WO2024095780A1 - Substrate processing system and substrate processing method - Google Patents
Substrate processing system and substrate processing method Download PDFInfo
- Publication number
- WO2024095780A1 WO2024095780A1 PCT/JP2023/037811 JP2023037811W WO2024095780A1 WO 2024095780 A1 WO2024095780 A1 WO 2024095780A1 JP 2023037811 W JP2023037811 W JP 2023037811W WO 2024095780 A1 WO2024095780 A1 WO 2024095780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- fluid
- supply line
- temperature
- substrate
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 489
- 239000000758 substrate Substances 0.000 title claims abstract description 163
- 238000003672 processing method Methods 0.000 title claims description 6
- 239000012530 fluid Substances 0.000 claims abstract description 346
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000007788 liquid Substances 0.000 claims description 106
- 230000007246 mechanism Effects 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000008531 maintenance mechanism Effects 0.000 claims description 6
- 230000001276 controlling effect Effects 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000009529 body temperature measurement Methods 0.000 abstract description 11
- 235000012431 wafers Nutrition 0.000 description 156
- 238000001035 drying Methods 0.000 description 119
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 42
- 238000012986 modification Methods 0.000 description 26
- 230000004048 modification Effects 0.000 description 26
- 238000012546 transfer Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 21
- 230000006399 behavior Effects 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000000352 supercritical drying Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- the disclosed embodiments relate to a substrate processing system and a substrate processing method.
- a substrate processing apparatus that forms a liquid film to prevent drying on the surface of a substrate such as a semiconductor wafer (hereinafter referred to as a wafer), and then brings the wafer on which the liquid film has been formed into contact with a processing fluid in a supercritical state to perform a drying process (see, for example, Patent Document 1).
- This disclosure provides technology that allows stable processing of wafers with processing fluid.
- a substrate processing system includes a processing fluid supply device, a substrate processing device, a supply line, and a temperature measurement unit.
- the processing fluid supply device supplies a processing fluid adjusted to a given temperature.
- the substrate processing device processes a substrate with the processing fluid supplied from the processing fluid supply device.
- a supply line is connected between the processing fluid supply device and the substrate processing device.
- the temperature measurement unit measures at least one of the temperature of the processing fluid and the temperature of the supply line in the supply line.
- wafers can be stably processed with processing fluid.
- FIG. 1 is a diagram showing an example of the configuration of a substrate processing apparatus according to an embodiment.
- FIG. 2 is a diagram illustrating an example of the configuration of a liquid processing unit according to the embodiment.
- FIG. 3 is a schematic perspective view illustrating a configuration example of the drying unit according to the embodiment.
- FIG. 4 is a diagram showing an example of the overall system configuration of the substrate processing system according to the embodiment.
- FIG. 5 is a diagram illustrating an example of a piping configuration of the substrate processing system according to the embodiment.
- FIG. 6 is a diagram showing an example of a piping configuration of a substrate processing system according to a first modified example of the embodiment.
- FIG. 7 is a diagram showing an example of the operation of the substrate processing system according to the first modification of the embodiment.
- FIG. 1 is a diagram showing an example of the configuration of a substrate processing apparatus according to an embodiment.
- FIG. 2 is a diagram illustrating an example of the configuration of a liquid processing unit according to the embodiment.
- FIG. 8 is a diagram showing an example of the operation of the substrate processing system according to the first modification of the embodiment.
- FIG. 9 is a diagram showing an example of a piping configuration of a substrate processing system according to a second modification of the embodiment.
- FIG. 10 is a diagram showing an example of a piping configuration of a substrate processing system according to a third modification of the embodiment.
- FIG. 11 is a diagram showing an example of a piping configuration of a substrate processing system according to the fourth modification of the embodiment.
- FIG. 12 is a flowchart showing a procedure for substrate processing according to the embodiment.
- FIG. 13 is a flowchart showing a substrate processing procedure according to the first to fourth modified examples of the embodiment.
- substrate processing apparatuses that form a liquid film to prevent drying on the surface of a substrate such as a semiconductor wafer (hereinafter referred to as a wafer), and then bring the wafer with the liquid film formed thereon into contact with a processing fluid in a supercritical state to perform a drying process.
- a substrate such as a semiconductor wafer (hereinafter referred to as a wafer)
- a processing fluid in a supercritical state
- the first wafer may end up in a different processing state from the second and subsequent wafers after processing begins.
- Fig. 1 is a diagram showing an example of the configuration of a substrate processing apparatus 1 according to an embodiment.
- an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as the vertical upward direction.
- the substrate processing apparatus 1 includes a loading/unloading station 2 and a processing station 3.
- the loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
- the loading/unloading station 2 includes a carrier placement section 11 and a transport section 12.
- a plurality of carriers C each of which holds a plurality of semiconductor wafers W (hereinafter referred to as "wafers W") in a horizontal position, are placed on the carrier placement section 11.
- the transport section 12 is provided adjacent to the carrier placement section 11. Inside the transport section 12, a transport device 13 and a delivery section 14 are arranged.
- the transfer device 13 is equipped with a wafer holding mechanism that holds the wafer W.
- the transfer device 13 is also capable of moving in the horizontal and vertical directions and rotating around a vertical axis, and transfers the wafer W between the carrier C and the transfer section 14 using the wafer holding mechanism.
- the processing station 3 is located adjacent to the transport section 12.
- the processing station 3 includes a transport block 4 and a plurality of processing blocks 5.
- the transport block 4 includes a transport area 15 and a transport device 16.
- the transport area 15 is, for example, a rectangular parallelepiped region extending along the arrangement direction (X-axis direction) of the loading/unloading stations 2 and the processing stations 3.
- the transport device 16 is disposed in the transport area 15.
- the transfer device 16 is equipped with a wafer holding mechanism that holds the wafer W.
- the transfer device 16 is also capable of moving in the horizontal and vertical directions and rotating around a vertical axis, and uses the wafer holding mechanism to transfer the wafer W between the transfer section 14 and the multiple processing blocks 5.
- the multiple processing blocks 5 are arranged adjacent to the transport area 15 on both sides of the transport area 15. Specifically, the multiple processing blocks 5 are arranged on one side (positive Y-axis direction) and the other side (negative Y-axis direction) of the transport area 15 in a direction (Y-axis direction) perpendicular to the arrangement direction (X-axis direction) of the loading/unloading stations 2 and processing stations 3.
- the multiple processing blocks 5 are arranged in multiple stages (for example, three stages) along the vertical direction.
- the wafers W are transported between the processing blocks 5 arranged in each stage and the transfer section 14 by a single transport device 16 arranged in the transport block 4.
- the number of stages of the multiple processing blocks 5 is not limited to three.
- Each processing block 5 includes a liquid processing unit 17, a drying unit 18, and a supply unit 19.
- the drying unit 18 is an example of a processing chamber.
- the liquid processing unit 17 performs a cleaning process to clean the top surface of the wafer W, which is the pattern formation surface.
- the liquid processing unit 17 also performs a liquid film formation process to form a liquid film on the top surface of the wafer W after the cleaning process.
- the configuration of the liquid processing unit 17 will be described later.
- the drying unit 18 performs a supercritical drying process on the wafer W after the liquid film formation process. Specifically, the drying unit 18 dries the wafer W by bringing the wafer W after the liquid film formation process into contact with a processing fluid in a supercritical state (hereinafter also referred to as "supercritical fluid"). The configuration of the drying unit 18 will be described later.
- the supply unit 19 supplies the processing fluid to the drying unit 18.
- the supply unit 19 includes a group of supply devices including a flow meter, a flow regulator, a back pressure valve, a heater, etc., and a housing that houses the group of supply devices.
- the supply unit 19 supplies CO2 as the processing fluid to the drying unit 18. The configuration of the supply unit 19 will be described later.
- a treatment fluid supplying device 70 (see FIG. 4) that supplies a treatment fluid is connected to the supply unit 19.
- the treatment fluid supplying device 70 supplies CO2 as the treatment fluid to the supply unit 19.
- the treatment fluid supplying device 70 will be described in detail later.
- the liquid treatment unit 17, drying unit 18 and supply unit 19 are arranged along the transport area 15 (i.e., along the X-axis direction). Of the liquid treatment unit 17, drying unit 18 and supply unit 19, the liquid treatment unit 17 is disposed at a position closest to the loading/unloading station 2, and the supply unit 19 is disposed at a position farthest from the loading/unloading station 2.
- each processing block 5 has one liquid processing unit 17, one drying unit 18, and one supply unit 19.
- the substrate processing apparatus 1 is provided with the same number of liquid processing units 17, drying units 18, and supply units 19.
- the drying unit 18 also includes a processing area 18a where the supercritical drying process is performed, and a transfer area 18b where the wafer W is transferred between the transport block 4 and the processing area 18a.
- the processing area 18a and the transfer area 18b are aligned along the transport area 15.
- the delivery area 18b is arranged closer to the liquid processing unit 17 than the processing area 18a. That is, in each processing block 5, the liquid processing unit 17, the delivery area 18b, the processing area 18a, and the supply unit 19 are arranged in this order along the transport area 15.
- the substrate processing apparatus 1 includes a control device 6.
- the control device 6 is, for example, a computer, and includes a control unit 7 and a memory unit 8.
- the control unit 7 includes a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), input/output ports, and various circuits.
- the CPU of the microcomputer reads and executes programs stored in the ROM to realize control of the conveying devices 13, 16, the liquid treatment unit 17, the drying unit 18, the supply unit 19, and the like.
- Such a program may be stored in a computer-readable storage medium and installed from that storage medium into the storage unit 8 of the control device 6.
- Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
- the memory unit 8 is realized, for example, by a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
- the transfer device 13 in the loading/unloading station 2 removes the wafer W from the carrier C placed on the carrier placement section 11, and places the removed wafer W on the transfer section 14.
- the wafer W placed on the transfer section 14 is then removed from the transfer section 14 by the transfer device 16 in the processing station 3, and is transferred to the liquid processing unit 17.
- the wafer W carried into the liquid treatment unit 17 is subjected to cleaning and liquid film forming processes by the liquid treatment unit 17, and then carried out of the liquid treatment unit 17 by the transfer device 16.
- the wafer W carried out of the liquid treatment unit 17 is carried into the drying unit 18 by the transfer device 16, and is subjected to drying processes by the drying unit 18.
- the wafer W that has been dried by the drying unit 18 is removed from the drying unit 18 by the transport device 16 and placed in the transfer section 14.
- the processed wafer W placed in the transfer section 14 is then returned to the carrier C in the carrier placement section 11 by the transport device 13.
- Fig. 2 is a diagram showing an example of the configuration of liquid processing unit 17.
- Liquid processing unit 17 is configured, for example, as a single-wafer cleaning device that cleans wafers W one by one by spin cleaning.
- the liquid processing unit 17 holds the wafer W almost horizontally using a wafer holding mechanism 25 disposed in an outer chamber 23 that forms the processing space, and rotates the wafer W by rotating the wafer holding mechanism 25 around a vertical axis.
- the liquid processing unit 17 then inserts the nozzle arm 26 above the rotating wafer W and supplies chemical liquid and rinsing liquid in a predetermined order from the chemical nozzle 26a provided at the tip of the nozzle arm 26, thereby cleaning the top surface of the wafer W.
- a chemical liquid supply path 25a is also formed inside the wafer holding mechanism 25.
- the underside of the wafer W is also cleaned by the chemical liquid and rinsing liquid supplied from the chemical liquid supply path 25a.
- the cleaning process begins with the removal of particles and organic contaminants using an alkaline chemical called SC1 liquid (a mixture of ammonia and hydrogen peroxide). This is followed by a rinse wash using deionized water (DIW), which serves as a rinse liquid.
- SC1 liquid a mixture of ammonia and hydrogen peroxide
- DIW deionized water
- DIW diluted hydrofluoric acid
- the various chemical solutions described above are received in the outer chamber 23 or the inner cup 24 placed in the outer chamber 23, and are discharged from the drainage port 23a provided at the bottom of the outer chamber 23 and the drainage port 24a provided at the bottom of the inner cup 24. Furthermore, the atmosphere inside the outer chamber 23 is exhausted from the exhaust port 23b provided at the bottom of the outer chamber 23.
- the liquid film formation process is performed after the rinsing process in the cleaning process.
- the liquid processing unit 17 supplies liquid IPA (Isopropyl Alcohol) (hereinafter also referred to as "IPA liquid") to the upper and lower surfaces of the wafer W while rotating the wafer holding mechanism 25. This replaces the DIW remaining on both sides of the wafer W with IPA.
- the liquid processing unit 17 then gently stops the rotation of the wafer holding mechanism 25.
- the wafer W After completing the liquid film formation process, the wafer W, with the IPA liquid film formed on its upper surface, is transferred to the transfer device 16 by a transfer mechanism (not shown) provided in the wafer holding mechanism 25, and is removed from the liquid processing unit 17.
- the liquid film formed on the wafer W prevents pattern collapse caused by evaporation (vaporization) of the liquid on the top surface of the wafer W during transport of the wafer W from the liquid processing unit 17 to the drying unit 18 and during loading into the drying unit 18.
- Fig. 3 is a schematic perspective view showing an example of the configuration of the drying unit 18.
- the drying unit 18 has a main body 31, a holding plate 32, and a lid member 33.
- the housing-shaped main body 31 has an opening 34 formed therein for loading and unloading the wafer W.
- the holding plate 32 holds the wafer W to be processed in a horizontal direction.
- the lid member 33 supports the holding plate 32 and seals the opening 34 when the wafer W is loaded into the main body 31.
- the main body 31 is a container having a processing space formed therein capable of accommodating a wafer W having a diameter of, for example, 300 mm, and its wall is provided with supply ports 35, 36 and discharge port 37.
- the supply ports 35, 36 and the discharge port 37 are respectively connected to a supply flow path and a discharge flow path for circulating a supercritical fluid to the drying unit 18.
- the supply port 35 is connected to the side of the housing-like main body 31 opposite the opening 34.
- the supply port 36 is connected to the bottom surface of the main body 31.
- the discharge port 37 is connected to the lower side of the opening 34. Note that although two supply ports 35, 36 and one discharge port 37 are illustrated in FIG. 3, the number of supply ports 35, 36 and discharge ports 37 is not particularly limited.
- fluid supply headers 38, 39 and a fluid discharge header 40 are provided inside the main body 31 .
- the fluid supply headers 38, 39 are formed with a plurality of supply ports aligned in the longitudinal direction of the fluid supply headers 38, 39, and the fluid discharge header 40 is formed with a plurality of discharge ports aligned in the longitudinal direction of the fluid discharge header 40.
- the fluid supply header 38 is connected to the supply port 35 and is provided inside the housing-like main body 31 adjacent to the side opposite the opening 34.
- the multiple supply ports formed in line with the fluid supply header 38 face the opening 34 side.
- the fluid supply header 39 is connected to the supply port 36 and is provided in the center of the bottom surface inside the housing-like main body 31.
- the multiple supply ports formed in line with the fluid supply header 39 face upward.
- the fluid discharge header 40 is connected to the discharge port 37 and is located inside the housing-like main body 31 adjacent to the side facing the opening 34 and below the opening 34.
- the multiple discharge ports formed next to the fluid discharge header 40 face upward.
- the fluid supply headers 38 and 39 supply the supercritical fluid into the main body 31.
- the fluid discharge header 40 guides the supercritical fluid in the main body 31 to the outside of the main body 31 and discharges it.
- the supercritical fluid discharged to the outside of the main body 31 via the fluid discharge header 40 includes IPA liquid that has dissolved in the supercritical fluid in a supercritical state from the surface of the wafer W.
- the IPA liquid between the patterns formed on the wafer W comes into contact with the supercritical fluid at a high pressure (for example, 16 MPa) and gradually dissolves in the supercritical fluid, and the spaces between the patterns are gradually replaced by the supercritical fluid. Finally, the spaces between the patterns are filled only with the supercritical fluid.
- a high pressure for example, 16 MPa
- the pressure inside the main body 31 is reduced from a high pressure state to atmospheric pressure, whereby the CO2 changes from a supercritical state to a gaseous state, and the spaces between the patterns are occupied only by gas. In this way, the IPA liquid between the patterns is removed, and the drying process of the wafer W is completed.
- supercritical fluids have a lower viscosity than liquids (e.g., IPA liquid) and a higher ability to dissolve liquids.
- liquids e.g., IPA liquid
- IPA liquid is used as the liquid for preventing drying
- CO2 in a supercritical state is used as the processing fluid
- a liquid other than IPA may be used as the liquid for preventing drying
- a fluid other than CO2 in a supercritical state may be used as the processing fluid.
- Fig. 4 is a diagram showing an example of the overall system configuration of the substrate processing system S according to the embodiment. Each part of the substrate processing system S described below can be controlled by a control unit 7.
- the substrate processing system S includes a processing fluid supply source 60, a processing fluid supply device 70, and a substrate processing apparatus 1.
- the processing fluid supply device 70 supplies the processing fluid supplied from the processing fluid supply source 60 to the substrate processing apparatus 1.
- the substrate processing apparatus 1 has multiple drying units 18 and multiple supply units 19, and processes the wafer W (see FIG. 5) in the drying units 18 with the processing fluid supplied via the corresponding supply units 19.
- the treatment fluid supply source 60 and the multiple drying units 18 are connected by a treatment fluid supply line 61, and treatment fluid is supplied from the treatment fluid supply source 60 to the multiple drying units 18 via the treatment fluid supply line 61.
- the treatment fluid supply line 61 has a first supply line 62, a plurality of second supply lines 63 (see FIG. 5), a plurality of third supply lines 64, and a plurality of fourth supply lines 65.
- the third supply line 64 is an example of a supply line
- the fourth supply line 65 is an example of another supply line.
- the first supply line 62 supplies the treatment fluid from the treatment fluid supply source 60 to the treatment fluid supply device 70.
- the first supply line 62 also branches into multiple second supply lines 63 within the treatment fluid supply device 70.
- the second supply line 63, the third supply line 64 and the fourth supply line 65 are connected in series in this order, and supply the treatment fluid from the treatment fluid supply device 70 to the drying unit 18 via the supply unit 19.
- the second supply line 63 is located within the processing fluid supply device 70.
- the third supply line 64 is connected between the processing fluid supply device 70 and the substrate processing apparatus 1.
- the fourth supply line 65 is located within the substrate processing apparatus 1.
- FIG. 5 is a diagram showing an example of a piping configuration of a substrate processing system S according to an embodiment.
- the processing fluid supply device 70 has a processing fluid supply line 61.
- the processing fluid supply line 61 includes a first supply line 62 and multiple (two in the figure) second supply lines 63.
- the first supply line 62 supplies the treatment fluid from the treatment fluid supply source 60 to the treatment fluid supply device 70.
- the first supply line 62 also branches into multiple second supply lines 63 within the treatment fluid supply device 70.
- first supply line 62 from the upstream side with respect to the treatment fluid supply source 60, there are provided a valve 66, a check valve 67, a junction 71, multiple junctions 72 (two in the figure), a filter 73, a condenser 74, a tank 75, a pump 76, and a branching section 77.
- a pressure sensor 78 and a branching section 79 are provided in the first supply line 62, from the upstream side with respect to the branching section 77.
- Valve 66 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream check valve 67, and when closed, it does not allow the treatment fluid to flow to the downstream check valve 67.
