WO2024095533A1 - Hot-rolled steel sheet - Google Patents

Hot-rolled steel sheet Download PDF

Info

Publication number
WO2024095533A1
WO2024095533A1 PCT/JP2023/024346 JP2023024346W WO2024095533A1 WO 2024095533 A1 WO2024095533 A1 WO 2024095533A1 JP 2023024346 W JP2023024346 W JP 2023024346W WO 2024095533 A1 WO2024095533 A1 WO 2024095533A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
ferrite
rolled steel
steel sheet
Prior art date
Application number
PCT/JP2023/024346
Other languages
French (fr)
Japanese (ja)
Inventor
菜月 大住
顕吾 畑
武 豊田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024095533A1 publication Critical patent/WO2024095533A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to hot-rolled steel sheets.
  • Patent Document 1 describes a high-strength hot-rolled steel sheet having a predetermined chemical composition, a Weg represented by [Ti]-48/14 x [N]-48/32 x [S] of 0.01 to 0.30%, crystal grains in which the misorientation of the grain boundaries between adjacent crystal grains is 15° or more, and the average misorientation within the crystal grains is 0 to 0.5° in terms of area fraction, the total of martensite, tempered martensite, and retained austenite is 2% to 10% in terms of area fraction, and Ti is present as Ti carbides at a mass percentage of 40% or more of Tief, and the mass of the Ti carbides having a circle-equivalent grain size of 7 nm to 20 nm or less accounts for 50% or more of the mass of the total Ti carbides.
  • a Tief represented by [Ti]-48/14 x [N]-48/32 x [S] of 0.01 to 0.30%
  • Patent Document 1 also teaches that grains with an average intragrain orientation difference of 0 to 0.5° have high ductility and are further strengthened by precipitation with Ti carbides, so by ensuring that such grains account for 50% or more of the area, it is possible to improve ductility while maintaining a tensile strength (TS) of 540 MPa or more.
  • TS tensile strength
  • Patent Document 2 describes a high-strength hot-rolled steel sheet having a predetermined composition, a total volume fraction of the ferrite phase and the bainite phase in the entire structure of 95% or more, a volume fraction of the ferrite phase in the entire structure of 50-90%, precipitates of less than 20 nm in size containing 650-1100 ppm Ti precipitated in the ferrite phase, and a microstructure in which the ⁇ Hv of the bainite phase (the difference between the maximum and minimum Vickers hardness values of the bainite phase measured at 1/4 of the sheet thickness position in the sheet thickness cross section along the rolling direction) is 150 or less.
  • Patent Document 2 also teaches that if a microstructure is formed mainly of ferrite and bainite phases, precipitates of less than 20 nm in size containing 650-1100 ppm Ti precipitated in the ferrite phase, and the ⁇ Hv of the bainite phase is set to 150 or less, a TS of 780 MPa or more can be secured, and excellent stretch flangeability (hole expandability) and impact resistance can be achieved at the same time.
  • the present invention aims to provide a hot-rolled steel sheet that has high strength, high hole expansion property and high yield ratio.
  • the inventors conducted research, focusing particularly on the metal structure of hot-rolled steel sheet.
  • the strength of hot-rolled steel sheet can be significantly increased by configuring the metal structure of hot-rolled steel sheet having a specified chemical composition to mainly contain ferrite, bainite, and martensite, controlling the bainite fraction to a relatively high range, and utilizing dislocation strengthening, and further discovered that ferrite can be precipitation strengthened by causing TiC precipitates having a suitable diameter to exist in ferrite at a specified number density, thereby further increasing the strength of the hot-rolled steel sheet while reducing the difference in hardness between ferrite and bainite and increasing the hole expandability and yield ratio, thus completing the present invention.
  • the present invention which has achieved the above object, is as follows. (1) In mass%, C: 0.03 to 0.10%, Si: 0.010 to 0.100%, Mn: 0.50 to 3.00%, Ti: 0.05 to 0.20%, Al: 0.20 to 0.40%, P: 0.100% or less, S: 0.0100% or less, N: 0.010% or less, O: 0.010% or less, Nb: 0 to 0.050%, V: 0 to 1.000%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 1.000%, B: 0 to 0.0100%, Sn: 0 to 1.000%, Sb: 0 to 1.000%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Hf: 0 to 0.0100%, Bi: 0 to 0.010%, REM: 0 to 0.0100%, As: 0 to 0.010%, Zr: 0 to 0.010%, Co:
  • the chemical composition is, in mass%, Nb: 0.001 to 0.050%, V: 0.001 to 1.000%, Cr: 0.001 to 2.00%, Ni: 0.001 to 2.00%, Cu: 0.001 to 2.00%, Mo: 0.001 to 1.000%, B: 0.0001 to 0.0100%, Sn: 0.001 to 1.000%, Sb: 0.001 to 1.000%, Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0100%, Hf: 0.0001 to 0.0100%, Bi: 0.001 to 0.010%, REM: 0.0001 to 0.0100%, As: 0.001 to 0.010%, Zr: 0.001 to 0.010%, Co: 0.001 to 2.000%, Zn: 0.001 to 0.010%, and W: 0.001 to 1.000%
  • the hot-rolled steel sheet according to the above (1) characterized in that it contains at least one of the following: (3) The hot-rolled steel sheet according to (1) or (2) above, characterized in that the
  • the present invention provides hot-rolled steel sheets that have high strength, high hole expansion properties, and high yield ratios.
