi Wuzhou Richeng Forest Chemical Co., Ltd.), 2.5g of 5% palladium alumina powder (manufactured by N.E. Chemcat Co., Ltd.), and 200g of cyclohexane were charged into a 1L autoclave, and after removing oxygen from the system, the system was pressurized to 7MPa with hydrogen, and then heated to 210°C. After reaching the temperature, the system was repressurized and maintained at 9MPa, and hydrogenation reaction was carried out for 5 hours. After filtering out the solvent, cyclohexane was removed under reduced pressure to obtain 191g of rosin with an acid value of 172.0mgKOH/g. Next, 180g of rosin was charged into a reaction apparatus equipped with a stirrer, a cooling tube, and a nitrogen inlet tube, and after melting to 200°C, 22g of glycerin was charged and reacted at 280°C for 12 hours to obtain 173g of rosin ester with an acid value of 10.7mgKOH/g. A 1-L autoclave was charged with 170 g of the obtained rosin ester, 1.3 g of 5% palladium carbon (water content: 50%), and 170 g of cyclohexane, and after removing oxygen from the system, the system was pressurized to 7 MPa with hydrogen and then heated to 200° C. After reaching the temperature, the system was repressurized and maintained at 9 MPa, and a hydrogenation reaction was carried out for 5 hours. The solvent was filtered off, and then cyclohexane was removed under reduced pressure to obtain a hydrogenated rosin ester having an acid value of 10.6 mgKOH/g and a weight average molecular weight of 780.
製造例3
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、酸価172.0mgKOH/g、軟化点74℃、色調ガードナー6の中国産ガムロジンを窒素シール下に5mmHgの減圧下で蒸留し、酸価175.0mgKOH/g、色調ガードナー4の一般恒数を有する主留を精製ロジンとした。
Production Example 3
Chinese gum rosin having an acid value of 172.0 mgKOH/g, a softening point of 74°C and a color of Gardner 6 was distilled under a nitrogen blanket at a reduced pressure of 5 mmHg in a reaction apparatus equipped with a thermometer, a stirrer, a reflux condenser, a nitrogen inlet tube and a pressure reducing device, and the main fraction having general constants of an acid value of 175.0 mgKOH/g and a color of Gardner 4 was obtained as purified rosin.
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、上記精製ロジン600gを仕込み、窒素シール下に185℃に昇温し、溶融撹拌下に200℃でグリセリン70gおよび不均化触媒として5%パラジウムカーボン(含水率50%)0.2gを加えたのち280℃まで昇温し、同温度で11時間不均化およびエステル化反応を同時に行ない、酸価2.9mgKOH/g、色調ガードナー4の反応生成物をえた。 600 g of the above purified rosin was charged into a reaction vessel equipped with a thermometer, stirrer, reflux condenser, nitrogen inlet tube and pressure reducing device, and the temperature was raised to 185°C under a nitrogen blanket. 70 g of glycerin and 0.2 g of 5% palladium carbon (water content 50%) as a disproportionation catalyst were added at 200°C while melting and stirring, and the temperature was then raised to 280°C. Disproportionation and esterification reactions were carried out simultaneously at the same temperature for 11 hours, yielding a reaction product with an acid value of 2.9 mg KOH/g and a color of Gardner 4.
上記反応生成物200gと5%パラジウムカーボン(含水率50%)1.2gを1リットル振とう式オートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて0.5Kg/cm2 に加圧し280℃まで昇温し、同温度で4時間脱水素化反応を行ない、酸価9.0mgKOH/g、重量平均分子量720の不均化ロジンエステルを得た。 200 g of the above reaction product and 1.2 g of 5% palladium carbon (water content 50%) were charged into a 1-liter shaking autoclave, and after removing oxygen from within the system, the system was pressurized to 0.5 kg/cm2 with hydrogen and heated to 280°C. A dehydrogenation reaction was carried out at the same temperature for 4 hours, yielding a disproportionated rosin ester with an acid value of 9.0 mg KOH/g and a weight-average molecular weight of 720.
製造例4
撹拌機、温度計、還流冷却器及び窒素ガス導入管・水蒸気導入管を備えた反応容器に、中国産ガムロジン100部、無水マレイン酸5部を仕込んだ後、窒素ガス気流下に220℃にて2時間反応させた後、ペンタエリスリトール13.8部を仕込んで280℃まで昇温し同温度で14時間反応させ、エステル化を完了させた。その後、反応容器内を減圧して水分等を除去し、酸価42.0mgKOH/g、重量平均分子量2,470のマレイン酸変性ロジンエステルを得た。
Production Example 4
A reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube and a water vapor inlet tube was charged with 100 parts of Chinese gum rosin and 5 parts of maleic anhydride, and reacted for 2 hours at 220°C under a nitrogen gas stream, after which 13.8 parts of pentaerythritol was charged and the temperature was raised to 280°C and reacted at the same temperature for 14 hours to complete the esterification. The reaction vessel was then depressurized to remove moisture and the like, yielding a maleic acid-modified rosin ester with an acid value of 42.0 mgKOH/g and a weight average molecular weight of 2,470.
製造例5
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、酸価172.0mgKOH/g、軟化点74℃、色調ガードナー6の中国産ガムロジンを窒素シール下に5mmHgの減圧下で蒸留し、酸価175.0mgKOH/g、色調ガードナー4の一般恒数を有する主留を精製ロジンとした。
Production Example 5
Chinese gum rosin having an acid value of 172.0 mgKOH/g, a softening point of 74°C and a color of Gardner 6 was distilled under a nitrogen blanket at a reduced pressure of 5 mmHg in a reaction apparatus equipped with a thermometer, a stirrer, a reflux condenser, a nitrogen inlet tube and a pressure reducing device, and the main fraction having general constants of an acid value of 175.0 mgKOH/g and a color of Gardner 4 was obtained as purified rosin.
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、上記精製ロジン100部、ペンタエリスリトール13.3部を仕込み、窒素ガス気流下に250℃にて2時間反応させた後、275℃まで昇温し同温度で15時間反応させ、エステル化を完了させた。その後、反応容器内を減圧して水分等を除去し、精製ロジンエステルを得た。 100 parts of the purified rosin and 13.3 parts of pentaerythritol were charged into a reaction vessel equipped with a thermometer, a stirrer, a reflux condenser, a nitrogen inlet tube, and a pressure reducing device, and reacted at 250°C for 2 hours under a nitrogen gas flow, then heated to 275°C and reacted at the same temperature for 15 hours to complete the esterification. The pressure inside the reaction vessel was then reduced to remove moisture and other substances, yielding a purified rosin ester.