- the check valve 67 prevents the treatment fluid in the first supply line 62 from flowing back to the upstream side of the check valve 67.
- the first supply line 62 and the return line 90 which will be described later, join.
- the first supply line 62 and the return line 100 which will be described later, join.
- the treatment fluid in a gaseous state is supplied from the treatment fluid supply source 60. Furthermore, the liquid treatment fluid returned to the first supply line 62 from the multiple return lines 100 changes from a liquid state to a gaseous state due to the high-temperature gaseous treatment fluid returned to the first supply line 62 from the return line 90. As a result, the treatment fluid in a gaseous state flows into the filter 73.
- the filter 73 is, for example, a gas filter, and filters the gaseous processing fluid flowing through the first supply line 62 to remove foreign matter contained in the processing fluid. By removing foreign matter from the processing fluid using the filter 73, it is possible to suppress the generation of particles on the surface of the wafer W during the drying process of the wafer W using a supercritical fluid.
- the condenser 74 is connected, for example, to a cooling water supply unit (not shown) and can exchange heat between the cooling water and the gaseous processing fluid. As a result, the condenser 74 cools the gaseous processing fluid flowing through the first supply line 62 to generate a liquid processing fluid at a given temperature (for example, about 15°C) lower than room temperature.
- the tank 75 stores the low-temperature liquid-state processing fluid generated in the condenser 74.
- the pump 76 pumps the low-temperature liquid-state processing fluid stored in the tank 75 to the downstream side of the first supply line 62.
- a return line 90 which will be described later, branches off from the branching point 77.
- the pressure sensor 78 measures the pressure of the treatment fluid flowing through the first supply line 62. Multiple (two in the figure) second supply lines 63 branch off from the branching point 79.
- Each second supply line 63 is provided with an orifice 80, a branch 81, and a pressure sensor 82, in that order from the upstream side, based on the branch 79.
- the orifice 80 reduces the flow rate of the low-temperature liquid-state treatment fluid flowing through the second supply line 63, thereby adjusting the pressure.
- the return line 100 branches off from the branch point 81.
- the pressure sensor 82 measures the pressure of the treatment fluid flowing through the second supply line 63.
- the return line 100 returns the liquid treatment fluid flowing through the second supply line 63 to the junction 72 of the first supply line 62. In this way, by returning the treatment fluid to the upstream side through the return line 100, the number of times that it can be filtered can be increased, improving the performance of removing foreign matter.
- the return line 100 is provided with a back pressure valve 101 and a valve 102, in that order from the upstream side, based on the branching section 81.
- the back pressure valve 101 is configured to adjust the valve opening to allow fluid to flow to the secondary side when the primary pressure of the return line 100 exceeds the set pressure, thereby maintaining the primary pressure at the set pressure.
- the valve opening and set pressure of the back pressure valve 101 can be changed at any time by the control unit 7 (see Figure 1).
- Valve 102 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream junction 72, and when closed, it does not allow the treatment fluid to flow to the downstream junction 72.
- the liquid-state processing fluid returned from the return line 100 returns to the junction 72 of the first supply line 62.
- the liquid-state processing fluid returned from the junction 72 changes from the liquid state to the gas state due to the high-temperature gas-state processing fluid returned from the junction 71 and flowing through the first supply line 62.
- the return line 90 which branches off from the branch point 77 of the first supply line 62, returns the liquid treatment fluid flowing through the first supply line 62 to the junction 71 of the first supply line 62. In this way, by returning the treatment fluid to the upstream side through the return line 90, the number of times that filtering can be performed can be increased, improving the performance of removing foreign matter.
- the return line 90 is provided with a spiral heater 91, a back pressure valve 92, and a valve 93, in that order from the upstream side with respect to the branching point 77.
- the spiral heater 91 is wound around the return line 90 and heats the liquid processing fluid flowing through the return line 90 to generate a supercritical processing fluid.
- the back pressure valve 92 is configured to maintain the primary pressure at the set pressure by adjusting the valve opening to allow fluid to flow to the secondary side when the primary pressure of the return line 90 exceeds the set pressure.
- the back pressure valve 92 reduces the pressure of the supercritical processing fluid flowing through the return line 90 to generate a gaseous processing fluid.
- the valve opening and set pressure of the back pressure valve 92 can be changed at any time by the control unit 7.
- Valve 93 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream junction 71, and when closed, it does not allow the treatment fluid to flow to the downstream junction 71.
- the high-temperature gaseous process fluid generated by the back pressure valve 92 returns to the junction 71 of the first supply line 62 via the valve 93.
- the processing fluid supply device 70 described above supplies a low-temperature liquid processing fluid to the multiple supply units 19 via the second supply line 63, the third supply line 64, and the fourth supply line 65. That is, in this embodiment, the processing fluid is supplied from the processing fluid supply device 70 to the substrate processing apparatus 1 in a liquid state, not in a gaseous state or a supercritical state.
- the control unit 7 measures the pressure of the treatment fluid supplied to the supply unit 19 from the second supply line 63, the third supply line 64, and the fourth supply line 65 using a pressure sensor 82, and controls the pressure by the valve opening degree of the back pressure valve 101.
- the control unit 7 increases the pressure of the treatment fluid supplied to the supply unit 19, for example, by increasing the set pressure on the primary side of the back pressure valve 101.
- the control unit 7 also reduces the pressure of the treatment fluid supplied to the supply unit 19, for example, by lowering the set pressure on the primary side of the back pressure valve 101.
- control unit 7 measures the pressure of the processing fluid supplied from the first supply line 62 to the multiple second supply lines 63 using a pressure sensor 78, and controls it by the valve opening of the back pressure valve 92. The control unit 7 then appropriately controls the valve opening of the back pressure valve 92 so that the measured value of the pressure sensor 78 becomes constant.
- the spiral heater 91 changes the phase of the processing fluid between the pump 76 and the back pressure valve 92 from a liquid state to a supercritical state.
- the space between the pump 76 and the valve 41 or the back pressure valve 92 which may be in a closed state, is not filled with processing fluid in a non-compressible liquid state, but is filled with processing fluid in a partially compressible supercritical state.
- the pump 76 pumps out the treatment fluid in a liquid state, which is incompressible in the first supply line 62, the pulsation generated by the pump 76 can be absorbed by the part in the supercritical state. Therefore, according to the embodiment, when the treatment fluid in a liquid state is pumped out by the pump 76, the effect of the pulsation generated by the pump 76 can be reduced.
- the processing fluid flowing through the fourth supply line 65 is supplied to the drying unit 18 and discharged from the drying unit 18 to the outside via the discharge line 50.
- the fourth supply line 65 in the substrate processing apparatus 1 is provided with, in order from the upstream side, a valve 41, an orifice 42, a heater 43, a temperature sensor 44, a valve 45, and a filter 46.
- Valve 41 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream orifice 42, and when closed, it does not allow the treatment fluid to flow to the downstream orifice 42.
- the orifice 42 serves to reduce the flow rate of the low-temperature liquid-state processing fluid flowing through the fourth supply line 65 and adjust the pressure.
- the heater 43 heats the liquid processing fluid flowing through the fourth supply line 65 to generate a supercritical processing fluid.
- the temperature sensor 44 detects the temperature of the supercritical processing fluid generated by the heater 43.
- Valve 45 is a valve that adjusts the flow of the processing fluid on and off. When open, the processing fluid flows through the downstream filter 46, and when closed, the processing fluid does not flow through the downstream filter 46.
- the filter 46 filters the supercritical processing fluid flowing through the fourth supply line 65 and removes foreign matter contained in the processing fluid. By removing foreign matter from the processing fluid using the filter 46, it is possible to suppress the generation of particles on the surface of the wafer W during the drying process of the wafer W using the supercritical fluid.
- the drying unit 18 is provided with a temperature sensor 47.
- the temperature sensor 47 detects the temperature of the processing fluid filled in the drying unit 18.
- a pressure sensor 51 In the discharge line 50, a pressure sensor 51, a valve 52, a flow meter 53, and a back pressure valve 54 are provided in that order from the upstream side.
- the pressure sensor 51 measures the pressure of the processing fluid flowing through the discharge line 50. Since the pressure sensor 51 is directly connected to the drying unit 18 via the discharge line 50, the pressure of the processing fluid measured by the pressure sensor 51 is approximately equal to the internal pressure of the processing fluid in the drying unit 18.
- Valve 52 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream drain section DR, and when closed, it does not allow the treatment fluid to flow to the downstream drain section DR.
- Flow meter 53 measures the flow rate of the treatment fluid flowing through discharge line 50.
- the back pressure valve 54 is configured to adjust the valve opening to allow fluid to flow to the secondary side when the primary pressure of the discharge line 50 exceeds the set pressure, thereby maintaining the primary pressure at the set pressure.
- the valve opening and set pressure of the back pressure valve 54 can be changed at any time by the control unit 7.
- a low-temperature liquid processing fluid is continuously supplied to the heater 43 for the second and subsequent wafers W after the start of processing, and is converted into a supercritical processing fluid by the heater 43.
- the supercritical processing fluid is then supplied to the drying unit 18, whereby the wafers W are dried.
- the liquid processing fluid retained in the third supply line 64 is supplied to the heater 43 by the valve 41, which is closed until just before the start of processing.
- the liquid processing fluid retained in the third supply line 64 has a lower density than when it is at low temperature because its temperature has risen to room temperature while retained.
- the density of the processing fluid flowing through the heater 43 is different, and the behavior of the temperature and pressure of the second and subsequent wafers W and the processing fluid will be different.
- the first wafer W and the second and subsequent wafers W may end up in different processing states after the drying process.
- a temperature sensor 110 is provided in the third supply line 64.
- the temperature sensor 110 is an example of a temperature measurement unit.
- control unit 7 uses the temperature sensor 110 to measure at least one of the temperature of the processing fluid in the third supply line 64 and the temperature of the third supply line 64 itself.
- the control unit 7 supplies the processing fluid to the drying unit 18 under processing conditions according to the standard recipe.
- the control unit 7 changes the processing conditions from the standard recipe and supplies the processing fluid to the drying unit 18.
- control unit 7 changes the processing conditions from the standard recipe and supplies the processing fluid to the drying unit 18.
- control unit 7 adjusts the valve opening of the back pressure valve 101 to set the pressure of the processing fluid supplied to the fourth supply line 65 via the second supply line 63 and the third supply line 64 to a level higher than the processing conditions according to the standard recipe.
- a stable drying process can be performed using the processing fluid from the first wafer W after processing begins.
- control unit 7 may adjust the output of the heater 43 to change the temperature of the processing fluid heated by the heater 43 from the processing conditions according to the standard recipe.
- a stable drying process can be performed using the processing fluid from the first wafer W after processing begins.
- control unit 7 may measure the temperature with the temperature sensor 110 before loading the wafer W into the drying unit 18. This allows the temperature of the processing fluid in the third supply line 64 and the temperature of the third supply line 64 itself to be known in advance, so that the subsequent drying process of the wafer W can be carried out smoothly.
- the technology disclosed herein is not limited to measuring the temperature with the temperature sensor 110 before the wafer W is loaded into the drying unit 18, but may also measure the temperature with the temperature sensor 110 when the wafer W is loaded into the drying unit 18 or after the wafer W is loaded into the drying unit 18.
- Fig. 6 is a diagram showing an example of a piping configuration of a substrate processing system S according to a first modified example of the embodiment.
- the configuration of the processing fluid supply device 70 and the third supply line 64 differs from that of the above-described embodiment. Therefore, in the following examples, the same reference numerals are used for parts similar to those of the already-described embodiment, and detailed descriptions are omitted.
- a branch portion 120 is provided in the third supply line 64.
- the branch portion 120 is located, for example, in the vicinity of the substrate processing apparatus 1 in the third supply line 64.
- a return line 130 branches off from the branching section 120.
- the return line 130 is an example of a temperature maintenance mechanism.
- the return line 130 joins the joining section 104 located upstream of the back pressure valve 101 in the return line 100.
- a valve 131 is provided in the return line 130.
- the valve 131 is a valve that adjusts the flow of the treatment fluid on and off, and when open, it allows the treatment fluid to flow to the downstream junction 104, and when closed, it does not allow the treatment fluid to flow to the downstream junction 104.
- a valve 103 is provided upstream of the junction 104 in the return line 100.
- the valve 103 is a valve that adjusts the flow of the treatment fluid on and off, and when open, the treatment fluid flows to the junction 104 on the downstream side, and when closed, the treatment fluid does not flow to the junction 104 on the downstream side.
- the temperature sensor 110 provided in the third supply line 64 in the above embodiment may be provided.
- FIG. 7 is a diagram showing an example of the operation of the substrate processing system S according to the first modified embodiment, and is a diagram explaining the flow of the processing fluid when the drying process of the wafer W is being performed.
- the low-temperature liquid processing fluid pumped by the pump 76 passes through the second supply line 63 and the third supply line 64 and reaches the valve 41 of the fourth supply line 65.
- valve 41 is controlled to be open, so that the processing fluid is supplied to the drying unit 18 via the fourth supply line 65.
- the liquid treatment fluid returns to the junction 71 via the return line 90. Also, because the valve 103 is controlled to be open, the liquid treatment fluid returns to the junction 72 from the branch 81 via the return line 100. At this time, the valve 131 of the return line 130 is controlled to be closed, so no treatment fluid flows through the return line 130.
- the low-temperature liquid processing fluid continues to flow through the third supply line 64, so that there is no increase in the temperature of the processing fluid due to stagnation in the third supply line 64.
- FIG. 8 is a diagram showing an example of the operation of the substrate processing system S according to the first modified embodiment, and explains the flow of processing fluid when the drying process of the wafer W is not being performed and the drying unit 18 is in a standby state.
- the low-temperature liquid treatment fluid pumped by the pump 76 travels through the second supply line 63 and the third supply line 64 and reaches the branch point 120 of the third supply line 64.
- the valve 41 of the substrate processing apparatus 1 is controlled to a closed state, and no liquid processing fluid flows into the fourth supply line 65.
- the valve 131 of the return line 130 is controlled to be open, so that the low-temperature liquid-state processing fluid that has reached the branch point 120 of the third supply line 64 can be returned to the junction point 72 via the return line 130 and the return line 100.
- the valve 103 of the return line 100 is controlled to be closed.
- the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
- the return line 130 may be connected to the third supply line 64 near the substrate processing apparatus 1. That is, in the first modification, the branch portion 120 may be located near the substrate processing apparatus 1 on the third supply line 64.
- the temperature of the processing fluid located in the third supply line 64 can be precisely matched between the first wafer W and the second and subsequent wafers W after the start of processing.
- the temperature and pressure behavior of the processing fluid can be precisely aligned between the first wafer W after the start of processing and the second and subsequent wafers W, allowing for a more stable drying process to be performed with the processing fluid, starting from the first wafer W after the start of processing.
- ⁇ Modification 2> 9 is a diagram showing an example of a piping configuration of a substrate processing system S according to Modification 2 of the embodiment. As shown in FIG. 9, in the substrate processing system S according to Modification 2, the branching portion 120 is located not in the third supply line 64 but in the fourth supply line 65 in the substrate processing apparatus 1.
- the branch portion 120 is located upstream of the valve 41 in the fourth supply line 65.
- the low-temperature liquid processing fluid can be prevented from stagnation in the third supply line 64, so that the temperature of the processing fluid located in the third supply line 64 can be made uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
- the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
- the branching section 120 is located in the fourth supply line 65 in the substrate processing apparatus 1, so that when the drying unit 18 is in a standby state, all liquid-state processing fluid located in the third supply line 64 can be returned via the return line 130.
- the temperature and pressure behavior of the processing fluid can be precisely aligned between the first wafer W after the start of processing and the second and subsequent wafers W, allowing for a more stable drying process to be performed with the processing fluid, starting from the first wafer W after the start of processing.
- Fig. 10 is a diagram showing an example of a piping configuration of a substrate processing system S according to Modification 3 of the embodiment. As shown in Fig. 10, in the substrate processing system S according to Modification 3, a branching portion 120 is located between the heater 43 and the valve 45 in the fourth supply line 65.
- the low-temperature liquid processing fluid can be prevented from stagnation in the third supply line 64, so that the temperature of the processing fluid located in the third supply line 64 can be made uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
- the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
- the branching section 120 is located in the fourth supply line 65 in the substrate processing apparatus 1, so that when the drying unit 18 is in a standby state, all liquid processing fluid located in the third supply line 64 can be returned via the return line 130.
- the temperature and pressure behavior of the processing fluid can be precisely aligned between the first wafer W after the start of processing and the second and subsequent wafers W, allowing for a more stable drying process to be performed with the processing fluid, starting from the first wafer W after the start of processing.
- the valve 41 when the drying unit 18 is in a standby state, the valve 41 is controlled to an open state rather than a closed state, and the valve 45 is controlled to a closed state.
- the return line 130 is used as a temperature maintaining mechanism for maintaining the temperature of the processing fluid in the third supply line 64, but the present disclosure is not limited to such an example.
- FIG. 11 is a diagram showing an example of the piping configuration of a substrate processing system S according to the fourth modification of the embodiment.
- a cooling mechanism 140 that cools the third supply line 64 is provided as a temperature maintenance mechanism that maintains the temperature of the processing fluid in the third supply line 64.
- the cooling mechanism 140 is, for example, a chiller, and is positioned so as to surround the third supply line 64.
- the cooling mechanism 140 maintains the temperature of the treatment fluid located in the third supply line 64 at a given temperature (the temperature of the liquid treatment fluid generated by the treatment fluid supply device 70).
- This also makes it possible to make the temperature of the processing fluid located in the third supply line 64 uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
- the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
- the substrate processing system S includes a processing fluid supply device 70, a substrate processing apparatus 1, a supply line (third supply line 64), and a temperature measurement unit (temperature sensor 110).
- the processing fluid supply device 70 supplies processing fluid adjusted to a given temperature.
- the substrate processing apparatus 1 processes a substrate (wafer W) with the processing fluid supplied from the processing fluid supply device 70.
- the supply line (third supply line 64) is connected between the processing fluid supply device 70 and the substrate processing apparatus 1.
- the temperature measurement unit (temperature sensor 110) measures at least one of the temperature of the processing fluid and the temperature of the supply line (third supply line 64) in the supply line (third supply line 64). This allows stable drying processing to be performed with the processing fluid from the first wafer W after processing begins.
- the substrate processing system S further includes a control unit 7 that controls each unit.
- the control unit 7 changes at least one of the pressure of the processing fluid supplied from the processing fluid supply device 70 and the temperature of the processing fluid heated in the substrate processing apparatus 1 from the reference recipe. This allows stable drying processing to be performed with the processing fluid from the first wafer W after processing begins.
- control unit 7 measures the temperature using the temperature measurement unit (temperature sensor 110) before the substrate (wafer W) is loaded into the processing chamber (drying unit 18) in the substrate processing apparatus 1. This allows the drying process of the wafer W to be carried out smoothly.
- the substrate processing system S includes a processing fluid supply device 70, a substrate processing apparatus 1, a supply line (third supply line 64), and a temperature maintenance mechanism (return line 130, cooling mechanism 140).
- the processing fluid supply device 70 supplies processing fluid adjusted to a given temperature.
