WO2024095704A1 - Identification information setting device, battery system, and program - Google Patents

Identification information setting device, battery system, and program Download PDF

Info

Publication number
WO2024095704A1
WO2024095704A1 PCT/JP2023/036599 JP2023036599W WO2024095704A1 WO 2024095704 A1 WO2024095704 A1 WO 2024095704A1 JP 2023036599 W JP2023036599 W JP 2023036599W WO 2024095704 A1 WO2024095704 A1 WO 2024095704A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
identification information
communication
module
monitoring unit
Prior art date
Application number
PCT/JP2023/036599
Other languages
French (fr)
Japanese (ja)
Inventor
真也 加藤
康人 田邉
良規 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024095704A1 publication Critical patent/WO2024095704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • This disclosure relates to an identification information setting device, a battery system, and a program.
  • the present disclosure has been made in consideration of the above problems, and its purpose is to provide an identification information setting device, battery system, and program that can easily set the identification information of each battery module when a battery module is replaced, etc.
  • the present disclosure relates to The present invention is applied to a battery system having a plurality of battery modules each having a storage battery and a monitoring unit that monitors the storage battery, an identification information setting device that is provided to be able to communicate with the monitoring unit and sets module identification information for each of the battery modules, a communication determination unit that, when the identification information setting device is started, checks the communication identification information determined for each of the monitoring units and determines whether or not communication has been established based on the check result; a setting unit that sets the module identification information based on the determination by the communication determination unit that communication has not been established; Equipped with.
  • the communication identification information is collated for each monitoring unit, and it is determined whether communication has been established or not based on the collation results. In this case, if the communication identification information of each monitoring unit is correctly recognized in the identification information setting device, it is determined that communication has been established.
  • the communication identification information in the battery module is in an unset state (e.g., initial state), and when the identification information setting device is started, the communication identification information is not correctly recognized and it is determined that communication has not been established. In this case, based on the determination result that communication cannot be established, it becomes possible to know that the battery module has been replaced. Therefore, when the identification information setting device is started, the module identification information is set based on the determination that communication has not been established. This allows the module identification information to be set appropriately and easily, even if the user himself replaces the battery module.
  • an unset state e.g., initial state
  • FIG. 1 is a diagram showing a schematic configuration of a battery system
  • FIG. 2 is a diagram showing a connection state of each battery module
  • FIG. 3 is a diagram showing a state in which a plurality of battery modules are mounted on a vehicle
  • FIG. 4 is a diagram showing a schematic mounting state of each battery module
  • FIG. 5 is an explanatory diagram showing a procedure for setting an ID in each battery module
  • FIG. 6 is a flowchart showing a procedure for setting a module ID.
  • FIG. 7 is a flowchart showing a procedure for setting a replacement history flag.
  • FIG. 1 is a diagram showing a schematic configuration of a battery system
  • FIG. 2 is a diagram showing a connection state of each battery module
  • FIG. 3 is a diagram showing a state in which a plurality of battery modules are mounted on a vehicle
  • FIG. 4 is a diagram showing a schematic mounting state of each battery module
  • FIG. 5 is an explanatory diagram showing a procedure for setting an ID in
  • FIG. 8 is a flowchart showing a procedure for setting a module ID in the second embodiment.
  • FIG. 9 is a flowchart showing a procedure for setting a replacement history flag in another example.
  • FIG. 10 is a flowchart showing a procedure for setting a module ID in another example.
  • FIG. 11 is a schematic diagram showing an on-board battery system and a battery storage system.
  • FIG. 1 is a diagram showing a schematic configuration of a battery system according to the present embodiment.
  • the battery system includes a plurality of battery modules 10 mounted on a vehicle, and a battery ECU 20 that controls the plurality of battery modules 10.
  • the battery module 10 has a battery pack 11 consisting of a number of single cells, a monitoring unit 12 that monitors the state of the battery pack 11, and a housing 13 that houses the battery pack 11 and the monitoring unit 12.
  • the battery pack 11 is a secondary battery (storage battery) such as a lithium ion battery.
  • the battery pack 11 of each battery module 10 is used as a power source for a rotating electric machine 31 that is a driving power source for a vehicle, and as shown in FIG. 2(a), for example, the battery pack 11 of each battery module 10 is connected in series to the rotating electric machine 31.
  • the rotating electric machine 31 has an inverter that controls the current of each phase, and a positive power supply line 32 extending from the positive terminal of the multiple battery packs 11 (the most positive terminal of the series-connected battery packs 11) and a negative power supply line 33 extending from the negative terminal of the multiple battery packs 11 (the most negative terminal of the series-connected battery packs 11) are connected to the positive and negative sides of the inverter, respectively.
  • Each power line 32, 33 is provided with a power switch 34, and when the power switch 34 is turned on, electricity can be passed between each battery pack 11 and the rotating electric machine 31.
  • the battery pack 11 of each battery module 10 may be connected in parallel to the rotating electric machine 31.
  • the monitoring unit 12 is made up of a microcomputer equipped with a CPU and various memories, and detects or calculates the terminal voltage of each cell, charge/discharge current, temperature, SOC (state of charge), and SOH (state of health) as the state of the battery pack 11.
  • the monitoring unit 12 constitutes a BMU (Battery Management Unit).
  • a low-voltage battery (+B) is connected to the monitoring unit 12, and the monitoring unit 12 operates by power supply from the low-voltage battery.
  • the battery ECU 20 is made up of a microcomputer equipped with a CPU and various memories, and is connected to the monitoring unit 12 of each battery module 10 by a communication line 21 that enables, for example, CAN communication.
  • the battery ECU 20 appropriately performs processes related to charging and discharging in each battery module 10, as well as processes related to overheating, deterioration, communication abnormalities, etc. in each battery module 10.
  • the battery ECU 20 calculates the amount of power that can be charged and discharged in the battery system based on battery status information received from the monitoring unit 12 of each battery module 10, and notifies other on-board ECUs of this amount of power that can be charged and discharged.
  • the battery ECU 20 also notifies other on-board ECUs of abnormality diagnosis results for various abnormalities in each battery module 10, such as overheating, deterioration, and communication abnormalities.
  • FIG. 3 is a diagram showing a state in which multiple battery modules 10 are mounted on a vehicle 40
  • FIG. 4 is a diagram showing the mounting state of each battery module 10.
  • the vehicle 40 has a rack 41 as a mounting portion on which multiple battery modules 10 are mounted.
  • the rack 41 has multiple battery housing sections 42, and each battery module 10 is housed in each of these battery housing sections 42.
  • users including the driver can attach and detach the battery modules 10, and each battery module 10 is individually attached and detached from the side of the vehicle, for example. In other words, the multiple battery modules 10 can be individually replaced.
  • the housing 13 of the battery module 10 is provided with a module connector 14, and the rack 41 is provided with a rack connector 43.
  • These connectors 14, 43 are connectable to each other, and the connectors 14, 43 are connected to each other when the battery module 10 is attached to the rack 41.
  • the monitoring unit 12 and the battery ECU 20 can communicate with each other via the communication line 21.
  • +B power is supplied to the monitoring unit 12. That is, when the battery module 10 is attached to the rack 41, a power supply voltage (+B voltage) is applied to the monitoring unit 12, while when the battery module 10 is removed from the rack 41, the application of the power supply voltage to the monitoring unit 12 is cut off. Therefore, the monitoring unit 12 is started by the application of the power supply voltage accompanying the attachment of the battery module 10 to the rack 41.
  • the vehicle side power supply power lines (e.g., power supply lines 32, 33 shown in FIG. 2) are electrically connected to the assembled batteries 11 of each battery module 10.
  • the power supply connector may be provided integrally with, for example, the module connector 14 and the rack connector 43. By connecting the power supply connector, the assembled batteries 11 of each battery module 10 are connected in series or parallel in the vehicle 40.
  • the system is also provided with a locking device 50 that makes it impossible or difficult to remove the battery module 10 when the battery module 10 is attached.
  • the locking device 50 has locking members 51, 52 provided on the battery module 10 side and the rack 41 side, respectively, and outputs different locking signals to the battery ECU 20 depending on whether the locking device 50 is in a locked state or an unlocked state.
  • the battery ECU 20 determines whether the locking device 50 is in a locked state based on the locking signal from the locking device 50.
  • a module ID and a communication ID are set as identification information for each battery module 10, in other words, for each monitoring unit 12.
  • the module ID corresponds to the module identification information
  • the communication ID corresponds to the communication identification information.
  • the identification information of the battery module 10 is stored in the memory of the monitoring unit 12 of each battery module 10 and in the memory of the battery ECU 20.
  • the battery ECU 20 recognizes each battery module 10 to be controlled based on the identification information of each battery module 10, and appropriately performs charge/discharge control and abnormality diagnosis for each battery module 10.
  • the battery ECU 20 receives the communication ID from the monitoring unit 12 of each battery module 10 via the communication line 21, and compares the received communication ID with the communication ID recognized by the battery ECU 20, and determines whether communication with the monitoring unit 12 has been established based on the comparison result.
  • the identification information (module ID and communication ID) of each battery module 10 is initialized before the battery module 10 is attached to the vehicle 40, and is set after the battery module 10 is attached to the vehicle 40. Specifically, when the battery pack 11 loses charge or deteriorates, the battery module 10 is replaced with another battery module 10, or is temporarily removed from the vehicle 40 to be charged by an external charging device, and is then reattached after charging. In this case, when the battery module 10 is replaced, a battery module 10 in an ID-initialized state is attached to the vehicle 40, and after the attachment, identification information is set for each battery module 10. When the battery modules 10 are shipped from the factory, a common identification information is set for all battery modules 10 as the ID initial value.
  • the battery module 10 When the battery module 10 is externally charged, the battery module 10 is removed from the vehicle 40 and attached to an external charging device such as a charging station, and in this state, the identification information is initialized in each monitoring unit 12. Assuming that the battery module 10 is used while attached to the vehicle 40, it is preferable that the identification information is initialized in the monitoring unit 12 of each battery module 10 based on the fact that the battery module 10 is attached to a different device than during normal use. Then, after the battery module 10 is attached to the vehicle 40, the identification information is set for each battery module 10.
  • the identification information can be initialized in the monitoring unit 12 based on the disconnection of the connector.
  • the identification information of each battery module 10 is set based on the PWM signal output from the battery ECU 20 to each monitoring unit 12, and an example of the configuration for ID setting is described below.
  • This ID setting is performed by the battery ECU 20 when the battery module 10 is attached to the vehicle 40, such as when replacing the battery module 10.
  • the battery ECU 20 corresponds to the identification information setting device.
  • the battery ECU 20 and the monitoring units 12 of each battery module 10 are connected by a communication line 22 for PWM communication.
  • This communication line 22 is provided to connect the monitoring units 12 of each battery module 10 in series.
  • the communication line 21 for CAN communication will be referred to as the CAN communication line 21
  • the communication line 22 for PWM communication will be referred to as the PWM communication line 22.
  • the battery ECU 20 transmits a PWM signal of a predetermined duty to the first monitoring unit 12 out of the n monitoring units 12 that are connected in series, and receives a PWM signal from the last monitoring unit 12, the nth monitoring unit 12.
  • FIG. 5 is an explanatory diagram showing the procedure for setting the ID for each battery module 10.
  • the number of battery modules 10 is four, and the module IDs for all of the battery modules 10 are set to their initial values (unset state).
  • all module IDs are set to their initial values.
  • all module IDs are initialized based on the fact that the vehicle includes a battery module 10 with a module ID that is set to its initial value.
  • an ID setting request is sent from the battery ECU 20 to each monitoring unit 12 via the CAN communication line 21, and each monitoring unit 12 goes into a preparation state for ID setting.
  • the battery ECU 20 also outputs a PWM signal with a duty ratio a via the PWM communication line 22.
  • each monitoring unit 12 in the preparation state outputs the input PWM signal as is to the monitoring unit 12 on the lower side in series.
  • the bottommost monitoring unit 12 outputs a PWM signal with a duty ratio a to the battery ECU 20.
  • the battery ECU 20 knows that all monitoring units 12 are in a preparation state. For example, the duty ratio a is 64%.
  • the battery ECU 20 outputs a PWM signal for ID setting to the PWM communication line 22, while each monitoring unit 12 changes the duty ratio of the input PWM signal by a predetermined value and outputs it to the monitoring unit 12 on the lower level.
  • a module ID is set for each monitoring unit 12 based on the input duty, which is the duty ratio of the input PWM signal.
  • the monitoring unit 12 calculates an output duty by adding or subtracting a predetermined value to the input duty, and outputs the output duty to the monitoring unit 12 on the lower stage.
  • the duty ratio of the PWM signal output by the battery ECU 20 is b0.
  • the duty ratio of the PWM signal output by the first stage monitoring unit 12 is b1
  • the duty ratio of the PWM signal output by the second stage monitoring unit 12 is b2.
  • the duty ratio of the PWM signal output by the third stage monitoring unit 12 is b3.
  • the duty ratio of the PWM signal output by the fourth stage monitoring unit 12 is b4.
  • the PWM signal (duty ratio b4) output from the monitoring unit 12 in the fourth row (bottom row) is input to the battery ECU 20.
  • the duty ratio b0 is 60%
  • the duty ratio b1 is 56%
  • the duty ratio b2 is 52%
  • the duty ratio b3 is 48%
  • the duty ratio b4 is 44%.
  • Each monitoring unit 12 recognizes its own module ID based on the input duty (duty ratio b0 to b3) of the PWM signal and stores it in memory. Specifically, in each monitoring unit 12, ID1 to ID4 are set as the module ID based on the input duty, i.e., duty ratio b0 to b3. In addition, in each monitoring unit 12, a communication ID is set in correspondence with the module ID.
  • the battery ECU 20 determines that the input duty from the fourth stage monitoring unit 12 is duty ratio b4, and therefore that module IDs have been set in all monitoring units 12. The battery ECU 20 also recognizes that ID1 to ID4 have been set as module IDs in each battery module 10.
  • the battery ECU 20 transmits a setting completion signal to each monitoring unit 12 via the CAN communication line 21.
  • each monitoring unit 12 cancels the ID setting preparation state and returns to the normal state.
  • the battery ECU 20 checks the communication IDs set for the monitoring units 12 of each battery module 10, and based on the check result, determines whether communication has been established, and sets the module ID if it is determined that communication has not been established (hereinafter, this process is referred to as the first setting process). In this case, if the battery module 10 has been replaced or the like immediately before the current ECU start, the communication ID of the battery module 10 is in an unset state (initial value), and the communication ID is not correctly recognized, and it is determined that communication has not been established. The battery ECU 20 sets the module ID based on the determination result that communication cannot be established. It is preferable that the monitoring unit 12 is configured not to send or receive the communication ID when the communication ID is initialized.
  • a second setting process described below is performed.
  • the battery ECU 20 determines whether or not the battery module 10 has been replaced (reinstalled by removing and attaching) at least after the initial setting of the module ID for each battery module 10, and sets the module ID based on the determination that the battery module 10 has been replaced.
  • the second setting process directly grasps that the battery module 10 has been replaced, and sets the module ID based on that history.
  • the replacement (reinstallation) of the battery module 10 is performed with the IG switch of the vehicle 40 in the off state (with the vehicle stopped), i.e., with the battery ECU 20 stopped.
  • the monitoring unit 12 of each battery module 10 is activated by the application of the power supply voltage (more specifically, the connection of the module connector 14) associated with the installation of the battery module 10 to the rack 41.
  • the battery ECU 20 when the battery ECU 20 is activated (activated when the system is off) in response to the activation of the monitoring unit 12 associated with the installation of the battery module 10 in the IG off state, it is determined that the battery module 10 has been reinstalled based on the occurrence of the activation when the system is off.
  • FIG. 6 is a flowchart showing the steps of the module ID setting process, which is executed by the battery ECU 20.
  • step S11 it is determined whether the replacement history flag, which indicates that the battery module 10 has been replaced or the like, is 0. At this time, if the battery module 10 has not been replaced or the like (reinstalled), the replacement history flag is 0, and step S11 is answered in the affirmative. On the other hand, if the battery module 10 has been replaced, the replacement history flag is 1, and step S11 is answered in the negative.
  • step S31 it is determined whether the current startup of the battery ECU 20 corresponds to the startup of the monitoring unit 12 accompanying the installation of the battery module 10 (startup when the system is off). If it is startup when the system is off, the process proceeds to step S32, where it is assumed that the battery module 10 has been replaced, and the replacement history flag is set to 1. If it is not startup when the system is off, the replacement history flag is left at 0.
  • step S12 the processing mode is shifted to an ID setting mode in which a module ID is set.
  • the replacement history flag being 1 means that it has been directly understood that a battery module 10 has been replaced, etc.
  • the module ID is set.
  • the module ID of each battery module 10 is set based on the PWM signal output from the battery ECU 20 as described above (see FIG. 5 (a) to (c)).
  • step S13 the process waits until the ID setting is complete, and when the ID setting is complete, the process proceeds to step S14.
  • step S14 the exchange history flag is reset to 0. Then, in step S21, the process transitions from the ID setting mode to the normal mode.
  • step S15 a communication diagnostic mask is implemented. According to this communication diagnostic mask, even if an abnormality is determined in the abnormality diagnosis regarding communication, indicating that the communication is not normal, the determination result is temporarily suspended. After that, in step S16, CAN communication with each monitoring unit 12 is started.
  • step S17 it is determined whether communication has been established with the monitoring unit 12 of each battery module 10.
  • the battery ECU 20 compares the communication ID received from each monitoring unit 12 via the communication line 21 with the communication ID recognized by the battery ECU 20, and determines whether communication has been established with the monitoring unit 12 based on the comparison result. In this case, if replacement or the like has been performed on any of the battery modules 10 immediately before the current ECU startup, this will include a monitoring unit 12 with a mismatched communication ID, and it is determined that communication has not been established. It is preferable to determine that communication has not been established based on the communication ID of the monitoring unit 12 being set to its initial value.
  • step S18 If communication has not been established with all of the monitoring units 12, the process proceeds to step S18 and transitions to ID setting mode. Note that since diagnostic masking is in progress as described above, even if it is determined that communication has not been established, the determination that there is a communication abnormality is temporarily withheld.
  • step S21 If communication with all monitoring units 12 has been established, the process proceeds to step S21 and transitions to normal mode. In other words, if communication with all monitoring units 12 is possible when the battery ECU 20 is started, control in normal mode is initiated. In this step S21, the communication diagnostic mask is released.
  • step S18 the module ID is set in the ID setting mode. That is, when the mode is changed to the ID setting mode, the module ID of each battery module 10 is set based on the PWM signal output from the battery ECU 20 as described above (see Figures 5(a) to (c)).
  • step S19 the process waits until the ID setting is complete, and when the ID setting is complete, the process proceeds to step S20.
  • step S20 it is determined whether the module ID has been set correctly in the ID setting process. If communication between the battery ECU 20 and each monitoring unit 12 is not established, this non-established communication situation may be due to ID initialization due to replacement of the battery module 10, etc., or it may be due to the occurrence of an actual communication abnormality, such as a malfunction of the communication equipment or a poor connection of the communication connector. With this in mind, if an actual communication abnormality occurs, the series of ID setting processes cannot be performed correctly, and as a result, the module ID may not be set correctly.
  • step S19 once a series of ID setting processes have been performed, or once a predetermined period of time has elapsed for the implementation of the ID setting processes, the process proceeds to the next step S20 regardless of whether the module ID has been set correctly or not.
  • step S20 If it is determined in step S20 that the module ID has been set correctly, the process proceeds to step S21.
  • step S21 the communication state is determined to be normal, and a transition from ID setting mode to normal mode is made. In this step S21, the communication diagnostic mask is released.
  • step S22 it is determined that the communication state is abnormal, and a predetermined fail-safe process is performed.
  • the battery ECU 20 for example, notifies the user to check the installation state of the battery module 10.
  • communication between the battery ECU 20 and each monitoring unit 12 is not established and this is due to the occurrence of a communication abnormality, it is considered that this is caused by an improper replacement operation of the battery module 10 by the user.
  • the communication ID is collated for each monitoring unit 12 when the battery ECU 20 is started, and whether or not communication has been established is determined based on the collation result.
  • the communication ID of the battery module 10 is in an unset state (for example, an initial state), and the communication ID is not correctly recognized when the battery ECU 20 is started, and it is determined that communication has not been established. In this case, based on the determination result that communication cannot be established, it is possible to know that the battery module 10 has been replaced. Therefore, the module ID is set based on the determination that communication has not been established when the battery ECU 20 is started. This allows the module ID to be set appropriately and easily even if the user himself replaces the battery module 10.
  • the communication ID is initialized in the monitoring unit 12.
  • the communication ID of the monitoring unit 12 is set to the initial value, resulting in a state where communication is not established. This makes it possible to appropriately determine that the battery module 10 has been replaced, etc.
  • the module ID is set. This makes it possible to suitably transition to the ID setting mode while assuming that the lack of communication is due to the replacement of the battery module 10, or the like, i.e., due to the initialization of the communication ID due to the module replacement, or the like.
  • the non-established communication situation may be due to ID initialization due to replacement of the battery module 10, etc., or it may be due to an actual communication abnormality such as a malfunction of the communication equipment or a poor connection of the communication connector.
  • the module ID setting process it is determined whether the module ID was set correctly, and if it is determined that the module ID was set correctly, it is determined that the communication state is normal, and if it is determined that the module ID was not set correctly, it is determined that the communication state is abnormal. This makes it possible to prevent an actual communication abnormality from being overlooked.
  • a fail-safe is provided, prompting the user to check the installation status of the battery module 10. This makes it possible to correct a situation in which communication has not been established due to an improper replacement of the battery module 10, etc.
  • This embodiment differs from the first embodiment in that if the module ID is not set correctly after it has been set, the battery module 10 for which the module ID was not set correctly is made unusable and the remaining battery modules 10 are made usable, provided that multiple battery modules 10 are connected in parallel.
  • FIG. 8 is a flowchart showing the procedure for setting a module ID, and this process is executed by replacing the process in FIG. 6.
  • the process in FIG. 8 is a partial modification of the process in FIG. 6, and the same processes as in FIG. 6 are given the same step numbers and will not be described.
  • step S41 it is determined whether the assembled batteries 11 of the multiple battery modules 10 are connected in series in this battery system. In this case, as shown in FIG. 2(a), if the assembled batteries 11 of each battery module 10 are connected in series, the process proceeds to step S22, and as a fail-safe process, a notification is issued to the user urging them to check the installation status of the battery modules 10.
  • step S42 the battery module 10 for which the module ID was not set correctly is disabled, and the remaining battery modules 10 are enabled.
  • the process of step S22 is the first fail-safe process
  • the process of step S42 corresponds to the second fail-safe process.
  • the battery modules 10 for which the module ID was not set correctly are set to an unusable state, and the remaining battery modules 10 are set to a usable state, provided that the assembled batteries 11 of each battery module 10 are connected in parallel. This allows the vehicle to be driven as quickly as possible after replacing the battery modules 10, while leaving some battery modules 10 unused.
  • the ID setting process (second setting process) for setting the module ID based on the history of the battery module 10 being reinstalled may be configured to perform the process shown below.
  • the lock signal output from the lock device 50 provided on the rack 41 is used to determine whether the battery module 10 has been re-installed.
  • the battery ECU 20 acquires the lock signal output from the lock device 50 (step S51), and determines whether the lock device 50 has transitioned from a locked state to an unlocked state based on the lock signal (step S52). If it is determined that the lock device 50 has transitioned from a locked state to an unlocked state, the replacement history flag is set to 1 (step S53). It is also possible to set the replacement history flag to 1 if it is determined that the lock device 50 has transitioned from an unlocked state to a locked state.
  • the locking device 50 provided on the rack 41 is unlocked and locked.
  • the system is designed to determine that the battery module 10 has been reinstalled based on the detection that the locking device 50 has transitioned from one of the locked and unlocked states to the other. This makes it possible to appropriately determine that the battery module 10 has been replaced or otherwise processed.
  • the battery module 10 in a configuration in which the monitoring units 12 of the battery modules 10 are connected in series by a series connection line, it is determined that the battery module 10 has been reinstalled based on an input signal input to the series connection line and an output signal output from the series connection line.
  • the PWM communication line 22 shown in FIG. 1 corresponds to the series connection line.
  • the battery ECU 20 is started at a predetermined cycle and a PWM signal with a predetermined duty is output to the PWM communication line 22.
  • the PWM signal is returned to the battery ECU 20 via each monitoring unit 12.
  • the battery ECU 20 outputs a PWM signal to the monitoring unit 12 at the top of the series via the PWM communication line 22 (step S61), and determines whether the PWM signal input from the monitoring unit 12 at the bottom of the series is the same PWM signal as when it was output (whether the duty ratios match) (steps S62, S63). If it is determined that the output and input PWM signals in the battery ECU 20 do not match, the replacement history flag is set to 1 (step S64).
  • each monitoring unit 12 is connected in series between the output terminal and input terminal of the battery ECU 20 by a connection line, and a predetermined voltage signal is output from the output terminal of the battery ECU 20.
  • a predetermined voltage signal i.e. a voltage equal to or greater than a threshold value
  • a voltage signal of 0V i.e. a voltage less than the threshold value
  • the transmission signal transmitted through the series connection line (such as the PWM communication line 22) is interrupted in one of the monitoring units 12 connected in series by the series connection line.
  • the transmission signal transmitted through the series connection line is interrupted, the relationship between the input signal and the output signal of the battery ECU 20 is different compared to when the transmission signal is not interrupted. Focusing on this point, it is determined that the battery module 10 has been reinstalled based on the input signal input to the series connection line and the output signal output from the series connection line. This makes it possible to appropriately determine that the battery module 10 has been replaced or otherwise processed.
  • the battery ECU 20 and the monitoring unit 12 of each battery module 10 are capable of communicating with each other via a CAN communication line, but this may be modified to a configuration in which the battery ECU 20 and each monitoring unit 12 are capable of wireless communication with each other.
  • information regarding the +B start-up of the monitoring unit 12, module replacement history, etc. may be transmitted to the battery ECU 20 via wireless communication.
  • the ID setting process may be different depending on whether a different battery module 10 or the same battery module 10 is installed.
  • step S71 it is determined whether the replacement history flag is 1, and in the following step S72, it is determined whether the battery module 10 removed last time is the same as the battery module 10 installed this time.
  • step S72 it is determined whether the battery module 10 removed last time is the same as the battery module 10 installed this time.
  • the battery module 10 is the same at the time of removal and the time of installation, for example, by an operation input by the user. For example, in a series of battery module 10 replacement operations, the user is asked, "Is the battery module 10 the same?", and the battery ECU 20 determines whether the battery modules 10 are the same based on the operation input in response.
  • the monitoring unit 12 of each battery module 10 may store past ID history, and the battery ECU 20 may determine whether the battery modules 10 are the same based on the ID history.
  • the identification information module ID, communication ID
  • step S73 If the battery modules 10 are the same, proceed to step S73, do not reassign the module ID, and use the original module ID as is. On the other hand, if the battery modules 10 are different, proceed to step S74, and switch to ID setting mode to reassign the module ID. Then, after steps S73 and S74, switch to normal mode (step S75).
  • cases where the battery module 10 is the same when removed and when attached include cases where the battery module 10 is reinstalled without being charged, and cases where the battery module 10 is reinstalled after being charged.
  • the former case may be when the battery module 10 is temporarily removed for inspection or the like.
  • the module ID is not reassigned and the original module ID is used as is.
  • the module ID is not reassigned and the original module ID is used as is, whereas when the battery module 10 is reinstalled after being charged, the module ID may be reassigned.
  • the module ID setting mode is changed depending on whether the reinstalled battery module 10 is the same as the battery module 10 that was previously removed. This allows the appropriate ID setting process to be performed depending on whether the module ID needs to be reset.
  • the storage locations of at least two battery modules 10 are swapped without changing the combination of all the battery modules 10 stored in the rack 41.
  • the identification information of each battery module 10 is set based on the PWM signal output from the battery ECU 20 to each monitoring unit 12, but the ID setting method is not limited to this, and other methods can be used.
  • the monitoring units 12 can be connected in series, a predetermined voltage is applied to the topmost monitoring unit 12, and the module IDs can be set in order from the top to the bottom based on the divided voltage of each monitoring unit 12.
  • the battery ECU 20 is configured to be able to perform both a first setting process that sets a module ID based on the fact that communication has not been established between the battery ECU 20 and each monitoring unit 12 when the battery ECU 20 is started, and a second setting process that sets a module ID based on the history of the battery module 10 being reinstalled, but this may be changed. It may be configured to perform only the first setting process (i.e., a configuration in which steps S11 to S14 and S21 in FIG. 6 are performed as the ID setting process). Or, it may be configured to perform only the second setting process (i.e., a configuration in which steps S15 to S22 in FIG. 6 are performed as the ID setting process).
  • the replacement history flag may be set in the monitoring unit 12, and the replacement history flag may be transmitted from the monitoring unit 12 to the battery ECU 20.
  • the battery ECU 20 in the battery system is the identification information setting device, but this configuration may be changed to include an identification information setting device separate from the battery ECU 20.
  • a provisioning device for ID setting (ID assignment) may be provided as the identification information setting device.
  • the battery system has been described as a battery system for a vehicle, but it may also be a battery system for a moving body other than a vehicle, such as an aircraft or a ship. It may also be a battery system other than a moving body, i.e., a stationary battery system.
  • the ID setting method disclosed herein can be applied to a battery system attached to a building such as a house, a store, or a public facility.
  • the ID may be set as described above for the battery modules 10 in storage.
  • the rack for each battery module 10 may have multiple storage shelves for storing the battery modules 10, and may have a housing section that is open on one side, and an opening/closing section (door section) that is provided at the opening of the housing section so as to be able to open and close.
  • the monitoring section 12 of each battery module 10 may be capable of wireless communication.
  • the housing section may be provided with a ventilation section for heat dissipation, or a cooling section that performs cooling using a refrigerant.
  • the housing section or the opening/closing section may be provided with a waveguide and a radio wave absorber.
  • FIG. 11 is a schematic diagram showing an on-board battery system as a first battery system including a plurality of battery modules 10 and a battery ECU 20, and a battery storage system as a second battery system including a plurality of battery modules 10 and a management ECU 60.
  • a rack 61 as a mounting portion houses a plurality of battery modules 10.
  • the rack 61 is provided with a rack connector and a locking device, similar to the rack 41.
  • the battery modules 10 housed in each rack 41, 61 are interchangeable between the systems.
  • the number of modules accommodated in the racks 41, 61 may be different between the on-board battery system and the battery storage system.
  • the battery storage system may be configured to accommodate a greater number of modules than the on-board battery system.
  • a group of battery modules in the rack 61 may be assigned to each vehicle 40.
  • the number of modules accommodated in the racks 41, 61 may be the same between the on-board battery system and the battery storage system.
  • the battery ECU 20 performs an ID setting process when the battery module 10 is replaced, etc.
  • the management ECU 60 also performs an ID setting process when the battery module 10 is replaced, etc.
  • each ECU 20, 60 has a communication function of the same communication format, and each time a battery module 10 is reinstalled in the on-board battery system or each time a battery module 10 is reinstalled in the battery storage system, each ECU 20, 60 sets the ID of each battery module 10 using the method described above.
  • each ECU 20, 60 may notify the user or worker of this by displaying a message on the screen or by audio. In this case, it may be possible to notify which battery module 10 has been replaced in the rack 41, 61 based on the module ID. This allows the user to be informed that the battery module 10 has been properly recognized as having been replaced. Also, if a battery module 10 has been fraudulently replaced, it is possible to notify the user that this fraudulent act has occurred.
  • the ID setting function of the present disclosure can be used to implement fraud prevention measures.
  • the management ECU 60 it is advisable for the management ECU 60 to periodically start up the monitoring unit 12 of each battery module 10.
  • each battery module 10 housed in the rack 61 is assigned a module ID, the position of the battery module 10 in the rack 61 can be ascertained. Therefore, when a drop in the amount of stored electricity or deterioration occurs in a battery module 10 in the battery storage system, it is easy to ascertain which battery module 10 is in question. This makes it possible to improve maintainability. Also, in the battery storage system, each battery module 10 may be capable of being charged while attached to the rack 61, and in such a configuration, it becomes possible to selectively charge the battery module 10 that is to be charged.
  • the ECUs 20, 60 of each system are capable of wireless communication with an external server 70.
  • each ECU 20, 60 may transmit that information to the external server 70. This allows the external server 70 to easily and appropriately manage battery replacement in each system.
  • the battery module 10 can be interchanged between the vehicle battery system and the battery storage system, and the module ID can be set in the same manner in each of these systems. This allows the module ID to be set correctly both when the battery module 10 is in use and when it is in storage, and thus allows the battery module 10 to be continuously and appropriately monitored.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and memory programmed to execute one or more functions embodied in a computer program.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.
  • the present invention is applied to a battery system having a plurality of battery modules (10) each having a storage battery (11) and a monitoring unit (12) for monitoring the storage battery,
  • An identification information setting device (20) that is provided to be capable of communicating with the monitoring unit and sets module identification information individually for each of the battery modules, a communication determination unit that, when the identification information setting device is started, checks the communication identification information determined for each of the monitoring units and determines whether or not communication has been established based on the check result; a setting unit that sets the module identification information based on the determination by the communication determination unit that communication has not been established;
  • An identification information setting device comprising: [Configuration 2] the communication identification information of the monitoring unit is initialized in a state in which the battery module is removed from the battery system, 2.
  • the identification information setting device wherein the communication determination unit determines that communication has not been established when the communication identification information of the monitoring unit is set to an initial value during a process of checking the communication identification information at startup.
  • the plurality of battery modules are used in a state where they are attached to a predetermined attachment portion (41), and are capable of being charged by an external charging device in a state where they are detached from the attachment portion; When the battery module is charged by the external charging device, the communication identification information is initialized in the monitoring unit, 2.
  • the identification information setting device according to configuration 1, wherein the communication determination unit determines that communication has not been established when the communication identification information of the monitoring unit is set to an initial value during a process of checking the communication identification information at startup.
  • a correctness determining unit that determines whether the module identification information has been correctly set after the setting unit has set the module identification information, The communication determination unit determining that the communication state is normal when the correctness determining unit determines that the module identification information has been set correctly under a condition in which it is determined that communication has not been established; An identification information setting device described in any one of configurations 1 to 4, which determines that the communication state is abnormal when the correct/incorrect determination unit determines that the module identification information was not set correctly under a situation where it is determined that communication has not been established. [Configuration 6] 6.
  • the identification information setting device according to configuration 5, wherein, when the correctness determining unit determines that the module identification information has not been set correctly, a notification is given to prompt the user to check an installation state of the battery module.
  • a correctness determining unit that determines whether the module identification information has been correctly set after the setting unit has set the module identification information, An identification information setting device described in any one of configurations 1 to 6, wherein when the correct/incorrect determination unit determines that the module identification information was not set correctly, the battery module for which the module identification information was not set correctly is set to an unusable state, and the remaining battery modules are set to a usable state, provided that the storage batteries of each of the battery modules are connected in parallel.
  • the battery system includes a first battery system intended to use the electric power of the battery modules and a second battery system intended to store the battery modules, and the battery modules are interchangeable between the first battery system and the second battery system,
  • the battery system wherein the first battery system and the second battery system each have an identification information setting device (20, 60) according to any one of configurations 1 to 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

