WO2024095649A1 - Joined body using polyether ether ketone resin, and composite material - Google Patents

Joined body using polyether ether ketone resin, and composite material Download PDF

Info

Publication number
WO2024095649A1
WO2024095649A1 PCT/JP2023/035512 JP2023035512W WO2024095649A1 WO 2024095649 A1 WO2024095649 A1 WO 2024095649A1 JP 2023035512 W JP2023035512 W JP 2023035512W WO 2024095649 A1 WO2024095649 A1 WO 2024095649A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
peek resin
composite material
bonded
resin
Prior art date
Application number
PCT/JP2023/035512
Other languages
French (fr)
Japanese (ja)
Inventor
富生 岩崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024095649A1 publication Critical patent/WO2024095649A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/58Preparations specially adapted for dental root treatment specially adapted for dental implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a joint and composite material between polyether ether ketone (PEEK) resin and metal oxide.
  • PEEK polyether ether ketone
  • PEEK resin is a thermoplastic resin that has high thermal stability and low reactivity, and is resistant to deterioration. It also has excellent mechanical properties, chemical resistance, water resistance, etc., and is known as a material with high flame retardancy and biocompatibility. Because of these excellent properties, PEEK resin has attracted attention as a medical material that comes into contact with biological tissue, a material for vehicles such as automobiles, and aerospace materials.
  • PEEK resin is used as a material for implants, including interbody cages, artificial joints, and internal fixation devices for fractures.
  • the surface of PEEK resin is coated with titanium oxide or hydroxyapatite to improve its binding to bone tissue.
  • Patent Document 1 describes a method of coating the surface of medical PEEK resin with titanium and forming a thin film of titanium oxide on the titanium surface.
  • composite materials have been developed in which fillers are dispersed in a matrix formed from PEEK resin.
  • fiber reinforced plastics which are made by embedding carbon fibers or glass fibers in epoxy resin or phenolic resin, have been known as lightweight composite materials with high strength and elasticity.
  • thermoplastic PEEK resin instead of thermosetting resin, it is expected that moldability and recyclability will be improved.
  • Patent Document 2 describes a porous PEEK resin suitable for implants and a method for producing the same. It is said that bioactive ceramics can be mixed into this PEEK resin as particles. Examples of bioactive ceramics include tricalcium phosphate, hydroxyapatite, and biphasic calcium phosphate. Another known technology is to disperse titanium oxide in the base material to improve ultraviolet light resistance.
  • PEEK resin has excellent heat resistance, mechanical properties, chemical resistance, water resistance, etc., so it is used as a bonded body with other materials bonded to its surface, such as when coating with titanium oxide, or as a composite material with other materials dispersed in the base material.
  • PEEK resin has the problem that it is difficult to bond or combine with other materials.
  • PEEK resin has high thermal stability and low reactivity, making it difficult to bond using chemical adsorption or chemically modify it to improve bonding.
  • application of an external force can easily cause separation between the PEEK resin and the metal oxide due to interface destruction.
  • the present invention aims to provide a joint and composite material between PEEK resin and metal oxide that has high adhesion strength between the PEEK resin and metal oxide and is less susceptible to interfacial failure.
  • the bonded body according to the present invention is a bonded body in which a polyether ether ketone resin and a metal oxide are bonded to each other, wherein a relative difference between a distance between benzene rings constituting a molecular chain of the polyether ether ketone resin and a distance between metal atoms constituting a crystal structure of the metal oxide is 5% or less, and an atomic density of the crystal plane of the metal oxide to which the polyether ether ketone resin is bonded is 17 atoms/ nm2 or more.
  • the composite material according to the present invention is a composite material containing a metal oxide and a polyether ether ketone resin as a base material, and the relative difference between the distance between the benzene rings constituting the molecular chain of the polyether ether ketone resin and the distance between the metal atoms constituting the crystal structure of the metal oxide is 5% or less.
  • the present invention can provide a bonded body and composite material between PEEK resin and metal oxide that has high adhesion strength between the PEEK resin and metal oxide and is less susceptible to interfacial failure.
  • FIG. 1 is a cross-sectional view illustrating an example of a bonded body according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic example of a use of a bonded body according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating an example of a bonded body according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating an example of a composite material according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a metal oxide dispersed in the composite material according to the embodiment of the present invention.
  • FIG. 13 is a graph showing the results of an analysis of the relationship between the proportion of (110) faces in the total surface area of titanium oxide and the yield strength of a composite material.
  • FIG. 13 is a graph showing the analysis results of the relationship between the ratio of (001) faces in the total surface area of aluminum oxide and the yield strength of a composite material.
  • FIG. 13 is a graph showing the analysis results of the relationship between the ratio of (111) faces in the total surface area of magnesium oxide and the yield strength of a composite material.
  • FIG. 1 is a cross-sectional view illustrating an example of a composite material according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of a PEEK resin that does not use a metal oxide.
  • FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of a PEEK resin using titanium oxide.
  • FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using aluminum oxide.
  • FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using magnesium oxide.
  • PEEK polyether ether ketone
  • FIG. 1 is a cross-sectional view showing an example of a joint according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a use of a joint according to an embodiment of the present invention.
  • FIGS. 1 and 2 show an intersomatic cage as an example of a joint in which PEEK resin and metal oxide are joined.
  • FIG. 2 shows a cross-sectional view of the area around the human spine in which the intersomatic cage is used.
  • reference numeral 1 denotes a joint forming an interbody cage
  • reference numeral 2 denotes PEEK resin
  • reference numeral 3 denotes a metal oxide
  • reference numeral 4 denotes a vertebral body
  • reference numeral 5 denotes an intervertebral disc
  • reference numeral 6 denotes bone marrow
  • reference numeral 101 denotes an interface between the PEEK resin and the metal oxide.
  • the bonded body 1 has a structure in which PEEK resin 2 and metal oxide 3 are bonded together.
  • the PEEK resin 2 and metal oxide 3 are directly bonded together without the use of any other substance, by adhesion based primarily on physical interactions between atoms.
  • the metal oxide 3 is a specific metal oxide that has a specific distance between metal atoms and acts to align the atomic arrangement of the PEEK resin.
  • the joint 1 shown in Figure 1 forms an intersomatic cage.
  • An intersomatic cage is a type of implant that is embedded in the body and is used to treat spinal stenosis, scoliosis, and the like.
  • an intervertebral disc 5 is located between the vertebral bodies 4 that make up the spine.
  • the intersomatic cage is inserted between the vertebral bodies 4 as a replacement for the intervertebral disc 5 when the intervertebral disc 5 is removed due to damage or other reasons.
  • the intersomatic cage functions as a spacer that fixes the height of the vertebral bodies 4 and as a cushion that stabilizes the spine by cushioning the vertebral bodies 4.
  • the intersomatic cage is provided in a basket-like structure.
  • the inside of the intersomatic cage is filled with grafted bone or the like depending on the treatment method.
  • a joint 1 in which PEEK resin 2 and metal oxide 3 are joined together can be used as a material for such an intersomatic gauge.
  • the intersomatic cage can be provided in any suitable shape or structure.
  • the intersomatic cage has a through hole formed on the side.
  • the intersomatic cage can also be provided in a form where no through hole is formed on the side, where a lattice is provided on the upper and lower openings or the through hole on the side, or where unevenness is formed on the upper and lower surfaces around the opening, etc.
  • the metal oxide 3 used has a predetermined distance between metal atoms, and the relative difference between the distance between the benzene rings constituting the molecular chain of the PEEK resin 2 and the distance between the metal atoms constituting the crystal structure of the metal oxide 3 is 5% or less.
  • the relative difference is the absolute value of the difference in distance, and means the ratio of the difference between the relatively long interval length and the relatively short interval length to the relatively short interval length ((long interval length - short interval length) / short interval length) [%].
  • the distance between benzene rings constituting the molecular chain of PEEK resin means the distance between the centers of benzene rings connected via ether groups.
  • the distance between benzene rings is determined within one polyetheretherketone unit composed of phenylene, ether, and ketone.
  • the distance between benzene rings is determined in a conformation in which the ether groups have a specified bond angle and the benzene rings are oriented parallel to each other on the same plane (see Figures 11 to 13).
  • the distance between metal atoms constituting the crystal structure of a metal oxide means the distance between metal atoms arranged periodically to form the metal oxide crystal.
  • the distance between metal atoms corresponds to the distance between benzene rings of PEEK resin, and can be determined between any type of metal atom, between metal atoms located at any metal site, between metal atoms arranged in any crystal orientation, or between metal atoms in any close proximity.
  • Any metal atom in close proximity means, among multiple metal atoms periodically arranged on the same crystal plane in the crystal lattice of a metal oxide, a metal atom that is located across any number of metal atoms from the metal atom that is the starting point of the distance. For example, the distance from the metal atom that is the starting point of the distance to the first closest metal atom that is closest to the metal atom, or the distance to the second closest metal atom that is located across one metal atom from the metal atom, can be compared with the distance between benzene rings in PEEK resin.
  • interbody cages have been developed that are made of PEEK resin, with the surface coated with titanium oxide or hydroxyapatite (HAp). It is known that when implants are made only of PEEK resin, it is difficult for the surrounding bone tissue to heal. Titanium oxide and HAp have good bonding properties with bone tissue and are similar in properties to bone tissue, so the surface of the PEEK resin is coated with titanium oxide or HAp.
  • PEEK resin is known to have poor bonding with other materials.
  • the adhesion phenomenon is difficult to achieve, so there is a problem that high bonding strength cannot be obtained.
  • PEEK resin has high thermal stability and low reactivity, so chemical adsorption and chemical modification are also difficult. Even if it is simply coated with metal oxide, peeling due to interface destruction easily occurs when external force is applied.
  • the carbon atoms of the benzene rings and the metal atoms of the metal oxide 3 are arranged in close proximity to each other at the interface 101 between the PEEK resin 2 and the metal oxide 3, forming a strong interaction.
  • the molecular chains of the PEEK resin 2 are able to align with the appropriate orientation and conformation relative to the crystal structure of the metal oxide 3.
  • molecular chains of other PEEK resins 2 can be aligned in an appropriate orientation and conformation with respect to the molecular chains of PEEK resin 2 aligned on the surface of the metal oxide 3.
  • the effect of the metal oxide 3, which aligns the atomic arrangement of the PEEK resin extends not only to the interface 101 between the PEEK resin 2 and the metal oxide 3, but also to areas away from the interface 101. Therefore, the adhesive strength between the molecular chains of PEEK resin 2 can be increased even in areas away from the interface 101.
  • the PEEK resin 2 a resin with an appropriate molecular weight and degree of polymerization can be used.
  • a homopolymer containing only polyether ether ketone units may be used, or a copolymer in which polyether ketone units, polyether ether ketone ketone units, or other monomers are polymerized may be used.
  • the PEEK resin 2 may or may not contain additives.
  • additives include fillers, plasticizers, and flame retardants.
  • a specific metal oxide that acts to align the atomic arrangement of the PEEK resin can also be added, as in the composite material described below.
  • Fillers include silica, talc, mica, clay, calcium carbonate, potassium titanate, carbon, glass fiber, carbon fiber, organic fiber, etc.
  • Plasticizers include phthalates, adipates, trimellitates, phosphates, etc.
  • Flame retardants include aluminum hydroxide, magnesium hydroxide, magnesium carbonate, ammonium polyphosphate, ammonium carbonate, antimony oxide, boric acid compounds, molybdenum compounds, bromine compounds, red phosphorus, phosphate esters, melamine compounds, triazine compounds, guanidine compounds, etc.
  • any suitable metal oxide can be bonded as long as the relative difference between the spacing between the benzene rings of the PEEK resin 2 and the spacing between the metal atoms of the metal oxide 3 is 5% or less.
  • the metal oxide 3 may be an oxide containing one type of metal as the main component, or a composite oxide containing multiple types of metals as the main components.
  • a single crystal or a polycrystal may be bonded as long as a lattice-matched interface is formed with the PEEK resin 2.
  • the area ratio of the crystal planes where the relative difference between the spacing between the benzene rings of the PEEK resin 2 and the spacing between the metal atoms of the metal oxide 3 is 5% or less is large, and it is preferable to bond a single crystal as the metal oxide 3.
  • the thickness of the metal oxide 3 in the direction perpendicular to the surface to be bonded to the PEEK resin 2 is preferably 2 nm or more and 100 ⁇ m or less. If the thickness is 2 nm or more, a lattice-matched interface is formed between the PEEK resin 2 and the metal oxide 3 by a large number of atoms, so the bonding strength between the PEEK resin 2 and the metal oxide 3 can be further improved. Furthermore, if the thickness is 100 ⁇ m or less, peeling of the metal oxide 3 due to stress concentration or cohesive failure can be reduced.
  • the atomic density of the crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is preferably 17 atoms/ nm2 or more. Even if the distance between metal atoms of the metal oxide 3 is a predetermined length, if the density of the metal atoms is low, it is difficult to form an interaction with the PEEK resin 2. In contrast, if the atomic density is 17 atoms/ nm2 or more, a lattice-matched interface is formed between the PEEK resin 2 and the metal oxide 3 by high-density atoms, and the bonding strength between the PEEK resin 2 and the metal oxide 3 can be further improved.
  • preferred examples of the metal oxide 3 bonded to the PEEK resin 2 are as follows (1) to (3).
  • the metal oxide 3 is titanium oxide (titania: TiO2 ).
  • the crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is a crystal plane of titanium oxide having a rutile structure with Miller indices of (110) or a crystal plane equivalent thereto.
  • the atomic density of the crystal plane of titanium oxide having a rutile structure to which the PEEK resin 2 is bonded is preferably 17 atom/ nm2 or more.
  • the metal oxide 3 is aluminum oxide (alumina: Al2O3 ).
  • the crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is a crystal plane of aluminum oxide with Miller indices of (001) or a crystal plane equivalent thereto.
  • the atomic density of the crystal plane of the aluminum oxide to which the PEEK resin 2 is bonded is preferably 17 atom/ nm2 or more.
  • the metal oxide 3 is magnesium oxide (magnesia: MgO).
  • the crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is a crystal plane of magnesium oxide with Miller indices (111) or a crystal plane equivalent thereto.
  • the atomic density of the magnesium oxide crystal plane to which the PEEK resin 2 is bonded is preferably 17 atom/ nm2 or more.
  • the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide is 5% or less. Therefore, by aligning the atomic arrangement of the PEEK resin, a lattice-matched interface is formed between the PEEK resin and the metal oxide, and the mutual bonding strength can be increased. Also, in areas away from the interface, the adhesion strength between the molecular chains of the PEEK resin can be increased.
  • Tables 1 to 3 show the results of measuring the bonding strength between PEEK resin and metal oxides by peel tests.
  • peel tests the bonding strength of metal oxides to PEEK resin or hydroxyapatite (HAp) was measured.
  • the bonding strength of each of the main crystal planes was measured for titanium oxide, aluminum oxide, and magnesium oxide, which have a rutile structure.
  • test piece of a bonded structure in which PEEK resin and metal oxide were bonded was used.
  • the test piece of the bonded structure was prepared by directly bonding PEEK resin to a crystal face with a specified Miller index on the surface of a single crystal of the metal oxide.
  • the test piece was in the shape of a strip with a width of 25 mm.
  • an adhesive tape was adhered to the surface of the PEEK resin, and then one end of the adhesive tape was peeled off at a 90-degree angle using a tensile tester to measure the peel strength.
  • the bond strength per unit width of the test piece [kN/m] was then calculated based on the average value of the measured peel strength.
  • Table 1 shows the results when titanium oxide with a rutile structure was used as the metal oxide.
  • the bonding strength of the (110) plane was significantly higher than that of the (100), (001), and (210) planes for both PEEK resin and HAp.
  • Table 2 shows the results when aluminum oxide was used as the metal oxide.
  • the bonding strength of the (001) plane was significantly higher than that of the (100), (110), and (210) planes for both PEEK resin and HAp.
  • Table 3 shows the results when magnesium oxide was used as the metal oxide.
  • the bonding strength of the (111) plane was significantly higher than that of the (100), (001), and (110) planes for both PEEK resin and HAp.
  • the bonding strength between metal oxide and PEEK resin and the bonding strength between metal oxide and HAp showed similar trends for the types of crystal planes represented by the same Miller indices. This is because the spacing between calcium atoms in HAp is similar to the spacing between benzene rings in PEEK resin. It can be said that under conditions that reduce the lattice mismatch between metal oxide and PEEK resin, the lattice mismatch between metal oxide and HAp is also reduced.
  • Fig. 3 is a cross-sectional view showing an example of a bonded structure according to an embodiment of the present invention, in which an intersomatic cage is shown as an example of a bonded structure in which a PEEK resin and a metal oxide are bonded together.
  • a HAp film 102 can be formed on the surface of a bonded body 1 in which a PEEK resin 2 and a metal oxide 3 are bonded to each other.
  • the HAp film 102 is formed mainly of hydroxyapatite (HAp) ( Ca10 ( PO4 ) 6 (OH) 2 ).
  • the HAp film 102 may contain calcium deficiency or a heterogeneous phase such as calcium phosphate.
  • the HAp film 102 can be formed on the surface of the metal oxide 3 opposite to the surface bonded to the PEEK resin 2. By covering the surface of the metal oxide 3 with the HAp film 102, the bond between the joint 1 and bone tissue can be improved.
  • the thickness of the HAp film 102 is preferably 2 nm or more and 50 ⁇ m or less. If the thickness is 2 nm or more, a lattice-matched interface is formed between the metal oxide 3 and the HAp film 102 by a large number of atoms, which can further improve the bonding strength between the metal oxide 3 and the HAp film 102. Furthermore, if the thickness is 50 ⁇ m or less, peeling of the HAp film 102 due to stress concentration or cohesive failure can be reduced.
  • the bonding strength between the metal oxide and HAp is significantly higher when the metal oxide has a specified crystal plane. Therefore, from the viewpoint of bonding the metal oxide 3 and the HAp film 102 with higher bonding strength, it is preferable to form the HAp film 102 on the (110) plane of titanium oxide, the (001) plane of aluminum oxide, or the (111) plane of magnesium oxide, which are rutile structures.
  • the bonded body according to this embodiment can be manufactured by a manufacturing method in which a film of a specified metal oxide that acts to align the atomic arrangement of PEEK resin is formed on the surface of PEEK resin.
  • the metal oxide is formed as a thin film with a specified crystal structure so that the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less.
  • the manufacturing method of the bonded body according to this embodiment includes a film-forming step of forming a metal oxide film on the surface of the PEEK resin, and a heat treatment step of heat-treating the PEEK resin on which the metal oxide film has been formed to improve the crystal orientation of the metal oxide.
  • a film-forming step of forming a HAp film on the surface of the metal oxide is performed after the heat treatment step.
  • the deposition method for depositing a metal oxide film on the surface of PEEK resin can be a transfer deposition method in which a metal oxide film formed on a substrate is transferred to the surface of the PEEK resin, or a direct deposition method in which a metal oxide film is directly deposited on the surface of the PEEK resin.
  • a single crystal substrate made of a metal oxide that has a predetermined distance between metal atoms and that acts to align the atomic arrangement of the PEEK resin. For example, prepare a substrate whose surface has a rutile structure such as titanium oxide (110) plane, aluminum oxide (001) plane, or magnesium oxide (111) plane.
  • a HAp film made of HAp is formed on the surface of the single crystal substrate made of metal oxide.
  • Film formation methods that can be used include physical vapor deposition methods such as Pulsed Laser Deposition (PLD) and sputtering, liquid phase synthesis, and plasma spraying.
  • PLD Pulsed Laser Deposition
  • the spacing between calcium atoms in HAp is similar to the spacing between metal atoms in metal oxide, so a lattice-matched HAp film is formed.
  • a metal oxide film is formed on the surface of the HAp film formed on the substrate.
  • the metal atoms are spaced apart by a predetermined length, and the metal oxide acts to align the atomic arrangement of the PEEK resin.
  • the film can be formed using physical vapor deposition methods such as Arc Ion Plating (AIP) and sputtering.
  • AIP Arc Ion Plating
  • the spacing between calcium atoms in HAp is similar to the spacing between benzene rings in PEEK resin, so a lattice-matched metal oxide film is formed.
  • the metal oxide film formed on the substrate is peeled off from the substrate.
  • the metal oxide film formed on the substrate may be peeled off at the interface with the HAp film, or may be peeled off together with the HAp film at the interface with the single crystal substrate.
  • a method can be used in which a transfer plate with adhesive tape attached is attached to the surface of the metal oxide film formed on the substrate, and then the metal oxide is peeled off from the single crystal substrate at the interface with the HAp film or the interface with the single crystal substrate.
  • the metal oxide peeled off from the substrate is transferred to and coated on the surface of the PEEK resin formed into a specified shape.
  • a method for transferring a thin film of metal oxide can be used in which, for example, the metal oxide adhered to a transfer plate via adhesive tape is adhered to the surface of the PEEK resin, and then the transfer plate is peeled off from the metal oxide.
  • the transfer plate adhered via adhesive tape can be peeled off with a solvent.
  • the surface of the PEEK resin can be previously subjected to a surface treatment such as plasma treatment or corona discharge treatment.
  • the PEEK resin on which the metal oxide film has been formed is heat-treated to improve the crystal orientation of the metal oxide.
  • the heat treatment temperature is preferably 100°C or higher and 400°C or lower. If the heat treatment temperature is 100°C or higher, it is possible to reduce the disorder of the crystal structure of the metal oxide and increase the area ratio of a specified crystal structure in which the distance between metal atoms is a specified length. If the heat treatment temperature is 400°C or lower, it is possible to avoid thermal decomposition of the PEEK resin.
  • the crystal orientation of the metal oxide is improved by heat treatment, the lattice mismatch at the interface is reduced, and a lattice-matched interface is formed between the PEEK resin and the metal oxide.
  • This type of heat treatment can produce a bonded body 1 in which the PEEK resin 2 and the metal oxide 3 are bonded together.
  • the metal oxide is peeled off from the substrate together with the HAp film and coated on the surface of the PEEK resin, a bonded body in which the HAp film is coated on the surface of the metal oxide is obtained.
  • a metal oxide film formed on a substrate is transferred to the surface of the PEEK resin, so that the distance between metal atoms is a specified length, and a specified metal oxide that acts to align the atomic arrangement of the PEEK resin can be deposited while suppressing the thermal load on the PEEK resin.
  • the final heat treatment only needs to reduce the disturbance of the crystal structure of the metal oxide, so the heat treatment temperature can be kept low.
  • a metal oxide film is formed on the surface of PEEK resin molded into a specified shape, with the metal atoms spaced at a specified distance from each other, and with the effect of aligning the atomic arrangement of the PEEK resin.
  • the surface of the PEEK resin can be subjected to a surface treatment such as plasma treatment or corona discharge treatment beforehand.
  • Physical vapor deposition methods such as arc ion plating (AIP) and sputtering can be used as the film formation method.
  • the heat treatment temperature is preferably 100°C or higher and 400°C or lower, as in the case of using the transfer film formation method.
  • a HAp film made of HAp is formed on the surface of the metal oxide film formed on the surface of the PEEK resin.
  • the film formation method can be a physical vapor deposition method such as pulsed laser deposition (PLD) or sputtering, a liquid phase synthesis method, or a plasma spraying method. If a HAp film is not required, the formation of the HAp film can be omitted.
  • This direct film formation method forms a film of metal oxide directly on the surface of PEEK resin, so the intervals between metal atoms are of a specified length, and a specified metal oxide that acts to align the atomic arrangement of PEEK resin can be formed with a small number of steps. Furthermore, even if the PEEK resin is molded into a complex shape, a metal oxide film that exhibits a specified crystal orientation can be formed over a wide area.
  • the thickness of the metal oxide is preferably 2 nm or more and 100 ⁇ m or less.
  • the thickness of the HAp film is preferably 2 nm or more and 50 ⁇ m or less.
  • the AIP method is used as a method for forming a metal oxide film
  • PEEK resin is used as the film-forming material
  • the metal that constitutes the metal oxide is used as the evaporation source
  • oxygen gas or a mixed gas of oxygen and an inert gas is used as the reactive gas
  • film formation is performed by arc discharge in a vacuum atmosphere.
  • the target current applied to the evaporation source is preferably 100 A or more.
  • the substrate bias voltage applied to the film-forming material is preferably 60 V or more.
  • a high temperature of approximately 800°C or higher is required. If the temperature during film formation is low, the proportion of anatase structure or amorphous structure will increase, and the area ratio of the (110) plane will tend to decrease. If the target current is 100A or more and the bias voltage is 60V or more, the temperature during film formation will be high, and the crystal orientation of the metal oxide can be appropriately increased.
  • the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, and since the metal oxide that acts to align the atomic arrangement of the PEEK resin is bonded to the PEEK resin, a lattice-matched interface can be formed between the PEEK resin and the metal oxide.
  • the effect of aligning the atomic arrangement of the PEEK resin extends to areas away from the interface, the yield strength of the base material formed of the PEEK resin can be improved.
  • FIG. 4 is a cross-sectional view showing a schematic example of a composite material according to an embodiment of the present invention.
  • FIG. 4 shows an example of a composite material containing a metal oxide with PEEK resin as the base material.
  • reference numeral 7 indicates the composite material
  • reference numeral 8 indicates the PEEK resin
  • reference numeral 9 indicates the metal oxide
  • reference numeral 201 indicates the interface between the PEEK resin and the metal oxide.
  • the composite material 7 includes at least a PEEK resin 8 forming a base material, and a metal oxide 9 dispersed in the base material.
  • a specific metal oxide is blended in which the distance between metal atoms is a specific length and which acts to align the atomic arrangement of the PEEK resin.
  • the composite material 7 according to this embodiment can be molded into an appropriate shape depending on the application, etc.
  • the metal oxide 9 used has a predetermined distance between metal atoms, and the relative difference between the distance between the benzene rings that make up the molecular chain of the PEEK resin 8 and the distance between the metal atoms that make up the crystal structure of the metal oxide 9 is 5% or less.
  • the molecular chains of the PEEK resin 8 can be aligned in an appropriate orientation and conformation relative to the crystal structure of the metal oxide 9.
  • the molecular chains of the PEEK resin 8 aligned on the surface of the metal oxide 9 can be aligned with other molecular chains of the PEEK resin 8 in an appropriate orientation and conformation.
  • the effect of metal oxide 9 to align the atomic arrangement of PEEK resin is not limited to the interface 201 between PEEK resin 8 and metal oxide 9, but extends to areas distant from the interface 201 as well.
  • the effect of aligning the atomic arrangement of PEEK resin 8 can be obtained over a wide range.
  • the PEEK resin 8 a resin with an appropriate molecular weight and degree of polymerization can be used.
  • a homopolymer containing only polyetheretherketone units may be used, or a copolymer in which polyetherketone units, polyetheretherketoneketone units, or other monomers are polymerized may be used.
  • the PEEK resin 8 may contain additives other than the metal oxide 9 that acts to align the atomic arrangement of the PEEK resin, or no additives may be added.
  • additives other than the metal oxide 9 include fillers, plasticizers, and flame retardants. The same types of fillers, plasticizers, and flame retardants as those used for the bonded body 1 described above can be used.
  • any suitable metal oxide can be blended as long as the relative difference between the spacing between the benzene rings of the PEEK resin 8 and the spacing between the metal atoms of the metal oxide 9 is 5% or less.
  • the metal oxide 9 may be an oxide containing one type of metal as the main component, or a composite oxide containing multiple types of metals as the main components.
  • the metal oxide 9 is preferably one that has the effect of aligning the atomic arrangement of the PEEK resin, as well as the effect of blocking ultraviolet rays.
  • the PEEK resin 8 may be altered by the effects of ultraviolet rays.
  • the metal oxide 9 is preferably one that has the effect of reflecting, scattering, or absorbing ultraviolet rays, and titanium oxide, which is a rutile type, is more preferable than aluminum oxide or magnesium oxide.
  • a single crystal or a polycrystal may be blended as long as the lattice mismatch with the PEEK resin 8 is suppressed.
  • the area ratio of the crystal planes where the relative difference between the spacing between the benzene rings of the PEEK resin 8 and the spacing between the metal atoms of the metal oxide 9 is 5% or less is large, and it is preferable to blend a single crystal as the metal oxide 9.
  • the concentration of the metal oxide 9 is preferably 0.2 at% or more and 38 at% or less.
  • concentration is 0.2 at% or more, the number of starting points for the action of aligning the atomic arrangement of the PEEK resin increases.
  • concentration is 38% or less, embrittlement of the base material formed of PEEK resin is avoided, and the starting points for the action of aligning the atomic arrangement of the PEEK resin can be dispersed discretely.
  • the action from the multiple starting points extends independently to an area away from the interface 201 between the PEEK resin 8 and the metal oxide 9 without interfering with each other, so that the molecular chains of the PEEK resin can be aligned over a wide area of the base material, resulting in a high effect of improving the yield strength.
  • the average particle diameter of the metal oxide 9 is preferably 2 nm or more and 10 ⁇ m or less.
  • the average particle diameter is 2 nm or more, the crystallinity is good and the variation in particle diameter is suppressed, so that it is easy to obtain a crystal plane in which the distance between metal atoms is a predetermined length.
  • the average particle diameter is 10 ⁇ m or less, embrittlement of the base material formed of PEEK resin is avoided and the specific surface area of the metal oxide 9 is increased.
  • the effect of aligning the atomic arrangement of the PEEK resin can be applied to a wide area away from the interface 201 between the PEEK resin 8 and the metal oxide 9, thereby improving the yield strength of the base material.
  • the atomic density of the crystal plane of the metal oxide 9 in contact with the PEEK resin 8 is preferably 17 atoms/ nm2 or more. Even if the distance between the metal atoms of the metal oxide 9 is a predetermined length, if the density of the metal atoms is low, it is difficult to form an interaction with the PEEK resin 8.
  • the atomic density is 17 atoms/ nm2 or more