  • the hot-rolled steel sheet according to the embodiment of the present invention has, in mass%, C: 0.03 to 0.10%, Si: 0.010 to 0.100%, Mn: 0.50 to 3.00%, Ti: 0.05 to 0.20%, Al: 0.20 to 0.40%, P: 0.100% or less, S: 0.0100% or less, N: 0.010% or less, O: 0.010% or less, Nb: 0 to 0.050%, V: 0 to 1.000%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 1.000%, B: 0 to 0.0100%, Sn: 0 to 1.000%, Sb: 0 to 1.000%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Hf: 0 to 0.0100%, Bi: 0 to 0.010%, REM: 0 to 0.0100%, As: 0 to 0.010%, Zr:
  • the present inventors conducted research, focusing in particular on the metal structure of the hot-rolled steel plate, in addition to making the chemical composition of the hot-rolled steel plate appropriate. To explain in more detail, first, the present inventors found that by configuring the metal structure of a hot-rolled steel plate having a predetermined chemical composition to mainly contain ferrite, bainite, and martensite, it is possible to improve the hole expandability and yield ratio while maintaining the strength of the hot-rolled steel plate at a relatively high level.
  • the present inventors found that, in order to further increase the strength, the strength of the hot-rolled steel plate can be significantly increased by controlling the fraction of bainite, which is a hard phase in the metal structure, to a relatively high range and utilizing dislocation strengthening. More specifically, the inventors have discovered that in addition to controlling the area ratio of bainite in the metal structure to within the range of 30 to 60%, the strength of the hot-rolled steel sheet can be significantly increased by introducing dislocations into the steel sheet during hot rolling such that the average aspect ratio of the prior austenite grains in the region containing the bainite and martensite is 3.0 or more, as will be described in detail later in relation to the manufacturing method of the hot-rolled steel sheet.
  • the fraction of bainite is controlled to a relatively high range in a three-phase structure mainly composed of ferrite, bainite, and martensite as described above, it is very effective in terms of increasing strength, but the hardness difference between the hard phase bainite and the soft phase ferrite becomes relatively large. If the hardness difference between each phase in the metal structure becomes large, the hole expandability and the yield ratio may decrease. For this reason, the present inventors have studied the improvement of hole expandability and the realization of a high yield ratio from the viewpoint of reducing the hardness difference between each phase in a metal structure including such a three-phase structure.
  • precipitation strengthening of the softest ferrite in the three-phase structure more specifically, by having TiC precipitates with a diameter of 2.0 to 8.0 nm in ferrite exist at a number density of 1.0 x 10 16 pieces/cm 3 or more, not only contributes to improving the strength of the hot-rolled steel sheet as a whole, but also sufficiently reduces the hardness difference between the bainite, which is a hard phase relatively abundant in the metal structure, and the softest ferrite in the three-phase structure.
  • the hot-rolled steel sheet according to the embodiment of the present invention in order to have TiC precipitates with a diameter of 2.0 to 8.0 nm exist in ferrite at a number density of 1.0 x 10 16 pieces/cm 3 or more, in addition to the manufacturing method described in detail later, it is necessary to make the chemical composition of the hot-rolled steel sheet appropriate.
  • Si and Al contained in the steel have the effect of suppressing the precipitation of cementite.
  • the hot-rolled steel sheet according to the embodiment of the present invention can be effectively used in components that require both the contradictory properties of high strength and excellent workability, and further require impact resistance properties, and is therefore particularly useful in the automotive field.
  • C is an element effective in increasing the strength of steel plate.
  • C forms carbides and/or carbonitrides with Ti and Nb in steel, and contributes to precipitation strengthening based on the formed precipitates and to refinement of the structure due to the pinning effect of the precipitates.
  • the C content is set to 0.03% or more.
  • the C content may be 0.04% or more, 0.05% or more, or 0.06% or more.
  • the C content is set to 0.10% or less.
  • the C content may be 0.09% or less, 0.08% or less, or 0.07% or less.
  • Si 0.010 to 0.100%
  • Si is an element effective in increasing strength as a solid solution strengthening element.
  • Si also has the effect of suppressing the precipitation of cementite. Therefore, by containing Si, it is possible to suppress the consumption of C in the steel to form cementite, and thereby it is possible to promote the formation of TiC precipitates during cooling after hot rolling.
  • the Si content is set to 0.010% or more.
  • the Si content may be 0.020% or more, 0.030% or more, or 0.040% or more.
  • a surface quality defect called Si scale may occur. Therefore, the Si content is set to 0.100% or less.
  • the Si content may be 0.090% or less, 0.080% or less, 0.070% or less, 0.060% or less, or 0.050% or less.
  • Mn is an element that is effective in increasing strength as a hardenability and solid solution strengthening element. In order to fully obtain these effects, the Mn content is set to 0.50% or more. The Mn content may be 0.70% or more, 1.00% or more, 1.20% or more, or 1.50% or more. On the other hand, if Mn is contained excessively, a large amount of MnS may be generated, which may reduce toughness. Therefore, the Mn content is set to 3.00% or less. The Mn content may be 2.80% or less, 2.50% or less, 2.20% or less, or 2.00% or less.
  • Ti is an element that finely precipitates in steel as carbide (TiC), improves the strength of steel by precipitation strengthening, and increases the hardness of ferrite. Ti also forms carbides to fix C, and is an element that suppresses the formation of cementite, which is harmful to hole expansion. In order to fully obtain these effects, the Ti content is set to 0.05% or more. The Ti content may be 0.08% or more, 0.10% or more, 0.12% or more, or 0.14% or more. On the other hand, if Ti is contained excessively, the carbides become coarse, and the desired precipitation strengthening in ferrite may not be obtained.
  • the Ti content is set to 0.20% or less.
  • the Ti content may be 0.18% or less, 0.17% or less, 0.16% or less, or 0.15% or less.
  • Al 0.20 to 0.40%
  • Al is an element that acts as a deoxidizer for molten steel.
