WO2024095808A1 - Spr ultrasonic sensor and ultrasonic measurement system - Google Patents

Spr ultrasonic sensor and ultrasonic measurement system Download PDF

Info

Publication number
WO2024095808A1
WO2024095808A1 PCT/JP2023/038205 JP2023038205W WO2024095808A1 WO 2024095808 A1 WO2024095808 A1 WO 2024095808A1 JP 2023038205 W JP2023038205 W JP 2023038205W WO 2024095808 A1 WO2024095808 A1 WO 2024095808A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
metal film
area
laser light
spr
Prior art date
Application number
PCT/JP2023/038205
Other languages
French (fr)
Japanese (ja)
Inventor
真美 松川
衆登 仲辻
康太 出竿
Original Assignee
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社 filed Critical 学校法人同志社
Publication of WO2024095808A1 publication Critical patent/WO2024095808A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Definitions

  • the present invention relates to an SPR type ultrasonic sensor and an ultrasonic measurement system equipped with the SPR type ultrasonic sensor.
  • the sensor described in Patent Document 1 includes a prism, a metal film formed on one side of the prism, and a sound receiving layer formed on the surface of the metal film.
  • a porous material such as dried silica gel is used for the sound receiving layer. According to the sensor described in Patent Document 1, the change in the refractive index of the sound receiving layer caused by sound pressure can be detected by the change in the resonance angle of the surface plasmon resonance.
  • the sensor described in Patent Document 2 comprises a prism, a metal film formed on one side of the prism, and a force receiving layer formed on the surface of the metal film.
  • the force receiving layer is made of a porous material such as dried silica gel, similar to the sound receiving layer described in Patent Document 1. According to the sensor described in Patent Document 2, the change in the refractive index of the force receiving layer caused by an external force can be detected by the change in the resonance angle of the surface plasmon resonance.
  • the sensor described in Patent Document 3 includes a glass plate and a metal thin film spot formed on the light reflecting surface of the glass plate.
  • This sensor is intended for use with a light source that emits incoherent light, such as an LED lamp.
  • a light source that emits incoherent light
  • the light emitted from an LED cannot be focused to a size as small as the laser light from a laser diode, regardless of the optical system used. For this reason, when an LED is used, a reflectance curve with a broad peak is observed. Therefore, in the sensor described in Patent Document 3, the metal thin film spot is made to a size that fits within the LED spot image projected onto the light reflecting surface, thereby making the peak of the reflectance curve sharp. As a result, the sensor described in Patent Document 3 can measure the resonance angle of surface plasmon resonance with high accuracy.
  • the sensor described in Patent Document 4 includes a transparent piezoelectric substrate, a first thin-film metal electrode provided on a first surface of the transparent piezoelectric substrate, a second thin-film metal electrode provided on the first surface of the transparent piezoelectric substrate, and an attenuated total reflection (ATR) coupler disposed adjacent to the second thin-film metal electrode.
  • the sensor described in Patent Document 4 can improve measurement sensitivity compared to a sensor that does not include an attenuated total reflection (ATR) coupler.
  • FIG. 12 shows a conventional SPR type ultrasonic sensor 410 used in the research of the present inventor.
  • FIG. 12(A) is a front view of the SPR type ultrasonic sensor 410
  • FIG. 12(B) is a plan view of the SPR type ultrasonic sensor 410.
  • the SPR ultrasonic sensor 410 includes a prism 411 that transmits laser light, and a metal film 412 that totally reflects the laser light incident at a predetermined angle.
  • the prism 411 is a triangular prism, and has a first surface 411A that is rectangular in plan view.
  • the metal film 412 is formed over the entire first surface 411A.
  • an irradiation spot area of the laser light is formed on the first surface 411A.
  • the SPR ultrasonic sensor 410 laser light penetrates the metal film 412, resonating with the surface plasmon wave and generating surface plasmon resonance.
  • the ultrasonic waves change the refractive index near the surface of the metal film 412, shifting the resonance angle.
  • ultrasonic waves can be indirectly detected by detecting the reflected light of the laser light reflected by the metal film 412.
  • the SPR ultrasonic sensor 410 is capable of wideband measurements, but when the irradiation spot area of the laser light is under certain conditions, a problem occurs in that the measurement sensitivity of the ultrasonic waves decreases when the frequency of the ultrasonic waves increases and the wavelength of the ultrasonic waves becomes shorter. For this reason, there is a demand for improving the frequency characteristics of sensitivity in conventional SPR ultrasonic sensors 410.
  • the present invention was made in consideration of the above circumstances, and its objective is to provide an SPR type ultrasonic sensor and ultrasonic measurement system that can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration.
  • the SPR type ultrasonic sensor comprises: a prism having a first surface and transmitting laser light; a metal film formed on the first surface and configured to reflect the laser light;
  • the SPR type ultrasonic sensor generates surface plasmon resonance by the incidence of the laser light on the metal film, and shifts a resonance angle when the metal film is irradiated with ultrasonic waves,
  • the metal film is characterized in that the laser light irradiation spot area formed on the first surface includes a metal area where the metal film is present and a non-metal area where the metal film is not present, and the ultrasonic irradiation area formed on the first surface includes the metal area.
  • the metal film is also formed outside the irradiation spot area,
  • the area of the sensing region can be configured to increase or decrease when the irradiation spot region is translated on the first surface.
  • the metal film may be formed discretely on the first surface so as to form a plurality of circles and/or polygons having different areas when the first surface is viewed in a plan view.
  • the metal film may be formed on the first surface so that it has a triangular and/or trapezoidal shape when viewed in a plane, and the height direction of the triangle and/or trapezoid extends beyond the irradiation spot area.
  • a blocking film for preventing the ultrasonic waves from entering the prism may be formed in an area of the first surface where the metal film is not formed.
  • the metal film may have a protective film formed on the surface thereof to prevent oxidation.
  • the protective film may be a film containing gold.
  • an ultrasonic measurement system includes: a laser light irradiation unit that irradiates laser light; An ultrasonic generator that generates ultrasonic waves; an SPR type ultrasonic sensor comprising a prism having a first surface and a metal film formed on the first surface, wherein the laser light is incident on the metal film to generate surface plasmon resonance, and the metal film is irradiated with the ultrasonic wave to shift a resonance angle; a laser beam receiving unit that receives the laser beam reflected at an interface between the metal film and the prism; An ultrasonic measurement system comprising: the metal film is formed only on a portion of the first surface, the laser light irradiation unit irradiates the laser light such that an irradiation spot region of the laser light formed on the first surface includes a metal region in which the metal film is present and a non-metal region in which the metal film is not present, the ultrasonic generator generates ultrasonic waves when ir
  • the metal film is also formed outside the irradiation spot area,
  • the area of the sensing region can be configured to increase or decrease when the irradiation spot region is translated on the first surface.
  • the metal film may be formed discretely on the first surface so as to form a plurality of circles and/or polygons having different areas when the first surface is viewed in a plan view.
  • the metal film may be formed on the first surface so that it has a triangular and/or trapezoidal shape when viewed in a plane, and the height direction of the triangle and/or trapezoid extends beyond the irradiation spot area.
  • the SPR type ultrasonic sensor may be configured such that a blocking film for suppressing the ultrasonic waves from entering the prism is formed in an area of the first surface where the metal film is not formed.
  • a container for containing a sample solution and for placing the SPR ultrasonic sensor in the sample solution is further provided.
  • the ultrasonic generator may be configured to include an ultrasonic transducer that irradiates the ultrasonic waves into the sample solution.
  • the SPR type ultrasonic sensor is disposed so that a measurement target including a light absorber is in contact with the side of the metal film opposite to the first surface,
  • the ultrasonic generator may output pulsed light to the measurement object and generate the ultrasonic waves from the light absorber due to a photoacoustic effect.
  • the ultrasonic measurement system includes: The device may be configured to include a moving mechanism that moves the SPR ultrasonic sensor to move the irradiation spot area in a parallel manner on the metal film.
  • the ultrasonic measurement system includes:
  • the laser control unit may be configured to control the laser light irradiation unit to move the irradiation position of the laser light, thereby moving the irradiation spot area in a parallel direction on the metal film.
  • the present invention provides an SPR type ultrasonic sensor and ultrasonic measurement system that can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration.
  • FIG. 1 is a diagram showing an ultrasonic measurement system according to a first embodiment.
  • 1A is a front view of a first embodiment of an SPR type ultrasonic sensor (without a blocking film)
  • FIG. 1B is a plan view
  • FIG. 1C is a plan view showing a sensing region.
  • 1A and 1B are diagrams showing an SPR type ultrasonic sensor (with a blocking film) of a first embodiment, in which (A) is a plan view and (B) is a cross-sectional view taken along line BB of (A).
  • 1A is a diagram showing a shift in the resonance angle when ultrasonic waves are applied
  • FIG. 1B is a diagram showing a change over time in the amplitude of the AC component of reflected light.
  • FIG. 1A is a front view of a first embodiment of an SPR type ultrasonic sensor (without a blocking film)
  • FIG. 1B is a plan view
  • FIG. 1C is a plan view showing a sens
  • FIG. 13 is a diagram showing an experimental sample of effect confirmation experiment 1.
  • FIG. 13 is a diagram showing the experimental results of effect confirmation experiment 1.
  • 10A to 10C are diagrams showing an SPR type ultrasonic sensor of a second embodiment, in which (A) is a front view, (B) is a plan view, and (C) is a plan view showing a sensing region.
  • 13A to 13C are diagrams showing an SPR type ultrasonic sensor of a third embodiment, in which (A) is a front view, (B) is a plan view, and (C) is a plan view showing a sensing region.
  • FIG. 13 is a diagram showing an experimental sample of effect confirmation experiment 2.
  • FIG. 13 is a diagram showing the experimental results of effect confirmation experiment 2.
  • FIG. 13 is a diagram showing an ultrasonic measurement system according to a second embodiment.
  • 1A and 1B are diagrams showing a conventional SPR type ultrasonic sensor, in which (A) is a front view and (B) is a
  • the ultrasonic measurement system 100 includes an SPR ultrasonic sensor 110 according to the first embodiment of the present invention, a laser light transmitting and receiving unit 120, an ultrasonic generator 130, and a container 140 that contains a sample solution.
  • the SPR ultrasonic sensor 110 includes a prism 111 and a metal film 112.
  • the laser light transmitting/receiving unit 120 includes a laser light emitting unit 121, a laser light receiving unit 122, and a display unit 123.
  • the ultrasonic generator 130 includes an ultrasonic light emitting unit 131 and an ultrasonic control unit 132.
  • Prism 111 is made of a material (glass in this embodiment) that transmits the laser light irradiated from laser light irradiator 121. As shown in FIG. 2(A), prism 111 has a first surface 111A on which metal film 112 is formed, and has an entrance area for laser light (incident light) and an exit area for laser light (reflected light) on a surface different from first surface 111A.
  • Prism 111 in this embodiment is a triangular prism with a triangular cross section, but as long as metal film 112 can be provided, it may be a semicircular prism with a semicircular cross section or a prism of another shape.
  • the metal film 112 is made of a metal or alloy that reflects the laser light incident at a predetermined incident angle ⁇ (e.g., equal to or greater than the critical angle).
  • e.g., equal to or greater than the critical angle.
  • silver is used.
  • a protective film such as an anti-oxidation film can be provided on the silver surface (the surface opposite to the first surface 111A).
  • the metal film 112 is formed directly on the first surface 111A by deposition, sputtering, or the like.
  • the above protective film can be, for example, a film containing gold.
  • the protective film is not limited to a film containing gold, and a film containing a metal material other than gold or silver (the material of the metal film 112) or a film containing a resin material can be used as long as it has an anti-oxidation effect.
  • the metal film 112 is formed only on a portion of the first surface 111A so that it has a circular shape when the first surface 111A is viewed in a plan view.
  • the thickness of the metal film 112 is about 50 nm in this embodiment, but can be changed as appropriate within the range of, for example, 10 nm to 100 nm, as long as it can cause surface plasmon resonance in the SPR ultrasonic sensor 110.
  • the laser light irradiation unit 121 is configured to irradiate the interface between the metal film 112 and the prism 111 with continuous-wave laser light at a single wavelength.
  • the laser light irradiation unit 121 irradiates visible laser light of 532 nm, but it is preferable to change the wavelength of the laser light appropriately depending on the materials of the metal film 112 and the prism 111.
  • the laser light irradiation unit 121 may irradiate laser light of other wavelengths as long as surface plasmon resonance can be generated in the SPR ultrasonic sensor 110. Note that since laser light is coherent light, the irradiation spot area described below can be made smaller than incoherent light such as LED light.
  • the laser light irradiated from the laser light irradiating unit 121 forms an elliptical irradiation spot area L1 on the first surface 111A.
  • the irradiation spot area in the present invention is the area irradiated with the laser light, and is defined by the full width at half maximum (FWHM) of the intensity distribution of the laser light.
  • the irradiation spot area L1 includes a metal area where the metal film 112 is present, and a non-metal area where the metal film 112 is not present. Only the metal area within the irradiation spot area L1 becomes the sensing area of the SPR ultrasonic sensor 110.
  • the SPR ultrasonic sensor 110 may include a blocking film 113, as shown in FIG. 3.
  • FIG. 3A is a plan view of the SPR ultrasonic sensor 110 including the blocking film 113
  • FIG. 3B is a cross-sectional view taken along line B-B in FIG. 3A.
  • the blocking film 113 is made of a material (e.g., a foam such as urethane) that prevents ultrasonic waves from penetrating the prism 111.
  • the blocking film 113 is formed in an area of the first surface 111A of the prism 111 where the metal film 112 is not formed.
  • the blocking film 113 is made to be the same thickness as the metal film 112, but the blocking film 113 may be thinner or thicker than the metal film 112.
  • the blocking film 113 may be formed only in an area of the first surface 111A where the metal film 112 is not formed and where ultrasonic waves are irradiated (e.g., area U1 in FIG. 2(C)).
  • the blocking film 113 can prevent such adverse effects.
  • the laser light receiving unit 122 is configured to receive the laser light (reflected light) reflected at the interface between the metal film 112 and the prism 111.
  • the laser light receiving unit 122 includes, for example, a photodiode and an amplifier provided after the photodiode.
  • the laser light receiving unit 122 outputs a signal corresponding to the reflected light to the display unit 123.
  • the display unit 123 is configured to display the waveform of the reflected light received by the laser light receiving unit 122. Although details will be described later, since an AC component corresponding to the ultrasonic wave is superimposed on the waveform of the reflected light, the display unit 123 displays at least the AC component (AC waveform).
  • the display unit 123 includes, for example, an oscilloscope.
  • the ultrasound irradiation unit 131 is configured to irradiate ultrasound to the surface of the metal film 112 (the surface opposite the first surface 111A) through the sample solution under the control of the ultrasound control unit 132.
  • the ultrasound irradiation unit 131 is an ultrasound transducer that generates ultrasound based on an electrical signal.
  • the metal film 112 is irradiated with focused ultrasonic waves, but ultrasonic waves propagating in the sample solution may be incident on the metal film 112 without being focused. That is, the ultrasonic irradiation area is a part of the first surface 111A or the entire first surface 111A. A part of the first surface 111A is an area including metal areas and non-metal areas, or an area of only metal areas.
  • the focused ultrasonic waves form a circular irradiation area U1 on the first surface 111A that is larger than the irradiation spot area L1 of the laser light.
  • ultrasonic waves are irradiated in an arrangement facing the SPR ultrasonic sensor 110, but if the ultrasonic waves are incident on the metal film 112, it is not necessary to irradiate ultrasonic waves in an arrangement facing the SPR ultrasonic sensor 110. That is, the positional value relationship between the SPR ultrasonic sensor 110 and the ultrasonic irradiation unit 131 can be changed as appropriate.
  • the ultrasonic control unit 132 is configured to apply an electrical signal (in this embodiment, an AC voltage signal) to the ultrasonic control unit 132 to control the ultrasonic irradiation unit 131.
  • the ultrasonic control unit 132 can change the frequency of the ultrasonic waves irradiated by the ultrasonic irradiation unit 131 by changing the frequency of the electrical signal.
  • the ultrasonic control unit 132 includes, for example, a function generator.
  • the storage unit 140 has an outer wall through which the laser light passes, and is configured to place the entire SPR ultrasonic sensor 110 and at least a part of the ultrasonic irradiation unit 131 in the sample solution.
  • the storage unit 140 is provided with a holding mechanism (not shown) for holding the SPR ultrasonic sensor 110 and the ultrasonic irradiation unit 131 so that the laser light is reflected at the interface between the metal film 112 and the prism 111, and ultrasonic waves are irradiated onto the surface of the metal film 112.
  • the storage unit 140 also has a moving mechanism (not shown) for moving the position of the SPR ultrasonic sensor 110. The moving mechanism will be described later.
  • the SPR ultrasonic sensor 110 when laser light is incident on the interface between the metal film 112 and the prism 111 at a predetermined incident angle ⁇ (for example, equal to or greater than the critical angle), an evanescent wave is generated at the interface.
  • a predetermined incident angle ⁇ for example, equal to or greater than the critical angle
  • the wave number of the evanescent wave matches the wave number of the surface plasmon wave generated on the surface of the metal film 112, surface plasmon resonance occurs.
  • the wave number of the surface plasmon wave depends on the medium (in this embodiment, the specimen solution) adjacent to the surface of the metal film 112.
  • the ultrasound irradiation unit 131 irradiates the surface of the metal film 112 with ultrasound through the specimen solution
  • the density of the specimen solution changes due to the compression and decompression of the ultrasound
  • the refractive index of the specimen solution changes
  • the wave number of the surface plasmon wave changes.
  • the resonance angle is the incident angle ⁇ at which the reflectance is smallest.
  • Figure 4(A) shows the reflectance curve of the laser light.
  • A is the reflectance curve when the part of the ultrasound with zero sound pressure reaches the metal film 112
  • B is the reflectance curve when the part of the ultrasound with positive sound pressure (dense part) reaches the metal film 112
  • C is the reflectance curve when the part of the ultrasound with negative sound pressure (sparse part) reaches the metal film 112.
  • the wavefront of the ultrasonic waves that reach the metal film 112 is not a perfect plane, so the sound pressure distribution on the surface of the metal film 112 is not uniform.
  • the sound pressure of the ultrasonic waves will be maximum in one area of the metal film 112, whereas the sound pressure of the ultrasonic waves will not be maximum in another area of the metal film 112.
  • the phase of the arriving ultrasonic waves differs at each part of the surface of the metal film 112. The effect of such ultrasonic phase distribution becomes greater the larger the area of the sensing region and the higher the frequency and shorter the wavelength of the ultrasonic waves.
  • the elliptical laser light irradiation spot area becomes the sensing area as it is. For this reason, in the conventional SPR ultrasonic sensor 410, the measurement sensitivity of the ultrasonic waves is reduced due to the influence of the major axis of the ellipse, and the waveform itself also changes, making it impossible to perform accurate measurements.
  • the irradiation spot area L1 includes metal areas and non-metal areas, and only the metal areas in the irradiation spot area L1 become the sensing area. Therefore, compared to the conventional SPR ultrasonic sensor 410, the area of the sensing area can be made smaller. Also, the sensing area is circular, and is not affected by shape. Furthermore, when the SPR ultrasonic sensor 110 includes a blocking film 113, ultrasonic waves can be more accurately detected as AC components of the laser light (reflected light).
  • the SPR ultrasonic sensor 110 and ultrasonic measurement system 100 can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration. Furthermore, since the ultrasonic measurement system 100 is an optical measurement system, it does not require cables, etc., and since it is configured by simply placing the small SPR ultrasonic sensor 110 inside the housing 140, there is little effect of the SPR ultrasonic sensor 110 disturbing the sound field inside the housing 140.
  • Fig. 5 shows a front view and a plan view of an experimental sample for Effect Confirmation Experiment 1.
  • Fig. 5(A) shows a conventional SPR type ultrasonic sensor 410'
  • Figs. 5(B) to (D) show SPR type ultrasonic sensors 110-1 to 110-3 according to this embodiment.
  • Effect Confirmation Experiment 1 is an experiment for confirming the effect of the ultrasonic measurement method according to this embodiment using the SPR type ultrasonic sensors 110-1 to 110-3.
  • the SPR ultrasonic sensor 410' shown in FIG. 5(A) has the same configuration as the SPR ultrasonic sensor 410 shown in FIG. 12, except that a protective film 414 is formed on the surface of the metal film 412.
  • the metal film 412 is a silver film with a thickness of 31 nm
  • the protective film 414 is a gold film with a thickness of 5 nm.
  • the metal film 412 and the protective film 414 have a long side length of 14.1 mm and a short side length of 10 mm.
  • the SPR ultrasonic sensors 110-1 to 110-3 shown in Figures 5(B) to (D) have the same configuration as the SPR ultrasonic sensor 110 shown in Figure 2, except that a protective film 114 is formed on the surfaces of the metal films 112-1 to 112-3.
  • the metal films 112-1 to 112-3 are silver films with a thickness of 31 nm, and the protective film 114 is a gold film with a thickness of 5 nm.
  • the first surface 111A of the prism 111 has a long side length of 14.1 mm and a short side length of 10 mm.
  • the SPR ultrasonic sensors 110-1 to 110-3 have the same configuration, except for the areas of the metal films 112-1 to 112-3 and the protective film 114 in a plan view.
  • the area of the protective film 114 is the same as the area of the corresponding metal films 112-1 to 112-3. Note that the area of the protective film 114 does not necessarily have to be the same as the area of the metal films 112-1 to 112-3, and may be larger than the area of the metal films 112-1 to 112-3.
  • the metal film 112-1 of the SPR ultrasonic sensor 110-1 shown in FIG. 5(B) is a circle with a diameter of 1.0 mm in a plan view.
  • the metal film 112-2 of the SPR ultrasonic sensor 110-2 shown in FIG. 5(C) is a circle with a diameter of 0.8 mm in a plan view.