  • a lattice-matched interface is formed between the PEEK resin 8 and the metal oxide 9 by high-density atoms, so that the effect of aligning the atomic arrangement of the PEEK resin can be applied to a wide range away from the interface 201 between the PEEK resin 8 and the metal oxide 9, thereby improving the yield strength of the base material.
  • preferred examples of the metal oxide 9 dispersed in the matrix formed of the PEEK resin 8 are as follows (4) to (6).
  • the metal oxide 9 is titanium oxide (titania: TiO2 ).
  • the surface of the metal oxide 9 in contact with the PEEK resin 8 includes a crystal plane of titanium oxide having a rutile structure with Miller indices of (110) or a crystal plane equivalent thereto.
  • the metal oxide 9 is preferably one in which the area ratio of the (110) plane is the largest among all crystal planes detected in the metal oxide 9.
  • the atomic density of the crystal plane of the titanium oxide having a rutile structure in contact with the PEEK resin 8 is preferably 17 atoms/ nm2 or more.
  • the metal oxide 9 is aluminum oxide ( alumina : Al2O3 ).
  • the surface of the metal oxide 9 in contact with the PEEK resin 8 includes a crystal plane of the aluminum oxide with Miller indices (001) or a crystal plane equivalent thereto.
  • the metal oxide 9 is preferably one in which the area ratio of the (001) plane is the largest among all the crystal planes detected in the metal oxide 9.
  • the atomic density of the crystal plane of the aluminum oxide in contact with the PEEK resin 8 is preferably 17 atom/ nm2 or more.
  • the metal oxide 9 is magnesium oxide (magnesia: MgO).
  • the surface of the metal oxide 9 in contact with the PEEK resin 8 includes a crystal plane of magnesium oxide with Miller indices (111) or a crystal plane equivalent thereto.
  • the metal oxide 9 is preferably one in which the area ratio of the (111) plane is the largest among all crystal planes detected in the metal oxide 9.
  • the atomic density of the crystal plane of the magnesium oxide in contact with the PEEK resin 8 is preferably 17 atom/ nm2 or more.
  • the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide is 5% or less. Therefore, by aligning the atomic arrangement of the PEEK resin, a lattice-matched interface is formed between the PEEK resin and the metal oxide, and the adhesive strength between them can be increased. In addition, in areas away from the interface, the adhesive strength between the molecular chains of the PEEK resin is increased, improving the mechanical properties such as the yield strength of the base material formed from the PEEK resin.
  • FIG. 5 is a perspective view showing a metal oxide dispersed in a composite material according to an embodiment of the present invention.
  • FIG. 5 shows a single crystal metal oxide in which the crystal lattice structure is reflected on the surface.
  • the reference characters 10 to 13 indicate the crystal planes of the metal oxide
  • the reference character s indicates the length of the metal oxide crystal
  • the reference character t indicates the width of the metal oxide crystal
  • the reference character h indicates the height of the metal oxide crystal.
  • the relative difference between the spacing between the benzene rings constituting the molecular chain of the PEEK resin 2 and the spacing between the metal atoms constituting the crystal structure of the metal oxide 3 on crystal plane 10 or crystal plane 11 is 5% or less.
  • crystal lattice is a tetragonal system.
  • crystal plane 10 or crystal plane 11 which has the largest area, is a (110) plane.
  • crystal plane 12 or crystal plane 13, which is perpendicular to crystal plane 10 or crystal plane 11, is a (1-10) plane. This is because the (1-10) plane has an atomic arrangement equivalent to that of the (110) plane, and forms a lattice-matched interface with PEEK resin 8.
  • the metal oxide 9 is a single crystal of ⁇ -aluminum oxide, which has a hexagonal crystal system, it is preferable that the crystal face with the largest area and the crystal face parallel to said crystal face are the (001) face or a crystal face equivalent thereto.
  • the metal oxide 9 is a single crystal of magnesium oxide, which has a cubic crystal system, it is preferable that the crystal face with the largest area and the crystal face parallel to said crystal face are the (111) face or a crystal face equivalent thereto.
  • the crystal orientation of metal oxides and the area ratio of a specific crystal plane can be determined by X-ray diffraction (XRD) measurement. Using metal oxide powder as a sample, the X-ray diffraction spectrum for each metal oxide can be obtained by powder X-ray diffraction measurement. The crystal orientation of metal oxides and the area ratio of a specific crystal plane can be determined by calculating the ratio of the peak area of an individual crystal plane, represented by a specific Miller index, to the total peak area of all crystal planes detected in the obtained X-ray diffraction spectrum.
  • XRD X-ray diffraction
  • Figure 6 shows the results of an analysis of the relationship between the proportion of (110) faces in the total surface area of titanium oxide and the yield strength of a composite material.
  • Figure 6 shows the relationship between the proportion of crystal faces of rutile titanium oxide with Miller indices (110) determined by powder X-ray diffraction measurement, and the yield strength of a composite material in which titanium oxide is blended to achieve said proportion.
  • the concentration of titanium oxide is 0.3 at% in all cases. It is assumed that the (110) faces of rutile titanium oxide correspond to crystal planes 10 and 11 in Figure 5.
  • the solid line in the figure shows the result of changing the proportion of (110) faces by fixing the length s and width t in Figure 5 at 8 nm and changing only the height h.
  • the dashed line in the figure shows the result of changing the proportion of (110) faces by fixing the width t and height h in Figure 5 at 8 nm and changing only the length s.
  • the dashed line in the figure shows the result of changing the proportion of (110) faces by fixing the width t in Figure 5 at 8 nm and the height h at 4 nm and changing only the length s.
  • the yield strength of the composite material was relatively high when only the height h was changed.
  • the proportion of (110) faces exceeded 57% or 74%, the yield strength increased stepwise. From the viewpoint of improving the yield strength of the composite material, it can be said that the proportion of (110) faces in the total surface area of titanium oxide is preferably 57% or more, and more preferably 74% or more.
  • Figure 7 shows the results of an analysis of the relationship between the proportion of (001) faces in the total surface area of aluminum oxide and the yield strength of a composite material.
  • Figure 7 shows the relationship between the proportion of crystal faces of aluminum oxide with Miller indices of (001) determined by powder X-ray diffraction measurement, and the yield strength of a composite material in which aluminum oxide is blended to achieve said proportion.
  • the concentration of aluminum oxide is 0.3 at% in all cases. It is assumed that the (001) faces of aluminum oxide correspond to crystal plane 10 and crystal plane 11 in Figure 5.
  • the solid line in the figure shows the result of changing the proportion of (001) faces by fixing the length s and width t in Figure 5 at 8 nm and varying only the height h.
  • the dashed line in the figure shows the result of changing the proportion of (001) faces by fixing the width t and height h in Figure 5 at 8 nm and varying only the length s.
  • the dashed line in the figure shows the result of changing the proportion of (001) faces by fixing the width t in Figure 5 at 8 nm and the height h at 4 nm and varying only the length s.
  • the yield strength of the composite material was relatively high when only the height h was changed.
  • the proportion of (001) faces exceeded 57% or 74%, the yield strength increased stepwise. From the viewpoint of improving the yield strength of the composite material, it can be said that the proportion of (001) faces in the total surface area of aluminum oxide is preferably 57% or more, and more preferably 74% or more.
  • Figure 8 shows the results of an analysis of the relationship between the proportion of (111) faces in the total surface area of magnesium oxide and the yield strength of a composite material.
  • Figure 8 shows the relationship between the proportion of crystal faces of magnesium oxide with Miller indices of (111) determined by powder X-ray diffraction measurement, and the yield strength of a composite material in which magnesium oxide is blended to achieve said proportion.
  • the magnesium oxide concentration is 0.3 at% in all cases. It is assumed that the (111) faces of magnesium oxide correspond to crystal plane 10 and crystal plane 11 in Figure 5.
  • the solid line in the figure shows the result of changing the proportion of (111) faces by fixing the length s and width t in Figure 5 at 8 nm and changing only the height h.
  • the dashed line in the figure shows the result of changing the proportion of (111) faces by fixing the width t and height h in Figure 5 at 8 nm and changing only the length s.
  • the dashed line in the figure shows the result of changing the proportion of (111) faces by fixing the width t in Figure 5 at 8 nm and the height h at 4 nm and changing only the length s.
  • the yield strength of the composite material was relatively high when only the height h was changed.
  • the ratio of (111) faces exceeded 57% or 74%, the yield strength increased stepwise. From the viewpoint of improving the yield strength of the composite material, it can be said that the ratio of (111) faces in the total surface area of magnesium oxide is preferably 57% or more, and more preferably 74% or more.
  • the relationship between the metal oxide concentration and the yield strength of the composite material was determined by fixing the length s and width t in Figure 5 to 8 nm and varying only the height h, fixing the proportion of the (110) plane of titanium oxide, the proportion of the (001) plane of aluminum oxide, and the proportion of the (111) plane of magnesium oxide to 74%, and varying the concentration of the metal oxide dispersed in the PEEK resin.
  • the relationship between the particle size of the metal oxide and the yield strength of the composite material was determined by fixing the proportion of titanium oxide (110) faces, aluminum oxide (001) faces, and magnesium oxide (111) faces at 74% and varying the average particle size of the metal oxide dispersed in the PEEK resin.
  • the yield strength of the composite material was significantly improved. If the average particle size is less than 2 nm, it is difficult to obtain a crystal plane that has the effect of aligning the atomic arrangement of the PEEK resin. Also, if the average particle size exceeds 10 ⁇ m, the base material formed from the PEEK resin becomes brittle and tends to break brittlely without showing ductility, which is not preferable.
  • the composite material according to this embodiment can be manufactured by a manufacturing method in which a specific metal oxide that acts to align the atomic arrangement of PEEK resin is dispersed in a matrix formed of PEEK resin.
  • the metal oxide is mixed into the PEEK resin as a filler with a specific crystal structure so that the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less.
  • the method for producing a composite material according to this embodiment includes a heating and kneading process in which a mixture of PEEK resin and metal oxide is heated and kneaded, and a molding process in which the resin composition obtained in the heating and kneading process is hot molded to improve the crystal orientation of the metal oxide.
  • PEEK resin can be prepared in a suitable raw material form such as pellets or powder.
  • Metal oxide can be prepared in a raw material form such as powder. The raw materials PEEK resin and metal oxide can be mixed together with additives added as required. The mixture of these raw materials is heated to melt and kneaded to form a resin composition.
  • the resin composition can be mixed using various devices such as a batch-type closed mixer such as a Banbury mixer or a pressure kneader, an open mixer such as a roll mixer or a rotor mixer, a single screw extruder, or a twin screw extruder.
  • the heating conditions are preferably 373°C ⁇ 20°C for about 2 minutes. Under these heating conditions, the PEEK resin can be fluidized without thermal decomposition and can be mixed uniformly with the metal oxide.
  • the molding temperature is preferably 100°C or higher and 400°C or lower.
  • a molding temperature of 100°C or higher can reduce disorder in the crystal structure of the metal oxide and increase the area ratio of a specified crystal structure in which the distance between metal atoms is a specified length.
  • a molding temperature of 400°C or lower can avoid thermal decomposition of the PEEK resin.
  • the resin composition can be molded into any shape depending on the application of the composite material. Any suitable molding method can be used, such as extrusion molding, injection molding, blow molding, compression molding, and additive manufacturing. When using a mold to mold the resin composition, it is preferable to set the mold temperature to 100°C or higher, since this reduces the disruption of the crystal structure of the metal oxide.
  • the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, and the metal oxide that acts to align the atomic arrangement of the PEEK resin is dispersed in the base material formed from the PEEK resin, so that a lattice-matched interface can be formed between the PEEK resin and the metal oxide.
  • the metal oxide that acts to align the atomic arrangement of the PEEK resin is dispersed in the base material formed from the PEEK resin, so that a lattice-matched interface can be formed between the PEEK resin and the metal oxide.
  • the metal oxide is dispersed in the base material and the effect of aligning the atomic arrangement of the PEEK resin extends to areas away from the interface, the yield strength of the base material formed from the PEEK resin can be improved.
  • FIG. 9 is a cross-sectional view showing a schematic example of a composite material according to an embodiment of the present invention.
  • FIG. 9 shows an example of a composite material in which PEEK resin is the base material and contains a metal oxide as a filler, with a metal oxide as a bonding material bonded to the surface of the PEEK resin.
  • reference numeral 8 denotes PEEK resin
  • reference numeral 9 denotes the metal oxide as a filler
  • reference numeral 14 denotes the composite material
  • reference numeral 15 denotes the metal oxide as a bonding material
  • reference numeral 16 denotes a metal
  • reference numeral 301 denotes the interface between the PEEK resin and the metal oxide.
  • the composite material 14 includes at least a PEEK resin 8 forming a base material, and a metal oxide 9 dispersed in the base material.
  • a specific metal oxide is blended in which the distance between metal atoms is a specific length and which acts to align the atomic arrangement of the PEEK resin.
  • the composite material 14 according to this embodiment is in the form of a bonding material in which a metal oxide 15, which is a bonding material, is bonded to the surface of a PEEK resin 8.
  • the metal oxide 15 may constitute the bonding material alone, or may constitute the bonding material together with a metal 16, as shown in FIG. 9.
  • the metal oxide 15 may be formed by a method of thermally oxidizing a portion of the surface side of the metal 16, or may be formed by a method of forming a film on the surface of the metal 16.
  • the metal oxide 15 serving as the bonding material an appropriate metal oxide can be used, similar to the metal oxide 3 described above.
  • a single crystal or a polycrystal may be used.
  • the thickness of the metal oxide 15 in the direction perpendicular to the surface to be bonded to the PEEK resin 8 is preferably 2 nm or more and 100 ⁇ m or less.
  • the atomic density of the crystal surface of the metal oxide 15 to which the PEEK resin 8 is bonded is preferably 17 atom/ nm2 or more.
  • the metal 16 that constitutes the bonding material together with the metal oxide 15 an appropriate pure metal or alloy can be used.
  • the metal 16 can be processed and formed into any shape depending on the application of the composite material 14. From the viewpoint of reducing the weight of the composite material 14, the metal 16 is preferably a light metal with a specific gravity smaller than that of iron, and titanium, aluminum, magnesium, or alloys thereof are preferable.
  • the metal oxide 15 and the metal 16 are preferably composed of the same type of metal. Such a metal oxide 15 can be formed by a method of thermally oxidizing the surface of the metal 16.
  • preferred examples of the metal oxide 15 bonded to the PEEK resin 8 and the metal oxide 9 dispersed in the matrix formed of the PEEK resin 8 are as follows (7) to (9).
  • the metal oxide 15 serving as the bonding material is titanium oxide (titania: TiO2 ).
  • the crystal plane of the metal oxide 15 to which the PEEK resin 8 is bonded is a crystal plane of titanium oxide having a rutile structure with Miller indices of (110), or a crystal plane equivalent thereto.
  • the atomic density of the crystal plane of titanium oxide having a rutile structure to which the PEEK resin 8 is bonded is preferably 17 atoms/ nm2 or more.
  • the metal oxide 9 serving as the filler is preferably titanium oxide.
  • the titanium oxide is preferably formed on the surface of titanium or a titanium alloy.
  • the metal oxide 15 serving as the bonding material is aluminum oxide ( alumina : Al2O3 ).
  • the crystal plane of the metal oxide 15 to which the PEEK resin 8 is bonded is a crystal plane of aluminum oxide with Miller indices of (001) or a crystal plane equivalent thereto.
  • the atomic density of the crystal plane of the aluminum oxide to which the PEEK resin 8 is bonded is preferably 17 atoms/ nm2 or more.
  • the metal oxide 9 serving as the filler is preferably aluminum oxide.
  • the aluminum oxide is preferably formed on the surface of aluminum or an aluminum alloy.
  • the metal oxide 15 serving as the bonding material is magnesium oxide (magnesia: MgO).
  • the crystal face of the metal oxide 15 to which the PEEK resin 8 is bonded is a crystal face of magnesium oxide with Miller indices (111) or a crystal face equivalent thereto.
  • the atomic density of the crystal face of the magnesium oxide to which the PEEK resin 8 is bonded is preferably 17 atom/ nm2 or more.
  • the metal oxide 9 serving as the filler is preferably magnesium oxide.
  • the magnesium oxide is preferably formed on the surface of magnesium or a magnesium alloy.
  • the yield strength of the composite material 7 is increased by lattice matching at the interface 301 between the PEEK resin 8 and the metal oxide 9, and the bonding strength between the PEEK resin 8 and the metal oxide 9 and the metal oxide 14 is increased by lattice matching at the interface between the composite material 7 and the metal oxide 14.
  • the bonding strength between the metal oxide 14 and the metal 15 can be increased. Therefore, a material can be obtained in which the composite material 7, which has a high yield strength, and the metal 15 are combined with each other with high bonding strength.
  • the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, and the metal oxide that acts to align the atomic arrangement of the PEEK resin is dispersed in the base material formed from the PEEK resin and is bonded to the PEEK resin.
  • structural materials can be made multi-material.
  • metals or metal oxides By making them multi-material with lightweight metals or metal oxides, it is possible to reduce the weight of moving objects. This can improve the fuel efficiency and power consumption of moving objects, thereby reducing the environmental burden as we move towards carbon neutrality.
  • implant materials By making implant materials multi-material, it is possible to make the implants lighter and more multifunctional.
  • Multi-materialization means that a product that was previously made using only one of the following materials, such as metal, inorganic, or resin, is now made using a combination of multiple materials.
  • the metal or inorganic materials When trying to reduce the weight of a product, it is effective to replace the metal or inorganic materials that were previously used with resin materials.
  • metal or inorganic materials may be more advantageous than resin materials. By replacing some of the metal or inorganic materials with resin materials, it is possible to manufacture lightweight systems and devices while maintaining processability, processing precision, moldability, etc.
  • the above-mentioned joint in which PEEK resin and metal oxide are joined, and the composite material in which PEEK resin is the base material and metal oxide is contained, can be used for appropriate purposes such as implants and non-implant purposes.
  • the joint 1 forms an interbody cage, but the joint 1 may be used for other implants or for purposes other than implants.
  • Implant applications include orthopedic implants related to the spine, such as interbody cages and pedicle screws, orthopedic implants other than those related to the spine, such as artificial joints, artificial bone shafts, and internal fixation devices for fractures, as well as ophthalmic implants such as plates, medical implants such as cosmetic surgery implants, and dental implants such as artificial tooth roots.
  • Applications other than implants include structural materials that form moving objects, and structural materials and parts that form machines and equipment.
  • Moving objects include automobiles, heavy machinery, railroad cars, motorcycles, bicycles, wheelchairs, elevators, ships, submarines, aircraft, helicopters, drones, rockets, artificial satellites, space probes, space stations, and space elevators.
  • Machines and equipment include types that are installed outdoors, as well as those that require light weight, yield strength, UV resistance, heat resistance, impact resistance, etc.
  • Figure 10 shows the results of an analysis of the atomic arrangement of PEEK resin that does not use metal oxide.
  • Figure 10 shows an example of the atomic arrangement of PEEK resin when no metal oxide, which acts to align the atomic arrangement of PEEK resin, is dispersed or bonded.
  • the gray spheres indicated by the reference numeral 401 represent carbon atoms
  • the black spheres indicated by the reference numeral 402 represent oxygen atoms
  • the white spheres indicated by the reference numeral 403 represent hydrogen atoms.
  • Fig. 11 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using titanium oxide.
  • Fig. 11 shows the results of PEEK resin bonded with rutile titanium oxide (TiO 2 ) as a metal oxide.
  • the upper diagram in Fig. 11 is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from the side, and the lower diagram is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from below.
  • the interface between the PEEK resin and the metal oxide is the (110) plane of the rutile titanium oxide.
  • the large gray spheres indicated by the reference numeral 401 represent carbon atoms of PEEK resin
  • the large black spheres indicated by the reference numeral 402 represent oxygen atoms of PEEK resin
  • the large white spheres indicated by the reference numeral 403 represent hydrogen atoms of PEEK resin
  • the small gray spheres indicated by the reference numeral 501 represent titanium atoms of titanium oxide
  • the small black spheres indicated by the reference numeral 502 represent oxygen atoms of titanium oxide
  • the hexagons indicated by the reference numeral 503 represent ring structures formed on the (110) surface of rutile-type titanium oxide.
  • PEEK resin has a molecular structure in which multiple benzene rings are linked via ether groups or ketone groups.
  • the distance between the centers of the benzene rings of PEEK resin linked via ether groups is approximately 0.5719 nm.
  • rutile titanium oxide has an eight-membered ring structure formed by titanium atoms and oxygen atoms when viewed from a direction perpendicular to the (110) plane.
  • the distance between the second nearest neighboring titanium atoms on the same line is approximately 0.5918 nm.
  • the benzene rings of the PEEK resin and the ring structure 503 formed on the (110) surface of titanium oxide are aligned and overlapped at equal intervals.
  • the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide becomes smaller.
  • Specific atoms are periodically arranged between the PEEK resin and the titanium oxide, forming a lattice-matched interface. It can be seen that the benzene rings of the PEEK resin and the ring structure of the titanium oxide are stabilized in close proximity to each other, forming a strong interaction.
  • Fig. 12 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using aluminum oxide.
  • Fig. 12 shows the results of PEEK resin bonded with aluminum oxide (Al 2 O 3 ) as a metal oxide.
  • the upper diagram in Fig. 12 is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from the side, and the lower diagram is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from below.
  • the interface between the PEEK resin and the metal oxide is the (001) plane of the aluminum oxide.
  • the large gray spheres indicated by the reference numeral 401 represent carbon atoms of the PEEK resin
  • the large black spheres indicated by the reference numeral 402 represent oxygen atoms of the PEEK resin
  • the large white spheres indicated by the reference numeral 403 represent hydrogen atoms of the PEEK resin
  • the small gray spheres indicated by the reference numeral 601 represent aluminum atoms of aluminum oxide
  • the small black spheres indicated by the reference numeral 602 represent oxygen atoms of aluminum oxide
  • the hexagons indicated by the reference numeral 603 represent ring structures formed on the (001) surface of aluminum oxide.
  • PEEK resin has a molecular structure in which multiple benzene rings are linked via ether groups or ketone groups.
  • the distance between the centers of the benzene rings of PEEK resin linked via ether groups is approximately 0.5719 nm.
  • aluminum oxide has a six-membered ring structure formed by aluminum atoms and oxygen atoms when viewed from a direction perpendicular to the (001) plane.
  • the distance between the second nearest neighboring aluminum atoms on the same line is approximately 0.5517 nm.
  • the relative difference between the spacing between benzene rings of PEEK resin, approximately 0.5719 nm, and the spacing between second nearest neighboring aluminum atoms that make up the crystal structure of aluminum oxide, approximately 0.5517 nm, is approximately 3.53%.
  • the benzene rings of the PEEK resin and the ring structure 603 formed on the (001) surface of aluminum oxide are aligned and overlapped with equal spacing.
  • Such a combination reduces the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide.
  • Specific atoms are periodically arranged between the PEEK resin and the aluminum oxide, forming a lattice-matched interface. It can be seen that the benzene rings of the PEEK resin and the ring structure of the aluminum oxide are stabilized in close proximity to each other.
  • Figure 13 shows the results of an analysis of the atomic arrangement of PEEK resin using magnesium oxide.
  • Figure 13 shows the results for PEEK resin bonded with magnesium oxide (MgO) as a metal oxide.
  • the top figure in Figure 13 is a side view of the interface between the PEEK resin and the metal oxide, and the bottom figure is a bottom view of the interface between the PEEK resin and the metal oxide.
  • the interface between the PEEK resin and the metal oxide is the (111) plane of the magnesium oxide.
  • the large gray spheres indicated by the reference numeral 401 represent carbon atoms of the PEEK resin
  • the large black spheres indicated by the reference numeral 402 represent oxygen atoms of the PEEK resin
  • the large white spheres indicated by the reference numeral 403 represent hydrogen atoms of the PEEK resin
  • the small gray spheres indicated by the reference numeral 701 represent magnesium atoms of magnesium oxide
  • the small black spheres indicated by the reference numeral 702 represent oxygen atoms of magnesium oxide
  • the hexagons indicated by the reference numeral 703 represent ring structures formed on the (111) plane of magnesium oxide.
  • PEEK resin has a molecular structure in which multiple benzene rings are linked via ether groups or ketone groups.
  • the distance between the centers of the benzene rings of PEEK resin linked via ether groups is approximately 0.5719 nm.
  • magnesium oxide has a six-membered ring structure formed by magnesium atoms and oxygen atoms when viewed from a direction perpendicular to the (111) plane.
  • the distance between the second nearest neighboring magnesium atoms on the same line is approximately 0.5956 nm.
  • the relative difference between the spacing between benzene rings of PEEK resin, approximately 0.5719 nm, and the spacing between second nearest neighboring magnesium atoms that make up the crystal structure of magnesium oxide, approximately 0.5956 nm, is approximately 4.14%.
  • the benzene rings of the PEEK resin and the ring structure 703 formed on the (111) surface of magnesium oxide are aligned and overlapped with equal spacing.
  • Such a combination reduces the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide.
  • Specific atoms are periodically arranged between the PEEK resin and the magnesium oxide, forming a lattice-matched interface. It can be seen that the benzene rings of the PEEK resin and the ring structure of the magnesium oxide are stabilized when positioned close to each other.
  • the base material formed from PEEK resin forms a regular atomic arrangement, compared to when no metal oxide is used. It can be seen that metal oxide, which acts to align the atomic arrangement of PEEK resin, acts not only on the interface between PEEK resin and metal oxide, but also on the molecular chains of PEEK resin in areas away from the interface.
  • Tables 4 to 6 show the calculation results of the atomic density [atoms/nm 2 ] and peel energy [J/m 2 ] of the metal oxide at the interface between the PEEK resin and the metal oxide.
  • the atomic density and peel energy of the metal oxide were derived by determining the peel energy function by response surface methodology using data calculated by molecular dynamics simulation combined with density functional theory (DFT).
  • DFT density functional theory
  • the peel energy at the interface between PEEK resin and rutile titanium oxide was more than twice as high when the interface was the (110) plane, compared to the (100), (001), and (111) planes.
  • a similar tendency to the actual measurement results from the peel test shown in Table 1 was also confirmed by molecular orbital calculations using DFT.
  • the relative difference between the spacing between the benzene rings of the PEEK resin and the spacing between the titanium atoms of the titanium oxide is 5.03%.
  • the peel energy at the interface between the PEEK resin and the titanium oxide is reduced by approximately 39%. Therefore, it is preferable that the relative difference between the spacing between the benzene rings of the PEEK resin and the spacing between the titanium atoms of the titanium oxide be 5% or less.
  • the relative difference between the spacing between benzene rings in PEEK resin and the spacing between aluminum atoms in aluminum oxide is 5.02%.
  • the peel energy at the interface between PEEK resin and aluminum oxide is reduced by approximately 37%. Therefore, it is preferable that the relative difference between the spacing between benzene rings in PEEK resin and the spacing between aluminum atoms in aluminum oxide be 5% or less.
  • the relative difference between the spacing between benzene rings in PEEK resin and the spacing between magnesium atoms in magnesium oxide is 5.04%.
  • the peel energy at the interface between PEEK resin and magnesium oxide is reduced by approximately 32%. Therefore, it is preferable that the relative difference between the spacing between benzene rings in PEEK resin and the spacing between magnesium atoms in magnesium oxide be 5% or less.
  • the relative difference between the spacing between benzene rings of PEEK resin and the spacing between second nearest neighbor titanium atoms of rutile titanium oxide is about 4.46%.
  • the atomic density of the metal oxide on the (111) plane is small at 12.3 atoms/ nm2 .
  • the peel energy at the interface between the PEEK resin and the metal oxide is also small at 0.248 J/ m2 .
  • the metal oxide may contain additive elements, or may contain unavoidably mixed-in impurity elements. If the additive or impurity elements are about 1 wt% or less, lattice mismatch is suppressed, improving the adhesive strength between the PEEK resin and the metal oxide. Doping with dissimilar metal atoms that replace some of the metal atoms, which are the main component, may allow the spacing between the metal atoms to be adjusted.
  • titanium oxide When titanium oxide is used as the metal oxide, it is preferable to include an element with a smaller atomic radius than titanium as an additive element or impurity element. Examples of such elements include aluminum and vanadium.
  • the average atomic spacing between titanium atoms in pure titanium oxide is larger than the spacing between benzene rings in PEEK resin.
  • the average atomic spacing of titanium oxide can be made smaller, further reducing the lattice mismatch. For example, using a composite oxide containing 90 wt% Ti, 6 wt% Al, and 4 wt% V, the lattice mismatch is reduced to zero, increasing the adhesive strength between the PEEK resin and the metal oxide.
  • the additive elements and impurity elements include elements with an atomic radius larger than that of aluminum.
  • Such elements include magnesium, titanium, etc.
  • the average atomic spacing between aluminum atoms in pure aluminum oxide is smaller than the spacing between benzene rings in PEEK resin.
  • the average atomic spacing in aluminum oxide can be increased, further reducing the lattice mismatch. For example, using a composite oxide containing 98.5 wt% Al and 1.5 wt% Mg, the lattice mismatch is zero, and the adhesive strength between the PEEK resin and the metal oxide is increased.
  • the additive elements and impurity elements include elements with an atomic radius smaller than that of magnesium. Examples of such elements include aluminum.
  • the average atomic spacing between magnesium atoms in pure magnesium oxide is larger than the spacing between benzene rings in PEEK resin.
  • the average atomic spacing of magnesium oxide can be made smaller, further reducing the lattice mismatch.
  • using a composite oxide containing 90 wt% Mg and 10 wt% Al reduces the lattice mismatch to zero, increasing the adhesive strength between the PEEK resin and the metal oxide.
  • the present invention is not limited to the above-described embodiments, and various modifications are included as long as they do not deviate from the technical scope.
  • the above-described embodiments are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of an embodiment with another configuration, or to add another configuration to the configuration of an embodiment. It is also possible to add other configurations to, delete configurations, or replace configurations with respect to part of the configuration of an embodiment.
  • the bonded body 1 is bonded to the metal oxide 3, but in a bonded body in which PEEK resin and a metal oxide are bonded to each other, the metal oxide may be bonded to another metal together with the PEEK resin.
  • a metal oxide can be formed by a method of thermally oxidizing a part of the surface side of the metal or a method of forming a film on the surface of the metal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Dental Preparations (AREA)