  • Al also has the effect of suppressing the precipitation of cementite. Therefore, by containing Al, it is possible to suppress the consumption of C in the steel to form cementite, and thereby it is possible to promote the formation of TiC precipitates during cooling after hot rolling.
  • the Al content is set to 0.20% or more.
  • the Al content may be 0.22% or more, 0.25% or more, or 0.28% or more.
  • the Al content is set to 0.40% or less.
  • the Al content may be 0.38% or less, 0.35% or less, or 0.32% or less.
  • the P content is set to 0.100% or less.
  • the P content may be 0.080% or less, 0.050% or less, 0.030% or less, or 0.020% or less.
  • the lower limit of the P content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in costs. Therefore, the P content may be 0.0001% or more, 0.001% or more, or 0.005% or more.
  • the Si content is set to 0.0100% or less.
  • the S content may be 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • the lower limit of the S content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • N 0.010% or less
  • the N content is set to 0.010% or less.
  • the N content may be 0.008% or less, 0.005% or less, or 0.003% or less.
  • the lower limit of the N content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in costs. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
  • O is an element that is mixed in during the manufacturing process. If O is contained excessively, coarse inclusions may be formed, which may reduce the toughness of the steel plate. Therefore, the O content is set to 0.010% or less.
  • the O content may be 0.008% or less, 0.006% or less, or 0.004% or less.
  • the lower limit of the O content is not particularly limited and may be 0%, but reducing the O content to less than 0.0001% requires a long time for refining, which leads to a decrease in productivity. Therefore, the O content may be 0.0001% or more, or 0.0005% or more.
  • the basic chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention is as described above. Furthermore, the hot-rolled steel sheet may contain at least one of the following optional elements in place of a portion of the remaining Fe, as necessary.
  • Nb is an element that forms carbides, nitrides and/or carbonitrides in steel and contributes to refining the structure and thus increasing the strength of the steel sheet by the pinning effect.
  • the Nb content may be 0%, but in order to obtain such an effect, the Nb content is preferably 0.001% or more.
  • the Nb content may be 0.005% or more, 0.010% or more, 0.012% or more, 0.015% or more, or 0.020% or more.
  • the Nb content is preferably 0.050% or less.
  • the Nb content may be 0.040% or less, 0.030% or less, or 0.025% or less.
  • V is an element that contributes to improving strength by precipitation strengthening, etc.
  • the V content may be 0%, but in order to obtain such an effect, the V content is preferably 0.001% or more.
  • the V content may be 0.010% or more, 0.030% or more, or 0.050% or more.
  • the V content is preferably 1.000% or less.
  • the V content may be 0.500% or less, 0.200% or less, 0.100% or less, or 0.080% or less.
  • Cr is an element that enhances the hardenability of steel and contributes to improving strength.
  • the Cr content may be 0%, but in order to obtain such an effect, the Cr content is preferably 0.001% or more.
  • the Cr content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Cr content is preferably 2.00% or less.
  • the Cr content may be 1.50% or less, 1.00% or less, 0.50% or less, 0.30% or less, 0.15% or less, or 0.10% or less.
  • Ni and Cu are elements that contribute to improving strength by precipitation strengthening or solid solution strengthening.
  • the Ni and Cu contents may be 0%, but in order to obtain such effects, the contents of these elements are preferably 0.001% or more, and may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Ni and Cu contents are preferably 2.00% or less, and may be 1.50% or less, 1.00% or less, 0.50% or less, 0.30% or less, 0.15% or less, or 0.10% or less.
  • Mo is an element that improves the hardenability of steel and contributes to improving strength.
  • the Mo content may be 0%, but in order to obtain such an effect, the Mo content is preferably 0.001% or more.
  • the Mo content may be 0.010% or more, 0.020% or more, or 0.050% or more.
  • the Mo content is preferably 1.000% or less.
  • the Mo content may be 0.800% or less, 0.500% or less, 0.200% or less, 0.100% or less, or 0.080% or less.
  • [B: 0 to 0.0100%] B segregates at grain boundaries to increase grain boundary strength, thereby improving low-temperature toughness.
  • the B content may be 0%, but in order to obtain such an effect, the B content is preferably 0.0001% or more.
  • the B content may be 0.0002% or more, 0.0003% or more, or 0.0005% or more.
  • the B content is preferably 0.0100% or less.
  • the B content may be 0.0050% or less, 0.0030% or less, 0.0015% or less, or 0.0010% or less.
  • Sn and Sb are elements effective for improving corrosion resistance.
  • the Sn and Sb contents may be 0%, but in order to obtain such effects, the contents of these elements are preferably 0.001% or more, and may be 0.010% or more, 0.020% or more, or 0.050% or more. On the other hand, excessive inclusion of these elements may cause a decrease in toughness. Therefore, the Sn and Sb contents are preferably 1.000% or less, and may be 0.800% or less, 0.500% or less, 0.300% or less, 0.100% or less, or 0.080% or less.
  • Ca, Mg and Hf are elements capable of controlling the morphology of nonmetallic inclusions.
  • the Ca, Mg and Hf contents may be 0%, but in order to obtain such effects, the contents of these elements are preferably 0.0001% or more, and may be 0.0005% or more or 0.0010% or more.
  • the Ca, Mg and Hf contents are preferably 0.0100% or less, and may be 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • Bi is an element effective in improving corrosion resistance.
  • the Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.001% or more.
  • the Bi content may be 0.001% or more or 0.002% or more.
  • the Bi content is preferably 0.010% or less.
  • the Bi content may be 0.005% or less or 0.003% or less.
  • REM is an element capable of controlling the form of nonmetallic inclusions.