  • the metal film 112-3 of the SPR ultrasonic sensor 110-3 shown in FIG. 5(D) is a circle with a diameter of 0.6 mm in a plan view.
  • the ultrasonic measurement method according to this embodiment was carried out using the ultrasonic measurement system 100 shown in FIG. 1.
  • the SPR ultrasonic sensor 110 instead of the SPR ultrasonic sensor 110, the SPR ultrasonic sensors 110-1 to 110-3 shown in FIGS. 5(B) to (D) were used.
  • the ultrasonic measurement method was also carried out using the SPR ultrasonic sensor 410' shown in FIG. 5(A).
  • the ultrasonic measurement method includes a preparation step, an irradiation step, and a light receiving step.
  • the content of each step is the same regardless of whether SPR type ultrasonic sensor 410', SPR type ultrasonic sensor 110-1, SPR type ultrasonic sensor 110-2, or SPR type ultrasonic sensor 110-3 is used. Therefore, each step will be explained below using the example of using SPR type ultrasonic sensor 110-1.
  • the SPR ultrasonic sensor 110-1 is placed in the storage section 140, and the laser light emitting section 121, the laser light receiving section 122, and the ultrasonic wave emitting section 131 are also placed.
  • the laser light receiving section 122 is placed outside the storage section 140 so that it receives the laser light (reflected light) reflected at the interface.
  • At least the tip of the ultrasonic wave emitting section 131 is placed inside the storage section 140 so that ultrasonic waves are irradiated to the surface of the metal film 112-1 through the sample solution and the protective film 114.
  • water reffractive index 1.335
  • a continuous wave laser (CW laser) with a laser light wavelength of 532 [nm] and a laser diameter of 1.26 [mm] was used as the laser light irradiating section 121.
  • a convergent type ultrasonic transducer (ultrasonic transmitter) with a spot diameter (full width at half maximum) of 1.75 [mm] was used as the ultrasonic irradiating section 131.
  • the laser light irradiation unit 121 irradiates laser light toward the metal film 112-1 of the SPR ultrasonic sensor 110-1, and the ultrasonic irradiation unit 131 irradiates ultrasonic waves.
  • an elliptical irradiation spot area L1 caused by the laser light and a circular spot area (not shown) caused by the ultrasonic waves are formed on the first surface 111A of the prism 111. Both areas include the area of the metal film 112-1 (metal area), i.e., the sensing area S11.
  • the irradiation spot area L1 has a major axis of 2.09 mm and a minor axis of 1.26 mm.
  • the ultrasonic spot area has a diameter (full width at half maximum) of 1.75 mm.
  • the irradiation spot area L1 and the ultrasonic spot area are common to the cases of Figs. 5(A) to (D).
  • the sensing area is different for each of Figs. 5(A) to (D).
  • the irradiation spot area L1 is the sensing area S10 as it is.
  • a circular area with a diameter of 1.0 mm area of metal film 112-1
  • a circular area with a diameter of 0.8 mm (area of metal film 112-2) is the sensing area S12.
  • a circular area with a diameter of 0.6 mm is the sensing area S13.
  • a 5 MHz sine wave pulse wave (one wave) is input as an input signal from the ultrasound control unit 132 to the ultrasound irradiation unit 131.
  • Such a 5 MHz pulse wave has a wide band of frequency characteristics around 5 MHz.
  • the 5 MHz pulse wave used in this experiment contains components with sufficient amplitude in the frequency band of 2 to 8 MHz. For this reason, it is possible to obtain measurement values in the above frequency band by frequency analysis.
  • the ultrasound control unit 132 can also generate a continuous sine wave, so it is also possible to adopt a continuous sine wave as the input signal.
  • the laser light receiving unit 122 receives the reflected light of the laser light reflected at the interface between the metal film 112-1 and the prism 111, and obtains information (amplitude data) regarding the amplitude value of the AC component of the reflected light.
  • the light receiving step is performed in parallel with the irradiation step.
  • Figure 6 (A) shows amplitude data of the AC component of the reflected light received by the laser light receiving unit 122 in the light receiving step (waveforms A to D).
  • Waveform A is the waveform of the AC component of the reflected light reflected at the sensing area S10 of the SPR ultrasonic sensor 410'.
  • Waveform B is the waveform of the AC component of the reflected light reflected at the sensing area S11 of the SPR ultrasonic sensor 110-1.
  • Waveform C is the waveform of the AC component of the reflected light reflected at the sensing area S12 of the SPR ultrasonic sensor 110-2.
  • Waveform D is the waveform of the AC component of the reflected light reflected at the sensing area S13 of the SPR ultrasonic sensor 110-3.
  • FIG. 6(A) also shows the amplitude data of the ultrasound (ultrasonic pulse of 5 MHz) output by the ultrasound irradiation unit 131 (waveform E).
  • the ultrasound was observed by placing a needle-type ultrasonic transducer (calibration hydrophone) in place of the SPR ultrasonic sensors 110-1 to 110-3 inside the housing unit 140.
  • the effective diameter of the calibration hydrophone is 1.00 mm.
  • waveforms B to D are slightly different in the shape of the negative first peak compared to waveform E, but overall they are almost identical to waveform E. From this, it can be seen that the ultrasonic measurement method according to this embodiment can detect the ultrasonic waves output by the ultrasonic irradiation unit 131 as an AC component of the laser light (reflected light) received by the laser light receiving unit 122.
  • FIG. 6(B) shows the frequency characteristics of the AC component of the reflected light received by the laser light receiving unit 122.
  • Graphs A to D shown in FIG. 6(B) were obtained by performing frequency analysis on the waveforms A to D shown in FIG. 6(A), respectively. Note that the frequency analysis performed in this embodiment is a known technique, so a description of it will be omitted here.
  • the amplitude value of the ultrasonic waves directly detected by the calibration hydrophone is set to 1.
  • B to D have amplitude values exceeding 1 in the frequency range of 4 MHz or more.
  • B to D have larger amplitude values than A. Therefore, according to the ultrasonic measurement method of this embodiment, it is possible to improve the measurement sensitivity in the same range compared to using a calibration hydrophone, and it is possible to improve the measurement sensitivity compared to the conventional ultrasonic measurement method using the SPR type ultrasonic sensor 410'. Note that the results of this experiment are only an example, and the present invention is not limited to the above conditions described in Effect Confirmation Experiment 1.
  • an SPR type ultrasonic sensor 210 of a second form or an SPR type ultrasonic sensor 310 of a third form described below can be used instead of the SPR type ultrasonic sensor 110 of the first form.
  • ⁇ Second embodiment of SPR type ultrasonic sensor> 7 shows a second embodiment of an SPR type ultrasonic sensor 210.
  • the SPR type ultrasonic sensor 210 includes a prism 211 and a metal film 212.
  • the prism 211 has the same configuration as the prism 111 of the first embodiment.
  • the metal film 212 is made of a metal or alloy that reflects the laser light incident at a predetermined angle.
  • silver is used.
  • a protective film such as an oxidation prevention film can be provided on the surface of the silver.
  • the metal film 212 is formed directly on the first surface 211A of the prism 211 by deposition, sputtering, or the like.
  • the metal film 212 is formed discretely only on a part of the first surface 211A so that the first surface 211A is viewed in plan as a plurality of (four in this embodiment) circular metal films 212a-212d with different areas.
  • the thickness of the metal film 212 is about 50 nm in this embodiment, but can be changed as appropriate within a range of, for example, 10 nm to 100 nm, as long as it can cause surface plasmon resonance in the SPR ultrasonic sensor 210.
  • a blocking film made of a material that prevents ultrasonic waves from penetrating the prism 211 may be formed in an area of the first surface 211A where the metal film 212 is not present.
  • the blocking film has the same configuration as the blocking film 113 in the first embodiment.
  • the laser light irradiated from the laser light irradiator 121 forms an elliptical irradiation spot area L2 on the first surface 211A.
  • the irradiation spot area L2 includes a metal area where the metal film 212 (metal film 212a in FIG. 7(C)) is present, and a non-metal area where the metal film 212 is not present.
  • the metal area within the irradiation spot area L2 becomes the sensing area of the SPR ultrasonic sensor 210.
  • the ultrasonic waves irradiated from the ultrasonic irradiator 131 form a circular irradiation area U2 on the first surface 211A that includes the metal films 212a to 212d.
  • the movement mechanism of the storage unit 140 in FIG. 1 moves the SPR ultrasonic sensor 210, thereby moving the irradiation spot area L2 in parallel to its short axis direction.
  • the movement mechanism can select the sensing area from among the four metal films 212a to 212d without moving the laser light irradiation unit 121 and the ultrasonic irradiation unit 131, and without changing the area of the irradiation spot area L2.
  • the S/N ratio can be improved by using the metal film 212a, which has a large area, as the sensing region.
  • the frequency of the ultrasonic waves is relatively high, the effect of the phase difference of the ultrasonic waves can be reduced and the measurement sensitivity can be improved by using the metal film 212d, which has a small area, as the sensing region.
  • the second form of SPR ultrasonic sensor 210 it is possible to improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration, and furthermore, it is possible to easily change the area of the sensing region.
  • the number of metal films 212 is not limited to four. Also, the arrangement of the metal films 212 may be arranged in a two-dimensional array.
  • the irradiation spot region L2 may be moved in parallel to its short axis direction by controlling the irradiation position of the laser light from the laser light irradiation unit 121 (which may include control to move the laser light irradiation unit 121 itself) without moving the SPR type ultrasonic sensor 210.
  • the movement mechanism of the storage unit 140 becomes unnecessary, but a laser control unit that controls the irradiation position of the laser light irradiation unit 121 is required, and the laser light receiving unit 122 may also need to be moved depending on the optical path of the reflected light.
  • ⁇ Third Form of SPR Type Ultrasonic Sensor> 8 shows an SPR type ultrasonic sensor 310 of the third embodiment.
  • the SPR type ultrasonic sensor 310 includes a prism 311 and a metal film 312.
  • the prism 311 has the same configuration as the prism 111 of the first embodiment.
  • the metal film 312 is made of a metal or alloy that reflects the laser light incident at a predetermined angle.
  • silver is used.
  • a protective film such as an oxidation prevention film can be provided on the surface of the silver.
  • the metal film 312 is formed directly on the first surface 311A of the prism 311 by deposition, sputtering, or the like.
  • the metal film 312 is formed only on a part of the first surface 311A so that it forms a triangle when the first surface 311A is viewed in a plan view.
  • the thickness of the metal film 312 is about 50 nm in this embodiment, but can be changed as appropriate within a range of, for example, 10 nm to 100 nm, as long as it can cause surface plasmon resonance in the SPR ultrasonic sensor 310.
  • a blocking film made of a material that prevents ultrasonic waves from penetrating the prism 311 may be formed in an area of the first surface 311A where the metal film 312 is not present.
  • the blocking film has the same configuration as the blocking film 113 in the first embodiment.
  • the laser light irradiated from the laser light irradiating unit 121 forms an elliptical irradiation spot area L3 on the first surface 311A.
  • the triangular metal film 312 is formed only on a part of the first surface 311A so that its height extends into the minor axis direction of the irradiation spot area L3.
  • the irradiation spot area L3 includes a metal area where the metal film 312 is present and a non-metal area where the metal film 312 is not present.
  • the metal area within the irradiation spot area L3 becomes the sensing area of the SPR type ultrasonic sensor 310.
  • the movement mechanism of the storage unit 140 in FIG. 1 moves the SPR ultrasonic sensor 310 to move the irradiation spot area L3 in parallel to its short axis direction.
  • the movement mechanism can continuously change the sensing area without moving the laser light irradiation unit 121 and the ultrasonic irradiation unit 131, and without changing the area of the irradiation spot area L3.
  • the area of the sensing area can be increased and the S/N ratio improved by moving the irradiation spot area L3 toward the base side of the triangular metal film 312.
  • the area of the sensing area can be reduced and the measurement sensitivity improved by moving the irradiation spot area L3 to the opposite side from the base side of the triangular metal film 312.
  • the third form of SPR ultrasonic sensor 310 it is possible to improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration, and furthermore, it is possible to easily and continuously change the area of the sensing region.
  • multiple triangular metal films 312 may be arranged in the long axis direction of the irradiation spot region L3.
  • the irradiation position of the laser light from the laser light irradiation unit 121 may be controlled (which may include control to move the laser light irradiation unit 121 itself) without moving the SPR type ultrasonic sensor 310, thereby moving the irradiation spot region L3 in parallel in its short axis direction.
  • Fig. 9A shows a front view and a plan view of an SPR type ultrasonic sensor 310' which is an experimental sample of Effect Confirmation Experiment 2.
  • the SPR ultrasonic sensor 310' has the same configuration as the SPR ultrasonic sensor 310 shown in FIG. 8, except that a metal film 312' is provided instead of the metal film 312.
  • the metal film 312' is a silver film with a thickness of 48 nm, and when the first surface 311A is viewed in plan, it is a trapezoid with an upper base of 0.5 mm, a lower base of 4 mm, and a height of 10 mm.
  • the first surface 311A has a long side length of 28.2 mm and a short side length of 20 mm.
  • the ultrasonic measurement method according to this embodiment was carried out using the ultrasonic measurement system 100 shown in FIG. 1.
  • an SPR type ultrasonic sensor 310' was used instead of the SPR type ultrasonic sensor 110.
  • the ultrasonic measurement method includes a preparation step, an irradiation step, and a light receiving step.
  • the preparation step, the irradiation step, and the light receiving step were performed in each of the states A, B, and C shown in FIG. 9(B).
  • Each step is common to Effect Confirmation Experiment 1, so a description of the common parts will be omitted here.
  • an elliptical irradiation spot area L4 formed by the laser light and a circular spot area (not shown) formed by the ultrasonic waves are formed on the first surface 111A of the prism 311.
  • the irradiation spot area L4 has a major axis of 4.35 mm and a minor axis of 1.26 mm.
  • the ultrasonic spot area has a diameter (full width at half maximum) of 1.76 mm.
  • the movement mechanism of the storage section 140 in FIG. 1 can translate the irradiation spot area L4 by moving the SPR type ultrasonic sensor 310'.
  • the movement mechanism can change only the area of the sensing area without moving the laser light irradiation section 121 and the ultrasonic irradiation section 131, and without changing the area of the irradiation spot area L4 and the area of the ultrasonic spot area.
  • the area of the sensing area is largest in state A, and is smallest in state C.
  • Figure 10 (A) shows amplitude data of the AC component of the reflected light received by the laser light receiving unit 122 in the light receiving step (waveforms A to C).
  • Waveform A is the waveform of the AC component of the reflected light in state A of Figure 9 (B).
  • Waveform B is the waveform of the AC component of the reflected light in state B of Figure 9 (B).
  • Waveform C is the waveform of the AC component of the reflected light in state C of Figure 9 (B).
  • FIG. 10(A) also shows the amplitude data of the ultrasound (ultrasonic pulse of 5 MHz) output by the ultrasound irradiation unit 131 (waveform D), as in Effect Confirmation Experiment 1.
  • Waveform D is the waveform of the ultrasound detected directly by the calibration hydrophone, as in Effect Confirmation Experiment 1.
  • the effective diameter of the calibration hydrophone is 1.00 mm.
  • waveforms A to C are slightly different from waveform D in the shape of the rising edge and the first negative peak, but overall they are almost identical to waveform D.
  • the ultrasonic measurement method according to this embodiment using the SPR ultrasonic sensor 310' can detect the ultrasonic waves output by the ultrasonic irradiation unit 131 as an AC component of the laser light (reflected light) received by the laser light receiving unit 122.
  • Figure 10(B) shows the frequency characteristics of the AC component of the reflected light received by the laser light receiving unit 122.
  • Graphs A to C shown in Figure 10(B) were obtained by performing frequency analysis on waveforms A to C shown in Figure 10(A) in the same manner as in Effect Confirmation Experiment 1.
  • the amplitude value of the ultrasonic waves directly detected by the calibration hydrophone is set to 1.
  • a and B have reduced measurement sensitivity in the frequency range of 4 MHz or more, whereas C, which has the smallest sensing area, does not have reduced measurement sensitivity.
  • the frequency characteristic of sensitivity can be improved by setting the sensing area to state C when the frequency is 4 MHz or more.
  • the ultrasonic measurement method preferably includes a moving step of moving the laser light irradiation spot area L4 and the ultrasonic spot area in parallel on the first surface 111A.
  • the moving mechanism controller of the moving mechanism
  • the storage section 140 preferably compares the frequency of the ultrasonic waves output by the ultrasonic irradiation section 131 with a preset frequency (e.g., 4 MHz), and moves the SPR ultrasonic sensor 310' according to the magnitude relationship between the frequency and the set frequency, thereby increasing or decreasing the area of the sensing region.
  • a preset frequency e.g. 4 MHz
  • [Second embodiment] 11 shows an ultrasonic measurement system 200 according to the second embodiment of the present invention.
  • the ultrasonic measurement system 200 includes an SPR ultrasonic sensor 210 of the second embodiment, a laser light transmitting and receiving unit 220, and an ultrasonic generator 230.
  • the SPR type ultrasonic sensor 210 is arranged so that the surface of the metal film 212 is in direct contact with the specimen 240.
  • the specimen 240 corresponds to the "measurement object" of the present invention, and includes a light absorber 241. Note that in the ultrasonic measurement system 200, the first type SPR type ultrasonic sensor 110 or the third type SPR type ultrasonic sensor 310 can be used instead of the second type SPR type ultrasonic sensor 210.
  • the laser light transmitting/receiving unit 220 includes a laser light emitting unit 221, a laser light receiving unit 222, a display unit 223, and a laser control unit 224.
  • the laser light emitting unit 221, the laser light receiving unit 222, and the display unit 223 have the same configuration as the laser light emitting unit 121, the laser light receiving unit 122, and the display unit 123 of the first embodiment.
  • the laser light emitting unit 221 forms an elliptical irradiation spot area L2 on the first surface 211A of the prism 211, as shown in FIG. 7(C), for example.
  • the laser control unit 224 is configured to control the irradiation position of the laser light from the laser light irradiation unit 221. Specifically, the laser control unit 224 controls the laser light irradiation unit 221 to move the irradiation position of the laser light so that the irradiation spot area L2 moves parallel to its short axis direction. Regarding the movement of the irradiation position of the laser light, the laser light irradiation unit 221 itself may move under the control of the laser control unit 224, or only the irradiation direction of the laser light may be finely adjusted. In either case, the laser control unit 224 can adjust the area of the sensing area without changing the area of the irradiation spot area L2 by moving the irradiation spot area L2 parallel to the short axis direction.
  • the S/N ratio can be improved, while by using the metal film 212d with a small area as the sensing region, the effect of the phase difference of the ultrasonic waves can be reduced and measurement sensitivity can be improved.
  • the ultrasonic generator 230 is configured to output pulsed light (e.g., pulsed light in the femtosecond or picosecond range) toward the subject 240. That is, the ultrasonic generator 230 of this embodiment includes a pulsed light irradiator that outputs pulsed light.
  • the pulsed light output from the ultrasonic generator 230 is irradiated onto the light absorber 241 included in the subject 240, the light absorber 241 generates ultrasonic waves due to the photoacoustic effect.
  • the ultrasonic measurement system 200 can detect the ultrasonic waves as AC components of the laser light (reflected light).
  • the ultrasonic measurement system 200 can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration, and furthermore, can easily and continuously change the area of the sensing region.
  • the irradiation spot region L2 may be moved in parallel in the short axis direction by moving the SPR ultrasonic sensor 210 on the surface of the subject without moving the laser light irradiation position of the laser light irradiation unit 221.
  • the laser control unit 224 is not necessary, but a movement mechanism for moving the SPR ultrasonic sensor 210 is required.
  • the SPR ultrasonic sensor according to the present invention is an SPR ultrasonic sensor that has a first surface, includes a prism that transmits laser light, and a metal film formed on the first surface that reflects the laser light, and generates surface plasmon resonance when the laser light is incident on the metal film, and shifts the resonance angle when ultrasonic waves are irradiated onto the metal film.
  • the configuration of the metal film can be modified as appropriate as long as it is formed only on a portion of the first surface so that the irradiation spot area of the laser light formed on the first surface includes a metal area where the metal film is present and a non-metal area where the metal film is not present.
  • the metal region of the present invention is a region containing a metal film that generates surface plasmon resonance upon incidence of laser light
  • the non-metal region of the present invention may contain a metal that does not generate surface plasmon resonance upon incidence of laser light.
  • the metal film 112 in the first form is formed only on a part of the first surface 111A so that it is circular when the first surface 111A is viewed in a plan view, but it may be a shape other than circular (e.g., polygonal) as long as the sensing area can be made smaller than the irradiation spot area L1.
  • the metal film 212 of the second form may be formed to have a plurality of polygons with different areas when the first surface 211A is viewed in a plan view.
  • the metal film 312 of the third form may be formed to have a trapezoid when the first surface 311A is viewed in a plan view, and to have a height direction that extends beyond the minor axis direction of the irradiation spot area L3.
  • the metal film of the second or third form may be formed to have any shape as long as the area of the sensing area increases or decreases with the parallel movement of the irradiation spot area.
  • a system has been described that includes either a movement mechanism or a laser control unit as a configuration for moving the irradiation spot area in parallel on the metal film, but it may also include both a movement mechanism and a laser control unit, or the irradiation spot area may be moved in parallel using a configuration other than these.
  • the SPR type ultrasonic sensor according to the present invention can improve the frequency characteristics of sensitivity without using a sound receiving layer for improving the measurement sensitivity of ultrasonic waves.
  • the sound receiving layer for improving the measurement sensitivity of ultrasonic waves is, for example, the sound receiving layer described in Patent Document 1 or the force receiving layer described in Patent Document 2 described in the prior art.
  • Ultrasonic measurement system 110 210, 310 SPR type ultrasonic sensor 111, 211, 311 Prism 112, 212, 312 Metal film 120, 220 Laser light transmitting/receiving unit 121, 221 Laser light irradiating unit 122, 222 Laser light receiving unit 123, 223 Display unit 224 Laser control unit 130, 230 Ultrasonic generator 131 Ultrasonic irradiating unit 132 Ultrasonic control unit 140 Container unit 240 Specimen 241 Light absorber