- the substrate processing apparatus 1 processes a substrate (wafer W) with the processing fluid supplied from the processing fluid supply device 70.
- the supply line (third supply line 64) is connected between the processing fluid supply device 70 and the substrate processing apparatus 1.
- the temperature maintenance mechanism maintains the temperature of the processing fluid flowing through the supply line (third supply line 64) at a given temperature. This allows stable drying processing to be performed with the processing fluid from the first wafer W after processing begins.
- the temperature maintenance mechanism is a return line 130 that returns the processing fluid flowing through the supply line (third supply line 64) to the processing fluid supply device 70. This allows stable drying processing to be performed with the processing fluid, starting from the first wafer W after processing begins.
- the substrate processing system S further includes a control unit 7 that controls each unit.
- a control unit 7 that controls each unit.
- the control unit 7 returns the processing fluid flowing through the supply line (third supply line 64) to the processing fluid supply device 70 via the return line 130. This allows stable drying processing to be performed with the processing fluid, starting from the first wafer W after processing begins.
- the return line 130 is connected to the supply line (third supply line 64) near the substrate processing apparatus 1. This allows for more stable drying processing with the processing fluid to be performed from the first wafer W after processing begins.
- the substrate processing apparatus 1 has a processing chamber (drying unit 18), another supply line (fourth supply line 65), and a valve 41.
- the processing chamber (drying unit 18) processes a substrate (wafer W).
- the another supply line (fourth supply line 65) is connected between the supply line (third supply line 64) and the processing chamber (drying unit 18).
- the valve 41 is provided upstream of the another supply line (fourth supply line 65).
- the return line 130 is connected upstream of the valve 41 in the another supply line (fourth supply line 65). This allows for more stable drying processing with the processing fluid, starting from the first wafer W after processing begins.
- the substrate processing apparatus 1 has a processing chamber (drying unit 18), another supply line (fourth supply line 65), and a heating section (heater 43).
- the processing chamber (drying unit 18) processes a substrate (wafer W).
- the other supply line (fourth supply line 65) is connected between the supply line (third supply line 64) and the processing chamber (drying unit 18).
- the heating section (heater 43) is provided in the other supply line (fourth supply line 65) and heats the processing fluid.
- the return line 130 is connected downstream of the heating section (heater 43). This allows for more stable drying processing with the processing fluid, starting from the first wafer W after processing begins.
- the processing fluid supply device 70 supplies a processing fluid in a liquid state that is lower than room temperature to the substrate processing apparatus 1, and the substrate processing apparatus 1 processes the substrate (wafer W) with the processing fluid in a supercritical state.
- Fig. 12 is a flowchart showing the procedure for substrate processing according to the embodiment.
- control unit 7 controls the temperature sensor 110 to measure the temperature of the third supply line 64, in this case at least one of the temperature of the processing fluid in the third supply line 64 and the temperature of the third supply line 64 itself (step S101).
- the control unit 7 reads the reference recipe (step S103).
- step S104 if the temperature measured by the temperature sensor 110 is different from the given temperature (the temperature of the liquid-state processing fluid generated by the processing fluid supply device 70) (step S102, Yes), the control unit 7 changes the reference recipe (step S104).
- control unit 7 controls the substrate processing apparatus 1 and the like to transport the wafer W on which the IPA liquid film has been formed into the drying unit 18 (step S105).
- control unit 7 controls the processing fluid supply device 70, the substrate processing apparatus 1, etc. to supply the processing fluid in a supercritical state to the drying unit 18 (step S106). Then, the control unit 7 performs a drying process on the wafer W in the drying unit 18 (step S107).
- control unit 7 removes the wafer W for which the drying process has been completed from the drying unit 18 (step S108), completing the series of substrate processing steps.
- FIG. 13 is a flowchart showing the processing procedure for substrate processing according to the first to fourth modified embodiments.
- control unit 7 first controls the return line 130, the cooling mechanism 140, etc. to maintain the temperature of the processing fluid in the third supply line 64 at a given temperature (the temperature of the liquid processing fluid generated by the processing fluid supply device 70) (step S201).
- control unit 7 reads the reference recipe (step S202). Then, the control unit 7 controls the substrate processing apparatus 1 and the like to load the wafer W on which the IPA liquid film has been formed into the drying unit 18 (step S203).
- control unit 7 controls the processing fluid supply device 70, the substrate processing apparatus 1, etc. to supply the processing fluid in a supercritical state to the drying unit 18 (step S204). Then, the control unit 7 performs a drying process on the wafer W in the drying unit 18 (step S205).
- control unit 7 removes the wafer W for which the drying process has been completed from the drying unit 18 (step S206), completing the series of substrate processing steps.
- the substrate processing method includes a processing fluid supply step (step S106), a substrate processing step (step S107), and a temperature measurement step (step S101).
- the processing fluid supply step (step S106) supplies a processing fluid adjusted to a given temperature.
- the substrate processing step (step S107) processes a substrate (wafer W) with the processing fluid supplied by the processing fluid supply step (step S106).
- the temperature measurement step (step S101) measures at least one of the temperature of the processing fluid and the temperature of the supply line (third supply line 64) in the supply line (third supply line 64).
- the supply line (third supply line 64) is connected between the processing fluid supply device 70 that performs the processing fluid supply step (step S106) and the substrate processing apparatus 1 that performs the substrate processing step (step S107). This allows stable drying processing with the processing fluid from the first wafer W after the start of processing.
- the substrate processing method includes a processing fluid supply step (step S204), a substrate processing step (step S205), and a temperature maintenance step (step S201).
- the processing fluid supply step (step S204) supplies a processing fluid adjusted to a given temperature.
- the substrate processing step (step S205) processes a substrate (wafer W) with the processing fluid supplied by the processing fluid supply step (step S204).
- the temperature maintenance step (step S201) maintains the temperature of the processing fluid flowing through the supply line (third supply line 64) at a given temperature.
- the supply line (third supply line 64) is connected between the processing fluid supply device 70 that performs the processing fluid supply step (step S204) and the substrate processing apparatus 1 that performs the substrate processing step (step S205). This allows stable drying processing with the processing fluid from the first wafer W after the start of processing.
- first supply line 62 branches into two second supply lines 63
- first supply line 62 may branch into three second supply lines 63
- first supply line 62 does not have to branch into multiple second supply lines 63.
- Substrate processing system W Wafer (an example of a substrate) 1 Substrate processing apparatus 7 Control unit 18 Drying unit (an example of a processing chamber) 41 Valve 43 Heater (an example of a heating unit) 60 Processing fluid supply source 61 Processing fluid supply line 62 First supply line 63 Second supply line 64 Third supply line (an example of a supply line) 65 Fourth supply line (an example of another supply line) 70 Processing fluid supply device 110 Temperature sensor (an example of a temperature measuring unit) 120 Branching portion 130 Return line (an example of a temperature maintaining mechanism) 140 Cooling mechanism (an example of a temperature maintaining mechanism)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
A substrate processing system (S) according to one aspect of the present disclosure comprises a processing fluid supply device (70), a substrate processing device (1), a supply line, and a temperature measurement unit. The processing fluid supply device (70) supplies a processing fluid that has been adjusted to a given temperature. The substrate processing device (1) processes a substrate using the processing fluid supplied from the processing fluid supply device (70). The supply line is connected between the processing fluid supply device (70) and the substrate processing device (1). The temperature measurement unit measures, in the supply line, at least one among the temperature of the processing fluid and the temperature of the supply line.
Description
開示の実施形態は、基板処理システムおよび基板処理方法に関する。
The disclosed embodiments relate to a substrate processing system and a substrate processing method.
従来、基板である半導体ウェハ(以下、ウェハと呼称する。)などの表面に乾燥防止用の液膜を形成し、かかる液膜が形成されたウェハを超臨界状態の処理流体に接触させて乾燥処理を行う基板処理装置が知られている(たとえば、特許文献1参照)。
Conventionally, there is known a substrate processing apparatus that forms a liquid film to prevent drying on the surface of a substrate such as a semiconductor wafer (hereinafter referred to as a wafer), and then brings the wafer on which the liquid film has been formed into contact with a processing fluid in a supercritical state to perform a drying process (see, for example, Patent Document 1).
本開示は、処理流体でウェハを安定して処理することができる技術を提供する。
This disclosure provides technology that allows stable processing of wafers with processing fluid.
本開示の一態様による基板処理システムは、処理流体供給装置と、基板処理装置と、供給ラインと、温度測定部と、を備える。処理流体供給装置は、所与の温度に調整された処理流体を供給する。基板処理装置は、前記処理流体供給装置から供給される前記処理流体で基板を処理する。供給ラインは、前記処理流体供給装置と前記基板処理装置との間に接続される。温度測定部は、前記供給ラインにおいて、前記処理流体の温度および前記供給ラインの温度の少なくとも一方を測定する。
A substrate processing system according to one aspect of the present disclosure includes a processing fluid supply device, a substrate processing device, a supply line, and a temperature measurement unit. The processing fluid supply device supplies a processing fluid adjusted to a given temperature. The substrate processing device processes a substrate with the processing fluid supplied from the processing fluid supply device. A supply line is connected between the processing fluid supply device and the substrate processing device. The temperature measurement unit measures at least one of the temperature of the processing fluid and the temperature of the supply line in the supply line.
本開示によれば、処理流体でウェハを安定して処理することができる。
According to the present disclosure, wafers can be stably processed with processing fluid.
以下、添付図面を参照して、本願の開示する基板処理システムおよび基板処理方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
Below, embodiments of the substrate processing system and substrate processing method disclosed in the present application will be described in detail with reference to the attached drawings. Note that the present disclosure is not limited to the embodiments described below. It should be noted that the drawings are schematic, and the dimensional relationships and ratios of each element may differ from reality. Furthermore, there may be parts in which the dimensional relationships and ratios differ between the drawings.
従来、基板である半導体ウェハ(以下、ウェハと呼称する。)などの表面に乾燥防止用の液膜を形成し、かかる液膜が形成されたウェハを超臨界状態の処理流体に接触させて乾燥処理を行う基板処理装置が知られている。
Conventionally, substrate processing apparatuses are known that form a liquid film to prevent drying on the surface of a substrate such as a semiconductor wafer (hereinafter referred to as a wafer), and then bring the wafer with the liquid film formed thereon into contact with a processing fluid in a supercritical state to perform a drying process.
一方で、かかる基板処理装置において複数のウェハを連続して乾燥処理する際に、処理開始後1枚目のウェハが2枚目以降のウェハと異なる処理状態となる場合があった。
On the other hand, when drying multiple wafers consecutively in such substrate processing equipment, the first wafer may end up in a different processing state from the second and subsequent wafers after processing begins.
そこで、上記の課題を解決し、処理流体でウェハを安定して処理することができる技術の実現が期待されている。
Therefore, there is a need to develop technology that can solve the above problems and stably process wafers with processing fluids.
<基板処理装置の構成>
まず、実施形態に係る基板処理装置1の構成について、図1を参照しながら説明する。図1は、実施形態に係る基板処理装置1の構成例を示す図である。なお、以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。 <Configuration of the Substrate Processing Apparatus>
First, the configuration of asubstrate processing apparatus 1 according to an embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing an example of the configuration of a substrate processing apparatus 1 according to an embodiment. In the following, to clarify the positional relationship, an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as the vertical upward direction.
まず、実施形態に係る基板処理装置1の構成について、図1を参照しながら説明する。図1は、実施形態に係る基板処理装置1の構成例を示す図である。なお、以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。 <Configuration of the Substrate Processing Apparatus>
First, the configuration of a
図1に示すように、基板処理装置1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
As shown in FIG. 1, the substrate processing apparatus 1 includes a loading/unloading station 2 and a processing station 3. The loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚の半導体ウェハW(以下、「ウェハW」と記載する)を水平状態で収容する複数のキャリアCが載置される。
The loading/unloading station 2 includes a carrier placement section 11 and a transport section 12. A plurality of carriers C, each of which holds a plurality of semiconductor wafers W (hereinafter referred to as "wafers W") in a horizontal position, are placed on the carrier placement section 11.
搬送部12は、キャリア載置部11に隣接して設けられる。搬送部12の内部には、搬送装置13と受渡部14とが配置される。
The transport section 12 is provided adjacent to the carrier placement section 11. Inside the transport section 12, a transport device 13 and a delivery section 14 are arranged.
搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてキャリアCと受渡部14との間でウェハWの搬送を行う。
The transfer device 13 is equipped with a wafer holding mechanism that holds the wafer W. The transfer device 13 is also capable of moving in the horizontal and vertical directions and rotating around a vertical axis, and transfers the wafer W between the carrier C and the transfer section 14 using the wafer holding mechanism.
処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送ブロック4と、複数の処理ブロック5とを備える。
The processing station 3 is located adjacent to the transport section 12. The processing station 3 includes a transport block 4 and a plurality of processing blocks 5.
搬送ブロック4は、搬送エリア15と、搬送装置16とを備える。搬送エリア15は、たとえば、搬入出ステーション2および処理ステーション3の並び方向(X軸方向)に沿って延在する直方体状の領域である。搬送エリア15には、搬送装置16が配置される。
The transport block 4 includes a transport area 15 and a transport device 16. The transport area 15 is, for example, a rectangular parallelepiped region extending along the arrangement direction (X-axis direction) of the loading/unloading stations 2 and the processing stations 3. The transport device 16 is disposed in the transport area 15.
搬送装置16は、ウェハWを保持するウェハ保持機構を備える。また、搬送装置16は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と複数の処理ブロック5との間でウェハWの搬送を行う。
The transfer device 16 is equipped with a wafer holding mechanism that holds the wafer W. The transfer device 16 is also capable of moving in the horizontal and vertical directions and rotating around a vertical axis, and uses the wafer holding mechanism to transfer the wafer W between the transfer section 14 and the multiple processing blocks 5.
複数の処理ブロック5は、搬送エリア15の両側において搬送エリア15に隣接して配置される。具体的には、複数の処理ブロック5は、搬入出ステーション2および処理ステーション3の並び方向(X軸方向)に直交する方向(Y軸方向)における搬送エリア15の一方側(Y軸正方向側)および他方側(Y軸負方向側)に配置される。
The multiple processing blocks 5 are arranged adjacent to the transport area 15 on both sides of the transport area 15. Specifically, the multiple processing blocks 5 are arranged on one side (positive Y-axis direction) and the other side (negative Y-axis direction) of the transport area 15 in a direction (Y-axis direction) perpendicular to the arrangement direction (X-axis direction) of the loading/unloading stations 2 and processing stations 3.
また、図示してはいないが、複数の処理ブロック5は、鉛直方向に沿って多段(たとえば、3段)に配置される。そして、各段に配置された処理ブロック5と受渡部14との間のウェハWの搬送は、搬送ブロック4に配置された1台の搬送装置16によって行われる。なお、複数の処理ブロック5の段数は3段に限定されない。
Although not shown, the multiple processing blocks 5 are arranged in multiple stages (for example, three stages) along the vertical direction. The wafers W are transported between the processing blocks 5 arranged in each stage and the transfer section 14 by a single transport device 16 arranged in the transport block 4. The number of stages of the multiple processing blocks 5 is not limited to three.
各処理ブロック5は、液処理ユニット17と、乾燥ユニット18と、供給ユニット19とを備える。乾燥ユニット18は処理チャンバの一例である。
Each processing block 5 includes a liquid processing unit 17, a drying unit 18, and a supply unit 19. The drying unit 18 is an example of a processing chamber.
液処理ユニット17は、ウェハWのパターン形成面である上面を洗浄する洗浄処理を行う。また、液処理ユニット17は、洗浄処理後のウェハWの上面に液膜を形成する液膜形成処理を行う。液処理ユニット17の構成については後述する。
The liquid processing unit 17 performs a cleaning process to clean the top surface of the wafer W, which is the pattern formation surface. The liquid processing unit 17 also performs a liquid film formation process to form a liquid film on the top surface of the wafer W after the cleaning process. The configuration of the liquid processing unit 17 will be described later.
乾燥ユニット18は、液膜形成処理後のウェハWに対して超臨界乾燥処理を行う。具体的には、乾燥ユニット18は、液膜形成処理後のウェハWを超臨界状態の処理流体(以下、「超臨界流体」とも呼称する。)と接触させることによって同ウェハWを乾燥させる。乾燥ユニット18の構成については後述する。
The drying unit 18 performs a supercritical drying process on the wafer W after the liquid film formation process. Specifically, the drying unit 18 dries the wafer W by bringing the wafer W after the liquid film formation process into contact with a processing fluid in a supercritical state (hereinafter also referred to as "supercritical fluid"). The configuration of the drying unit 18 will be described later.
供給ユニット19は、乾燥ユニット18に対して処理流体を供給する。具体的には、供給ユニット19は、流量計、流量調整器、背圧弁、ヒータなどを含む供給機器群と、供給機器群を収容する筐体とを備える。本実施形態において、供給ユニット19は、処理流体としてCO2を乾燥ユニット18に供給する。供給ユニット19の構成については後述する。
The supply unit 19 supplies the processing fluid to the drying unit 18. Specifically, the supply unit 19 includes a group of supply devices including a flow meter, a flow regulator, a back pressure valve, a heater, etc., and a housing that houses the group of supply devices. In this embodiment, the supply unit 19 supplies CO2 as the processing fluid to the drying unit 18. The configuration of the supply unit 19 will be described later.
また、供給ユニット19には、処理流体を供給する処理流体供給装置70(図4参照)が接続される。実施形態において、処理流体供給装置70は、処理流体としてCO2を供給ユニット19に供給する。かかる処理流体供給装置70の詳細については後述する。
A treatment fluid supplying device 70 (see FIG. 4) that supplies a treatment fluid is connected to the supply unit 19. In the embodiment, the treatment fluid supplying device 70 supplies CO2 as the treatment fluid to the supply unit 19. The treatment fluid supplying device 70 will be described in detail later.
液処理ユニット17、乾燥ユニット18および供給ユニット19は、搬送エリア15に沿って(すなわち、X軸方向に沿って)並べられる。液処理ユニット17、乾燥ユニット18および供給ユニット19のうち、液処理ユニット17は、搬入出ステーション2に最も近い位置に配置され、供給ユニット19は、搬入出ステーション2から最も遠い位置に配置される。
The liquid treatment unit 17, drying unit 18 and supply unit 19 are arranged along the transport area 15 (i.e., along the X-axis direction). Of the liquid treatment unit 17, drying unit 18 and supply unit 19, the liquid treatment unit 17 is disposed at a position closest to the loading/unloading station 2, and the supply unit 19 is disposed at a position farthest from the loading/unloading station 2.
このように、各処理ブロック5は、液処理ユニット17と乾燥ユニット18と供給ユニット19とをそれぞれ1つずつ備える。すなわち、基板処理装置1には、液処理ユニット17と乾燥ユニット18と供給ユニット19とが同じ数だけ設けられる。
In this way, each processing block 5 has one liquid processing unit 17, one drying unit 18, and one supply unit 19. In other words, the substrate processing apparatus 1 is provided with the same number of liquid processing units 17, drying units 18, and supply units 19.