振とう式オートクレーブに、上記精製ロジンエステル200部とパラジウムカーボン1部を仕込み、系内の酸素を除去した後、系内を水素にて100Kg/cmに加圧し260℃まで昇温し、同温度で3時間水素添加反応を行い、酸価12.8mgKOH/g、重量平均分子量1,000の水素化ロジンエステルを得た。 A shaking autoclave was charged with 200 parts of the purified rosin ester and 1 part of palladium carbon, and after removing oxygen from the system, the system was pressurized to 100 kg/ cm2 with hydrogen and heated to 260° C. A hydrogenation reaction was carried out at the same temperature for 3 hours to obtain a hydrogenated rosin ester having an acid value of 12.8 mgKOH/g and a weight average molecular weight of 1,000.
製造例6
撹拌装置、還流冷却器、温度計および窒素導入管・水蒸気導入管を備えた反応容器に、ロジン100部(酸価172mgKOH/g、軟化点77℃)を仕込み、160℃で溶融させた。次いで、フマル酸18部を仕込み、225℃まで昇温し、同温度で2時間反応させた。その後、グリセリン6部を仕込んだ後、215℃まで昇温し、同温度で3.5時間反応させ、酸価191.0mgKOH/g、重量平均分子量3,220のフマル酸変性ロジンエステルを得た。
Production Example 6
In a reaction vessel equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube and a steam inlet tube, 100 parts of rosin (acid value 172 mgKOH/g, softening point 77°C) was charged and melted at 160°C. Next, 18 parts of fumaric acid was charged, the temperature was raised to 225°C, and the reaction was carried out at the same temperature for 2 hours. After that, 6 parts of glycerin was charged, the temperature was raised to 215°C, and the reaction was carried out at the same temperature for 3.5 hours, to obtain a fumaric acid-modified rosin ester having an acid value of 191.0 mgKOH/g and a weight average molecular weight of 3,220.
製造例7
撹拌装置、還流冷却器、温度計および窒素導入管・水蒸気導入管を備えた反応容器に、
重合ロジン68部(酸価150mgKOH/g、軟化点142℃)、ロジン32部(酸価172mgKOH/g、軟化点77℃)を仕込み、215℃で溶融させた。次いで、ペンタエリスリトール11.5部を仕込んだ後、250℃に昇温し、同温度で3時間反応させた後、さらに275℃まで昇温し、同温度で9時間反応させた。その後、4時間減圧処理することにより、酸価6.6mgKOH/g、重量平均分子量2,400の重合ロジンエステルを得た。
Production Example 7
A reaction vessel equipped with a stirrer, reflux condenser, thermometer, nitrogen inlet tube, and water vapor inlet tube was
68 parts of polymerized rosin (acid value 150 mgKOH/g, softening point 142° C.) and 32 parts of rosin (acid value 172 mgKOH/g, softening point 77° C.) were charged and melted at 215° C. Next, 11.5 parts of pentaerythritol were charged, and the temperature was increased to 250° C. and reacted at the same temperature for 3 hours, and then the temperature was further increased to 275° C. and reacted at the same temperature for 9 hours. Thereafter, a polymerized rosin ester having an acid value of 6.6 mgKOH/g and a weight average molecular weight of 2,400 was obtained by subjecting it to a reduced pressure treatment for 4 hours.
製造例8
温度計、攪拌装置、還流冷却器および窒素導入管を備えた反応装置に、不均化ロジン200部を仕込み、窒素気流下で加熱し完全に溶融させた後、ビスフェノールA型高分子エポキシ樹脂(エポキシ当量170)113部を撹拌しながら投入し、150℃にて2-メチルイミダゾール0.1部を添加し、160℃にて4時間反応させることにより、酸価0.1mgKOH/g、重量平均分子量860のロジンポリオールを得た。
Production Example 8
A reaction apparatus equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube was charged with 200 parts of disproportionated rosin and heated under a nitrogen stream until completely melted, after which 113 parts of bisphenol A type polymeric epoxy resin (epoxy equivalent: 170) was added with stirring, and 0.1 part of 2-methylimidazole was added at 150° C. and the mixture was allowed to react at 160° C. for 4 hours to obtain a rosin polyol having an acid value of 0.1 mgKOH/g and a weight average molecular weight of 860.
製造例9
温度計、攪拌装置、冷却管および窒素導入管を備えた反応装置に、不均化ロジン300部を仕込み、窒素気流下で加熱し完全に溶融させた後、ビスフェノールA型高分子エポキシ樹脂(エポキシ当量170)113部を撹拌しながら投入し、150℃にて2-メチルイミダゾール0.1部を添加し、160℃にて4時間反応させることにより、酸価45.2mgKOH/g、重量平均分子量720のロジンポリオールを得た。
Production Example 9
A reaction apparatus equipped with a thermometer, a stirrer, a cooling tube, and a nitrogen inlet tube was charged with 300 parts of disproportionated rosin and heated under a nitrogen stream until completely melted, after which 113 parts of bisphenol A type polymeric epoxy resin (epoxy equivalent: 170) was added with stirring, and 0.1 part of 2-methylimidazole was added at 150° C. and the mixture was allowed to react at 160° C. for 4 hours to obtain a rosin polyol having an acid value of 45.2 mgKOH/g and a weight average molecular weight of 720.
比較製造例1 
温度計、攪拌機、還流冷却器、窒素導入管および減圧装置を備えた反応装置に、酸価172.0mgKOH/g、色調ガードナー6の中国産ガムロジンを窒素シール下に5mmHgの減圧下で蒸留し、酸価175.0mgKOH/g、色調ガードナー4の一般恒数を有する主留を精製ロジンとした。
Comparative Production Example 1
Chinese gum rosin having an acid value of 172.0 mgKOH/g and a color tone of Gardner 6 was distilled under a nitrogen blanket at a reduced pressure of 5 mmHg in a reaction apparatus equipped with a thermometer, a stirrer, a reflux condenser, a nitrogen inlet tube, and a pressure reducing device, and the main fraction having general constants of an acid value of 175.0 mgKOH/g and a color tone of Gardner 4 was obtained as purified rosin.