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An SPR ultrasonic sensor 110 comprises a prism 111 that allows a laser beam to pass therethrough and a metallic membrane 112 that reflects a laser beam. In the ultrasonic sensor, surface plasmon resonance is generated when a laser beam is incident on the metallic membrane 112, and the resonance angle is shifted when the metallic membrane 112 is irradiated with an ultrasonic wave. The ultrasonic sensor is characterized in that the metallic membrane 112 is formed only on a portion of a first surface 111A such that the area of a laser-beam irradiation spot formed on said surface 111A includes a metallic area and a non-metallic area.

Description

SPR型超音波センサおよび超音波測定システムSPR-type ultrasonic sensor and ultrasonic measurement system
 本発明は、SPR型超音波センサおよび当該SPR型超音波センサを備える超音波測定システムに関する。 The present invention relates to an SPR type ultrasonic sensor and an ultrasonic measurement system equipped with the SPR type ultrasonic sensor.
 従来から、表面プラズモン共鳴(Surface plasmon resonance:SPR)を利用したセンサとしては、例えば、特許文献1~4に記載のセンサが知られている。 Conventionally, sensors that utilize surface plasmon resonance (SPR) are known, such as those described in Patent Documents 1 to 4.
 特許文献1に記載のセンサは、プリズムと、プリズムの一面に形成された金属膜と、金属膜の表面に形成された受音層とを備える。受音層には、シリカ乾燥ゲルなどの多孔質体が用いられている。特許文献1に記載のセンサによれば、音圧によって発生する受音層の屈折率変化を、表面プラズモン共鳴の共鳴角の変化によって検出することができる。 The sensor described in Patent Document 1 includes a prism, a metal film formed on one side of the prism, and a sound receiving layer formed on the surface of the metal film. A porous material such as dried silica gel is used for the sound receiving layer. According to the sensor described in Patent Document 1, the change in the refractive index of the sound receiving layer caused by sound pressure can be detected by the change in the resonance angle of the surface plasmon resonance.
 特許文献2に記載のセンサは、プリズムと、プリズムの一面に形成された金属膜と、金属膜の表面に形成された受力層とを備える。受力層には、特許文献1に記載の受音層と同様に、シリカ乾燥ゲルなどの多孔質体が用いられている。特許文献2に記載のセンサによれば、外力によって発生する受力層の屈折率変化を、表面プラズモン共鳴の共鳴角の変化によって検出することができる。 The sensor described in Patent Document 2 comprises a prism, a metal film formed on one side of the prism, and a force receiving layer formed on the surface of the metal film. The force receiving layer is made of a porous material such as dried silica gel, similar to the sound receiving layer described in Patent Document 1. According to the sensor described in Patent Document 2, the change in the refractive index of the force receiving layer caused by an external force can be detected by the change in the resonance angle of the surface plasmon resonance.
 特許文献3に記載のセンサは、ガラス板と、ガラス板の光反射面に形成された金属薄膜スポットとを備える。このセンサは、LEDランプのようなコヒーレントでない光を放射する光源の使用を前提としたものである。特許文献3に記載されているように、LEDから放射された光は、いかなる光学系を用いても、レーザダイオードからのレーザ光程度までは小さく集光することはできない。このため、LEDを用いた場合、ブロードなピークをもった反射率カーブが観測される。そこで、特許文献3に記載のセンサでは、金属薄膜スポットを、光反射面に投影されたLEDスポット像に収まる大きさにすることで、反射率カーブのピークをシャープにしている。これにより、特許文献3に記載のセンサによれば、高精度に表面プラズモン共鳴の共鳴角を測定することができる。 The sensor described in Patent Document 3 includes a glass plate and a metal thin film spot formed on the light reflecting surface of the glass plate. This sensor is intended for use with a light source that emits incoherent light, such as an LED lamp. As described in Patent Document 3, the light emitted from an LED cannot be focused to a size as small as the laser light from a laser diode, regardless of the optical system used. For this reason, when an LED is used, a reflectance curve with a broad peak is observed. Therefore, in the sensor described in Patent Document 3, the metal thin film spot is made to a size that fits within the LED spot image projected onto the light reflecting surface, thereby making the peak of the reflectance curve sharp. As a result, the sensor described in Patent Document 3 can measure the resonance angle of surface plasmon resonance with high accuracy.
 特許文献4に記載のセンサは、透明圧電基板と、透明圧電基板の第1表面に設けられた第1薄膜金属電極と、透明圧電基板の第1表面に設けられた第2薄膜金属電極と、第2薄膜金属電極に隣接して配置された減衰全反射(ATR)カプラーとを備える。特許文献4に記載のセンサは、減衰全反射(ATR)カプラーを備えていないセンサと比較すると、測定感度を向上させることができる。 The sensor described in Patent Document 4 includes a transparent piezoelectric substrate, a first thin-film metal electrode provided on a first surface of the transparent piezoelectric substrate, a second thin-film metal electrode provided on the first surface of the transparent piezoelectric substrate, and an attenuated total reflection (ATR) coupler disposed adjacent to the second thin-film metal electrode. The sensor described in Patent Document 4 can improve measurement sensitivity compared to a sensor that does not include an attenuated total reflection (ATR) coupler.
 図12に、本願発明者の研究に用いている従来のSPR型超音波センサ410を示す。図12(A)は、SPR型超音波センサ410の正面図であり、図12(B)はSPR型超音波センサ410の平面図である。 FIG. 12 shows a conventional SPR type ultrasonic sensor 410 used in the research of the present inventor. FIG. 12(A) is a front view of the SPR type ultrasonic sensor 410, and FIG. 12(B) is a plan view of the SPR type ultrasonic sensor 410.
 図12(A)に示すように、SPR型超音波センサ410は、レーザ光を透過させるプリズム411と、所定の角度で入射されたレーザ光を全反射させる金属膜412とを備える。プリズム411は、三角プリズムであり、平面視矩形状の第1面411Aを有する。図12(B)に示すように、金属膜412は、第1面411Aの全体に形成されている。また、図12(B)に示すように、第1面411Aにはレーザ光の照射スポット領域が形成される。 As shown in FIG. 12(A), the SPR ultrasonic sensor 410 includes a prism 411 that transmits laser light, and a metal film 412 that totally reflects the laser light incident at a predetermined angle. The prism 411 is a triangular prism, and has a first surface 411A that is rectangular in plan view. As shown in FIG. 12(B), the metal film 412 is formed over the entire first surface 411A. Also, as shown in FIG. 12(B), an irradiation spot area of the laser light is formed on the first surface 411A.
 SPR型超音波センサ410は、レーザ光が金属膜412に侵入することで表面プラズモン波と共鳴し、表面プラズモン共鳴を生じさせる。その際、金属膜412に超音波が照射されると、超音波により金属膜412の表面近傍の屈折率が変化して共鳴角がシフトする。すなわち、金属膜412で反射されたレーザ光の反射光を検出することで、超音波を間接的に検出することができる。 In the SPR ultrasonic sensor 410, laser light penetrates the metal film 412, resonating with the surface plasmon wave and generating surface plasmon resonance. When ultrasonic waves are irradiated onto the metal film 412, the ultrasonic waves change the refractive index near the surface of the metal film 412, shifting the resonance angle. In other words, ultrasonic waves can be indirectly detected by detecting the reflected light of the laser light reflected by the metal film 412.
 ところで、生体組織や各種物性の3D計測等に用いられる光音響法では、発生する超音波が様々な組織の物性に依存するため、広帯域な測定が求められる。SPR型超音波センサ410は、広帯域な測定が可能であるが、レーザ光の照射スポット領域が一定の条件下で、超音波の周波数が高くなり超音波の波長が短くなると、超音波の測定感度が低下するという問題が生じる。そのため、従来のSPR型超音波センサ410では、感度の周波数特性の向上が求められている。 Incidentally, photoacoustic methods used for 3D measurements of biological tissues and various physical properties require wideband measurements because the ultrasonic waves generated depend on the physical properties of various tissues. The SPR ultrasonic sensor 410 is capable of wideband measurements, but when the irradiation spot area of the laser light is under certain conditions, a problem occurs in that the measurement sensitivity of the ultrasonic waves decreases when the frequency of the ultrasonic waves increases and the wavelength of the ultrasonic waves becomes shorter. For this reason, there is a demand for improving the frequency characteristics of sensitivity in conventional SPR ultrasonic sensors 410.
 なお、本願発明者の先行研究では、レーザ光の照射スポット径を小さくすることで、高周波帯域での測定感度が向上し周波数特性が向上する、という結果が得られている。しかしながら、超音波の周波数に応じてレーザ光の照射スポット径を変更するためには、外部光学系の制御が必要になる。また、図12(B)に示すように照射スポット領域は常に楕円となり、正確な超音波測定に不向きである。 In addition, previous research by the inventors of this application has shown that by reducing the irradiation spot diameter of the laser light, the measurement sensitivity in the high frequency band is improved and the frequency characteristics are improved. However, in order to change the irradiation spot diameter of the laser light according to the frequency of the ultrasound, control of the external optical system is required. Also, as shown in Figure 12 (B), the irradiation spot area is always elliptical, which is unsuitable for accurate ultrasound measurement.
特開2010-245599号公報JP 2010-245599 A 特開2013-120145号公報JP 2013-120145 A 特開平9-257697号公報Japanese Patent Application Laid-Open No. 9-257697 特表2008-513772号公報JP 2008-513772 A
 本発明は上記事情に鑑みてなされたものであって、その課題とするところは、比較的簡易かつ安価な構成で感度の周波数特性を向上させることが可能なSPR型超音波センサおよび超音波測定システムを提供することにある。 The present invention was made in consideration of the above circumstances, and its objective is to provide an SPR type ultrasonic sensor and ultrasonic measurement system that can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration.
 上記課題を解決するために、本発明に係るSPR型超音波センサは、
 第1面を有し、レーザ光を透過させるプリズムと、
 前記第1面上に形成され、前記レーザ光を反射させる金属膜と、
を備え、前記金属膜への前記レーザ光の入射により表面プラズモン共鳴を生じさせ、かつ前記金属膜へ超音波が照射されると共鳴角をシフトさせるSPR型超音波センサであって、
 前記金属膜は、前記第1面に形成される前記レーザ光の照射スポット領域に前記金属膜が存在する金属領域と前記金属膜が存在しない非金属領域とが含まれ、かつ前記第1面に形成される前記超音波の照射領域に前記金属領域が含まれるように、前記第1面の一部にのみ形成されていることを特徴とする。
In order to solve the above problems, the SPR type ultrasonic sensor according to the present invention comprises:
a prism having a first surface and transmitting laser light;
a metal film formed on the first surface and configured to reflect the laser light;
The SPR type ultrasonic sensor generates surface plasmon resonance by the incidence of the laser light on the metal film, and shifts a resonance angle when the metal film is irradiated with ultrasonic waves,
The metal film is characterized in that the laser light irradiation spot area formed on the first surface includes a metal area where the metal film is present and a non-metal area where the metal film is not present, and the ultrasonic irradiation area formed on the first surface includes the metal area.
 前記SPR型超音波センサにおいて、
 前記金属膜は、前記照射スポット領域の外側にも形成されており、
 前記照射スポット領域内の前記金属領域をセンシング領域とした場合、前記照射スポット領域を前記第1面において平行移動させると、前記センシング領域の面積が増加または減少するよう構成できる。
In the SPR type ultrasonic sensor,
The metal film is also formed outside the irradiation spot area,
When the metal region within the irradiation spot region is defined as a sensing region, the area of the sensing region can be configured to increase or decrease when the irradiation spot region is translated on the first surface.
 前記SPR型超音波センサにおいて、
 前記金属膜は、前記第1面を平面視したときに面積の異なる複数の円形および/または多角形となるように、前記第1面に離散的に形成されていてもよい。
In the SPR type ultrasonic sensor,
The metal film may be formed discretely on the first surface so as to form a plurality of circles and/or polygons having different areas when the first surface is viewed in a plan view.
 前記SPR型超音波センサにおいて、
 前記金属膜は、前記第1面を平面視したときに三角形および/または台形となり、かつ前記三角形および/または台形の高さ方向が前記照射スポット領域からはみ出すように、前記第1面に形成されていてもよい。
In the SPR type ultrasonic sensor,
The metal film may be formed on the first surface so that it has a triangular and/or trapezoidal shape when viewed in a plane, and the height direction of the triangle and/or trapezoid extends beyond the irradiation spot area.
 前記SPR型超音波センサにおいて、
 前記第1面の前記金属膜が形成されていない領域には、前記プリズムへの前記超音波の侵入を抑制するための遮断膜が形成されていてもよい。
In the SPR type ultrasonic sensor,
A blocking film for preventing the ultrasonic waves from entering the prism may be formed in an area of the first surface where the metal film is not formed.
 前記SPR型超音波センサにおいて、
 前記金属膜は、表面に酸化防止用の保護膜が形成されてもよい。例えば、前記保護膜は、金を含む膜である。
In the SPR type ultrasonic sensor,
The metal film may have a protective film formed on the surface thereof to prevent oxidation. For example, the protective film may be a film containing gold.
 上記課題を解決するために、本発明に係る超音波測定システムは、
 レーザ光を照射するレーザ光照射部と、
 超音波を発生させる超音波発生装置と、
 第1面を有するプリズムと前記第1面上に形成された金属膜とを備え、前記金属膜への前記レーザ光の入射により表面プラズモン共鳴を生じさせ、かつ前記金属膜への前記超音波の照射により共鳴角をシフトさせるSPR型超音波センサと、
 前記金属膜と前記プリズムとの界面で反射した前記レーザ光の反射光を受光するレーザ光受光部と、
を備える超音波測定システムであって、
 前記金属膜は、前記第1面の一部にのみ形成されており、
 前記レーザ光照射部は、前記第1面に形成される前記レーザ光の照射スポット領域に前記金属膜が存在する金属領域と前記金属膜が存在しない非金属領域とが含まれるように、前記レーザ光を照射し、
 前記超音波発生装置は、前記第1面に形成される前記超音波の照射領域に前記金属領域が含まれるように、前記レーザ光の照射時に前記超音波を発生させ、
 前記超音波は、前記超音波の測定感度を向上させるための受音層を介することなく、前記金属膜に照射されることを特徴とする。
In order to solve the above problems, an ultrasonic measurement system according to the present invention includes:
a laser light irradiation unit that irradiates laser light;
An ultrasonic generator that generates ultrasonic waves;
an SPR type ultrasonic sensor comprising a prism having a first surface and a metal film formed on the first surface, wherein the laser light is incident on the metal film to generate surface plasmon resonance, and the metal film is irradiated with the ultrasonic wave to shift a resonance angle;
a laser beam receiving unit that receives the laser beam reflected at an interface between the metal film and the prism;
An ultrasonic measurement system comprising:
the metal film is formed only on a portion of the first surface,
the laser light irradiation unit irradiates the laser light such that an irradiation spot region of the laser light formed on the first surface includes a metal region in which the metal film is present and a non-metal region in which the metal film is not present,
the ultrasonic generator generates ultrasonic waves when irradiating the laser light such that the metallic region is included in an irradiated region of the ultrasonic waves formed on the first surface;
The ultrasonic waves are irradiated to the metal film without passing through a sound receiving layer for improving the measurement sensitivity of the ultrasonic waves.
 前記超音波測定システムにおいて、
 前記金属膜は、前記照射スポット領域の外側にも形成されており、
 前記照射スポット領域内の前記金属領域をセンシング領域とした場合、前記照射スポット領域を前記第1面において平行移動させると、前記センシング領域の面積が増加または減少するよう構成できる。
In the ultrasonic measurement system,
The metal film is also formed outside the irradiation spot area,
When the metal region within the irradiation spot region is defined as a sensing region, the area of the sensing region can be configured to increase or decrease when the irradiation spot region is translated on the first surface.
 前記超音波測定システムにおいて、
 前記金属膜は、前記第1面を平面視したときに面積の異なる複数の円形および/または多角形となるように、前記第1面に離散的に形成されていてもよい。
In the ultrasonic measurement system,
The metal film may be formed discretely on the first surface so as to form a plurality of circles and/or polygons having different areas when the first surface is viewed in a plan view.
 前記超音波測定システムにおいて、
 前記金属膜は、前記第1面を平面視したときに三角形および/または台形となり、かつ前記三角形および/または台形の高さ方向が前記照射スポット領域からはみ出すように、前記第1面に形成されていてもよい。
In the ultrasonic measurement system,
The metal film may be formed on the first surface so that it has a triangular and/or trapezoidal shape when viewed in a plane, and the height direction of the triangle and/or trapezoid extends beyond the irradiation spot area.
 前記超音波測定システムにおいて、
 前記SPR型超音波センサは、前記第1面の前記金属膜が形成されていない領域に、前記プリズムへの前記超音波の侵入を抑制するための遮断膜が形成されていてもよい。
In the ultrasonic measurement system,
The SPR type ultrasonic sensor may be configured such that a blocking film for suppressing the ultrasonic waves from entering the prism is formed in an area of the first surface where the metal film is not formed.
 前記超音波測定システムでは、
 検体溶液を収容し、前記SPR型超音波センサを前記検体溶液中に設置する収容部をさらに備え、
 前記超音波発生装置は、前記超音波を前記検体溶液中に照射する超音波トランスデューサを備えるよう構成できる。
In the ultrasonic measurement system,
A container for containing a sample solution and for placing the SPR ultrasonic sensor in the sample solution is further provided.
The ultrasonic generator may be configured to include an ultrasonic transducer that irradiates the ultrasonic waves into the sample solution.
 前記超音波測定システムでは、
 前記SPR型超音波センサは、前記金属膜の前記第1面とは逆側に、光吸収体を含む測定対象が接触するように配置され、
 前記超音波発生装置は、前記測定対象にパルス光を出力して前記光吸収体から光音響効果による前記超音波を発生させてもよい。
In the ultrasonic measurement system,
the SPR type ultrasonic sensor is disposed so that a measurement target including a light absorber is in contact with the side of the metal film opposite to the first surface,
The ultrasonic generator may output pulsed light to the measurement object and generate the ultrasonic waves from the light absorber due to a photoacoustic effect.
 前記超音波測定システムは、
 前記SPR型超音波センサを移動させることで、前記照射スポット領域を前記金属膜上で平行移動させる移動機構を備えるよう構成できる。
The ultrasonic measurement system includes:
The device may be configured to include a moving mechanism that moves the SPR ultrasonic sensor to move the irradiation spot area in a parallel manner on the metal film.
 前記超音波測定システムは、
 前記レーザ光照射部を制御して前記レーザ光の照射位置を移動させることで、前記照射スポット領域を前記金属膜上で平行移動させるレーザ制御部を備えるよう構成できる。
The ultrasonic measurement system includes:
The laser control unit may be configured to control the laser light irradiation unit to move the irradiation position of the laser light, thereby moving the irradiation spot area in a parallel direction on the metal film.
 本発明によれば、比較的簡易かつ安価な構成で感度の周波数特性を向上させることが可能なSPR型超音波センサおよび超音波測定システムを提供することができる。 The present invention provides an SPR type ultrasonic sensor and ultrasonic measurement system that can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration.
第1実施形態に係る超音波測定システムを示す図である。1 is a diagram showing an ultrasonic measurement system according to a first embodiment. 第1形態のSPR型超音波センサ(遮断膜なし)を示す図であって、(A)は正面図、(B)は平面図、(C)はセンシング領域を示す平面図である。1A is a front view of a first embodiment of an SPR type ultrasonic sensor (without a blocking film), FIG. 1B is a plan view, and FIG. 1C is a plan view showing a sensing region. 第1形態のSPR型超音波センサ(遮断膜あり)を示す図であって、(A)は平面図、(B)は(A)のB-B線における断面図である。1A and 1B are diagrams showing an SPR type ultrasonic sensor (with a blocking film) of a first embodiment, in which (A) is a plan view and (B) is a cross-sectional view taken along line BB of (A). (A)超音波照射時の共鳴角のシフト変化を示す図である。(B)反射光の交流成分の振幅の時間変化を示す図である。1A is a diagram showing a shift in the resonance angle when ultrasonic waves are applied, and FIG. 1B is a diagram showing a change over time in the amplitude of the AC component of reflected light. 効果確認実験1の実験試料を示す図である。FIG. 1 is a diagram showing an experimental sample of effect confirmation experiment 1. 効果確認実験1の実験結果を示す図である。FIG. 13 is a diagram showing the experimental results of effect confirmation experiment 1. 第2形態のSPR型超音波センサを示す図であって、(A)は正面図、(B)は平面図、(C)はセンシング領域を示す平面図である。10A to 10C are diagrams showing an SPR type ultrasonic sensor of a second embodiment, in which (A) is a front view, (B) is a plan view, and (C) is a plan view showing a sensing region. 第3形態のSPR型超音波センサを示す図であって、(A)は正面図、(B)は平面図、(C)はセンシング領域を示す平面図である。13A to 13C are diagrams showing an SPR type ultrasonic sensor of a third embodiment, in which (A) is a front view, (B) is a plan view, and (C) is a plan view showing a sensing region. 効果確認実験2の実験試料を示す図である。FIG. 13 is a diagram showing an experimental sample of effect confirmation experiment 2. 効果確認実験2の実験結果を示す図である。FIG. 13 is a diagram showing the experimental results of effect confirmation experiment 2. 第2実施形態に係る超音波測定システムを示す図である。FIG. 13 is a diagram showing an ultrasonic measurement system according to a second embodiment. 従来のSPR型超音波センサを示す図であって、(A)は正面図、(B)は平面図である。1A and 1B are diagrams showing a conventional SPR type ultrasonic sensor, in which (A) is a front view and (B) is a plan view.
 以下、添付図面を参照して、本発明に係るSPR型超音波センサおよび超音波測定システムの実施形態について説明する。 Below, an embodiment of an SPR type ultrasonic sensor and an ultrasonic measurement system according to the present invention will be described with reference to the attached drawings.
[第1実施形態]
 図1に、本発明の第1実施形態に係る超音波測定システム100を示す。超音波測定システム100は、本発明の第1形態に係るSPR型超音波センサ110と、レーザ光送受信部120と、超音波発生装置130と、検体溶液を収容する収容部140とを備える。
[First embodiment]
1 shows an ultrasonic measurement system 100 according to a first embodiment of the present invention. The ultrasonic measurement system 100 includes an SPR ultrasonic sensor 110 according to the first embodiment of the present invention, a laser light transmitting and receiving unit 120, an ultrasonic generator 130, and a container 140 that contains a sample solution.
 SPR型超音波センサ110は、プリズム111と、金属膜112とを備える。レーザ光送受信部120は、レーザ光照射部121と、レーザ光受光部122と、表示部123とを備える。超音波発生装置130は、超音波照射部131と、超音波制御部132とを備える。 The SPR ultrasonic sensor 110 includes a prism 111 and a metal film 112. The laser light transmitting/receiving unit 120 includes a laser light emitting unit 121, a laser light receiving unit 122, and a display unit 123. The ultrasonic generator 130 includes an ultrasonic light emitting unit 131 and an ultrasonic control unit 132.