Abstract

According to the present invention, provided are: a joined body of a PEEK resin and a metallic oxide, the joined body having high bonding strength between the PEEK resin and the metallic oxide and not being prone to interface fracture; and a composite material. This joined body is a joined body (1) obtained by joining a polyether ether ketone resin (2) and a metallic oxide (3). The relative difference between the distance between benzene rings that form molecular chains of the polyether ether ketone resin (2) and the distance between metal atoms that form the crystalline structure of the metallic oxide is 5% or less; and the atom density in a crystal plane of the metallic oxide where the polyether ether ketone resin is joined is at least 17 atom/nm2. This composite material is a composite material that contains a metallic oxide, with a polyether ether ketone resin serving as a matrix. The relative difference between the distance between benzene rings that form molecular chains of the polyether ether ketone resin and the distance between metal atoms that form the crystalline structure of the metallic oxide is 5% or less.

Description

ポリエーテルエーテルケトン樹脂を用いた接合体および複合材料Joints and composite materials using polyether ether ketone resin
 本発明は、ポリエーテルエーテルケトン(PEEK)樹脂と金属酸化物との接合体および複合材料に関する。 The present invention relates to a joint and composite material between polyether ether ketone (PEEK) resin and metal oxide.
 PEEK樹脂は、熱可塑性樹脂の中でも熱的安定性が高く反応性が低い樹脂であり、変質し難い性質を持つ。また、機械的特性、耐薬品性、耐水性等にも優れており、難燃性や生体適合性が高い材料として知られている。PEEK樹脂は、これらの優れた特性を持つため、生体組織と接触する医療用の材料や、自動車等の車両用の材料や、航空宇宙用の材料として注目されている。 PEEK resin is a thermoplastic resin that has high thermal stability and low reactivity, and is resistant to deterioration. It also has excellent mechanical properties, chemical resistance, water resistance, etc., and is known as a material with high flame retardancy and biocompatibility. Because of these excellent properties, PEEK resin has attracted attention as a medical material that comes into contact with biological tissue, a material for vehicles such as automobiles, and aerospace materials.
 PEEK樹脂は、医療用の分野では、椎体間ケージ、人工関節、骨折時の内固定用具をはじめ、インプラントの材料として用いられている。一般に、PEEK樹脂の表面には、骨組織との結合性を向上させるために、酸化チタンやハイドロキシアパタイトがコーティングされている。特許文献1には、医療用のPEEK樹脂の表面にチタンを被覆し、チタンの表面に酸化チタンの薄膜を形成する方法が記載されている。 In the medical field, PEEK resin is used as a material for implants, including interbody cages, artificial joints, and internal fixation devices for fractures. Generally, the surface of PEEK resin is coated with titanium oxide or hydroxyapatite to improve its binding to bone tissue. Patent Document 1 describes a method of coating the surface of medical PEEK resin with titanium and forming a thin film of titanium oxide on the titanium surface.
 また、PEEK樹脂で形成された母材中に充填材を分散させた複合材料が開発されている。従来、強度や弾性率が高く軽量な複合材料として、エポキシ樹脂やフェノール樹脂に炭素繊維やガラス繊維を埋設した繊維強化樹脂(Fiber Reinforced Plastics:FRP)が知られている。熱硬化性の樹脂に代えて、熱可塑性のPEEK樹脂を用いることによって、成形性やリサイクル性の向上が期待されている。 Furthermore, composite materials have been developed in which fillers are dispersed in a matrix formed from PEEK resin. Conventionally, fiber reinforced plastics (FRP), which are made by embedding carbon fibers or glass fibers in epoxy resin or phenolic resin, have been known as lightweight composite materials with high strength and elasticity. By using thermoplastic PEEK resin instead of thermosetting resin, it is expected that moldability and recyclability will be improved.
 特許文献2には、インプラントに適したポーラスなPEEK樹脂や、その製造方法が記載されている。このPEEK樹脂には、生物活性セラミックを粒子として混合できるとされている。生物活性セラミックとしては、リン酸三カルシウム、ヒドロキシアパタイト、二相リン酸カルシウム等が挙げられている。また、その他の技術として、母材中に酸化チタンを分散させて耐紫外線性を向上させる技術が知られている。 Patent Document 2 describes a porous PEEK resin suitable for implants and a method for producing the same. It is said that bioactive ceramics can be mixed into this PEEK resin as particles. Examples of bioactive ceramics include tricalcium phosphate, hydroxyapatite, and biphasic calcium phosphate. Another known technology is to disperse titanium oxide in the base material to improve ultraviolet light resistance.
米国特許出願公開第2021/0079532号明細書US Patent Application Publication No. 2021/0079532 米国特許出願公開第2012/0323339号明細書US Patent Application Publication No. 2012/0323339
 PEEK樹脂は、耐熱性、機械的特性、耐薬品性、耐水性等に優れるため、酸化チタンをコーティングする場合のように、表面に他の材料を接合させた接合体や、母材中に他の材料を分散させた複合材料等として利用される。しかし、PEEK樹脂は、他の材料との接合や複合化が難しいという課題を抱えている。 PEEK resin has excellent heat resistance, mechanical properties, chemical resistance, water resistance, etc., so it is used as a bonded body with other materials bonded to its surface, such as when coating with titanium oxide, or as a composite material with other materials dispersed in the base material. However, PEEK resin has the problem that it is difficult to bond or combine with other materials.
 PEEK樹脂は、熱的安定性が高く反応性が低いため、化学吸着を利用した接合や、接合性を向上させるための化学修飾が困難である。PEEK樹脂の表面に他の材料を接合させた場合や、PEEK樹脂で形成された母材中に他の材料を分散させた場合、外力等が加わると、PEEK樹脂と金属酸化物との間で界面破壊による剥離が容易に起こる。 PEEK resin has high thermal stability and low reactivity, making it difficult to bond using chemical adsorption or chemically modify it to improve bonding. When other materials are bonded to the surface of PEEK resin, or when other materials are dispersed in a base material formed from PEEK resin, application of an external force can easily cause separation between the PEEK resin and the metal oxide due to interface destruction.
 そこで、本発明は、PEEK樹脂と金属酸化物との密着強度が高く界面破壊を生じ難いPEEK樹脂と金属酸化物との接合体および複合材料を提供することを目的とする。 The present invention aims to provide a joint and composite material between PEEK resin and metal oxide that has high adhesion strength between the PEEK resin and metal oxide and is less susceptible to interfacial failure.
 上記の課題を解決するため、本発明に係る接合体は、ポリエーテルエーテルケトン樹脂と金属酸化物とが接合された接合体であって、前記ポリエーテルエーテルケトン樹脂の分子鎖を構成するベンゼン環同士の間隔と前記金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下であり、前記金属酸化物の前記ポリエーテルエーテルケトン樹脂が接合された結晶面における原子密度が17atom/nm以上である。 In order to solve the above problems, the bonded body according to the present invention is a bonded body in which a polyether ether ketone resin and a metal oxide are bonded to each other, wherein a relative difference between a distance between benzene rings constituting a molecular chain of the polyether ether ketone resin and a distance between metal atoms constituting a crystal structure of the metal oxide is 5% or less, and an atomic density of the crystal plane of the metal oxide to which the polyether ether ketone resin is bonded is 17 atoms/ nm2 or more.
 また、本発明に係る複合材料は、ポリエーテルエーテルケトン樹脂を母材として金属酸化物を含有した複合材料であって、前記ポリエーテルエーテルケトン樹脂の分子鎖を構成するベンゼン環同士の間隔と前記金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下である。 The composite material according to the present invention is a composite material containing a metal oxide and a polyether ether ketone resin as a base material, and the relative difference between the distance between the benzene rings constituting the molecular chain of the polyether ether ketone resin and the distance between the metal atoms constituting the crystal structure of the metal oxide is 5% or less.
 本発明によれば、PEEK樹脂と金属酸化物との密着強度が高く界面破壊を生じ難いPEEK樹脂と金属酸化物との接合体および複合材料を提供することができる。 The present invention can provide a bonded body and composite material between PEEK resin and metal oxide that has high adhesion strength between the PEEK resin and metal oxide and is less susceptible to interfacial failure.
本発明の実施形態に係る接合体の一例を模式的に示す断面図。FIG. 1 is a cross-sectional view illustrating an example of a bonded body according to an embodiment of the present invention. 本発明の実施形態に係る接合体の使用例を模式的に示す断面図。FIG. 1 is a cross-sectional view showing a schematic example of a use of a bonded body according to an embodiment of the present invention. 本発明の実施形態に係る接合体の一例を模式的に示す断面図。FIG. 1 is a cross-sectional view illustrating an example of a bonded body according to an embodiment of the present invention. 本発明の実施形態に係る複合材料の一例を模式的に示す断面図。FIG. 1 is a cross-sectional view illustrating an example of a composite material according to an embodiment of the present invention. 本発明の実施形態に係る複合材料に分散される金属酸化物を模式的に示す斜視図。FIG. 2 is a perspective view showing a metal oxide dispersed in the composite material according to the embodiment of the present invention. 酸化チタンの全表面積における(110)面の割合と複合材料の降伏強度との関係の解析結果を示す図。FIG. 13 is a graph showing the results of an analysis of the relationship between the proportion of (110) faces in the total surface area of titanium oxide and the yield strength of a composite material. 酸化アルミニウムの全表面積における(001)面の割合と複合材料の降伏強度との関係の解析結果を示す図。FIG. 13 is a graph showing the analysis results of the relationship between the ratio of (001) faces in the total surface area of aluminum oxide and the yield strength of a composite material. 酸化マグネシウムの全表面積における(111)面の割合と複合材料の降伏強度との関係の解析結果を示す図。FIG. 13 is a graph showing the analysis results of the relationship between the ratio of (111) faces in the total surface area of magnesium oxide and the yield strength of a composite material. 本発明の実施形態に係る複合材料の一例を模式的に示す断面図。FIG. 1 is a cross-sectional view illustrating an example of a composite material according to an embodiment of the present invention. 金属酸化物を用いていないPEEK樹脂の原子配列の解析結果を示す図。FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of a PEEK resin that does not use a metal oxide. 酸化チタンを用いたPEEK樹脂の原子配列の解析結果を示す図。FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of a PEEK resin using titanium oxide. 酸化アルミニウムを用いたPEEK樹脂の原子配列の解析結果を示す図。FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using aluminum oxide. 酸化マグネシウムを用いたPEEK樹脂の原子配列の解析結果を示す図。FIG. 13 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using magnesium oxide.
 以下、本発明の一実施形態に係るポリエーテルエーテルケトン(PEEK)樹脂と金属酸化物との接合体および複合材料、並びに、これらの製造方法について、図を参照しながら説明する。なお、以下の各図において、共通する構成については同一の符号を付して重複した説明を省略する。 Below, a polyether ether ketone (PEEK) resin/metal oxide bond and composite material according to one embodiment of the present invention, as well as a method for manufacturing the same, will be described with reference to the drawings. Note that in the following drawings, common components will be designated by the same reference numerals, and duplicated descriptions will be omitted.
 図1は、本発明の実施形態に係る接合体の一例を模式的に示す断面図である。図2は、本発明の実施形態に係る接合体の使用例を模式的に示す断面図である。図1および図2には、PEEK樹脂と金属酸化物が接合された接合体の一例として椎体間ケージを示す。図2には、椎体間ケージが使用されるヒトの脊椎周辺の断面図を示す。 FIG. 1 is a cross-sectional view showing an example of a joint according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing an example of a use of a joint according to an embodiment of the present invention. FIGS. 1 and 2 show an intersomatic cage as an example of a joint in which PEEK resin and metal oxide are joined. FIG. 2 shows a cross-sectional view of the area around the human spine in which the intersomatic cage is used.
 図1および図2において、符号1は椎体間ケージを形成した接合体、符号2はPEEK樹脂、符号3は金属酸化物、符号4は椎体、符号5は椎間板、符号6は骨髄、符号101はPEEK樹脂と金属酸化物との界面を示す。 In Figures 1 and 2, reference numeral 1 denotes a joint forming an interbody cage, reference numeral 2 denotes PEEK resin, reference numeral 3 denotes a metal oxide, reference numeral 4 denotes a vertebral body, reference numeral 5 denotes an intervertebral disc, reference numeral 6 denotes bone marrow, and reference numeral 101 denotes an interface between the PEEK resin and the metal oxide.
 図1に示すように、本実施形態に係る接合体1は、PEEK樹脂2と金属酸化物3とが互いに接合された構造を有する。PEEK樹脂2と金属酸化物3とは、原子間に生じる物理的相互作用を主体とした接着によって、他の物質を介在することなく直接的に接合される。金属酸化物3としては、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物が接合される。 As shown in FIG. 1, the bonded body 1 according to this embodiment has a structure in which PEEK resin 2 and metal oxide 3 are bonded together. The PEEK resin 2 and metal oxide 3 are directly bonded together without the use of any other substance, by adhesion based primarily on physical interactions between atoms. The metal oxide 3 is a specific metal oxide that has a specific distance between metal atoms and acts to align the atomic arrangement of the PEEK resin.
 図1に示す接合体1は、椎体間ケージを形成している。椎体間ケージは、体内に埋め込まれるインプラントの一種であり、脊柱管狭窄症、脊柱側弯症等の治療に用いられる。図2に示すように、脊椎を構成する椎体4同士の間には椎間板5がある。椎体間ケージは、椎間板5が損傷等によって除去された場合に、椎間板5の代替として椎体4同士の間に挿入される。 The joint 1 shown in Figure 1 forms an intersomatic cage. An intersomatic cage is a type of implant that is embedded in the body and is used to treat spinal stenosis, scoliosis, and the like. As shown in Figure 2, an intervertebral disc 5 is located between the vertebral bodies 4 that make up the spine. The intersomatic cage is inserted between the vertebral bodies 4 as a replacement for the intervertebral disc 5 when the intervertebral disc 5 is removed due to damage or other reasons.
 椎体間ケージは、椎体4同士の高さを固定するスペーサや、椎体4同士の緩衝によって脊椎を安定化させるクッションとして機能する。図1および図2において、椎体間ケージは、かご状の構造に設けられている。椎体間ケージの内側には、治療法に応じて移植骨等が充填される。PEEK樹脂2と金属酸化物3とが互いに接合された接合体1は、このような椎体間ゲージの材料として用いることができる。 The intersomatic cage functions as a spacer that fixes the height of the vertebral bodies 4 and as a cushion that stabilizes the spine by cushioning the vertebral bodies 4. In Figures 1 and 2, the intersomatic cage is provided in a basket-like structure. The inside of the intersomatic cage is filled with grafted bone or the like depending on the treatment method. A joint 1 in which PEEK resin 2 and metal oxide 3 are joined together can be used as a material for such an intersomatic gauge.
 椎体間ケージは、適宜の形状や構造に設けることができる。図1および図2において、椎体間ケージは、側面に貫通孔が形成されている。椎体間ケージは、側面に貫通孔が形成されていない形態や、上下の開口や側面の貫通孔に格子が設けられた形態や、開口の周囲の上面や下面に凹凸が形成された形態等に設けることもできる。 The intersomatic cage can be provided in any suitable shape or structure. In Figures 1 and 2, the intersomatic cage has a through hole formed on the side. The intersomatic cage can also be provided in a form where no through hole is formed on the side, where a lattice is provided on the upper and lower openings or the through hole on the side, or where unevenness is formed on the upper and lower surfaces around the opening, etc.
 本実施形態に係る接合体1において、金属酸化物3としては、金属原子同士の間隔が所定の長さであり、PEEK樹脂2の分子鎖を構成するベンゼン環同士の間隔と金属酸化物3の結晶構造を構成する金属原子同士の間隔との相対差が5%以下となるものを用いる。相対差とは、距離の差分の絶対値であり、相対的に長い間隔長と相対的に短い間隔長との差分と、相対的に短い間隔長との比((長い間隔長-短い間隔長)/短い間隔長)[%]を意味する。 In the bonded body 1 according to this embodiment, the metal oxide 3 used has a predetermined distance between metal atoms, and the relative difference between the distance between the benzene rings constituting the molecular chain of the PEEK resin 2 and the distance between the metal atoms constituting the crystal structure of the metal oxide 3 is 5% or less. The relative difference is the absolute value of the difference in distance, and means the ratio of the difference between the relatively long interval length and the relatively short interval length to the relatively short interval length ((long interval length - short interval length) / short interval length) [%].
 本明細書において、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔とは、エーテル基を介して連結されたベンゼン環の中心同士の距離を意味する。ベンゼン環同士の間隔は、フェニレン、エーテルおよびケトンで構成される一つのポリエーテルエーテルケトン単位のうちで求められる。ベンゼン環同士の間隔は、エーテル基が所定の結合角であり、ベンゼン環同士が同一の平面上に並列的に配向するコンフォメーション(図11~13参照)において求められる。 In this specification, the distance between benzene rings constituting the molecular chain of PEEK resin means the distance between the centers of benzene rings connected via ether groups. The distance between benzene rings is determined within one polyetheretherketone unit composed of phenylene, ether, and ketone. The distance between benzene rings is determined in a conformation in which the ether groups have a specified bond angle and the benzene rings are oriented parallel to each other on the same plane (see Figures 11 to 13).
 本明細書において、金属酸化物の結晶構造を構成する金属原子同士の間隔とは、金属酸化物の結晶を形成する周期的に配列した金属原子同士の距離を意味する。金属原子同士の間隔は、PEEK樹脂のベンゼン環同士の間隔に対応する距離として、任意の種類の金属原子同士や、任意の金属サイトに位置する金属原子同士や、任意の結晶方位に配列した金属原子同士や、任意の近接状態にある金属原子同士で求めることができる。 In this specification, the distance between metal atoms constituting the crystal structure of a metal oxide means the distance between metal atoms arranged periodically to form the metal oxide crystal. The distance between metal atoms corresponds to the distance between benzene rings of PEEK resin, and can be determined between any type of metal atom, between metal atoms located at any metal site, between metal atoms arranged in any crystal orientation, or between metal atoms in any close proximity.
 任意の近接状態にある金属原子とは、金属酸化物の結晶格子中で同一の結晶面上に周期的に配列した複数の金属原子のうち、距離の起点となる金属原子に対して任意の個数の金属原子を挟んで位置する金属原子を意味する。例えば、距離の起点となる金属原子から当該金属原子に対して最も近接した第1近接の金属原子までの距離や、当該金属原子に対して1個の金属原子を挟んで位置する第2近接の金属原子までの距離等を、PEEK樹脂のベンゼン環同士の間隔と比較できる。 Any metal atom in close proximity means, among multiple metal atoms periodically arranged on the same crystal plane in the crystal lattice of a metal oxide, a metal atom that is located across any number of metal atoms from the metal atom that is the starting point of the distance. For example, the distance from the metal atom that is the starting point of the distance to the first closest metal atom that is closest to the metal atom, or the distance to the second closest metal atom that is located across one metal atom from the metal atom, can be compared with the distance between benzene rings in PEEK resin.
 従来、椎体間ケージとしては、PEEK樹脂で形成されており、その表面に酸化チタンやハイドロキシアパタイト(HAp)がコーティングされたものが開発されている。インプラントをPEEK樹脂のみで形成した場合、周辺の骨組織が癒合し難いことが知られている。酸化チタンやHApは、骨組織との結合性が良好であり、骨組織と性質が近いため、PEEK樹脂の表面に酸化チタンやHApがコーティングされている。 Traditionally, interbody cages have been developed that are made of PEEK resin, with the surface coated with titanium oxide or hydroxyapatite (HAp). It is known that when implants are made only of PEEK resin, it is difficult for the surrounding bone tissue to heal. Titanium oxide and HAp have good bonding properties with bone tissue and are similar in properties to bone tissue, so the surface of the PEEK resin is coated with titanium oxide or HAp.
 しかし、PEEK樹脂は、他の材料との接合性が低いことが知られている。PEEK樹脂と金属酸化物とを直接的に接合させる場合、接着現象が作用し難いため、高い接合強度が得られないという問題がある。PEEK樹脂は、熱的安定性が高く反応性が低いため、化学吸着や化学修飾も困難である。単に金属酸化物をコーティングしても、外力等が加わったとき、界面破壊による剥離が容易に起こってしまう。 However, PEEK resin is known to have poor bonding with other materials. When directly bonding PEEK resin to metal oxides, the adhesion phenomenon is difficult to achieve, so there is a problem that high bonding strength cannot be obtained. PEEK resin has high thermal stability and low reactivity, so chemical adsorption and chemical modification are also difficult. Even if it is simply coated with metal oxide, peeling due to interface destruction easily occurs when external force is applied.
 これに対し、PEEK樹脂2のベンゼン環同士の間隔と金属酸化物3の金属原子同士の間隔との相対差が5%以下であると、PEEK樹脂2と金属酸化物3との界面101において、ベンゼン環の炭素原子と金属酸化物3の金属原子とが、互いに近接した位置に配列して強い相互作用を形成できる。PEEK樹脂2の分子鎖は、金属酸化物3の結晶構造に対して、適切な配向およびコンフォメーションで整列できる状態となる。 In contrast, if the relative difference between the spacing between the benzene rings of the PEEK resin 2 and the spacing between the metal atoms of the metal oxide 3 is 5% or less, the carbon atoms of the benzene rings and the metal atoms of the metal oxide 3 are arranged in close proximity to each other at the interface 101 between the PEEK resin 2 and the metal oxide 3, forming a strong interaction. The molecular chains of the PEEK resin 2 are able to align with the appropriate orientation and conformation relative to the crystal structure of the metal oxide 3.
 その結果、PEEK樹脂2と金属酸化物3との間には、ベンゼン環の炭素原子と金属酸化物3の金属原子とが互いに近接して周期的に配列することによって、格子整合状の界面が形成される。PEEK樹脂2の分子鎖で形成される結晶相と金属酸化物3の結晶構造との間で、格子ミスマッチが低減するため、電子状態上やエネルギ状態上で安定な密着強度が高い密着状態が得られる。そのため、PEEK樹脂2と金属酸化物3とを高い接合強度で接合できる。 As a result, a lattice-matched interface is formed between the PEEK resin 2 and the metal oxide 3, with the carbon atoms of the benzene ring and the metal atoms of the metal oxide 3 arranged close to each other and periodically. Since the lattice mismatch is reduced between the crystal phase formed by the molecular chains of the PEEK resin 2 and the crystal structure of the metal oxide 3, a stable adhesion state with high adhesion strength in terms of electronic and energy states is obtained. Therefore, the PEEK resin 2 and the metal oxide 3 can be bonded with high bonding strength.
 また、金属酸化物3の表面に整列したPEEK樹脂2の分子鎖に対しては、別のPEEK樹脂2の分子鎖が、適切な配向およびコンフォメーションで整列できるようになる。PEEK樹脂の原子配列を整列させる金属酸化物3の作用は、PEEK樹脂2と金属酸化物3との界面101だけではなく、界面101から離れた領域にも及ぶ。そのため、界面101から離れた領域においても、PEEK樹脂2の分子鎖同士の密着強度を高めることができる。 Furthermore, molecular chains of other PEEK resins 2 can be aligned in an appropriate orientation and conformation with respect to the molecular chains of PEEK resin 2 aligned on the surface of the metal oxide 3. The effect of the metal oxide 3, which aligns the atomic arrangement of the PEEK resin, extends not only to the interface 101 between the PEEK resin 2 and the metal oxide 3, but also to areas away from the interface 101. Therefore, the adhesive strength between the molecular chains of PEEK resin 2 can be increased even in areas away from the interface 101.
 PEEK樹脂2としては、適宜の分子量や重合度の樹脂を用いることができる。PEEK樹脂2としては、ポリエーテルエーテルケトン単位のみを含むホモポリマを用いてもよいし、ポリエーテルケトン単位や、ポリエーテルエーテルケトンケトン単位や、その他の単量体が重合したコポリマを用いてもよい。但し、PEEK樹脂2としては、格子ミスマッチを低減する観点からは、ホモポリマを用いることが好ましい。 As the PEEK resin 2, a resin with an appropriate molecular weight and degree of polymerization can be used. As the PEEK resin 2, a homopolymer containing only polyether ether ketone units may be used, or a copolymer in which polyether ketone units, polyether ether ketone ketone units, or other monomers are polymerized may be used. However, from the viewpoint of reducing lattice mismatch, it is preferable to use a homopolymer as the PEEK resin 2.
 PEEK樹脂2は、添加剤が添加されてもよいし、添加剤が添加されなくてもよい。添加剤としては、充填材、可塑剤、難燃剤等が挙げられる。また、添加剤としては、後記する複合材料のように、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物を添加することもできる。 The PEEK resin 2 may or may not contain additives. Examples of additives include fillers, plasticizers, and flame retardants. As an additive, a specific metal oxide that acts to align the atomic arrangement of the PEEK resin can also be added, as in the composite material described below.
 充填材としては、シリカ、タルク、マイカ、クレー、炭酸カルシウム、チタン酸カリウム、カーボン、ガラス繊維、カーボン繊維、有機繊維等が挙げられる。可塑剤としては、フタル酸エステル、アジピン酸エステル、トリメリット酸エステル、リン酸エステル等が挙げられる。難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、ポリリン酸アンモニウム、炭酸アンモニウム、酸化アンチモン、ホウ酸化合物、モリブデン化合物、臭素化合物、赤リン、リン酸エステル、メラミン化合物、トリアジン化合物、グアニジン化合物等が挙げられる。 Fillers include silica, talc, mica, clay, calcium carbonate, potassium titanate, carbon, glass fiber, carbon fiber, organic fiber, etc. Plasticizers include phthalates, adipates, trimellitates, phosphates, etc. Flame retardants include aluminum hydroxide, magnesium hydroxide, magnesium carbonate, ammonium polyphosphate, ammonium carbonate, antimony oxide, boric acid compounds, molybdenum compounds, bromine compounds, red phosphorus, phosphate esters, melamine compounds, triazine compounds, guanidine compounds, etc.
 金属酸化物3としては、PEEK樹脂2のベンゼン環同士の間隔と金属酸化物3の金属原子同士の間隔との相対差が5%以下となる限り、適宜の金属の酸化物を接合させることができる。金属酸化物3は、一種の金属を主要成分として含む酸化物であってもよいし、複数種の金属を主要成分として含む複合酸化物であってもよい。 As the metal oxide 3, any suitable metal oxide can be bonded as long as the relative difference between the spacing between the benzene rings of the PEEK resin 2 and the spacing between the metal atoms of the metal oxide 3 is 5% or less. The metal oxide 3 may be an oxide containing one type of metal as the main component, or a composite oxide containing multiple types of metals as the main components.
 金属酸化物3としては、PEEK樹脂2との間に格子整合状の界面が形成される限り、単結晶体を接合させてもよいし、多結晶体を接合させてもよい。但し、PEEK樹脂2と金属酸化物3とを高い接合強度で接合する観点からは、PEEK樹脂2のベンゼン環同士の間隔と金属酸化物3の金属原子同士の間隔との相対差が5%以下となる結晶面の面積率が大きいことが好ましく、金属酸化物3として単結晶体を接合させることが好ましい。 As the metal oxide 3, a single crystal or a polycrystal may be bonded as long as a lattice-matched interface is formed with the PEEK resin 2. However, from the viewpoint of bonding the PEEK resin 2 and the metal oxide 3 with high bonding strength, it is preferable that the area ratio of the crystal planes where the relative difference between the spacing between the benzene rings of the PEEK resin 2 and the spacing between the metal atoms of the metal oxide 3 is 5% or less is large, and it is preferable to bond a single crystal as the metal oxide 3.