撹拌機、温度計、還流冷却器及び窒素ガス導入管・水蒸気導入管を備えた反応容器に、上記精製ロジン100部、フマル酸26部を仕込んだ後、窒素ガス気流下に225℃にて3時間反応させた後、エチレングリコール1.5部およびペンタエリスリトール7.5部を仕込んで250℃で13時間反応させ、酸価203.0mgKOH/g、重量平均分子量1,240のフマル酸変性ロジンエステルを得た。 100 parts of the purified rosin and 26 parts of fumaric acid were charged into a reaction vessel equipped with a stirrer, thermometer, reflux condenser, nitrogen gas inlet tube, and water vapor inlet tube, and reacted for 3 hours at 225°C under a nitrogen gas stream. Then, 1.5 parts of ethylene glycol and 7.5 parts of pentaerythritol were charged and reacted for 13 hours at 250°C, yielding a fumaric acid-modified rosin ester with an acid value of 203.0 mg KOH/g and a weight average molecular weight of 1,240.
比較製造例2
 中国産ガムロジン(酸価170、軟化点74℃、色調6ガードナー)1000部とキシレン500部をコルベンに入れ、加熱溶解させた後キシレンを350部程度留去し、次いでシクロヘキサン350部を入れ、室温まで冷却した。冷却により結晶約100部が生じたところで上澄み液を別のコルベンに移し、さらに室温で再結晶させた後、上澄み液は取り除き、シクロヘキサン100部で洗浄後、溶媒を留去し、精製ロジン700部を得た。
Comparative Production Example 2
1,000 parts of Chinese gum rosin (acid value 170, softening point 74°C, color tone 6 Gardner) and 500 parts of xylene were placed in a Kolben, heated and dissolved, after which about 350 parts of xylene was distilled off, then 350 parts of cyclohexane was added and cooled to room temperature. When about 100 parts of crystals were produced by cooling, the supernatant was transferred to another Kolben and further recrystallized at room temperature, after which the supernatant was removed and washed with 100 parts of cyclohexane, and the solvent was distilled off to obtain 700 parts of purified rosin.
次に、反応容器に上記精製ロジン660部とアクリル酸100部を仕込み、窒素気流下に攪拌しながら220℃で4時間反応を行い、ついで減圧下に未反応物を除去することにより付加反応生成物720部を得た。さらに、得られた付加反応生成物500部と5%パラジウムカーボン(含水率50%)5.0部を1リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて10MPaに加圧し220℃まで昇温し、同温度で3時間水素化反応を行い、酸価240mgKOH/g、重量平均分子量360のアクリル酸変性ロジンの水素化物を得た。 Next, 660 parts of the purified rosin and 100 parts of acrylic acid were charged into a reaction vessel, and the reaction was carried out at 220°C for 4 hours while stirring under a nitrogen stream. Unreacted materials were then removed under reduced pressure to obtain 720 parts of an addition reaction product. Furthermore, 500 parts of the resulting addition reaction product and 5.0 parts of 5% palladium carbon (water content 50%) were charged into a 1-liter rotary autoclave, and after removing oxygen from the system, the system was pressurized to 10 MPa with hydrogen and heated to 220°C. A hydrogenation reaction was carried out at the same temperature for 3 hours to obtain a hydrogenated product of acrylic acid-modified rosin with an acid value of 240 mgKOH/g and a weight average molecular weight of 360.
比較製造例3
温度計、攪拌装置、冷却管および窒素導入管を備えた反応装置に、不均化ロジン500部を仕込み、窒素気流下で加熱し完全に溶融させた後、ビスフェノールA型高分子エポキシ樹脂(エポキシ当量170)113部を撹拌しながら投入し、150℃にて2-メチルイミダゾール0.1部を添加し、160℃にて4時間反応させることにより、酸価86.0mgKOH/g、重量平均分子量550のロジンポリオールを得た。
Comparative Production Example 3
A reaction vessel equipped with a thermometer, a stirrer, a cooling tube, and a nitrogen inlet tube was charged with 500 parts of disproportionated rosin and heated under a nitrogen stream until completely melted. Then, 113 parts of bisphenol A type polymeric epoxy resin (epoxy equivalent: 170) was added with stirring, and 0.1 part of 2-methylimidazole was added at 150° C. and the mixture was allowed to react at 160° C. for 4 hours, yielding a rosin polyol having an acid value of 86.0 mgKOH/g and a weight average molecular weight of 550.
比較製造例4
中国産ガムロジン(酸価170、軟化点74℃、色調6ガードナー)1000部とキシレン500部をコルベンに入れ、加熱溶解させた後キシレンを350部程度留去し、次いでシクロヘキサン350部を入れ、室温まで冷却した。冷却により結晶約100部が生じたところで上澄み液を別のコルベンに移し、さらに室温で再結晶させた後、上澄み液は取り除き、シクロヘキサン100部で洗浄後、溶媒を留去し、精製ロジン700部を得た。
Comparative Example 4
1,000 parts of Chinese gum rosin (acid value 170, softening point 74°C, color tone 6 Gardner) and 500 parts of xylene were placed in a Kolben, heated and dissolved, after which about 350 parts of xylene was distilled off, then 350 parts of cyclohexane was added and cooled to room temperature. When about 100 parts of crystals were produced by cooling, the supernatant was transferred to another Kolben and further recrystallized at room temperature, after which the supernatant was removed and washed with 100 parts of cyclohexane, and the solvent was distilled off to obtain 700 parts of purified rosin.