  • the REM content may be 0%, but in order to obtain such an effect, the REM content is preferably 0.0001% or more.
  • the REM content may be 0.0005% or more or 0.0010% or more.
  • the REM content is preferably 0.0100% or less.
  • the REM content may be 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • REM is a collective term for 17 elements, namely, scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71, and the REM content is the total content of these elements.
  • the As content may be 0%, but in order to obtain such an effect, the As content is preferably 0.001% or more.
  • the As content may be 0.002% or more or 0.003% or more.
  • the As content is preferably 0.010% or less.
  • the As content may be 0.008% or less or 0.005% or less.
  • Zr is an element capable of controlling the form of nonmetallic inclusions.
  • the Zr content may be 0%, but in order to obtain such an effect, the Zr content is preferably 0.001% or more.
  • the Zr content may be 0.002% or more or 0.003% or more.
  • the Zr content is preferably 0.010% or less.
  • the Zr content may be 0.008% or less or 0.005% or less.
  • Co is an element that contributes to improving hardenability and/or heat resistance.
  • the Co content may be 0%, but in order to obtain these effects, the Co content is preferably 0.001% or more.
  • the Co content may be 0.010% or more, 0.050% or more, or 0.100% or more.
  • the Co content is preferably 2.000% or less.
  • the Co content may be 1.000% or less, 0.500% or less, 0.300% or less, or 0.200% or less.
  • Zn is an element that may be contained in a steel sheet when scrap or the like is used as a steel raw material. Therefore, the Zn content is preferably 0.010% or less, and may be 0.008% or less or 0.005% or less.
  • the Zn content may be 0%, but reducing the Zn content to less than 0.001% requires a long time for refining, which leads to a decrease in productivity. Therefore, the Zn content may be 0.001% or more, 0.002% or more, or 0.003% or more.
  • W is an element that enhances the hardenability of steel and contributes to improving strength.
  • the W content may be 0%, but in order to obtain such an effect, the W content is preferably 0.001% or more.
  • the W content may be 0.010% or more, 0.050% or more, or 0.100% or more.
  • excessive W content may reduce weldability. Therefore, the W content is preferably 1.000% or less.
  • the W content may be 0.800% or less, 0.500% or less, 0.300% or less, or 0.200% or less.
  • the remainder other than the above elements consists of Fe and impurities.
  • Impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially manufacturing hot-rolled steel sheets.
  • the chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention may be measured by a general analytical method.
  • the chemical composition of the hot-rolled steel sheet may be measured using inductively coupled plasma atomic emission spectrometry (ICP-AES).
  • C and S may be measured using the combustion-infrared absorption method
  • N may be measured using the inert gas fusion-thermal conductivity method
  • O may be measured using the inert gas fusion-non-dispersive infrared absorption method.
  • the metal structure of the hot rolled steel sheet according to the embodiment of the present invention includes, in terms of area percentage, ferrite: 30 to 60%, bainite: 30 to 60%, and martensite: 5 to 20%.
  • ferrite 30 to 60%
  • bainite 30 to 60%
  • martensite 5 to 20%.
  • the area ratio of ferrite needs to be 30% or more, and may be, for example, 35% or more, 40% or more, or 45% or more.
  • the area ratio of ferrite is 60% or less, and may be, for example, less than 60%, 59% or less, 58% or less, 55% or less, 52% or less, or 50% or less.
  • the area ratios of the hard phases bainite and martensite are high.
  • the area ratio of bainite may be more than 30%, 31% or more, 32% or more, 35% or more, 40% or more, or 45% or more.
  • the area ratio of martensite may be 8% or more, 10% or more, or 12% or more.
  • the area ratios of bainite and martensite are low. From this viewpoint, for example, the area ratio of bainite may be 58% or less, 55% or less, 52% or less, or 50% or less.
  • the area ratio of martensite may be 18% or less, 16% or less, or 14% or less.
  • the metal structure of the hot-rolled steel sheet according to the embodiment of the present invention includes ferrite, bainite, and martensite, and may include other remaining structures, but the area ratio of the remaining structure is preferably small and may be 0%.
  • the area ratio of the remaining structure is not particularly limited, and may be, for example, 0 to 5%, 0 to 4%, or 0 to 3%.
  • the total area ratio of ferrite, bainite, and martensite may be, for example, 95 to 100%, 96 to 100%, or 97 to 100%.
  • the lower limit of the remaining structure may be 1% or 2%.
  • the remaining structure may include at least one of pearlite and retained austenite or may be at least one of them.
  • the structure observation is performed with a scanning electron microscope. Prior to the observation, the sample for structure observation is polished by wet polishing with emery paper and diamond abrasive grains having an average particle size of 1 ⁇ m, and the observation surface is mirror-finished, and then the structure is etched with a 3% nitric acid alcohol solution. The magnification of the observation is 2000 times, and 10 random images of a 30 ⁇ m x 40 ⁇ m field of view at a position of 1/4 of the plate thickness from the surface are taken. The ratio of the structure is obtained by the point count method.
  • a total of 225 lattice points are set at intervals of 3 ⁇ m vertically and 4 ⁇ m horizontally for the obtained structure image, and the structure present under the lattice points is identified, and the structure ratio contained in the steel material is obtained from the average value of the 10 sheets.
  • Ferrite is a blocky crystal grain that does not contain iron-based carbides with a major axis of 100 nm or more inside.
  • Bainite is a collection of lath-shaped crystal grains, and does not contain iron-based carbides with a major axis of 20 nm or more inside, or contains iron-based carbides with a major axis of 20 nm or more inside, and the carbides belong to a single variant, i.e., a group of iron-based carbides elongated in the same direction.