This battery system comprises a storage battery (11), and a plurality of battery modules (10) that have monitoring units (12) that monitor said storage battery. An identification information setting device (20) is provided so as to be able to communicate with the monitoring units, and individually sets module identification information for each battery module. The identification information setting device comprises: a communication determination unit that, at a time of startup of the identification information setting device, references communication identification information that is set for each monitoring unit, and, on the basis of a referenced result, determines whether communication is established; and a setting unit that sets the module identification information on the basis of a determination by the communication determination unit that communication has not been established.

Description

識別情報設定装置、電池システム及びプログラムIdentification information setting device, battery system and program 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2022年10月31日に出願された日本出願番号2022-174596号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-174596, filed on October 31, 2022, the contents of which are incorporated herein by reference.
 本開示は、識別情報設定装置、電池システム及びプログラムに関するものである。 This disclosure relates to an identification information setting device, a battery system, and a program.
 複数の電池モジュール(電池パック)を有する電池システムにおいて、電池モジュールごとに識別番号が設定される技術が知られている(例えば特許文献1)。各電池モジュールの識別情報は、例えば車両製造時において、車両に対する各電池モジュールの搭載時に設定される。 In a battery system having multiple battery modules (battery packs), a technology is known in which an identification number is assigned to each battery module (e.g., Patent Document 1). The identification information of each battery module is set when each battery module is mounted on the vehicle, for example, during vehicle manufacture.
特許第5735098号公報Japanese Patent No. 5735098
 ところで、車両等の電池システムにおいて市場で電池モジュールを交換する場合には、各電池モジュールの識別情報を再設定する必要が生じる。しかしながら、既存の技術では、例えば車両等のユーザが電池モジュールを交換する場合において、電池モジュールの識別情報を再設定することが困難になることが考えられる。また、電池システムにおいて、電池モジュールが一旦取り外され、充電等を行った後に再び取り付けられる場合にも同様に、電池モジュールの識別情報を再設定する際の問題が生じうる。この点、改善の余地があると考えられる。 Incidentally, when a battery module is replaced in the market in a battery system of a vehicle or the like, it becomes necessary to reset the identification information of each battery module. However, with existing technology, it may be difficult for a user of a vehicle or the like to reset the identification information of a battery module when replacing a battery module. Similarly, when a battery module is removed from a battery system and then reattached after charging or the like, problems may arise when resetting the identification information of the battery module. It is believed that there is room for improvement in this regard.
 本開示は、上記課題に鑑みてなされたものであり、その目的は、電池モジュールの交換等が行われた場合において各電池モジュールの識別情報を簡易に設定することができる識別情報設定装置、電池システム及びプログラムを提供することにある。 The present disclosure has been made in consideration of the above problems, and its purpose is to provide an identification information setting device, battery system, and program that can easily set the identification information of each battery module when a battery module is replaced, etc.
 本開示は、
 蓄電池と、その蓄電池を監視する監視部とを有する複数の電池モジュールを有する電池システムに適用され、
 前記監視部と通信可能に設けられ、前記電池モジュールごとに個別にモジュール識別情報を設定する識別情報設定装置であって、
 当該識別情報設定装置の起動時において、前記監視部ごとに定められた通信識別情報の照合を行い、その照合結果に基づいて、通信が確立されたか否かを判定する通信判定部と、
 前記通信判定部により通信が確立されていないと判定されたことに基づいて、前記モジュール識別情報の設定を行う設定部と、
を備える。
The present disclosure relates to
The present invention is applied to a battery system having a plurality of battery modules each having a storage battery and a monitoring unit that monitors the storage battery,
an identification information setting device that is provided to be able to communicate with the monitoring unit and sets module identification information for each of the battery modules,
a communication determination unit that, when the identification information setting device is started, checks the communication identification information determined for each of the monitoring units and determines whether or not communication has been established based on the check result;
a setting unit that sets the module identification information based on the determination by the communication determination unit that communication has not been established;
Equipped with.
 上記構成では、各電池モジュールの監視部と識別情報設定装置とが通信可能となっている電池システムにおいて、識別情報設定装置の起動時に監視部ごとに通信識別情報の照合が行われ、その照合結果に基づいて、通信が確立されたか否かが判定される。この場合、識別情報設定装置において各監視部の通信識別情報が正しく認識されれば、通信が確立されたと判定される。 In the above configuration, in a battery system in which the monitoring unit of each battery module and the identification information setting device are capable of communicating with each other, when the identification information setting device is started up, the communication identification information is collated for each monitoring unit, and it is determined whether communication has been established or not based on the collation results. In this case, if the communication identification information of each monitoring unit is correctly recognized in the identification information setting device, it is determined that communication has been established.
 また、こうした通信判定が行われる電池システムにおいて、電池モジュールの交換等が行われた場合には、電池モジュールにおける通信識別情報が未設定の状態(例えば初期状態)となっており、識別情報設定装置の起動時に、通信識別情報が正しく認識されず、通信が確立されていないと判定される。この場合、通信確立不可であるとの判定結果によれば、電池モジュールの交換等が行われたことを把握することが可能となる。そこで、識別情報設定装置の起動時において、通信が確立されていないと判定されたことに基づいて、モジュール識別情報の設定を行うようにしている。これにより、仮にユーザ自身が電池モジュールの交換等を行う場合であっても、モジュール識別情報を適正かつ簡易に設定することができる。 Furthermore, in a battery system in which such communication determination is performed, if the battery module is replaced, the communication identification information in the battery module is in an unset state (e.g., initial state), and when the identification information setting device is started, the communication identification information is not correctly recognized and it is determined that communication has not been established. In this case, based on the determination result that communication cannot be established, it becomes possible to know that the battery module has been replaced. Therefore, when the identification information setting device is started, the module identification information is set based on the determination that communication has not been established. This allows the module identification information to be set appropriately and easily, even if the user himself replaces the battery module.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電池システムの概略構成を示す図であり、 図2は、各電池モジュールの接続の状態を示す図であり、 図3は、車両において複数の電池モジュールが搭載された状態を示す図であり、 図4は、各電池モジュールの搭載状態を模式的に示す図であり、 図5は、各電池モジュールにおけるID設定の手順を示す説明図であり、 図6は、モジュールIDの設定処理の手順を示すフローチャートであり、 図7は、交換履歴フラグの設定処理の手順を示すフローチャートであり、 図8は、第2実施形態においてモジュールIDの設定処理の手順を示すフローチャートであり、 図9は、別例において交換履歴フラグの設定処理の手順を示すフローチャートであり、 図10は、別例においてモジュールIDの設定処理の手順を示すフローチャートであり、 図11は、車載電池システムと電池保管システムとを示す概略図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a diagram showing a schematic configuration of a battery system; FIG. 2 is a diagram showing a connection state of each battery module; FIG. 3 is a diagram showing a state in which a plurality of battery modules are mounted on a vehicle; FIG. 4 is a diagram showing a schematic mounting state of each battery module; FIG. 5 is an explanatory diagram showing a procedure for setting an ID in each battery module; FIG. 6 is a flowchart showing a procedure for setting a module ID. FIG. 7 is a flowchart showing a procedure for setting a replacement history flag. FIG. 8 is a flowchart showing a procedure for setting a module ID in the second embodiment. FIG. 9 is a flowchart showing a procedure for setting a replacement history flag in another example. FIG. 10 is a flowchart showing a procedure for setting a module ID in another example. FIG. 11 is a schematic diagram showing an on-board battery system and a battery storage system.
 以下、本開示の実施形態を図面に基づいて説明する。本実施形態では、電気自動車やハイブリッド自動車等の電動車両に搭載される電池システムについて具体的な構成を説明する。ただし、本開示は実施形態の態様に限定されるものではなく、開示の趣旨を逸脱しない範囲で適宜変更して実施できる。なお、以下の実施形態及び変形例相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 Below, an embodiment of the present disclosure will be described with reference to the drawings. In this embodiment, a specific configuration of a battery system mounted on an electrically powered vehicle such as an electric vehicle or a hybrid vehicle will be described. However, this disclosure is not limited to the aspects of the embodiment, and can be modified as appropriate without departing from the spirit of the disclosure. In the following embodiments and modified examples, parts that are identical or equivalent to each other are given the same reference numerals in the drawings, and the explanations of the parts with the same reference numerals are incorporated herein.
 [第1実施形態]
 図1は、本実施形態における電池システムの概略構成を示す図である。本電池システムは、車両に搭載される複数の電池モジュール10と、その複数の電池モジュール10を統括管理する電池ECU20とを備えている。
[First embodiment]
1 is a diagram showing a schematic configuration of a battery system according to the present embodiment. The battery system includes a plurality of battery modules 10 mounted on a vehicle, and a battery ECU 20 that controls the plurality of battery modules 10.
 電池モジュール10は、複数の単電池からなる組電池11と、組電池11の状態を監視する監視部12と、それら組電池11及び監視部12を収容する筐体13とを有している。組電池11は、リチウムイオン蓄電池等の二次電池(蓄電池)である。各電池モジュール10の組電池11は、車両の走行動力源である回転電機31の電源として用いられるものであり、例えば図2(a)に示すように、回転電機31に対して、各電池モジュール10の組電池11が直列に接続されている。より詳細に言えば、回転電機31は、各相の電流を制御するインバータを有しており、そのインバータの正極側及び負極側に、複数の組電池11における正極側端子(直列接続された組電池11の最も正極側の端子)から延びる正極側電源線32と、複数の組電池11における負極側端子(直列接続された組電池11の最も負極側の端子)から延びる負極側電源線33とがそれぞれ接続されている。各電源線32,33には電源スイッチ34が設けられており、電源スイッチ34がオンされることで、各組電池11と回転電機31との間の通電が可能になっている。ただし、図2(b)に示すように、回転電機31に対して、各電池モジュール10の組電池11が並列に接続されていてもよい。 The battery module 10 has a battery pack 11 consisting of a number of single cells, a monitoring unit 12 that monitors the state of the battery pack 11, and a housing 13 that houses the battery pack 11 and the monitoring unit 12. The battery pack 11 is a secondary battery (storage battery) such as a lithium ion battery. The battery pack 11 of each battery module 10 is used as a power source for a rotating electric machine 31 that is a driving power source for a vehicle, and as shown in FIG. 2(a), for example, the battery pack 11 of each battery module 10 is connected in series to the rotating electric machine 31. More specifically, the rotating electric machine 31 has an inverter that controls the current of each phase, and a positive power supply line 32 extending from the positive terminal of the multiple battery packs 11 (the most positive terminal of the series-connected battery packs 11) and a negative power supply line 33 extending from the negative terminal of the multiple battery packs 11 (the most negative terminal of the series-connected battery packs 11) are connected to the positive and negative sides of the inverter, respectively. Each power line 32, 33 is provided with a power switch 34, and when the power switch 34 is turned on, electricity can be passed between each battery pack 11 and the rotating electric machine 31. However, as shown in FIG. 2(b), the battery pack 11 of each battery module 10 may be connected in parallel to the rotating electric machine 31.
 監視部12は、CPUや各種メモリを備えるマイクロコンピュータからなり、組電池11の状態として、各単電池の端子電圧や、充放電電流、温度、SOC(蓄電状態)、SOH(劣化状態)を検出又は算出する。監視部12は、BMU(Battery Management Unit)を構成する。監視部12には低電圧バッテリ(+B)が接続されており、監視部12は、低電圧バッテリからの電力供給により作動する。 The monitoring unit 12 is made up of a microcomputer equipped with a CPU and various memories, and detects or calculates the terminal voltage of each cell, charge/discharge current, temperature, SOC (state of charge), and SOH (state of health) as the state of the battery pack 11. The monitoring unit 12 constitutes a BMU (Battery Management Unit). A low-voltage battery (+B) is connected to the monitoring unit 12, and the monitoring unit 12 operates by power supply from the low-voltage battery.
 電池ECU20は、CPUや各種メモリを備えるマイクロコンピュータからなり、例えばCAN通信を可能とする通信線21により各電池モジュール10の監視部12に接続されている。電池ECU20は、各電池モジュール10における充放電に関する処理や、各電池モジュール10における過高温や劣化、通信異常等に関する処理を適宜実施する。例えば、電池ECU20は、各電池モジュール10の監視部12から受信した電池状態情報に基づいて、電池システムにおいて充放電可能な電力を算出し、その充放電可能な電力を他の車載ECUに通知する。また、電池ECU20は、各電池モジュール10における過高温や劣化、通信異常等、各種異常について異常診断結果を他の車載ECUに通知する。 The battery ECU 20 is made up of a microcomputer equipped with a CPU and various memories, and is connected to the monitoring unit 12 of each battery module 10 by a communication line 21 that enables, for example, CAN communication. The battery ECU 20 appropriately performs processes related to charging and discharging in each battery module 10, as well as processes related to overheating, deterioration, communication abnormalities, etc. in each battery module 10. For example, the battery ECU 20 calculates the amount of power that can be charged and discharged in the battery system based on battery status information received from the monitoring unit 12 of each battery module 10, and notifies other on-board ECUs of this amount of power that can be charged and discharged. The battery ECU 20 also notifies other on-board ECUs of abnormality diagnosis results for various abnormalities in each battery module 10, such as overheating, deterioration, and communication abnormalities.
 図3は、車両40において複数の電池モジュール10が搭載された状態を示す図であり、図4は、各電池モジュール10の搭載状態を模式的に示す図である。 FIG. 3 is a diagram showing a state in which multiple battery modules 10 are mounted on a vehicle 40, and FIG. 4 is a diagram showing the mounting state of each battery module 10.
 図3に示すように、車両40は、複数の電池モジュール10が装着される被装着部としてのラック41を備えている。ラック41は、複数の電池収容部42を有しており、それら各電池収容部42に電池モジュール10がそれぞれ収容されている。車両40では、ドライバを含むユーザによる電池モジュール10の着脱が可能になっており、例えば車両側方から各電池モジュール10が個別に着脱される。つまり、複数の電池モジュール10は個別に交換可能になっている。 As shown in FIG. 3, the vehicle 40 has a rack 41 as a mounting portion on which multiple battery modules 10 are mounted. The rack 41 has multiple battery housing sections 42, and each battery module 10 is housed in each of these battery housing sections 42. In the vehicle 40, users including the driver can attach and detach the battery modules 10, and each battery module 10 is individually attached and detached from the side of the vehicle, for example. In other words, the multiple battery modules 10 can be individually replaced.
 図4に示すように、電池モジュール10の筐体13にはモジュールコネクタ14が設けられ、ラック41にはラックコネクタ43が設けられている。これら各コネクタ14,43は互いに結合可能となっており、電池モジュール10がラック41に装着された状態で各コネクタ14,43どうしが結合されるようになっている。各コネクタ14,43が結合された状態では、監視部12と電池ECU20とにおいて通信線21による相互の通信が可能になっている。また、同じくコネクタ結合状態では、監視部12に対して+B給電が行われるようになっている。つまり、ラック41に電池モジュール10が装着されることで、監視部12に電源電圧(+B電圧)が印加される一方、ラック41から電池モジュール10が離脱されることで、監視部12への電源電圧の印加が遮断されるようになっている。そのため、監視部12は、ラック41への電池モジュール10の装着に伴う電源電圧の印加により起動されるようになっている。 As shown in FIG. 4, the housing 13 of the battery module 10 is provided with a module connector 14, and the rack 41 is provided with a rack connector 43. These connectors 14, 43 are connectable to each other, and the connectors 14, 43 are connected to each other when the battery module 10 is attached to the rack 41. When the connectors 14, 43 are connected, the monitoring unit 12 and the battery ECU 20 can communicate with each other via the communication line 21. Also, in the same connector-connected state, +B power is supplied to the monitoring unit 12. That is, when the battery module 10 is attached to the rack 41, a power supply voltage (+B voltage) is applied to the monitoring unit 12, while when the battery module 10 is removed from the rack 41, the application of the power supply voltage to the monitoring unit 12 is cut off. Therefore, the monitoring unit 12 is started by the application of the power supply voltage accompanying the attachment of the battery module 10 to the rack 41.
 図示による説明は割愛するが、電池モジュール10がラック41に装着された状態では、車両側の電源電力線(例えば図2に示す電源線32,33)と、各電池モジュール10の組電池11とが電気的に接続されるようになっている。電源用コネクタは、例えばモジュールコネクタ14及びラックコネクタ43に一体で設けられているとよい。電源用コネクタの接続により、車両40において各電池モジュール10の組電池11が直列又は並列に接続される。 Although a detailed explanation using illustrations is omitted, when the battery modules 10 are mounted on the rack 41, the vehicle side power supply power lines (e.g., power supply lines 32, 33 shown in FIG. 2) are electrically connected to the assembled batteries 11 of each battery module 10. The power supply connector may be provided integrally with, for example, the module connector 14 and the rack connector 43. By connecting the power supply connector, the assembled batteries 11 of each battery module 10 are connected in series or parallel in the vehicle 40.