 金属酸化物3のPEEK樹脂2と接合される表面に垂直な方向の厚さは、2nm以上100μm以下であることが好ましい。厚さが2nm以上であると、PEEK樹脂2と金属酸化物3との間に、多数の原子によって格子整合状の界面が形成されるため、PEEK樹脂2と金属酸化物3との接合強度をより向上できる。また、厚さが100μm以下であると、応力集中や凝集破壊による金属酸化物3の剥離を低減できる。 The thickness of the metal oxide 3 in the direction perpendicular to the surface to be bonded to the PEEK resin 2 is preferably 2 nm or more and 100 μm or less. If the thickness is 2 nm or more, a lattice-matched interface is formed between the PEEK resin 2 and the metal oxide 3 by a large number of atoms, so the bonding strength between the PEEK resin 2 and the metal oxide 3 can be further improved. Furthermore, if the thickness is 100 μm or less, peeling of the metal oxide 3 due to stress concentration or cohesive failure can be reduced.
 金属酸化物3のPEEK樹脂2が接合される結晶面における原子密度は、17atom/nm以上であることが好ましい。金属酸化物3の金属原子同士の間隔が所定の長さであっても、金属原子の密度が低い場合には、PEEK樹脂2との相互作用が形成され難くなる。これに対し、原子密度が17atom/nm以上であると、PEEK樹脂2と金属酸化物3との間に、高密度の原子によって格子整合状の界面が形成されるため、PEEK樹脂2と金属酸化物3との接合強度をより向上できる。 The atomic density of the crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is preferably 17 atoms/ nm2 or more. Even if the distance between metal atoms of the metal oxide 3 is a predetermined length, if the density of the metal atoms is low, it is difficult to form an interaction with the PEEK resin 2. In contrast, if the atomic density is 17 atoms/ nm2 or more, a lattice-matched interface is formed between the PEEK resin 2 and the metal oxide 3 by high-density atoms, and the bonding strength between the PEEK resin 2 and the metal oxide 3 can be further improved.
 本実施形態に係る接合体1において、PEEK樹脂2と接合される金属酸化物3の好ましい例は、次の(1)~(3)のとおりである。 In the bonded body 1 according to this embodiment, preferred examples of the metal oxide 3 bonded to the PEEK resin 2 are as follows (1) to (3).
(1)金属酸化物3が、酸化チタン(チタニア:TiO)である。金属酸化物3のPEEK樹脂2が接合された結晶面は、ルチル型構造である酸化チタンのミラー指数が(110)の結晶面、または、これと等価な結晶面である。ルチル型構造である酸化チタンのPEEK樹脂2が接合された結晶面における原子密度は、17atom/nm以上であることが好ましい。 (1) The metal oxide 3 is titanium oxide (titania: TiO2 ). The crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is a crystal plane of titanium oxide having a rutile structure with Miller indices of (110) or a crystal plane equivalent thereto. The atomic density of the crystal plane of titanium oxide having a rutile structure to which the PEEK resin 2 is bonded is preferably 17 atom/ nm2 or more.
(2)金属酸化物3が、酸化アルミニウム(アルミナ:Al)である。金属酸化物3のPEEK樹脂2が接合された結晶面は、酸化アルミニウムのミラー指数が(001)の結晶面、または、これと等価な結晶面である。酸化アルミニウムのPEEK樹脂2が接合された結晶面における原子密度は、17atom/nm以上であることが好ましい。 (2) The metal oxide 3 is aluminum oxide (alumina: Al2O3 ). The crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is a crystal plane of aluminum oxide with Miller indices of (001) or a crystal plane equivalent thereto. The atomic density of the crystal plane of the aluminum oxide to which the PEEK resin 2 is bonded is preferably 17 atom/ nm2 or more.
(3)金属酸化物3が、酸化マグネシウム(マグネシア:MgO)である。金属酸化物3のPEEK樹脂2が接合された結晶面が、酸化マグネシウムのミラー指数が(111)の結晶面、または、これと等価な結晶面である。酸化マグネシウムのPEEK樹脂2が接合された結晶面における原子密度は、17atom/nm以上であることが好ましい。 (3) The metal oxide 3 is magnesium oxide (magnesia: MgO). The crystal plane of the metal oxide 3 to which the PEEK resin 2 is bonded is a crystal plane of magnesium oxide with Miller indices (111) or a crystal plane equivalent thereto. The atomic density of the magnesium oxide crystal plane to which the PEEK resin 2 is bonded is preferably 17 atom/ nm2 or more.
 (1)~(3)の金属酸化物3によると、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔と金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下となる。そのため、PEEK樹脂の原子配列を整列させる作用によって、PEEK樹脂と金属酸化物との間に、格子整合状の界面を形成して、相互の接合強度を高めることができる。また、界面から離れた領域において、PEEK樹脂の分子鎖同士の密着強度を高めることができる。  With the metal oxides 3 of (1) to (3), the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide is 5% or less. Therefore, by aligning the atomic arrangement of the PEEK resin, a lattice-matched interface is formed between the PEEK resin and the metal oxide, and the mutual bonding strength can be increased. Also, in areas away from the interface, the adhesion strength between the molecular chains of the PEEK resin can be increased.
 表1~3は、PEEK樹脂と金属酸化物との接合強度をピール試験によって測定した結果である。ピール試験では、PEEK樹脂またはハイドロキシアパタイト(HAp)に対する金属酸化物の接合強度を実測した。ルチル型構造である酸化チタン、酸化アルミニウムおよび酸化マグネシウムについて、それぞれ、主要な結晶面毎の接合強度を測定した。 Tables 1 to 3 show the results of measuring the bonding strength between PEEK resin and metal oxides by peel tests. In the peel tests, the bonding strength of metal oxides to PEEK resin or hydroxyapatite (HAp) was measured. The bonding strength of each of the main crystal planes was measured for titanium oxide, aluminum oxide, and magnesium oxide, which have a rutile structure.
 ピール試験には、PEEK樹脂と金属酸化物とが接合された接合体の試験片を供した。接合体の試験片は、金属酸化物の単結晶の表面のうち、所定のミラー指数の結晶面に、PEEK樹脂を直接的に接着させることによって作製した。試験片は、幅が25mmの帯状とした。 For the peel test, a test piece of a bonded structure in which PEEK resin and metal oxide were bonded was used. The test piece of the bonded structure was prepared by directly bonding PEEK resin to a crystal face with a specified Miller index on the surface of a single crystal of the metal oxide. The test piece was in the shape of a strip with a width of 25 mm.
 ピール試験では、PEEK樹脂の表面に粘着テープを接着させた後、粘着テープの一端を引張試験機によって90度の方向に剥がして剥離力を測定した。そして、測定された剥離力の平均値に基づいて、試験片の単位幅当たりの接合強度[kN/m]を求めた。 In the peel test, an adhesive tape was adhered to the surface of the PEEK resin, and then one end of the adhesive tape was peeled off at a 90-degree angle using a tensile tester to measure the peel strength. The bond strength per unit width of the test piece [kN/m] was then calculated based on the average value of the measured peel strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、金属酸化物としてルチル型構造である酸化チタンを用いた結果である。ルチル型構造である酸化チタンの場合、PEEK樹脂およびHApのいずれに対しても、(100)面、(001)面、(210)面の場合と比較して、(110)面の接合強度が顕著に高くなった。 Table 1 shows the results when titanium oxide with a rutile structure was used as the metal oxide. In the case of titanium oxide with a rutile structure, the bonding strength of the (110) plane was significantly higher than that of the (100), (001), and (210) planes for both PEEK resin and HAp.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、金属酸化物として酸化アルミニウムを用いた結果である。酸化アルミニウムの場合、PEEK樹脂およびHApのいずれに対しても、(100)面、(110)面、(210)面の場合と比較して、(001)面の接合強度が顕著に高くなった。 Table 2 shows the results when aluminum oxide was used as the metal oxide. In the case of aluminum oxide, the bonding strength of the (001) plane was significantly higher than that of the (100), (110), and (210) planes for both PEEK resin and HAp.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3は、金属酸化物として酸化マグネシウムを用いた結果である。酸化マグネシウムの場合、PEEK樹脂およびHApのいずれに対しても、(100)面、(001)面、(110)面の場合と比較して、(111)面の接合強度が顕著に高くなった。 Table 3 shows the results when magnesium oxide was used as the metal oxide. In the case of magnesium oxide, the bonding strength of the (111) plane was significantly higher than that of the (100), (001), and (110) planes for both PEEK resin and HAp.
 表1~3に示すように、金属酸化物とPEEK樹脂との接合強度と、金属酸化物とHApとの接合強度とは、同じミラー指数で表される結晶面の種類に対して、同様の傾向を示した。HApのカルシウム原子同士の間隔は、PEEK樹脂のベンゼン環同士の間隔と近似しているためである。金属酸化物とPEEK樹脂との間で格子ミスマッチが低減する条件では、金属酸化物とHApとの間でも格子ミスマッチが低減するといえる。 As shown in Tables 1 to 3, the bonding strength between metal oxide and PEEK resin and the bonding strength between metal oxide and HAp showed similar trends for the types of crystal planes represented by the same Miller indices. This is because the spacing between calcium atoms in HAp is similar to the spacing between benzene rings in PEEK resin. It can be said that under conditions that reduce the lattice mismatch between metal oxide and PEEK resin, the lattice mismatch between metal oxide and HAp is also reduced.
 図3は、本発明の実施形態に係る接合体の一例を模式的に示す断面図である。図3には、PEEK樹脂と金属酸化物が接合された接合体の一例として椎体間ケージを示す。
 図3に示すように、PEEK樹脂2と金属酸化物3とが互いに接合された接合体1の表面には、HAp膜102を形成することもできる。
Fig. 3 is a cross-sectional view showing an example of a bonded structure according to an embodiment of the present invention, in which an intersomatic cage is shown as an example of a bonded structure in which a PEEK resin and a metal oxide are bonded together.
As shown in FIG. 3, a HAp film 102 can be formed on the surface of a bonded body 1 in which a PEEK resin 2 and a metal oxide 3 are bonded to each other.
 HAp膜102は、ハイドロキシアパタイト(HAp)(Ca10(PO(OH))を主体として形成される。HAp膜102には、カルシウムの欠損や、リン酸カルシウム等の異相が存在してもよい。HAp膜102は、金属酸化物3の表面のうち、PEEK樹脂2と接合された表面とは反対側の表面に形成できる。金属酸化物3の表面をHAp膜102で被覆すると、接合体1と骨組織との結合性を向上させることができる。 The HAp film 102 is formed mainly of hydroxyapatite (HAp) ( Ca10 ( PO4 ) 6 (OH) 2 ). The HAp film 102 may contain calcium deficiency or a heterogeneous phase such as calcium phosphate. The HAp film 102 can be formed on the surface of the metal oxide 3 opposite to the surface bonded to the PEEK resin 2. By covering the surface of the metal oxide 3 with the HAp film 102, the bond between the joint 1 and bone tissue can be improved.
 HAp膜102の厚さは、2nm以上50μm以下であることが好ましい。厚さが2nm以上であると、金属酸化物3とHAp膜102との間に、多数の原子によって格子整合状の界面が形成されるため、金属酸化物3とHAp膜102との接合強度をより向上できる。また、厚さが50μm以下であると、応力集中や凝集破壊によるHAp膜102の剥離を低減できる。 The thickness of the HAp film 102 is preferably 2 nm or more and 50 μm or less. If the thickness is 2 nm or more, a lattice-matched interface is formed between the metal oxide 3 and the HAp film 102 by a large number of atoms, which can further improve the bonding strength between the metal oxide 3 and the HAp film 102. Furthermore, if the thickness is 50 μm or less, peeling of the HAp film 102 due to stress concentration or cohesive failure can be reduced.
 表1~3に示すように、金属酸化物とHApとの接合強度は、金属酸化物が所定の結晶面である場合に顕著に高くなる。そのため、HAp膜102は、金属酸化物3とHAp膜102とをより高い接合強度で接合する観点からは、ルチル型構造である酸化チタンの(110)面、酸化アルミニウムの(001)面、または、酸化マグネシウムの(111)面に形成することが好ましい。 As shown in Tables 1 to 3, the bonding strength between the metal oxide and HAp is significantly higher when the metal oxide has a specified crystal plane. Therefore, from the viewpoint of bonding the metal oxide 3 and the HAp film 102 with higher bonding strength, it is preferable to form the HAp film 102 on the (110) plane of titanium oxide, the (001) plane of aluminum oxide, or the (111) plane of magnesium oxide, which are rutile structures.
 次に、PEEK樹脂と金属酸化物とが互いに接合された本実施形態に係る接合体の製造方法について説明する。 Next, we will explain the manufacturing method of the bonded body according to this embodiment in which PEEK resin and metal oxide are bonded to each other.
 本実施形態に係る接合体は、PEEK樹脂の表面に、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物を成膜する製造方法によって製造できる。金属酸化物は、PEEK樹脂のベンゼン環同士の間隔と金属酸化物の金属原子同士の間隔との相対差が5%以下となるように、所定の結晶構造を持つ薄膜として形成する。 The bonded body according to this embodiment can be manufactured by a manufacturing method in which a film of a specified metal oxide that acts to align the atomic arrangement of PEEK resin is formed on the surface of PEEK resin. The metal oxide is formed as a thin film with a specified crystal structure so that the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less.
 本実施形態に係る接合体の製造方法は、PEEK樹脂の表面に金属酸化物を成膜する成膜工程と、金属酸化物が成膜されたPEEK樹脂を熱処理して金属酸化物の結晶配向性を向上させる熱処理工程と、を含む。金属酸化物の表面をHAp膜で被覆する場合は、熱処理工程の後に、金属酸化物の表面にHAp膜を成膜する成膜工程を行う。 The manufacturing method of the bonded body according to this embodiment includes a film-forming step of forming a metal oxide film on the surface of the PEEK resin, and a heat treatment step of heat-treating the PEEK resin on which the metal oxide film has been formed to improve the crystal orientation of the metal oxide. When the surface of the metal oxide is to be covered with a HAp film, a film-forming step of forming a HAp film on the surface of the metal oxide is performed after the heat treatment step.
 PEEK樹脂の表面に金属酸化物を成膜する成膜方法としては、基板上に成膜した金属酸化物をPEEK樹脂の表面に転写する転写成膜法や、PEEK樹脂の表面に金属酸化物を直接的に成膜する直接成膜法を用いることができる。 The deposition method for depositing a metal oxide film on the surface of PEEK resin can be a transfer deposition method in which a metal oxide film formed on a substrate is transferred to the surface of the PEEK resin, or a direct deposition method in which a metal oxide film is directly deposited on the surface of the PEEK resin.
 転写成膜法を用いる場合、はじめに、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物で形成された単結晶の基板を用意する。例えば、ルチル型構造である酸化チタンの(110)面、酸化アルミニウムの(001)面、酸化マグネシウムの(111)面等を表面に持つ基板を用意する。 When using the transfer deposition method, first prepare a single crystal substrate made of a metal oxide that has a predetermined distance between metal atoms and that acts to align the atomic arrangement of the PEEK resin. For example, prepare a substrate whose surface has a rutile structure such as titanium oxide (110) plane, aluminum oxide (001) plane, or magnesium oxide (111) plane.
 続いて、金属酸化物で形成された単結晶の基板の表面に、HApで形成されたHAp膜を成膜する。成膜方法としては、パルスレーザデポジション(Pulsed Laser Deposition:PLD)法、スパッタリング法等の物理気相成長法や、液相合成法や、プラズマ溶射法等を用いることができる。HApのカルシウム原子同士の間隔は、金属酸化物の金属原子同士の間隔と近似しているため、格子整合状のHAp膜が成膜される。 Next, a HAp film made of HAp is formed on the surface of the single crystal substrate made of metal oxide. Film formation methods that can be used include physical vapor deposition methods such as Pulsed Laser Deposition (PLD) and sputtering, liquid phase synthesis, and plasma spraying. The spacing between calcium atoms in HAp is similar to the spacing between metal atoms in metal oxide, so a lattice-matched HAp film is formed.
 続いて、基板上に成膜されたHAp膜の表面に、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物を成膜する。成膜方法としては、アークイオンプレーティング(Arc Ion Plating:AIP)法、スパッタリング法等の物理気相成長法を用いることができる。HApのカルシウム原子同士の間隔は、PEEK樹脂のベンゼン環同士の間隔と近似しているため、格子整合状の金属酸化物が成膜される。 Next, a metal oxide film is formed on the surface of the HAp film formed on the substrate. The metal atoms are spaced apart by a predetermined length, and the metal oxide acts to align the atomic arrangement of the PEEK resin. The film can be formed using physical vapor deposition methods such as Arc Ion Plating (AIP) and sputtering. The spacing between calcium atoms in HAp is similar to the spacing between benzene rings in PEEK resin, so a lattice-matched metal oxide film is formed.
 続いて、基板上に成膜された金属酸化物を基板から剥離させる。基板上に成膜された金属酸化物は、HAp膜との界面で剥離させてもよいし、単結晶の基板との界面でHAp膜と共に剥離させてもよい。例えば、基板上に成膜された金属酸化物の表面に粘着テープを貼付した転写板を接着させた後、金属酸化物をHAp膜との界面または単結晶の基板との界面で単結晶の基板から剥離させる方法を用いることができる。 Then, the metal oxide film formed on the substrate is peeled off from the substrate. The metal oxide film formed on the substrate may be peeled off at the interface with the HAp film, or may be peeled off together with the HAp film at the interface with the single crystal substrate. For example, a method can be used in which a transfer plate with adhesive tape attached is attached to the surface of the metal oxide film formed on the substrate, and then the metal oxide is peeled off from the single crystal substrate at the interface with the HAp film or the interface with the single crystal substrate.
 続いて、基板から剥離させた金属酸化物を所定の形状に成形されたPEEK樹脂の表面に転写して被覆する。金属酸化物の薄膜を転写する方法としては、例えば、粘着テープを介して転写板に接着させた金属酸化物をPEEK樹脂の表面に接着させた後、金属酸化物から転写板を剥離させる方法を用いることができる。粘着テープを介して接着した転写板は、溶剤によって剥離できる。PEEK樹脂の表面には、プラズマ処理、コロナ放電処理等の表面処理を予め施すことができる。 Then, the metal oxide peeled off from the substrate is transferred to and coated on the surface of the PEEK resin formed into a specified shape. A method for transferring a thin film of metal oxide can be used in which, for example, the metal oxide adhered to a transfer plate via adhesive tape is adhered to the surface of the PEEK resin, and then the transfer plate is peeled off from the metal oxide. The transfer plate adhered via adhesive tape can be peeled off with a solvent. The surface of the PEEK resin can be previously subjected to a surface treatment such as plasma treatment or corona discharge treatment.
 続いて、金属酸化物が成膜されたPEEK樹脂を熱処理して金属酸化物の結晶配向性を向上させる。熱処理温度は、100℃以上400℃以下とすることが好ましい。熱処理温度が100℃以上であると、金属酸化物の結晶構造の乱れを低減して、金属原子同士の間隔が所定の長さである所定の結晶構造の面積率を高めることができる。熱処理温度が400℃以下であると、PEEK樹脂の熱分解を回避できる。 Then, the PEEK resin on which the metal oxide film has been formed is heat-treated to improve the crystal orientation of the metal oxide. The heat treatment temperature is preferably 100°C or higher and 400°C or lower. If the heat treatment temperature is 100°C or higher, it is possible to reduce the disorder of the crystal structure of the metal oxide and increase the area ratio of a specified crystal structure in which the distance between metal atoms is a specified length. If the heat treatment temperature is 400°C or lower, it is possible to avoid thermal decomposition of the PEEK resin.
 熱処理によって金属酸化物の結晶配向性を向上させると、界面における格子ミスマッチが低減して、PEEK樹脂と金属酸化物との間に格子整合状の界面が形成される。このような熱処理によって、PEEK樹脂2と金属酸化物3とが互いに接合された接合体1を得ることができる。また、金属酸化物を基板からHAp膜と共に剥離させてPEEK樹脂の表面に被覆すると、金属酸化物の表面にHAp膜が被覆された接合体が得られる。 When the crystal orientation of the metal oxide is improved by heat treatment, the lattice mismatch at the interface is reduced, and a lattice-matched interface is formed between the PEEK resin and the metal oxide. This type of heat treatment can produce a bonded body 1 in which the PEEK resin 2 and the metal oxide 3 are bonded together. In addition, when the metal oxide is peeled off from the substrate together with the HAp film and coated on the surface of the PEEK resin, a bonded body in which the HAp film is coated on the surface of the metal oxide is obtained.
 このような転写成膜法によると、基板上に成膜した金属酸化物をPEEK樹脂の表面に転写するため、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物を、PEEK樹脂への熱負荷を抑制して成膜できる。最終的に行う熱処理は、金属酸化物の結晶構造の乱れを低減するだけでよいため、熱処理温度を低温に抑制できる。 With this type of transfer deposition method, a metal oxide film formed on a substrate is transferred to the surface of the PEEK resin, so that the distance between metal atoms is a specified length, and a specified metal oxide that acts to align the atomic arrangement of the PEEK resin can be deposited while suppressing the thermal load on the PEEK resin. The final heat treatment only needs to reduce the disturbance of the crystal structure of the metal oxide, so the heat treatment temperature can be kept low.
 また、このような成膜方法によると、基板上に成膜された金属酸化物を剥離させる段階で、HAp膜との界面で金属酸化物のみを剥離させて、PEEK樹脂2と金属酸化物3とが互いに接合された接合体1を製造したり、単結晶の基板との界面でHAp膜と共に金属酸化物を剥離させて、金属酸化物3の表面にHAp膜102が被覆された接合体1を製造したりできる。HAp膜と共に金属酸化物を剥離させると、骨組織と癒合し易いHAp膜102で被覆された接合体1を、成膜の工程を省略して製造できる。 Furthermore, with this film formation method, in the stage of peeling off the metal oxide film formed on the substrate, only the metal oxide can be peeled off at the interface with the HAp film to produce a joint 1 in which the PEEK resin 2 and the metal oxide 3 are bonded to each other, or the metal oxide can be peeled off together with the HAp film at the interface with the single crystal substrate to produce a joint 1 in which the surface of the metal oxide 3 is coated with a HAp film 102. By peeling off the metal oxide together with the HAp film, a joint 1 coated with a HAp film 102 that easily bonds with bone tissue can be produced without the film formation step.
 一方、直接成膜法を用いる場合、はじめに、所定の形状に成形されたPEEK樹脂の表面に、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物を成膜する。PEEK樹脂の表面には、プラズマ処理、コロナ放電処理等の表面処理を予め施すことができる。成膜方法としては、アークイオンプレーティング(AIP)法、スパッタリング法等の物理気相成長法を用いることができる。 On the other hand, when using the direct film formation method, first, a metal oxide film is formed on the surface of PEEK resin molded into a specified shape, with the metal atoms spaced at a specified distance from each other, and with the effect of aligning the atomic arrangement of the PEEK resin. The surface of the PEEK resin can be subjected to a surface treatment such as plasma treatment or corona discharge treatment beforehand. Physical vapor deposition methods such as arc ion plating (AIP) and sputtering can be used as the film formation method.
 続いて、金属酸化物が表面に成膜されたPEEK樹脂を熱処理して金属酸化物の結晶配向性を向上させる。熱処理温度は、転写成膜法を用いる場合と同様に、100℃以上400℃以下とすることが好ましい。 Then, the PEEK resin with the metal oxide film formed on its surface is heat-treated to improve the crystal orientation of the metal oxide. The heat treatment temperature is preferably 100°C or higher and 400°C or lower, as in the case of using the transfer film formation method.
 熱処理によって金属酸化物の結晶配向性を向上させると、界面における格子ミスマッチが低減して、PEEK樹脂と金属酸化物との間に格子整合状の界面が形成される。このような熱処理によって、PEEK樹脂2と金属酸化物3とが互いに接合された接合体1を得ることができる。 By improving the crystal orientation of the metal oxide by heat treatment, the lattice mismatch at the interface is reduced, and a lattice-matched interface is formed between the PEEK resin and the metal oxide. By such heat treatment, a bonded body 1 can be obtained in which the PEEK resin 2 and the metal oxide 3 are bonded to each other.
 続いて、PEEK樹脂の表面に成膜された金属酸化物の表面に、HApで形成されたHAp膜を成膜する。成膜方法としては、パルスレーザデポジション(PLD)法、スパッタリング法等の物理気相成長法や、液相合成法や、プラズマ溶射法等を用いることができる。なお、HAp膜が必要ない場合には、HAp膜の成膜を省略することもできる。 Next, a HAp film made of HAp is formed on the surface of the metal oxide film formed on the surface of the PEEK resin. The film formation method can be a physical vapor deposition method such as pulsed laser deposition (PLD) or sputtering, a liquid phase synthesis method, or a plasma spraying method. If a HAp film is not required, the formation of the HAp film can be omitted.
 このような直接成膜法によると、PEEK樹脂の表面に金属酸化物を直接的に成膜するため、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物を、少ない工数で形成できる。また、PEEK樹脂が複雑な形状に成形されている場合であっても、所定の結晶配向性を呈する金属酸化物を広範囲に成膜できる。 This direct film formation method forms a film of metal oxide directly on the surface of PEEK resin, so the intervals between metal atoms are of a specified length, and a specified metal oxide that acts to align the atomic arrangement of PEEK resin can be formed with a small number of steps. Furthermore, even if the PEEK resin is molded into a complex shape, a metal oxide film that exhibits a specified crystal orientation can be formed over a wide area.
 金属酸化物やHAp膜の成膜時には、文献(Masazumi Okido, et al., Evaluation of the Hydroxyapatite Film Coating on Titanium Cathode by QCM, Materials Transactions, Vol. 43, No. 12 (2002) p. 3010-3014)に記載されているように、水晶振動子マイクロバランス法(Quartz crystal microbalance:QCM)法で膜厚をモニタリングすることが好ましい。金属酸化物の厚さは、2nm以上100μm以下とすることが好ましい。HAp膜の厚さは、2nm以上50μm以下とすることが好ましい。 When depositing metal oxide or HAp films, it is preferable to monitor the film thickness using the quartz crystal microbalance (QCM) method, as described in the literature (Masazumi Okido, et al., Evaluation of the Hydroxyapatite Film Coating on Titanium Cathode by QCM, Materials Transactions, Vol. 43, No. 12 (2002) p. 3010-3014). The thickness of the metal oxide is preferably 2 nm or more and 100 μm or less. The thickness of the HAp film is preferably 2 nm or more and 50 μm or less.
 金属酸化物を成膜する成膜方法としてAIP法を用いる場合には、PEEK樹脂を被成膜物とし、金属酸化物を構成する金属を蒸発源とし、酸素ガスや酸素と不活性ガスを混合した混合ガスを反応ガスとして、真空雰囲気下、アーク放電による成膜を行う。蒸発源に印加するターゲット電流は、100A以上とすることが好ましい。被成膜物に印加する基板バイアス電圧は、60V以上とすることが好ましい。 When the AIP method is used as a method for forming a metal oxide film, PEEK resin is used as the film-forming material, the metal that constitutes the metal oxide is used as the evaporation source, and oxygen gas or a mixed gas of oxygen and an inert gas is used as the reactive gas, and film formation is performed by arc discharge in a vacuum atmosphere. The target current applied to the evaporation source is preferably 100 A or more. The substrate bias voltage applied to the film-forming material is preferably 60 V or more.
 例えば、ルチル型構造である酸化チタンの結晶配向性を向上させて、(110)面の面積率を大きくする場合、約800℃以上の高温が必要になる。成膜時の温度が低温であると、アナターゼ型構造やアモルファス型構造の比率が大きくなり、(110)面の面積率が小さくなる傾向がある。ターゲット電流が100A以上、バイアス電圧が60V以上であれば、成膜時の温度が高温になるため、金属酸化物の結晶配向性を適切に高めることができる。 For example, to improve the crystal orientation of titanium oxide, which has a rutile structure, and increase the area ratio of the (110) plane, a high temperature of approximately 800°C or higher is required. If the temperature during film formation is low, the proportion of anatase structure or amorphous structure will increase, and the area ratio of the (110) plane will tend to decrease. If the target current is 100A or more and the bias voltage is 60V or more, the temperature during film formation will be high, and the crystal orientation of the metal oxide can be appropriately increased.