 プリズム111は、レーザ光照射部121から照射されたレーザ光を透過させる材料(本実施形態では、ガラス)で構成される。図2(A)に示すように、プリズム111は、金属膜112が形成される第1面111Aを有し、第1面111Aとは異なる面にレーザ光(入射光)の入射領域とレーザ光(反射光)の出射領域とを有する。本実施形態のプリズム111は、断面が三角形の三角プリズムであるが、金属膜112を設けることができるのであれば、断面が半円形状の半円プリズムでもよいし、その他の形状のプリズムでもよい。 Prism 111 is made of a material (glass in this embodiment) that transmits the laser light irradiated from laser light irradiator 121. As shown in FIG. 2(A), prism 111 has a first surface 111A on which metal film 112 is formed, and has an entrance area for laser light (incident light) and an exit area for laser light (reflected light) on a surface different from first surface 111A. Prism 111 in this embodiment is a triangular prism with a triangular cross section, but as long as metal film 112 can be provided, it may be a semicircular prism with a semicircular cross section or a prism of another shape.
 金属膜112は、所定の(例えば、臨界角以上の)入射角θで入射したレーザ光を反射させる金属または合金で構成される。本実施形態では、銀が用いられる。銀の表面(第1面111A側とは逆側の面)には、酸化防止膜等の保護膜を設けることができる。金属膜112は、蒸着やスパッタ等により、第1面111Aに直接形成される。上記の保護膜は、例えば、金を含む膜を採用することができる。ただし、保護膜は、金を含む膜に限定されるものではなく、酸化防止の効果を有するものであれば、金や銀(金属膜112の材料)以外の金属材料を含む膜を採用してもよいし、樹脂材料を含む膜を採用してもよい。 The metal film 112 is made of a metal or alloy that reflects the laser light incident at a predetermined incident angle θ (e.g., equal to or greater than the critical angle). In this embodiment, silver is used. A protective film such as an anti-oxidation film can be provided on the silver surface (the surface opposite to the first surface 111A). The metal film 112 is formed directly on the first surface 111A by deposition, sputtering, or the like. The above protective film can be, for example, a film containing gold. However, the protective film is not limited to a film containing gold, and a film containing a metal material other than gold or silver (the material of the metal film 112) or a film containing a resin material can be used as long as it has an anti-oxidation effect.
 図2(B)に示すように、金属膜112は、第1面111Aを平面視したときに円形となるように、第1面111Aの一部にのみ形成される。金属膜112の厚みは、本実施形態では50[nm]程度であるが、SPR型超音波センサ110において表面プラズモン共鳴を生じさせることができるのであれば、例えば10[nm]~100[nm]の範囲で適宜変更することができる。 2B, the metal film 112 is formed only on a portion of the first surface 111A so that it has a circular shape when the first surface 111A is viewed in a plan view. The thickness of the metal film 112 is about 50 nm in this embodiment, but can be changed as appropriate within the range of, for example, 10 nm to 100 nm, as long as it can cause surface plasmon resonance in the SPR ultrasonic sensor 110.
 レーザ光照射部121は、金属膜112とプリズム111との界面に、単一波長で連続波のレーザ光を照射するよう構成される。本実施形態のレーザ光照射部121は、532[nm]の可視光のレーザ光を照射するが、金属膜112やプリズム111の材質に応じてレーザ光の波長を適宜変更することが好ましい。SPR型超音波センサ110において表面プラズモン共鳴を生じさせることができるのであれば、レーザ光照射部121は、その他の波長のレーザ光を照射してもよい。なお、レーザ光は、コヒーレント光であるため、LED光のようなコヒーレントでない光と比較して、後述する照射スポット領域を小さくすることができる。 The laser light irradiation unit 121 is configured to irradiate the interface between the metal film 112 and the prism 111 with continuous-wave laser light at a single wavelength. In this embodiment, the laser light irradiation unit 121 irradiates visible laser light of 532 nm, but it is preferable to change the wavelength of the laser light appropriately depending on the materials of the metal film 112 and the prism 111. The laser light irradiation unit 121 may irradiate laser light of other wavelengths as long as surface plasmon resonance can be generated in the SPR ultrasonic sensor 110. Note that since laser light is coherent light, the irradiation spot area described below can be made smaller than incoherent light such as LED light.
 図2(C)に示すように、レーザ光照射部121から照射されたレーザ光は、第1面111Aに楕円形状の照射スポット領域L1を形成する。なお、本発明における照射スポット領域は、レーザ光が照射されている領域であり、レーザ光の強度分布の半値全幅(FWHM)で定義するものとする。照射スポット領域L1には、金属膜112が存在する金属領域と、金属膜112が存在しない非金属領域とが含まれる。照射スポット領域L1内の金属領域のみが、SPR型超音波センサ110のセンシング領域となる。 As shown in FIG. 2(C), the laser light irradiated from the laser light irradiating unit 121 forms an elliptical irradiation spot area L1 on the first surface 111A. Note that the irradiation spot area in the present invention is the area irradiated with the laser light, and is defined by the full width at half maximum (FWHM) of the intensity distribution of the laser light. The irradiation spot area L1 includes a metal area where the metal film 112 is present, and a non-metal area where the metal film 112 is not present. Only the metal area within the irradiation spot area L1 becomes the sensing area of the SPR ultrasonic sensor 110.
 SPR型超音波センサ110は、図3に示すように、遮断膜113を備えてもよい。図3の(A)は遮断膜113を備えるSPR型超音波センサ110の平面図であり、(B)は(A)のB-B線における断面図である。 The SPR ultrasonic sensor 110 may include a blocking film 113, as shown in FIG. 3. FIG. 3A is a plan view of the SPR ultrasonic sensor 110 including the blocking film 113, and FIG. 3B is a cross-sectional view taken along line B-B in FIG. 3A.
 遮断膜113は、超音波がプリズム111に侵入するのを抑制する材料(例えば、ウレタン等の発泡体)で構成される。遮断膜113は、プリズム111の第1面111Aの金属膜112が形成されていない領域に形成される。図3では、遮断膜113を金属膜112と同じ厚みにしているが、遮断膜113は、金属膜112より薄くてもよいし、金属膜112より厚くてもよい。また、遮断膜113は、第1面111Aの金属膜112が形成されていない領域で、かつ超音波が照射される領域(例えば、図2(C)の領域U1)にのみ形成されていてもよい。 The blocking film 113 is made of a material (e.g., a foam such as urethane) that prevents ultrasonic waves from penetrating the prism 111. The blocking film 113 is formed in an area of the first surface 111A of the prism 111 where the metal film 112 is not formed. In FIG. 3, the blocking film 113 is made to be the same thickness as the metal film 112, but the blocking film 113 may be thinner or thicker than the metal film 112. Furthermore, the blocking film 113 may be formed only in an area of the first surface 111A where the metal film 112 is not formed and where ultrasonic waves are irradiated (e.g., area U1 in FIG. 2(C)).
 超音波がプリズム111に侵入すると、プリズム111を透過するレーザ光が超音波により悪影響(入射光や反射光の光路がずれる等)を受けてしまうおそれがあるが、遮断膜113により上記の悪影響を防ぐことができる。 When ultrasonic waves enter the prism 111, there is a risk that the ultrasonic waves may adversely affect the laser light passing through the prism 111 (such as causing the optical paths of the incident light and reflected light to shift), but the blocking film 113 can prevent such adverse effects.
 レーザ光受光部122は、金属膜112とプリズム111との界面で反射したレーザ光(反射光)を受光するよう構成される。レーザ光受光部122は、例えば、フォトダイオードと、フォトダイオードの後段に設けられた増幅器とを含む。レーザ光受光部122は、反射光に応じた信号を表示部123に出力する。 The laser light receiving unit 122 is configured to receive the laser light (reflected light) reflected at the interface between the metal film 112 and the prism 111. The laser light receiving unit 122 includes, for example, a photodiode and an amplifier provided after the photodiode. The laser light receiving unit 122 outputs a signal corresponding to the reflected light to the display unit 123.
 表示部123は、レーザ光受光部122で受光した反射光の波形を表示するよう構成される。詳細は後述するが、反射光の波形には超音波に応じた交流成分が重畳されるため、表示部123は、少なくとも上記交流成分(交流波形)を表示させる。表示部123は、例えば、オシロスコープを含む。 The display unit 123 is configured to display the waveform of the reflected light received by the laser light receiving unit 122. Although details will be described later, since an AC component corresponding to the ultrasonic wave is superimposed on the waveform of the reflected light, the display unit 123 displays at least the AC component (AC waveform). The display unit 123 includes, for example, an oscilloscope.
 超音波照射部131は、超音波制御部132の制御下で、検体溶液を介して金属膜112の表面(第1面111A側とは逆側の面)に超音波を照射するよう構成される。超音波照射部131は、電気信号に基づいて超音波を発生させる超音波トランスデューサである。 The ultrasound irradiation unit 131 is configured to irradiate ultrasound to the surface of the metal film 112 (the surface opposite the first surface 111A) through the sample solution under the control of the ultrasound control unit 132. The ultrasound irradiation unit 131 is an ultrasound transducer that generates ultrasound based on an electrical signal.
 本実施形態では、金属膜112に集束した超音波を照射しているが、検体溶液中に伝搬する超音波が集束せずに金属膜112に入射してもよい。すなわち、超音波の照射領域は、第1面111Aの一部または第1面111Aの全体である。第1面111Aの一部とは、金属領域および非金属領域を含む領域、または金属領域のみの領域である。集束した超音波を照射する場合、集束した超音波は、第1面111Aにレーザ光の照射スポット領域L1よりも大きい円形の照射領域U1を形成する。また、本実施形態では、SPR型超音波センサ110に対向した配置で超音波を照射しているが、金属膜112に超音波が入射するのであれば、SPR型超音波センサ110に対向した配置で超音波を照射する必要はない。すなわち、SPR型超音波センサ110と超音波照射部131との位置値関係は、適宜変更することができる。 In this embodiment, the metal film 112 is irradiated with focused ultrasonic waves, but ultrasonic waves propagating in the sample solution may be incident on the metal film 112 without being focused. That is, the ultrasonic irradiation area is a part of the first surface 111A or the entire first surface 111A. A part of the first surface 111A is an area including metal areas and non-metal areas, or an area of only metal areas. When focused ultrasonic waves are irradiated, the focused ultrasonic waves form a circular irradiation area U1 on the first surface 111A that is larger than the irradiation spot area L1 of the laser light. In this embodiment, ultrasonic waves are irradiated in an arrangement facing the SPR ultrasonic sensor 110, but if the ultrasonic waves are incident on the metal film 112, it is not necessary to irradiate ultrasonic waves in an arrangement facing the SPR ultrasonic sensor 110. That is, the positional value relationship between the SPR ultrasonic sensor 110 and the ultrasonic irradiation unit 131 can be changed as appropriate.
 超音波制御部132は、超音波制御部132に電気信号(本実施形態では、交流電圧信号)を印加して、超音波照射部131を制御するよう構成される。超音波制御部132は、電気信号の周波数を変化させることで、超音波照射部131が照射する超音波の周波数を変化させることができる。超音波制御部132は、例えば、ファンクションジェネレータを含む。 The ultrasonic control unit 132 is configured to apply an electrical signal (in this embodiment, an AC voltage signal) to the ultrasonic control unit 132 to control the ultrasonic irradiation unit 131. The ultrasonic control unit 132 can change the frequency of the ultrasonic waves irradiated by the ultrasonic irradiation unit 131 by changing the frequency of the electrical signal. The ultrasonic control unit 132 includes, for example, a function generator.
 収容部140は、レーザ光が透過する外壁をもち、SPR型超音波センサ110の全体と超音波照射部131の少なくとも一部とを検体溶液中に設置するよう構成される。収容部140は、金属膜112とプリズム111との界面でレーザ光が反射され、かつ金属膜112の表面に超音波が照射されるように、SPR型超音波センサ110および超音波照射部131を保持するための、図示しない保持機構を備える。また、収容部140は、SPR型超音波センサ110の位置を移動させる図示しない移動機構を備える。移動機構については、後述する。 The storage unit 140 has an outer wall through which the laser light passes, and is configured to place the entire SPR ultrasonic sensor 110 and at least a part of the ultrasonic irradiation unit 131 in the sample solution. The storage unit 140 is provided with a holding mechanism (not shown) for holding the SPR ultrasonic sensor 110 and the ultrasonic irradiation unit 131 so that the laser light is reflected at the interface between the metal film 112 and the prism 111, and ultrasonic waves are irradiated onto the surface of the metal film 112. The storage unit 140 also has a moving mechanism (not shown) for moving the position of the SPR ultrasonic sensor 110. The moving mechanism will be described later.
 SPR型超音波センサ110では、金属膜112とプリズム111との界面に、レーザ光が所定の(例えば、臨界角以上の)入射角θで入射すると、上記界面でエバネッセント波が発生する。エバネッセント波の波数が、金属膜112の表面で発生している表面プラズモン波の波数と一致すると、表面プラズモン共鳴が起こる。 In the SPR ultrasonic sensor 110, when laser light is incident on the interface between the metal film 112 and the prism 111 at a predetermined incident angle θ (for example, equal to or greater than the critical angle), an evanescent wave is generated at the interface. When the wave number of the evanescent wave matches the wave number of the surface plasmon wave generated on the surface of the metal film 112, surface plasmon resonance occurs.
 表面プラズモン波の波数は、金属膜112の表面に隣接している媒質(本実施形態では、検体溶液)に依存する。超音波照射部131が検体溶液を介して金属膜112の表面に超音波を照射すると、超音波の加圧と減圧により検体溶液の密度が変化し、検体溶液の屈折率が変化し、表面プラズモン波の波数が変化する。その結果、表面プラズモン共鳴の条件が変化し、共鳴角がシフトする。なお、共鳴角は、反射率が最も小さくなる入射角θである。 The wave number of the surface plasmon wave depends on the medium (in this embodiment, the specimen solution) adjacent to the surface of the metal film 112. When the ultrasound irradiation unit 131 irradiates the surface of the metal film 112 with ultrasound through the specimen solution, the density of the specimen solution changes due to the compression and decompression of the ultrasound, the refractive index of the specimen solution changes, and the wave number of the surface plasmon wave changes. As a result, the conditions for surface plasmon resonance change and the resonance angle shifts. The resonance angle is the incident angle θ at which the reflectance is smallest.
 図4(A)に、レーザ光の反射率曲線を示す。同図において、Aは超音波の音圧ゼロの部分が金属膜112に到達したときの反射率曲線、Bは超音波の正の音圧の部分(密の部分)が金属膜112に到達したときの反射率曲線、Cは超音波の負の音圧の部分(粗の部分)が金属膜112に到達したときの反射率曲線である。また、図4(B)に、レーザ光の入射角θをθ=X1とした時の、反射光の波形を示す。 Figure 4(A) shows the reflectance curve of the laser light. In the figure, A is the reflectance curve when the part of the ultrasound with zero sound pressure reaches the metal film 112, B is the reflectance curve when the part of the ultrasound with positive sound pressure (dense part) reaches the metal film 112, and C is the reflectance curve when the part of the ultrasound with negative sound pressure (sparse part) reaches the metal film 112. Figure 4(B) also shows the waveform of the reflected light when the incident angle θ of the laser light is θ = X1.
 図4(A)から、超音波の正の音圧により金属膜112の表面の検体溶液が加圧されると、反射率曲線が右側にシフトし、超音波の負の音圧により金属膜112の表面の検体溶液が減圧されると、反射率曲線が左側にシフトすることが分かる。また、図4(B)から、超音波の加圧と減圧による反射率曲線の変動がレーザ光(反射光)の波形に交流成分(反射光の振幅値の変動)として現れていることが分かる。 From Figure 4 (A), it can be seen that when the specimen solution on the surface of the metal film 112 is pressurized by the positive sound pressure of the ultrasound, the reflectance curve shifts to the right, and when the specimen solution on the surface of the metal film 112 is depressurized by the negative sound pressure of the ultrasound, the reflectance curve shifts to the left. Also, from Figure 4 (B), it can be seen that the fluctuation in the reflectance curve due to the pressurization and depressurization of the ultrasound appears as an AC component (fluctuation in the amplitude value of the reflected light) in the waveform of the laser light (reflected light).
 ところで、実際は、金属膜112に到達する超音波の波面はきれいな平面ではないため、金属膜112の表面における音圧分布は一様にならない。例えば、金属膜112のある領域では超音波の音圧が最大となるのに対して、金属膜112の別の領域では超音波の音圧が最大とはならない。すなわち、金属膜112の表面の各部位において、到達超音波の位相が異なる。このような超音波の位相分布は、センシング領域の面積が大きいほど、また超音波の周波数が高く波長が短いほど、その影響が大きくなる。 However, in reality, the wavefront of the ultrasonic waves that reach the metal film 112 is not a perfect plane, so the sound pressure distribution on the surface of the metal film 112 is not uniform. For example, the sound pressure of the ultrasonic waves will be maximum in one area of the metal film 112, whereas the sound pressure of the ultrasonic waves will not be maximum in another area of the metal film 112. In other words, the phase of the arriving ultrasonic waves differs at each part of the surface of the metal film 112. The effect of such ultrasonic phase distribution becomes greater the larger the area of the sensing region and the higher the frequency and shorter the wavelength of the ultrasonic waves.
 図12に示すように、金属膜412が第1面411Aの全体に形成されている従来のSPR型超音波センサ410では、楕円形のレーザ光の照射スポット領域がそのままセンシング領域となる。このため、従来のSPR型超音波センサ410では、楕円の長軸の影響で超音波の測定感度が低下してしまい、波形自体も変化してしまうため、正確な計測ができなかった。 As shown in FIG. 12, in a conventional SPR ultrasonic sensor 410 in which the metal film 412 is formed over the entire first surface 411A, the elliptical laser light irradiation spot area becomes the sensing area as it is. For this reason, in the conventional SPR ultrasonic sensor 410, the measurement sensitivity of the ultrasonic waves is reduced due to the influence of the major axis of the ellipse, and the waveform itself also changes, making it impossible to perform accurate measurements.
 これに対して、本実施形態に係るSPR型超音波センサ110では、照射スポット領域L1に金属領域と非金属領域とが含まれ、照射スポット領域L1内の金属領域のみがセンシング領域となる。このため、従来のSPR型超音波センサ410と比較して、センシング領域の面積を小さくすることができる。また、センシング領域は円形となり、形状の影響がない。さらに、SPR型超音波センサ110が遮断膜113を備える場合は、より正確に、超音波をレーザ光(反射光)の交流成分として検出することができる。 In contrast, in the SPR ultrasonic sensor 110 according to this embodiment, the irradiation spot area L1 includes metal areas and non-metal areas, and only the metal areas in the irradiation spot area L1 become the sensing area. Therefore, compared to the conventional SPR ultrasonic sensor 410, the area of the sensing area can be made smaller. Also, the sensing area is circular, and is not affected by shape. Furthermore, when the SPR ultrasonic sensor 110 includes a blocking film 113, ultrasonic waves can be more accurately detected as AC components of the laser light (reflected light).
 以上のように、本実施形態に係るSPR型超音波センサ110および超音波測定システム100によれば、比較的簡易かつ安価な構成で感度の周波数特性を向上させることができる。また、超音波測定システム100は、光計測であるためケーブル等が不要となり、小型のSPR型超音波センサ110を収容部140内に配置するだけの構成であるため、SPR型超音波センサ110により収容部140内の音場が乱される影響も小さい。 As described above, the SPR ultrasonic sensor 110 and ultrasonic measurement system 100 according to this embodiment can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration. Furthermore, since the ultrasonic measurement system 100 is an optical measurement system, it does not require cables, etc., and since it is configured by simply placing the small SPR ultrasonic sensor 110 inside the housing 140, there is little effect of the SPR ultrasonic sensor 110 disturbing the sound field inside the housing 140.
<効果確認実験1>
 次に、効果確認実験1について説明する。図5に、効果確認実験1の実験試料の正面図および平面図を示す。図5(A)は、従来のSPR型超音波センサ410’を示し、図5(B)~(D)は、本実施形態に係るSPR型超音波センサ110-1~110~3を示す。効果確認実験1は、SPR型超音波センサ110-1~110~3を用いた本実施形態に係る超音波測定方法の効果を確認するための実験である。
<Effectiveness Confirmation Experiment 1>
Next, Effect Confirmation Experiment 1 will be described. Fig. 5 shows a front view and a plan view of an experimental sample for Effect Confirmation Experiment 1. Fig. 5(A) shows a conventional SPR type ultrasonic sensor 410', and Figs. 5(B) to (D) show SPR type ultrasonic sensors 110-1 to 110-3 according to this embodiment. Effect Confirmation Experiment 1 is an experiment for confirming the effect of the ultrasonic measurement method according to this embodiment using the SPR type ultrasonic sensors 110-1 to 110-3.
 図5(A)に示すSPR型超音波センサ410’は、金属膜412の表面に保護膜414が形成されている点を除いて、図12に示すSPR型超音波センサ410と同じ構成である。金属膜412は厚みが31[nm]の銀の膜であり、保護膜414は厚みが5[nm]の金の膜である。金属膜412および保護膜414は、平面視において、長辺の長さが14.1[mm]であり、短辺の長さが10[mm]である。 The SPR ultrasonic sensor 410' shown in FIG. 5(A) has the same configuration as the SPR ultrasonic sensor 410 shown in FIG. 12, except that a protective film 414 is formed on the surface of the metal film 412. The metal film 412 is a silver film with a thickness of 31 nm, and the protective film 414 is a gold film with a thickness of 5 nm. In plan view, the metal film 412 and the protective film 414 have a long side length of 14.1 mm and a short side length of 10 mm.
 図5(B)~(D)に示すSPR型超音波センサ110-1~110~3は、金属膜112-1~112-3の表面に保護膜114が形成されている点を除いて、図2に示すSPR型超音波センサ110と同じ構成である。金属膜112-1~112-3は厚みが31[nm]の銀の膜であり、保護膜114は厚みが5[nm]の金の膜である。プリズム111の第1面111Aは、長辺の長さが14.1[mm]であり、短辺の長さが10[mm]である。 The SPR ultrasonic sensors 110-1 to 110-3 shown in Figures 5(B) to (D) have the same configuration as the SPR ultrasonic sensor 110 shown in Figure 2, except that a protective film 114 is formed on the surfaces of the metal films 112-1 to 112-3. The metal films 112-1 to 112-3 are silver films with a thickness of 31 nm, and the protective film 114 is a gold film with a thickness of 5 nm. The first surface 111A of the prism 111 has a long side length of 14.1 mm and a short side length of 10 mm.
 SPR型超音波センサ110-1~110-3は、金属膜112-1~112-3および保護膜114の平面視における面積のみが異なり、その他の構成は共通している。保護膜114の面積は、対応する金属膜112-1~112-3の面積と同じである。なお、保護膜114の面積は、必ずしも金属膜112-1~112-3の面積と同じである必要はなく、金属膜112-1~112-3の面積よりも大きくてもよい。 The SPR ultrasonic sensors 110-1 to 110-3 have the same configuration, except for the areas of the metal films 112-1 to 112-3 and the protective film 114 in a plan view. The area of the protective film 114 is the same as the area of the corresponding metal films 112-1 to 112-3. Note that the area of the protective film 114 does not necessarily have to be the same as the area of the metal films 112-1 to 112-3, and may be larger than the area of the metal films 112-1 to 112-3.