 また、本システムでは、電池モジュール10を装着した状態で、電池モジュール10を離脱不可又は離脱困難にするロック装置50が設けられている。ロック装置50は、電池モジュール10側及びラック41側にそれぞれ設けられたロック部材51,52を有しており、ロック状態とアンロック状態とで各々異なるロック信号を電池ECU20に出力する。電池ECU20は、ロック装置50からのロック信号に基づいて、ロック装置50がロック状態か否かを判定する。 The system is also provided with a locking device 50 that makes it impossible or difficult to remove the battery module 10 when the battery module 10 is attached. The locking device 50 has locking members 51, 52 provided on the battery module 10 side and the rack 41 side, respectively, and outputs different locking signals to the battery ECU 20 depending on whether the locking device 50 is in a locked state or an unlocked state. The battery ECU 20 determines whether the locking device 50 is in a locked state based on the locking signal from the locking device 50.
 本電池システムでは、電池モジュール10ごとに、換言すれば監視部12ごとに識別情報としてモジュールIDと通信IDとが設定される構成となっている。モジュールIDがモジュール識別情報に相当し、通信IDが通信識別情報に相当する。電池モジュール10の識別情報は、各電池モジュール10の監視部12のメモリと、電池ECU20のメモリとにそれぞれ記憶されている。電池ECU20は、電池モジュール10ごとの識別情報に基づいて、制御対象となる各電池モジュール10を認識するとともに、電池モジュール10ごとに充放電制御や異常診断等を適宜実施する。電池ECU20は、通信線21を介して各電池モジュール10の監視部12から通信IDを受信するとともに、その受信した通信IDと、電池ECU20側で認識している通信IDとを照合し、その照合結果に基づいて、監視部12との通信が確立されているか否かを判定する。 In this battery system, a module ID and a communication ID are set as identification information for each battery module 10, in other words, for each monitoring unit 12. The module ID corresponds to the module identification information, and the communication ID corresponds to the communication identification information. The identification information of the battery module 10 is stored in the memory of the monitoring unit 12 of each battery module 10 and in the memory of the battery ECU 20. The battery ECU 20 recognizes each battery module 10 to be controlled based on the identification information of each battery module 10, and appropriately performs charge/discharge control and abnormality diagnosis for each battery module 10. The battery ECU 20 receives the communication ID from the monitoring unit 12 of each battery module 10 via the communication line 21, and compares the received communication ID with the communication ID recognized by the battery ECU 20, and determines whether communication with the monitoring unit 12 has been established based on the comparison result.
 各電池モジュール10の識別情報(モジュールID及び通信ID)は、車両40に対する電池モジュール10の取り付け前に初期化されており、車両40への電池モジュール10の取り付け後に設定される。具体的には、電池モジュール10は、組電池11の蓄電量低下や劣化に伴い、別の電池モジュール10に交換されるか、又は外部充電装置により充電するために一時的に車両40から取り外され、充電後に再装着される。この場合、電池モジュール10の交換時には、ID初期化状態の電池モジュール10が車両40に装着され、その装着後に電池モジュール10ごとに識別情報が設定される。なお、電池モジュール10の工場出荷時には、ID初期値として、全ての電池モジュール10について共通の識別情報が設定されている。 The identification information (module ID and communication ID) of each battery module 10 is initialized before the battery module 10 is attached to the vehicle 40, and is set after the battery module 10 is attached to the vehicle 40. Specifically, when the battery pack 11 loses charge or deteriorates, the battery module 10 is replaced with another battery module 10, or is temporarily removed from the vehicle 40 to be charged by an external charging device, and is then reattached after charging. In this case, when the battery module 10 is replaced, a battery module 10 in an ID-initialized state is attached to the vehicle 40, and after the attachment, identification information is set for each battery module 10. When the battery modules 10 are shipped from the factory, a common identification information is set for all battery modules 10 as the ID initial value.
 電池モジュール10の外部充電時には、車両40から取り外された電池モジュール10が充電ステーション等における外部充電装置に取り付けられ、その状態で各監視部12において識別情報が初期化される。電池モジュール10が車両40に装着された状態で使用されることを前提にすれば、装着相手が通常使用時とは異なることに基づいて、各電池モジュール10の監視部12において識別情報が初期化されるとよい。そして、車両40への電池モジュール10の装着後に、電池モジュール10ごとに識別情報が設定される。 When the battery module 10 is externally charged, the battery module 10 is removed from the vehicle 40 and attached to an external charging device such as a charging station, and in this state, the identification information is initialized in each monitoring unit 12. Assuming that the battery module 10 is used while attached to the vehicle 40, it is preferable that the identification information is initialized in the monitoring unit 12 of each battery module 10 based on the fact that the battery module 10 is attached to a different device than during normal use. Then, after the battery module 10 is attached to the vehicle 40, the identification information is set for each battery module 10.
 なお、車両40(ラック41)から電池モジュール10が取り外される場合に、コネクタの切り離しに基づき、監視部12において識別情報が初期化される構成とすることも可能である。 In addition, when the battery module 10 is removed from the vehicle 40 (rack 41), the identification information can be initialized in the monitoring unit 12 based on the disconnection of the connector.
 本実施形態では、電池ECU20から各監視部12に対して出力されるPWM信号に基づいて、各電池モジュール10の識別情報を設定することとしており、ID設定のための構成例を以下に説明する。このID設定は、電池モジュール10の交換時等において、電池モジュール10が車両40に取り付けられた場合に電池ECU20により実施される。本実施形態では、電池ECU20が識別情報設定装置に相当する。 In this embodiment, the identification information of each battery module 10 is set based on the PWM signal output from the battery ECU 20 to each monitoring unit 12, and an example of the configuration for ID setting is described below. This ID setting is performed by the battery ECU 20 when the battery module 10 is attached to the vehicle 40, such as when replacing the battery module 10. In this embodiment, the battery ECU 20 corresponds to the identification information setting device.
 図1に示すように、電池ECU20と、各電池モジュール10の監視部12とはPWM通信用の通信線22により接続されている。この通信線22は、各電池モジュール10の監視部12を直列に接続するように設けられている。なお以下の記載では、通信線21,22の区別のために、CAN通信用の通信線21をCAN通信線21とし、PWM通信用の通信線22をPWM通信線22とする。電池ECU20は、直列接続の状態となるn個の監視部12のうち最初の1番目の監視部12に所定デューティのPWM信号を送信するとともに、最後のn番目の監視部12からPWM信号を受信する。 As shown in FIG. 1, the battery ECU 20 and the monitoring units 12 of each battery module 10 are connected by a communication line 22 for PWM communication. This communication line 22 is provided to connect the monitoring units 12 of each battery module 10 in series. In the following description, in order to distinguish between the communication lines 21 and 22, the communication line 21 for CAN communication will be referred to as the CAN communication line 21, and the communication line 22 for PWM communication will be referred to as the PWM communication line 22. The battery ECU 20 transmits a PWM signal of a predetermined duty to the first monitoring unit 12 out of the n monitoring units 12 that are connected in series, and receives a PWM signal from the last monitoring unit 12, the nth monitoring unit 12.
 図5は、各電池モジュール10におけるID設定の手順を示す説明図である。図5では、電池モジュール10の数を4とし、その各電池モジュール10においてモジュールIDが全て初期値(未設定の状態)となっている。なお、車両40において全ての電池モジュール10の交換等が行われた状態では、全てのモジュールIDが初期値となっている。また、車両40において一部の電池モジュール10の交換等が行われることで一部のモジュールIDが初期値になっている場合には、モジュールIDが初期値である電池モジュール10が含まれていることに基づいて、全てのモジュールIDが初期化されるようになっている。 FIG. 5 is an explanatory diagram showing the procedure for setting the ID for each battery module 10. In FIG. 5, the number of battery modules 10 is four, and the module IDs for all of the battery modules 10 are set to their initial values (unset state). When all battery modules 10 in the vehicle 40 have been replaced, all module IDs are set to their initial values. When some of the battery modules 10 in the vehicle 40 have been replaced, causing some of the module IDs to be set to their initial values, all module IDs are initialized based on the fact that the vehicle includes a battery module 10 with a module ID that is set to its initial value.
 図5(a)に示すように、ID設定の開始処理では、CAN通信線21を介して、電池ECU20から各監視部12に対してID設定要求が送信され、各監視部12がそれぞれID設定の準備状態となる。また、電池ECU20が、PWM通信線22を介してデューティ比aのPWM信号を出力する。このとき、準備状態の各監視部12は、入力されたPWM信号をそのまま直列下段側の監視部12に出力する。これにより、最下段の監視部12は、電池ECU20に対してデューティ比aのPWM信号を出力する。電池ECU20は、デューティ比aのPWM信号を入力することにより、全ての監視部12が準備状態になったことを把握する。例えばデューティ比aは64%である。 As shown in FIG. 5(a), in the ID setting start process, an ID setting request is sent from the battery ECU 20 to each monitoring unit 12 via the CAN communication line 21, and each monitoring unit 12 goes into a preparation state for ID setting. The battery ECU 20 also outputs a PWM signal with a duty ratio a via the PWM communication line 22. At this time, each monitoring unit 12 in the preparation state outputs the input PWM signal as is to the monitoring unit 12 on the lower side in series. As a result, the bottommost monitoring unit 12 outputs a PWM signal with a duty ratio a to the battery ECU 20. By inputting the PWM signal with duty ratio a, the battery ECU 20 knows that all monitoring units 12 are in a preparation state. For example, the duty ratio a is 64%.
 その後、図5(b)に示すように、ID設定処理では、電池ECU20が、PWM通信線22に対してID設定用のPWM信号を出力する一方、各監視部12が、入力したPWM信号のデューティ比を所定値ずつ変更して下段側の監視部12に出力する。この場合、監視部12ごとに、入力したPWM信号のデューティ比である入力デューティに基づいてモジュールIDが設定される。 Then, as shown in FIG. 5(b), in the ID setting process, the battery ECU 20 outputs a PWM signal for ID setting to the PWM communication line 22, while each monitoring unit 12 changes the duty ratio of the input PWM signal by a predetermined value and outputs it to the monitoring unit 12 on the lower level. In this case, a module ID is set for each monitoring unit 12 based on the input duty, which is the duty ratio of the input PWM signal.
 監視部12は、入力デューティに対して所定値を加算又は減算した値を出力デューティとして算出し、その出力デューティを下段側の監視部12に出力する。このとき、
・電池ECU20が出力するPWM信号のデューティ比はb0であり、
・1段目の監視部12が出力するPWM信号のデューティ比はb1であり、
・2段目の監視部12が出力するPWM信号のデューティ比はb2であり、
・3段目の監視部12が出力するPWM信号のデューティ比はb3であり、
・4段目の監視部12が出力するPWM信号のデューティ比はb4である。
4段目(最下段)の監視部12から出力されるPWM信号(デューティ比b4)が電池ECU20に入力される。例えば、デューティ比b0は60%、デューティ比b1は56%、デューティ比b2は52%、デューティ比b3は48%、デューティ比b4は44%である。
The monitoring unit 12 calculates an output duty by adding or subtracting a predetermined value to the input duty, and outputs the output duty to the monitoring unit 12 on the lower stage.
The duty ratio of the PWM signal output by the battery ECU 20 is b0.
The duty ratio of the PWM signal output by the first stage monitoring unit 12 is b1,
The duty ratio of the PWM signal output by the second stage monitoring unit 12 is b2.
The duty ratio of the PWM signal output by the third stage monitoring unit 12 is b3.
The duty ratio of the PWM signal output by the fourth stage monitoring unit 12 is b4.
The PWM signal (duty ratio b4) output from the monitoring unit 12 in the fourth row (bottom row) is input to the battery ECU 20. For example, the duty ratio b0 is 60%, the duty ratio b1 is 56%, the duty ratio b2 is 52%, the duty ratio b3 is 48%, and the duty ratio b4 is 44%.
 各監視部12は、PWM信号の入力デューティ(デューティ比b0~b3)に基づいて、自身のモジュールIDを認識し、メモリに記憶する。具体的には、各監視部12では、入力デューティであるデューティ比b0~b3に基づいて、モジュールIDとしてID1~ID4がそれぞれ設定される。また、各監視部12では、モジュールIDに対応させつつ通信IDがそれぞれ設定される。 Each monitoring unit 12 recognizes its own module ID based on the input duty (duty ratio b0 to b3) of the PWM signal and stores it in memory. Specifically, in each monitoring unit 12, ID1 to ID4 are set as the module ID based on the input duty, i.e., duty ratio b0 to b3. In addition, in each monitoring unit 12, a communication ID is set in correspondence with the module ID.
 一方、電池ECU20は、4段目の監視部12からの入力デューティがデューティ比b4であることにより、全ての監視部12においてモジュールIDが設定された旨を判定する。また、電池ECU20は、各電池モジュール10においてモジュールIDとして、ID1~ID4がそれぞれ設定されたことを認識する。 On the other hand, the battery ECU 20 determines that the input duty from the fourth stage monitoring unit 12 is duty ratio b4, and therefore that module IDs have been set in all monitoring units 12. The battery ECU 20 also recognizes that ID1 to ID4 have been set as module IDs in each battery module 10.
 その後、図5(c)に示すように、ID設定の終了処理では、電池ECU20は、CAN通信線21により各監視部12に対して設定完了信号を送信する。これにより、各監視部12は、ID設定の準備状態を解除し、通常状態となる。 After that, as shown in FIG. 5(c), in the ID setting completion process, the battery ECU 20 transmits a setting completion signal to each monitoring unit 12 via the CAN communication line 21. As a result, each monitoring unit 12 cancels the ID setting preparation state and returns to the normal state.
 本実施形態では、電池ECU20の起動時において、電池ECU20が、各電池モジュール10の監視部12ごとに定められた通信IDの照合を行い、その照合結果に基づいて、通信が確立されたか否かを判定するとともに、通信が確立されていないと判定されたことに基づいて、モジュールIDの設定を行う(以下、この処理を第1設定処理とする)。この場合、今回のECU起動の直前に電池モジュール10の交換等が行われていれば、電池モジュール10の通信IDが未設定の状態(初期値)となっていることにより、通信IDが正しく認識されず、通信が確立されていないと判定される。電池ECU20は、通信確立不可であるとの判定結果に基づいて、モジュールIDの設定を実施する。なお、監視部12は、通信IDが初期化されている状態では通信IDを送受信しない構成になっているとよい。 In this embodiment, when the battery ECU 20 is started, the battery ECU 20 checks the communication IDs set for the monitoring units 12 of each battery module 10, and based on the check result, determines whether communication has been established, and sets the module ID if it is determined that communication has not been established (hereinafter, this process is referred to as the first setting process). In this case, if the battery module 10 has been replaced or the like immediately before the current ECU start, the communication ID of the battery module 10 is in an unset state (initial value), and the communication ID is not correctly recognized, and it is determined that communication has not been established. The battery ECU 20 sets the module ID based on the determination result that communication cannot be established. It is preferable that the monitoring unit 12 is configured not to send or receive the communication ID when the communication ID is initialized.
 また、本実施形態では、上記の第1設定処理とは別に、以下に示す第2設定処理を実施するものとしている。第2設定処理として、電池ECU20は、各電池モジュール10でのモジュールIDの少なくとも初回の設定後において、電池モジュール10の交換等(取り外し及び取り付けによる再装着)が行われたか否かを判定し、電池モジュール10の交換等が行われたとの判定結果に基づいて、モジュールIDの設定を行う。 In addition, in this embodiment, in addition to the first setting process described above, a second setting process described below is performed. As the second setting process, the battery ECU 20 determines whether or not the battery module 10 has been replaced (reinstalled by removing and attaching) at least after the initial setting of the module ID for each battery module 10, and sets the module ID based on the determination that the battery module 10 has been replaced.
 第2設定処理は、電池モジュール10の交換等が行われたことを直接的に把握し、その履歴に基づいて、モジュールIDの設定を行うものである。ここで、電池モジュール10の交換等の作業(再装着作業)は、車両40のIGスイッチのオフ状態下(車両停止状態下)、すなわち電池ECU20の停止状態下で行われることが考えられる。また、各電池モジュール10の監視部12は、ラック41への電池モジュール10の装着に伴う電源電圧の印加(より具体的には、モジュールコネクタ14の接続)により起動されるものとなっている。この場合、IGオフ状態下において、電池モジュール10の装着に伴う監視部12の起動に応じて、電池ECU20の起動(システムオフ時起動)が行われると、そのシステムオフ時起動が生じたことに基づいて、電池モジュール10の再装着が行われた旨が判定される。 The second setting process directly grasps that the battery module 10 has been replaced, and sets the module ID based on that history. Here, it is considered that the replacement (reinstallation) of the battery module 10 is performed with the IG switch of the vehicle 40 in the off state (with the vehicle stopped), i.e., with the battery ECU 20 stopped. The monitoring unit 12 of each battery module 10 is activated by the application of the power supply voltage (more specifically, the connection of the module connector 14) associated with the installation of the battery module 10 to the rack 41. In this case, when the battery ECU 20 is activated (activated when the system is off) in response to the activation of the monitoring unit 12 associated with the installation of the battery module 10 in the IG off state, it is determined that the battery module 10 has been reinstalled based on the occurrence of the activation when the system is off.
 図6は、モジュールIDの設定処理の手順を示すフローチャートであり、本処理は電池ECU20により実行される。 FIG. 6 is a flowchart showing the steps of the module ID setting process, which is executed by the battery ECU 20.
 図6において、ステップS11では、電池モジュール10の交換等が行われたことを示す交換履歴フラグが0であるか否かを判定する。このとき、電池モジュール10の交換等(再装着)が行われていなければ、交換履歴フラグが0になっており、ステップS11が肯定される。また、電池モジュール10が交換されていれば、交換履歴フラグが1になっており、ステップS11が否定される。 In FIG. 6, in step S11, it is determined whether the replacement history flag, which indicates that the battery module 10 has been replaced or the like, is 0. At this time, if the battery module 10 has not been replaced or the like (reinstalled), the replacement history flag is 0, and step S11 is answered in the affirmative. On the other hand, if the battery module 10 has been replaced, the replacement history flag is 1, and step S11 is answered in the negative.