  • the group of iron-based carbides elongated in the same direction refers to iron-based carbides whose elongation directions differ by 5° or less.
  • Bainite is counted as one bainite grain when it is surrounded by grain boundaries with an orientation difference of 15° or more.
  • martensite which contains a large amount of dissolved carbon, has a higher brightness and appears whiter than other structures, so it can be distinguished from other structures.
  • the area ratio of the remaining structure is determined by subtracting the total area ratio of ferrite, bainite, and martensite from 100%.
  • pearlite has a unique structure in which cementite is precipitated in a lamellar form, and therefore can be identified by a scanning electron microscope.
  • the volume fraction of the retained austenite can be calculated by X-ray diffraction measurement, and since the volume fraction of the retained austenite is equivalent to the area fraction, this can be regarded as the area fraction of the retained austenite.
  • TiC precipitates having a diameter of 2.0 to 8.0 nm are present in the ferrite at a number density of 1.0 x 10 16 pieces/cm 3 or more.
  • TiC precipitates include not only TiC but also composite carbides containing Ti and other elements other than Ti, such as V and Nb.
  • the hardness difference in the metal structure mainly composed of ferrite, bainite and martensite can be reduced.
  • it is possible to significantly increase the hole expandability and yield ratio of the hot-rolled steel sheet and it is possible to achieve, for example, a hole expansion ratio ( ⁇ ) of 60.0% or more and a yield ratio (YR) of 0.70 or more.
  • the precipitation strengthening by TiC precipitates also contributes to improving the strength of the entire hot-rolled steel sheet.
  • the diameter of the TiC precipitates is smaller than 2.0 nm, the TiC precipitates cannot act sufficiently as obstacles to dislocation motion, and therefore the effect of improving the hardness of ferrite by precipitation strengthening cannot be fully obtained. In addition, the effect of improving the strength of the hot-rolled steel sheet may not be fully exhibited. On the other hand, if the diameter of the TiC precipitates is too large, the desired precipitation strengthening in ferrite may not be obtained.
  • TiC precipitates having a diameter of 2.0 to 8.0 nm need to be present in the ferrite at a number density of 1.0 ⁇ 10 16 /cm 3 or more as described above.
  • the higher the number density the more preferable it is, and it may be, for example, 1.2 ⁇ 10 16 /cm 3 or more, 1.5 ⁇ 10 16 /cm 3 or more, 2.0 ⁇ 10 16 /cm 3 or more, 5.0 ⁇ 10 16 /cm 3 or more, or 10.0 ⁇ 10 16 /cm 3 or more.
  • C and Ti which are the supply sources of TiC precipitates, if the number density becomes too high, it may be difficult to control the diameter of the TiC precipitates within the desired range.
  • the number density is not particularly limited as long as the diameter of 2.0 to 8.0 nm is satisfied, but may be, for example, 75.0 x 10 16 pieces/cm 3 or less, 50.0 x 10 16 pieces/cm 3 or less, 30.0 x 10 16 pieces/cm 3 or less, or 20.0 x 10 16 pieces/cm 3 or less.
  • TiC precipitates having a diameter of 2.0 to 8.0 nm may be present in the ferrite at a number density of 1.0 x 10 16 pieces/cm 3 or more, and therefore, as long as the above diameter and number density requirements are satisfied, for example, coarse TiC precipitates may be present in the ferrite.
  • the precipitate is defined as a fine TiC precipitate.
  • the diameter of the fine TiC precipitate is the circle equivalent diameter calculated from the number of Ti atoms constituting the observed fine Ti precipitate and the lattice constant of the fine Ti precipitate, assuming that the fine Ti precipitate is spherical.
  • the method of calculating the diameter (circle equivalent diameter) R of the fine TiC precipitate using the number of Ti atoms of the fine TiC precipitate obtained by the three-dimensional atom probe measurement method is shown below.
  • the ratio of the average nanohardness of ferrite to the average nanohardness of bainite i.e., (average nanohardness of ferrite)/(average nanohardness of bainite) is controlled within the range of 0.75 to 1.20.
  • the ratio of the average nanohardness of ferrite to the average nanohardness of bainite within such a range, the hardness difference between ferrite and bainite in the metal structure can be further reduced.
  • the ratio of the average nanohardness of ferrite to the average nanohardness of bainite may be 0.80 or more, 0.85 or more, or 0.90 or more, and may be 1.15 or less, 1.10 or less, 1.05 or less, or 1.00 or less.
  • the average nanohardness of bainite is not particularly limited, but may be, for example, 3.0 to 5.0 GPa, 3.2 to 4.8 GPa, or 3.5 to 4.5 GPa.
  • the average nanohardness of ferrite is not particularly limited, but may be, for example, 2.5 to 5.0 GPa, 2.8 to 4.8 GPa, or 3.0 to 4.5 GPa.
  • the ratio of the average nanohardness of ferrite to the average nanohardness of bainite is determined as follows. First, a sample is cut out from a hot-rolled steel sheet so that a cross section perpendicular to the surface can be observed. The cross section of the sample is polished to a mirror finish by wet polishing with emery paper and diamond abrasive grains with an average particle size of 1 ⁇ m. The mirror-finished cross section is indented with a test load of 3 gf at a depth position of 1/4 of the plate thickness from the surface using a microhardness tester, and the nanohardness is measured, obtaining a total of 100 or more measured values.
  • the same sample is measured using a scanning electron microscope, and only measurement points with indentations inside the ferrite grains and inside the bainite are extracted with reference to the obtained structure analysis results.
  • the arithmetic average of the nanohardnesses for the 10 or more extracted ferrite crystal grains is determined as the average nanohardness of ferrite
  • the arithmetic average of the nanohardnesses for the 10 or more extracted bainite grains is determined as the average nanohardness of bainite
  • the ratio thereof (average nanohardness of ferrite)/(average nanohardness of bainite) is determined as the ratio of the average nanohardness of ferrite to the average nanohardness of bainite.