 以上の本実施形態に係る接合体によると、PEEK樹脂のベンゼン環同士の間隔と金属酸化物の金属原子同士の間隔との相対差が5%以下であり、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物が、PEEK樹脂に対して接合されているため、PEEK樹脂と金属酸化物との間に、格子整合状の界面を形成できる。そのため、PEEK樹脂と金属酸化物との密着強度が高く、PEEK樹脂と金属酸化物との界面で界面破壊を生じ難い接合体を得ることができる。また、PEEK樹脂の原子配列を整列させる作用は界面から離れた領域にも及ぶため、PEEK樹脂で形成された母材の降伏強度を向上させることができる。 In the bonded body according to the present embodiment, the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, and since the metal oxide that acts to align the atomic arrangement of the PEEK resin is bonded to the PEEK resin, a lattice-matched interface can be formed between the PEEK resin and the metal oxide. This makes it possible to obtain a bonded body that has high adhesion strength between the PEEK resin and the metal oxide and is less susceptible to interfacial destruction at the interface between the PEEK resin and the metal oxide. In addition, since the effect of aligning the atomic arrangement of the PEEK resin extends to areas away from the interface, the yield strength of the base material formed of the PEEK resin can be improved.
 図4は、本発明の実施形態に係る複合材料の一例を模式的に示す断面図である。図4には、PEEK樹脂を母材として金属酸化物を含有した複合材料の一例を示す。図4において、符号7は複合材料、符号8はPEEK樹脂、符号9は金属酸化物、符号201はPEEK樹脂と金属酸化物との界面を示す。 FIG. 4 is a cross-sectional view showing a schematic example of a composite material according to an embodiment of the present invention. FIG. 4 shows an example of a composite material containing a metal oxide with PEEK resin as the base material. In FIG. 4, reference numeral 7 indicates the composite material, reference numeral 8 indicates the PEEK resin, reference numeral 9 indicates the metal oxide, and reference numeral 201 indicates the interface between the PEEK resin and the metal oxide.
 図4に示すように、本実施形態に係る複合材料7は、母材を形成するPEEK樹脂8と、母材中に分散された金属酸化物9と、を少なくとも含む。金属酸化物9としては、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物が配合される。 As shown in FIG. 4, the composite material 7 according to this embodiment includes at least a PEEK resin 8 forming a base material, and a metal oxide 9 dispersed in the base material. As the metal oxide 9, a specific metal oxide is blended in which the distance between metal atoms is a specific length and which acts to align the atomic arrangement of the PEEK resin.
 本実施形態に係る複合材料7は、用途等に応じて、適宜の形状に成形できる。本実施形態に係る複合材料7において、金属酸化物9としては、金属原子同士の間隔が所定の長さであり、PEEK樹脂8の分子鎖を構成するベンゼン環同士の間隔と金属酸化物9の結晶構造を構成する金属原子同士の間隔との相対差が5%以下となるものを用いる。 The composite material 7 according to this embodiment can be molded into an appropriate shape depending on the application, etc. In the composite material 7 according to this embodiment, the metal oxide 9 used has a predetermined distance between metal atoms, and the relative difference between the distance between the benzene rings that make up the molecular chain of the PEEK resin 8 and the distance between the metal atoms that make up the crystal structure of the metal oxide 9 is 5% or less.
 このような金属酸化物9を分散させると、PEEK樹脂8と金属酸化物9との間には、ベンゼン環の炭素原子と金属酸化物9の金属原子とが互いに近接して周期的に配列することによって、格子整合状の界面が形成される。PEEK樹脂8の分子鎖で形成される結晶相と金属酸化物9の結晶構造との間で、格子ミスマッチが低減するため、電子状態上やエネルギ状態上で安定な密着強度が高い密着状態が得られる。 When such metal oxide 9 is dispersed, a lattice-matched interface is formed between the PEEK resin 8 and the metal oxide 9, as the carbon atoms of the benzene ring and the metal atoms of the metal oxide 9 are periodically arranged close to each other. Since the lattice mismatch is reduced between the crystal phase formed by the molecular chains of the PEEK resin 8 and the crystal structure of the metal oxide 9, a stable adhesion state with high adhesion strength in terms of electronic and energy states is obtained.
 その結果、PEEK樹脂8と金属酸化物9との界面201では、金属酸化物9の結晶構造に対して、PEEK樹脂8の分子鎖が適切な配向およびコンフォメーションで整列できるようになる。金属酸化物9の表面に整列したPEEK樹脂8の分子鎖に対しては、別のPEEK樹脂8の分子鎖が、適切な配向およびコンフォメーションで整列できるようになる。 As a result, at the interface 201 between the PEEK resin 8 and the metal oxide 9, the molecular chains of the PEEK resin 8 can be aligned in an appropriate orientation and conformation relative to the crystal structure of the metal oxide 9. The molecular chains of the PEEK resin 8 aligned on the surface of the metal oxide 9 can be aligned with other molecular chains of the PEEK resin 8 in an appropriate orientation and conformation.
 そのため、PEEK樹脂の原子配列を整列させる金属酸化物9の作用は、PEEK樹脂8と金属酸化物9との界面201だけではなく、界面201から離れた領域にも及ぶ。金属酸化物9を起点として、PEEK樹脂8の原子配列を整列させる作用が広範囲に得られる。一般に、PEEK樹脂のみでは十分に高い剛性が得られ難いが、PEEK樹脂8の分子鎖同士を整列させて、PEEK樹脂8の分子鎖同士の密着強度を高めることができるため、複合材料7の降伏強度を向上させることができる。 Therefore, the effect of metal oxide 9 to align the atomic arrangement of PEEK resin is not limited to the interface 201 between PEEK resin 8 and metal oxide 9, but extends to areas distant from the interface 201 as well. Starting from metal oxide 9, the effect of aligning the atomic arrangement of PEEK resin 8 can be obtained over a wide range. Generally, it is difficult to obtain a sufficiently high rigidity with PEEK resin alone, but by aligning the molecular chains of PEEK resin 8, the adhesive strength between the molecular chains of PEEK resin 8 can be increased, thereby improving the yield strength of composite material 7.
 PEEK樹脂8としては、適宜の分子量や重合度の樹脂を用いることができる。PEEK樹脂8としては、ポリエーテルエーテルケトン単位のみを含むホモポリマを用いてもよいし、ポリエーテルケトン単位や、ポリエーテルエーテルケトンケトン単位や、その他の単量体が重合したコポリマを用いてもよい。但し、PEEK樹脂8としては、格子ミスマッチを低減する観点からは、ホモポリマを用いることが好ましい。 As the PEEK resin 8, a resin with an appropriate molecular weight and degree of polymerization can be used. As the PEEK resin 8, a homopolymer containing only polyetheretherketone units may be used, or a copolymer in which polyetherketone units, polyetheretherketoneketone units, or other monomers are polymerized may be used. However, from the viewpoint of reducing lattice mismatch, it is preferable to use a homopolymer as the PEEK resin 8.
 PEEK樹脂8は、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物9以外の添加剤が添加されてもよいし、添加剤が添加されなくてもよい。金属酸化物9以外の添加剤としては、充填材、可塑剤、難燃剤等が挙げられる。充填材、可塑剤、難燃剤としては、前記の接合体1と同様の種類を用いることができる。 The PEEK resin 8 may contain additives other than the metal oxide 9 that acts to align the atomic arrangement of the PEEK resin, or no additives may be added. Examples of additives other than the metal oxide 9 include fillers, plasticizers, and flame retardants. The same types of fillers, plasticizers, and flame retardants as those used for the bonded body 1 described above can be used.
 金属酸化物9としては、PEEK樹脂8のベンゼン環同士の間隔と金属酸化物9の金属原子同士の間隔との相対差が5%以下となる限り、適宜の金属の酸化物を配合することができる。金属酸化物9は、一種の金属を主要成分として含む酸化物であってもよいし、複数種の金属を主要成分として含む複合酸化物であってもよい。 As the metal oxide 9, any suitable metal oxide can be blended as long as the relative difference between the spacing between the benzene rings of the PEEK resin 8 and the spacing between the metal atoms of the metal oxide 9 is 5% or less. The metal oxide 9 may be an oxide containing one type of metal as the main component, or a composite oxide containing multiple types of metals as the main components.
 金属酸化物9としては、PEEK樹脂の原子配列を整列させる作用に加え、紫外線を防止する作用を示すものが好ましい。複合材料7を航空宇宙用の用途や屋外で用いる場合、PEEK樹脂8が紫外線の影響で変質することがある。そのため、金属酸化物9としては、紫外線を反射、散乱ないし吸収する作用を示す種類が好ましく、酸化アルミニウムや酸化マグネシウムと比較して、ルチル型である酸化チタンが好ましい。 The metal oxide 9 is preferably one that has the effect of aligning the atomic arrangement of the PEEK resin, as well as the effect of blocking ultraviolet rays. When the composite material 7 is used for aerospace applications or outdoors, the PEEK resin 8 may be altered by the effects of ultraviolet rays. For this reason, the metal oxide 9 is preferably one that has the effect of reflecting, scattering, or absorbing ultraviolet rays, and titanium oxide, which is a rutile type, is more preferable than aluminum oxide or magnesium oxide.
 金属酸化物9としては、PEEK樹脂8との格子ミスマッチが抑制される限り、単結晶体を配合してもよいし、多結晶体を配合してもよい。但し、複合材料7の機械的特性を広範囲に向上させる観点からは、PEEK樹脂8のベンゼン環同士の間隔と金属酸化物9の金属原子同士の間隔との相対差が5%以下となる結晶面の面積率が大きいことが好ましく、金属酸化物9として単結晶体を配合することが好ましい。 As the metal oxide 9, a single crystal or a polycrystal may be blended as long as the lattice mismatch with the PEEK resin 8 is suppressed. However, from the viewpoint of improving the mechanical properties of the composite material 7 over a wide range, it is preferable that the area ratio of the crystal planes where the relative difference between the spacing between the benzene rings of the PEEK resin 8 and the spacing between the metal atoms of the metal oxide 9 is 5% or less is large, and it is preferable to blend a single crystal as the metal oxide 9.
 金属酸化物9の濃度は、0.2at%以上38at%以下であることが好ましい。濃度が0.2at%以上であると、PEEK樹脂の原子配列を整列させる作用の起点が多くなる。また、濃度が38%以下であると、PEEK樹脂で形成された母材の脆化が回避されると共に、PEEK樹脂の原子配列を整列させる作用の起点を離散的に分散できる。濃度が0.2at%以上38at%以下であると、PEEK樹脂8と金属酸化物9との界面201から離れた領域に、多数の起点からの作用が相互に干渉し合うことなく独立的に及ぶため、母材の広範囲にわたってPEEK樹脂の分子鎖を整列させて、降伏強度を向上させる高い効果を得ることができる。 The concentration of the metal oxide 9 is preferably 0.2 at% or more and 38 at% or less. When the concentration is 0.2 at% or more, the number of starting points for the action of aligning the atomic arrangement of the PEEK resin increases. Furthermore, when the concentration is 38% or less, embrittlement of the base material formed of PEEK resin is avoided, and the starting points for the action of aligning the atomic arrangement of the PEEK resin can be dispersed discretely. When the concentration is 0.2 at% or more and 38 at% or less, the action from the multiple starting points extends independently to an area away from the interface 201 between the PEEK resin 8 and the metal oxide 9 without interfering with each other, so that the molecular chains of the PEEK resin can be aligned over a wide area of the base material, resulting in a high effect of improving the yield strength.
 金属酸化物9の平均粒子径は、2nm以上10μm以下であることが好ましい。平均粒子径が2nm以上であると、結晶性が良好になり、粒子径のバラつきが抑制されるため、金属原子同士の間隔が所定の長さである結晶面が得られ易くなる。また、平均粒子径が10μm以下であると、PEEK樹脂で形成された母材の脆化が回避されると共に、金属酸化物9の比表面積が大きくなる。平均粒子径が2nm以上10μm以下であると、PEEK樹脂の原子配列を整列させる作用を、PEEK樹脂8と金属酸化物9との界面201から離れた広範囲に及ぼして、母材の降伏強度を向上させることができる。 The average particle diameter of the metal oxide 9 is preferably 2 nm or more and 10 μm or less. When the average particle diameter is 2 nm or more, the crystallinity is good and the variation in particle diameter is suppressed, so that it is easy to obtain a crystal plane in which the distance between metal atoms is a predetermined length. Furthermore, when the average particle diameter is 10 μm or less, embrittlement of the base material formed of PEEK resin is avoided and the specific surface area of the metal oxide 9 is increased. When the average particle diameter is 2 nm or more and 10 μm or less, the effect of aligning the atomic arrangement of the PEEK resin can be applied to a wide area away from the interface 201 between the PEEK resin 8 and the metal oxide 9, thereby improving the yield strength of the base material.
 金属酸化物9のPEEK樹脂8と接触する結晶面における原子密度は、17atom/nm以上であることが好ましい。金属酸化物9の金属原子同士の間隔が所定の長さであっても、金属原子の密度が低い場合には、PEEK樹脂8との相互作用が形成され難くなる。これに対し、原子密度が17atom/nm以上であると、PEEK樹脂8と金属酸化物9との間に、高密度の原子によって格子整合状の界面が形成されるため、PEEK樹脂の原子配列を整列させる作用を、PEEK樹脂8と金属酸化物9との界面201から離れた広範囲に及ぼして、母材の降伏強度を向上させることができる。 The atomic density of the crystal plane of the metal oxide 9 in contact with the PEEK resin 8 is preferably 17 atoms/ nm2 or more. Even if the distance between the metal atoms of the metal oxide 9 is a predetermined length, if the density of the metal atoms is low, it is difficult to form an interaction with the PEEK resin 8. In contrast, if the atomic density is 17 atoms/ nm2 or more, a lattice-matched interface is formed between the PEEK resin 8 and the metal oxide 9 by high-density atoms, so that the effect of aligning the atomic arrangement of the PEEK resin can be applied to a wide range away from the interface 201 between the PEEK resin 8 and the metal oxide 9, thereby improving the yield strength of the base material.
 本実施形態に係る複合材料7において、PEEK樹脂8で形成された母材中に分散される金属酸化物9の好ましい例は、次の(4)~(6)のとおりである。 In the composite material 7 according to this embodiment, preferred examples of the metal oxide 9 dispersed in the matrix formed of the PEEK resin 8 are as follows (4) to (6).
(4)金属酸化物9が、酸化チタン(チタニア:TiO)である。金属酸化物9のPEEK樹脂8に接触する表面として、ルチル型構造である酸化チタンのミラー指数が(110)の結晶面、または、これと等価な結晶面を含む。金属酸化物9としては、(110)面の面積率が、金属酸化物9で検出される全ての結晶面のうちで最大であるものが好ましい。ルチル型構造である酸化チタンのPEEK樹脂8が接触する結晶面における原子密度は、17atom/nm以上であることが好ましい。 (4) The metal oxide 9 is titanium oxide (titania: TiO2 ). The surface of the metal oxide 9 in contact with the PEEK resin 8 includes a crystal plane of titanium oxide having a rutile structure with Miller indices of (110) or a crystal plane equivalent thereto. The metal oxide 9 is preferably one in which the area ratio of the (110) plane is the largest among all crystal planes detected in the metal oxide 9. The atomic density of the crystal plane of the titanium oxide having a rutile structure in contact with the PEEK resin 8 is preferably 17 atoms/ nm2 or more.
(5)金属酸化物9が、酸化アルミニウム(アルミナ:Al)である。金属酸化物9のPEEK樹脂8に接触する表面として、酸化アルミニウムのミラー指数が(001)の結晶面、または、これと等価な結晶面を含む。金属酸化物9としては、(001)面の面積率が、金属酸化物9で検出される全ての結晶面のうちで最大であるものが好ましい。酸化アルミニウムのPEEK樹脂8が接触する結晶面における原子密度は、17atom/nm以上であることが好ましい。 (5) The metal oxide 9 is aluminum oxide ( alumina : Al2O3 ). The surface of the metal oxide 9 in contact with the PEEK resin 8 includes a crystal plane of the aluminum oxide with Miller indices (001) or a crystal plane equivalent thereto. The metal oxide 9 is preferably one in which the area ratio of the (001) plane is the largest among all the crystal planes detected in the metal oxide 9. The atomic density of the crystal plane of the aluminum oxide in contact with the PEEK resin 8 is preferably 17 atom/ nm2 or more.
(6)金属酸化物9が、酸化マグネシウム(マグネシア:MgO)である。金属酸化物9のPEEK樹脂8に接触する表面として、酸化マグネシウムのミラー指数が(111)の結晶面、または、これと等価な結晶面を含む。金属酸化物9としては、(111)面の面積率が、金属酸化物9で検出される全ての結晶面のうちで最大であるものが好ましい。酸化マグネシウムのPEEK樹脂8が接触する結晶面における原子密度は、17atom/nm以上であることが好ましい。 (6) The metal oxide 9 is magnesium oxide (magnesia: MgO). The surface of the metal oxide 9 in contact with the PEEK resin 8 includes a crystal plane of magnesium oxide with Miller indices (111) or a crystal plane equivalent thereto. The metal oxide 9 is preferably one in which the area ratio of the (111) plane is the largest among all crystal planes detected in the metal oxide 9. The atomic density of the crystal plane of the magnesium oxide in contact with the PEEK resin 8 is preferably 17 atom/ nm2 or more.
 (4)~(6)の金属酸化物9によると、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔と金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下となる。そのため、PEEK樹脂の原子配列を整列させる作用によって、PEEK樹脂と金属酸化物との間に、格子整合状の界面を形成して、相互の接着強度を高めることができる。また、界面から離れた領域において、PEEK樹脂の分子鎖同士の密着強度を高めて、PEEK樹脂で形成された母材の降伏強度等の機械的特性を向上できる。 With metal oxide 9 (4) to (6), the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide is 5% or less. Therefore, by aligning the atomic arrangement of the PEEK resin, a lattice-matched interface is formed between the PEEK resin and the metal oxide, and the adhesive strength between them can be increased. In addition, in areas away from the interface, the adhesive strength between the molecular chains of the PEEK resin is increased, improving the mechanical properties such as the yield strength of the base material formed from the PEEK resin.
 図5は、本発明の実施形態に係る複合材料に分散される金属酸化物を模式的に示す斜視図である。図5には、結晶格子の構造が表面に反映される単結晶の金属酸化物を示す。図5において、符号10~13は金属酸化物の結晶面、符号sは金属酸化物の結晶の縦長、符号tは金属酸化物の結晶の横長、符号hは金属酸化物の結晶の高さを示す。 FIG. 5 is a perspective view showing a metal oxide dispersed in a composite material according to an embodiment of the present invention. FIG. 5 shows a single crystal metal oxide in which the crystal lattice structure is reflected on the surface. In FIG. 5, the reference characters 10 to 13 indicate the crystal planes of the metal oxide, the reference character s indicates the length of the metal oxide crystal, the reference character t indicates the width of the metal oxide crystal, and the reference character h indicates the height of the metal oxide crystal.
 図5において、複合材料7に分散される金属酸化物9の表面のうち、面積が最大の結晶面が結晶面10や結晶面11である場合、結晶面10や結晶面11において、PEEK樹脂2の分子鎖を構成するベンゼン環同士の間隔と金属酸化物3の結晶構造を構成する金属原子同士の間隔との相対差が5%以下となる条件を満たすことが好ましい。 In FIG. 5, when the crystal plane with the largest area among the surfaces of the metal oxide 9 dispersed in the composite material 7 is crystal plane 10 or crystal plane 11, it is preferable that the relative difference between the spacing between the benzene rings constituting the molecular chain of the PEEK resin 2 and the spacing between the metal atoms constituting the crystal structure of the metal oxide 3 on crystal plane 10 or crystal plane 11 is 5% or less.
 例えば、金属酸化物9がルチル型である酸化チタンの単結晶である場合、結晶格子は正方晶系である。このような場合、面積が最大の結晶面10や結晶面11が、(110)面であることが好ましい。また、結晶面10や結晶面11に垂直な結晶面12や結晶面13が、(1-10)面であることが好ましい。(1-10)面は、(110)面と等価な原子配列を持ち、PEEK樹脂8に対して格子整合状の界面を形成するためである。 For example, when metal oxide 9 is a single crystal of titanium oxide of the rutile type, the crystal lattice is a tetragonal system. In such a case, it is preferable that crystal plane 10 or crystal plane 11, which has the largest area, is a (110) plane. It is also preferable that crystal plane 12 or crystal plane 13, which is perpendicular to crystal plane 10 or crystal plane 11, is a (1-10) plane. This is because the (1-10) plane has an atomic arrangement equivalent to that of the (110) plane, and forms a lattice-matched interface with PEEK resin 8.
 また、金属酸化物9が六方晶系であるα-酸化アルミニウムの単結晶である場合、面積が最大の結晶面や、当該結晶面と平行な結晶面が、(001)面、または、これと等価な結晶面であることが好ましい。また、金属酸化物9が立方晶系である酸化マグネシウムの単結晶である場合、面積が最大の結晶面や、当該結晶面と平行な結晶面が、(111)面、または、これと等価な結晶面であることが好ましい。 Furthermore, when the metal oxide 9 is a single crystal of α-aluminum oxide, which has a hexagonal crystal system, it is preferable that the crystal face with the largest area and the crystal face parallel to said crystal face are the (001) face or a crystal face equivalent thereto.Furthermore, when the metal oxide 9 is a single crystal of magnesium oxide, which has a cubic crystal system, it is preferable that the crystal face with the largest area and the crystal face parallel to said crystal face are the (111) face or a crystal face equivalent thereto.
 金属酸化物の結晶配向性や所定の結晶面の面積率は、X線回折(X-ray Diffraction:XRD)測定によって求めることができる。金属酸化物の粉末を試料として、粉末X線回折測定によって、金属酸化物毎のX線回折スペクトルを求めることができる。金属酸化物の結晶配向性や所定の結晶面の面積率は、得られたX回折スペクトル中に検出された全ての結晶面のピーク面積の合計に対し、所定のミラー指数で表される個別の結晶面のピーク面積の割合を計算して求めることができる。 The crystal orientation of metal oxides and the area ratio of a specific crystal plane can be determined by X-ray diffraction (XRD) measurement. Using metal oxide powder as a sample, the X-ray diffraction spectrum for each metal oxide can be obtained by powder X-ray diffraction measurement. The crystal orientation of metal oxides and the area ratio of a specific crystal plane can be determined by calculating the ratio of the peak area of an individual crystal plane, represented by a specific Miller index, to the total peak area of all crystal planes detected in the obtained X-ray diffraction spectrum.
 図6は、酸化チタンの全表面積における(110)面の割合と複合材料の降伏強度との関係の解析結果を示す図である。図6には、粉末X線回折測定によって求めたルチル型である酸化チタンのミラー指数が(110)の結晶面の割合と、当該割合となるように酸化チタンを配合した複合材料の降伏強度との関係を示す。酸化チタンの濃度は、いずれも、0.3at%である。ルチル型である酸化チタンの(110)面が、図5の結晶面10や結晶面11に相当する場合を想定した。 Figure 6 shows the results of an analysis of the relationship between the proportion of (110) faces in the total surface area of titanium oxide and the yield strength of a composite material. Figure 6 shows the relationship between the proportion of crystal faces of rutile titanium oxide with Miller indices (110) determined by powder X-ray diffraction measurement, and the yield strength of a composite material in which titanium oxide is blended to achieve said proportion. The concentration of titanium oxide is 0.3 at% in all cases. It is assumed that the (110) faces of rutile titanium oxide correspond to crystal planes 10 and 11 in Figure 5.
 図中の実線は、図5の縦長sおよび横長tを8nmに固定し、高さhのみを変えて、(110)面の割合を変化させた結果である。図中の破線は、図5の横長tおよび高さhを8nmに固定し、縦長sのみを変えて、(110)面の割合を変化させた結果である。図中の一点鎖線は、図5の横長tを8nm、高さhを4nmに固定し、縦長sのみを変えて、(110)面の割合を変化させた結果である。 The solid line in the figure shows the result of changing the proportion of (110) faces by fixing the length s and width t in Figure 5 at 8 nm and changing only the height h. The dashed line in the figure shows the result of changing the proportion of (110) faces by fixing the width t and height h in Figure 5 at 8 nm and changing only the length s. The dashed line in the figure shows the result of changing the proportion of (110) faces by fixing the width t in Figure 5 at 8 nm and the height h at 4 nm and changing only the length s.
 図6に示すように、複合材料の降伏強度は、高さhのみを変えた場合に、相対的に高い値となった。(110)面の割合が57%や74%を超えると、降伏強度が段階的に上昇した。酸化チタンの全表面積における(110)面の割合は、複合材料の降伏強度を向上させる観点からは、57%以上が好ましく、74%以上がより好ましいといえる。 As shown in Figure 6, the yield strength of the composite material was relatively high when only the height h was changed. When the proportion of (110) faces exceeded 57% or 74%, the yield strength increased stepwise. From the viewpoint of improving the yield strength of the composite material, it can be said that the proportion of (110) faces in the total surface area of titanium oxide is preferably 57% or more, and more preferably 74% or more.
 図7は、酸化アルミニウムの全表面積における(001)面の割合と複合材料の降伏強度との関係の解析結果を示す図である。図7には、粉末X線回折測定によって求めた酸化アルミニウムのミラー指数が(001)の結晶面の割合と、当該割合となるように酸化アルミニウムを配合した複合材料の降伏強度との関係を示す。酸化アルミニウムの濃度は、いずれも、0.3at%である。酸化アルミニウムの(001)面が、図5の結晶面10や結晶面11に相当する場合を想定した。 Figure 7 shows the results of an analysis of the relationship between the proportion of (001) faces in the total surface area of aluminum oxide and the yield strength of a composite material. Figure 7 shows the relationship between the proportion of crystal faces of aluminum oxide with Miller indices of (001) determined by powder X-ray diffraction measurement, and the yield strength of a composite material in which aluminum oxide is blended to achieve said proportion. The concentration of aluminum oxide is 0.3 at% in all cases. It is assumed that the (001) faces of aluminum oxide correspond to crystal plane 10 and crystal plane 11 in Figure 5.
 図中の実線は、図5の縦長sおよび横長tを8nmに固定し、高さhのみを変えて、(001)面の割合を変化させた結果である。図中の破線は、図5の横長tおよび高さhを8nmに固定し、縦長sのみを変えて、(001)面の割合を変化させた結果である。図中の一点鎖線は、図5の横長tを8nm、高さhを4nmに固定し、縦長sのみを変えて、(001)面の割合を変化させた結果である。 The solid line in the figure shows the result of changing the proportion of (001) faces by fixing the length s and width t in Figure 5 at 8 nm and varying only the height h. The dashed line in the figure shows the result of changing the proportion of (001) faces by fixing the width t and height h in Figure 5 at 8 nm and varying only the length s. The dashed line in the figure shows the result of changing the proportion of (001) faces by fixing the width t in Figure 5 at 8 nm and the height h at 4 nm and varying only the length s.
 図7に示すように、複合材料の降伏強度は、高さhのみを変えた場合に、相対的に高い値となった。(001)面の割合が57%や74%を超えると、降伏強度が段階的に上昇した。酸化アルミニウムの全表面積における(001)面の割合は、複合材料の降伏強度を向上させる観点からは、57%以上が好ましく、74%以上がより好ましいといえる。 As shown in Figure 7, the yield strength of the composite material was relatively high when only the height h was changed. When the proportion of (001) faces exceeded 57% or 74%, the yield strength increased stepwise. From the viewpoint of improving the yield strength of the composite material, it can be said that the proportion of (001) faces in the total surface area of aluminum oxide is preferably 57% or more, and more preferably 74% or more.
 図8は、酸化マグネシウムの全表面積における(111)面の割合と複合材料の降伏強度との関係の解析結果を示す図である。図8には、粉末X線回折測定によって求めた酸化マグネシウムのミラー指数が(111)の結晶面の割合と、当該割合となるように酸化マグネシウムを配合した複合材料の降伏強度との関係を示す。酸化マグネシウムの濃度は、いずれも、0.3at%である。酸化マグネシウムの(111)面が、図5の結晶面10や結晶面11に相当する場合を想定した。 Figure 8 shows the results of an analysis of the relationship between the proportion of (111) faces in the total surface area of magnesium oxide and the yield strength of a composite material. Figure 8 shows the relationship between the proportion of crystal faces of magnesium oxide with Miller indices of (111) determined by powder X-ray diffraction measurement, and the yield strength of a composite material in which magnesium oxide is blended to achieve said proportion. The magnesium oxide concentration is 0.3 at% in all cases. It is assumed that the (111) faces of magnesium oxide correspond to crystal plane 10 and crystal plane 11 in Figure 5.