 図5(B)に示すSPR型超音波センサ110-1の金属膜112-1は、平面視における直径が1.0[mm]の円形である。図5(C)に示すSPR型超音波センサ110-2の金属膜112-2は、平面視における直径が0.8[mm]の円形である。図5(D)に示すSPR型超音波センサ110-3の金属膜112-3は、平面視における直径が0.6[mm]の円形である。 The metal film 112-1 of the SPR ultrasonic sensor 110-1 shown in FIG. 5(B) is a circle with a diameter of 1.0 mm in a plan view. The metal film 112-2 of the SPR ultrasonic sensor 110-2 shown in FIG. 5(C) is a circle with a diameter of 0.8 mm in a plan view. The metal film 112-3 of the SPR ultrasonic sensor 110-3 shown in FIG. 5(D) is a circle with a diameter of 0.6 mm in a plan view.
 効果確認実験1では、図1に示す超音波測定システム100を用いて、本実施形態に係る超音波測定方法を行った。ただし、SPR型超音波センサ110の替わりに、図5(B)~(D)に示すSPR型超音波センサ110-1~110~3を用いた。また、比較のため、図5(A)に示すSPR型超音波センサ410’を用いた超音波測定方法を行った。 In effect confirmation experiment 1, the ultrasonic measurement method according to this embodiment was carried out using the ultrasonic measurement system 100 shown in FIG. 1. However, instead of the SPR ultrasonic sensor 110, the SPR ultrasonic sensors 110-1 to 110-3 shown in FIGS. 5(B) to (D) were used. For comparison, the ultrasonic measurement method was also carried out using the SPR ultrasonic sensor 410' shown in FIG. 5(A).
 超音波測定方法は、準備ステップと、照射ステップと、受光ステップとを含む。SPR型超音波センサ410’、SPR型超音波センサ110-1、SPR型超音波センサ110-2およびSPR型超音波センサ110-3のいずれのセンサを用いた場合であっても、各ステップの内容は共通する。よって、以下では、各ステップの説明について、SPR型超音波センサ110-1を用いた場合を例に挙げて説明する。 The ultrasonic measurement method includes a preparation step, an irradiation step, and a light receiving step. The content of each step is the same regardless of whether SPR type ultrasonic sensor 410', SPR type ultrasonic sensor 110-1, SPR type ultrasonic sensor 110-2, or SPR type ultrasonic sensor 110-3 is used. Therefore, each step will be explained below using the example of using SPR type ultrasonic sensor 110-1.
 準備ステップでは、収容部140内にSPR型超音波センサ110-1を配置するとともに、レーザ光照射部121、レーザ光受光部122および超音波照射部131を配置する。レーザ光照射部121は、金属膜112-1とプリズム111との界面に入射角θ(本実験では、θ=56.05[deg])でレーザ光が照射されるように、収容部140外に配置される。レーザ光受光部122は、上記界面で反射したレーザ光(反射光)を受光するように、収容部140外に配置される。超音波照射部131は、検体溶液および保護膜114を介して金属膜112-1の表面に超音波が照射されるように、少なくとも先端部が収容部140内に配置される。 In the preparation step, the SPR ultrasonic sensor 110-1 is placed in the storage section 140, and the laser light emitting section 121, the laser light receiving section 122, and the ultrasonic wave emitting section 131 are also placed. The laser light emitting section 121 is placed outside the storage section 140 so that the laser light is irradiated to the interface between the metal film 112-1 and the prism 111 at an incident angle θ (in this experiment, θ = 56.05 [deg]). The laser light receiving section 122 is placed outside the storage section 140 so that it receives the laser light (reflected light) reflected at the interface. At least the tip of the ultrasonic wave emitting section 131 is placed inside the storage section 140 so that ultrasonic waves are irradiated to the surface of the metal film 112-1 through the sample solution and the protective film 114.
 本実験では、収容部140内の検体溶液として、水(屈折率1.335)を用いた。レーザ光照射部121として、レーザ光の波長が532[nm]でレーザ径が1.26[mm]の連続波レーザ(CWレーザ)を用いた。超音波照射部131として、スポット径(半値全幅)が1.75[mm]の収束型の超音波トランスデューサ(超音波送波器)を用いた。 In this experiment, water (refractive index 1.335) was used as the specimen solution in the storage section 140. A continuous wave laser (CW laser) with a laser light wavelength of 532 [nm] and a laser diameter of 1.26 [mm] was used as the laser light irradiating section 121. A convergent type ultrasonic transducer (ultrasonic transmitter) with a spot diameter (full width at half maximum) of 1.75 [mm] was used as the ultrasonic irradiating section 131.
 照射ステップでは、収容部140内にSPR型超音波センサ110-1を配置した状態(準備ステップ終了時の状態)で、SPR型超音波センサ110-1の金属膜112-1に向けて、レーザ光照射部121によりレーザ光を照射するとともに、超音波照射部131により超音波を照射する。これにより、プリズム111の第1面111Aには、レーザ光による楕円形状の照射スポット領域L1と、超音波による真円形状のスポット領域(図示略)が形成される。双方の領域は、金属膜112-1の領域(金属領域)すなわちセンシング領域S11を含む。 In the irradiation step, with the SPR ultrasonic sensor 110-1 placed in the housing 140 (the state at the end of the preparation step), the laser light irradiation unit 121 irradiates laser light toward the metal film 112-1 of the SPR ultrasonic sensor 110-1, and the ultrasonic irradiation unit 131 irradiates ultrasonic waves. As a result, an elliptical irradiation spot area L1 caused by the laser light and a circular spot area (not shown) caused by the ultrasonic waves are formed on the first surface 111A of the prism 111. Both areas include the area of the metal film 112-1 (metal area), i.e., the sensing area S11.
 本実験では、照射スポット領域L1は、長径が2.09[mm]で、短径が1.26[mm]である。超音波のスポット領域は、直径(半値全幅)が1.75[mm]である。照射スポット領域L1および超音波のスポット領域は、図5(A)~(D)の場合で共通する。一方、センシング領域は、図5(A)~(D)の場合でそれぞれ異なる。図5(A)では、照射スポット領域L1がそのままセンシング領域S10となる。図5(B)では、直径が1.0[mm]の円形の領域(金属膜112-1の領域)がセンシング領域S11となる。図5(C)では、直径が0.8[mm]の円形の領域(金属膜112-2の領域)がセンシング領域S12となる。図5(D)では、直径が0.6[mm]の円形の領域(金属膜112-3の領域)がセンシング領域S13となる。 In this experiment, the irradiation spot area L1 has a major axis of 2.09 mm and a minor axis of 1.26 mm. The ultrasonic spot area has a diameter (full width at half maximum) of 1.75 mm. The irradiation spot area L1 and the ultrasonic spot area are common to the cases of Figs. 5(A) to (D). On the other hand, the sensing area is different for each of Figs. 5(A) to (D). In Fig. 5(A), the irradiation spot area L1 is the sensing area S10 as it is. In Fig. 5(B), a circular area with a diameter of 1.0 mm (area of metal film 112-1) is the sensing area S11. In Fig. 5(C), a circular area with a diameter of 0.8 mm (area of metal film 112-2) is the sensing area S12. In Fig. 5(D), a circular area with a diameter of 0.6 mm (area of metal film 112-3) is the sensing area S13.
 また本実験では、超音波制御部132から超音波照射部131に、5[MHz]の正弦波のパルス波(1波分)を入力信号として入力している。このような5[MHz]のパルス波は、5[MHz]の近傍の広帯域な周波数特性をもつ。本実験で利用した5[MHz]のパルス波は2~8[MHz]の周波数帯域で十分な振幅の成分を含有している。このため、周波数解析により上記周波数帯域の測定値を得ることができる。なお、超音波制御部132は連続正弦波を生成することもできるため、入力信号として連続正弦波を採用することも可能である。 In addition, in this experiment, a 5 MHz sine wave pulse wave (one wave) is input as an input signal from the ultrasound control unit 132 to the ultrasound irradiation unit 131. Such a 5 MHz pulse wave has a wide band of frequency characteristics around 5 MHz. The 5 MHz pulse wave used in this experiment contains components with sufficient amplitude in the frequency band of 2 to 8 MHz. For this reason, it is possible to obtain measurement values in the above frequency band by frequency analysis. Note that the ultrasound control unit 132 can also generate a continuous sine wave, so it is also possible to adopt a continuous sine wave as the input signal.
 受光ステップでは、レーザ光受光部122により、金属膜112-1とプリズム111との界面で反射したレーザ光の反射光を受光して、反射光の交流成分の振幅値に関する情報(振幅データ)を取得する。受光ステップは、照射ステップと並行して行われる。 In the light receiving step, the laser light receiving unit 122 receives the reflected light of the laser light reflected at the interface between the metal film 112-1 and the prism 111, and obtains information (amplitude data) regarding the amplitude value of the AC component of the reflected light. The light receiving step is performed in parallel with the irradiation step.
 図6(A)に、受光ステップにおいて、レーザ光受光部122が受光した反射光の交流成分の振幅データを示す(波形A~D)。波形Aは、SPR型超音波センサ410’のセンシング領域S10で反射した反射光の交流成分の波形である。波形Bは、SPR型超音波センサ110-1のセンシング領域S11で反射した反射光の交流成分の波形である。波形Cは、SPR型超音波センサ110-2のセンシング領域S12で反射した反射光の交流成分の波形である。波形Dは、SPR型超音波センサ110-3のセンシング領域S13で反射した反射光の交流成分の波形である。 Figure 6 (A) shows amplitude data of the AC component of the reflected light received by the laser light receiving unit 122 in the light receiving step (waveforms A to D). Waveform A is the waveform of the AC component of the reflected light reflected at the sensing area S10 of the SPR ultrasonic sensor 410'. Waveform B is the waveform of the AC component of the reflected light reflected at the sensing area S11 of the SPR ultrasonic sensor 110-1. Waveform C is the waveform of the AC component of the reflected light reflected at the sensing area S12 of the SPR ultrasonic sensor 110-2. Waveform D is the waveform of the AC component of the reflected light reflected at the sensing area S13 of the SPR ultrasonic sensor 110-3.
 また図6(A)では、比較のため、超音波照射部131が出力した超音波(5[MHz]の超音波パルス)の振幅データを示す(波形E)。超音波の観測は、収容部140内にSPR型超音波センサ110-1~110~3の替わりにニードル型の超音波トランスデューサ(校正用ハイドロフォン)を配置して行った。なお、校正用ハイドロフォンの有効径は、1.00[mm]である。 For comparison, FIG. 6(A) also shows the amplitude data of the ultrasound (ultrasonic pulse of 5 MHz) output by the ultrasound irradiation unit 131 (waveform E). The ultrasound was observed by placing a needle-type ultrasonic transducer (calibration hydrophone) in place of the SPR ultrasonic sensors 110-1 to 110-3 inside the housing unit 140. The effective diameter of the calibration hydrophone is 1.00 mm.
 図6(A)から分かるように、波形B~Dは、波形Eと比較して負の第1ピークの形状がわずかに異なるものの、全体的にみて波形Eとほぼ一致する。このことから、本実施形態に係る超音波測定方法によれば、超音波照射部131が出力した超音波を、レーザ光受光部122が受光したレーザ光(反射光)の交流成分として検出できることが分かる。 As can be seen from FIG. 6(A), waveforms B to D are slightly different in the shape of the negative first peak compared to waveform E, but overall they are almost identical to waveform E. From this, it can be seen that the ultrasonic measurement method according to this embodiment can detect the ultrasonic waves output by the ultrasonic irradiation unit 131 as an AC component of the laser light (reflected light) received by the laser light receiving unit 122.
 図6(B)に、レーザ光受光部122が受光した反射光の交流成分の周波数特性を示す。図6(B)に示すA~Dのグラフは、それぞれ図6(A)に示す波形A~Dに対し、周波数解析を行って取得したものである。なお、本実施形態で行った周波数解析は公知の手法であるため、ここではその説明を省略する。 FIG. 6(B) shows the frequency characteristics of the AC component of the reflected light received by the laser light receiving unit 122. Graphs A to D shown in FIG. 6(B) were obtained by performing frequency analysis on the waveforms A to D shown in FIG. 6(A), respectively. Note that the frequency analysis performed in this embodiment is a known technique, so a description of it will be omitted here.
 図6(B)では、校正用ハイドロフォンで直接検出した超音波の振幅値を1としている。図6(B)から分かるように、B~Dは周波数が4[MHz]以上の領域で振幅値が1を超えている。また、B~Dは、Aよりも振幅値が大きい。よって、本実施形態に係る超音波測定方法によれば、同領域で校正用ハイドロフォンを用いるよりも測定感度を向上させることができ、SPR型超音波センサ410’を用いた従来の超音波測定方法よりも測定感度を向上させることができる。なお、本実験結果は一例であり、本発明は、効果確認実験1で説明する上記の条件に限定されるものではない。 In FIG. 6(B), the amplitude value of the ultrasonic waves directly detected by the calibration hydrophone is set to 1. As can be seen from FIG. 6(B), B to D have amplitude values exceeding 1 in the frequency range of 4 MHz or more. Furthermore, B to D have larger amplitude values than A. Therefore, according to the ultrasonic measurement method of this embodiment, it is possible to improve the measurement sensitivity in the same range compared to using a calibration hydrophone, and it is possible to improve the measurement sensitivity compared to the conventional ultrasonic measurement method using the SPR type ultrasonic sensor 410'. Note that the results of this experiment are only an example, and the present invention is not limited to the above conditions described in Effect Confirmation Experiment 1.
[SPR型超音波センサの変形例]
 第1実施形態に係る超音波測定システム100では、第1形態のSPR型超音波センサ110の代わりに、以下で説明する第2形態のSPR型超音波センサ210、または第3形態のSPR型超音波センサ310を用いることができる。
[Modification of SPR type ultrasonic sensor]
In the ultrasonic measurement system 100 according to the first embodiment, an SPR type ultrasonic sensor 210 of a second form or an SPR type ultrasonic sensor 310 of a third form described below can be used instead of the SPR type ultrasonic sensor 110 of the first form.
<第2形態のSPR型超音波センサ>
 図7に、第2形態のSPR型超音波センサ210を示す。SPR型超音波センサ210は、プリズム211と、金属膜212とを備える。プリズム211は、第1形態のプリズム111と同じ構成である。
<Second embodiment of SPR type ultrasonic sensor>
7 shows a second embodiment of an SPR type ultrasonic sensor 210. The SPR type ultrasonic sensor 210 includes a prism 211 and a metal film 212. The prism 211 has the same configuration as the prism 111 of the first embodiment.
 図7(A)に示すように、金属膜212は、所定の角度で入射したレーザ光を反射させる金属または合金で構成される。本形態では、銀が用いられる。銀の表面には、酸化防止膜等の保護膜を設けることができる。金属膜212は、蒸着やスパッタ等により、プリズム211の第1面211Aに直接形成される。 As shown in FIG. 7(A), the metal film 212 is made of a metal or alloy that reflects the laser light incident at a predetermined angle. In this embodiment, silver is used. A protective film such as an oxidation prevention film can be provided on the surface of the silver. The metal film 212 is formed directly on the first surface 211A of the prism 211 by deposition, sputtering, or the like.
 図7(B)に示すように、金属膜212は、第1面211Aを平面視したときに面積の異なる複数(本実施形態では、4つ)の円形の金属膜212a~212dとなるように、第1面211Aの一部にのみ離散的に形成される。金属膜212の厚みは、本実施形態では50[nm]程度であるが、SPR型超音波センサ210において表面プラズモン共鳴を生じさせることができるのであれば、例えば10[nm]~100[nm]の範囲で適宜変更することができる。また、第1面211Aにおいて、金属膜212が存在しない領域に、超音波がプリズム211に侵入しない材料でできた遮断膜を形成してもよい。遮断膜は、第1形態の遮断膜113と同じ構成である。 As shown in FIG. 7B, the metal film 212 is formed discretely only on a part of the first surface 211A so that the first surface 211A is viewed in plan as a plurality of (four in this embodiment) circular metal films 212a-212d with different areas. The thickness of the metal film 212 is about 50 nm in this embodiment, but can be changed as appropriate within a range of, for example, 10 nm to 100 nm, as long as it can cause surface plasmon resonance in the SPR ultrasonic sensor 210. In addition, a blocking film made of a material that prevents ultrasonic waves from penetrating the prism 211 may be formed in an area of the first surface 211A where the metal film 212 is not present. The blocking film has the same configuration as the blocking film 113 in the first embodiment.
 図7(C)に示すように、レーザ光照射部121から照射されたレーザ光は、第1面211Aに楕円形状の照射スポット領域L2を形成する。照射スポット領域L2には、金属膜212(図7(C)では金属膜212a)が存在する金属領域と、金属膜212が存在しない非金属領域とが含まれる。照射スポット領域L2内の金属領域が、SPR型超音波センサ210のセンシング領域となる。また、超音波照射部131から照射された超音波は、第1面211Aに金属膜212a~212dを含む円形の照射領域U2を形成する。 As shown in FIG. 7(C), the laser light irradiated from the laser light irradiator 121 forms an elliptical irradiation spot area L2 on the first surface 211A. The irradiation spot area L2 includes a metal area where the metal film 212 (metal film 212a in FIG. 7(C)) is present, and a non-metal area where the metal film 212 is not present. The metal area within the irradiation spot area L2 becomes the sensing area of the SPR ultrasonic sensor 210. In addition, the ultrasonic waves irradiated from the ultrasonic irradiator 131 form a circular irradiation area U2 on the first surface 211A that includes the metal films 212a to 212d.
 図1の収容部140の移動機構は、SPR型超音波センサ210を移動させることで、照射スポット領域L2をその短軸方向に平行移動させる。すなわち、移動機構は、レーザ光照射部121および超音波照射部131を移動させることなく、照射スポット領域L2の面積を変えることもなく、センシング領域を4つの金属膜212a~212dの中から選択することができる。 The movement mechanism of the storage unit 140 in FIG. 1 moves the SPR ultrasonic sensor 210, thereby moving the irradiation spot area L2 in parallel to its short axis direction. In other words, the movement mechanism can select the sensing area from among the four metal films 212a to 212d without moving the laser light irradiation unit 121 and the ultrasonic irradiation unit 131, and without changing the area of the irradiation spot area L2.
 例えば、超音波の周波数が比較的低い場合は、面積の大きい金属膜212aをセンシング領域とすることで、S/N比を向上させることができる。一方、超音波の周波数が比較的高い場合は、面積の小さい金属膜212dをセンシング領域とすることで、超音波の位相差の影響を低減して測定感度を向上させることができる。 For example, when the frequency of the ultrasonic waves is relatively low, the S/N ratio can be improved by using the metal film 212a, which has a large area, as the sensing region. On the other hand, when the frequency of the ultrasonic waves is relatively high, the effect of the phase difference of the ultrasonic waves can be reduced and the measurement sensitivity can be improved by using the metal film 212d, which has a small area, as the sensing region.
 以上のように、第2形態のSPR型超音波センサ210を使用すれば、比較的簡易かつ安価な構成で感度の周波数特性を向上させることができ、さらに、センシング領域の面積を容易に変更することができる。なお、SPR型超音波センサ210において、金属膜212の数は4つに限らない。また、金属膜212の配置も2次元アレイ状に設置してもよい。 As described above, by using the second form of SPR ultrasonic sensor 210, it is possible to improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration, and furthermore, it is possible to easily change the area of the sensing region. Note that in the SPR ultrasonic sensor 210, the number of metal films 212 is not limited to four. Also, the arrangement of the metal films 212 may be arranged in a two-dimensional array.
 さらに、センシング領域の面積を変更する際に、SPR型超音波センサ210を移動させることなく、レーザ光照射部121のレーザ光の照射位置を制御する(レーザ光照射部121自身を移動させる制御を含んでもよい)ことで、照射スポット領域L2をその短軸方向に平行移動させてもよい。その場合、収容部140の移動機構は不要になるが、レーザ光照射部121の照射位置を制御するレーザ制御部が必要となり、反射光の光路によってはレーザ光受光部122を移動させる必要もある。 Furthermore, when changing the area of the sensing region, the irradiation spot region L2 may be moved in parallel to its short axis direction by controlling the irradiation position of the laser light from the laser light irradiation unit 121 (which may include control to move the laser light irradiation unit 121 itself) without moving the SPR type ultrasonic sensor 210. In this case, the movement mechanism of the storage unit 140 becomes unnecessary, but a laser control unit that controls the irradiation position of the laser light irradiation unit 121 is required, and the laser light receiving unit 122 may also need to be moved depending on the optical path of the reflected light.
<第3形態のSPR型超音波センサ>
 図8に、第3形態のSPR型超音波センサ310を示す。SPR型超音波センサ310は、プリズム311と、金属膜312とを備える。プリズム311は、第1形態のプリズム111と同じ構成である。
<Third Form of SPR Type Ultrasonic Sensor>
8 shows an SPR type ultrasonic sensor 310 of the third embodiment. The SPR type ultrasonic sensor 310 includes a prism 311 and a metal film 312. The prism 311 has the same configuration as the prism 111 of the first embodiment.
 図8(A)に示すように、金属膜312は、所定の角度で入射したレーザ光を反射させる金属または合金で構成される。本形態では、銀が用いられる。銀の表面には、酸化防止膜等の保護膜を設けることができる。金属膜312は、蒸着やスパッタ等により、プリズム311の第1面311Aに直接形成される。 As shown in FIG. 8(A), the metal film 312 is made of a metal or alloy that reflects the laser light incident at a predetermined angle. In this embodiment, silver is used. A protective film such as an oxidation prevention film can be provided on the surface of the silver. The metal film 312 is formed directly on the first surface 311A of the prism 311 by deposition, sputtering, or the like.
 図8(B)に示すように、金属膜312は、第1面311Aを平面視したときに三角形となるように、第1面311Aの一部にのみ形成される。金属膜312の厚みは、本形態では50[nm]程度であるが、SPR型超音波センサ310において表面プラズモン共鳴を生じさせることができるのであれば、例えば10[nm]~100[nm]の範囲で適宜変更することができる。また、第1面311Aにおいて、金属膜312が存在しない領域に、超音波がプリズム311に侵入しない材料でできた遮断膜を形成してもよい。遮断膜は、第1形態の遮断膜113と同じ構成である。 As shown in FIG. 8B, the metal film 312 is formed only on a part of the first surface 311A so that it forms a triangle when the first surface 311A is viewed in a plan view. The thickness of the metal film 312 is about 50 nm in this embodiment, but can be changed as appropriate within a range of, for example, 10 nm to 100 nm, as long as it can cause surface plasmon resonance in the SPR ultrasonic sensor 310. Also, a blocking film made of a material that prevents ultrasonic waves from penetrating the prism 311 may be formed in an area of the first surface 311A where the metal film 312 is not present. The blocking film has the same configuration as the blocking film 113 in the first embodiment.
 図8(C)に示すように、レーザ光照射部121から照射されたレーザ光は、第1面311Aに楕円形状の照射スポット領域L3を形成する。三角形の金属膜312は、高さ方向が照射スポット領域L3の短軸方向にはみ出すように、第1面311Aの一部にのみ形成される。照射スポット領域L3には、金属膜312が存在する金属領域と、金属膜312が存在しない非金属領域とが含まれる。照射スポット領域L3内の金属領域が、SPR型超音波センサ310のセンシング領域となる。 As shown in FIG. 8(C), the laser light irradiated from the laser light irradiating unit 121 forms an elliptical irradiation spot area L3 on the first surface 311A. The triangular metal film 312 is formed only on a part of the first surface 311A so that its height extends into the minor axis direction of the irradiation spot area L3. The irradiation spot area L3 includes a metal area where the metal film 312 is present and a non-metal area where the metal film 312 is not present. The metal area within the irradiation spot area L3 becomes the sensing area of the SPR type ultrasonic sensor 310.
 第2形態の場合と同様に、図1の収容部140の移動機構は、SPR型超音波センサ310を移動させることで、照射スポット領域L3をその短軸方向に平行移動させる。すなわち、移動機構は、レーザ光照射部121および超音波照射部131を移動させることなく、照射スポット領域L3の面積を変えることもなく、センシング領域を連続的に変更できる。 As in the second embodiment, the movement mechanism of the storage unit 140 in FIG. 1 moves the SPR ultrasonic sensor 310 to move the irradiation spot area L3 in parallel to its short axis direction. In other words, the movement mechanism can continuously change the sensing area without moving the laser light irradiation unit 121 and the ultrasonic irradiation unit 131, and without changing the area of the irradiation spot area L3.