  • the average aspect ratio of the prior austenite grains in the region containing bainite and martensite must be 3.0 or more.
  • the strength of the hot-rolled steel sheet can be increased by configuring the metal structure to contain a relatively large amount of bainite, 30 to 60 area %, of the hard phase.
  • the desired high strength cannot be reliably achieved simply by increasing the area ratio of bainite. Therefore, in the hot-rolled steel sheet according to the embodiment of the present invention, in addition to containing a relatively large amount of bainite, dislocation strengthening is utilized to further increase the strength.
  • dislocations can be introduced into the steel sheet while suppressing recrystallization of the metal structure by applying an appropriate reduction during hot rolling.
  • the metal structure in which dislocations are appropriately introduced in this way has a relatively large aspect ratio because recrystallization is suppressed. That is, by appropriately controlling the average aspect ratio of the prior austenite grains in the region containing bainite and martensite, the strength improvement effect obtained by containing a relatively large amount of bainite can be further increased due to dislocation strengthening.
  • the metal structure is configured to contain 30 to 60 area % of bainite, and the average aspect ratio of the prior austenite grains in the region containing the bainite and martensite is controlled to 3.0 or more, so that the strength of the hot-rolled steel sheet can be significantly increased due to a combination of the strength improving effect of bainite and dislocation strengthening.
  • the larger the average aspect ratio the more preferable it is, and it may be, for example, 3.2 or more, 3.5 or more, 3.8 or more, or 4.0 or more.
  • the upper limit of the average aspect ratio is not particularly limited, but for example, the average aspect ratio may be 6.0 or less, 5.5 or less, or 5.0 or less.
  • the average aspect ratio of the prior austenite grains in the region containing bainite and martensite is measured by a scanning electron microscope. Prior to the measurement, the sample for structure observation is first polished by wet polishing with emery paper and diamond abrasives with an average particle size of 1 ⁇ m, and the L-direction cross section (cross section parallel to the rolling direction and the plate thickness direction) is mirror-finished as the observation surface, and then the structure is etched with a picric acid solution.
  • the magnification of the observation is 1000 times, and 10 random photographs are taken of a 60 ⁇ m x 80 ⁇ m field of view at a position of 1/4 of the plate thickness from the surface.
  • the grain size in each of the plate thickness direction and the rolling direction is obtained by a cutting method, with the grain boundaries revealed by corrosion with picric acid as the target.
  • the cutting method five straight lines parallel to the plate thickness direction and the rolling direction of the photographed image are drawn at equal intervals, and the intersections with the grain boundaries are counted. The total length of the five straight lines divided by the number of intersections is taken as the grain size.
  • the grain size in the rolling direction is divided by the grain size in the sheet thickness direction to determine the average aspect ratio of the prior austenite grains in the region containing bainite and martensite.
  • the hot rolled steel sheet according to the embodiment of the present invention generally has a thickness of 1.0 to 6.0 mm, although not particularly limited thereto.
  • the thickness may be 1.2 mm or more, 1.6 mm or more, or 2.0 mm or more, and/or 5.0 mm or less, or 4.0 mm or less.
  • the upper limit of the tensile strength is not particularly limited, but for example, the tensile strength of the hot-rolled steel sheet may be 1180 MPa or less, 980 MPa or less, 940 MPa or less, 900 MPa or less, or 860 MPa or less.
  • the tensile strength is measured by taking a JIS No. 5 test piece from a direction (C direction) in which the longitudinal direction of the test piece is parallel to the rolling perpendicular direction of the hot-rolled steel sheet, and performing a tensile test in accordance with JIS Z 2241:2011.
  • the yield ratio can be increased, and more specifically, a yield ratio of 0.70 or more can be achieved.
  • the yield ratio is preferably 0.75 or more, more preferably 0.80 or more.
  • the upper limit is not particularly limited, but for example, the yield ratio may be 0.90 or less or 0.85 or less.
  • the yield ratio is determined by the following formula based on the tensile strength and 0.2% proof stress measured by taking a JIS No.
  • the hole expansion ratio may be preferably 65.0% or more, more preferably 70.0% or more or 80% or more.
  • the upper limit of the hole expansion ratio is not particularly limited, but for example, the hole expansion ratio may be 120% or less, 110% or less, or 100% or less.
  • the hole expansion ratio is determined as follows.
  • the initial hole is expanded with a conical punch having an apex angle of 60° until a crack penetrating the plate thickness occurs, with the burr facing the die side, and the hole diameter d1 mm at the time of crack occurrence is measured, and the hole expansion ratio ⁇ (%) of each test piece is calculated using the following formula.
  • This hole expansion test is carried out three times, and the average value is determined as the hole expansion ratio ⁇ .
  • 100 ⁇ ⁇ (d1 - d0) / d0 ⁇
  • the method for producing a hot-rolled steel sheet according to an embodiment of the present invention includes: A hot rolling process comprising heating a slab having the chemical composition described above in relation to the hot rolled steel sheet and then finish rolling the slab, the hot rolling process satisfying the following conditions (a) to (e): (a) The heating temperature of the slab is 1200 to 1300°C; (b) the holding time in the temperature range of 1200 to 1300° C.
  • finish rolling is 1000 to 4000 seconds;
  • finish rolling is performed using a tandem rolling mill consisting of five or more rolling stands, and the total reduction in the rolling passes of the front stages other than the rear three stages is 60 to 90%;
  • rolling reduction in each rolling pass of the latter three stages is 10% or more, and the total rolling reduction in the rolling passes of the latter three stages is 30 to 50%, and
  • end temperature of finish rolling is 900 to 1000°C.