 図中の実線は、図5の縦長sおよび横長tを8nmに固定し、高さhのみを変えて、(111)面の割合を変化させた結果である。図中の破線は、図5の横長tおよび高さhを8nmに固定し、縦長sのみを変えて、(111)面の割合を変化させた結果である。図中の一点鎖線は、図5の横長tを8nm、高さhを4nmに固定し、縦長sのみを変えて、(111)面の割合を変化させた結果である。 The solid line in the figure shows the result of changing the proportion of (111) faces by fixing the length s and width t in Figure 5 at 8 nm and changing only the height h. The dashed line in the figure shows the result of changing the proportion of (111) faces by fixing the width t and height h in Figure 5 at 8 nm and changing only the length s. The dashed line in the figure shows the result of changing the proportion of (111) faces by fixing the width t in Figure 5 at 8 nm and the height h at 4 nm and changing only the length s.
 図8に示すように、複合材料の降伏強度は、高さhのみを変えた場合に、相対的に高い値となった。(111)面の割合が57%や74%を超えると、降伏強度が段階的に上昇した。酸化マグネシウムの全表面積における(111)面の割合は、複合材料の降伏強度を向上させる観点からは、57%以上が好ましく、74%以上がより好ましいといえる。 As shown in Figure 8, the yield strength of the composite material was relatively high when only the height h was changed. When the ratio of (111) faces exceeded 57% or 74%, the yield strength increased stepwise. From the viewpoint of improving the yield strength of the composite material, it can be said that the ratio of (111) faces in the total surface area of magnesium oxide is preferably 57% or more, and more preferably 74% or more.
 次に、金属原子同士の間隔が所定の長さである金属酸化物の結晶面の面積率を固定して、金属酸化物の濃度や金属酸化物の粒子径と複合材料の降伏強度との関係を解析した。 Next, the area ratio of the crystal faces of the metal oxide, where the distance between metal atoms is a given length, was fixed, and the relationship between the metal oxide concentration and the metal oxide particle size and the yield strength of the composite material was analyzed.
 金属酸化物の濃度と複合材料の降伏強度との関係は、図5の縦長sおよび横長tを8nmに固定し、高さhのみを変えて、酸化チタンの(110)面の割合や、酸化アルミニウムの(001)面の割合や、酸化マグネシウムの(111)面の割合を74%に固定して、PEEK樹脂に分散させる金属酸化物の濃度を変化させて求めた。 The relationship between the metal oxide concentration and the yield strength of the composite material was determined by fixing the length s and width t in Figure 5 to 8 nm and varying only the height h, fixing the proportion of the (110) plane of titanium oxide, the proportion of the (001) plane of aluminum oxide, and the proportion of the (111) plane of magnesium oxide to 74%, and varying the concentration of the metal oxide dispersed in the PEEK resin.
 金属酸化物の濃度と複合材料の降伏強度との関係を解析した結果、いずれの金属酸化物においても、金属酸化物の濃度が0.2at%以上38at%以下である場合に、複合材料の降伏強度を顕著に向上させる作用が得られた。濃度が0.2at%未満であると、PEEK樹脂の原子配列を整列させる作用の起点が不足するといえる。また、濃度が38at%を超えると、PEEK樹脂で形成された母材が脆化し、延性を示すことなく脆性的に破壊する傾向があるため好ましくない。 Analysis of the relationship between metal oxide concentration and the yield strength of the composite material showed that, for all metal oxides, when the metal oxide concentration was 0.2 at% or more and 38 at% or less, it had the effect of significantly improving the yield strength of the composite material. If the concentration was less than 0.2 at%, it could be said that there were insufficient starting points for the effect of aligning the atomic arrangement of the PEEK resin. Also, if the concentration exceeded 38 at%, it was undesirable because the base material formed of PEEK resin became brittle and tended to break brittlely without exhibiting ductility.
 金属酸化物の粒子径と複合材料の降伏強度との関係は、酸化チタンの(110)面の割合や、酸化アルミニウムの(001)面の割合や、酸化マグネシウムの(111)面の割合を74%に固定して、PEEK樹脂に分散させる金属酸化物の平均粒子径(サイズ)を変化させて求めた。 The relationship between the particle size of the metal oxide and the yield strength of the composite material was determined by fixing the proportion of titanium oxide (110) faces, aluminum oxide (001) faces, and magnesium oxide (111) faces at 74% and varying the average particle size of the metal oxide dispersed in the PEEK resin.
 金属酸化物の粒子径と複合材料の降伏強度との関係を解析した結果、いずれの金属酸化物においても、金属酸化物の平均粒子径が2nm以上10μm以下である場合に、複合材料の降伏強度を顕著に向上させる作用が得られた。平均粒子径が2nm未満であると、PEEK樹脂の原子配列を整列させる作用を示す結晶面が得られ難いといえる。また、平均粒子径が10μmを超えると、PEEK樹脂で形成された母材が脆化し、延性を示すことなく脆性的に破壊する傾向があるため好ましくない。 As a result of analyzing the relationship between the particle size of the metal oxide and the yield strength of the composite material, it was found that for all metal oxides, when the average particle size of the metal oxide was 2 nm or more and 10 μm or less, the yield strength of the composite material was significantly improved. If the average particle size is less than 2 nm, it is difficult to obtain a crystal plane that has the effect of aligning the atomic arrangement of the PEEK resin. Also, if the average particle size exceeds 10 μm, the base material formed from the PEEK resin becomes brittle and tends to break brittlely without showing ductility, which is not preferable.
 次に、PEEK樹脂を母材として金属酸化物を含有した本実施形態に係る複合材料の製造方法について説明する。 Next, we will explain the manufacturing method of the composite material according to this embodiment, which contains metal oxide and has PEEK resin as the base material.
 本実施形態に係る複合材料は、PEEK樹脂によって形成される母材中に、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物を分散させる製造方法によって製造できる。金属酸化物は、PEEK樹脂のベンゼン環同士の間隔と金属酸化物の金属原子同士の間隔との相対差が5%以下となるように、所定の結晶構造を持つ充填材としてPEEK樹脂に配合する。 The composite material according to this embodiment can be manufactured by a manufacturing method in which a specific metal oxide that acts to align the atomic arrangement of PEEK resin is dispersed in a matrix formed of PEEK resin. The metal oxide is mixed into the PEEK resin as a filler with a specific crystal structure so that the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less.
 本実施形態に係る複合材料の製造方法は、PEEK樹脂と金属酸化物との混合物を加熱および混錬する加熱混錬工程と、加熱混錬工程で得られた樹脂組成物を熱間で成形して金属酸化物の結晶配向性を向上させる成形工程と、を含む。 The method for producing a composite material according to this embodiment includes a heating and kneading process in which a mixture of PEEK resin and metal oxide is heated and kneaded, and a molding process in which the resin composition obtained in the heating and kneading process is hot molded to improve the crystal orientation of the metal oxide.
 PEEK樹脂は、ペレット、パウダ等の適宜の原料形態で用意できる。金属酸化物は、粉末等の原料形態で用意できる。原料のPEEK樹脂と金属酸化物は、必要に応じて添加される添加剤と共に混合できる。これらの原料が混合された混合物は、加熱して溶融させながら混錬して樹脂組成物とする。 PEEK resin can be prepared in a suitable raw material form such as pellets or powder. Metal oxide can be prepared in a raw material form such as powder. The raw materials PEEK resin and metal oxide can be mixed together with additives added as required. The mixture of these raw materials is heated to melt and kneaded to form a resin composition.
 樹脂組成物の混錬は、バンバリーミキサ、加圧ニーダ等の回分式密閉型混練機や、ロール型混練機、ロータ型混練機等の開放型混錬機や、一軸スクリュ押出機、二軸スクリュ押出機等の各種の装置を用いて行うことができる。加熱条件は、373℃±20℃で2分間程度とすることが好ましい。このような加熱条件であると、PEEK樹脂を熱分解させることなく流動化させて、金属酸化物と均一に混和させることができる。 The resin composition can be mixed using various devices such as a batch-type closed mixer such as a Banbury mixer or a pressure kneader, an open mixer such as a roll mixer or a rotor mixer, a single screw extruder, or a twin screw extruder. The heating conditions are preferably 373°C ± 20°C for about 2 minutes. Under these heating conditions, the PEEK resin can be fluidized without thermal decomposition and can be mixed uniformly with the metal oxide.
 続いて、樹脂組成物を熱間で成形して金属酸化物の結晶配向性を向上させた成形物を成形する。成形温度は、100℃以上400℃以下とすることが好ましい。成形温度が100℃以上であると、金属酸化物の結晶構造の乱れを低減して、金属原子同士の間隔が所定の長さである所定の結晶構造の面積率を高めることができる。成形温度が400℃以下であると、PEEK樹脂の熱分解を回避できる。 Then, the resin composition is hot molded to form a molded product with improved crystal orientation of the metal oxide. The molding temperature is preferably 100°C or higher and 400°C or lower. A molding temperature of 100°C or higher can reduce disorder in the crystal structure of the metal oxide and increase the area ratio of a specified crystal structure in which the distance between metal atoms is a specified length. A molding temperature of 400°C or lower can avoid thermal decomposition of the PEEK resin.
 樹脂組成物は、複合材料の用途に応じて、任意の形状に成形できる。成形方法としては、押出成形、射出成形、ブロー成形、圧縮成形、積層造形等の適宜の方法を用いることができる。樹脂組成物の成形に金型を用いる場合、金属酸化物の結晶構造の乱れを低減できる点で、100℃以上の金型温度に設定することが好ましい。 The resin composition can be molded into any shape depending on the application of the composite material. Any suitable molding method can be used, such as extrusion molding, injection molding, blow molding, compression molding, and additive manufacturing. When using a mold to mold the resin composition, it is preferable to set the mold temperature to 100°C or higher, since this reduces the disruption of the crystal structure of the metal oxide.
 以上の本実施形態に係る複合材料によると、PEEK樹脂のベンゼン環同士の間隔と金属酸化物の金属原子同士の間隔との相対差が5%以下であり、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物が、PEEK樹脂で形成された母材に分散されているため、PEEK樹脂と金属酸化物との間に、格子整合状の界面を形成できる。そのため、PEEK樹脂と金属酸化物との密着強度が高い複合材料を得ることができる。また、金属酸化物が母材に分散されており、PEEK樹脂の原子配列を整列させる作用は界面から離れた領域にも及ぶため、PEEK樹脂で形成された母材の降伏強度を向上させることができる。 In the composite material according to the present embodiment, the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, and the metal oxide that acts to align the atomic arrangement of the PEEK resin is dispersed in the base material formed from the PEEK resin, so that a lattice-matched interface can be formed between the PEEK resin and the metal oxide. This makes it possible to obtain a composite material with high adhesion strength between the PEEK resin and the metal oxide. In addition, because the metal oxide is dispersed in the base material and the effect of aligning the atomic arrangement of the PEEK resin extends to areas away from the interface, the yield strength of the base material formed from the PEEK resin can be improved.
 図9は、本発明の実施形態に係る複合材料の一例を模式的に示す断面図である。図9には、PEEK樹脂を母材として充填材である金属酸化物を含有しており、PEEK樹脂の表面に接合材である金属酸化物が接合された複合材料の一例を示す。図9において、符号8はPEEK樹脂、符号9は充填材である金属酸化物、符号14は複合材料、符号15は接合材である金属酸化物、符号16は金属、符号301はPEEK樹脂と金属酸化物との界面を示す。 FIG. 9 is a cross-sectional view showing a schematic example of a composite material according to an embodiment of the present invention. FIG. 9 shows an example of a composite material in which PEEK resin is the base material and contains a metal oxide as a filler, with a metal oxide as a bonding material bonded to the surface of the PEEK resin. In FIG. 9, reference numeral 8 denotes PEEK resin, reference numeral 9 denotes the metal oxide as a filler, reference numeral 14 denotes the composite material, reference numeral 15 denotes the metal oxide as a bonding material, reference numeral 16 denotes a metal, and reference numeral 301 denotes the interface between the PEEK resin and the metal oxide.
 図9に示すように、本実施形態に係る複合材料14は、母材を形成するPEEK樹脂8と、母材中に分散された金属酸化物9と、を少なくとも含む。金属酸化物9としては、金属原子同士の間隔が所定の長さであり、PEEK樹脂の原子配列を整列させる作用を示す所定の金属酸化物が配合される。 As shown in FIG. 9, the composite material 14 according to this embodiment includes at least a PEEK resin 8 forming a base material, and a metal oxide 9 dispersed in the base material. As the metal oxide 9, a specific metal oxide is blended in which the distance between metal atoms is a specific length and which acts to align the atomic arrangement of the PEEK resin.
 本実施形態に係る複合材料14は、PEEK樹脂8の表面に接合材である金属酸化物15が接合された接合材の形態とされている。金属酸化物15は、単独で接合材を構成してもよいが、図9に示すように、金属16と共に接合材を構成してもよい。金属酸化物15は、金属16の表面側の一部を熱酸化させる方法で形成してもよいし、金属16の表面に成膜する方法で形成してもよい。 The composite material 14 according to this embodiment is in the form of a bonding material in which a metal oxide 15, which is a bonding material, is bonded to the surface of a PEEK resin 8. The metal oxide 15 may constitute the bonding material alone, or may constitute the bonding material together with a metal 16, as shown in FIG. 9. The metal oxide 15 may be formed by a method of thermally oxidizing a portion of the surface side of the metal 16, or may be formed by a method of forming a film on the surface of the metal 16.
 接合材である金属酸化物15としては、前記の金属酸化物3と同様に、適宜の金属の酸化物を用いることができる。金属酸化物15としては、単結晶体を用いてもよいし、多結晶体を用いてもよい。金属酸化物15のPEEK樹脂8と接合される表面に垂直な方向の厚さは、2nm以上100μm以下であることが好ましい。金属酸化物15のPEEK樹脂8が接合される結晶面における原子密度は、17atom/nm以上であることが好ましい。 As the metal oxide 15 serving as the bonding material, an appropriate metal oxide can be used, similar to the metal oxide 3 described above. As the metal oxide 15, a single crystal or a polycrystal may be used. The thickness of the metal oxide 15 in the direction perpendicular to the surface to be bonded to the PEEK resin 8 is preferably 2 nm or more and 100 μm or less. The atomic density of the crystal surface of the metal oxide 15 to which the PEEK resin 8 is bonded is preferably 17 atom/ nm2 or more.
 金属酸化物15と共に接合材を構成する金属16としては、適宜の純金属や合金を用いることができる。金属16は、複合材料14の用途に応じて、任意の形状に加工・成形できる。金属16としては、複合材料14を軽量化する観点からは、鉄よりも比重が小さい軽金属が好ましく、チタン、アルミニウム、マグネシウムや、これらの合金が好ましい。金属酸化物15と金属16とは、互いに同種の金属で構成されることが好ましい。このような金属酸化物15は、金属16の表面を熱酸化させる方法によって形成できる。 As the metal 16 that constitutes the bonding material together with the metal oxide 15, an appropriate pure metal or alloy can be used. The metal 16 can be processed and formed into any shape depending on the application of the composite material 14. From the viewpoint of reducing the weight of the composite material 14, the metal 16 is preferably a light metal with a specific gravity smaller than that of iron, and titanium, aluminum, magnesium, or alloys thereof are preferable. The metal oxide 15 and the metal 16 are preferably composed of the same type of metal. Such a metal oxide 15 can be formed by a method of thermally oxidizing the surface of the metal 16.
 本実施形態に係る複合材料14において、PEEK樹脂8と接合される金属酸化物15や、PEEK樹脂8で形成された母材中に分散される金属酸化物9の好ましい例は、次の(7)~(9)のとおりである。 In the composite material 14 according to this embodiment, preferred examples of the metal oxide 15 bonded to the PEEK resin 8 and the metal oxide 9 dispersed in the matrix formed of the PEEK resin 8 are as follows (7) to (9).
(7)接合材である金属酸化物15が、酸化チタン(チタニア:TiO)である。金属酸化物15のPEEK樹脂8が接合された結晶面は、ルチル型構造である酸化チタンのミラー指数が(110)の結晶面、または、これと等価な結晶面である。ルチル型構造である酸化チタンのPEEK樹脂8が接合された結晶面における原子密度は、17atom/nm以上であることが好ましい。充填材である金属酸化物9は、酸化チタンであることが好ましい。酸化チタンは、チタンまたはチタン合金の表面に形成されていることが好ましい。 (7) The metal oxide 15 serving as the bonding material is titanium oxide (titania: TiO2 ). The crystal plane of the metal oxide 15 to which the PEEK resin 8 is bonded is a crystal plane of titanium oxide having a rutile structure with Miller indices of (110), or a crystal plane equivalent thereto. The atomic density of the crystal plane of titanium oxide having a rutile structure to which the PEEK resin 8 is bonded is preferably 17 atoms/ nm2 or more. The metal oxide 9 serving as the filler is preferably titanium oxide. The titanium oxide is preferably formed on the surface of titanium or a titanium alloy.
(8)接合材である金属酸化物15が、酸化アルミニウム(アルミナ:Al)である。金属酸化物15のPEEK樹脂8が接合された結晶面は、酸化アルミニウムのミラー指数が(001)の結晶面、または、これと等価な結晶面である。酸化アルミニウムのPEEK樹脂8が接合された結晶面における原子密度は、17atom/nm以上であることが好ましい。充填材である金属酸化物9は、酸化アルミニウムであることが好ましい。酸化アルミニウムは、アルミニウムまたはアルミニウム合金の表面に形成されていることが好ましい。 (8) The metal oxide 15 serving as the bonding material is aluminum oxide ( alumina : Al2O3 ). The crystal plane of the metal oxide 15 to which the PEEK resin 8 is bonded is a crystal plane of aluminum oxide with Miller indices of (001) or a crystal plane equivalent thereto. The atomic density of the crystal plane of the aluminum oxide to which the PEEK resin 8 is bonded is preferably 17 atoms/ nm2 or more. The metal oxide 9 serving as the filler is preferably aluminum oxide. The aluminum oxide is preferably formed on the surface of aluminum or an aluminum alloy.
(9)接合材である金属酸化物15が、酸化マグネシウム(マグネシア:MgO)である。金属酸化物15のPEEK樹脂8が接合された結晶面が、酸化マグネシウムのミラー指数が(111)の結晶面、または、これと等価な結晶面である。酸化マグネシウムのPEEK樹脂8が接合された結晶面における原子密度は、17atom/nm以上であることが好ましい。充填材である金属酸化物9は、酸化マグネシウムであることが好ましい。酸化マグネシウムは、マグネシウムまたはマグネシウム合金の表面に形成されていることが好ましい。 (9) The metal oxide 15 serving as the bonding material is magnesium oxide (magnesia: MgO). The crystal face of the metal oxide 15 to which the PEEK resin 8 is bonded is a crystal face of magnesium oxide with Miller indices (111) or a crystal face equivalent thereto. The atomic density of the crystal face of the magnesium oxide to which the PEEK resin 8 is bonded is preferably 17 atom/ nm2 or more. The metal oxide 9 serving as the filler is preferably magnesium oxide. The magnesium oxide is preferably formed on the surface of magnesium or a magnesium alloy.
 (7)~(9)の組み合わせによると、PEEK樹脂8と金属酸化物9との界面301における格子整合によって複合材料7の降伏強度が高められると共に、複合材料7と金属酸化物14との界面における格子整合によってPEEK樹脂8や金属酸化物9と金属酸化物14との接合強度が高められる。また、金属酸化物14を金属15の熱酸化で形成することによって、金属酸化物14と金属15との接合強度を高めることができる。そのため、降伏強度が高い複合材料7と金属15が高い接合強度で複合化された材料を得ることができる。 By combining (7) to (9), the yield strength of the composite material 7 is increased by lattice matching at the interface 301 between the PEEK resin 8 and the metal oxide 9, and the bonding strength between the PEEK resin 8 and the metal oxide 9 and the metal oxide 14 is increased by lattice matching at the interface between the composite material 7 and the metal oxide 14. In addition, by forming the metal oxide 14 by thermal oxidation of the metal 15, the bonding strength between the metal oxide 14 and the metal 15 can be increased. Therefore, a material can be obtained in which the composite material 7, which has a high yield strength, and the metal 15 are combined with each other with high bonding strength.
 以上の本実施形態に係る複合材料によると、PEEK樹脂のベンゼン環同士の間隔と金属酸化物の金属原子同士の間隔との相対差が5%以下であり、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物が、PEEK樹脂で形成された母材に分散されていると共に、PEEK樹脂に対して接合されているため、PEEK樹脂で形成された母材の降伏強度や、PEEK樹脂と金属酸化物との密着強度が高く、PEEK樹脂と金属酸化物との界面で界面破壊を生じ難い複合材料を得ることができる。 In the composite material according to the present embodiment, the relative difference between the spacing between benzene rings in the PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, and the metal oxide that acts to align the atomic arrangement of the PEEK resin is dispersed in the base material formed from the PEEK resin and is bonded to the PEEK resin. This results in a composite material that has high yield strength of the base material formed from the PEEK resin and high adhesion strength between the PEEK resin and the metal oxide, and is less susceptible to interfacial failure at the interface between the PEEK resin and the metal oxide.
 また、PEEK樹脂を金属や金属酸化物に接合することによって、構造材等をマルチマテリアル化させることができる。軽量な金属や金属酸化物とマルチマテリアル化させることによって、移動体等を軽量化することが可能である。移動体の燃費や電費を向上させることができるため、カーボンニュートラルに向けて環境負荷を低減できる。また、インプラントの材料をマルチマテリアル化して、インプラントの軽量化や多機能化を図ることができる。 Furthermore, by bonding PEEK resin to metals or metal oxides, structural materials can be made multi-material. By making them multi-material with lightweight metals or metal oxides, it is possible to reduce the weight of moving objects. This can improve the fuel efficiency and power consumption of moving objects, thereby reducing the environmental burden as we move towards carbon neutrality. Furthermore, by making implant materials multi-material, it is possible to make the implants lighter and more multifunctional.
 なお、マルチマテリアル化とは、金属材料、無機材料、樹脂材料等のいずれか一種を材料として製造されていた製造物を、複数種の材料を組み合わせて製造することを意味する。製造物の軽量化を図る場合、従来用いられていた金属材料や無機材料を樹脂材料に置換する方法が有効である。一方、加工性、加工精度、成形性等の観点からは、樹脂材料よりも金属材料や無機材料が有利な場合がある。金属材料や無機材料の一部を樹脂材料に置換すると、加工性、加工精度、成形性等を確保しつつ、軽量なシステムやデバイスを製造できる。 Multi-materialization means that a product that was previously made using only one of the following materials, such as metal, inorganic, or resin, is now made using a combination of multiple materials. When trying to reduce the weight of a product, it is effective to replace the metal or inorganic materials that were previously used with resin materials. On the other hand, from the standpoint of processability, processing precision, moldability, etc., metal or inorganic materials may be more advantageous than resin materials. By replacing some of the metal or inorganic materials with resin materials, it is possible to manufacture lightweight systems and devices while maintaining processability, processing precision, moldability, etc.
 以上のPEEK樹脂と金属酸化物が接合された接合体や、PEEK樹脂を母材として金属酸化物を含有した複合材料は、インプラントの用途や、インプラント以外の用途等、適宜の用途に用いることができる。図1および図2において、接合体1は、椎体間ケージを形成しているが、接合体1は、その他のインプラントや、インプラント以外に用いられてもよい。 The above-mentioned joint in which PEEK resin and metal oxide are joined, and the composite material in which PEEK resin is the base material and metal oxide is contained, can be used for appropriate purposes such as implants and non-implant purposes. In Figures 1 and 2, the joint 1 forms an interbody cage, but the joint 1 may be used for other implants or for purposes other than implants.
 インプラントの用途としては、椎体間ケージ、椎弓根スクリュ等の脊椎関連の整形外科用インプラントや、人工関節、人工骨幹、骨折時の内固定用具等の脊椎関連以外の整形外科用インプラントや、プレート等の眼科用インプラントや、美容整形用インプラント等の医療用インプラントや、人工歯根等の歯科用インプラントが挙げられる。 Implant applications include orthopedic implants related to the spine, such as interbody cages and pedicle screws, orthopedic implants other than those related to the spine, such as artificial joints, artificial bone shafts, and internal fixation devices for fractures, as well as ophthalmic implants such as plates, medical implants such as cosmetic surgery implants, and dental implants such as artificial tooth roots.
 インプラント以外の用途としては、移動体を形成する構造材や、機械・機器を形成する構造材や部品等が挙げられる。移動体としては、自動車、重機、鉄道車両、自動二輪車、自転車、車椅子、エレベータ、船舶、潜水機、潜水艦、航空機、ヘリコプタ、ドローン、ロケット、人工衛星、宇宙探査機、宇宙ステーション、宇宙エレベータ等が挙げられる。機械・機器としては、屋外に設置される種類をはじめ、軽量性と共に、降伏強度や、耐紫外線性、耐熱性、耐衝撃性等が要求されるものが挙げられる。  Applications other than implants include structural materials that form moving objects, and structural materials and parts that form machines and equipment. Moving objects include automobiles, heavy machinery, railroad cars, motorcycles, bicycles, wheelchairs, elevators, ships, submarines, aircraft, helicopters, drones, rockets, artificial satellites, space probes, space stations, and space elevators. Machines and equipment include types that are installed outdoors, as well as those that require light weight, yield strength, UV resistance, heat resistance, impact resistance, etc.
 次に、PEEK樹脂の原子配列を整列させる金属酸化物の作用について、作用機序を確認するために、金属酸化物を用いていないPEEK樹脂の原子配列と、金属酸化物を用いたPEEK樹脂の原子配列とを比較した結果を示す。 Next, to confirm the mechanism of action of metal oxides that align the atomic arrangement of PEEK resin, we compare the atomic arrangement of PEEK resin without metal oxide with that of PEEK resin with metal oxide.
 原子配列の解析は、非特許文献1(R. Car, M. Parrinello (1985). Unified Approach for Molecular Dynamics and Density-Functional Theory. PHYSICAL REVIEW LETTERS. VOLUME 55, NUMBER 22, 2471-2474)に記載されているように、密度汎関数理論(Density Functional Theory:DFT)を組み合わせた分子動力学シミュレーションで行った。DFTを組み合わせた分子動力学シミュレーションでは、対象物質の構造を電子密度の汎関数で表し、各時刻における各構成原子の座標を、運動方程式から求めた分子軌道やエネルギによって算出できる。 The atomic arrangement was analyzed using molecular dynamics simulations combined with density functional theory (DFT) as described in Non-Patent Document 1 (R. Car, M. Parrinello (1985). Unified Approach for Molecular Dynamics and Density-Functional Theory. PHYSICAL REVIEW LETTERS. VOLUME 55, NUMBER 22, 2471-2474). In molecular dynamics simulations combined with DFT, the structure of the target substance is represented by an electron density functional, and the coordinates of each constituent atom at each time can be calculated using the molecular orbitals and energy obtained from the equations of motion.
 図10は、金属酸化物を用いていないPEEK樹脂の原子配列の解析結果を示す図である。図10には、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物を分散ないし接合させていない場合のPEEK樹脂の原子配列の一例を示す。図10において、符号401で示される灰色球は炭素原子、符号402で示される黒色球は酸素原子、符号403で示される白色球は水素原子を表す。 Figure 10 shows the results of an analysis of the atomic arrangement of PEEK resin that does not use metal oxide. Figure 10 shows an example of the atomic arrangement of PEEK resin when no metal oxide, which acts to align the atomic arrangement of PEEK resin, is dispersed or bonded. In Figure 10, the gray spheres indicated by the reference numeral 401 represent carbon atoms, the black spheres indicated by the reference numeral 402 represent oxygen atoms, and the white spheres indicated by the reference numeral 403 represent hydrogen atoms.