 ここで、交換履歴フラグの設定処理を図7のフローチャートを用いて説明する。この処理は、電池ECU20において起動時に実行される。 Here, the process for setting the replacement history flag will be explained using the flowchart in FIG. 7. This process is executed by the battery ECU 20 at startup.
 図7において、ステップS31では、今回の電池ECU20の起動が、電池モジュール10の装着に伴う監視部12の起動に対応する起動(システムオフ時起動)であるか否かを判定する。そして、システムオフ時起動であれば、ステップS32に進み、電池モジュール10の交換等が行われたとみなして、交換履歴フラグに1をセットする。また、システムオフ時起動でなければ、交換履歴フラグを0のままとする。 In FIG. 7, in step S31, it is determined whether the current startup of the battery ECU 20 corresponds to the startup of the monitoring unit 12 accompanying the installation of the battery module 10 (startup when the system is off). If it is startup when the system is off, the process proceeds to step S32, where it is assumed that the battery module 10 has been replaced, and the replacement history flag is set to 1. If it is not startup when the system is off, the replacement history flag is left at 0.
 図6の説明に戻り、交換履歴フラグが1である場合、ステップS12に進む。ステップS12では、処理モードを、モジュールIDを設定するID設定モードに移行させる。つまり、交換履歴フラグが1であることは、電池モジュール10の交換等が行われたことが直接的に把握されていることを意味する。この場合、モジュールIDの設定が行われる。つまり、ID設定モードへの移行に伴い、上述したとおり電池ECU20から出力されるPWM信号に基づいて、各電池モジュール10のモジュールIDが設定される(図5(a)~(c)参照)。 Returning to the explanation of FIG. 6, if the replacement history flag is 1, proceed to step S12. In step S12, the processing mode is shifted to an ID setting mode in which a module ID is set. In other words, the replacement history flag being 1 means that it has been directly understood that a battery module 10 has been replaced, etc. In this case, the module ID is set. In other words, with the shift to the ID setting mode, the module ID of each battery module 10 is set based on the PWM signal output from the battery ECU 20 as described above (see FIG. 5 (a) to (c)).
 ステップS13では、ID設定が完了するまで待機し、ID設定が完了すると、ステップS14に進む。ステップS14では、交換履歴フラグを0にリセットする。その後、ステップS21では、ID設定モードから通常モードへの移行が行われる。 In step S13, the process waits until the ID setting is complete, and when the ID setting is complete, the process proceeds to step S14. In step S14, the exchange history flag is reset to 0. Then, in step S21, the process transitions from the ID setting mode to the normal mode.
 また、交換履歴フラグが0である場合、ステップS15に進む。ステップS15では、通信ダイアグマスクを実施する。この通信ダイアグマスクによれば、通信に関する異常診断において正常でないことを示す異常判定がなされてもその判定結果が一時的に保留される。その後、ステップS16では、各監視部12とのCAN通信が開始される。 Also, if the replacement history flag is 0, the process proceeds to step S15. In step S15, a communication diagnostic mask is implemented. According to this communication diagnostic mask, even if an abnormality is determined in the abnormality diagnosis regarding communication, indicating that the communication is not normal, the determination result is temporarily suspended. After that, in step S16, CAN communication with each monitoring unit 12 is started.
 ステップS17では、各電池モジュール10の監視部12との通信が確立されているか否かを判定する。具体的には、電池ECU20は、通信線21を介して各監視部12から受信した通信IDと、電池ECU20側で認識している通信IDとを照合し、その照合結果に基づいて、監視部12との通信が確立されているか否かを判定する。この場合、今回のECU起動の直前にいずれかの電池モジュール10において交換等が行われていれば、通信IDが不一致となる監視部12が含まれることになり、通信が確立されていないと判定される。監視部12の通信IDが初期値になっていることに基づいて、通信が確立されていないと判定されるとよい。 In step S17, it is determined whether communication has been established with the monitoring unit 12 of each battery module 10. Specifically, the battery ECU 20 compares the communication ID received from each monitoring unit 12 via the communication line 21 with the communication ID recognized by the battery ECU 20, and determines whether communication has been established with the monitoring unit 12 based on the comparison result. In this case, if replacement or the like has been performed on any of the battery modules 10 immediately before the current ECU startup, this will include a monitoring unit 12 with a mismatched communication ID, and it is determined that communication has not been established. It is preferable to determine that communication has not been established based on the communication ID of the monitoring unit 12 being set to its initial value.
 全ての監視部12との通信が確立されていなければ、ステップS18に進んでID設定モードに移行する。なお、上記のとおりダイアグマスク中であることから、通信が確立されていないと判定されても、通信異常であるとの判定が一時的に保留される。 If communication has not been established with all of the monitoring units 12, the process proceeds to step S18 and transitions to ID setting mode. Note that since diagnostic masking is in progress as described above, even if it is determined that communication has not been established, the determination that there is a communication abnormality is temporarily withheld.
 また、全ての監視部12との通信が確立されていれば、ステップS21に進んで通常モードに移行する。つまり、電池ECU20の起動時において全ての監視部12との通信が可能になっていれば、通常モードでの制御が開始される。このステップS21では、通信ダイアグマスクが解除される。 If communication with all monitoring units 12 has been established, the process proceeds to step S21 and transitions to normal mode. In other words, if communication with all monitoring units 12 is possible when the battery ECU 20 is started, control in normal mode is initiated. In this step S21, the communication diagnostic mask is released.
 ステップS18では、ID設定モードにおいて、モジュールIDの設定が行われる。つまり、ID設定モードへの移行に伴い、上述したとおり電池ECU20から出力されるPWM信号に基づいて、各電池モジュール10のモジュールIDが設定される(図5(a)~(c)参照)。 In step S18, the module ID is set in the ID setting mode. That is, when the mode is changed to the ID setting mode, the module ID of each battery module 10 is set based on the PWM signal output from the battery ECU 20 as described above (see Figures 5(a) to (c)).
 ステップS19では、ID設定が完了するまで待機し、ID設定が完了すると、ステップS20に進む。 In step S19, the process waits until the ID setting is complete, and when the ID setting is complete, the process proceeds to step S20.
 ステップS20では、ID設定処理においてモジュールIDの設定が正しく行われたか否かを判定する。ここで、電池ECU20と各監視部12との通信が確立されていない場合には、その通信非確立の状況が、電池モジュール10の交換等によるID初期化に起因するものである以外に、通信機器の不具合や通信コネクタの接続不良といった実際の通信異常の発生に起因するものであることも考えられる。この点を想定すると、仮に実際の通信異常が生じていると、一連のID設定処理を正しく行うことができず、結果としてモジュールIDが正しく設定されないことが考えられる。 In step S20, it is determined whether the module ID has been set correctly in the ID setting process. If communication between the battery ECU 20 and each monitoring unit 12 is not established, this non-established communication situation may be due to ID initialization due to replacement of the battery module 10, etc., or it may be due to the occurrence of an actual communication abnormality, such as a malfunction of the communication equipment or a poor connection of the communication connector. With this in mind, if an actual communication abnormality occurs, the series of ID setting processes cannot be performed correctly, and as a result, the module ID may not be set correctly.
 なお、ステップS19では、一連のID設定処理が行われれば、又はID設定処理の実施の期間として所定時間が経過していれば、モジュールIDが正しく設定された否かにかかわらず、次のステップS20への移行が行われるようになっている。 In addition, in step S19, once a series of ID setting processes have been performed, or once a predetermined period of time has elapsed for the implementation of the ID setting processes, the process proceeds to the next step S20 regardless of whether the module ID has been set correctly or not.
 ステップS20においてモジュールIDが正しく設定されたと判定された場合、ステップS21に進む。ステップS21では、通信状態が正常であるとし、ID設定モードから通常モードへの移行が行われる。このステップS21では、通信ダイアグマスクが解除される。 If it is determined in step S20 that the module ID has been set correctly, the process proceeds to step S21. In step S21, the communication state is determined to be normal, and a transition from ID setting mode to normal mode is made. In this step S21, the communication diagnostic mask is released.
 また、ステップS20においてモジュールIDが正しく設定されなかったと判定された場合、ステップS22に進む。ステップS22では、通信状態が異常であるとし、所定のフェイルセーフ処理を実施する。電池ECU20は、フェイルセーフ処理として、例えば、ユーザに対して、電池モジュール10の装着状態の確認を促す通知を行う。ここで、電池ECU20と各監視部12との通信が確立されておらず、かつそれが通信異常の発生に起因するものである場合、ユーザによる電池モジュール10の不適切な交換作業等が原因であることが考えられる。この点、上記のとおりユーザへの通知が行われることにより、電池モジュール10の不適切な交換作業等に起因して通信が非確立となっていてもその状況を是正させることができる。この場合、電池モジュール10の装着がやり直された後に、再び図6の処理が実行されるとよい。 Also, if it is determined in step S20 that the module ID was not set correctly, the process proceeds to step S22. In step S22, it is determined that the communication state is abnormal, and a predetermined fail-safe process is performed. As a fail-safe process, the battery ECU 20, for example, notifies the user to check the installation state of the battery module 10. Here, if communication between the battery ECU 20 and each monitoring unit 12 is not established and this is due to the occurrence of a communication abnormality, it is considered that this is caused by an improper replacement operation of the battery module 10 by the user. In this regard, by notifying the user as described above, even if communication is not established due to an improper replacement operation of the battery module 10, the situation can be corrected. In this case, it is preferable to re-install the battery module 10 and then execute the process of FIG. 6 again.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 The present embodiment described above provides the following excellent effects:
 各電池モジュール10の監視部12と電池ECU20とが通信可能となっている電池システムにおいて、電池ECU20の起動時に監視部12ごとに通信IDの照合が行われ、その照合結果に基づいて、通信が確立されたか否かが判定される。こうした通信判定が行われる電池システムにおいて、電池モジュール10の交換等が行われた場合には、電池モジュール10における通信IDが未設定の状態(例えば初期状態)となっており、電池ECU20の起動時に、通信IDが正しく認識されず、通信が確立されていないと判定される。この場合、通信確立不可であるとの判定結果によれば、電池モジュール10の交換等が行われたことを把握することが可能となる。そこで、電池ECU20の起動時において、通信が確立されていないと判定されたことに基づいて、モジュールIDの設定を行うようにした。これにより、仮にユーザ自身が電池モジュール10の交換等を行う場合であっても、モジュールIDを適正かつ簡易に設定することができる。 In a battery system in which the monitoring unit 12 of each battery module 10 and the battery ECU 20 can communicate with each other, the communication ID is collated for each monitoring unit 12 when the battery ECU 20 is started, and whether or not communication has been established is determined based on the collation result. In a battery system in which such communication determination is performed, if the battery module 10 is replaced, the communication ID of the battery module 10 is in an unset state (for example, an initial state), and the communication ID is not correctly recognized when the battery ECU 20 is started, and it is determined that communication has not been established. In this case, based on the determination result that communication cannot be established, it is possible to know that the battery module 10 has been replaced. Therefore, the module ID is set based on the determination that communication has not been established when the battery ECU 20 is started. This allows the module ID to be set appropriately and easily even if the user himself replaces the battery module 10.
 電池モジュール10がラック41から取り外されている場合、具体的には例えば外部充電装置により充電される場合に、監視部12において通信IDが初期化されるようにした。この場合、起動時における通信IDの照合処理において、監視部12の通信IDが初期値になっていることにより通信が非確立の状態となる。これにより、電池モジュール10の交換等が行われたことを好適に判定させることができる。 When the battery module 10 is removed from the rack 41, specifically when it is being charged by an external charging device, for example, the communication ID is initialized in the monitoring unit 12. In this case, in the communication ID matching process at startup, the communication ID of the monitoring unit 12 is set to the initial value, resulting in a state where communication is not established. This makes it possible to appropriately determine that the battery module 10 has been replaced, etc.
 電池ECU20の起動時において、各監視部12との通信が確立されていないと判定された場合に、通信異常であるとの判定を一時的に保留し、その保留期間(通信ダイアグマスク期間)において、モジュールIDの設定を行わせるようにした。これにより、通信が確立されていないことが、電池モジュール10の交換等に起因するものであること、すなわちモジュール交換等による通信IDの初期化に起因するものであることを想定しつつ、好適にID設定モードへの移行を行わせることができる。 If, at the start-up of the battery ECU 20, it is determined that communication with each monitoring unit 12 has not been established, the determination that there is a communication abnormality is temporarily suspended, and during this suspension period (communication diagnostic mask period), the module ID is set. This makes it possible to suitably transition to the ID setting mode while assuming that the lack of communication is due to the replacement of the battery module 10, or the like, i.e., due to the initialization of the communication ID due to the module replacement, or the like.
 電池ECU20と各監視部12との通信が確立されていない場合には、その通信非確立の状況が、電池モジュール10の交換等によるID初期化に起因するものである以外に、通信機器の不具合や通信コネクタの接続不良といった実際の通信異常の発生に起因するものであることも考えられる。この点を想定し、モジュールIDの設定処理が行われた後に、そのモジュールIDの設定が正しく行われたか否かを判定し、モジュールIDの設定が正しく行われたと判定されれば、通信状態が正常である旨を判定し、モジュールIDの設定が正しく行われなかったと判定されれば、通信状態が異常である旨を判定することとした。これにより、実際に通信異常が発生している場合において、その異常発生が見逃されることを抑制できる。 When communication between the battery ECU 20 and each monitoring unit 12 is not established, the non-established communication situation may be due to ID initialization due to replacement of the battery module 10, etc., or it may be due to an actual communication abnormality such as a malfunction of the communication equipment or a poor connection of the communication connector. With this in mind, after the module ID setting process is performed, it is determined whether the module ID was set correctly, and if it is determined that the module ID was set correctly, it is determined that the communication state is normal, and if it is determined that the module ID was not set correctly, it is determined that the communication state is abnormal. This makes it possible to prevent an actual communication abnormality from being overlooked.
 モジュールIDの設定処理が行われた後に、モジュールIDの設定が正しく行われなかったと判定された場合において、フェイルセーフとして、電池モジュール10の装着状態の確認を促す通知を行うようにした。これにより、電池モジュール10の不適切な交換作業等に起因して通信が非確立となっている場合に、その状況を是正させることができる。 If it is determined that the module ID was not set correctly after the module ID setting process has been performed, a fail-safe is provided, prompting the user to check the installation status of the battery module 10. This makes it possible to correct a situation in which communication has not been established due to an improper replacement of the battery module 10, etc.
 (第2実施形態)
 次に、本開示の第2実施形態を、第1実施形態との相違点を中心に説明する。
Second Embodiment
Next, a second embodiment of the present disclosure will be described, focusing on the differences from the first embodiment.
 本実施形態では、第1実施形態との相違点として、モジュールIDの設定が行われた後に、モジュールIDの設定が正しく行われなかった場合において、複数の電池モジュール10が並列接続されていることを条件にして、モジュールIDの設定が正しく行われなかった電池モジュール10を使用不可の状態とし、残りの電池モジュール10を使用可の状態とするようにしている。 This embodiment differs from the first embodiment in that if the module ID is not set correctly after it has been set, the battery module 10 for which the module ID was not set correctly is made unusable and the remaining battery modules 10 are made usable, provided that multiple battery modules 10 are connected in parallel.
 図8は、モジュールIDの設定処理の手順を示すフローチャートであり、本処理は図6の処理に置き換えて実行される。図8の処理は、図6の処理の一部を変更したものであり、図6と同じ処理については同じステップ番号を付して説明を省略する。 FIG. 8 is a flowchart showing the procedure for setting a module ID, and this process is executed by replacing the process in FIG. 6. The process in FIG. 8 is a partial modification of the process in FIG. 6, and the same processes as in FIG. 6 are given the same step numbers and will not be described.
 図8では、各電池モジュール10の監視部12との通信が確立されていない場合において、ID設定モードでモジュールIDの設定が行われるとともに、モジュールIDの設定が正しく行われたか否かが判定される(ステップS17~S20)。そして、ステップS20においてモジュールIDが正しく設定されなかったと判定された場合、ステップS41に進む。ステップS41では、本電池システムにおいて、複数の電池モジュール10の組電池11が直列接続されているか否かを判定する。この場合、図2(a)に示すように、各電池モジュール10の組電池11が直列に接続されていれば、ステップS22に進み、フェイルセーフ処理として、ユーザに対して、電池モジュール10の装着状態の確認を促す通知を行う。 In FIG. 8, when communication with the monitoring unit 12 of each battery module 10 has not been established, the module ID is set in the ID setting mode, and it is determined whether the module ID has been set correctly (steps S17 to S20). If it is determined in step S20 that the module ID has not been set correctly, the process proceeds to step S41. In step S41, it is determined whether the assembled batteries 11 of the multiple battery modules 10 are connected in series in this battery system. In this case, as shown in FIG. 2(a), if the assembled batteries 11 of each battery module 10 are connected in series, the process proceeds to step S22, and as a fail-safe process, a notification is issued to the user urging them to check the installation status of the battery modules 10.