次に、反応容器に上記精製ロジン660部とアクリル酸100部を仕込み、窒素気流下に攪拌しながら220℃で4時間反応を行い、ついで減圧下に未反応物を除去させた後、グリセリンを5部加えて、280℃まで昇温し同温度で4時間反応させ、エステル化を完了させた。その後、反応容器内を減圧して水分等を除去することにより、アクリル酸変性ロジンエステル725部を得た。さらに、得られたアクリル酸変性ロジンエステル500部と5%パラジウムカーボン(含水率50%)5.0部を1リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて10MPaに加圧し220℃まで昇温し、同温度で3時間水素化反応を行い、酸価226.5mgKOH/g、重量平均分子量430のアクリル酸変性ロジンエステルの水素化物を得た。 Next, 660 parts of the purified rosin and 100 parts of acrylic acid were charged into a reaction vessel, and the mixture was reacted at 220°C for 4 hours while stirring under a nitrogen stream. After removing unreacted materials under reduced pressure, 5 parts of glycerin were added, and the mixture was heated to 280°C and reacted at the same temperature for 4 hours to complete the esterification. The reaction vessel was then depressurized to remove moisture and the like, thereby obtaining 725 parts of acrylic acid-modified rosin ester. Furthermore, 500 parts of the obtained acrylic acid-modified rosin ester and 5.0 parts of 5% palladium carbon (water content 50%) were charged into a 1-liter rotary autoclave, and after removing oxygen from the system, the system was pressurized to 10 MPa with hydrogen and heated to 220°C. The hydrogenation reaction was carried out at the same temperature for 3 hours, and a hydrogenated product of acrylic acid-modified rosin ester with an acid value of 226.5 mgKOH/g and a weight average molecular weight of 430 was obtained.
比較製造例5
 中国水添ロジン(広西梧州日成林産化工有限公司製)100部 、メタノール300部を1Lオートクレーブに仕込み、系内の酸素を除去した後、290℃ まで昇温した。オートクレーブの内圧は最大で14MPaまで到達した。20分毎に内容物をブローしながら2 時間反応させた。得られた反応液をロータリーエバポレーターにて濃縮後、水酸化カルシウムを5部加え、単蒸留を行った。液温150~270℃、圧力0.4kPa条件下で、初留分6部を除去した後、主留分として、酸価1.0mgKOH/g、重量平均分子量240のロジンメチルエステルを65部得た。
Comparative Production Example 5
100 parts of Chinese hydrogenated rosin (manufactured by Guangxi Wuzhou Richeng Forest Chemical Co., Ltd.) and 300 parts of methanol were charged into a 1L autoclave, and after removing oxygen from the system, the temperature was raised to 290°C. The internal pressure of the autoclave reached a maximum of 14 MPa. The reaction was allowed to proceed for 2 hours while blowing the contents every 20 minutes. The resulting reaction liquid was concentrated using a rotary evaporator, and then 5 parts of calcium hydroxide were added to perform simple distillation. After removing 6 parts of the initial fraction under conditions of a liquid temperature of 150 to 270°C and a pressure of 0.4 kPa, 65 parts of rosin methyl ester with an acid value of 1.0 mgKOH/g and a weight average molecular weight of 240 was obtained as the main fraction.
(重量平均分子量(Mw)の測定)
 製造例1~9及び比較製造例1、3~5のロジン系樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレンの検量線から求めた、ポリスチレン換算値として算出した。なお、GPC法は以下の条件で測定した。結果を表1に示す。
 分析装置:HLC-8320(東ソー(株)製)
 カラム:TSKgelSuperHM-L×3本
 溶離液:テトラヒドロフラン
 注入試料濃度:5mg/mL
 流量:0.6mL/min
 注入量:40μL
 カラム温度:40℃
 検出器:RI
(Measurement of weight average molecular weight (Mw))
The weight average molecular weight (Mw) of the rosin resins of Production Examples 1 to 9 and Comparative Production Examples 1 and 3 to 5 was calculated as a polystyrene equivalent value obtained from a calibration curve of standard polystyrene by gel permeation chromatography (GPC). The GPC method was measured under the following conditions. The results are shown in Table 1.
Analytical device: HLC-8320 (manufactured by Tosoh Corporation)
Column: TSKgel Super HM-L x 3 Eluent: Tetrahydrofuran Injected sample concentration: 5 mg/mL
Flow rate: 0.6 mL/min
Injection volume: 40 μL
Column temperature: 40°C
Detector: RI
比較製造例2のロジン系樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレンの検量線から求めた、ポリスチレン換算値として算出した。なお、GPC法は以下の条件で測定した。結果を表1に示す。
 分析装置:HLC-8320(東ソー(株)製)
 カラム:TSK guardcolumn H-H、TSK-GEL SUPER HM-L×3本のカラムを連結
 溶離液:テトラヒドロフラン
 注入試料濃度:5mg/mL
流量:0.6mL/min
 注入量:40μL
 カラム温度:40℃
 検出器:RI、UV(254nm)
The weight average molecular weight (Mw) of the rosin resin of Comparative Production Example 2 was calculated as a polystyrene equivalent value from a calibration curve of standard polystyrene by gel permeation chromatography (GPC). The GPC method was measured under the following conditions. The results are shown in Table 1.
Analytical device: HLC-8320 (manufactured by Tosoh Corporation)
Column: TSK guard column H-H, TSK-GEL SUPER HM-L x 3 columns connected Eluent: Tetrahydrofuran Injected sample concentration: 5 mg/mL
Flow rate: 0.6 mL/min
Injection volume: 40 μL
Column temperature: 40°C
Detector: RI, UV (254 nm)
(酸価の測定)
製造例1~9及び比較製造例1~5のロジン系樹脂の酸価は、JIS  K  0070により測定した。結果を表1に示す。
(Measurement of Acid Value)
The acid values of the rosin-based resins of Production Examples 1 to 9 and Comparative Production Examples 1 to 5 were measured in accordance with JIS K 0070. The results are shown in Table 1.
(300℃で2時間加熱後の質量残留率(%))
製造例1~9及び比較製造例1~5のロジン系樹脂の300℃で2時間加熱後の質量残留率(%)は、示差熱・重量同時測定装置((株)日立ハイテクサイエンス製、装置名「STA7200」)を使用して、窒素雰囲気下、サンプル質量10mg、窒素流量250ml/分の条件にて、30℃から300℃まで10℃/分で昇温し、300℃で2時間加熱した後のサンプル質量を測定して、(加熱後サンプル質量)/(加熱前サンプル質量)×100(%)から算出した。結果を表1に示す。
(Mass retention rate (%) after heating at 300°C for 2 hours)
The mass retention rate (%) of the rosin-based resins of Production Examples 1 to 9 and Comparative Production Examples 1 to 5 after heating at 300° C. for 2 hours was calculated by using a simultaneous differential thermal and gravimetric analyzer (manufactured by Hitachi High-Tech Science Corporation, device name "STA7200") under conditions of a nitrogen atmosphere, a sample mass of 10 mg, and a nitrogen flow rate of 250 ml/min, by raising the temperature from 30° C. to 300° C. at a rate of 10° C./min, and measuring the mass of the sample after heating at 300° C. for 2 hours, and then calculating the mass from (sample mass after heating)/(sample mass before heating)×100(%). The results are shown in Table 1.