また、乾燥ユニット18は、超臨界乾燥処理が行われる処理エリア18aと、搬送ブロック4と処理エリア18aとの間でのウェハWの受け渡しが行われる受渡エリア18bとを備える。これら処理エリア18aおよび受渡エリア18bは、搬送エリア15に沿って並べられる。
The drying unit 18 also includes a processing area 18a where the supercritical drying process is performed, and a transfer area 18b where the wafer W is transferred between the transport block 4 and the processing area 18a. The processing area 18a and the transfer area 18b are aligned along the transport area 15.
具体的には、処理エリア18aおよび受渡エリア18bのうち、受渡エリア18bは、処理エリア18aよりも液処理ユニット17に近い側に配置される。すなわち、各処理ブロック5には、液処理ユニット17、受渡エリア18b、処理エリア18aおよび供給ユニット19が、搬送エリア15に沿ってこの順番で配置される。
Specifically, of the processing area 18a and the delivery area 18b, the delivery area 18b is arranged closer to the liquid processing unit 17 than the processing area 18a. That is, in each processing block 5, the liquid processing unit 17, the delivery area 18b, the processing area 18a, and the supply unit 19 are arranged in this order along the transport area 15.
図1に示すように、基板処理装置1は、制御装置6を備える。制御装置6は、たとえばコンピュータであり、制御部7と記憶部8とを備える。
As shown in FIG. 1, the substrate processing apparatus 1 includes a control device 6. The control device 6 is, for example, a computer, and includes a control unit 7 and a memory unit 8.
制御部7は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。かかるマイクロコンピュータのCPUは、ROMに記憶されているプログラムを読み出して実行することにより、搬送装置13、16、液処理ユニット17、乾燥ユニット18および供給ユニット19等の制御を実現する。
The control unit 7 includes a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), input/output ports, and various circuits. The CPU of the microcomputer reads and executes programs stored in the ROM to realize control of the conveying devices 13, 16, the liquid treatment unit 17, the drying unit 18, the supply unit 19, and the like.
なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記憶されていたものであって、その記憶媒体から制御装置6の記憶部8にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
In addition, such a program may be stored in a computer-readable storage medium and installed from that storage medium into the storage unit 8 of the control device 6. Examples of computer-readable storage media include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
記憶部8は、たとえば、RAM、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置によって実現される。
The memory unit 8 is realized, for example, by a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
上記のように構成された基板処理装置1では、まず、搬入出ステーション2の搬送装置13が、キャリア載置部11に載置されたキャリアCからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の搬送装置16によって受渡部14から取り出されて、液処理ユニット17へ搬入される。
In the substrate processing apparatus 1 configured as described above, first, the transfer device 13 in the loading/unloading station 2 removes the wafer W from the carrier C placed on the carrier placement section 11, and places the removed wafer W on the transfer section 14. The wafer W placed on the transfer section 14 is then removed from the transfer section 14 by the transfer device 16 in the processing station 3, and is transferred to the liquid processing unit 17.
液処理ユニット17へ搬入されたウェハWは、液処理ユニット17によって洗浄処理および液膜形成処理が施された後、搬送装置16によって液処理ユニット17から搬出される。液処理ユニット17から搬出されたウェハWは、搬送装置16によって乾燥ユニット18へ搬入され、乾燥ユニット18によって乾燥処理が施される。
The wafer W carried into the liquid treatment unit 17 is subjected to cleaning and liquid film forming processes by the liquid treatment unit 17, and then carried out of the liquid treatment unit 17 by the transfer device 16. The wafer W carried out of the liquid treatment unit 17 is carried into the drying unit 18 by the transfer device 16, and is subjected to drying processes by the drying unit 18.
乾燥ユニット18によって乾燥処理されたウェハWは、搬送装置16によって乾燥ユニット18から搬出され、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、搬送装置13によってキャリア載置部11のキャリアCへ戻される。
The wafer W that has been dried by the drying unit 18 is removed from the drying unit 18 by the transport device 16 and placed in the transfer section 14. The processed wafer W placed in the transfer section 14 is then returned to the carrier C in the carrier placement section 11 by the transport device 13.
<液処理ユニットの構成>
次に、液処理ユニット17の構成について、図2を参照しながら説明する。図2は、液処理ユニット17の構成例を示す図である。液処理ユニット17は、たとえば、スピン洗浄によりウェハWを1枚ずつ洗浄する枚葉式の洗浄装置として構成される。 <Configuration of Liquid Processing Unit>
Next, the configuration ofliquid processing unit 17 will be described with reference to Fig. 2. Fig. 2 is a diagram showing an example of the configuration of liquid processing unit 17. Liquid processing unit 17 is configured, for example, as a single-wafer cleaning device that cleans wafers W one by one by spin cleaning.
次に、液処理ユニット17の構成について、図2を参照しながら説明する。図2は、液処理ユニット17の構成例を示す図である。液処理ユニット17は、たとえば、スピン洗浄によりウェハWを1枚ずつ洗浄する枚葉式の洗浄装置として構成される。 <Configuration of Liquid Processing Unit>
Next, the configuration of
図2に示すように、液処理ユニット17は、処理空間を形成するアウターチャンバー23内に配置されたウェハ保持機構25にてウェハWをほぼ水平に保持し、このウェハ保持機構25を鉛直軸周りに回転させることによりウェハWを回転させる。
As shown in FIG. 2, the liquid processing unit 17 holds the wafer W almost horizontally using a wafer holding mechanism 25 disposed in an outer chamber 23 that forms the processing space, and rotates the wafer W by rotating the wafer holding mechanism 25 around a vertical axis.
そして、液処理ユニット17は、回転するウェハWの上方にノズルアーム26を進入させ、かかるノズルアーム26の先端部に設けられる薬液ノズル26aから薬液やリンス液を予め定められた順に供給することにより、ウェハW上面の洗浄処理を行う。
The liquid processing unit 17 then inserts the nozzle arm 26 above the rotating wafer W and supplies chemical liquid and rinsing liquid in a predetermined order from the chemical nozzle 26a provided at the tip of the nozzle arm 26, thereby cleaning the top surface of the wafer W.
また、液処理ユニット17には、ウェハ保持機構25の内部にも薬液供給路25aが形成されている。そして、かかる薬液供給路25aから供給された薬液やリンス液によって、ウェハWの下面も洗浄される。
In addition, in the liquid processing unit 17, a chemical liquid supply path 25a is also formed inside the wafer holding mechanism 25. The underside of the wafer W is also cleaned by the chemical liquid and rinsing liquid supplied from the chemical liquid supply path 25a.
洗浄処理は、たとえば、最初にアルカリ性の薬液であるSC1液(アンモニアと過酸化水素水の混合液)によるパーティクルや有機性の汚染物質の除去が行われる。次に、リンス液である脱イオン水(DeIonized Water:以下、「DIW」と記載する)によるリンス洗浄が行われる。
The cleaning process, for example, begins with the removal of particles and organic contaminants using an alkaline chemical called SC1 liquid (a mixture of ammonia and hydrogen peroxide). This is followed by a rinse wash using deionized water (DIW), which serves as a rinse liquid.
次に、酸性薬液である希フッ酸水溶液(Diluted HydroFluoric acid:以下、「DHF」と記載する)による自然酸化膜の除去が行われ、次に、DIWによるリンス洗浄が行われる。
Next, the native oxide film is removed using an acidic chemical solution called diluted hydrofluoric acid (hereinafter referred to as "DHF"), and then the surface is rinsed with DIW.
上述の各種薬液は、アウターチャンバー23や、アウターチャンバー23内に配置されるインナーカップ24に受け止められて、アウターチャンバー23の底部に設けられる排液口23aや、インナーカップ24の底部に設けられる排液口24aから排出される。さらに、アウターチャンバー23内の雰囲気は、アウターチャンバー23の底部に設けられる排気口23bから排気される。
The various chemical solutions described above are received in the outer chamber 23 or the inner cup 24 placed in the outer chamber 23, and are discharged from the drainage port 23a provided at the bottom of the outer chamber 23 and the drainage port 24a provided at the bottom of the inner cup 24. Furthermore, the atmosphere inside the outer chamber 23 is exhausted from the exhaust port 23b provided at the bottom of the outer chamber 23.
液膜形成処理は、洗浄処理におけるリンス処理の後に行われる。具体的には、液処理ユニット17は、ウェハ保持機構25を回転させながら、ウェハWの上面および下面に液体状態のIPA(Isopropyl Alcohol)(以下、「IPA液体」とも呼称する)を供給する。これにより、ウェハWの両面に残存するDIWがIPAに置換される。その後、液処理ユニット17は、ウェハ保持機構25の回転を緩やかに停止する。
The liquid film formation process is performed after the rinsing process in the cleaning process. Specifically, the liquid processing unit 17 supplies liquid IPA (Isopropyl Alcohol) (hereinafter also referred to as "IPA liquid") to the upper and lower surfaces of the wafer W while rotating the wafer holding mechanism 25. This replaces the DIW remaining on both sides of the wafer W with IPA. The liquid processing unit 17 then gently stops the rotation of the wafer holding mechanism 25.
液膜形成処理を終えたウェハWは、その上面にIPA液体の液膜が形成された状態のまま、ウェハ保持機構25に設けられた不図示の受け渡し機構により搬送装置16に受け渡され、液処理ユニット17から搬出される。
After completing the liquid film formation process, the wafer W, with the IPA liquid film formed on its upper surface, is transferred to the transfer device 16 by a transfer mechanism (not shown) provided in the wafer holding mechanism 25, and is removed from the liquid processing unit 17.
ウェハW上に形成された液膜は、液処理ユニット17から乾燥ユニット18へのウェハWの搬送中や、乾燥ユニット18への搬入動作中に、ウェハW上面の液体が蒸発(気化)することによってパターン倒れが発生することを防止する。
The liquid film formed on the wafer W prevents pattern collapse caused by evaporation (vaporization) of the liquid on the top surface of the wafer W during transport of the wafer W from the liquid processing unit 17 to the drying unit 18 and during loading into the drying unit 18.
<乾燥ユニットの構成>
つづいて、乾燥ユニット18の構成について、図3を参照しながら説明する。図3は、乾燥ユニット18の構成例を示す模式斜視図である。 <Configuration of Drying Unit>
Next, the configuration of the dryingunit 18 will be described with reference to Fig. 3. Fig. 3 is a schematic perspective view showing an example of the configuration of the drying unit 18.
つづいて、乾燥ユニット18の構成について、図3を参照しながら説明する。図3は、乾燥ユニット18の構成例を示す模式斜視図である。 <Configuration of Drying Unit>
Next, the configuration of the drying
乾燥ユニット18は、本体31と、保持板32と、蓋部材33とを有する。筐体状の本体31には、ウェハWを搬入出するための開口部34が形成される。保持板32は、処理対象のウェハWを水平方向に保持する。蓋部材33は、かかる保持板32を支持するとともに、ウェハWを本体31内に搬入したときに、開口部34を密閉する。
The drying unit 18 has a main body 31, a holding plate 32, and a lid member 33. The housing-shaped main body 31 has an opening 34 formed therein for loading and unloading the wafer W. The holding plate 32 holds the wafer W to be processed in a horizontal direction. The lid member 33 supports the holding plate 32 and seals the opening 34 when the wafer W is loaded into the main body 31.
本体31は、たとえば直径300mmのウェハWを収容可能な処理空間が内部に形成された容器であり、その壁部には、供給ポート35、36と排出ポート37とが設けられる。供給ポート35、36および排出ポート37は、それぞれ、乾燥ユニット18に超臨界流体を流通させるための供給流路および排出流路に接続されている。
The main body 31 is a container having a processing space formed therein capable of accommodating a wafer W having a diameter of, for example, 300 mm, and its wall is provided with supply ports 35, 36 and discharge port 37. The supply ports 35, 36 and the discharge port 37 are respectively connected to a supply flow path and a discharge flow path for circulating a supercritical fluid to the drying unit 18.
供給ポート35は、筐体状の本体31において、開口部34とは反対側の側面に接続されている。また、供給ポート36は、本体31の底面に接続されている。さらに、排出ポート37は、開口部34の下方側に接続されている。なお、図3には2つの供給ポート35、36と1つの排出ポート37が図示されているが、供給ポート35、36や排出ポート37の数は特に限定されない。
The supply port 35 is connected to the side of the housing-like main body 31 opposite the opening 34. The supply port 36 is connected to the bottom surface of the main body 31. The discharge port 37 is connected to the lower side of the opening 34. Note that although two supply ports 35, 36 and one discharge port 37 are illustrated in FIG. 3, the number of supply ports 35, 36 and discharge ports 37 is not particularly limited.
また、本体31の内部には、流体供給ヘッダー38、39と、流体排出ヘッダー40とが設けられる。そして、流体供給ヘッダー38、39には複数の供給口がかかる流体供給ヘッダー38,39の長手方向に並んで形成され、流体排出ヘッダー40には複数の排出口がかかる流体排出ヘッダー40の長手方向に並んで形成される。
Furthermore, inside the main body 31, fluid supply headers 38, 39 and a fluid discharge header 40 are provided. The fluid supply headers 38, 39 are formed with a plurality of supply ports aligned in the longitudinal direction of the fluid supply headers 38, 39, and the fluid discharge header 40 is formed with a plurality of discharge ports aligned in the longitudinal direction of the fluid discharge header 40.
流体供給ヘッダー38は、供給ポート35に接続され、筐体状の本体31内部において、開口部34とは反対側の側面に隣接して設けられる。また、流体供給ヘッダー38に並んで形成される複数の供給口は、開口部34側を向いている。
The fluid supply header 38 is connected to the supply port 35 and is provided inside the housing-like main body 31 adjacent to the side opposite the opening 34. In addition, the multiple supply ports formed in line with the fluid supply header 38 face the opening 34 side.
流体供給ヘッダー39は、供給ポート36に接続され、筐体状の本体31内部における底面の中央部に設けられる。また、流体供給ヘッダー39に並んで形成される複数の供給口は、上方を向いている。
The fluid supply header 39 is connected to the supply port 36 and is provided in the center of the bottom surface inside the housing-like main body 31. In addition, the multiple supply ports formed in line with the fluid supply header 39 face upward.
流体排出ヘッダー40は、排出ポート37に接続され、筐体状の本体31内部において、開口部34側の側面に隣接するとともに、開口部34より下方に設けられる。また、流体排出ヘッダー40に並んで形成される複数の排出口は、上方を向いている。
The fluid discharge header 40 is connected to the discharge port 37 and is located inside the housing-like main body 31 adjacent to the side facing the opening 34 and below the opening 34. In addition, the multiple discharge ports formed next to the fluid discharge header 40 face upward.
流体供給ヘッダー38、39は、超臨界流体を本体31内に供給する。また、流体排出ヘッダー40は、本体31内の超臨界流体を本体31の外部に導いて排出する。なお、流体排出ヘッダー40を介して本体31の外部に排出される超臨界流体には、ウェハWの表面から超臨界状態の超臨界流体に溶け込んだIPA液体が含まれる。
The fluid supply headers 38 and 39 supply the supercritical fluid into the main body 31. The fluid discharge header 40 guides the supercritical fluid in the main body 31 to the outside of the main body 31 and discharges it. The supercritical fluid discharged to the outside of the main body 31 via the fluid discharge header 40 includes IPA liquid that has dissolved in the supercritical fluid in a supercritical state from the surface of the wafer W.
かかる乾燥ユニット18内において、ウェハW上に形成されているパターンの間のIPA液体は、高圧状態(たとえば、16MPa)である超臨界流体と接触することで、徐々に超臨界流体に溶解し、パターンの間は徐々に超臨界流体と置き換わる。そして、最終的には、超臨界流体のみによってパターンの間が満たされる。
In this drying unit 18, the IPA liquid between the patterns formed on the wafer W comes into contact with the supercritical fluid at a high pressure (for example, 16 MPa) and gradually dissolves in the supercritical fluid, and the spaces between the patterns are gradually replaced by the supercritical fluid. Finally, the spaces between the patterns are filled only with the supercritical fluid.
そして、パターンの間からIPA液体が除去された後に、本体31内部の圧力を高圧状態から大気圧まで減圧することによって、CO2は超臨界状態から気体状態に変化し、パターンの間は気体のみによって占められる。このようにしてパターンの間のIPA液体は除去され、ウェハWの乾燥処理が完了する。
After the IPA liquid is removed from between the patterns, the pressure inside the main body 31 is reduced from a high pressure state to atmospheric pressure, whereby the CO2 changes from a supercritical state to a gaseous state, and the spaces between the patterns are occupied only by gas. In this way, the IPA liquid between the patterns is removed, and the drying process of the wafer W is completed.
ここで、超臨界流体は、液体(たとえばIPA液体)と比べて粘度が小さく、また液体を溶解する能力も高いことに加え、超臨界流体と平衡状態にある液体や気体との間で界面が存在しない。これにより、超臨界流体を用いた乾燥処理では、表面張力の影響を受けることなく液体を乾燥させることができる。したがって、実施形態によれば、乾燥処理の際にパターンが倒れることを抑制することができる。
Here, supercritical fluids have a lower viscosity than liquids (e.g., IPA liquid) and a higher ability to dissolve liquids. In addition, there is no interface between the supercritical fluid and liquids or gases in equilibrium with it. This allows the drying process using the supercritical fluid to dry the liquid without being affected by surface tension. Therefore, according to the embodiment, it is possible to prevent the pattern from collapsing during the drying process.
なお、実施形態では、乾燥防止用の液体としてIPA液体を用い、処理流体として超臨界状態のCO2を用いた例について示しているが、IPA以外の液体を乾燥防止用の液体として用いてもよいし、超臨界状態のCO2以外の流体を処理流体として用いてもよい。
In the embodiment, an example is shown in which IPA liquid is used as the liquid for preventing drying, and CO2 in a supercritical state is used as the processing fluid, but a liquid other than IPA may be used as the liquid for preventing drying, and a fluid other than CO2 in a supercritical state may be used as the processing fluid.
<基板処理システムの構成>
つづいて、実施形態に係る基板処理システムSの構成について、図4および図5を参照しながら説明する。図4は、実施形態に係る基板処理システムSのシステム全体の構成例を示す図である。なお、以下に示す基板処理システムSの各部は、制御部7によって制御可能である。 <Configuration of Substrate Processing System>
Next, the configuration of the substrate processing system S according to the embodiment will be described with reference to Fig. 4 and Fig. 5. Fig. 4 is a diagram showing an example of the overall system configuration of the substrate processing system S according to the embodiment. Each part of the substrate processing system S described below can be controlled by acontrol unit 7.
つづいて、実施形態に係る基板処理システムSの構成について、図4および図5を参照しながら説明する。図4は、実施形態に係る基板処理システムSのシステム全体の構成例を示す図である。なお、以下に示す基板処理システムSの各部は、制御部7によって制御可能である。 <Configuration of Substrate Processing System>
Next, the configuration of the substrate processing system S according to the embodiment will be described with reference to Fig. 4 and Fig. 5. Fig. 4 is a diagram showing an example of the overall system configuration of the substrate processing system S according to the embodiment. Each part of the substrate processing system S described below can be controlled by a
基板処理システムSは、処理流体供給源60と、処理流体供給装置70と、基板処理装置1とを備える。処理流体供給装置70は、処理流体供給源60から供給される処理流体を基板処理装置1に供給する。
The substrate processing system S includes a processing fluid supply source 60, a processing fluid supply device 70, and a substrate processing apparatus 1. The processing fluid supply device 70 supplies the processing fluid supplied from the processing fluid supply source 60 to the substrate processing apparatus 1.