 また、図2(b)に示すように、各電池モジュール10の組電池11が並列に接続されていれば、ステップS42に進み、モジュールIDの設定が正しく行われなかった電池モジュール10を使用不可の状態とし、残りの電池モジュール10を使用可の状態とする。この場合、車両40において、一部の電池モジュール10を使用不可としても走行可能であることを前提として、モジュールIDの設定に失敗した電池モジュール10を使用せず、残りの電池モジュール10を使用して車両走行させる。なお、ステップS22の処理を第1フェイルセーフ処理とすれば、ステップS42の処理は第2フェイルセーフ処理に相当する。 Also, as shown in FIG. 2(b), if the assembled batteries 11 of each battery module 10 are connected in parallel, the process proceeds to step S42, where the battery module 10 for which the module ID was not set correctly is disabled, and the remaining battery modules 10 are enabled. In this case, on the premise that the vehicle 40 can run even if some of the battery modules 10 are disabled, the battery module 10 for which the module ID setting failed is not used, and the vehicle is run using the remaining battery modules 10. Note that if the process of step S22 is the first fail-safe process, the process of step S42 corresponds to the second fail-safe process.
 モジュールIDの設定が正しく行われなかったと判定された場合において、各電池モジュール10の組電池11が並列接続されていることを条件にして、モジュールIDの設定が正しく行われなかった電池モジュール10を使用不可の状態とし、かつ残りの電池モジュール10を使用可の状態とするようにした。これにより、一部の電池モジュール10を不使用としつつも電池モジュール10の交換等の後において車両走行をいち早く行わせることができる。 If it is determined that the module ID was not set correctly, the battery modules 10 for which the module ID was not set correctly are set to an unusable state, and the remaining battery modules 10 are set to a usable state, provided that the assembled batteries 11 of each battery module 10 are connected in parallel. This allows the vehicle to be driven as quickly as possible after replacing the battery modules 10, while leaving some battery modules 10 unused.
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
Other Embodiments
The above embodiment may be modified, for example, as follows.
 ・電池モジュール10の再装着が行われたことの履歴に基づいてモジュールIDを設定するID設定処理(第2設定処理)として、以下に示す処理を実施する構成としてもよい。 - The ID setting process (second setting process) for setting the module ID based on the history of the battery module 10 being reinstalled may be configured to perform the process shown below.
 図9(a)に示す処理では、ラック41に設けられたロック装置50から出力されるロック信号を用いて、電池モジュール10の再装着が行われた旨を判定することとしている。この場合、電池ECU20は、ロック装置50から出力されるロック信号を取得し(ステップS51)、そのロック信号に基づいて、ロック装置50がロック状態からアンロック状態に移行したか否かを判定する(ステップS52)。そして、ロック装置50がロック状態からアンロック状態に移行したと判定されれば、交換履歴フラグに1をセットする(ステップS53)。なお、ロック装置50がアンロック状態からロック状態に移行したと判定された場合に、交換履歴フラグに1をセットすることも可能である。 In the process shown in FIG. 9(a), the lock signal output from the lock device 50 provided on the rack 41 is used to determine whether the battery module 10 has been re-installed. In this case, the battery ECU 20 acquires the lock signal output from the lock device 50 (step S51), and determines whether the lock device 50 has transitioned from a locked state to an unlocked state based on the lock signal (step S52). If it is determined that the lock device 50 has transitioned from a locked state to an unlocked state, the replacement history flag is set to 1 (step S53). It is also possible to set the replacement history flag to 1 if it is determined that the lock device 50 has transitioned from an unlocked state to a locked state.
 つまり、電池モジュール10の交換等が行われる場合には、ラック41に設けられたロック装置50のアンロック操作とロック操作とが行われる。この点に着目し、ロック装置50がロック状態及びアンロック状態の一方から他方に移行したと検知されたことに基づいて、電池モジュール10の再装着が行われた旨を判定するようにした。これにより、電池モジュール10の交換等が行われたことを好適に判定することができる。 In other words, when the battery module 10 is replaced or otherwise processed, the locking device 50 provided on the rack 41 is unlocked and locked. With this in mind, the system is designed to determine that the battery module 10 has been reinstalled based on the detection that the locking device 50 has transitioned from one of the locked and unlocked states to the other. This makes it possible to appropriately determine that the battery module 10 has been replaced or otherwise processed.
 また、図9(b)に示す処理では、各電池モジュール10の監視部12が直列接続線により直列に接続されている構成において、直列接続線に入力される入力信号と、直列接続線から出力される出力信号とに基づいて、電池モジュール10の再装着が行われた旨を判定することとしている。例えば、図1に示すPWM通信線22が直列接続線に相当する。この場合、IGオフ中に,所定周期で電池ECU20が起動され、PWM通信線22に所定デューティのPWM信号が出力されるとよい。PWM信号は各監視部12を経由して電池ECU20に戻される。 In addition, in the process shown in FIG. 9(b), in a configuration in which the monitoring units 12 of the battery modules 10 are connected in series by a series connection line, it is determined that the battery module 10 has been reinstalled based on an input signal input to the series connection line and an output signal output from the series connection line. For example, the PWM communication line 22 shown in FIG. 1 corresponds to the series connection line. In this case, while the IG is off, the battery ECU 20 is started at a predetermined cycle and a PWM signal with a predetermined duty is output to the PWM communication line 22. The PWM signal is returned to the battery ECU 20 via each monitoring unit 12.
 図9(b)において、電池ECU20は、PWM通信線22を介して直列最上段の監視部12にPWM信号を出力するとともに(ステップS61)、直列最下段の監視部12から入力されるPWM信号が、出力時と同じPWM信号であるか否か(デューティ比が一致するか否か)を判定する(ステップS62,S63)。そして、電池ECU20における出力及び入力のPWM信号が一致しないと判定されれば、交換履歴フラグに1をセットする(ステップS64)。 In FIG. 9(b), the battery ECU 20 outputs a PWM signal to the monitoring unit 12 at the top of the series via the PWM communication line 22 (step S61), and determines whether the PWM signal input from the monitoring unit 12 at the bottom of the series is the same PWM signal as when it was output (whether the duty ratios match) (steps S62, S63). If it is determined that the output and input PWM signals in the battery ECU 20 do not match, the replacement history flag is set to 1 (step S64).
 なお、直列接続線として、PWM通信線22以外の接続線を用いる構成としてもよい。具体的には、電池ECU20の出力端子と入力端子との間に、各監視部12を接続線により直列に接続しておき、電池ECU20の出力端子から所定の電圧信号を出力する。この場合、通常時には、電池ECU20の入力端子に所定の電圧信号(すなわち閾値以上の電圧)が入力され、交換等の際に電池モジュール10が取り外されると、電池ECU20の入力端子に0V(すなわ閾値未満の電圧)の電圧信号が入力されるようになっているとよい。 Note that a connection line other than the PWM communication line 22 may be used as the series connection line. Specifically, each monitoring unit 12 is connected in series between the output terminal and input terminal of the battery ECU 20 by a connection line, and a predetermined voltage signal is output from the output terminal of the battery ECU 20. In this case, it is preferable that a predetermined voltage signal (i.e. a voltage equal to or greater than a threshold value) is normally input to the input terminal of the battery ECU 20, and when the battery module 10 is removed for replacement or the like, a voltage signal of 0V (i.e. a voltage less than the threshold value) is input to the input terminal of the battery ECU 20.
 電池モジュール10の交換等が行われる場合には、直列接続線(PWM通信線22等)により直列に接続されている各監視部12のいずれかにおいて、直列接続線を介して伝達される伝達信号が途切れることになる。直列接続線を介して伝達される伝達信号が途切れる場合には、伝達信号が途切れない場合と比べて電池ECU20の入力信号及び出力信号の関係が相違することになる。この点に着目し、直列接続線に入力される入力信号と、直列接続線から出力される出力信号とに基づいて、電池モジュール10の再装着が行われた旨を判定するようにした。これにより、電池モジュール10の交換等が行われたことを好適に判定することができる。 When the battery module 10 is replaced or otherwise processed, the transmission signal transmitted through the series connection line (such as the PWM communication line 22) is interrupted in one of the monitoring units 12 connected in series by the series connection line. When the transmission signal transmitted through the series connection line is interrupted, the relationship between the input signal and the output signal of the battery ECU 20 is different compared to when the transmission signal is not interrupted. Focusing on this point, it is determined that the battery module 10 has been reinstalled based on the input signal input to the series connection line and the output signal output from the series connection line. This makes it possible to appropriately determine that the battery module 10 has been replaced or otherwise processed.
 ・上記実施形態では、電池ECU20と各電池モジュール10の監視部12とをCAN通信線を介して相互に通信可能としたが、これを変更し、電池ECU20と各監視部12とが相互に無線通信可能な構成であってもよい。この場合、例えば監視部12の+B起動やモジュール交換履歴等に関する情報が、無線通信により電池ECU20に送信されるとよい。 - In the above embodiment, the battery ECU 20 and the monitoring unit 12 of each battery module 10 are capable of communicating with each other via a CAN communication line, but this may be modified to a configuration in which the battery ECU 20 and each monitoring unit 12 are capable of wireless communication with each other. In this case, for example, information regarding the +B start-up of the monitoring unit 12, module replacement history, etc. may be transmitted to the battery ECU 20 via wireless communication.
 ・車両40では、ラック41から電池モジュール10が取り外された後において、別の電池モジュール10が再装着される場合と、今回取り外された電池モジュール10(同一の電池モジュール10)が充電等の後に再装着される場合とが考えられる。この場合、電池モジュール10が再装着される際において、別の電池モジュール10が取り付けられるか、同一の電池モジュール10が取り付けられるかに応じて、ID設定処理を異ならせるようにしてもよい。 - In the vehicle 40, after the battery module 10 is removed from the rack 41, it is possible that another battery module 10 is reinstalled, or that the battery module 10 that was removed this time (the same battery module 10) is reinstalled after charging, etc. In this case, when the battery module 10 is reinstalled, the ID setting process may be different depending on whether a different battery module 10 or the same battery module 10 is installed.
 具体的には、電池ECU20の起動時において、図10のフローチャートに示す処理が電池ECU20により実行されるとよい。図10において、ステップS71では、交換履歴フラグが1であるか否かを判定し、続くステップS72では、前回取り外した電池モジュール10と今回取り付けた電池モジュール10とが同一であるか否かを判定する。この場合、取り外し時と取り付け時とで電池モジュール10が同一であることは、例えばユーザによる操作入力により認識されるとよい。例えば電池モジュール10の一連の交換作業においてユーザに対して「電池モジュール10は同一か否か?」を問い合わせ、その回答である操作入力により、電池ECU20が、電池モジュール10が同一か否かを判定するとよい。また、各電池モジュール10の監視部12に過去のID履歴を記憶しておき、そのID履歴に基づいて、電池ECU20が、電池モジュール10が同一か否かを判定する構成であってもよい。また、同じ電池モジュール10を外部充電装置の充電後に再装着する場合には、その充電時において監視部12の識別情報(モジュールID、通信ID)を初期化しないようにするとよい。この場合、再装着直後のECU起動時には、取り外し前と同じ識別情報が認識される。 Specifically, when the battery ECU 20 is started, the process shown in the flowchart of FIG. 10 may be executed by the battery ECU 20. In FIG. 10, in step S71, it is determined whether the replacement history flag is 1, and in the following step S72, it is determined whether the battery module 10 removed last time is the same as the battery module 10 installed this time. In this case, it is preferable to recognize that the battery module 10 is the same at the time of removal and the time of installation, for example, by an operation input by the user. For example, in a series of battery module 10 replacement operations, the user is asked, "Is the battery module 10 the same?", and the battery ECU 20 determines whether the battery modules 10 are the same based on the operation input in response. In addition, the monitoring unit 12 of each battery module 10 may store past ID history, and the battery ECU 20 may determine whether the battery modules 10 are the same based on the ID history. In addition, when the same battery module 10 is reattached after charging with an external charging device, it is preferable not to initialize the identification information (module ID, communication ID) of the monitoring unit 12 at the time of charging. In this case, when the ECU is started immediately after reinstallation, the same identification information will be recognized as before removal.
 電池モジュール10が同一である場合、ステップS73に進み、モジュールIDの付け直しを行わず、元のモジュールIDをそのまま用いる。一方で、電池モジュール10が異なる場合、ステップS74に進み、モジュールIDの付け直しを行うべく、ID設定モードに移行する。そして、ステップS73,S74の後、通常モードに移行する(ステップS75)。 If the battery modules 10 are the same, proceed to step S73, do not reassign the module ID, and use the original module ID as is. On the other hand, if the battery modules 10 are different, proceed to step S74, and switch to ID setting mode to reassign the module ID. Then, after steps S73 and S74, switch to normal mode (step S75).
 なお、取り外し時と取り付け時とで電池モジュール10が同一である場合としては、電池モジュール10が充電されずに再装着される場合と、電池モジュール10が充電された後に再装着される場合とが考えられる。例えば前者の場合としては、検査等のために電池モジュール10が一時的に取り外される場合が考えられる。これら電池モジュール10が同一である場合にはいずれもモジュールIDの付け直しが行われず、元のモジュールIDがそのまま用いられる。ただし、電池モジュール10が充電されずに再装着される場合には、モジュールIDの付け直しが行われず、元のモジュールIDがそのまま用いられるのに対し、電池モジュール10が充電された後に再装着される場合には、モジュールIDの付け直しが行われる構成であってもよい。 In addition, cases where the battery module 10 is the same when removed and when attached include cases where the battery module 10 is reinstalled without being charged, and cases where the battery module 10 is reinstalled after being charged. For example, the former case may be when the battery module 10 is temporarily removed for inspection or the like. In both cases where the battery modules 10 are the same, the module ID is not reassigned and the original module ID is used as is. However, when the battery module 10 is reinstalled without being charged, the module ID is not reassigned and the original module ID is used as is, whereas when the battery module 10 is reinstalled after being charged, the module ID may be reassigned.
 電池モジュール10の再装着が行われたと判定された場合に、その再装着の電池モジュール10が、前回取り外し時の電池モジュール10と同じものであるか否かに応じて、モジュールIDの設定態様を異ならせるようにした。これにより、モジュールIDの再設定が必要か否かに応じて、適正なID設定処理を行わせることができる。 When it is determined that the battery module 10 has been reinstalled, the module ID setting mode is changed depending on whether the reinstalled battery module 10 is the same as the battery module 10 that was previously removed. This allows the appropriate ID setting process to be performed depending on whether the module ID needs to be reset.
 なお、車両40において、ラック41に収容された全ての電池モジュール10の組み合わせを変えずに、少なくとも2つの電池モジュール10について収容場所の入れ替えが行われることも考えられる。この場合、各監視部12における過去のID履歴に基づいて、電池モジュール10の入れ替えが行われたか否かを判定し、電池モジュール10の再装着が電池モジュール10の入れ替えであれば、モジュールIDの付け直しを行わず、元のモジュールIDをそのまま用いるようにしてもよい。 It is also possible that in the vehicle 40, the storage locations of at least two battery modules 10 are swapped without changing the combination of all the battery modules 10 stored in the rack 41. In this case, it is determined whether or not the battery modules 10 have been swapped based on the past ID history of each monitoring unit 12, and if the reattachment of the battery modules 10 is a battery module 10 swap, the original module IDs may be used as they are without reassigning the module IDs.
 ・上記各実施形態では、電池ECU20から各監視部12に対して出力されるPWM信号に基づいて、各電池モジュール10の識別情報を設定する構成としたが、ID設定手法はこれに限定されず、他の手法を用いることも可能である。例えば、各監視部12を直列接続し、かつその最上段の監視部12に所定電圧を印加する状態としておき、監視部12ごとの分圧電圧に基づいて、上段側から下段側に順番にモジュールIDを設定するようにしてもよい。 - In the above embodiments, the identification information of each battery module 10 is set based on the PWM signal output from the battery ECU 20 to each monitoring unit 12, but the ID setting method is not limited to this, and other methods can be used. For example, the monitoring units 12 can be connected in series, a predetermined voltage is applied to the topmost monitoring unit 12, and the module IDs can be set in order from the top to the bottom based on the divided voltage of each monitoring unit 12.
 ・上記各実施形態では、電池ECU20の起動時において、電池ECU20と各監視部12との間の通信が確立されていないことに基づいてモジュールIDの設定を行う第1設定処理と、電池モジュール10の再装着が行われたことの履歴に基づいてモジュールIDの設定を行う第2設定処理とをいずれも実施可能とする構成としたが、これを変更してもよい。これら各設定処理のうち第1設定処理のみを実施する構成(すなわち、ID設定処理として図6のステップS11~S14,S21を実施する構成)としてもよい。又は、第2設定処理のみを実施する構成(すなわち、ID設定処理として図6のステップS15~S22を実施する構成)としてもよい。 - In each of the above embodiments, the battery ECU 20 is configured to be able to perform both a first setting process that sets a module ID based on the fact that communication has not been established between the battery ECU 20 and each monitoring unit 12 when the battery ECU 20 is started, and a second setting process that sets a module ID based on the history of the battery module 10 being reinstalled, but this may be changed. It may be configured to perform only the first setting process (i.e., a configuration in which steps S11 to S14 and S21 in FIG. 6 are performed as the ID setting process). Or, it may be configured to perform only the second setting process (i.e., a configuration in which steps S15 to S22 in FIG. 6 are performed as the ID setting process).
 第2設定処理において、車両40への電池モジュール10の再装着に伴い監視部12が起動される場合(監視部12が+B起動される場合)に、監視部12において交換履歴フラグがセットされるとともに、その交換履歴フラグが監視部12から電池ECU20に送信される構成であってもよい。 In the second setting process, when the monitoring unit 12 is started up due to the re-installation of the battery module 10 in the vehicle 40 (when the monitoring unit 12 is started up in +B), the replacement history flag may be set in the monitoring unit 12, and the replacement history flag may be transmitted from the monitoring unit 12 to the battery ECU 20.