熱重量示差熱分析(TG/DTA)や熱重量分析(TGA)を使用して測定される加熱減量としては、昇温速度5℃/分、10℃/分等の条件における1%、3%、5%重量減少時の温度(1%重量減少温度、3%重量減少温度、5%重量減少温度)を測定する方法もあるが、本発明者らが検討した結果、それら重量減少温度では、ロジン系樹脂の熱可塑性樹脂の溶融時における発煙の傾向を十分に評価できないことがわかった。 Thermogravimetric differential thermal analysis (TG/DTA) and thermogravimetric analysis (TGA) can be used to measure the heat loss at temperatures of 1%, 3%, and 5% weight loss (1% weight loss temperature, 3% weight loss temperature, 5% weight loss temperature) at heating rates of 5°C/min and 10°C/min, etc. However, the inventors' investigations have revealed that these weight loss temperatures are not sufficient to adequately evaluate the tendency for rosin-based thermoplastic resins to emit smoke when melted.
 例えば、製造例5のロジン系樹脂の5%重量減少温度は267℃であるが、比較製造例2のロジン系樹脂の5%重量減少温度は256℃であり、両者に大きな差は無いが、表1より、300℃で2時間加熱後の質量残留率(%)は、製造例5のロジン系樹脂が86%であるのに対し、比較製造例2のロジン系樹脂は10%と大きく差が開いている。そして、後述の表2より、製造例5のロジン系樹脂を使用したペレットでは発煙が抑制されているが、比較製造例2のロジン系樹脂を使用したペレットでは発煙が多く生じている。 For example, the 5% weight loss temperature of the rosin-based resin of Production Example 5 is 267°C, while the rosin-based resin of Comparative Production Example 2 has a 5% weight loss temperature of 256°C, so there is not a large difference between the two, but as can be seen from Table 1, the mass retention rate (%) after heating at 300°C for two hours is 86% for the rosin-based resin of Production Example 5, while it is 10% for the rosin-based resin of Comparative Production Example 2, showing a large difference. Also, as can be seen from Table 2 below, the pellets using the rosin-based resin of Production Example 5 suppressed smoke generation, but the pellets using the rosin-based resin of Comparative Production Example 2 generated a lot of smoke.
なお、製造例5及び比較製造例2のロジン系樹脂の5%重量減少温度は、示差熱・重量同時測定装置((株)日立ハイテクサイエンス製、装置名「STA7200」)にて、窒素雰囲気下、サンプル量10mg、測定温度30~500℃、昇温速度:10℃/分、窒素流量250ml/分にて、サンプル重量が5%減少した温度を測定したものである。 The 5% weight loss temperature of the rosin-based resins of Production Example 5 and Comparative Production Example 2 was measured using a simultaneous differential thermal and gravimetric analyzer (manufactured by Hitachi High-Tech Science Corporation, device name "STA7200") in a nitrogen atmosphere with a sample amount of 10 mg, a measurement temperature of 30 to 500°C, a heating rate of 10°C/min, and a nitrogen flow rate of 250 ml/min, to determine the temperature at which the sample weight decreased by 5%.
(混合メチルシクロヘキサンアニリン曇点(℃)(MMAP)の測定)
製造例1~9及び比較製造例1~5のロジン系樹脂の混合メチルシクロヘキサンアニリン曇点(℃)(MMAP)は、それぞれの成分1g、メチルシクロヘキサン1mL及びアニリン2mLの加熱された均一な溶液を冷却し、溶液に濁りが生じたときの温度を測定した。結果を表1に示す。
(Measurement of Mixed Methylcyclohexaneaniline Cloud Point (° C.) (MMAP))
The mixed methylcyclohexaneaniline cloud point (°C) (MMAP) of the rosin-based resins of Preparation Examples 1 to 9 and Comparative Preparation Examples 1 to 5 was measured by cooling a heated homogeneous solution of 1 g of each component, 1 mL of methylcyclohexane, and 2 mL of aniline, and measuring the temperature at which the solution became cloudy. The results are shown in Table 1.
表1中の注釈は、以下の通りである。
※300℃で2時間加熱後の質量残留率
The notes in Table 1 are as follows:
* Mass retention rate after heating at 300℃ for 2 hours
[樹脂組成物及び成形体の調製]
実施例1
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、変性ポリフェニレンエーテル樹脂(グローバルポリアセタール(株)製、商品名「ユピエースAH40」)を100部及び改質剤として製造例1のロジン系樹脂を3部投入し、ローラ回転数40rpm、温度250℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、250℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 1
100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Corporation, product name "Iupiace AH40") and 3 parts of the rosin-based resin of Production Example 1 as a modifier were added to a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250° C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250° C., and formed into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
実施例2
 実施例1において、改質剤として、製造例1のロジン系樹脂を5部使用した以外は、実施例1と同様に調製を行い、ペレットを得た。
Example 2
The same preparation as in Example 1 was carried out to obtain pellets, except that in Example 1, 5 parts of the rosin-based resin of Production Example 1 was used as the modifier.
実施例3~10
 実施例1において、改質剤として、製造例1のロジン系樹脂を製造例2~9のロジン系樹脂に変えた以外は、実施例1と同様に調製を行い、ペレットを得た。
Examples 3 to 10
The same preparation as in Example 1 was carried out, except that the rosin-based resin in Production Example 1 was changed to the rosin-based resins in Production Examples 2 to 9 as the modifier, to obtain pellets.