 図10に示すように、PEEK樹脂の原子配列を整列させる作用を示す金属酸化物を分散ないし接合させていない場合、PEEK樹脂の分子鎖は、配向やコンフォメーションが不規則的になる。PEEK樹脂の分子鎖によって結晶相が形成される場合であっても、規則性に乏しい状態となる。このような状態では、PEEK樹脂の分子鎖同士の相互作用が弱く、高い密着強度が得られなくなる。 As shown in Figure 10, if a metal oxide that acts to align the atomic arrangement of PEEK resin is not dispersed or bonded, the molecular chains of PEEK resin will have irregular orientation and conformation. Even if a crystalline phase is formed by the molecular chains of PEEK resin, the state will be one with poor regularity. In this state, the interactions between the molecular chains of PEEK resin will be weak, and high adhesive strength will not be obtained.
 図11は、酸化チタンを用いたPEEK樹脂の原子配列の解析結果を示す図である。図11には、金属酸化物としてルチル型である酸化チタン(TiO)を接合させたPEEK樹脂の結果を示す。図11の上図は、PEEK樹脂と金属酸化物との界面を横から見た図であり、下図は、PEEK樹脂と金属酸化物との界面を下から見た図である。PEEK樹脂と金属酸化物との界面は、ルチル型である酸化チタンの(110)面である。 Fig. 11 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using titanium oxide. Fig. 11 shows the results of PEEK resin bonded with rutile titanium oxide (TiO 2 ) as a metal oxide. The upper diagram in Fig. 11 is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from the side, and the lower diagram is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from below. The interface between the PEEK resin and the metal oxide is the (110) plane of the rutile titanium oxide.
 図11において、符号401で示される灰色大球はPEEK樹脂の炭素原子、符号402で示される黒色大球はPEEK樹脂の酸素原子、符号403で示される白色大球はPEEK樹脂の水素原子、符号501で示される灰色小球は酸化チタンのチタン原子、符号502で示される黒色小球は酸化チタンの酸素原子、符号503で示される六角形はルチル型である酸化チタンの(110)面に形成される環構造を表す。 In FIG. 11, the large gray spheres indicated by the reference numeral 401 represent carbon atoms of PEEK resin, the large black spheres indicated by the reference numeral 402 represent oxygen atoms of PEEK resin, the large white spheres indicated by the reference numeral 403 represent hydrogen atoms of PEEK resin, the small gray spheres indicated by the reference numeral 501 represent titanium atoms of titanium oxide, the small black spheres indicated by the reference numeral 502 represent oxygen atoms of titanium oxide, and the hexagons indicated by the reference numeral 503 represent ring structures formed on the (110) surface of rutile-type titanium oxide.
 図11に示すように、PEEK樹脂は、複数のベンゼン環がエーテル基やケトン基を介して連結した分子構造を有している。PEEK樹脂のエーテル基を介して連結したベンゼン環の中心同士の間隔は、約0.5719nmとなる。 As shown in Figure 11, PEEK resin has a molecular structure in which multiple benzene rings are linked via ether groups or ketone groups. The distance between the centers of the benzene rings of PEEK resin linked via ether groups is approximately 0.5719 nm.
 一方、ルチル型である酸化チタンは、(110)面に垂直な方向から視て、チタン原子と酸素原子で形成される8員の環構造を有している。環構造を形成するチタン原子のうち、同一の直線上で第2近接となるチタン原子同士の間隔は、約0.5918nmである。 On the other hand, rutile titanium oxide has an eight-membered ring structure formed by titanium atoms and oxygen atoms when viewed from a direction perpendicular to the (110) plane. Among the titanium atoms that form the ring structure, the distance between the second nearest neighboring titanium atoms on the same line is approximately 0.5918 nm.
 PEEK樹脂のベンゼン環同士の間隔である約0.5719nmと、ルチル型である酸化チタンの結晶構造を構成する第2近接となるチタン原子同士の間隔である約0.5918nmとの相対差は、約3.48%となる。PEEK樹脂のベンゼン環と酸化チタンの(110)面に形成される環構造503とが、互いに同等の間隔で整列して重なった状態となる。 The relative difference between the spacing between benzene rings of PEEK resin, approximately 0.5719 nm, and the spacing between second nearest neighbor titanium atoms that make up the crystal structure of rutile titanium oxide, approximately 0.5918 nm, is approximately 3.48%. The benzene rings of the PEEK resin and the ring structure 503 formed on the (110) surface of titanium oxide are aligned and overlapped at equal intervals.
 このような組み合わせであると、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔と金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が小さくなる。PEEK樹脂と酸化チタンとの間に、特定の原子が周期的に配列して、格子整合状の界面が形成される。PEEK樹脂のベンゼン環と酸化チタンの環構造とが、互いに近接した位置で安定化し、強い相互作用を形成することが分かる。 In this type of combination, the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide becomes smaller. Specific atoms are periodically arranged between the PEEK resin and the titanium oxide, forming a lattice-matched interface. It can be seen that the benzene rings of the PEEK resin and the ring structure of the titanium oxide are stabilized in close proximity to each other, forming a strong interaction.
 図12は、酸化アルミニウムを用いたPEEK樹脂の原子配列の解析結果を示す図である。図12には、金属酸化物として酸化アルミニウム(Al)を接合させたPEEK樹脂の結果を示す。図12の上図は、PEEK樹脂と金属酸化物との界面を横から見た図であり、下図は、PEEK樹脂と金属酸化物との界面を下から見た図である。PEEK樹脂と金属酸化物との界面は、酸化アルミニウムの(001)面である。 Fig. 12 is a diagram showing the results of an analysis of the atomic arrangement of PEEK resin using aluminum oxide. Fig. 12 shows the results of PEEK resin bonded with aluminum oxide (Al 2 O 3 ) as a metal oxide. The upper diagram in Fig. 12 is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from the side, and the lower diagram is a diagram showing the interface between the PEEK resin and the metal oxide as viewed from below. The interface between the PEEK resin and the metal oxide is the (001) plane of the aluminum oxide.
 図12において、符号401で示される灰色大球はPEEK樹脂の炭素原子、符号402で示される黒色大球はPEEK樹脂の酸素原子、符号403で示される白色大球はPEEK樹脂の水素原子、符号601で示される灰色小球は酸化アルミニウムのアルミニウム原子、符号602で示される黒色小球は酸化アルミニウムの酸素原子、符号603で示される六角形は酸化アルミニウムの(001)面に形成される環構造を表す。 In FIG. 12, the large gray spheres indicated by the reference numeral 401 represent carbon atoms of the PEEK resin, the large black spheres indicated by the reference numeral 402 represent oxygen atoms of the PEEK resin, the large white spheres indicated by the reference numeral 403 represent hydrogen atoms of the PEEK resin, the small gray spheres indicated by the reference numeral 601 represent aluminum atoms of aluminum oxide, the small black spheres indicated by the reference numeral 602 represent oxygen atoms of aluminum oxide, and the hexagons indicated by the reference numeral 603 represent ring structures formed on the (001) surface of aluminum oxide.
 図12に示すように、PEEK樹脂は、複数のベンゼン環がエーテル基やケトン基を介して連結した分子構造を有している。PEEK樹脂のエーテル基を介して連結したベンゼン環の中心同士の間隔は、約0.5719nmとなる。 As shown in Figure 12, PEEK resin has a molecular structure in which multiple benzene rings are linked via ether groups or ketone groups. The distance between the centers of the benzene rings of PEEK resin linked via ether groups is approximately 0.5719 nm.
 一方、酸化アルミニウムは、(001)面に垂直な方向から視て、アルミニウム原子と酸素原子で形成される6員の環構造を有している。環構造を形成するアルミニウム原子のうち、同一の直線上で第2近接となるアルミニウム原子同士の間隔は、約0.5517nmである。 On the other hand, aluminum oxide has a six-membered ring structure formed by aluminum atoms and oxygen atoms when viewed from a direction perpendicular to the (001) plane. Among the aluminum atoms that form the ring structure, the distance between the second nearest neighboring aluminum atoms on the same line is approximately 0.5517 nm.
 PEEK樹脂のベンゼン環同士の間隔である約0.5719nmと、酸化アルミニウムの結晶構造を構成する第2近接となるアルミニウム原子同士の間隔である約0.5517nmとの相対差は、約3.53%となる。PEEK樹脂のベンゼン環と酸化アルミニウムの(001)面に形成される環構造603とが、互いに同等の間隔で整列して重なった状態となる。 The relative difference between the spacing between benzene rings of PEEK resin, approximately 0.5719 nm, and the spacing between second nearest neighboring aluminum atoms that make up the crystal structure of aluminum oxide, approximately 0.5517 nm, is approximately 3.53%. The benzene rings of the PEEK resin and the ring structure 603 formed on the (001) surface of aluminum oxide are aligned and overlapped with equal spacing.
 このような組み合わせであると、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔と金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が小さくなる。PEEK樹脂と酸化アルミニウムとの間に、特定の原子が周期的に配列して、格子整合状の界面が形成される。PEEK樹脂のベンゼン環と酸化アルミニウムの環構造とが、互いに近接した位置で安定化することが分かる。 Such a combination reduces the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide. Specific atoms are periodically arranged between the PEEK resin and the aluminum oxide, forming a lattice-matched interface. It can be seen that the benzene rings of the PEEK resin and the ring structure of the aluminum oxide are stabilized in close proximity to each other.
 図13は、酸化マグネシウムを用いたPEEK樹脂の原子配列の解析結果を示す図である。図13には、金属酸化物として酸化マグネシウム(MgO)を接合させたPEEK樹脂の結果を示す。図13の上図は、PEEK樹脂と金属酸化物との界面を横から見た図であり、下図は、PEEK樹脂と金属酸化物との界面を下から見た図である。PEEK樹脂と金属酸化物との界面は、酸化マグネシウムの(111)面である。 Figure 13 shows the results of an analysis of the atomic arrangement of PEEK resin using magnesium oxide. Figure 13 shows the results for PEEK resin bonded with magnesium oxide (MgO) as a metal oxide. The top figure in Figure 13 is a side view of the interface between the PEEK resin and the metal oxide, and the bottom figure is a bottom view of the interface between the PEEK resin and the metal oxide. The interface between the PEEK resin and the metal oxide is the (111) plane of the magnesium oxide.
 図13において、符号401で示される灰色大球はPEEK樹脂の炭素原子、符号402で示される黒色大球はPEEK樹脂の酸素原子、符号403で示される白色大球はPEEK樹脂の水素原子、符号701で示される灰色小球は酸化マグネシウムのマグネシウム原子、符号702で示される黒色小球は酸化マグネシウムの酸素原子、符号703で示される六角形は酸化マグネシウムの(111)面に形成される環構造を表す。 In FIG. 13, the large gray spheres indicated by the reference numeral 401 represent carbon atoms of the PEEK resin, the large black spheres indicated by the reference numeral 402 represent oxygen atoms of the PEEK resin, the large white spheres indicated by the reference numeral 403 represent hydrogen atoms of the PEEK resin, the small gray spheres indicated by the reference numeral 701 represent magnesium atoms of magnesium oxide, the small black spheres indicated by the reference numeral 702 represent oxygen atoms of magnesium oxide, and the hexagons indicated by the reference numeral 703 represent ring structures formed on the (111) plane of magnesium oxide.
 図13に示すように、PEEK樹脂は、複数のベンゼン環がエーテル基やケトン基を介して連結した分子構造を有している。PEEK樹脂のエーテル基を介して連結したベンゼン環の中心同士の間隔は、約0.5719nmとなる。 As shown in Figure 13, PEEK resin has a molecular structure in which multiple benzene rings are linked via ether groups or ketone groups. The distance between the centers of the benzene rings of PEEK resin linked via ether groups is approximately 0.5719 nm.
 一方、酸化マグネシウムは、(111)面に垂直な方向から視て、マグネシウム原子と酸素原子で形成される6員の環構造を有している。環構造を形成するマグネシウム原子のうち、同一の直線上で第2近接となるマグネシウム原子同士の間隔は、約0.5956nmである。 On the other hand, magnesium oxide has a six-membered ring structure formed by magnesium atoms and oxygen atoms when viewed from a direction perpendicular to the (111) plane. Among the magnesium atoms that form the ring structure, the distance between the second nearest neighboring magnesium atoms on the same line is approximately 0.5956 nm.
 PEEK樹脂のベンゼン環同士の間隔である約0.5719nmと、酸化マグネシウムの結晶構造を構成する第2近接となるマグネシウム原子同士の間隔である約0.5956nmとの相対差は、約4.14%となる。PEEK樹脂のベンゼン環と酸化マグネシウムの(111)面に形成される環構造703とが、互いに同等の間隔で整列して重なった状態となる。 The relative difference between the spacing between benzene rings of PEEK resin, approximately 0.5719 nm, and the spacing between second nearest neighboring magnesium atoms that make up the crystal structure of magnesium oxide, approximately 0.5956 nm, is approximately 4.14%. The benzene rings of the PEEK resin and the ring structure 703 formed on the (111) surface of magnesium oxide are aligned and overlapped with equal spacing.
 このような組み合わせであると、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔と金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が小さくなる。PEEK樹脂と酸化マグネシウムとの間に、特定の原子が周期的に配列して、格子整合状の界面が形成される。PEEK樹脂のベンゼン環と酸化マグネシウムの環構造とが、互いに近接した位置で安定化することが分かる。 Such a combination reduces the relative difference between the spacing between the benzene rings that make up the molecular chains of the PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide. Specific atoms are periodically arranged between the PEEK resin and the magnesium oxide, forming a lattice-matched interface. It can be seen that the benzene rings of the PEEK resin and the ring structure of the magnesium oxide are stabilized when positioned close to each other.
 図11、図12および図13の上図に示すように、PEEK樹脂と金属酸化物とを接合させると、金属酸化物を用いていない場合と比較して、PEEK樹脂で形成される母材が、規則的な原子配列を形成している。PEEK樹脂の原子配列を整列させる作用を示す金属酸化物は、PEEK樹脂と金属酸化物との界面だけでなく、界面から離れた領域にあるPEEK樹脂の分子鎖同士にも作用することが分かる。 As shown in the upper diagrams of Figures 11, 12, and 13, when PEEK resin and metal oxide are bonded together, the base material formed from PEEK resin forms a regular atomic arrangement, compared to when no metal oxide is used. It can be seen that metal oxide, which acts to align the atomic arrangement of PEEK resin, acts not only on the interface between PEEK resin and metal oxide, but also on the molecular chains of PEEK resin in areas away from the interface.
 表4~6は、PEEK樹脂と金属酸化物との界面における金属酸化物の原子密度[atoms/nm]および剥離エネルギ[J/m]を計算した結果である。金属酸化物の原子密度および剥離エネルギは、密度汎関数理論(DFT)を組み合わせた分子動力学シミュレーションで計算したデータを用いて、応答曲面法で剥離エネルギの関数を求めて導出した。 Tables 4 to 6 show the calculation results of the atomic density [atoms/nm 2 ] and peel energy [J/m 2 ] of the metal oxide at the interface between the PEEK resin and the metal oxide. The atomic density and peel energy of the metal oxide were derived by determining the peel energy function by response surface methodology using data calculated by molecular dynamics simulation combined with density functional theory (DFT).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、PEEK樹脂とルチル型である酸化チタンとの界面における剥離エネルギは、(100)面、(001)面、(111)面と比較して、(110)面を界面とする場合に、2倍以上に大きくなった。表1に示したピール試験による実測結果と同様の傾向が、DFTを用いた分子軌道計算においても確認された。 As shown in Table 4, the peel energy at the interface between PEEK resin and rutile titanium oxide was more than twice as high when the interface was the (110) plane, compared to the (100), (001), and (111) planes. A similar tendency to the actual measurement results from the peel test shown in Table 1 was also confirmed by molecular orbital calculations using DFT.
 ルチル型である酸化チタンに対し、8at%となるようにハフニウムを添加すると、PEEK樹脂のベンゼン環同士の間隔と酸化チタンのチタン原子同士の間隔との相対差が5.03%となる。この場合、PEEK樹脂と酸化チタンとの界面における剥離エネルギは、約39%だけ小さくなる。よって、PEEK樹脂のベンゼン環同士の間隔と酸化チタンのチタン原子同士の間隔との相対差は5%以下であることが好ましい。 When hafnium is added to rutile titanium oxide at 8 at%, the relative difference between the spacing between the benzene rings of the PEEK resin and the spacing between the titanium atoms of the titanium oxide is 5.03%. In this case, the peel energy at the interface between the PEEK resin and the titanium oxide is reduced by approximately 39%. Therefore, it is preferable that the relative difference between the spacing between the benzene rings of the PEEK resin and the spacing between the titanium atoms of the titanium oxide be 5% or less.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、PEEK樹脂と酸化アルミニウムとの界面における剥離エネルギは、(100)面、(110)面、(210)面と比較して、(001)面を界面とする場合に2倍以上に大きくなった。表2に示したピール試験による実測結果と同様の傾向が、DFTを用いた分子軌道計算においても確認された。 As shown in Table 5, the peel energy at the interface between PEEK resin and aluminum oxide was more than twice as high when the interface was the (001) plane compared to the (100), (110), and (210) planes. A similar tendency to the actual measurement results from the peel test shown in Table 2 was also confirmed in molecular orbital calculations using DFT.
 酸化アルミニウムに対し、12at%となるようにガリウムを添加すると、PEEK樹脂のベンゼン環同士の間隔と酸化アルミニウムのアルミニウム原子同士の間隔との相対差が5.02%となる。この場合、PEEK樹脂と酸化アルミニウムとの界面における剥離エネルギは、約37%だけ小さくなる。よって、PEEK樹脂のベンゼン環同士の間隔と酸化アルミニウムのアルミニウム原子同士の間隔との相対差は5%以下であることが好ましい。 When gallium is added to aluminum oxide to make up 12 at %, the relative difference between the spacing between benzene rings in PEEK resin and the spacing between aluminum atoms in aluminum oxide is 5.02%. In this case, the peel energy at the interface between PEEK resin and aluminum oxide is reduced by approximately 37%. Therefore, it is preferable that the relative difference between the spacing between benzene rings in PEEK resin and the spacing between aluminum atoms in aluminum oxide be 5% or less.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、PEEK樹脂と酸化マグネシウムとの界面における剥離エネルギは、(100)面、(001)面、(110)面と比較して、(111)面を界面とする場合に1.5倍以上に大きくなった。表3に示したピール試験による実測結果と同様の傾向が、DFTを用いた分子軌道計算においても確認された。 As shown in Table 6, the peel energy at the interface between PEEK resin and magnesium oxide was more than 1.5 times higher when the interface was the (111) plane compared to the (100), (001), and (110) planes. A similar tendency to the measured results from the peel test shown in Table 3 was also confirmed by molecular orbital calculations using DFT.
 酸化マグネシウムに対し、9at%となるようにカルシウムを添加すると、PEEK樹脂のベンゼン環同士の間隔と酸化マグネシウムのマグネシウム原子同士の間隔との相対差が5.04%となる。この場合、PEEK樹脂と酸化マグネシウムとの界面における剥離エネルギは、約32%だけ小さくなる。よって、PEEK樹脂のベンゼン環同士の間隔と酸化マグネシウムのマグネシウム原子同士の間隔との相対差は5%以下であることが好ましい。 When calcium is added to magnesium oxide to make up 9 at %, the relative difference between the spacing between benzene rings in PEEK resin and the spacing between magnesium atoms in magnesium oxide is 5.04%. In this case, the peel energy at the interface between PEEK resin and magnesium oxide is reduced by approximately 32%. Therefore, it is preferable that the relative difference between the spacing between benzene rings in PEEK resin and the spacing between magnesium atoms in magnesium oxide be 5% or less.
 但し、PEEK樹脂のベンゼン環同士の間隔と金属酸化物の金属原子同士の間隔との相対差が5%以下となる場合であっても、PEEK樹脂に近接する金属酸化物の原子密度が小さいと、相互作用の合計が強くならないため、PEEK樹脂と金属酸化物との密着強度が低くなってしまう。 However, even if the relative difference between the spacing between benzene rings in PEEK resin and the spacing between metal atoms in the metal oxide is 5% or less, if the atomic density of the metal oxide adjacent to the PEEK resin is small, the total interaction is not strong, and the adhesive strength between the PEEK resin and the metal oxide is low.
 例えば、ルチル型である酸化チタンの(111)面の場合、PEEK樹脂のベンゼン環同士の間隔とルチル型である酸化チタンの第2近接となるチタン原子同士の間隔との相対差は、約4.46%である。しかし、(111)面における金属酸化物の原子密度は、12.3atoms/nmと小さい。このような場合、PEEK樹脂と金属酸化物との界面における剥離エネルギも、0.248J/mと小さくなる。 For example, in the case of the (111) plane of rutile titanium oxide, the relative difference between the spacing between benzene rings of PEEK resin and the spacing between second nearest neighbor titanium atoms of rutile titanium oxide is about 4.46%. However, the atomic density of the metal oxide on the (111) plane is small at 12.3 atoms/ nm2 . In such a case, the peel energy at the interface between the PEEK resin and the metal oxide is also small at 0.248 J/ m2 .
 したがって、PEEK樹脂と金属酸化物との密着強度を高くするためには、PEEK樹脂の分子鎖を構成するベンゼン環同士の間隔と金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差を5%以下とすると共に、PEEK樹脂と金属酸化物との界面における金属酸化物の原子密度を大きくすることが重要である。 Therefore, in order to increase the adhesive strength between PEEK resin and metal oxide, it is important to keep the relative difference between the spacing between the benzene rings that make up the molecular chain of PEEK resin and the spacing between the metal atoms that make up the crystal structure of the metal oxide to 5% or less, and to increase the atomic density of the metal oxide at the interface between the PEEK resin and the metal oxide.
 金属酸化物には、添加元素が添加されてもよいし、不可避的に混入する不純物元素が含まれていてもよい。添加元素や不純物元素が1wt%以下程度であれば、格子ミスマッチが抑制されるため、PEEK樹脂と金属酸化物との密着強度を向上させることができる。主要成分である金属原子の一部を置換する異種金属原子をドープすると、金属原子同士の間隔を調整できる場合がある。 The metal oxide may contain additive elements, or may contain unavoidably mixed-in impurity elements. If the additive or impurity elements are about 1 wt% or less, lattice mismatch is suppressed, improving the adhesive strength between the PEEK resin and the metal oxide. Doping with dissimilar metal atoms that replace some of the metal atoms, which are the main component, may allow the spacing between the metal atoms to be adjusted.
 金属酸化物として酸化チタンを用いる場合、添加元素や不純物元素として、チタンよりも原子半径が小さい元素を含むことが好ましい。このような元素としては、アルミニウム、バナジウム等が挙げられる。 When titanium oxide is used as the metal oxide, it is preferable to include an element with a smaller atomic radius than titanium as an additive element or impurity element. Examples of such elements include aluminum and vanadium.
 純酸化チタンにおけるチタン原子同士の平均原子間隔は、PEEK樹脂のベンゼン環同士の間隔よりも大きい。チタンよりも原子半径が小さい元素を含むと、酸化チタンの平均原子間隔を小さくして、格子ミスマッチをより低減できる。例えば、Tiが90wt%、Alが6wt%、Vが4wt%である複合酸化物を用いると、格子ミスマッチがゼロとなり、PEEK樹脂と金属酸化物との密着強度が高くなる。 The average atomic spacing between titanium atoms in pure titanium oxide is larger than the spacing between benzene rings in PEEK resin. By including an element with an atomic radius smaller than that of titanium, the average atomic spacing of titanium oxide can be made smaller, further reducing the lattice mismatch. For example, using a composite oxide containing 90 wt% Ti, 6 wt% Al, and 4 wt% V, the lattice mismatch is reduced to zero, increasing the adhesive strength between the PEEK resin and the metal oxide.
 金属酸化物として酸化アルミニウムを用いる場合、添加元素や不純物元素としては、アルミニウムよりも原子半径が大きい元素を含むことが好ましい。このような元素としては、マグネシウム、チタン等が挙げられる。 When aluminum oxide is used as the metal oxide, it is preferable that the additive elements and impurity elements include elements with an atomic radius larger than that of aluminum. Such elements include magnesium, titanium, etc.
 純酸化アルミニウムにおけるアルミニウム原子同士の平均原子間隔は、PEEK樹脂のベンゼン環同士の間隔よりも小さい。アルミニウムよりも原子半径が大きい元素を含むと、酸化アルミニウムの平均原子間隔を大きくして、格子ミスマッチをより低減できる。例えば、Alが98.5wt%、Mgが1.5wt%である複合酸化物を用いると、格子ミスマッチがゼロとなり、PEEK樹脂と金属酸化物との密着強度が高くなる。 The average atomic spacing between aluminum atoms in pure aluminum oxide is smaller than the spacing between benzene rings in PEEK resin. By including an element with an atomic radius larger than that of aluminum, the average atomic spacing in aluminum oxide can be increased, further reducing the lattice mismatch. For example, using a composite oxide containing 98.5 wt% Al and 1.5 wt% Mg, the lattice mismatch is zero, and the adhesive strength between the PEEK resin and the metal oxide is increased.
 金属酸化物として酸化マグネシウムを用いる場合、添加元素や不純物元素としては、マグネシウムよりも原子半径が小さい元素を含むことが好ましい。このような元素としては、アルミニウム等が挙げられる。 When magnesium oxide is used as the metal oxide, it is preferable that the additive elements and impurity elements include elements with an atomic radius smaller than that of magnesium. Examples of such elements include aluminum.
 純酸化マグネシウムにおけるマグネシウム原子同士の平均原子間隔は、PEEK樹脂のベンゼン環同士の間隔よりも大きい。マグネシウムよりも原子半径が小さい元素を含むと、酸化マグネシウムの平均原子間隔を小さくして、格子ミスマッチをより低減できる。例えば、Mgが90wt%、Alが10wt%である複合酸化物を用いると、格子ミスマッチがゼロとなり、PEEK樹脂と金属酸化物との密着強度が高くなる。 The average atomic spacing between magnesium atoms in pure magnesium oxide is larger than the spacing between benzene rings in PEEK resin. By including an element with an atomic radius smaller than that of magnesium, the average atomic spacing of magnesium oxide can be made smaller, further reducing the lattice mismatch. For example, using a composite oxide containing 90 wt% Mg and 10 wt% Al reduces the lattice mismatch to zero, increasing the adhesive strength between the PEEK resin and the metal oxide.
 以上、本発明の実施形態について説明したが、本発明は前記の実施形態に限定されるものではなく、技術的範囲を逸脱しない限り、様々な変形例が含まれる。例えば、前記の実施形態は、必ずしも説明した全ての構成を備えるものに限定されない。また、或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成に他の構成を加えたりすることが可能である。また、或る実施形態の構成の一部について、他の構成の追加、構成の削除、構成の置換をすることも可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are included as long as they do not deviate from the technical scope. For example, the above-described embodiments are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of an embodiment with another configuration, or to add another configuration to the configuration of an embodiment. It is also possible to add other configurations to, delete configurations, or replace configurations with respect to part of the configuration of an embodiment.
 例えば、前記の接合体1は、金属酸化物3に対して接合されているが、PEEK樹脂と金属酸化物とが互いに接合された接合体において、金属酸化物は、PEEK樹脂と共に、別の金属と接合されていてもよい。このような金属酸化物は、前記の複合材料14の場合と同様に、金属の表面側の一部を熱酸化させる方法や、金属の表面に成膜する方法で形成することができる。 For example, the bonded body 1 is bonded to the metal oxide 3, but in a bonded body in which PEEK resin and a metal oxide are bonded to each other, the metal oxide may be bonded to another metal together with the PEEK resin. As in the case of the composite material 14, such a metal oxide can be formed by a method of thermally oxidizing a part of the surface side of the metal or a method of forming a film on the surface of the metal.
1…接合体、2,8…PEEK樹脂、3,9,15…金属酸化物、4…椎体、5…椎間板、6…骨髄、7,14…複合材料、10,11,12,13…結晶面、16…金属、101,201,301…界面、102…HAp膜、401…炭素原子、402…酸素原子、403…水素原子、501…チタン原子、601…アルミニウム原子、701…マグネシウム原子、502,602,702…酸素原子、503,603,703…環構造
 