 ・上記実施形態では、電池システムにおいて電池ECU20を識別情報設定装置としたが、この構成を変更し、電池ECU20とは別に識別情報設定装置を備える構成であってもよい。例えば、ID設定用(ID割り当て用)のプロビジョニング装置が識別情報設定装置として設けられていてもよい。 - In the above embodiment, the battery ECU 20 in the battery system is the identification information setting device, but this configuration may be changed to include an identification information setting device separate from the battery ECU 20. For example, a provisioning device for ID setting (ID assignment) may be provided as the identification information setting device.
 ・上記実施形態では、電池システムを車両用の電池システムとして説明したが、飛行体や船舶等、車両以外の移動体の電池システムであってもよい。また、移動体以外の電池システム、すなわち定置式の電池システムであってもよい。具体的には、住宅や店舗、公共設備等の建物に付随して設けられる電池システムにおいて、本開示のID設定手法を適用することが可能である。また、電池モジュール10を保管する電池保管システムにおいて、保管状態となる電池モジュール10について上記のとおりID設定を行うようにしてもよい。 - In the above embodiment, the battery system has been described as a battery system for a vehicle, but it may also be a battery system for a moving body other than a vehicle, such as an aircraft or a ship. It may also be a battery system other than a moving body, i.e., a stationary battery system. Specifically, the ID setting method disclosed herein can be applied to a battery system attached to a building such as a house, a store, or a public facility. Furthermore, in a battery storage system that stores battery modules 10, the ID may be set as described above for the battery modules 10 in storage.
 ・各電池モジュール10のラックは、電池モジュール10を収容する複数の収容棚を有し、かつ一面に開放されたハウジング部と、そのハウジング部の開口部に開閉可能に設けられた開閉部(扉部)とを有するものであってもよい。ハウジング部内において、各電池モジュール10の監視部12は無線通信可能になっているとよい。ハウジング部には、放熱のための通風部、又は冷媒により冷却を行う冷却部が設けられているとよい。ハウジング部又は開閉部には、導波管及び電波吸収体が設けられているとよい。 - The rack for each battery module 10 may have multiple storage shelves for storing the battery modules 10, and may have a housing section that is open on one side, and an opening/closing section (door section) that is provided at the opening of the housing section so as to be able to open and close. Within the housing section, the monitoring section 12 of each battery module 10 may be capable of wireless communication. The housing section may be provided with a ventilation section for heat dissipation, or a cooling section that performs cooling using a refrigerant. The housing section or the opening/closing section may be provided with a waveguide and a radio wave absorber.
 ・電池モジュール10の電力使用を目的とする第1電池システムと、電池モジュール10の保管を目的とする第2電池システムとを設け、それら第1電池システム及び第2電池システムにおいて相互に電池モジュール10の付け替えが可能となっていてもよい。具体的には、図11に示すシステムとすることが考えられる。図11は、複数の電池モジュール10及び電池ECU20を含む第1電池システムとしての車載電池システムと、複数の電池モジュール10及び管理ECU60を含む第2電池システムとしての電池保管システムとを示す概略図である。電池保管システムにおいて、被装着部としてのラック61には複数の電池モジュール10が収容されている。不図示とするが、ラック61には、ラック41と同様に、ラックコネクタやロック装置が設けられている。各ラック41,61に収容された電池モジュール10は、各システム間において相互に入れ替え可能となっている。 - A first battery system for using the power of the battery modules 10 and a second battery system for storing the battery modules 10 may be provided, and the battery modules 10 may be interchangeable between the first battery system and the second battery system. Specifically, the system shown in FIG. 11 may be used. FIG. 11 is a schematic diagram showing an on-board battery system as a first battery system including a plurality of battery modules 10 and a battery ECU 20, and a battery storage system as a second battery system including a plurality of battery modules 10 and a management ECU 60. In the battery storage system, a rack 61 as a mounting portion houses a plurality of battery modules 10. Although not shown, the rack 61 is provided with a rack connector and a locking device, similar to the rack 41. The battery modules 10 housed in each rack 41, 61 are interchangeable between the systems.
 車載電池システム及び電池保管システムではラック41,61におけるモジュール収容個数が異なっていてもよく、例えば電池保管システムの方が車載電池システムよりもモジュール収容個数が多い構成であるとよい。なお、車両40ごとに、ラック61における電池モジュール群が割り付けられていてもよい。また、車載電池システムと電池保管システムとでラック41,61のモジュール収容個数が同じであってもよい。 The number of modules accommodated in the racks 41, 61 may be different between the on-board battery system and the battery storage system. For example, the battery storage system may be configured to accommodate a greater number of modules than the on-board battery system. A group of battery modules in the rack 61 may be assigned to each vehicle 40. Also, the number of modules accommodated in the racks 41, 61 may be the same between the on-board battery system and the battery storage system.
 電池ECU20では、上述したとおり電池モジュール10の交換等に伴いID設定処理が行われる一方、管理ECU60においても同様に電池モジュール10の交換等に伴いID設定処理が行われるものとなっている。つまり、各ECU20,60は互いに同一の通信形式の通信機能を有しており、車載電池システムにおいて電池モジュール10が再装着される都度、又は電池保管システムにおいて電池モジュール10が再装着される都度、各ECU20,60によって、既述の手法により各電池モジュール10のID設定が行われる。 As described above, the battery ECU 20 performs an ID setting process when the battery module 10 is replaced, etc., while the management ECU 60 also performs an ID setting process when the battery module 10 is replaced, etc. In other words, each ECU 20, 60 has a communication function of the same communication format, and each time a battery module 10 is reinstalled in the on-board battery system or each time a battery module 10 is reinstalled in the battery storage system, each ECU 20, 60 sets the ID of each battery module 10 using the method described above.
 各ECU20,60では、電池モジュール10の交換等が行われたことを把握した場合に、その旨をディスプレイ表示や音声等によりユーザや作業者に通知するとよい。この場合、モジュールIDに基づいて、ラック41,61においてどの電池モジュール10の交換等が行われたかを通知するとよい。これにより、電池モジュール10の交換等が適正に認識されていることをユーザ等に知らせることができる。また、仮に電池モジュール10が不正に交換された場合において、その不正行為が生じたことをユーザ等に知らせることができる。つまり、本開示のID設定機能を用いて、不正対策の実施が可能となる。 When each ECU 20, 60 determines that a battery module 10 has been replaced, it may notify the user or worker of this by displaying a message on the screen or by audio. In this case, it may be possible to notify which battery module 10 has been replaced in the rack 41, 61 based on the module ID. This allows the user to be informed that the battery module 10 has been properly recognized as having been replaced. Also, if a battery module 10 has been fraudulently replaced, it is possible to notify the user that this fraudulent act has occurred. In other words, the ID setting function of the present disclosure can be used to implement fraud prevention measures.
 また、電池保管システムにおいて電池モジュール10が長期間保管されていると、自然放電により電池モジュール10の蓄電量が低下したり、劣化により電池寿命が低下したりすることが考えられる。そのため、保管状態の電池モジュール10を管理ECU60により監視することが望ましい。なお、管理ECU60は、定期的に各電池モジュール10の監視部12を起動させるとよい。 Furthermore, if the battery modules 10 are stored in the battery storage system for a long period of time, it is possible that the amount of stored electricity in the battery modules 10 will decrease due to natural discharge, and the battery life will decrease due to deterioration. Therefore, it is desirable to monitor the battery modules 10 in the stored state using the management ECU 60. In addition, it is advisable for the management ECU 60 to periodically start up the monitoring unit 12 of each battery module 10.
 この場合、ラック61に収容された各電池モジュール10にそれぞれモジュールIDが付与されていれば、ラック61における電池モジュール10の位置を把握することができる。したがって、電池保管システムにおいて電池モジュール10での蓄電量の低下や劣化が生じた場合に、該当する電池モジュール10がどれであるかを容易に把握することができる。これにより、メンテナンス性を向上させることが可能となる。また、電池保管システムにおいて、ラック61に装着された状態で各電池モジュール10が充電可能になっていてもよく、かかる構成では、充電対象とすべき電池モジュール10に対して選択的に充電を行わせることが可能となる。 In this case, if each battery module 10 housed in the rack 61 is assigned a module ID, the position of the battery module 10 in the rack 61 can be ascertained. Therefore, when a drop in the amount of stored electricity or deterioration occurs in a battery module 10 in the battery storage system, it is easy to ascertain which battery module 10 is in question. This makes it possible to improve maintainability. Also, in the battery storage system, each battery module 10 may be capable of being charged while attached to the rack 61, and in such a configuration, it becomes possible to selectively charge the battery module 10 that is to be charged.
 また、各システムのECU20,60は、それぞれ外部サーバ70と無線通信可能になっている。各ECU20,60は、電池モジュール10の交換等が行われたことを把握した場合に、その情報を外部サーバ70に送信するとよい。これにより、外部サーバ70において各システムでの電池交換を容易かつ適正に管理することができる。 Furthermore, the ECUs 20, 60 of each system are capable of wireless communication with an external server 70. When each ECU 20, 60 determines that a battery module 10 has been replaced, it may transmit that information to the external server 70. This allows the external server 70 to easily and appropriately manage battery replacement in each system.
 車載電池システム及び電池保管システムにおいて相互に電池モジュール10の付け替えを可能とし、かつこれら各システムにおいて同じ態様でモジュールIDの設定を可能とした。これにより、電池モジュール10の使用時及び保管時のいずれにおいても適正なモジュールID設定を可能とし、ひいては電池モジュール10の適正な監視を継続的に実施することができる。 The battery module 10 can be interchanged between the vehicle battery system and the battery storage system, and the module ID can be set in the same manner in each of these systems. This allows the module ID to be set correctly both when the battery module 10 is in use and when it is in storage, and thus allows the battery module 10 to be continuously and appropriately monitored.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and memory programmed to execute one or more functions embodied in a computer program. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits. Furthermore, the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.
 上述の実施形態から抽出される技術思想を以下に記載する。
[構成1]
 蓄電池(11)と、その蓄電池を監視する監視部(12)とを有する複数の電池モジュール(10)を有する電池システムに適用され、
 前記監視部と通信可能に設けられ、前記電池モジュールごとに個別にモジュール識別情報を設定する識別情報設定装置(20)であって、
 当該識別情報設定装置の起動時において、前記監視部ごとに定められた通信識別情報の照合を行い、その照合結果に基づいて、通信が確立されたか否かを判定する通信判定部と、
 前記通信判定部により通信が確立されていないと判定されたことに基づいて、前記モジュール識別情報の設定を行う設定部と、
を備える識別情報設定装置。
[構成2]
 前記電池システムにおいて前記電池モジュールが取り外された状態で前記監視部の前記通信識別情報が初期化されるようになっており、
 前記通信判定部は、起動時における前記通信識別情報の照合処理において、前記監視部の前記通信識別情報が初期値になっている場合に、通信が確立されていないと判定する、構成1に記載の識別情報設定装置。
[構成3]
 前記電池システムにおいて、前記複数の電池モジュールは、所定の被装着部(41)に装着された状態で用いられ、かつ当該被装着部から取り外された状態で外部充電装置による充電が可能になっており、
 前記電池モジュールが前記外部充電装置により充電される場合に、前記監視部において前記通信識別情報が初期化されるようになっており、
 前記通信判定部は、起動時における前記通信識別情報の照合処理において、前記監視部の前記通信識別情報が初期値になっている場合に、通信が確立されていないと判定する、構成1に記載の識別情報設定装置。
[構成4]
 前記通信判定部により通信が確立されていないと判定された場合において、通信異常であるとの判定を一時的に保留し、その保留期間において、前記設定部による前記モジュール識別情報の設定を行わせる、構成1~3のいずれか1つに記載の識別情報設定装置。
[構成5]
 前記設定部により前記モジュール識別情報の設定が行われた後に、当該モジュール識別情報の設定が正しく行われたか否かを判定する正否判定部を備え、
 前記通信判定部は、
 通信が確立されていないと判定された状況下において、前記モジュール識別情報の設定が正しく行われたと前記正否判定部により判定された場合に、通信状態が正常である旨を判定し、
 通信が確立されていないと判定された状況下において、前記モジュール識別情報の設定が正しく行われなかったと前記正否判定部により判定された場合に、通信状態が異常である旨を判定する、構成1~4のいずれか1つに記載の識別情報設定装置。
[構成6]
 前記モジュール識別情報の設定が正しく行われなかったと前記正否判定部により判定された場合に、前記電池モジュールの装着状態の確認を促す通知を行う、構成5に記載の識別情報設定装置。
[構成7]
 前記設定部により前記モジュール識別情報の設定が行われた後に、当該モジュール識別情報の設定が正しく行われたか否かを判定する正否判定部を備え、
 前記モジュール識別情報の設定が正しく行われなかったと前記正否判定部により判定された場合において、前記各電池モジュールの前記蓄電池が並列接続されていることを条件にして、当該モジュール識別情報の設定が正しく行われなかった前記電池モジュールを使用不可の状態とし、残りの電池モジュールを使用可の状態とする、構成1~6のいずれか1つに記載の識別情報設定装置。
[構成8]
 前記電池システムとして、前記電池モジュールの電力使用を目的とする第1電池システムと、前記電池モジュールの保管を目的とする第2電池システムとが含まれ、前記第1電池システム及び前記第2電池システムにおいて相互に前記電池モジュールの付け替えが可能となっており、
 前記第1電池システム及び前記第2電池システムはそれぞれ、構成1~7のいずれか1項に記載の識別情報設定装置(20,60)を有している、電池システム。
The technical ideas extracted from the above-described embodiments will be described below.
[Configuration 1]
The present invention is applied to a battery system having a plurality of battery modules (10) each having a storage battery (11) and a monitoring unit (12) for monitoring the storage battery,
An identification information setting device (20) that is provided to be capable of communicating with the monitoring unit and sets module identification information individually for each of the battery modules,
a communication determination unit that, when the identification information setting device is started, checks the communication identification information determined for each of the monitoring units and determines whether or not communication has been established based on the check result;
a setting unit that sets the module identification information based on the determination by the communication determination unit that communication has not been established;
An identification information setting device comprising:
[Configuration 2]
the communication identification information of the monitoring unit is initialized in a state in which the battery module is removed from the battery system,
2. The identification information setting device according to configuration 1, wherein the communication determination unit determines that communication has not been established when the communication identification information of the monitoring unit is set to an initial value during a process of checking the communication identification information at startup.
[Configuration 3]
In the battery system, the plurality of battery modules are used in a state where they are attached to a predetermined attachment portion (41), and are capable of being charged by an external charging device in a state where they are detached from the attachment portion;
When the battery module is charged by the external charging device, the communication identification information is initialized in the monitoring unit,
2. The identification information setting device according to configuration 1, wherein the communication determination unit determines that communication has not been established when the communication identification information of the monitoring unit is set to an initial value during a process of checking the communication identification information at startup.
[Configuration 4]
An identification information setting device described in any one of configurations 1 to 3, in which when the communication determination unit determines that communication has not been established, the determination that there is a communication abnormality is temporarily suspended, and during the suspension period, the setting unit is caused to set the module identification information.
[Configuration 5]
a correctness determining unit that determines whether the module identification information has been correctly set after the setting unit has set the module identification information,
The communication determination unit
determining that the communication state is normal when the correctness determining unit determines that the module identification information has been set correctly under a condition in which it is determined that communication has not been established;
An identification information setting device described in any one of configurations 1 to 4, which determines that the communication state is abnormal when the correct/incorrect determination unit determines that the module identification information was not set correctly under a situation where it is determined that communication has not been established.
[Configuration 6]
6. The identification information setting device according to configuration 5, wherein, when the correctness determining unit determines that the module identification information has not been set correctly, a notification is given to prompt the user to check an installation state of the battery module.
[Configuration 7]
a correctness determining unit that determines whether the module identification information has been correctly set after the setting unit has set the module identification information,
An identification information setting device described in any one of configurations 1 to 6, wherein when the correct/incorrect determination unit determines that the module identification information was not set correctly, the battery module for which the module identification information was not set correctly is set to an unusable state, and the remaining battery modules are set to a usable state, provided that the storage batteries of each of the battery modules are connected in parallel.
[Configuration 8]
The battery system includes a first battery system intended to use the electric power of the battery modules and a second battery system intended to store the battery modules, and the battery modules are interchangeable between the first battery system and the second battery system,
The battery system, wherein the first battery system and the second battery system each have an identification information setting device (20, 60) according to any one of configurations 1 to 7.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and spirit of the present disclosure.