図4に示すように、基板処理装置1は、複数の乾燥ユニット18および複数の供給ユニット19を有し、対応する供給ユニット19を介して供給された処理流体によって、乾燥ユニット18内でウェハW(図5参照)を処理する。
As shown in FIG. 4, the substrate processing apparatus 1 has multiple drying units 18 and multiple supply units 19, and processes the wafer W (see FIG. 5) in the drying units 18 with the processing fluid supplied via the corresponding supply units 19.
処理流体供給源60と複数の乾燥ユニット18との間は、処理流体供給ライン61によって接続され、かかる処理流体供給ライン61にを介して処理流体供給源60から複数の乾燥ユニット18に処理流体が供給される。
The treatment fluid supply source 60 and the multiple drying units 18 are connected by a treatment fluid supply line 61, and treatment fluid is supplied from the treatment fluid supply source 60 to the multiple drying units 18 via the treatment fluid supply line 61.
処理流体供給ライン61は、第1供給ライン62と、複数の第2供給ライン63(図5参照)と、複数の第3供給ライン64と、複数の第4供給ライン65とを有する。第3供給ライン64は供給ラインの一例であり、第4供給ライン65は別の供給ラインの一例である。
The treatment fluid supply line 61 has a first supply line 62, a plurality of second supply lines 63 (see FIG. 5), a plurality of third supply lines 64, and a plurality of fourth supply lines 65. The third supply line 64 is an example of a supply line, and the fourth supply line 65 is an example of another supply line.
第1供給ライン62は、処理流体供給源60から処理流体供給装置70に処理流体を供給する。また、第1供給ライン62は、処理流体供給装置70内で複数の第2供給ライン63に分岐する。
The first supply line 62 supplies the treatment fluid from the treatment fluid supply source 60 to the treatment fluid supply device 70. The first supply line 62 also branches into multiple second supply lines 63 within the treatment fluid supply device 70.
第2供給ライン63、第3供給ライン64および第4供給ライン65は、この順に直列に接続され、処理流体供給装置70から供給ユニット19を介して、乾燥ユニット18に処理流体を供給する。
The second supply line 63, the third supply line 64 and the fourth supply line 65 are connected in series in this order, and supply the treatment fluid from the treatment fluid supply device 70 to the drying unit 18 via the supply unit 19.
第2供給ライン63は、処理流体供給装置70内に位置する。第3供給ライン64は、処理流体供給装置70と基板処理装置1との間に接続される。第4供給ライン65は、基板処理装置1内に位置する。
The second supply line 63 is located within the processing fluid supply device 70. The third supply line 64 is connected between the processing fluid supply device 70 and the substrate processing apparatus 1. The fourth supply line 65 is located within the substrate processing apparatus 1.
図5は、実施形態に係る基板処理システムSの配管構成の一例を示す図である。図5に示すように、処理流体供給装置70は、処理流体供給ライン61を有する。かかる処理流体供給ライン61は、第1供給ライン62および複数(図では2つ)の第2供給ライン63を含む。
FIG. 5 is a diagram showing an example of a piping configuration of a substrate processing system S according to an embodiment. As shown in FIG. 5, the processing fluid supply device 70 has a processing fluid supply line 61. The processing fluid supply line 61 includes a first supply line 62 and multiple (two in the figure) second supply lines 63.
第1供給ライン62は、処理流体供給源60から処理流体供給装置70に処理流体を供給する。また、第1供給ライン62は、処理流体供給装置70内で複数の第2供給ライン63に分岐する。
The first supply line 62 supplies the treatment fluid from the treatment fluid supply source 60 to the treatment fluid supply device 70. The first supply line 62 also branches into multiple second supply lines 63 within the treatment fluid supply device 70.
第1供給ライン62には、処理流体供給源60を基準として、上流側から順にバルブ66と、逆止弁67と、合流部71と、複数(図では2つ)の合流部72と、フィルタ73と、コンデンサ74と、タンク75と、ポンプ76と、分岐部77とが設けられる。また、第1供給ライン62には、分岐部77を基準として、上流側から順に圧力センサ78と、分岐部79とが設けられる。
In the first supply line 62, from the upstream side with respect to the treatment fluid supply source 60, there are provided a valve 66, a check valve 67, a junction 71, multiple junctions 72 (two in the figure), a filter 73, a condenser 74, a tank 75, a pump 76, and a branching section 77. In addition, in the first supply line 62, from the upstream side with respect to the branching section 77, there are provided a pressure sensor 78 and a branching section 79.
バルブ66は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側の逆止弁67に処理流体を流し、閉状態では下流側の逆止弁67に処理流体を流さない。逆止弁67は、第1供給ライン62内の処理流体が逆止弁67の上流側に逆流することを防止する。
Valve 66 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream check valve 67, and when closed, it does not allow the treatment fluid to flow to the downstream check valve 67. The check valve 67 prevents the treatment fluid in the first supply line 62 from flowing back to the upstream side of the check valve 67.
合流部71は、第1供給ライン62と、後述する戻しライン90とが合流する。合流部72は、第1供給ライン62と、後述する戻しライン100とが合流する。
At the junction 71, the first supply line 62 and the return line 90, which will be described later, join. At the junction 72, the first supply line 62 and the return line 100, which will be described later, join.
なお、第1供給ライン62において、処理流体供給源60からは気体状態の処理流体が供給される。さらに、複数の戻しライン100から第1供給ライン62に戻される液体状態の処理流体は、戻しライン90から第1供給ライン62に戻される高熱の気体状態の処理流体によって、液体状態から気体状態に変化する。これにより、フィルタ73には、気体状態の処理流体が流れ込む。
In addition, in the first supply line 62, the treatment fluid in a gaseous state is supplied from the treatment fluid supply source 60. Furthermore, the liquid treatment fluid returned to the first supply line 62 from the multiple return lines 100 changes from a liquid state to a gaseous state due to the high-temperature gaseous treatment fluid returned to the first supply line 62 from the return line 90. As a result, the treatment fluid in a gaseous state flows into the filter 73.
フィルタ73は、たとえばガスフィルタであり、第1供給ライン62内を流れる気体状態の処理流体を濾過し、処理流体に含まれる異物を取り除く。かかるフィルタ73で処理流体内の異物を取り除くことにより、超臨界流体を用いたウェハWの乾燥処理の際に、ウェハW表面にパーティクルが発生することを抑制することができる。
The filter 73 is, for example, a gas filter, and filters the gaseous processing fluid flowing through the first supply line 62 to remove foreign matter contained in the processing fluid. By removing foreign matter from the processing fluid using the filter 73, it is possible to suppress the generation of particles on the surface of the wafer W during the drying process of the wafer W using a supercritical fluid.
コンデンサ74は、たとえば、図示しない冷却水供給部に接続され、冷却水と気体状態の処理流体とを熱交換させることができる。これにより、コンデンサ74は、第1供給ライン62内を流れる気体状態の処理流体を冷却して、室温よりも低い所与の温度(たとえば、15(℃)程度)の液体状態の処理流体を生成する。
The condenser 74 is connected, for example, to a cooling water supply unit (not shown) and can exchange heat between the cooling water and the gaseous processing fluid. As a result, the condenser 74 cools the gaseous processing fluid flowing through the first supply line 62 to generate a liquid processing fluid at a given temperature (for example, about 15°C) lower than room temperature.
タンク75は、コンデンサ74で生成された低温の液体状態の処理流体を貯留する。ポンプ76は、タンク75に貯留された低温の液体状態の処理流体を、第1供給ライン62の下流側に圧送する。分岐部77からは、後述する戻しライン90が分岐する。
The tank 75 stores the low-temperature liquid-state processing fluid generated in the condenser 74. The pump 76 pumps the low-temperature liquid-state processing fluid stored in the tank 75 to the downstream side of the first supply line 62. A return line 90, which will be described later, branches off from the branching point 77.
圧力センサ78は、第1供給ライン62を流れる処理流体の圧力を測定する。分岐部79からは、複数(図では2つ)の第2供給ライン63が分岐する。
The pressure sensor 78 measures the pressure of the treatment fluid flowing through the first supply line 62. Multiple (two in the figure) second supply lines 63 branch off from the branching point 79.
それぞれの第2供給ライン63には、分岐部79を基準として、上流側から順にオリフィス80と、分岐部81と、圧力センサ82とが設けられる。オリフィス80は、第2供給ライン63を流れる低温の液体状態の処理流体の流速を低下させ、圧力を調整する。
Each second supply line 63 is provided with an orifice 80, a branch 81, and a pressure sensor 82, in that order from the upstream side, based on the branch 79. The orifice 80 reduces the flow rate of the low-temperature liquid-state treatment fluid flowing through the second supply line 63, thereby adjusting the pressure.
分岐部81からは、戻しライン100が分岐する。圧力センサ82は、第2供給ライン63を流れる処理流体の圧力を測定する。
The return line 100 branches off from the branch point 81. The pressure sensor 82 measures the pressure of the treatment fluid flowing through the second supply line 63.
戻しライン100は、第2供給ライン63を流れる液体状態の処理流体を、第1供給ライン62の合流部72に戻す。このように、戻しライン100によって処理流体を上流側に戻すことで、濾過できる回数を増やして異物を除去する性能を向上させることができる。
The return line 100 returns the liquid treatment fluid flowing through the second supply line 63 to the junction 72 of the first supply line 62. In this way, by returning the treatment fluid to the upstream side through the return line 100, the number of times that it can be filtered can be increased, improving the performance of removing foreign matter.
戻しライン100には、分岐部81を基準として、上流側から順に背圧弁101と、バルブ102とが設けられる。
The return line 100 is provided with a back pressure valve 101 and a valve 102, in that order from the upstream side, based on the branching section 81.
背圧弁101は、戻しライン100の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持するように構成される。なお、背圧弁101の弁開度および設定圧力は制御部7(図1参照)により随時変更することが可能である。
The back pressure valve 101 is configured to adjust the valve opening to allow fluid to flow to the secondary side when the primary pressure of the return line 100 exceeds the set pressure, thereby maintaining the primary pressure at the set pressure. The valve opening and set pressure of the back pressure valve 101 can be changed at any time by the control unit 7 (see Figure 1).
バルブ102は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側の合流部72に処理流体を流し、閉状態では下流側の合流部72に処理流体を流さない。
Valve 102 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream junction 72, and when closed, it does not allow the treatment fluid to flow to the downstream junction 72.
そして、戻しライン100から戻された液体状態の処理流体は、第1供給ライン62の合流部72に戻る。なお、合流部72から戻された液体状態の処理流体は、合流部71から戻されて第1供給ライン62を流れる高熱の気体状態の処理流体によって、液体状態から気体状態に変化する。
Then, the liquid-state processing fluid returned from the return line 100 returns to the junction 72 of the first supply line 62. The liquid-state processing fluid returned from the junction 72 changes from the liquid state to the gas state due to the high-temperature gas-state processing fluid returned from the junction 71 and flowing through the first supply line 62.
第1供給ライン62の分岐部77から分岐する戻しライン90は、第1供給ライン62を流れる液体状態の処理流体を、第1供給ライン62の合流部71に戻す。このように、戻しライン90によって処理流体を上流側に戻すことで、濾過できる回数を増やして異物を除去する性能を向上させることができる。
The return line 90, which branches off from the branch point 77 of the first supply line 62, returns the liquid treatment fluid flowing through the first supply line 62 to the junction 71 of the first supply line 62. In this way, by returning the treatment fluid to the upstream side through the return line 90, the number of times that filtering can be performed can be increased, improving the performance of removing foreign matter.
戻しライン90には、分岐部77を基準として、上流側から順にスパイラルヒータ91と、背圧弁92と、バルブ93とが設けられる。スパイラルヒータ91は、戻しライン90に巻回され、かかる戻しライン90を流れる液体状態の処理流体を加熱して、超臨界状態の処理流体を生成する。
The return line 90 is provided with a spiral heater 91, a back pressure valve 92, and a valve 93, in that order from the upstream side with respect to the branching point 77. The spiral heater 91 is wound around the return line 90 and heats the liquid processing fluid flowing through the return line 90 to generate a supercritical processing fluid.
背圧弁92は、戻しライン90の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持するように構成される。
The back pressure valve 92 is configured to maintain the primary pressure at the set pressure by adjusting the valve opening to allow fluid to flow to the secondary side when the primary pressure of the return line 90 exceeds the set pressure.
そして、背圧弁92は、戻しライン90を流れる超臨界状態の処理流体を減圧して、気体状態の処理流体を生成する。なお、背圧弁92の弁開度および設定圧力は制御部7により随時変更することが可能である。
The back pressure valve 92 reduces the pressure of the supercritical processing fluid flowing through the return line 90 to generate a gaseous processing fluid. The valve opening and set pressure of the back pressure valve 92 can be changed at any time by the control unit 7.
バルブ93は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側の合流部71に処理流体を流し、閉状態では下流側の合流部71に処理流体を流さない。
Valve 93 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream junction 71, and when closed, it does not allow the treatment fluid to flow to the downstream junction 71.
そして、背圧弁92で生成された高温の気体状態の処理流体は、バルブ93を介して第1供給ライン62の合流部71に戻る。
Then, the high-temperature gaseous process fluid generated by the back pressure valve 92 returns to the junction 71 of the first supply line 62 via the valve 93.
ここまで説明した処理流体供給装置70によって、第2供給ライン63、第3供給ライン64および第4供給ライン65を介して複数の供給ユニット19に向けて低温の液体状態の処理流体が供給される。すなわち、実施形態では、処理流体を気体状態や超臨界状態ではなく、液体状態で処理流体供給装置70から基板処理装置1に供給している。
The processing fluid supply device 70 described above supplies a low-temperature liquid processing fluid to the multiple supply units 19 via the second supply line 63, the third supply line 64, and the fourth supply line 65. That is, in this embodiment, the processing fluid is supplied from the processing fluid supply device 70 to the substrate processing apparatus 1 in a liquid state, not in a gaseous state or a supercritical state.
これにより、処理流体供給装置70と各乾燥ユニット18との距離、すなわち各第3供給ライン64の長さにバラツキが生じたとしても、かかる長さのバラツキによる不具合を低減することができる。
As a result, even if there is variation in the distance between the treatment fluid supply device 70 and each drying unit 18, i.e., the length of each third supply line 64, problems caused by such variation in length can be reduced.
制御部7は、供給ユニット19に向けて第2供給ライン63、第3供給ライン64および第4供給ライン65から供給する処理流体の圧力を、圧力センサ82によって測定するとともに、背圧弁101の弁開度によって制御する。制御部7は、たとえば、背圧弁101の一次側の設定圧力を上げることで、供給ユニット19に向けて供給する処理流体の圧力を上昇させる。
The control unit 7 measures the pressure of the treatment fluid supplied to the supply unit 19 from the second supply line 63, the third supply line 64, and the fourth supply line 65 using a pressure sensor 82, and controls the pressure by the valve opening degree of the back pressure valve 101. The control unit 7 increases the pressure of the treatment fluid supplied to the supply unit 19, for example, by increasing the set pressure on the primary side of the back pressure valve 101.
また、制御部7は、たとえば、背圧弁101の一次側の設定圧力を下げることで、供給ユニット19に向けて供給する処理流体の圧力を低下させる。
The control unit 7 also reduces the pressure of the treatment fluid supplied to the supply unit 19, for example, by lowering the set pressure on the primary side of the back pressure valve 101.
同様に、制御部7は、複数の第2供給ライン63に向けて第1供給ライン62から供給する処理流体の圧力を、圧力センサ78によって測定するとともに、背圧弁92の弁開度によって制御する。そして、制御部7は、圧力センサ78の測定値が一定となるように、背圧弁92の弁開度を適宜制御する。
Similarly, the control unit 7 measures the pressure of the processing fluid supplied from the first supply line 62 to the multiple second supply lines 63 using a pressure sensor 78, and controls it by the valve opening of the back pressure valve 92. The control unit 7 then appropriately controls the valve opening of the back pressure valve 92 so that the measured value of the pressure sensor 78 becomes constant.
また、実施形態では、ポンプ76と背圧弁92との間において、スパイラルヒータ91により処理流体が液体状態から超臨界状態に相変化している。すなわち、ポンプ76と、閉状態となりうるバルブ41または背圧弁92との間が、非圧縮性である液体状態の処理流体で満たされるのではなく、一部が圧縮性である超臨界状態の処理流体となっている。
In addition, in this embodiment, the spiral heater 91 changes the phase of the processing fluid between the pump 76 and the back pressure valve 92 from a liquid state to a supercritical state. In other words, the space between the pump 76 and the valve 41 or the back pressure valve 92, which may be in a closed state, is not filled with processing fluid in a non-compressible liquid state, but is filled with processing fluid in a partially compressible supercritical state.
これにより、第1供給ライン62において非圧縮性である液体状態の処理流体をポンプ76で送り出す場合でも、かかるポンプ76で生じる脈動を超臨界状態の部位で吸収させることができる。したがって、実施形態によれば、液体状態の処理流体をポンプ76で送り出す際に、かかるポンプ76で生じる脈動の影響を低減することができる。
As a result, even when the pump 76 pumps out the treatment fluid in a liquid state, which is incompressible in the first supply line 62, the pulsation generated by the pump 76 can be absorbed by the part in the supercritical state. Therefore, according to the embodiment, when the treatment fluid in a liquid state is pumped out by the pump 76, the effect of the pulsation generated by the pump 76 can be reduced.
基板処理装置1において、第4供給ライン65を流れる処理流体は乾燥ユニット18に供給され、排出ライン50を介して乾燥ユニット18から外部に排出される。
In the substrate processing apparatus 1, the processing fluid flowing through the fourth supply line 65 is supplied to the drying unit 18 and discharged from the drying unit 18 to the outside via the discharge line 50.
基板処理装置1内の第4供給ライン65には、上流側から順にバルブ41と、オリフィス42と、ヒータ43および温度センサ44と、バルブ45と、フィルタ46とが設けられる。
The fourth supply line 65 in the substrate processing apparatus 1 is provided with, in order from the upstream side, a valve 41, an orifice 42, a heater 43, a temperature sensor 44, a valve 45, and a filter 46.
バルブ41は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側のオリフィス42に処理流体を流し、閉状態では下流側のオリフィス42に処理流体を流さない。
Valve 41 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream orifice 42, and when closed, it does not allow the treatment fluid to flow to the downstream orifice 42.
オリフィス42は、第4供給ライン65を通流する低温の液体状態の処理流体の流速を低下させ、圧力を調整する役割を果たす。
The orifice 42 serves to reduce the flow rate of the low-temperature liquid-state processing fluid flowing through the fourth supply line 65 and adjust the pressure.
ヒータ43は、第4供給ライン65を流れる液体状態の処理流体を加熱して、超臨界状態の処理流体を生成する。温度センサ44は、ヒータ43で生成される超臨界状態の処理流体の温度を検出する。
The heater 43 heats the liquid processing fluid flowing through the fourth supply line 65 to generate a supercritical processing fluid. The temperature sensor 44 detects the temperature of the supercritical processing fluid generated by the heater 43.