 例えば、超音波の周波数が比較的低い場合は、照射スポット領域L3を三角形の金属膜312の底辺側に移動させることで、センシング領域の面積を大きくしてS/N比を向上させることができる。一方、超音波の周波数が比較的高い場合は、照射スポット領域L3を三角形の金属膜312の底辺側とは逆側に移動させることで、センシング領域の面積を小さくして測定感度を向上させることができる。 For example, when the frequency of the ultrasonic waves is relatively low, the area of the sensing area can be increased and the S/N ratio improved by moving the irradiation spot area L3 toward the base side of the triangular metal film 312. On the other hand, when the frequency of the ultrasonic waves is relatively high, the area of the sensing area can be reduced and the measurement sensitivity improved by moving the irradiation spot area L3 to the opposite side from the base side of the triangular metal film 312.
 以上のように、第3形態のSPR型超音波センサ310を使用すれば、比較的簡易かつ安価な構成で感度の周波数特性を向上させることができ、さらに、センシング領域の面積を容易かつ連続的に変更することができる。なお、SPR型超音波センサ310において、第1面311A上での超音波の分布を計測するため、三角形の金属膜312が照射スポット領域L3の長軸方向に複数個並んで設置されていてもよい。 As described above, by using the third form of SPR ultrasonic sensor 310, it is possible to improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration, and furthermore, it is possible to easily and continuously change the area of the sensing region. In addition, in the SPR ultrasonic sensor 310, in order to measure the distribution of ultrasonic waves on the first surface 311A, multiple triangular metal films 312 may be arranged in the long axis direction of the irradiation spot region L3.
 さらに、センシング領域の面積を変更する際に、第2形態の場合と同様に、SPR型超音波センサ310を移動させることなく、レーザ光照射部121のレーザ光の照射位置を制御する(レーザ光照射部121自身を移動させる制御を含んでもよい)ことで、照射スポット領域L3をその短軸方向に平行移動させてもよい。 Furthermore, when changing the area of the sensing region, as in the second embodiment, the irradiation position of the laser light from the laser light irradiation unit 121 may be controlled (which may include control to move the laser light irradiation unit 121 itself) without moving the SPR type ultrasonic sensor 310, thereby moving the irradiation spot region L3 in parallel in its short axis direction.
<効果確認実験2>
 次に、効果確認実験2について説明する。図9(A)に、効果確認実験2の実験試料であるSPR型超音波センサ310’の正面図および平面図を示す。
<Effectiveness Confirmation Experiment 2>
Next, a description will be given of Effect Confirmation Experiment 2. Fig. 9A shows a front view and a plan view of an SPR type ultrasonic sensor 310' which is an experimental sample of Effect Confirmation Experiment 2.
 SPR型超音波センサ310’は、金属膜312の替わりに金属膜312’を設けた点を除いて、図8に示すSPR型超音波センサ310と同じ構成である。金属膜312’は、厚みが48[nm]の銀の膜であり、第1面311Aを平面視したときに、上底が0.5[mm]、下底が4[mm]、高さが10[mm]の台形となる。第1面311Aは、長辺の長さが28.2[mm]であり、短辺の長さが20[mm]である。 The SPR ultrasonic sensor 310' has the same configuration as the SPR ultrasonic sensor 310 shown in FIG. 8, except that a metal film 312' is provided instead of the metal film 312. The metal film 312' is a silver film with a thickness of 48 nm, and when the first surface 311A is viewed in plan, it is a trapezoid with an upper base of 0.5 mm, a lower base of 4 mm, and a height of 10 mm. The first surface 311A has a long side length of 28.2 mm and a short side length of 20 mm.
 効果確認実験2では、図1に示す超音波測定システム100を用いて、本実施形態に係る超音波測定方法を行った。ただし、SPR型超音波センサ110の替わりにSPR型超音波センサ310’を用いた。 In the effect confirmation experiment 2, the ultrasonic measurement method according to this embodiment was carried out using the ultrasonic measurement system 100 shown in FIG. 1. However, instead of the SPR type ultrasonic sensor 110, an SPR type ultrasonic sensor 310' was used.
 効果確認実験1で説明したように、本実施形態に係る超音波測定方法は、準備ステップと、照射ステップと、受光ステップとを含む。効果確認実験2では、図9(B)に示すA状態、B状態およびC状態のそれぞれで、準備ステップ、照射ステップおよび受光ステップを行った。各ステップは、効果確認実験1と共通するため、ここでは共通部分について説明を省略する。 As explained in Effect Confirmation Experiment 1, the ultrasonic measurement method according to this embodiment includes a preparation step, an irradiation step, and a light receiving step. In Effect Confirmation Experiment 2, the preparation step, the irradiation step, and the light receiving step were performed in each of the states A, B, and C shown in FIG. 9(B). Each step is common to Effect Confirmation Experiment 1, so a description of the common parts will be omitted here.
 照射ステップでは、プリズム311の第1面111Aに、レーザ光による楕円形状の照射スポット領域L4と、超音波による真円形状のスポット領域(図示略)が形成される。照射スポット領域L4は、長径が4.35[mm]で、短径が1.26[mm]である。超音波のスポット領域は、直径(半値全幅)が1.76[mm]である。 In the irradiation step, an elliptical irradiation spot area L4 formed by the laser light and a circular spot area (not shown) formed by the ultrasonic waves are formed on the first surface 111A of the prism 311. The irradiation spot area L4 has a major axis of 4.35 mm and a minor axis of 1.26 mm. The ultrasonic spot area has a diameter (full width at half maximum) of 1.76 mm.
 図1の収容部140の移動機構は、SPR型超音波センサ310’を移動させることで、照射スポット領域L4を平行移動させることができる。すなわち、移動機構は、レーザ光照射部121および超音波照射部131を移動させることなく、照射スポット領域L4の面積および超音波のスポット領域の面積を変えることもなく、センシング領域の面積だけを変えることができる。効果確認実験2では、A状態の時にセンシング領域の面積が最も大きくなり、C状態の時にセンシング領域の面積が最も小さくなる。 The movement mechanism of the storage section 140 in FIG. 1 can translate the irradiation spot area L4 by moving the SPR type ultrasonic sensor 310'. In other words, the movement mechanism can change only the area of the sensing area without moving the laser light irradiation section 121 and the ultrasonic irradiation section 131, and without changing the area of the irradiation spot area L4 and the area of the ultrasonic spot area. In effect confirmation experiment 2, the area of the sensing area is largest in state A, and is smallest in state C.
 図10(A)に、受光ステップにおいて、レーザ光受光部122が受光した反射光の交流成分の振幅データを示す(波形A~C)。波形Aは、図9(B)のA状態の時の反射光の交流成分の波形である。波形Bは、図9(B)のB状態の時の反射光の交流成分の波形である。波形Cは、図9(B)のC状態の時の反射光の交流成分の波形である。 Figure 10 (A) shows amplitude data of the AC component of the reflected light received by the laser light receiving unit 122 in the light receiving step (waveforms A to C). Waveform A is the waveform of the AC component of the reflected light in state A of Figure 9 (B). Waveform B is the waveform of the AC component of the reflected light in state B of Figure 9 (B). Waveform C is the waveform of the AC component of the reflected light in state C of Figure 9 (B).
 また図10(A)では、効果確認実験1と同様に、超音波照射部131が出力した超音波(5[MHz]の超音波パルス)の振幅データを示す(波形D)。波形Dは、効果確認実験1と同様に、校正用ハイドロフォンで直接検出した超音波の波形である。なお、校正用ハイドロフォンの有効径は、1.00[mm]である。 FIG. 10(A) also shows the amplitude data of the ultrasound (ultrasonic pulse of 5 MHz) output by the ultrasound irradiation unit 131 (waveform D), as in Effect Confirmation Experiment 1. Waveform D is the waveform of the ultrasound detected directly by the calibration hydrophone, as in Effect Confirmation Experiment 1. The effective diameter of the calibration hydrophone is 1.00 mm.
 図10(A)から分かるように、波形A~Cは、波形Dと比較して、立ち上がりと負の第1ピークの形状がわずかに異なるものの、全体的に波形Dとほぼ一致する。このことから、SPR型超音波センサ310’を用いた本実施形態に係る超音波測定方法によれば、超音波照射部131が出力した超音波を、レーザ光受光部122が受光したレーザ光(反射光)の交流成分として検出できることが分かる。 As can be seen from FIG. 10(A), waveforms A to C are slightly different from waveform D in the shape of the rising edge and the first negative peak, but overall they are almost identical to waveform D. This shows that the ultrasonic measurement method according to this embodiment using the SPR ultrasonic sensor 310' can detect the ultrasonic waves output by the ultrasonic irradiation unit 131 as an AC component of the laser light (reflected light) received by the laser light receiving unit 122.
 図10(B)に、レーザ光受光部122が受光した反射光の交流成分の周波数特性を示す。図10(B)に示すA~Cのグラフは、それぞれ図10(A)に示す波形A~Cに対し、効果確認実験1と同様に周波数解析を行って取得したものである。 Figure 10(B) shows the frequency characteristics of the AC component of the reflected light received by the laser light receiving unit 122. Graphs A to C shown in Figure 10(B) were obtained by performing frequency analysis on waveforms A to C shown in Figure 10(A) in the same manner as in Effect Confirmation Experiment 1.
 図10(B)では、校正用ハイドロフォンで直接検出した超音波の振幅値を1としている。図10(B)から分かるように、A,Bは、周波数が4[MHz]以上の領域で測定感度が低下しているのに対して、センシング領域の面積が最も小さいCは、測定感度が低下していない。すなわち、SPR型超音波センサ310’を用いた本実施形態に係る超音波測定方法によれば、周波数が4[MHz]以上の場合にセンシング領域をCの状態にすることで、感度の周波数特性を向上させることができる。 In FIG. 10(B), the amplitude value of the ultrasonic waves directly detected by the calibration hydrophone is set to 1. As can be seen from FIG. 10(B), A and B have reduced measurement sensitivity in the frequency range of 4 MHz or more, whereas C, which has the smallest sensing area, does not have reduced measurement sensitivity. In other words, according to the ultrasonic measurement method of this embodiment using the SPR ultrasonic sensor 310', the frequency characteristic of sensitivity can be improved by setting the sensing area to state C when the frequency is 4 MHz or more.
 よって、本実施形態に係る超音波測定方法は、レーザ光の照射スポット領域L4および超音波のスポット領域を第1面111Aにおいて平行移動させる移動ステップを含むことが好ましい。移動ステップでは、例えば、収容部140の移動機構(移動機構の制御部)が、超音波照射部131が出力する超音波の周波数と予め設定された設定周波数(例えば、4[MHz])とを比較し、周波数と設定周波数との大小関係に応じてSPR型超音波センサ310’を移動させ、センシング領域の面積を増加または減少させることが好ましい。なお、本実験結果は一例であり、本発明は、効果確認実験2で説明する上記の条件に限定されるものではない。 Therefore, the ultrasonic measurement method according to this embodiment preferably includes a moving step of moving the laser light irradiation spot area L4 and the ultrasonic spot area in parallel on the first surface 111A. In the moving step, for example, the moving mechanism (controller of the moving mechanism) of the storage section 140 preferably compares the frequency of the ultrasonic waves output by the ultrasonic irradiation section 131 with a preset frequency (e.g., 4 MHz), and moves the SPR ultrasonic sensor 310' according to the magnitude relationship between the frequency and the set frequency, thereby increasing or decreasing the area of the sensing region. Note that the results of this experiment are merely an example, and the present invention is not limited to the above conditions described in Effect Confirmation Experiment 2.
[第2実施形態]
 図11に、本発明の第2実施形態に係る超音波測定システム200を示す。超音波測定システム200は、第2形態のSPR型超音波センサ210と、レーザ光送受信部220と、超音波発生装置230とを備える。
[Second embodiment]
11 shows an ultrasonic measurement system 200 according to the second embodiment of the present invention. The ultrasonic measurement system 200 includes an SPR ultrasonic sensor 210 of the second embodiment, a laser light transmitting and receiving unit 220, and an ultrasonic generator 230.
 SPR型超音波センサ210は、金属膜212の表面が被検体240に直接接触するように配置される。被検体240は、本発明の「測定対象」に相当し、光吸収体241を含む。なお、超音波測定システム200では、第2形態のSPR型超音波センサ210の代わりに、第1形態のSPR型超音波センサ110または第3形態のSPR型超音波センサ310を用いることができる。 The SPR type ultrasonic sensor 210 is arranged so that the surface of the metal film 212 is in direct contact with the specimen 240. The specimen 240 corresponds to the "measurement object" of the present invention, and includes a light absorber 241. Note that in the ultrasonic measurement system 200, the first type SPR type ultrasonic sensor 110 or the third type SPR type ultrasonic sensor 310 can be used instead of the second type SPR type ultrasonic sensor 210.
 レーザ光送受信部220は、レーザ光照射部221と、レーザ光受光部222と、表示部223と、レーザ制御部224とを備える。レーザ光照射部221、レーザ光受光部222および表示部223は、第1実施形態のレーザ光照射部121、レーザ光受光部122および表示部123と同じ構成である。レーザ光照射部221は、例えば、図7(C)に示すように、プリズム211の第1面211Aに楕円形状の照射スポット領域L2を形成する。 The laser light transmitting/receiving unit 220 includes a laser light emitting unit 221, a laser light receiving unit 222, a display unit 223, and a laser control unit 224. The laser light emitting unit 221, the laser light receiving unit 222, and the display unit 223 have the same configuration as the laser light emitting unit 121, the laser light receiving unit 122, and the display unit 123 of the first embodiment. The laser light emitting unit 221 forms an elliptical irradiation spot area L2 on the first surface 211A of the prism 211, as shown in FIG. 7(C), for example.
 レーザ制御部224は、レーザ光照射部221のレーザ光の照射位置を制御するよう構成される。具体的には、レーザ制御部224は、照射スポット領域L2がその短軸方向に平行移動するように、レーザ光照射部221を制御してレーザ光の照射位置を移動させる。レーザ光の照射位置の移動に関しては、レーザ制御部224の制御下で、レーザ光照射部221自身が移動してもよいし、レーザ光の照射方向のみを微調整してもよい。いずれの場合も、レーザ制御部224は、照射スポット領域L2を平行移動させることで、照射スポット領域L2の面積を変えることなく、センシング領域の面積を調整することができる。 The laser control unit 224 is configured to control the irradiation position of the laser light from the laser light irradiation unit 221. Specifically, the laser control unit 224 controls the laser light irradiation unit 221 to move the irradiation position of the laser light so that the irradiation spot area L2 moves parallel to its short axis direction. Regarding the movement of the irradiation position of the laser light, the laser light irradiation unit 221 itself may move under the control of the laser control unit 224, or only the irradiation direction of the laser light may be finely adjusted. In either case, the laser control unit 224 can adjust the area of the sensing area without changing the area of the irradiation spot area L2 by moving the irradiation spot area L2 parallel to the short axis direction.
 例えば、面積の大きい金属膜212aをセンシング領域とすることで、S/N比を向上させることができる一方、面積の小さい金属膜212dをセンシング領域とすることで、超音波の位相差の影響を低減して測定感度を向上させることができる。 For example, by using the metal film 212a with a large area as the sensing region, the S/N ratio can be improved, while by using the metal film 212d with a small area as the sensing region, the effect of the phase difference of the ultrasonic waves can be reduced and measurement sensitivity can be improved.
 超音波発生装置230は、被検体240に向けてパルス光(例えば、フェムト秒またはピコ秒領域のパルス光)を出力するよう構成される。すなわち、本実施形態の超音波発生装置230は、パルス光を出力するパルス光照射部を含む。超音波発生装置230から出力されたパルス光が被検体240に含まれる光吸収体241に照射されると、光吸収体241は、光音響効果による超音波を発生させる。光音響効果による超音波がSPR型超音波センサ210のセンシング領域に到達することで、超音波測定システム200は、当該超音波をレーザ光(反射光)の交流成分として検出することができる。 The ultrasonic generator 230 is configured to output pulsed light (e.g., pulsed light in the femtosecond or picosecond range) toward the subject 240. That is, the ultrasonic generator 230 of this embodiment includes a pulsed light irradiator that outputs pulsed light. When the pulsed light output from the ultrasonic generator 230 is irradiated onto the light absorber 241 included in the subject 240, the light absorber 241 generates ultrasonic waves due to the photoacoustic effect. When the ultrasonic waves due to the photoacoustic effect reach the sensing region of the SPR ultrasonic sensor 210, the ultrasonic measurement system 200 can detect the ultrasonic waves as AC components of the laser light (reflected light).
 以上のように、本実施形態に係る超音波測定システム200によれば、比較的簡易かつ安価な構成で感度の周波数特性を向上させることができ、さらに、センシング領域の面積を容易かつ連続的に変更することができる。 As described above, the ultrasonic measurement system 200 according to this embodiment can improve the frequency characteristics of sensitivity with a relatively simple and inexpensive configuration, and furthermore, can easily and continuously change the area of the sensing region.
 なお、センシング領域の面積を変更する際に、レーザ光照射部221のレーザ光の照射位置を移動させることなく、SPR型超音波センサ210を被検体の表面において移動させることで、照射スポット領域L2をその短軸方向に平行移動させてもよい。その場合、レーザ制御部224は不要となるが、SPR型超音波センサ210を移動させるための移動機構が必要となる。 When changing the area of the sensing region, the irradiation spot region L2 may be moved in parallel in the short axis direction by moving the SPR ultrasonic sensor 210 on the surface of the subject without moving the laser light irradiation position of the laser light irradiation unit 221. In this case, the laser control unit 224 is not necessary, but a movement mechanism for moving the SPR ultrasonic sensor 210 is required.
 以上、本発明に係るSPR型超音波センサの各形態および超音波測定システムの各実施形態について説明したが、本発明は上記各形態および各実施形態に限定されるものではない。  Although the various forms of the SPR type ultrasonic sensor and the various embodiments of the ultrasonic measurement system according to the present invention have been described above, the present invention is not limited to the above forms and embodiments.
 本発明に係るSPR型超音波センサは、第1面を有し、レーザ光を透過させるプリズムと、第1面上に形成され、レーザ光を反射させる金属膜とを備え、金属膜へのレーザ光の入射により表面プラズモン共鳴を生じさせ、かつ金属膜へ超音波が照射されると共鳴角をシフトさせるSPR型超音波センサであって、金属膜は、第1面に形成されるレーザ光の照射スポット領域に金属膜が存在する金属領域と金属膜が存在しない非金属領域とが含まれるように、第1面の一部にのみ形成されているのであれば、適宜構成を変更できる。 The SPR ultrasonic sensor according to the present invention is an SPR ultrasonic sensor that has a first surface, includes a prism that transmits laser light, and a metal film formed on the first surface that reflects the laser light, and generates surface plasmon resonance when the laser light is incident on the metal film, and shifts the resonance angle when ultrasonic waves are irradiated onto the metal film. The configuration of the metal film can be modified as appropriate as long as it is formed only on a portion of the first surface so that the irradiation spot area of the laser light formed on the first surface includes a metal area where the metal film is present and a non-metal area where the metal film is not present.
 例えば、本発明の金属領域は、レーザ光の入射により表面プラズモン共鳴を生じさせる金属膜が存在する領域であるため、本発明の非金属領域には、レーザ光の入射により表面プラズモン共鳴を生じさせない金属が含まれていてもよい。 For example, since the metal region of the present invention is a region containing a metal film that generates surface plasmon resonance upon incidence of laser light, the non-metal region of the present invention may contain a metal that does not generate surface plasmon resonance upon incidence of laser light.
 第1形態の金属膜112は、第1面111Aを平面視したときに円形となるように、第1面111Aの一部にのみ形成されているが、センシング領域を照射スポット領域L1よりも小さくできるのであれば、円形以外の形状(例えば、多角形)でもよい。 The metal film 112 in the first form is formed only on a part of the first surface 111A so that it is circular when the first surface 111A is viewed in a plan view, but it may be a shape other than circular (e.g., polygonal) as long as the sensing area can be made smaller than the irradiation spot area L1.
 第2形態の金属膜212は、第1面211Aを平面視したときに面積の異なる複数の多角形となるように形成されていてもよい。また、第3形態の金属膜312は、第1面311Aを平面視したときに台形となり、かつ高さ方向が照射スポット領域L3の短軸方向からはみ出すように形成されていてもよい。すなわち、第2形態または第3形態の金属膜は、照射スポット領域の平行移動に伴いセンシング領域の面積が増加または減少するのであれば、任意の形状とすることができる。 The metal film 212 of the second form may be formed to have a plurality of polygons with different areas when the first surface 211A is viewed in a plan view. The metal film 312 of the third form may be formed to have a trapezoid when the first surface 311A is viewed in a plan view, and to have a height direction that extends beyond the minor axis direction of the irradiation spot area L3. In other words, the metal film of the second or third form may be formed to have any shape as long as the area of the sensing area increases or decreases with the parallel movement of the irradiation spot area.
 上記実施形態では、照射スポット領域を金属膜上で平行移動させるための構成として、移動機構またはレーザ制御部のどちらか一方を備えるシステムについて説明したが、移動機構およびレーザ制御部の双方を備えていてもよいし、これら以外の構成により照射スポット領域を平行移動させてもよい。 In the above embodiment, a system has been described that includes either a movement mechanism or a laser control unit as a configuration for moving the irradiation spot area in parallel on the metal film, but it may also include both a movement mechanism and a laser control unit, or the irradiation spot area may be moved in parallel using a configuration other than these.
 本発明に係るSPR型超音波センサは、超音波の測定感度を向上させるための受音層を用いなくても、感度の周波数特性を向上させることができる。超音波の測定感度を向上させるための受音層は、例えば、従来技術で説明した特許文献1に記載の受音層や特許文献2に記載の受力層である。 The SPR type ultrasonic sensor according to the present invention can improve the frequency characteristics of sensitivity without using a sound receiving layer for improving the measurement sensitivity of ultrasonic waves. The sound receiving layer for improving the measurement sensitivity of ultrasonic waves is, for example, the sound receiving layer described in Patent Document 1 or the force receiving layer described in Patent Document 2 described in the prior art.
100,200  超音波測定システム
110,210,310  SPR型超音波センサ
111,211,311  プリズム
112,212,312  金属膜
120,220  レーザ光送受信部
121,221  レーザ光照射部
122,222  レーザ光受光部
123,223  表示部
224  レーザ制御部
130,230  超音波発生装置
131  超音波照射部
132  超音波制御部
140  収容部
240  被検体
241  光吸収体
100, 200 Ultrasonic measurement system 110, 210, 310 SPR type ultrasonic sensor 111, 211, 311 Prism 112, 212, 312 Metal film 120, 220 Laser light transmitting/receiving unit 121, 221 Laser light irradiating unit 122, 222 Laser light receiving unit 123, 223 Display unit 224 Laser control unit 130, 230 Ultrasonic generator 131 Ultrasonic irradiating unit 132 Ultrasonic control unit 140 Container unit 240 Specimen 241 Light absorber