Claims (9)

  1.  蓄電池(11)と、その蓄電池を監視する監視部(12)とを有する複数の電池モジュール(10)を有する電池システムに適用され、
     前記監視部と通信可能に設けられ、前記電池モジュールごとに個別にモジュール識別情報を設定する識別情報設定装置(20)であって、
     当該識別情報設定装置の起動時において、前記監視部ごとに定められた通信識別情報の照合を行い、その照合結果に基づいて、通信が確立されたか否かを判定する通信判定部と、
     前記通信判定部により通信が確立されていないと判定されたことに基づいて、前記モジュール識別情報の設定を行う設定部と、
    を備える識別情報設定装置。
    The present invention is applied to a battery system having a plurality of battery modules (10) each having a storage battery (11) and a monitoring unit (12) for monitoring the storage battery,
    An identification information setting device (20) that is provided to be capable of communicating with the monitoring unit and sets module identification information individually for each of the battery modules,
    a communication determination unit that, when the identification information setting device is started, checks the communication identification information determined for each of the monitoring units and determines whether or not communication has been established based on the check result;
    a setting unit that sets the module identification information based on the determination by the communication determination unit that communication has not been established;
    An identification information setting device comprising:
  2.  前記電池システムにおいて前記電池モジュールが取り外された状態で前記監視部の前記通信識別情報が初期化されるようになっており、
     前記通信判定部は、起動時における前記通信識別情報の照合処理において、前記監視部の前記通信識別情報が初期値になっている場合に、通信が確立されていないと判定する、請求項1に記載の識別情報設定装置。
    the communication identification information of the monitoring unit is initialized in a state in which the battery module is removed from the battery system,
    2 . The identification information setting device according to claim 1 , wherein the communication determination unit determines that communication has not been established when the communication identification information of the monitoring unit is set to an initial value in a process of checking the communication identification information at startup.
  3.  前記電池システムにおいて、前記複数の電池モジュールは、所定の被装着部(41)に装着された状態で用いられ、かつ当該被装着部から取り外された状態で外部充電装置による充電が可能になっており、
     前記電池モジュールが前記外部充電装置により充電される場合に、前記監視部において前記通信識別情報が初期化されるようになっており、
     前記通信判定部は、起動時における前記通信識別情報の照合処理において、前記監視部の前記通信識別情報が初期値になっている場合に、通信が確立されていないと判定する、請求項1に記載の識別情報設定装置。
    In the battery system, the plurality of battery modules are used in a state where they are attached to a predetermined attachment portion (41), and are capable of being charged by an external charging device in a state where they are detached from the attachment portion;
    When the battery module is charged by the external charging device, the communication identification information is initialized in the monitoring unit,
    2 . The identification information setting device according to claim 1 , wherein the communication determination unit determines that communication has not been established when the communication identification information of the monitoring unit is set to an initial value in a process of checking the communication identification information at startup.
  4.  前記通信判定部により通信が確立されていないと判定された場合において、通信異常であるとの判定を一時的に保留し、その保留期間において、前記設定部による前記モジュール識別情報の設定を行わせる、請求項1に記載の識別情報設定装置。 The identification information setting device according to claim 1, which, when the communication determination unit determines that communication has not been established, temporarily suspends the determination that there is a communication abnormality, and causes the setting unit to set the module identification information during the suspension period.
  5.  前記設定部により前記モジュール識別情報の設定が行われた後に、当該モジュール識別情報の設定が正しく行われたか否かを判定する正否判定部を備え、
     前記通信判定部は、
     通信が確立されていないと判定された状況下において、前記モジュール識別情報の設定が正しく行われたと前記正否判定部により判定された場合に、通信状態が正常である旨を判定し、
     通信が確立されていないと判定された状況下において、前記モジュール識別情報の設定が正しく行われなかったと前記正否判定部により判定された場合に、通信状態が異常である旨を判定する、請求項1に記載の識別情報設定装置。
    a correctness determining unit that determines whether the module identification information has been correctly set after the setting unit has set the module identification information,
    The communication determination unit
    determining that the communication state is normal when the correctness determining unit determines that the module identification information has been set correctly under a condition in which it is determined that communication has not been established;
    The identification information setting device described in claim 1, which determines that the communication state is abnormal when the correct/incorrect determination unit determines that the module identification information was not set correctly under a situation where communication is determined to be not established.
  6.  前記モジュール識別情報の設定が正しく行われなかったと前記正否判定部により判定された場合に、前記電池モジュールの装着状態の確認を促す通知を行う、請求項5に記載の識別情報設定装置。 The identification information setting device according to claim 5, which issues a notification to prompt the user to check the installation status of the battery module when the correctness determination unit determines that the module identification information was not set correctly.
  7.  前記設定部により前記モジュール識別情報の設定が行われた後に、当該モジュール識別情報の設定が正しく行われたか否かを判定する正否判定部を備え、
     前記モジュール識別情報の設定が正しく行われなかったと前記正否判定部により判定された場合において、前記各電池モジュールの前記蓄電池が並列接続されていることを条件にして、当該モジュール識別情報の設定が正しく行われなかった前記電池モジュールを使用不可の状態とし、残りの電池モジュールを使用可の状態とする、請求項1に記載の識別情報設定装置。
    a correctness determining unit that determines whether the module identification information has been correctly set after the setting unit has set the module identification information,
    2. The identification information setting device according to claim 1, wherein, when the correct/incorrect determination unit determines that the module identification information was not set correctly, the battery module for which the module identification information was not set correctly is set to an unusable state and the remaining battery modules are set to a usable state, provided that the storage batteries of each of the battery modules are connected in parallel.
  8.  前記電池システムとして、前記電池モジュールの電力使用を目的とする第1電池システムと、前記電池モジュールの保管を目的とする第2電池システムとが含まれ、前記第1電池システム及び前記第2電池システムにおいて相互に前記電池モジュールの付け替えが可能となっており、
     前記第1電池システム及び前記第2電池システムはそれぞれ、請求項1~7のいずれか1項に記載の識別情報設定装置(20,60)を有している、電池システム。
    The battery system includes a first battery system intended to use the electric power of the battery modules and a second battery system intended to store the battery modules, and the battery modules can be interchanged between the first battery system and the second battery system,
    A battery system, wherein the first battery system and the second battery system each have an identification information setting device (20, 60) according to any one of claims 1 to 7.
  9.  蓄電池(11)と、その蓄電池を監視する監視部(12)とを有する複数の電池モジュール(10)を有する電池システムにおいて、前記監視部と通信可能に設けられ、前記電池モジュールごとに個別にモジュール識別情報を設定する識別情報設定装置(20)により実行されるプログラムであって、
     当該識別情報設定装置の起動時において、前記監視部ごとに定められた通信識別情報の照合を行い、その照合結果に基づいて、通信が確立されたか否かを判定する通信判定ステップと、
     前記通信判定ステップにおいて通信が確立されていないと判定されたことに基づいて、前記モジュール識別情報の設定を行う設定ステップと、
    を備えるプログラム。
    In a battery system having a plurality of battery modules (10) each having a storage battery (11) and a monitoring unit (12) that monitors the storage battery, a program executed by an identification information setting device (20) that is provided to be capable of communicating with the monitoring unit and sets module identification information individually for each of the battery modules,
    a communication determination step of checking communication identification information determined for each of the monitoring units when the identification information setting device is started, and determining whether or not communication has been established based on a result of the checking;
    a setting step of setting the module identification information based on the determination that communication has not been established in the communication determination step;
    A program that includes:
PCT/JP2023/036599 2022-10-31 2023-10-06 Identification information setting device, battery system, and program WO2024095704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174596 2022-10-31
JP2022174596A JP2024065629A (en) 2022-10-31 2022-10-31 Identification information setting device, battery system and program