バルブ45は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側のフィルタ46に処理流体を流し、閉状態では下流側のフィルタ46に処理流体を流さない。
Valve 45 is a valve that adjusts the flow of the processing fluid on and off. When open, the processing fluid flows through the downstream filter 46, and when closed, the processing fluid does not flow through the downstream filter 46.
フィルタ46は、第4供給ライン65内を流れる超臨界状態の処理流体を濾過し、処理流体に含まれる異物を取り除く。かかるフィルタ46で処理流体内の異物を取り除くことにより、超臨界流体を用いたウェハWの乾燥処理の際に、ウェハW表面にパーティクルが発生することを抑制することができる。
The filter 46 filters the supercritical processing fluid flowing through the fourth supply line 65 and removes foreign matter contained in the processing fluid. By removing foreign matter from the processing fluid using the filter 46, it is possible to suppress the generation of particles on the surface of the wafer W during the drying process of the wafer W using the supercritical fluid.
乾燥ユニット18には、温度センサ47が設けられる。かかる温度センサ47は、乾燥ユニット18内に充填される処理流体の温度を検出する。
The drying unit 18 is provided with a temperature sensor 47. The temperature sensor 47 detects the temperature of the processing fluid filled in the drying unit 18.
排出ライン50には、上流側から順に圧力センサ51と、バルブ52と、流量計53と、背圧弁54とが設けられる。圧力センサ51は、排出ライン50を流れる処理流体の圧力を測定する。なお、圧力センサ51は排出ライン50を介して乾燥ユニット18と直接つながっていることから、圧力センサ51で測定された処理流体の圧力は、乾燥ユニット18における処理流体の内圧と略等しい値である。
In the discharge line 50, a pressure sensor 51, a valve 52, a flow meter 53, and a back pressure valve 54 are provided in that order from the upstream side. The pressure sensor 51 measures the pressure of the processing fluid flowing through the discharge line 50. Since the pressure sensor 51 is directly connected to the drying unit 18 via the discharge line 50, the pressure of the processing fluid measured by the pressure sensor 51 is approximately equal to the internal pressure of the processing fluid in the drying unit 18.
バルブ52は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側のドレイン部DRに処理流体を流し、閉状態では下流側のドレイン部DRに処理流体を流さない。流量計53は、排出ライン50を流れる処理流体の流量を測定する。
Valve 52 is a valve that adjusts the flow of the treatment fluid on and off. When open, it allows the treatment fluid to flow to the downstream drain section DR, and when closed, it does not allow the treatment fluid to flow to the downstream drain section DR. Flow meter 53 measures the flow rate of the treatment fluid flowing through discharge line 50.
背圧弁54は、排出ライン50の一次側圧力が設定圧力を超えた場合には弁開度を調整して二次側に流体を流すことにより、一次側圧力を設定圧力に維持するように構成される。なお、背圧弁54の弁開度および設定圧力は制御部7により随時変更することが可能である。
The back pressure valve 54 is configured to adjust the valve opening to allow fluid to flow to the secondary side when the primary pressure of the discharge line 50 exceeds the set pressure, thereby maintaining the primary pressure at the set pressure. The valve opening and set pressure of the back pressure valve 54 can be changed at any time by the control unit 7.
ここで、基板処理装置1の乾燥ユニット18において、ウェハWを1枚ずつ連続して処理する場合、処理開始後2枚目以降のウェハWでは低温の液体状態の処理流体が連続的にヒータ43に供給され、かかるヒータ43によって超臨界状態の処理流体に変化する。そして、かかる超臨界状態の処理流体が乾燥ユニット18に供給されることによって、ウェハWの乾燥処理が行われる。
When wafers W are processed one by one in succession in the drying unit 18 of the substrate processing apparatus 1, a low-temperature liquid processing fluid is continuously supplied to the heater 43 for the second and subsequent wafers W after the start of processing, and is converted into a supercritical processing fluid by the heater 43. The supercritical processing fluid is then supplied to the drying unit 18, whereby the wafers W are dried.
一方で、処理開始後1枚目のウェハWでは、処理開始の直前まで閉状態のバルブ41によって、第3供給ライン64に滞留する液体状態の処理流体がヒータ43に供給される。この第3供給ライン64に滞留する液体状態の処理流体は、滞留時に温度が室温まで上昇していることから、低温時に比べて密度が小さくなっている。
On the other hand, for the first wafer W after the start of processing, the liquid processing fluid retained in the third supply line 64 is supplied to the heater 43 by the valve 41, which is closed until just before the start of processing. The liquid processing fluid retained in the third supply line 64 has a lower density than when it is at low temperature because its temperature has risen to room temperature while retained.
そのため、2枚目のウェハWと同じレシピ条件によってヒータ43で加熱され、乾燥ユニット18に供給された場合、ヒータ43内を通流する処理流体の密度が異なるため、2枚目以降のウェハWと処理流体の温度や圧力の挙動が異なってしまう。
Therefore, when the second wafer W is heated by the heater 43 under the same recipe conditions as the second wafer W and supplied to the drying unit 18, the density of the processing fluid flowing through the heater 43 is different, and the behavior of the temperature and pressure of the second and subsequent wafers W and the processing fluid will be different.
これにより、1枚目のウェハWと2枚目以降のウェハWとでは、乾燥処理の後に異なる処理状態となる場合があった。
As a result, the first wafer W and the second and subsequent wafers W may end up in different processing states after the drying process.
そこで、実施形態では、図5に示すように、第3供給ライン64に温度センサ110を設けることとした。温度センサ110は、温度測定部の一例である。
Therefore, in this embodiment, as shown in FIG. 5, a temperature sensor 110 is provided in the third supply line 64. The temperature sensor 110 is an example of a temperature measurement unit.
制御部7は、たとえばウェハWを乾燥ユニット18に搬入する前に、温度センサ110で第3供給ライン64内の処理流体の温度および第3供給ライン64そのものの温度の少なくとも一方を測定する。
For example, before the wafer W is loaded into the drying unit 18, the control unit 7 uses the temperature sensor 110 to measure at least one of the temperature of the processing fluid in the third supply line 64 and the temperature of the third supply line 64 itself.
そして、温度センサ110で測定された温度が、処理流体供給装置70で生成される液体状態の処理流体の温度と同じ場合(例えば、2枚目以降のウェハWの場合)、制御部7は、基準のレシピ通りの処理条件で処理流体を乾燥ユニット18に供給する。
If the temperature measured by the temperature sensor 110 is the same as the temperature of the liquid processing fluid generated by the processing fluid supply device 70 (for example, in the case of the second or subsequent wafer W), the control unit 7 supplies the processing fluid to the drying unit 18 under processing conditions according to the standard recipe.
一方で、温度センサ110で測定された温度が、処理流体供給装置70で生成される液体状態の処理流体の温度と異なる場合(例えば、1枚目のウェハWの場合)、制御部7は、基準のレシピから処理条件を変更した上で、処理流体を乾燥ユニット18に供給する。
On the other hand, if the temperature measured by the temperature sensor 110 is different from the temperature of the liquid-state processing fluid generated by the processing fluid supply device 70 (for example, in the case of the first wafer W), the control unit 7 changes the processing conditions from the standard recipe and supplies the processing fluid to the drying unit 18.
たとえば、制御部7は、温度センサ110で測定された温度が20(℃)以上である場合、基準のレシピから処理条件を変更した上で、処理流体を乾燥ユニット18に供給する。
For example, if the temperature measured by the temperature sensor 110 is 20°C or higher, the control unit 7 changes the processing conditions from the standard recipe and supplies the processing fluid to the drying unit 18.
この場合、たとえば、制御部7は、背圧弁101の弁開度を調整することで、第2供給ライン63および第3供給ライン64を介して第4供給ライン65に供給される処理流体の圧力を基準のレシピ通りの処理条件よりも高めに設定する。
In this case, for example, the control unit 7 adjusts the valve opening of the back pressure valve 101 to set the pressure of the processing fluid supplied to the fourth supply line 65 via the second supply line 63 and the third supply line 64 to a level higher than the processing conditions according to the standard recipe.
これにより、ヒータ43内を通流する液体状態の処理流体の密度を揃えることができる。そのため、温度センサ110で測定された温度が処理流体供給装置70で生成される液体状態の処理流体の温度と異なる場合でも、1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を揃えることができる。
This allows the density of the liquid-state processing fluid flowing through the heater 43 to be uniform. Therefore, even if the temperature measured by the temperature sensor 110 differs from the temperature of the liquid-state processing fluid generated by the processing fluid supply device 70, the behavior of the temperature and pressure of the processing fluid can be uniform between the first wafer W and the second and subsequent wafers W.
したがって、実施形態によれば、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
Therefore, according to the embodiment, a stable drying process can be performed using the processing fluid from the first wafer W after processing begins.
また、実施形態では、制御部7が、ヒータ43の出力を調整することで、かかるヒータ43で加熱される処理流体の温度を基準のレシピ通りの処理条件から変更してもよい。
In addition, in the embodiment, the control unit 7 may adjust the output of the heater 43 to change the temperature of the processing fluid heated by the heater 43 from the processing conditions according to the standard recipe.
これにより、ヒータ43から乾燥ユニット18に供給される超臨界状態の処理流体の密度を揃えることができる。そのため、温度センサ110で測定された温度が処理流体供給装置70で生成される液体状態の処理流体の温度と異なる場合でも、1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を揃えることができる。
This makes it possible to make the density of the supercritical processing fluid supplied from the heater 43 to the drying unit 18 uniform. Therefore, even if the temperature measured by the temperature sensor 110 differs from the temperature of the liquid processing fluid generated by the processing fluid supply device 70, the behavior of the temperature and pressure of the processing fluid can be made uniform between the first wafer W and the second and subsequent wafers W.
したがって、実施形態によれば、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
Therefore, according to the embodiment, a stable drying process can be performed using the processing fluid from the first wafer W after processing begins.
また、実施形態では、制御部7が、乾燥ユニット18にウェハWを搬入する前に、温度センサ110で温度を測定するとよい。これにより、第3供給ライン64内の処理流体の温度や第3供給ライン64そのものの温度を予め把握できるため、その後のウェハWの乾燥処理を円滑に実施することができる。
In addition, in the embodiment, the control unit 7 may measure the temperature with the temperature sensor 110 before loading the wafer W into the drying unit 18. This allows the temperature of the processing fluid in the third supply line 64 and the temperature of the third supply line 64 itself to be known in advance, so that the subsequent drying process of the wafer W can be carried out smoothly.
なお、本開示の技術は、乾燥ユニット18にウェハWを搬入する前に温度センサ110で温度を測定する場合に限られず、乾燥ユニット18にウェハWを搬入する際、または乾燥ユニット18にウェハWを搬入した後に温度センサ110で温度を測定してもよい。
Note that the technology disclosed herein is not limited to measuring the temperature with the temperature sensor 110 before the wafer W is loaded into the drying unit 18, but may also measure the temperature with the temperature sensor 110 when the wafer W is loaded into the drying unit 18 or after the wafer W is loaded into the drying unit 18.
<変形例1>
つづいては、実施形態の各種変形例について、図6~図11を参照しながら説明する。図6は、実施形態の変形例1に係る基板処理システムSの配管構成の一例を示す図である。 <Modification 1>
Next, various modified examples of the embodiment will be described with reference to Fig. 6 to Fig. 11. Fig. 6 is a diagram showing an example of a piping configuration of a substrate processing system S according to a first modified example of the embodiment.
つづいては、実施形態の各種変形例について、図6~図11を参照しながら説明する。図6は、実施形態の変形例1に係る基板処理システムSの配管構成の一例を示す図である。 <
Next, various modified examples of the embodiment will be described with reference to Fig. 6 to Fig. 11. Fig. 6 is a diagram showing an example of a piping configuration of a substrate processing system S according to a first modified example of the embodiment.
図6に示すように、変形例1に係る基板処理システムSでは、処理流体供給装置70および第3供給ライン64の構成が上述の実施形態と異なる。そこで、以降の例では、すでに説明した実施形態等と同様の部位については同じ符号を付して、詳細な説明は省略する。
As shown in FIG. 6, in the substrate processing system S according to the first modification, the configuration of the processing fluid supply device 70 and the third supply line 64 differs from that of the above-described embodiment. Therefore, in the following examples, the same reference numerals are used for parts similar to those of the already-described embodiment, and detailed descriptions are omitted.
具体的には、変形例1では、第3供給ライン64に分岐部120が設けられる。かかる分岐部120は、たとえば、第3供給ライン64における基板処理装置1の近傍に位置する。
Specifically, in the first modification, a branch portion 120 is provided in the third supply line 64. The branch portion 120 is located, for example, in the vicinity of the substrate processing apparatus 1 in the third supply line 64.
また、分岐部120からは戻しライン130が分岐する。戻しライン130は、温度維持機構の一例である。戻しライン130は、戻しライン100における背圧弁101の上流側に位置する合流部104に合流する。
Furthermore, a return line 130 branches off from the branching section 120. The return line 130 is an example of a temperature maintenance mechanism. The return line 130 joins the joining section 104 located upstream of the back pressure valve 101 in the return line 100.
戻しライン130には、バルブ131が設けられる。バルブ131は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側の合流部104に処理流体を流し、閉状態では下流側の合流部104に処理流体を流さない。
A valve 131 is provided in the return line 130. The valve 131 is a valve that adjusts the flow of the treatment fluid on and off, and when open, it allows the treatment fluid to flow to the downstream junction 104, and when closed, it does not allow the treatment fluid to flow to the downstream junction 104.
戻しライン100における合流部104の上流側には、バルブ103が設けられる。バルブ103は、処理流体の流れのオン及びオフを調整するバルブであり、開状態では下流側の合流部104に処理流体を流し、閉状態では下流側の合流部104に処理流体を流さない。
A valve 103 is provided upstream of the junction 104 in the return line 100. The valve 103 is a valve that adjusts the flow of the treatment fluid on and off, and when open, the treatment fluid flows to the junction 104 on the downstream side, and when closed, the treatment fluid does not flow to the junction 104 on the downstream side.
なお、変形例1では、上述の実施形態において第3供給ライン64に設けられていた温度センサ110が設けられてもよい。
In addition, in the first modification, the temperature sensor 110 provided in the third supply line 64 in the above embodiment may be provided.
図7は、実施形態の変形例1に係る基板処理システムSの動作の一例を示す図であり、ウェハWの乾燥処理を行っている際の処理流体の流れを説明する図である。
FIG. 7 is a diagram showing an example of the operation of the substrate processing system S according to the first modified embodiment, and is a diagram explaining the flow of the processing fluid when the drying process of the wafer W is being performed.
図7の太破線で示すように、変形例1では、ウェハWの乾燥処理を行っている際に、ポンプ76で圧送された低温の液体状態の処理流体が、第2供給ライン63および第3供給ライン64を介して、第4供給ライン65のバルブ41まで到達する。
As shown by the thick dashed line in FIG. 7, in variant 1, when the wafer W is being dried, the low-temperature liquid processing fluid pumped by the pump 76 passes through the second supply line 63 and the third supply line 64 and reaches the valve 41 of the fourth supply line 65.
さらに、ウェハWの乾燥処理を行っている際には、バルブ41が開状態に制御されるため、処理流体は第4供給ライン65を介して乾燥ユニット18まで供給される。
Furthermore, when the wafer W is being dried, the valve 41 is controlled to be open, so that the processing fluid is supplied to the drying unit 18 via the fourth supply line 65.
また、変形例1では、戻しライン90を介して液体状態の処理流体が合流部71に戻る。また、バルブ103が開状態に制御されるため、分岐部81から戻しライン100を介して液体状態の処理流体が合流部72に戻る。なお、この際、戻しライン130のバルブ131は閉状態に制御されるため、戻しライン130には処理流体は流れない。
In addition, in the first modified example, the liquid treatment fluid returns to the junction 71 via the return line 90. Also, because the valve 103 is controlled to be open, the liquid treatment fluid returns to the junction 72 from the branch 81 via the return line 100. At this time, the valve 131 of the return line 130 is controlled to be closed, so no treatment fluid flows through the return line 130.
図7に示すように、変形例1では、ウェハWの乾燥処理を行っている際に、低温の液体状態の処理流体は第3供給ライン64を流れ続けるため、第3供給ライン64において、滞留による処理流体の温度上昇は生じない。
As shown in FIG. 7, in the first modification, when the wafer W is being dried, the low-temperature liquid processing fluid continues to flow through the third supply line 64, so that there is no increase in the temperature of the processing fluid due to stagnation in the third supply line 64.
図8は、実施形態の変形例1に係る基板処理システムSの動作の一例を示す図であり、ウェハWの乾燥処理を行っておらず、乾燥ユニット18が待機状態である場合の処理流体の流れを説明する図である。
FIG. 8 is a diagram showing an example of the operation of the substrate processing system S according to the first modified embodiment, and explains the flow of processing fluid when the drying process of the wafer W is not being performed and the drying unit 18 is in a standby state.
乾燥ユニット18が待機状態である場合には、図8の太破線で示すように、ポンプ76で圧送された低温の液体状態の処理流体が、第2供給ライン63および第3供給ライン64を介して、第3供給ライン64の分岐部120まで到達する。
When the drying unit 18 is in standby mode, as shown by the thick dashed line in Figure 8, the low-temperature liquid treatment fluid pumped by the pump 76 travels through the second supply line 63 and the third supply line 64 and reaches the branch point 120 of the third supply line 64.
一方で、乾燥ユニット18は待機状態であるため、基板処理装置1のバルブ41は閉状態に制御され、第4供給ライン65には液体状態の処理流体は流れ込まない。
On the other hand, since the drying unit 18 is in a standby state, the valve 41 of the substrate processing apparatus 1 is controlled to a closed state, and no liquid processing fluid flows into the fourth supply line 65.
一方で、変形例1では、戻しライン130のバルブ131を開状態に制御することで、第3供給ライン64の分岐部120まで到達した低温の液体状態の処理流体を、戻しライン130および戻しライン100を介して合流部72まで戻すことができる。なおこの際、戻しライン100のバルブ103は閉状態に制御される。
On the other hand, in the first modification, the valve 131 of the return line 130 is controlled to be open, so that the low-temperature liquid-state processing fluid that has reached the branch point 120 of the third supply line 64 can be returned to the junction point 72 via the return line 130 and the return line 100. At this time, the valve 103 of the return line 100 is controlled to be closed.
このように、変形例1では、戻しライン130を設けることで、乾燥ユニット18が待機状態である場合にも、第3供給ライン64において低温の液体状態の処理流体の通流状態を維持することができる。
In this way, in variant 1, by providing the return line 130, it is possible to maintain the flow of low-temperature liquid treatment fluid through the third supply line 64 even when the drying unit 18 is in standby mode.
これにより、液体状態の処理流体が第3供給ライン64に滞留することを抑制できるため、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を揃えることができる。
This prevents liquid processing fluid from stagnation in the third supply line 64, so that the temperature of the processing fluid located in the third supply line 64 can be made uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
したがって、変形例1によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を揃えることができることから、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
Therefore, according to variant example 1, the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
また、変形例1では、戻しライン130が、第3供給ライン64における基板処理装置1の近傍に接続されるとよい。すなわち、変形例1では、分岐部120が第3供給ライン64における基板処理装置1の近傍に位置するとよい。
Furthermore, in the first modification, the return line 130 may be connected to the third supply line 64 near the substrate processing apparatus 1. That is, in the first modification, the branch portion 120 may be located near the substrate processing apparatus 1 on the third supply line 64.