  • the method is characterized by including an intermediate air-cooling step in which the finish-rolled steel sheet is primarily cooled to an intermediate air-cooling temperature of 670 to 750°C at an average cooling rate of 50 to 200°C/s, and then intermediate air-cooled for 3 to 10 seconds, and a cooling step in which the intermediate air-cooled steel sheet is secondarily cooled at an average cooling rate of 50 to 200°C/s, and then coiled at a coiling temperature of 20 to 200°C.
  • an intermediate air-cooling step in which the finish-rolled steel sheet is primarily cooled to an intermediate air-cooling temperature of 670 to 750°C at an average cooling rate of 50 to 200°C/s, and then intermediate air-cooled for 3 to 10 seconds
  • a cooling step in which the intermediate air-cooled steel sheet is secondarily cooled at an average cooling rate of 50 to 200°C/s, and then coiled at a coiling temperature of 20 to 200°C.
  • the heating temperature is preferably 1200°C or higher.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 1300°C or lower from the viewpoint of the capacity and productivity of the heating equipment.
  • the upper limit of the holding time is not particularly limited, but is preferably 4000 seconds or less from the viewpoint of productivity, etc.
  • the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness, etc.
  • the conditions of the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be secured.
  • Refining the metal structure by such recrystallization is very advantageous in forming a desired metal structure and improving properties such as hole expandability. If the total reduction rate in the rolling passes of the front stages is less than 60%, the desired metal structure containing ferrite, bainite, and martensite in a specific ratio cannot be obtained, and properties such as hole expandability may be reduced. Therefore, the total reduction in the front rolling passes is set to 60% or more, and preferably 70% or more. On the other hand, if the total reduction in the front rolling passes is too high, the rolling load becomes excessive, and the load on the rolling mill increases. For this reason, the total reduction in the front rolling passes is set to 90% or less.
  • the reduction rate in each rolling pass of the last three stages is less than 10%, recrystallization is suppressed in each rolling pass, but dislocations cannot be sufficiently introduced in each rolling pass, and the desired aspect ratio cannot be achieved in the final metal structure.
  • the total reduction rate in the rolling passes of the last three stages is less than 30%, dislocations cannot be sufficiently introduced in at least one rolling pass of the last three stages, and the average aspect ratio of the old austenite grains in the region containing bainite and martensite cannot be achieved in the final metal structure.
  • the reduction rate in each rolling pass of the last three stages is more than 30% or the total reduction rate in the last three stages is more than 50%, recrystallization is promoted and dislocations cannot be sufficiently introduced, and similarly, the average aspect ratio of the old austenite grains in the region containing bainite and martensite cannot be achieved in the final metal structure.
  • the total reduction rate in the last three rolling passes of the finish rolling is preferably controlled within the range of 35 to 50%.
  • the finish rolling end temperature is also important in controlling the metal structure of the steel sheet. If the finish rolling end temperature is low, the metal structure may become non-uniform, and the strength and/or hole expandability may decrease. For this reason, the finish rolling end temperature is set to 900°C or higher. On the other hand, if the finish rolling end temperature is high, recrystallization is promoted in the rolling passes in the rear three stages of the finish rolling, and dislocations cannot be sufficiently introduced. As a result, in the finally obtained metal structure, it is not possible to achieve an average aspect ratio of 3.0 or more of the prior austenite grains in the region including bainite and martensite. Therefore, the finish rolling end temperature is set to 1000°C or lower.
  • the finish-rolled steel sheet is primarily cooled on a run-out table (ROT) to an intermediate cooling temperature of 670 to 750 ° C. at an average cooling rate of 50 to 200 ° C./s, and then intermediate cooling is performed for 3 to 10 seconds.
  • ROT run-out table
  • the intermediate cooling temperature in order to sufficiently precipitation strengthen ferrite by promoting the generation and grain growth of TiC precipitates during intermediate cooling, it is necessary to set the intermediate cooling temperature to a relatively high temperature range, i.e., a temperature range of 670 to 750 ° C.
  • a relatively high temperature range i.e., a temperature range of 670 to 750 ° C.
  • ferrite is generated excessively, and the area ratio of ferrite in the final metal structure exceeds 60%, making it impossible to obtain the desired characteristics. Therefore, in this manufacturing method, the average cooling rate in the primary cooling from the finish rolling to the intermediate air cooling temperature is set to 50 ° C / sec or more, thereby suppressing excessive generation of ferrite and allowing TiC precipitates to be sufficiently precipitated by the next intermediate air cooling at high temperature.
  • the average cooling rate of the primary cooling is set to 200 ° C / sec or less, preferably 160 ° C / sec or less.
  • the intermediate cooling temperature is above 750°C or the intermediate cooling time is more than 10 seconds, excessive ferrite is generated or the TiC precipitates become coarse. If excessive ferrite is generated, the desired metal structure containing ferrite, bainite and martensite in a specific ratio cannot be formed in the final hot-rolled steel sheet. In addition, if the TiC precipitates become coarse, the number density of the TiC precipitates also decreases significantly, and the hardness improvement effect of ferrite due to precipitation strengthening cannot be fully obtained. On the other hand, if the intermediate cooling temperature is below 670°C or the intermediate cooling time is less than 3 seconds, the generation and grain growth of TiC precipitates are suppressed, and the desired diameter and/or number density cannot be obtained.