Publications (1)

Publication Number Publication Date
WO2024095704A1 true WO2024095704A1 (en) 2024-05-10

Family

ID=90930266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036599 WO2024095704A1 (en) 2022-10-31 2023-10-06 Identification information setting device, battery system, and program

Country Status (2)

Country Link
JP (1) JP2024065629A (en)
WO (1) WO2024095704A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202581A (en) * 2013-04-04 2014-10-27 株式会社豊田自動織機 Battery monitor system and identification information setting method
JP2015186050A (en) * 2014-03-25 2015-10-22 株式会社豊田自動織機 battery monitoring device
JP2023040608A (en) * 2021-09-10 2023-03-23 プライムプラネットエナジー&ソリューションズ株式会社 Identifier setting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202581A (en) * 2013-04-04 2014-10-27 株式会社豊田自動織機 Battery monitor system and identification information setting method
JP2015186050A (en) * 2014-03-25 2015-10-22 株式会社豊田自動織機 battery monitoring device
JP2023040608A (en) * 2021-09-10 2023-03-23 プライムプラネットエナジー&ソリューションズ株式会社 Identifier setting system

Also Published As

Publication number Publication date
JP2024065629A (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US11309718B2 (en) Battery monitoring system and battery monitoring apparatus
US20110140669A1 (en) Secondary battery device and vehicle
EP2725686B1 (en) System and method for allocating identifier to multi-bms
EP2629391B1 (en) Method and system for setting up sequential ids for multiple slaves of a battery pack
JP4929389B2 (en) Battery system
US8438426B2 (en) Flexible bus architecture for monitoring and control of battery pack
US20150171642A1 (en) Battery control device
KR101855092B1 (en) Relay control signal independent monitoring apparatus and method
US11031640B2 (en) Battery pack, battery monitoring device, and vehicle
JP5510262B2 (en) Battery authentication apparatus and battery authentication method
CN114475252A (en) Data processing system and method for vehicle battery, vehicle and storage medium
US10790686B2 (en) Battery protection system and method
US11418042B2 (en) Battery management unit
WO2010059320A2 (en) Self sustaining electric engine enhancement (sseee)
WO2024095704A1 (en) Identification information setting device, battery system, and program
WO2024095702A1 (en) Identification information setting device and program
US11563241B2 (en) Apparatus and methods for removable battery module with internal relay and internal controller
US20130227316A1 (en) Battery module system and method for initializing battery modules
US11912139B2 (en) Electric powered vehicle and battery pack for electric powered vehicle
JP7200830B2 (en) charging controller
CN117459363A (en) Communication fault processing system and method and automobile
KR20240053738A (en) Battery module including battery management system capable of history management
JP2023033809A (en) Battery management system and battery management method
KR20180112484A (en) Battery management apparatus and method having added redundant battery