これにより、乾燥ユニット18が待機状態である場合に、第3供給ライン64に位置する大半の液体状態の処理流体を戻しライン130で戻すことができるため、第3供給ライン64に位置する大半の液体状態の処理流体が滞留することを抑制できる。
As a result, when the drying unit 18 is in standby, most of the liquid-state processing fluid in the third supply line 64 can be returned via the return line 130, thereby preventing most of the liquid-state processing fluid in the third supply line 64 from stagnating.
すなわち、変形例1では、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を精度よく揃えることができる。
In other words, in variant 1, the temperature of the processing fluid located in the third supply line 64 can be precisely matched between the first wafer W and the second and subsequent wafers W after the start of processing.
したがって、変形例1によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を精度よく揃えることができることから、処理開始後1枚目のウェハWから、処理流体でさらに安定した乾燥処理を行うことができる。
Therefore, according to variant example 1, the temperature and pressure behavior of the processing fluid can be precisely aligned between the first wafer W after the start of processing and the second and subsequent wafers W, allowing for a more stable drying process to be performed with the processing fluid, starting from the first wafer W after the start of processing.
<変形例2>
図9は、実施形態の変形例2に係る基板処理システムSの配管構成の一例を示す図である。図9に示すように、変形例2に係る基板処理システムSでは、分岐部120が第3供給ライン64ではなく基板処理装置1内の第4供給ライン65に位置する。 <Modification 2>
9 is a diagram showing an example of a piping configuration of a substrate processing system S according toModification 2 of the embodiment. As shown in FIG. 9, in the substrate processing system S according to Modification 2, the branching portion 120 is located not in the third supply line 64 but in the fourth supply line 65 in the substrate processing apparatus 1.
図9は、実施形態の変形例2に係る基板処理システムSの配管構成の一例を示す図である。図9に示すように、変形例2に係る基板処理システムSでは、分岐部120が第3供給ライン64ではなく基板処理装置1内の第4供給ライン65に位置する。 <
9 is a diagram showing an example of a piping configuration of a substrate processing system S according to
具体的には、変形例2では、分岐部120が第4供給ライン65におけるバルブ41の上流側に位置する。
Specifically, in variant 2, the branch portion 120 is located upstream of the valve 41 in the fourth supply line 65.
これによっても、上述の変形例1と同様に、戻しライン130を設けることで、乾燥ユニット18が待機状態である場合にも、第3供給ライン64において低温の液体状態の処理流体の通流状態を維持することができる。
As with the first modified example described above, by providing the return line 130, it is possible to maintain the flow of low-temperature liquid treatment fluid through the third supply line 64 even when the drying unit 18 is in standby mode.
すなわち、変形例2では、低温の液体状態の処理流体が第3供給ライン64に滞留することを抑制できるため、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を揃えることができる。
In other words, in the second modification, the low-temperature liquid processing fluid can be prevented from stagnation in the third supply line 64, so that the temperature of the processing fluid located in the third supply line 64 can be made uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
したがって、変形例2によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を揃えることができることから、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
Therefore, according to variant example 2, the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
また、変形例2では、分岐部120が基板処理装置1内の第4供給ライン65に位置することで、乾燥ユニット18が待機状態である場合に、第3供給ライン64に位置するすべての液体状態の処理流体を戻しライン130で戻すことができる。
In addition, in the second modification, the branching section 120 is located in the fourth supply line 65 in the substrate processing apparatus 1, so that when the drying unit 18 is in a standby state, all liquid-state processing fluid located in the third supply line 64 can be returned via the return line 130.
これにより、第3供給ライン64に位置するすべての液体状態の処理流体が滞留することを抑制できるため、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を精度よく揃えることができる。
This prevents all liquid processing fluid in the third supply line 64 from stagnating, so that the temperature of the processing fluid in the third supply line 64 can be precisely matched between the first wafer W and the second and subsequent wafers W after processing begins.
したがって、変形例2によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を精度よく揃えることができることから、処理開始後1枚目のウェハWから、処理流体でさらに安定した乾燥処理を行うことができる。
Therefore, according to variant example 2, the temperature and pressure behavior of the processing fluid can be precisely aligned between the first wafer W after the start of processing and the second and subsequent wafers W, allowing for a more stable drying process to be performed with the processing fluid, starting from the first wafer W after the start of processing.
<変形例3>
図10は、実施形態の変形例3に係る基板処理システムSの配管構成の一例を示す図である。図10に示すように、変形例3に係る基板処理システムSでは、分岐部120が第4供給ライン65におけるヒータ43とバルブ45との間に位置する。 <Modification 3>
Fig. 10 is a diagram showing an example of a piping configuration of a substrate processing system S according toModification 3 of the embodiment. As shown in Fig. 10, in the substrate processing system S according to Modification 3, a branching portion 120 is located between the heater 43 and the valve 45 in the fourth supply line 65.
図10は、実施形態の変形例3に係る基板処理システムSの配管構成の一例を示す図である。図10に示すように、変形例3に係る基板処理システムSでは、分岐部120が第4供給ライン65におけるヒータ43とバルブ45との間に位置する。 <
Fig. 10 is a diagram showing an example of a piping configuration of a substrate processing system S according to
これによっても、上述の変形例1と同様に、戻しライン130を設けることで、乾燥ユニット18が待機状態である場合にも、第3供給ライン64において低温の液体状態の処理流体の通流状態を維持することができる。
As with the first modified example described above, by providing the return line 130, it is possible to maintain the flow of low-temperature liquid treatment fluid through the third supply line 64 even when the drying unit 18 is in standby mode.
すなわち、変形例3では、低温の液体状態の処理流体が第3供給ライン64に滞留することを抑制できるため、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を揃えることができる。
In other words, in the third modification, the low-temperature liquid processing fluid can be prevented from stagnation in the third supply line 64, so that the temperature of the processing fluid located in the third supply line 64 can be made uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
したがって、変形例3によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を揃えることができることから、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
Therefore, according to variant example 3, the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
また、変形例3では、分岐部120が基板処理装置1内の第4供給ライン65に位置することで、乾燥ユニット18が待機状態である場合に、第3供給ライン64に位置するすべての液体状態の処理流体を戻しライン130で戻すことができる。
In addition, in the third modified example, the branching section 120 is located in the fourth supply line 65 in the substrate processing apparatus 1, so that when the drying unit 18 is in a standby state, all liquid processing fluid located in the third supply line 64 can be returned via the return line 130.
これにより、第3供給ライン64に位置するすべての液体状態の処理流体が滞留することを抑制できるため、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を精度よく揃えることができる。
This prevents all liquid processing fluid in the third supply line 64 from stagnating, so that the temperature of the processing fluid in the third supply line 64 can be precisely matched between the first wafer W and the second and subsequent wafers W after processing begins.
したがって、変形例3によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を精度よく揃えることができることから、処理開始後1枚目のウェハWから、処理流体でさらに安定した乾燥処理を行うことができる。
Therefore, according to variant example 3, the temperature and pressure behavior of the processing fluid can be precisely aligned between the first wafer W after the start of processing and the second and subsequent wafers W, allowing for a more stable drying process to be performed with the processing fluid, starting from the first wafer W after the start of processing.
なお、変形例3では、乾燥ユニット18が待機状態である場合、バルブ41は閉状態ではなく開状態に制御され、バルブ45が閉状態に制御される。
In addition, in the third variant, when the drying unit 18 is in a standby state, the valve 41 is controlled to an open state rather than a closed state, and the valve 45 is controlled to a closed state.
<変形例4>
ここまで説明した変形例1~3では、第3供給ライン64における処理流体の温度を維持する温度維持機構として戻しライン130が用いられる例について示したが、本開示はかかる例に限られない。 <Modification 4>
In each of the first to third modified examples described above, thereturn line 130 is used as a temperature maintaining mechanism for maintaining the temperature of the processing fluid in the third supply line 64, but the present disclosure is not limited to such an example.
ここまで説明した変形例1~3では、第3供給ライン64における処理流体の温度を維持する温度維持機構として戻しライン130が用いられる例について示したが、本開示はかかる例に限られない。 <
In each of the first to third modified examples described above, the
図11は、実施形態の変形例4に係る基板処理システムSの配管構成の一例を示す図である。図11に示すように、変形例4に係る基板処理システムSでは、第3供給ライン64における処理流体の温度を維持する温度維持機構として、第3供給ライン64を冷却する冷却機構140が設けられる。
FIG. 11 is a diagram showing an example of the piping configuration of a substrate processing system S according to the fourth modification of the embodiment. As shown in FIG. 11, in the substrate processing system S according to the fourth modification, a cooling mechanism 140 that cools the third supply line 64 is provided as a temperature maintenance mechanism that maintains the temperature of the processing fluid in the third supply line 64.
かかる冷却機構140は、たとえばチラーであり、第3供給ライン64の周囲を覆うように位置する。冷却機構140は、第3供給ライン64に位置する処理流体の温度を所与の温度(処理流体供給装置70で生成される液体状態の処理流体の温度)に維持する。
The cooling mechanism 140 is, for example, a chiller, and is positioned so as to surround the third supply line 64. The cooling mechanism 140 maintains the temperature of the treatment fluid located in the third supply line 64 at a given temperature (the temperature of the liquid treatment fluid generated by the treatment fluid supply device 70).
これによっても、処理開始後1枚目のウェハWと2枚目以降のウェハWとで第3供給ライン64に位置する処理流体の温度を揃えることができる。
This also makes it possible to make the temperature of the processing fluid located in the third supply line 64 uniform between the first wafer W and the second and subsequent wafers W after the start of processing.
したがって、変形例4によれば、処理開始後1枚目のウェハWと2枚目以降のウェハWとで処理流体の温度や圧力の挙動を揃えることができることから、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
Therefore, according to variant example 4, the temperature and pressure behavior of the processing fluid can be made uniform between the first wafer W after the start of processing and the second and subsequent wafers W, so that a stable drying process can be performed with the processing fluid from the first wafer W after the start of processing.
実施形態に係る基板処理システムSは、処理流体供給装置70と、基板処理装置1と、供給ライン(第3供給ライン64)と、温度測定部(温度センサ110)と、を備える。処理流体供給装置70は、所与の温度に調整された処理流体を供給する。基板処理装置1は、処理流体供給装置70から供給される処理流体で基板(ウェハW)を処理する。供給ライン(第3供給ライン64)は、処理流体供給装置70と基板処理装置1との間に接続される。温度測定部(温度センサ110)は、供給ライン(第3供給ライン64)において、処理流体の温度および供給ライン(第3供給ライン64)の温度の少なくとも一方を測定する。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
The substrate processing system S according to the embodiment includes a processing fluid supply device 70, a substrate processing apparatus 1, a supply line (third supply line 64), and a temperature measurement unit (temperature sensor 110). The processing fluid supply device 70 supplies processing fluid adjusted to a given temperature. The substrate processing apparatus 1 processes a substrate (wafer W) with the processing fluid supplied from the processing fluid supply device 70. The supply line (third supply line 64) is connected between the processing fluid supply device 70 and the substrate processing apparatus 1. The temperature measurement unit (temperature sensor 110) measures at least one of the temperature of the processing fluid and the temperature of the supply line (third supply line 64) in the supply line (third supply line 64). This allows stable drying processing to be performed with the processing fluid from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSは、各部を制御する制御部7、をさらに備える。また、制御部7は、温度測定部(温度センサ110)で測定された温度が所与の温度と異なる場合に、処理流体供給装置70から供給される処理流体の圧力および基板処理装置1内で加熱される処理流体の温度の少なくとも一方を基準のレシピから変更する。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
The substrate processing system S according to the embodiment further includes a control unit 7 that controls each unit. When the temperature measured by the temperature measurement unit (temperature sensor 110) differs from a given temperature, the control unit 7 changes at least one of the pressure of the processing fluid supplied from the processing fluid supply device 70 and the temperature of the processing fluid heated in the substrate processing apparatus 1 from the reference recipe. This allows stable drying processing to be performed with the processing fluid from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSにおいて、制御部7は、基板(ウェハW)が基板処理装置1内の処理チャンバ(乾燥ユニット18)に搬入される前に、温度測定部(温度センサ110)で温度を測定する。これにより、ウェハWの乾燥処理を円滑に実施することができる。
In addition, in the substrate processing system S according to the embodiment, the control unit 7 measures the temperature using the temperature measurement unit (temperature sensor 110) before the substrate (wafer W) is loaded into the processing chamber (drying unit 18) in the substrate processing apparatus 1. This allows the drying process of the wafer W to be carried out smoothly.
また、実施形態に係る基板処理システムSは、処理流体供給装置70と、基板処理装置1と、供給ライン(第3供給ライン64)と、温度維持機構(戻しライン130、冷却機構140)と、を備える。処理流体供給装置70は、所与の温度に調整された処理流体を供給する。基板処理装置1は、処理流体供給装置70から供給される処理流体で基板(ウェハW)を処理する。供給ライン(第3供給ライン64)は、処理流体供給装置70と基板処理装置1との間に接続される。温度維持機構(戻しライン130、冷却機構140)は。供給ライン(第3供給ライン64)を通流する処理流体の温度を所与の温度に維持する。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
The substrate processing system S according to the embodiment includes a processing fluid supply device 70, a substrate processing apparatus 1, a supply line (third supply line 64), and a temperature maintenance mechanism (return line 130, cooling mechanism 140). The processing fluid supply device 70 supplies processing fluid adjusted to a given temperature. The substrate processing apparatus 1 processes a substrate (wafer W) with the processing fluid supplied from the processing fluid supply device 70. The supply line (third supply line 64) is connected between the processing fluid supply device 70 and the substrate processing apparatus 1. The temperature maintenance mechanism (return line 130, cooling mechanism 140) maintains the temperature of the processing fluid flowing through the supply line (third supply line 64) at a given temperature. This allows stable drying processing to be performed with the processing fluid from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSにおいて、温度維持機構は、供給ライン(第3供給ライン64)を通流する処理流体を処理流体供給装置70に戻す戻しライン130である。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
In addition, in the substrate processing system S according to the embodiment, the temperature maintenance mechanism is a return line 130 that returns the processing fluid flowing through the supply line (third supply line 64) to the processing fluid supply device 70. This allows stable drying processing to be performed with the processing fluid, starting from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSは、各部を制御する制御部7、をさらに備える。また、制御部7は、基板(ウェハW)が基板処理装置1内の処理チャンバ(乾燥ユニット18)に搬入されていない場合に、供給ライン(第3供給ライン64)を通流する処理流体を戻しライン130で処理流体供給装置70に戻す。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
The substrate processing system S according to the embodiment further includes a control unit 7 that controls each unit. When a substrate (wafer W) has not been loaded into the processing chamber (drying unit 18) in the substrate processing apparatus 1, the control unit 7 returns the processing fluid flowing through the supply line (third supply line 64) to the processing fluid supply device 70 via the return line 130. This allows stable drying processing to be performed with the processing fluid, starting from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSにおいて、戻しライン130は、供給ライン(第3供給ライン64)における基板処理装置1の近傍に接続される。これにより、処理開始後1枚目のウェハWから、処理流体でさらに安定した乾燥処理を行うことができる。
Furthermore, in the substrate processing system S according to the embodiment, the return line 130 is connected to the supply line (third supply line 64) near the substrate processing apparatus 1. This allows for more stable drying processing with the processing fluid to be performed from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSにおいて、基板処理装置1は、処理チャンバ(乾燥ユニット18)と、別の供給ライン(第4供給ライン65)と、バルブ41とを有する。処理チャンバ(乾燥ユニット18)は、基板(ウェハW)を処理する。別の供給ライン(第4供給ライン65)は、供給ライン(第3供給ライン64)と処理チャンバ(乾燥ユニット18)との間に接続される。バルブ41は、別の供給ライン(第4供給ライン65)の上流側に設けられる。また、戻しライン130は、別の供給ライン(第4供給ライン65)におけるバルブ41の上流側に接続される。これにより、処理開始後1枚目のウェハWから、処理流体でさらに安定した乾燥処理を行うことができる。
In addition, in the substrate processing system S according to the embodiment, the substrate processing apparatus 1 has a processing chamber (drying unit 18), another supply line (fourth supply line 65), and a valve 41. The processing chamber (drying unit 18) processes a substrate (wafer W). The another supply line (fourth supply line 65) is connected between the supply line (third supply line 64) and the processing chamber (drying unit 18). The valve 41 is provided upstream of the another supply line (fourth supply line 65). The return line 130 is connected upstream of the valve 41 in the another supply line (fourth supply line 65). This allows for more stable drying processing with the processing fluid, starting from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSにおいて、基板処理装置1は、処理チャンバ(乾燥ユニット18)と、別の供給ライン(第4供給ライン65)と、加熱部(ヒータ43)とを有する。処理チャンバ(乾燥ユニット18)は、基板(ウェハW)を処理する。別の供給ライン(第4供給ライン65)は、供給ライン(第3供給ライン64)と処理チャンバ(乾燥ユニット18)との間に接続される。加熱部(ヒータ43)は、別の供給ライン(第4供給ライン65)に設けられ、処理流体を加熱する。また、戻しライン130は、加熱部(ヒータ43)の下流側に接続される。これにより、処理開始後1枚目のウェハWから、処理流体でさらに安定した乾燥処理を行うことができる。
In addition, in the substrate processing system S according to the embodiment, the substrate processing apparatus 1 has a processing chamber (drying unit 18), another supply line (fourth supply line 65), and a heating section (heater 43). The processing chamber (drying unit 18) processes a substrate (wafer W). The other supply line (fourth supply line 65) is connected between the supply line (third supply line 64) and the processing chamber (drying unit 18). The heating section (heater 43) is provided in the other supply line (fourth supply line 65) and heats the processing fluid. In addition, the return line 130 is connected downstream of the heating section (heater 43). This allows for more stable drying processing with the processing fluid, starting from the first wafer W after processing begins.
また、実施形態に係る基板処理システムSにおいて、処理流体供給装置70は、室温よりも低い液体状態の処理流体を基板処理装置1に供給し、基板処理装置1は、超臨界状態の処理流体で基板(ウェハW)を処理する。これにより、複数の第3供給ライン64の長さにバラツキが生じたとしても、かかる長さのバラツキによる不具合を低減することができる。
Furthermore, in the substrate processing system S according to the embodiment, the processing fluid supply device 70 supplies a processing fluid in a liquid state that is lower than room temperature to the substrate processing apparatus 1, and the substrate processing apparatus 1 processes the substrate (wafer W) with the processing fluid in a supercritical state. As a result, even if there is variation in the lengths of the multiple third supply lines 64, problems caused by such variation in length can be reduced.
<基板処理の手順>
つづいて、実施形態に係る基板処理の手順について、図12および図13を参照しながら説明する。図12は、実施形態に係る基板処理の処理手順を示すフローチャートである。 <Substrate processing procedure>
Next, a procedure for substrate processing according to the embodiment will be described with reference to Fig. 12 and Fig. 13. Fig. 12 is a flowchart showing the procedure for substrate processing according to the embodiment.