比較例1
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、変性ポリフェニレンエーテル樹脂(グローバルポリアセタール(株)製、商品名「ユピエースAH40」)を100部投入し、ローラ回転数40rpm、温度250℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、250℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 1
100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Corporation, product name "Iupiace AH40") was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250° C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250° C., and molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
比較例2~6
 実施例1において、改質剤として、製造例1のロジン系樹脂を比較製造例1~5のロジン系樹脂に変えた以外は、実施例1と同様に調製を行い、ペレットを得た。
Comparative Examples 2 to 6
The same preparation as in Example 1 was carried out, except that the rosin-based resin of Production Example 1 was replaced with the rosin-based resins of Comparative Production Examples 1 to 5 as the modifier, to obtain pellets.
(発煙の評価)
実施例1~10及び比較例1~6のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて290℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表2に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 1 to 10 and Comparative Examples 1 to 6 were injection molded at 290°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 2.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(MFRの評価)
JIS K 7210に準拠して、実施例1~10及び比較例1~6のペレットを温度300℃、荷重21.2N(2.16kg)の条件下にて、各ペレットのMFRを測定した。
(Evaluation of MFR)
In accordance with JIS K 7210, the MFR of each of the pellets of Examples 1 to 10 and Comparative Examples 1 to 6 was measured under conditions of a temperature of 300° C. and a load of 21.2 N (2.16 kg).
そして、比較例1(ブランク)のMFRに対する、実施例1~10及び比較例2~6のペレットのMFRの上昇率を、以下の基準にて評価した。結果を表2に示す。MFRの上昇率が大きいほど、成形加工性に優れており、評価が〇であれば実用上問題なく使用できる。
〇:ブランク対比でMFRの上昇率が30%以上
△:ブランク対比でMFRの上昇率が10%以上30%未満
×:ブランク対比でMFRの上昇率が10%未満
The rate of increase in MFR of the pellets of Examples 1 to 10 and Comparative Examples 2 to 6 relative to the MFR of Comparative Example 1 (blank) was evaluated according to the following criteria. The results are shown in Table 2. The greater the rate of increase in MFR, the better the moldability, and a rating of ◯ indicates practical use without any problems.
◯: The increase in MFR compared to blank is 30% or more. △: The increase in MFR compared to blank is 10% or more but less than 30%. ×: The increase in MFR compared to blank is less than 10%.
表2の配合量は、質量部の値である。表2中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、MFRは測定しなかった。
mPPE:変性ポリフェニレンエーテル樹脂、商品名「ユピエースAH40」、グローバルポリアセタール(株)製、
The blending amounts in Table 2 are values in parts by mass. The abbreviations and notes in Table 2 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
mPPE: modified polyphenylene ether resin, product name "Iupiace AH40", manufactured by Global Polyacetal Co., Ltd.
[樹脂組成物及び成形体の調製]
実施例10
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ポリアミド(旭化成(株)製、商品名「レオナ1700S」)を100部、及び改質剤として製造例1のロジン系樹脂を5部投入し、ローラ回転数40rpm、温度290℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、290℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 10
100 parts of polyamide (manufactured by Asahi Kasei Corporation, product name "Leona 1700S") and 5 parts of the rosin-based resin of Production Example 1 as a modifier were put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 290° C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 290° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
実施例11
 実施例10において、改質剤として、製造例1のロジン系樹脂を8部使用した以外は、実施例10と同様に調製を行い、ペレットを得た。
Example 11
Example 10 was repeated to obtain pellets, except that 8 parts of the rosin resin of Production Example 1 was used as the modifier.
実施例12~17
 実施例10において、改質剤として、製造例1のロジン系樹脂を製造例2~4、6及び8~9のロジン系樹脂に変えた以外は、実施例10と同様に調製を行い、ペレットを得た。
Examples 12 to 17
The same preparation as in Example 10 was carried out to obtain pellets, except that the rosin-based resin of Production Example 1 was replaced with the rosin-based resins of Production Examples 2 to 4, 6, and 8 to 9 as the modifier.
比較例7
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ポリアミド(旭化成(株)製、商品名「レオナ1700S」)を100部投入し、ローラ回転数40rpm、温度290℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、290℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 7
100 parts of polyamide (manufactured by Asahi Kasei Corporation, product name "Leona 1700S") was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 290° C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 290° C., and molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
比較例8
 実施例10において、改質剤として、製造例1のロジン系樹脂を比較製造例5のロジン系樹脂に変えた以外は、実施例10と同様に調製を行い、ペレットを得た。
Comparative Example 8
Example 10 was repeated to obtain pellets, except that the rosin resin of Production Example 1 was used as the modifier instead of the rosin resin of Comparative Production Example 5.
(発煙の評価)
実施例10~17及び比較例7~8のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて290℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表3に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 10 to 17 and Comparative Examples 7 to 8 were injection molded at 290°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 3.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(MFRの評価)
JIS K 7210に準拠して、実施例10~17及び比較例7~8のペレットを温度290℃、荷重21.2N(2.16kg)の条件下にて、各ペレットのMFRを測定した。
(Evaluation of MFR)
In accordance with JIS K 7210, the MFR of each of the pellets of Examples 10 to 17 and Comparative Examples 7 to 8 was measured under conditions of a temperature of 290° C. and a load of 21.2 N (2.16 kg).
そして、比較例7(ブランク)のMFRに対する、実施例10~17及び比較例8のペレットのMFRの上昇率を、以下の基準にて評価した。結果を表3に示す。MFRの上昇率が大きいほど、成形加工性に優れている。
〇:ブランク対比でMFRの上昇率が300%以上
△:ブランク対比でMFRの上昇率が150%以上300%未満
×:ブランク対比でMFRの上昇率が150%未満
The increase rate of MFR of the pellets of Examples 10 to 17 and Comparative Example 8 relative to the MFR of Comparative Example 7 (blank) was evaluated according to the following criteria. The results are shown in Table 3. The larger the increase rate of MFR, the more excellent the moldability.
◯: The increase in MFR compared to blank is 300% or more. △: The increase in MFR compared to blank is 150% or more but less than 300%. ×: The increase in MFR compared to blank is less than 150%.