Claims (16)

  1.  第1面を有し、レーザ光を透過させるプリズムと、
     前記第1面上に形成され、前記レーザ光を反射させる金属膜(超音波の測定感度を向上させるための受音層が形成されたものを除く)と、
    を備え、前記金属膜への前記レーザ光の入射により表面プラズモン共鳴を生じさせ、かつ前記金属膜へ超音波が照射されると共鳴角をシフトさせるSPR型超音波センサであって、
     前記金属膜は、前記第1面に形成される前記レーザ光の照射スポット領域に前記金属膜が存在する金属領域と前記金属膜が存在しない非金属領域とが含まれ、かつ前記第1面に形成される前記超音波の照射領域に前記金属領域が含まれるように、前記第1面の一部にのみ形成されている
    ことを特徴とするSPR型超音波センサ。
    a prism having a first surface and transmitting laser light;
    A metal film (excluding those having a sound receiving layer for improving measurement sensitivity of ultrasonic waves) formed on the first surface and reflecting the laser light;
    an SPR type ultrasonic sensor that generates surface plasmon resonance by the incidence of the laser light on the metal film and shifts a resonance angle when the metal film is irradiated with ultrasonic waves,
    The SPR type ultrasonic sensor is characterized in that the metal film is formed only on a part of the first surface such that an irradiation spot area of the laser light formed on the first surface includes a metal area where the metal film is present and a non-metal area where the metal film is not present, and such that an irradiation area of the ultrasonic wave formed on the first surface includes the metal area.
  2.  前記金属膜は、前記照射スポット領域の外側にも形成されており、
     前記照射スポット領域内の前記金属領域をセンシング領域とした場合、前記照射スポット領域を前記第1面において平行移動させると、前記センシング領域の面積が増加または減少する
    ことを特徴とする請求項1に記載のSPR型超音波センサ。
    The metal film is also formed outside the irradiation spot area,
    2. The SPR type ultrasonic sensor according to claim 1, wherein when the metal region within the irradiation spot region is defined as a sensing region, the area of the sensing region increases or decreases when the irradiation spot region is translated on the first surface.
  3.  前記金属膜は、前記第1面を平面視したときに面積の異なる複数の円形および/または多角形となるように、前記第1面に離散的に形成されている
    ことを特徴とする請求項2に記載のSPR型超音波センサ。
    3. The SPR type ultrasonic sensor according to claim 2, wherein the metal film is discretely formed on the first surface so as to form a plurality of circles and/or polygons having different areas when the first surface is viewed in a plan view.
  4.  前記金属膜は、前記第1面を平面視したときに三角形および/または台形となり、かつ前記三角形および/または台形の高さ方向が前記照射スポット領域からはみ出すように、前記第1面に形成されている
    ことを特徴とする請求項2に記載のSPR型超音波センサ。
    3. The SPR type ultrasonic sensor according to claim 2, characterized in that the metal film is formed on the first surface so as to have a triangular and/or trapezoidal shape when the first surface is viewed in a plane, and so that the height direction of the triangle and/or trapezoid extends beyond the irradiation spot area.
  5.  前記第1面の前記金属膜が形成されていない領域には、前記プリズムへの前記超音波の侵入を抑制するための遮断膜が形成されている
    ことを特徴とする請求項2に記載のSPR型超音波センサ。
    3. The SPR type ultrasonic sensor according to claim 2, wherein a blocking film is formed in an area of the first surface where the metal film is not formed, for suppressing the ultrasonic waves from entering the prism.
  6.  前記金属膜は、表面に酸化防止用の保護膜が形成されている
    ことを特徴とする請求項2に記載のSPR型超音波センサ。
    3. The SPR type ultrasonic sensor according to claim 2, wherein a protective film for preventing oxidation is formed on the surface of the metal film.
  7.  前記保護膜は、金を含む膜である
    ことを特徴とする請求項6に記載のSPR型超音波センサ。
    7. The SPR type ultrasonic sensor according to claim 6, wherein the protective film is a film containing gold.
  8.  レーザ光を照射するレーザ光照射部と、
     超音波を発生させる超音波発生装置と、
     第1面を有するプリズムと前記第1面上に形成された金属膜とを備え、前記金属膜への前記レーザ光の入射により表面プラズモン共鳴を生じさせ、かつ前記金属膜への前記超音波の照射により共鳴角をシフトさせるSPR型超音波センサと、
     前記金属膜と前記プリズムとの界面で反射した前記レーザ光の反射光を受光するレーザ光受光部と、
    を備える超音波測定システムであって、
     前記金属膜は、前記第1面の一部にのみ形成されており、
     前記レーザ光照射部は、前記第1面に形成される前記レーザ光の照射スポット領域に前記金属膜が存在する金属領域と前記金属膜が存在しない非金属領域とが含まれるように、前記レーザ光を照射し、
     前記超音波発生装置は、前記第1面に形成される前記超音波の照射領域に前記金属領域が含まれるように、前記レーザ光の照射時に前記超音波を発生させ、
     前記超音波は、前記超音波の測定感度を向上させるための受音層を介することなく、前記金属膜に照射される
    ことを特徴とする超音波測定システム。
    a laser light irradiation unit that irradiates laser light;
    An ultrasonic generator that generates ultrasonic waves;
    an SPR type ultrasonic sensor comprising a prism having a first surface and a metal film formed on the first surface, wherein the laser light is incident on the metal film to generate surface plasmon resonance, and the metal film is irradiated with the ultrasonic wave to shift a resonance angle;
    a laser beam receiving unit that receives the laser beam reflected at an interface between the metal film and the prism;
    An ultrasonic measurement system comprising:
    the metal film is formed only on a portion of the first surface,
    the laser light irradiation unit irradiates the laser light such that an irradiation spot region of the laser light formed on the first surface includes a metal region in which the metal film is present and a non-metal region in which the metal film is not present,
    the ultrasonic generator generates ultrasonic waves when irradiating the laser light such that the metallic region is included in an irradiated region of the ultrasonic waves formed on the first surface;
    An ultrasonic measurement system, characterized in that the ultrasonic waves are irradiated to the metal film without passing through a sound receiving layer for improving measurement sensitivity of the ultrasonic waves.
  9.  前記金属膜は、前記照射スポット領域の外側にも形成されており、
     前記照射スポット領域内の前記金属領域をセンシング領域とした場合、前記照射スポット領域を前記第1面において平行移動させると、前記センシング領域の面積が増加または減少する
    ことを特徴とする請求項8に記載の超音波測定システム。
    The metal film is also formed outside the irradiation spot area,
    The ultrasonic measurement system of claim 8, characterized in that when the metal area within the irradiation spot area is defined as a sensing area, the area of the sensing area increases or decreases when the irradiation spot area is translated in parallel on the first plane.
  10.  前記金属膜は、前記第1面を平面視したときに面積の異なる複数の円形および/または多角形となるように、前記第1面に離散的に形成されている
    ことを特徴とする請求項9に記載の超音波測定システム。
    The ultrasonic measurement system according to claim 9, characterized in that the metal film is discretely formed on the first surface so as to form a plurality of circles and/or polygons having different areas when the first surface is viewed in a plane.
  11.  前記金属膜は、前記第1面を平面視したときに三角形および/または台形となり、かつ前記三角形および/または台形の高さ方向が前記照射スポット領域からはみ出すように、前記第1面に形成されている
    ことを特徴とする請求項9に記載の超音波測定システム。
    The ultrasonic measurement system of claim 9, characterized in that the metal film is formed on the first surface so as to have a triangular and/or trapezoidal shape when the first surface is viewed in a plane, and so that the height direction of the triangle and/or trapezoid extends beyond the irradiation spot area.
  12.  前記SPR型超音波センサは、前記第1面の前記金属膜が形成されていない領域に、前記プリズムへの前記超音波の侵入を抑制するための遮断膜が形成されている
    ことを特徴とする請求項9に記載の超音波測定システム。
    10. The ultrasonic measurement system according to claim 9, wherein the SPR type ultrasonic sensor has a blocking film formed in an area of the first surface where the metal film is not formed, for suppressing the ultrasonic waves from entering the prism.
  13.  検体溶液を収容し、前記SPR型超音波センサを前記検体溶液中に設置する収容部をさらに備え、
     前記超音波発生装置は、前記超音波を前記検体溶液中に照射する超音波トランスデューサを備える
    ことを特徴とする請求項9に記載の超音波測定システム。
    A container for containing a sample solution and for placing the SPR ultrasonic sensor in the sample solution,
    10. The ultrasonic measurement system according to claim 9, wherein the ultrasonic generator comprises an ultrasonic transducer that irradiates the ultrasonic wave into the sample solution.
  14.  前記SPR型超音波センサは、前記金属膜の前記第1面とは逆側に、光吸収体を含む測定対象が接触するように配置され、
     前記超音波発生装置は、前記測定対象にパルス光を出力して前記光吸収体から光音響効果による前記超音波を発生させる
    ことを特徴とする請求項9に記載の超音波測定システム。
    the SPR type ultrasonic sensor is disposed so that a measurement target including a light absorber is in contact with the side of the metal film opposite to the first surface,
    10. The ultrasonic measurement system according to claim 9, wherein the ultrasonic generator outputs pulsed light to the measurement object to generate the ultrasonic waves from the light absorber by a photoacoustic effect.
  15.  前記SPR型超音波センサを移動させることで、前記照射スポット領域を前記金属膜上で平行移動させる移動機構を備える
    ことを特徴とする請求項13に記載の超音波測定システム。
    14. The ultrasonic measurement system according to claim 13, further comprising a moving mechanism for moving the SPR ultrasonic sensor to move the irradiation spot area in a parallel manner on the metal film.
  16.  前記レーザ光照射部を制御して前記レーザ光の照射位置を移動させることで、前記照射スポット領域を前記金属膜上で平行移動させるレーザ制御部を備える
    ことを特徴とする請求項13に記載の超音波測定システム。
    The ultrasonic measurement system according to claim 13, further comprising a laser control unit that controls the laser light irradiation unit to move the irradiation position of the laser light, thereby moving the irradiation spot area in a parallel direction on the metal film.
PCT/JP2023/038205 2022-11-02 2023-10-23 Spr ultrasonic sensor and ultrasonic measurement system WO2024095808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022176422 2022-11-02
JP2022-176422 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095808A1 true WO2024095808A1 (en) 2024-05-10