1...Conjugate, 2, 8...PEEK resin, 3, 9, 15...Metal oxide, 4...Vertebral body, 5...Intervertebral disc, 6...Bone marrow, 7, 14...Composite material, 10, 11, 12, 13...Crystal plane, 16...Metal, 101, 201, 301...Interface, 102...HAp film, 401...Carbon atom, 402...Oxygen atom, 403...Hydrogen atom, 501...Titanium atom, 601...Aluminum atom, 701...Magnesium atom, 502, 602, 702...Oxygen atom, 503, 603, 703...Ring structure

Claims (15)

  1.  ポリエーテルエーテルケトン樹脂と金属酸化物とが接合された接合体であって、
     前記ポリエーテルエーテルケトン樹脂の分子鎖を構成するベンゼン環同士の間隔と前記金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下であり、
     前記金属酸化物の前記ポリエーテルエーテルケトン樹脂が接合された結晶面における原子密度が17atom/nm以上である接合体。
    A bonded body in which a polyether ether ketone resin and a metal oxide are bonded together,
    a relative difference between a distance between benzene rings constituting a molecular chain of the polyether ether ketone resin and a distance between metal atoms constituting a crystal structure of the metal oxide is 5% or less;
    A bonded body, wherein the atomic density on the crystal plane of the metal oxide to which the polyether ether ketone resin is bonded is 17 atoms/ nm2 or more.
  2.  請求項1に記載の接合体であって、
     前記金属酸化物が、TiOであり、
     前記ポリエーテルエーテルケトン樹脂が接合された結晶面が、ルチル型構造であるTiOの(110)面である接合体。
    The joint body according to claim 1 ,
    The metal oxide is TiO2 ,
    A bonded body, wherein the crystal plane to which the polyether ether ketone resin is bonded is a (110) plane of TiO2 having a rutile structure.
  3.  請求項1に記載の接合体であって、
     前記金属酸化物が、Alであり、
     前記ポリエーテルエーテルケトン樹脂が接合された結晶面が、Alの(001)面である接合体。
    The joint body according to claim 1 ,
    The metal oxide is Al2O3 ,
    A bonded body, wherein the crystal face to which the polyether ether ketone resin is bonded is a ( 001 ) face of Al2O3 .
  4.  請求項1に記載の接合体であって、
     前記金属酸化物が、MgOであり、
     前記ポリエーテルエーテルケトン樹脂が接合された結晶面が、MgOの(111)面である接合体。
    The joint body according to claim 1 ,
    The metal oxide is MgO,
    A bonded structure, wherein the crystal face to which the polyether ether ketone resin is bonded is a (111) face of MgO.
  5.  ポリエーテルエーテルケトン樹脂を母材として金属酸化物を含有した複合材料であって、
     前記ポリエーテルエーテルケトン樹脂の分子鎖を構成するベンゼン環同士の間隔と前記金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下である複合材料。
    A composite material containing a metal oxide and a polyether ether ketone resin as a base material,
    A composite material in which the relative difference between the distance between benzene rings constituting the molecular chain of the polyether ether ketone resin and the distance between metal atoms constituting the crystal structure of the metal oxide is 5% or less.
  6.  請求項5に記載の複合材料であって、
     前記金属酸化物が、TiOであり、
     前記金属酸化物の前記ポリエーテルエーテルケトン樹脂と接触する表面のうちの57%以上が、ルチル型構造であるTiOの(110)面である複合材料。
    6. The composite material of claim 5,
    The metal oxide is TiO2 ,
    A composite material, wherein 57% or more of the surface of the metal oxide in contact with the polyetheretherketone resin is a (110) plane of TiO2 having a rutile structure.
  7.  請求項5に記載の複合材料であって、
     前記ポリエーテルエーテルケトン樹脂の表面にTiOが接合された複合材料。
    6. The composite material of claim 5,
    A composite material in which TiO2 is bonded to the surface of the polyetheretherketone resin.
  8.  請求項5に記載の複合材料であって、
     前記金属酸化物が、Alであり、
     前記金属酸化物の前記ポリエーテルエーテルケトン樹脂と接触する表面のうちの57%以上が、Alの(001)面である複合材料。
    6. The composite material of claim 5,
    The metal oxide is Al2O3 ,
    A composite material, wherein 57% or more of the surface of the metal oxide in contact with the polyetheretherketone resin is an Al2O3 (001) plane.
  9.  請求項5に記載の複合材料であって、
     前記ポリエーテルエーテルケトン樹脂の表面にAlが接合された複合材料。
    6. The composite material of claim 5,
    A composite material in which Al2O3 is bonded to the surface of the polyether ether ketone resin.
  10.  請求項5に記載の複合材料であって、
     前記金属酸化物が、MgOであり、
     前記金属酸化物の前記ポリエーテルエーテルケトン樹脂と接触する表面のうちの57%以上が、MgOの(111)面である複合材料。
    6. The composite material of claim 5,
    The metal oxide is MgO,
    A composite material in which 57% or more of the surface of the metal oxide in contact with the polyetheretherketone resin is a (111) plane of MgO.
  11.  請求項5に記載の複合材料であって、
     前記ポリエーテルエーテルケトン樹脂の表面にMgOが接合された複合材料。
    6. The composite material of claim 5,
    A composite material in which MgO is bonded to a surface of the polyether ether ketone resin.
  12.  請求項1から請求項4のいずれか一項に記載の接合体で形成されたインプラント。 An implant formed from the joint body according to any one of claims 1 to 4.
  13.  請求項5から請求項11のいずれか一項に記載の複合材料で形成された医療用、航空宇宙用または車両用の構造材。 A structural material for medical, aerospace or vehicle applications formed from a composite material according to any one of claims 5 to 11.
  14.  ポリエーテルエーテルケトン樹脂と金属酸化物とが接合された接合体の製造方法であって、
     ポリエーテルエーテルケトン樹脂の表面に金属酸化物を成膜する工程と、
     前記金属酸化物が成膜された前記ポリエーテルエーテルケトン樹脂を熱処理して前記金属酸化物の結晶配向性を向上させる工程と、を含み、
     前期結晶配向性を向上させる工程で得られる前記ポリエーテルエーテルケトン樹脂の分子鎖を構成するベンゼン環同士の間隔と前記金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下であり、
     前記金属酸化物の前記ポリエーテルエーテルケトン樹脂が接合された結晶面における原子密度が17atom/nm以上である接合体の製造方法。
    A method for producing a bonded body in which a polyether ether ketone resin and a metal oxide are bonded, comprising the steps of:
    forming a metal oxide film on a surface of a polyether ether ketone resin;
    and a step of heat-treating the polyether ether ketone resin on which the metal oxide film has been formed to improve the crystal orientation of the metal oxide,
    a relative difference between a distance between benzene rings constituting a molecular chain of the polyether ether ketone resin obtained in the step of improving crystal orientation and a distance between metal atoms constituting a crystal structure of the metal oxide is 5% or less;
    The method for producing a bonded body, wherein the atomic density on the crystal plane of the metal oxide to which the polyether ether ketone resin is bonded is 17 atoms/ nm2 or more.
  15.  ポリエーテルエーテルケトン樹脂を母材として金属酸化物を含有した複合材料の製造方法であって、
     ポリエーテルエーテルケトン樹脂と金属酸化物との混合物を加熱および混錬する工程と、
     前記加熱および混錬する工程で得られた樹脂組成物を熱間で成形して前記金属酸化物の結晶配向性を向上させる工程と、を含み、
     前期結晶配向性を向上させる工程で得られる前記ポリエーテルエーテルケトン樹脂の分子鎖を構成するベンゼン環同士の間隔と前記金属酸化物の結晶構造を構成する金属原子同士の間隔との相対差が5%以下である複合材料の製造方法。
     
    A method for producing a composite material containing a metal oxide and a polyether ether ketone resin as a base material, comprising the steps of:
    heating and kneading a mixture of a polyether ether ketone resin and a metal oxide;
    and a step of hot molding the resin composition obtained in the heating and kneading step to improve the crystal orientation of the metal oxide.
    A method for producing a composite material, in which the relative difference between the spacing between benzene rings constituting the molecular chain of the polyether ether ketone resin obtained in the process of improving crystal orientation and the spacing between metal atoms constituting the crystal structure of the metal oxide is 5% or less.
PCT/JP2023/035512 2022-11-04 2023-09-28 Joined body using polyether ether ketone resin, and composite material WO2024095649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-177582 2022-11-04
JP2022177582A JP2024067471A (en) 2022-11-04 2022-11-04 Joined body and composite material using polyether ether keton resin

Publications (1)

Publication Number Publication Date
WO2024095649A1 true WO2024095649A1 (en) 2024-05-10

Family

ID=90930318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035512 WO2024095649A1 (en) 2022-11-04 2023-09-28 Joined body using polyether ether ketone resin, and composite material

Country Status (2)

Country Link
JP (1) JP2024067471A (en)
WO (1) WO2024095649A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320354A (en) * 1989-03-08 1991-01-29 Mitsui Toatsu Chem Inc Film for metallic substrate
JP2003311157A (en) * 2002-04-18 2003-11-05 Toyota Central Res & Dev Lab Inc Metal oxide photocatalytic body and manufacturing method therefor
WO2006061936A1 (en) * 2004-12-07 2006-06-15 Matsushita Electric Industrial Co., Ltd. Separator and nonaqueous electrolyte secondary battery using same
JP2007224370A (en) * 2006-02-24 2007-09-06 National Institute For Materials Science MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM
JP2014238996A (en) * 2013-06-10 2014-12-18 株式会社ジェイ・パワーシステムズ Direct current cable and electric insulation composition
WO2015060125A1 (en) * 2013-10-24 2015-04-30 Dic株式会社 Resin composition, heat-dissipating material, and heat-dissipating member
WO2015146875A1 (en) * 2014-03-24 2015-10-01 宇部マテリアルズ株式会社 Fine magnesium oxide particle dispersion liquid and method for producing same
JP3211656U (en) * 2016-12-13 2017-07-27 錫凱 鄒 Surgical implant structure
WO2018070495A1 (en) * 2016-10-13 2018-04-19 株式会社トクヤマデンタル Dental resin composite material, method for producing dental resin composite material, and polyaryletherketone resin for producing dental resin composite material
CN109939007A (en) * 2019-03-22 2019-06-28 华南理工大学 A kind of biocidal property oral cavity basal seat area and preparation method thereof
CN111234456A (en) * 2018-11-28 2020-06-05 合肥杰事杰新材料股份有限公司 Anti-aging and mildew-proof polyether-ether-ketone material and preparation method thereof
WO2020138235A1 (en) * 2018-12-26 2020-07-02 Agc株式会社 Functional film and functional laminated glass
JP2021526929A (en) * 2018-06-15 2021-10-11 スリーエム イノベイティブ プロパティズ カンパニー Dental orthosis with metal oxide coating
JP7074268B2 (en) * 2020-03-05 2022-05-24 Dic株式会社 Thin-film molded product and its manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320354A (en) * 1989-03-08 1991-01-29 Mitsui Toatsu Chem Inc Film for metallic substrate
JP2003311157A (en) * 2002-04-18 2003-11-05 Toyota Central Res & Dev Lab Inc Metal oxide photocatalytic body and manufacturing method therefor
WO2006061936A1 (en) * 2004-12-07 2006-06-15 Matsushita Electric Industrial Co., Ltd. Separator and nonaqueous electrolyte secondary battery using same
JP2007224370A (en) * 2006-02-24 2007-09-06 National Institute For Materials Science MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM
JP2014238996A (en) * 2013-06-10 2014-12-18 株式会社ジェイ・パワーシステムズ Direct current cable and electric insulation composition
WO2015060125A1 (en) * 2013-10-24 2015-04-30 Dic株式会社 Resin composition, heat-dissipating material, and heat-dissipating member
WO2015146875A1 (en) * 2014-03-24 2015-10-01 宇部マテリアルズ株式会社 Fine magnesium oxide particle dispersion liquid and method for producing same
WO2018070495A1 (en) * 2016-10-13 2018-04-19 株式会社トクヤマデンタル Dental resin composite material, method for producing dental resin composite material, and polyaryletherketone resin for producing dental resin composite material
JP3211656U (en) * 2016-12-13 2017-07-27 錫凱 鄒 Surgical implant structure
JP2021526929A (en) * 2018-06-15 2021-10-11 スリーエム イノベイティブ プロパティズ カンパニー Dental orthosis with metal oxide coating
CN111234456A (en) * 2018-11-28 2020-06-05 合肥杰事杰新材料股份有限公司 Anti-aging and mildew-proof polyether-ether-ketone material and preparation method thereof
WO2020138235A1 (en) * 2018-12-26 2020-07-02 Agc株式会社 Functional film and functional laminated glass
CN109939007A (en) * 2019-03-22 2019-06-28 华南理工大学 A kind of biocidal property oral cavity basal seat area and preparation method thereof
JP7074268B2 (en) * 2020-03-05 2022-05-24 Dic株式会社 Thin-film molded product and its manufacturing method

Also Published As

Publication number Publication date
JP2024067471A (en) 2024-05-17

Similar Documents

Publication Publication Date Title
Baştan et al. Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications
Chen et al. Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: in vitro tests and first-principles calculations
Carradó Structural, microstructural, and residual stress investigations of plasma-sprayed hydroxyapatite on Ti-6Al-4 V
Jung et al. Enhanced bioactivity of titanium-coated polyetheretherketone implants created by a high-temperature 3D printing process
Lahiri et al. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties
Duta et al. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition
White et al. Hydroxyapatite–carbon nanotube composites for biomedical applications: a review
Sheikh et al. Traversing the profile of biomimetically nanoengineered iron substituted hydroxyapatite: synthesis, characterization, property evaluation, and drug release modeling
Furuichi et al. Preparation of hierarchically organized calcium phosphate–organic polymer composites by calcification of hydrogel
Zhang et al. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications
Kim et al. Stable sol–gel hydroxyapatite coating on zirconia dental implant for improved osseointegration
Insley et al. Octacalcium phosphate biomaterials: understanding of bioactive properties and application
Pandey et al. Progress on medical implant: a review and prospects
WO2024095649A1 (en) Joined body using polyether ether ketone resin, and composite material
Pauline et al. Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications
Kuffner et al. Production and characterization of a 316L stainless steel/β-TCP biocomposite using the functionally graded materials (fgms) technique for dental and Orthopedic Applications
Saber-Samandari et al. Microstructural evolution and micromechanical properties of thermally sprayed hydroxyapatite coating
Kannan et al. In situ formation and characterization of flourine-substituted biphasic calcium phosphate ceramics of varied F-HAP/β-TCP ratios
Al‐Noaman et al. A novel bioactive glass/graphene oxide composite coating for a polyether ether ketone‐based dental implant
Yigit et al. Hydrothermal synthesis of nanocrystalline hydroxyapatite–graphene nanosheet on Ti-6Al-7Nb: mechanical and in vitro corrosion performance
Sowmiya et al. Adsorption of proline, hydroxyproline and glycine on anatase (001) surface: a first-principle study
Heimann Tracking the thermal decomposition of plasma-sprayed hydroxylapatite
Al-Samaray et al. Fabrication and characterization of bioactive composite: A pilot study
Baligidad et al. Investigation on performance of hybrid coating of hydroxyapatite and reduced graphene oxide on polyether ether ketone for orthopaedic application
Mohammed et al. Synthesis and characterization of nanocoatings derived by sol–gel onto a new surgical titanium surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885413

Country of ref document: EP

Kind code of ref document: A1