表3の配合量は、質量部の値である。表3中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、MFRは測定しなかった。
PA:ポリアミド、商品名「レオナ1700S」、旭化成(株)製
The blending amounts in Table 3 are values in parts by mass. The abbreviations and notes in Table 3 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
PA: Polyamide, product name "Leona 1700S", manufactured by Asahi Kasei Corporation
[樹脂組成物及び成形体の調製]
実施例18
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ポリプロピレン(サンアロマー(株)製、商品名「PMB60A」)を70部、セルロース繊維(レッテンマイヤー社製、商品名「アーボセルBC1000」)を30部、及び改質剤として製造例3のロジン系樹脂を5部投入し、ローラ回転数40rpm、温度190℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、200℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 18
70 parts of polypropylene (manufactured by SunAllomer Co., Ltd., product name "PMB60A"), 30 parts of cellulose fiber (manufactured by Rettenmeyer, product name "Arbocel BC1000"), and 5 parts of the rosin-based resin of Production Example 3 as a modifier were put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100"), and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 190 ° C. Thereafter, the kneaded product (resin composition) obtained was taken out of the kneading device, hot pressed at 200 ° C., molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
実施例19~21
  実施例18において、改質剤として、製造例3のロジン系樹脂を製造例6、8~9のロジン系樹脂に変えた以外は、実施例18と同様に調製を行い、ペレットを得た。
Examples 19 to 21
Example 18 was repeated to obtain pellets, except that the rosin resin of Production Example 3 was replaced with the rosin resins of Production Examples 6, 8 and 9 as the modifier.
比較例9
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ポリプロピレン(サンアロマー(株)製、商品名「PMB60A」)を70部、セルロース繊維(レッテンマイヤー社製、商品名「アーボセルBC1000」)を30部投入し、ローラ回転数40rpm、温度190℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、200℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 9
70 parts of polypropylene (manufactured by SunAllomer Co., Ltd., product name "PMB60A") and 30 parts of cellulose fiber (manufactured by Rettenmeyer, product name "Arbocel BC1000") were put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 190°C. Thereafter, the kneaded product (resin composition) obtained was taken out of the kneading device, hot pressed at 200°C, molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
比較例10~11
実施例18において、改質剤として、製造例3のロジン系樹脂を比較製造例1、5のロジン系樹脂に変えた以外は、実施例18と同様に調製を行い、ペレットを得た。
Comparative Examples 10 to 11
Example 18 was repeated to obtain pellets, except that the rosin resin of Production Example 3 was replaced with the rosin resins of Comparative Production Examples 1 and 5 as the modifier.
(発煙の評価)
実施例18~21及び比較例9~11のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて200℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表4に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 18 to 21 and Comparative Examples 9 to 11 were injection molded at 200°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 4.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(MFRの評価)
JIS K 7210に準拠して、実施例18~21及び比較例9~11のペレットを温度190℃、荷重49.0N(5kg)の条件下にて、各ペレットのMFRを測定した。
(Evaluation of MFR)
In accordance with JIS K 7210, the MFR of each of the pellets of Examples 18 to 21 and Comparative Examples 9 to 11 was measured under conditions of a temperature of 190° C. and a load of 49.0 N (5 kg).
そして、比較例9(ブランク)のMFRに対する、実施例18~21及び比較例10~11のペレットのMFRの上昇率を、以下の基準にて評価した。結果を表4に示す。MFRの上昇率が大きいほど、成形加工性に優れている。
〇:ブランク対比でMFRの上昇率が100%以上
△:ブランク対比でMFRの上昇率が50%以上100%未満
×:ブランク対比でMFRの上昇率が50%未満
The increase rate of MFR of the pellets of Examples 18 to 21 and Comparative Examples 10 to 11 relative to the MFR of Comparative Example 9 (blank) was evaluated according to the following criteria. The results are shown in Table 4. The larger the increase rate of MFR, the more excellent the moldability.
◯: The increase in MFR compared to the blank was 100% or more. △: The increase in MFR compared to the blank was 50% or more but less than 100%. ×: The increase in MFR compared to the blank was less than 50%.
(曲げ応力の評価)
実施例18~21及び比較例9~11の樹脂組成物をハンドトゥルーダ―((株)東洋精機製作所製)を使用して樹脂溶融温度が200℃、金型温度が50℃で射出成形して短冊形試験片(長さ80mm×幅10mm×厚み4mm)を作成した。作成した短冊形試験片をJIS K7171に準拠した方法で、テンシロン万能試験機(製品名「RTG-1210」、(株)エー・アンド・デイ製)を用いて、支点間距離64mm、試験速度2mm/min、温度23℃、50%RH環境下で曲げ応力(MPa)を測定した。結果を表4に示す。
(Evaluation of bending stress)
The resin compositions of Examples 18 to 21 and Comparative Examples 9 to 11 were injection molded using a hand truder (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a resin melting temperature of 200°C and a mold temperature of 50°C to prepare rectangular test pieces (length 80 mm x width 10 mm x thickness 4 mm). The prepared rectangular test pieces were subjected to bending stress (MPa) measurement in accordance with JIS K7171 using a Tensilon universal testing machine (product name "RTG-1210", manufactured by A&D Co., Ltd.) at a support distance of 64 mm, a test speed of 2 mm/min, a temperature of 23°C, and an RH environment of 50%. The results are shown in Table 4.
表4の配合量は、質量部の値である。表4中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、MFRは測定しなかった。
PP:ポリプロピレン、商品名「PMB60A」、サンアロマー(株)製
セルロース:セルロース繊維、商品名「アーボセルBC1000」、レッテンマイヤー社製
The blending amounts in Table 4 are values in parts by mass. The abbreviations and notes in Table 4 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
PP: Polypropylene, product name "PMB60A", manufactured by SunAllomer Co., Ltd. Cellulose: Cellulose fiber, product name "Arbocel BC1000", manufactured by Rettenmeyer

Claims (9)

  1. 300℃で2時間加熱後の質量残留率が40質量%以上であり、
    混合メチルシクロヘキサンアニリン曇点(MMAP)が、-10~20℃である
    ロジン系樹脂を含む、
    熱可塑性樹脂用の改質剤。
    The mass residual rate after heating at 300° C. for 2 hours is 40% by mass or more,
    The rosin-based resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of -10 to 20°C.
    Modifier for thermoplastic resins.
  2. 請求項1に記載の改質剤及び熱可塑性樹脂を含む、樹脂組成物。 A resin composition comprising the modifier according to claim 1 and a thermoplastic resin.