Family

ID=90930311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038205 WO2024095808A1 (en) 2022-11-02 2023-10-23 Spr ultrasonic sensor and ultrasonic measurement system

Country Status (1)

Country Link
WO (1) WO2024095808A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257697A (en) * 1996-03-21 1997-10-03 Toto Ltd Surface plasmon resonance sensor apparatus
JP2010245599A (en) * 2009-04-01 2010-10-28 Panasonic Corp Optical microphone
JP2013120145A (en) * 2011-12-08 2013-06-17 Panasonic Corp Optical force sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257697A (en) * 1996-03-21 1997-10-03 Toto Ltd Surface plasmon resonance sensor apparatus
JP2010245599A (en) * 2009-04-01 2010-10-28 Panasonic Corp Optical microphone
JP2013120145A (en) * 2011-12-08 2013-06-17 Panasonic Corp Optical force sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHOYA UENO: "3P1-2 Surface plasmon resonance sensor for ultrasound in the MHz range", PROCEEDINGS OF SYMPOSIUM ON ULTRASONIC ELECTRONICS, INSTITUTE FOR ULTRASONIC ELECRONICS, vol. 40, 25 November 2019 (2019-11-25), pages 3P1 - 2, XP093168031, ISSN: 1348-8236, DOI: 10.24492/use.40.0_3P1-2 *
SHUTO NAKATSUJI: "2Pb2-1 Local measurement of ultrasonic pulse wave by SPR type sensors", PROCEEDINGS OF SYMPOSIUM ON ULTRASONIC ELECTRONICS, INSTITUTE FOR ULTRASONIC ELECRONICS, vol. 43, 7 November 2022 (2022-11-07), XP093168039, ISSN: 1348-8236, DOI: 10.24492/use.43.0_2Pb2-1 *
SONG WEI; XIAO SIJIE; MIN CHANGJUN; FANG HUI; YUAN XIAOCONG: "Theoretical and experimental studies on broadband photoacoustic response of surface plasmon sensing", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 116, no. 24, 16 June 2020 (2020-06-16), XP012247780, ISSN: 0003-6951, DOI: 10.1063/5.0004217 *

Similar Documents

Publication Publication Date Title
US6188478B1 (en) Method and apparatus for film-thickness measurements
Paltauf et al. Measurement of laser-induced acoustic waves with a calibrated optical transducer
WO1999061867A1 (en) An apparatus and method for measuring a property of a structure comprising at least one layer
US7852488B2 (en) Method and device for characterising a structure by wavelength effect in a photoacoustic system
KR20210127695A (en) Apparatus and method for testing the test object
US20140133280A1 (en) Fiber Optic Hydrophone Sensors And Uses Thereof
CA2810630C (en) Measuring apparatus and measuring method for metallic microstructures or material properties
JP2011004790A (en) Photoacoustic measurement apparatus
CN1137371C (en) Short-pulse laser and ultrasonic method and equipment for presisely measuring thickness
Costley Jr et al. Dispersion curve analysis of laser-generated Lamb waves
WO2024095808A1 (en) Spr ultrasonic sensor and ultrasonic measurement system
WO2012102350A1 (en) Surface plasmon sensor and refractive index measurement method
KR100496826B1 (en) Apparatus and method of noncontact measurement of crystal grain size
JPH05172739A (en) Method of measuring ultrahigh speed surface vibration by means of ultrashort pulse light
JP2007170960A (en) Apparatus and method for measuring thermoelastic property
Buma et al. High frequency ultrasonic imaging using optoacoustic arrays
EP0582384A2 (en) Spectroscopic imaging system with ultrasonic detection of absorption of modulated electromagnetic radiation
US20220047168A1 (en) Device for optoacoustic imaging and corresponding control method
US7281429B2 (en) Optical hydrophone for a shock-wave field with long service life
US10247659B2 (en) Device for characterizing an interface of a structure and corresponding device
Yamaguchi et al. Probing focused sound fields using optical-beam deflection method
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
JPH03205557A (en) Probe of ultrasonic microscope
WO2021048951A1 (en) Photoacoustic probe
JPH1038856A (en) Light absorptance measuring instrument and measuring method