つづいて、実施形態に係る基板処理の手順について、図12および図13を参照しながら説明する。図12は、実施形態に係る基板処理の処理手順を示すフローチャートである。 <Substrate processing procedure>
Next, a procedure for substrate processing according to the embodiment will be described with reference to Fig. 12 and Fig. 13. Fig. 12 is a flowchart showing the procedure for substrate processing according to the embodiment.
実施形態に係る基板処理では、まず、制御部7が、温度センサ110を制御して、第3供給ライン64の温度、ここでは第3供給ライン64内の処理流体の温度および第3供給ライン64そのものの温度の少なくとも一方を測定する(ステップS101)。
In the substrate processing according to the embodiment, first, the control unit 7 controls the temperature sensor 110 to measure the temperature of the third supply line 64, in this case at least one of the temperature of the processing fluid in the third supply line 64 and the temperature of the third supply line 64 itself (step S101).
そして、温度センサ110で測定された温度が、所与の温度(処理流体供給装置70で生成される液体状態の処理流体の温度)と異なっていない場合(ステップS102,No)、制御部7は、基準のレシピを読み込む(ステップS103)。
If the temperature measured by the temperature sensor 110 does not differ from the given temperature (the temperature of the liquid-state processing fluid generated by the processing fluid supply device 70) (step S102, No), the control unit 7 reads the reference recipe (step S103).
一方で、温度センサ110で測定された温度が、所与の温度(処理流体供給装置70で生成される液体状態の処理流体の温度)と異なる場合(ステップS102,Yes)、制御部7は、基準のレシピを変更する(ステップS104)。
On the other hand, if the temperature measured by the temperature sensor 110 is different from the given temperature (the temperature of the liquid-state processing fluid generated by the processing fluid supply device 70) (step S102, Yes), the control unit 7 changes the reference recipe (step S104).
次に、制御部7は、基板処理装置1などを制御して、IPA液体の液膜が形成されたウェハWを、乾燥ユニット18に搬入する(ステップS105)。
Next, the control unit 7 controls the substrate processing apparatus 1 and the like to transport the wafer W on which the IPA liquid film has been formed into the drying unit 18 (step S105).
次に、制御部7は、処理流体供給装置70や基板処理装置1などを制御して、超臨界状態の処理流体を乾燥ユニット18に供給する(ステップS106)。そして、制御部7は、乾燥ユニット18でウェハWの乾燥処理を行う(ステップS107)。
Then, the control unit 7 controls the processing fluid supply device 70, the substrate processing apparatus 1, etc. to supply the processing fluid in a supercritical state to the drying unit 18 (step S106). Then, the control unit 7 performs a drying process on the wafer W in the drying unit 18 (step S107).
最後に、制御部7は、乾燥処理が終了したウェハWを乾燥ユニット18から搬出して(ステップS108)、一連の基板処理を終了する。
Finally, the control unit 7 removes the wafer W for which the drying process has been completed from the drying unit 18 (step S108), completing the series of substrate processing steps.
図13は、実施形態の変形例1~4に係る基板処理の処理手順を示すフローチャートである。
FIG. 13 is a flowchart showing the processing procedure for substrate processing according to the first to fourth modified embodiments.
変形例1~4に係る基板処理では、まず、制御部7が、戻しライン130や冷却機構140などを制御して、第3供給ライン64内の処理流体の温度を所与の温度(処理流体供給装置70で生成される液体状態の処理流体の温度)に維持する(ステップS201)。
In the substrate processing according to the first to fourth variations, the control unit 7 first controls the return line 130, the cooling mechanism 140, etc. to maintain the temperature of the processing fluid in the third supply line 64 at a given temperature (the temperature of the liquid processing fluid generated by the processing fluid supply device 70) (step S201).
次に、制御部7は、基準のレシピを読み込む(ステップS202)。そして、制御部7は、基板処理装置1などを制御して、IPA液体の液膜が形成されたウェハWを、乾燥ユニット18に搬入する(ステップS203)。
Then, the control unit 7 reads the reference recipe (step S202). Then, the control unit 7 controls the substrate processing apparatus 1 and the like to load the wafer W on which the IPA liquid film has been formed into the drying unit 18 (step S203).
次に、制御部7は、処理流体供給装置70や基板処理装置1などを制御して、超臨界状態の処理流体を乾燥ユニット18に供給する(ステップS204)。そして、制御部7は、乾燥ユニット18でウェハWの乾燥処理を行う(ステップS205)。
Then, the control unit 7 controls the processing fluid supply device 70, the substrate processing apparatus 1, etc. to supply the processing fluid in a supercritical state to the drying unit 18 (step S204). Then, the control unit 7 performs a drying process on the wafer W in the drying unit 18 (step S205).
最後に、制御部7は、乾燥処理が終了したウェハWを乾燥ユニット18から搬出して(ステップS206)、一連の基板処理を終了する。
Finally, the control unit 7 removes the wafer W for which the drying process has been completed from the drying unit 18 (step S206), completing the series of substrate processing steps.
実施形態に係る基板処理方法は、処理流体供給工程(ステップS106)と、基板処理工程(ステップS107)と、温度測定工程(ステップS101)と、を含む。処理流体供給工程(ステップS106)は、所与の温度に調整された処理流体を供給する。基板処理工程(ステップS107)は、処理流体供給工程(ステップS106)によって供給される処理流体で基板(ウェハW)を処理する。温度測定工程(ステップS101)は、供給ライン(第3供給ライン64)において、処理流体の温度および供給ライン(第3供給ライン64)の温度の少なくとも一方を測定する。供給ライン(第3供給ライン64)は、処理流体供給工程(ステップS106)を行う処理流体供給装置70と基板処理工程(ステップS107)を行う基板処理装置1との間に接続される。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
The substrate processing method according to the embodiment includes a processing fluid supply step (step S106), a substrate processing step (step S107), and a temperature measurement step (step S101). The processing fluid supply step (step S106) supplies a processing fluid adjusted to a given temperature. The substrate processing step (step S107) processes a substrate (wafer W) with the processing fluid supplied by the processing fluid supply step (step S106). The temperature measurement step (step S101) measures at least one of the temperature of the processing fluid and the temperature of the supply line (third supply line 64) in the supply line (third supply line 64). The supply line (third supply line 64) is connected between the processing fluid supply device 70 that performs the processing fluid supply step (step S106) and the substrate processing apparatus 1 that performs the substrate processing step (step S107). This allows stable drying processing with the processing fluid from the first wafer W after the start of processing.
また、実施形態に係る基板処理方法は、処理流体供給工程(ステップS204)と、基板処理工程(ステップS205)と、温度維持工程(ステップS201)と、を含む。処理流体供給工程(ステップS204)は、所与の温度に調整された処理流体を供給する。基板処理工程(ステップS205)は、処理流体供給工程(ステップS204)によって供給される処理流体で基板(ウェハW)を処理する。温度維持工程(ステップS201)は、供給ライン(第3供給ライン64)において、通流する処理流体の温度を所与の温度に維持する。供給ライン(第3供給ライン64)は、処理流体供給工程(ステップS204)を行う処理流体供給装置70と基板処理工程(ステップS205)を行う基板処理装置1との間に接続される。これにより、処理開始後1枚目のウェハWから、処理流体で安定した乾燥処理を行うことができる。
The substrate processing method according to the embodiment includes a processing fluid supply step (step S204), a substrate processing step (step S205), and a temperature maintenance step (step S201). The processing fluid supply step (step S204) supplies a processing fluid adjusted to a given temperature. The substrate processing step (step S205) processes a substrate (wafer W) with the processing fluid supplied by the processing fluid supply step (step S204). The temperature maintenance step (step S201) maintains the temperature of the processing fluid flowing through the supply line (third supply line 64) at a given temperature. The supply line (third supply line 64) is connected between the processing fluid supply device 70 that performs the processing fluid supply step (step S204) and the substrate processing apparatus 1 that performs the substrate processing step (step S205). This allows stable drying processing with the processing fluid from the first wafer W after the start of processing.
以上、本開示の実施形態について説明したが、本開示は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、第1供給ライン62が2つの第2供給ライン63に分岐する例について示したが、本開示はかかる例に限られず、第1供給ライン62が3つの第2供給ライン63に分岐してもよい。また、第1供給ライン62が複数の第2供給ライン63に分岐していなくてもよい。
The above describes an embodiment of the present disclosure, but the present disclosure is not limited to the above embodiment, and various modifications are possible without departing from the spirit of the present disclosure. For example, in the above embodiment, an example is shown in which the first supply line 62 branches into two second supply lines 63, but the present disclosure is not limited to such an example, and the first supply line 62 may branch into three second supply lines 63. In addition, the first supply line 62 does not have to branch into multiple second supply lines 63.
今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. Indeed, the above-described embodiments may be embodied in a variety of forms. Furthermore, the above-described embodiments may be omitted, substituted, or modified in various forms without departing from the scope and spirit of the appended claims.
S 基板処理システム
W ウェハ(基板の一例)
1 基板処理装置
7 制御部
18 乾燥ユニット(処理チャンバの一例)
41 バルブ
43 ヒータ(加熱部の一例)
60 処理流体供給源
61 処理流体供給ライン
62 第1供給ライン
63 第2供給ライン
64 第3供給ライン(供給ラインの一例)
65 第4供給ライン(別の供給ラインの一例)
70 処理流体供給装置
110 温度センサ(温度測定部の一例)
120 分岐部
130 戻しライン(温度維持機構の一例)
140 冷却機構(温度維持機構の一例) S: Substrate processing system W: Wafer (an example of a substrate)
1Substrate processing apparatus 7 Control unit 18 Drying unit (an example of a processing chamber)
41Valve 43 Heater (an example of a heating unit)
60 Processingfluid supply source 61 Processing fluid supply line 62 First supply line 63 Second supply line 64 Third supply line (an example of a supply line)
65 Fourth supply line (an example of another supply line)
70 Processingfluid supply device 110 Temperature sensor (an example of a temperature measuring unit)
120 Branchingportion 130 Return line (an example of a temperature maintaining mechanism)
140 Cooling mechanism (an example of a temperature maintaining mechanism)
W ウェハ(基板の一例)
1 基板処理装置
7 制御部
18 乾燥ユニット(処理チャンバの一例)
41 バルブ
43 ヒータ(加熱部の一例)
60 処理流体供給源
61 処理流体供給ライン
62 第1供給ライン
63 第2供給ライン
64 第3供給ライン(供給ラインの一例)
65 第4供給ライン(別の供給ラインの一例)
70 処理流体供給装置
110 温度センサ(温度測定部の一例)
120 分岐部
130 戻しライン(温度維持機構の一例)
140 冷却機構(温度維持機構の一例) S: Substrate processing system W: Wafer (an example of a substrate)
1
41
60 Processing
65 Fourth supply line (an example of another supply line)
70 Processing
120 Branching
140 Cooling mechanism (an example of a temperature maintaining mechanism)
Claims (11)
- 所与の温度に調整された処理流体を供給する処理流体供給装置と、
前記処理流体供給装置から供給される前記処理流体で基板を処理する基板処理装置と、
前記処理流体供給装置と前記基板処理装置との間に接続される供給ラインと、
前記供給ラインにおいて、前記処理流体の温度および前記供給ラインの温度の少なくとも一方を測定する温度測定部と、
を備える基板処理システム。 A process fluid supply device that supplies a process fluid regulated to a given temperature;
a substrate processing apparatus for processing a substrate with the processing fluid supplied from the processing fluid supply apparatus;
a supply line connected between the processing fluid supply device and the substrate processing apparatus;
a temperature measuring unit in the supply line that measures at least one of a temperature of the processing fluid and a temperature of the supply line;
A substrate processing system comprising: - 各部を制御する制御部、をさらに備え、
前記制御部は、前記温度測定部で測定された温度が前記所与の温度と異なる場合に、前記処理流体供給装置から供給される前記処理流体の圧力および前記基板処理装置内で加熱される前記処理流体の温度の少なくとも一方を基準のレシピから変更する
請求項1に記載の基板処理システム。 A control unit for controlling each unit is further provided.
2. The substrate processing system of claim 1, wherein the control unit changes at least one of a pressure of the processing fluid supplied from the processing fluid supply device and a temperature of the processing fluid heated in the substrate processing device from a standard recipe when the temperature measured by the temperature measuring unit is different from the given temperature. - 前記制御部は、前記基板が前記基板処理装置内の処理チャンバに搬入される前に、前記温度測定部で温度を測定する
請求項2に記載の基板処理システム。 The substrate processing system according to claim 2 , wherein the control unit measures the temperature with the temperature measuring unit before the substrate is loaded into a processing chamber in the substrate processing apparatus. - 所与の温度に調整された処理流体を供給する処理流体供給装置と、
前記処理流体供給装置から供給される前記処理流体で基板を処理する基板処理装置と、
前記処理流体供給装置と前記基板処理装置との間に接続される供給ラインと、
前記供給ラインを通流する前記処理流体の温度を前記所与の温度に維持する温度維持機構と、
を備える基板処理システム。 A process fluid supply device that supplies a process fluid regulated to a given temperature;
a substrate processing apparatus for processing a substrate with the processing fluid supplied from the processing fluid supply apparatus;
a supply line connected between the processing fluid supply device and the substrate processing apparatus;
a temperature maintenance mechanism for maintaining the temperature of the process fluid flowing through the supply line at the given temperature;
A substrate processing system comprising: - 前記温度維持機構は、前記供給ラインを通流する前記処理流体を前記処理流体供給装置に戻す戻しラインである
請求項4に記載の基板処理システム。 The substrate processing system of claim 4 , wherein the temperature maintaining mechanism is a return line that returns the processing fluid flowing through the supply line to the processing fluid supply device. - 各部を制御する制御部、をさらに備え、
前記制御部は、前記基板が前記基板処理装置内の処理チャンバに搬入されていない場合に、前記供給ラインを通流する前記処理流体を前記戻しラインで前記処理流体供給装置に戻す
請求項5に記載の基板処理システム。 A control unit for controlling each unit is further provided.
The substrate processing system according to claim 5 , wherein the control unit returns the processing fluid flowing through the supply line to the processing fluid supply device via the return line when the substrate is not loaded into a processing chamber in the substrate processing device. - 前記戻しラインは、前記供給ラインにおける前記基板処理装置の近傍に接続される
請求項5または6に記載の基板処理システム。 The substrate processing system according to claim 5 , wherein the return line is connected to the supply line in a vicinity of the substrate processing apparatus. - 前記基板処理装置は、
前記基板を処理する処理チャンバと、
前記供給ラインと前記処理チャンバとの間に接続される別の供給ラインと、
前記別の供給ラインの上流側に設けられるバルブと、
を有し、
前記戻しラインは、前記別の供給ラインにおける前記バルブの上流側に接続される
請求項5または6に記載の基板処理システム。 The substrate processing apparatus includes:
a processing chamber for processing the substrate;
another supply line connected between the supply line and the processing chamber;
a valve provided upstream of the other supply line;
having
The substrate processing system according to claim 5 or 6, wherein the return line is connected to the upstream side of the valve in the other supply line. - 前記基板処理装置は、
前記基板を処理する処理チャンバと、
前記供給ラインと前記処理チャンバとの間に接続される別の供給ラインと、
前記別の供給ラインに設けられ、前記処理流体を加熱する加熱部と、
を有し、
前記戻しラインは、前記加熱部の下流側に接続される
請求項5または6に記載の基板処理システム。 The substrate processing apparatus includes:
a processing chamber for processing the substrate;
another supply line connected between the supply line and the processing chamber;
a heating unit provided in the separate supply line for heating the treatment fluid;
having
The substrate processing system according to claim 5 , wherein the return line is connected to a downstream side of the heating unit. - 前記処理流体供給装置は、室温よりも低い液体状態の処理流体を前記基板処理装置に供給し、
前記基板処理装置は、超臨界状態の処理流体で前記基板を処理する
請求項1~6のいずれか一つに記載の基板処理システム。 the processing fluid supply device supplies a processing fluid in a liquid state at a temperature lower than room temperature to the substrate processing apparatus;
7. The substrate processing system according to claim 1, wherein the substrate processing apparatus processes the substrate with a processing fluid in a supercritical state. - 所与の温度に調整された処理流体を供給する処理流体供給工程と、
前記処理流体供給工程によって供給される前記処理流体で基板を処理する基板処理工程と、
前記処理流体供給工程を行う処理流体供給装置と前記基板処理工程を行う基板処理装置との間に接続される供給ラインにおいて、前記処理流体の温度および前記供給ラインの温度の少なくとも一方を測定する温度測定工程と、
を含む基板処理方法。 a process fluid supply step of supplying a process fluid adjusted to a given temperature;
a substrate processing step of processing a substrate with the processing fluid supplied by the processing fluid supply step;
a temperature measuring step of measuring at least one of a temperature of the processing fluid and a temperature of a supply line connected between a processing fluid supplying device performing the processing fluid supplying step and a substrate processing device performing the substrate processing step;
A substrate processing method comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022175310 | 2022-11-01 | ||
JP2022-175310 | 2022-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095780A1 true WO2024095780A1 (en) | 2024-05-10 |
Family
ID=90930479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/037811 WO2024095780A1 (en) | 2022-11-01 | 2023-10-19 | Substrate processing system and substrate processing method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202425116A (en) |
WO (1) | WO2024095780A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011035133A (en) * | 2009-07-31 | 2011-02-17 | Tokyo Electron Ltd | Liquid processing apparatus and liquid processing method |
US20190291144A1 (en) * | 2018-03-22 | 2019-09-26 | Tel Fsi, Inc. | Pressure Control Strategies to Provide Uniform Treatment Streams in the Manufacture of Microelectronic Devices |
-
2023
- 2023-10-19 WO PCT/JP2023/037811 patent/WO2024095780A1/en unknown
- 2023-10-23 TW TW112140340A patent/TW202425116A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011035133A (en) * | 2009-07-31 | 2011-02-17 | Tokyo Electron Ltd | Liquid processing apparatus and liquid processing method |
US20190291144A1 (en) * | 2018-03-22 | 2019-09-26 | Tel Fsi, Inc. | Pressure Control Strategies to Provide Uniform Treatment Streams in the Manufacture of Microelectronic Devices |
Also Published As
Publication number | Publication date |
---|---|
TW202425116A (en) | 2024-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7109328B2 (en) | Substrate processing system | |
JP7113949B2 (en) | Substrate processing equipment | |
JP6824069B2 (en) | Substrate processing equipment | |
JP6840036B2 (en) | Board processing equipment | |
WO2024095780A1 (en) | Substrate processing system and substrate processing method | |
JP7525231B2 (en) | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD | |
JP7458533B2 (en) | Processing fluid supply device | |
JP7562403B2 (en) | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD | |
WO2024085014A1 (en) | Processing fluid supply apparatus and processing fluid supply method | |
JP7285992B2 (en) | Processing fluid supply method | |
JP7562913B2 (en) | SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS | |
TWI854933B (en) | Processing fluid supply method | |
WO2021112022A1 (en) | Substrate processing device and substrate processing method | |
KR20230168139A (en) | Substrate processing apparatus and substrate processing method | |
TW202431478A (en) | Processing fluid supply device and processing fluid supply method | |
KR20230140470A (en) | Substrate processing apparatus and substrate processing method | |
KR20190060674A (en) | Substrate processing method and substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885542 Country of ref document: EP Kind code of ref document: A1 |