  3. 前記熱可塑性樹脂が、ポリアミド、ポリカーボネート、ポリフェニレンエーテル及びポリオレフィン系樹脂からなる群から選択される少なくとも1種を含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the thermoplastic resin comprises at least one selected from the group consisting of polyamide, polycarbonate, polyphenylene ether and polyolefin resin.
  4. 更に、フィラーを含む、請求項2又は3に記載の樹脂組成物。 The resin composition according to claim 2 or 3, further comprising a filler.
  5. 前記フィラーが、ガラス繊維、カーボン粉末、炭酸カルシウム、セルロース粉末及びセルロース繊維からなる群より選ばれる少なくとも1種を含む、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the filler comprises at least one selected from the group consisting of glass fiber, carbon powder, calcium carbonate, cellulose powder, and cellulose fiber.
  6. 熱可塑性樹脂に用いる改質剤としての、請求項1に記載のロジン系樹脂の使用。 Use of the rosin-based resin according to claim 1 as a modifier for use in thermoplastic resins.
  7. 前記熱可塑性樹脂が、更にフィラーを含む、請求項6に記載の使用。 The use according to claim 6, wherein the thermoplastic resin further comprises a filler.
  8. 熱可塑性樹脂を含む樹脂組成物を製造するための、請求項1に記載のロジン系樹脂の使用。 Use of the rosin-based resin according to claim 1 for producing a resin composition containing a thermoplastic resin.
  9. 前記樹脂組成物が、更にフィラーを含む、請求項8に記載の使用。
     

     
    The use according to claim 8, wherein the resin composition further comprises a filler.


PCT/JP2023/038658 2022-11-01 2023-10-26 Modifier for thermoplastic resin, resin composition, and use of rosin resin WO2024095883A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-175830 2022-11-01
JP2022175830 2022-11-01
JP2023-093666 2023-06-07
JP2023093666 2023-06-07

Publications (1)

Publication Number Publication Date
WO2024095883A1 true WO2024095883A1 (en) 2024-05-10

Family

ID=90930344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038658 WO2024095883A1 (en) 2022-11-01 2023-10-26 Modifier for thermoplastic resin, resin composition, and use of rosin resin

Country Status (1)

Country Link
WO (1) WO2024095883A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328524A (en) * 1996-03-06 1997-12-22 Hercules Inc Aliphatic petroleum-based resin, method for controlling softening point and molecular weight of the resin, and hot melt pressure sensitive adhesive containing the same
JP2002503737A (en) * 1998-02-12 2002-02-05 ハーキュリーズ・インコーポレーテッド Aliphatic hydrocarbon resins modified with aromatic compounds
JP2003530471A (en) * 2000-04-07 2003-10-14 イーストマン・ケミカル・レジンズ・インコーポレーテッド Low color aromatic modified C5 hydrocarbon resin
WO2010104144A1 (en) * 2009-03-13 2010-09-16 荒川化学工業株式会社 Modifier for resins, adhesive compositions, and thermoplastic resin compositions
WO2017171025A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Modified hydrocarbon resin and hot-melt adhesive composition
WO2020066791A1 (en) * 2018-09-27 2020-04-02 日本ゼオン株式会社 Hot melt adhesive composition
JP2022173091A (en) * 2021-05-06 2022-11-17 荒川化学工業株式会社 Resin composition, molding and fluidity improver for low dielectric resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328524A (en) * 1996-03-06 1997-12-22 Hercules Inc Aliphatic petroleum-based resin, method for controlling softening point and molecular weight of the resin, and hot melt pressure sensitive adhesive containing the same
JP2002503737A (en) * 1998-02-12 2002-02-05 ハーキュリーズ・インコーポレーテッド Aliphatic hydrocarbon resins modified with aromatic compounds
JP2003530471A (en) * 2000-04-07 2003-10-14 イーストマン・ケミカル・レジンズ・インコーポレーテッド Low color aromatic modified C5 hydrocarbon resin
WO2010104144A1 (en) * 2009-03-13 2010-09-16 荒川化学工業株式会社 Modifier for resins, adhesive compositions, and thermoplastic resin compositions
WO2017171025A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Modified hydrocarbon resin and hot-melt adhesive composition
WO2020066791A1 (en) * 2018-09-27 2020-04-02 日本ゼオン株式会社 Hot melt adhesive composition
JP2022173091A (en) * 2021-05-06 2022-11-17 荒川化学工業株式会社 Resin composition, molding and fluidity improver for low dielectric resin

Similar Documents

Publication Publication Date Title
JPH07736B2 (en) Solvent resistant compatible blend of polyphenylene ether and linear polyester
JPH0341151A (en) Thermoplastic resin composition
JP2022173091A (en) Resin composition, molding and fluidity improver for low dielectric resin
JPH10511418A (en) Thermoplastically processable mixture of elastomer and thermoplast with high impact strength
JPH0314855A (en) Thermoplastic resin composition
US4252913A (en) Low molecular weight polyphenylene ether compositions
JPH06505300A (en) Impact resistant blend of high heat polycarbonate and aromatic polyester
US4228258A (en) Resin composition containing polyphenylene oxide
WO1992007908A1 (en) Thermoplastic resin composition
WO2024095883A1 (en) Modifier for thermoplastic resin, resin composition, and use of rosin resin
JP5654377B2 (en) High brightness, low gas thin-walled resin reflector
JPH06220323A (en) Electrically conductive resin composition and container for holding electronic part
WO2024095880A1 (en) Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin
JP4804165B2 (en) Manufacturing method of resin sheet
JP2002121377A (en) Resin composition excellent in impact resistance and molded product
JP2009067928A (en) Thermoplastic resin composition
JP5084002B2 (en) Polyphenylene ether reinforced resin composition
WO2024095878A1 (en) Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition
JPH05163429A (en) Resin composition
JP4901028B2 (en) Resin composition with excellent impact resistance
JP2023056496A (en) Rosin-based resin, compatibilizer, resin composition and molding
JPH09324113A (en) Thermoplastic polyester resin composition
JP3671408B2 (en) Polyphenylene ether resin composition
JP4749205B2 (en) Polyphenylene ether resin sheet
JP2934940B2 (en) Heat resistant resin composition