  • the intermediate cooling temperature is primarily cooled to 670 to 750 ° C., preferably 690 to 750 ° C. at an average cooling rate of 50 to 200 ° C./s, preferably 50 to 160 ° C./s, and then intermediate cooling is performed for 3 to 10 seconds, preferably 4 to 9 seconds, to precipitate ferrite in a desired ratio, generate TiC precipitates in the ferrite, and allow them to grow appropriately, so that TiC precipitates having a diameter of 2.0 to 8.0 nm are finally present at a number density of 1.0 ⁇ 10 16 / cm 3 or more.
  • the intermediate cooling temperature is primarily cooled to 670 to 750 ° C., preferably 690 to 750 ° C. at an average cooling rate of 50 to 200 ° C./s, preferably 50 to 160 ° C./s, and then intermediate cooling is performed for 3 to 10 seconds, preferably 4 to 9 seconds, to precipitate ferrite in a desired ratio, generate TiC precipitates in the ferrite, and allow them
  • the average cooling rate of the second cooling is set to 200° C./sec or less, and preferably 180° C./sec or less.
  • the coiling temperature is set to 20°C or higher.
  • the area ratio of bainite which is a hard layer in the metal structure, is controlled within a relatively high range of 30 to 60%, and the average aspect ratio of the prior austenite grains in the region containing the bainite and martensite is 3.0 or more, and the dislocation strengthening associated therewith can be utilized, and as a result, the strength of the hot-rolled steel sheet can be significantly increased.
  • the hot-rolled steel sheet manufactured by the above-mentioned manufacturing method is particularly useful in the automotive field because it can be effectively used in components that require both the contradictory properties of high strength and excellent workability, and furthermore, impact resistance.
  • hot-rolled steel sheets according to the embodiments of the present invention were manufactured under various conditions, and the tensile strength (TS), hole expansion ratio ( ⁇ ), and yield ratio (YR) of the obtained hot-rolled steel sheets were investigated.
  • ingots having various chemical compositions shown in Table 1 were produced in a vacuum melting furnace, then reheated to the heating temperature shown in Table 2, and rough rolled to produce rough bars with a thickness of 30 mm.
  • the rough bars were held at a temperature range of 1200 to 1300°C for 3600 seconds, and then finish rolling was performed using a rolling mill consisting of multiple rolling stands, with two or more rolling passes in the front stage and three rolling passes in the rear stage, under the conditions shown in Table 2.
  • the end temperature of the finish rolling was as shown in Table 2.
  • the finish-rolled steel plate was primarily cooled to the intermediate air-cooling temperature under the conditions shown in Table 2, and then intermediate air-cooled.
  • the intermediate air-cooled steel plate was secondarily cooled to the coiling temperature under the conditions shown in Table 2, and then coiled at the coiling temperature, to obtain a hot-rolled steel plate with a thickness of 2.5 mm.
  • the properties of the resulting hot-rolled steel sheets were measured and evaluated using the following methods.
  • TS tensile strength
  • YR yield ratio
  • the tensile strength (TS) was measured by taking a JIS No. 5 test piece having a length of 200 mm and a thickness of 2.5 mm from a direction (C direction) in which the longitudinal direction of the test piece was parallel to the rolling direction perpendicular to the rolling direction of the hot-rolled steel plate, and performing a tensile test in accordance with JIS Z 2241:2011. More specifically, the test was performed at room temperature in the range of 10 to 35°C, and a tensile test force was applied to the test piece, and strain was applied until it broke.
  • the burr was set to be on the die side, and the initial hole was pushed out with a conical punch having an apex angle of 60 ° until a crack penetrating the plate thickness occurred, and the hole diameter d1 mm at the time of the crack occurrence was measured, and the hole expansion ratio ⁇ (%) of each test piece was calculated using the following formula.
  • Hot-rolled steel sheets with a tensile strength (TS) of 780 MPa or more, a hole expansion ratio ( ⁇ ) of 60.0% or more, and a yield ratio (YR) of 0.70 or more were evaluated as hot-rolled steel sheets with high strength, high hole expansion property, and high yield ratio.
  • TS tensile strength
  • hole expansion ratio
  • YR yield ratio
  • Comparative Example 18 With reference to Tables 1 to 3, in Comparative Example 18, the average cooling rate in the primary cooling to the intermediate air-cooling temperature was high, so that the generation of ferrite was excessively suppressed, and the area ratio of ferrite in the final metal structure was less than 30%. As a result, ⁇ was reduced. In Comparative Example 19, it is considered that the total reduction rate in the rolling passes in the front stages of the finish rolling was low, so that recrystallization was suppressed in the front rolling passes, and the metal structure could not be refined. As a result, the desired metal structure was not obtained, and ⁇ was reduced.
  • Comparative Example 20 it is considered that the total reduction rate in the rolling passes in the rear three stages of the finish rolling was high, so that recrystallization was promoted in the rear rolling passes, and dislocations could not be sufficiently introduced. As a result, the average aspect ratio of the prior austenite grains in the region including bainite and martensite was less than 3.0, and TS was reduced. In Comparative Example 21, it is considered that the coiling temperature was high, so that a relatively large amount of cementite was precipitated, and C in the steel was consumed in the formation of cementite.
  • Comparative Example 23 it is considered that the end temperature of the finish rolling was high, so that recrystallization was promoted in the rolling passes in the latter three stages of the finish rolling, and dislocations could not be sufficiently introduced. As a result, the average aspect ratio of the prior austenite grains in the region including bainite and martensite was less than 3.0, and TS was reduced. In Comparative Example 24, the average cooling rate in the primary cooling to the intermediate air-cooling temperature was slow, so that ferrite was generated excessively, and the area ratio of ferrite in the final metal structure was more than 60%, resulting in a decrease in TS.
  • Comparative Example 25 the average cooling rate in the secondary cooling after the intermediate air cooling was slow, so the area ratio of martensite was less than 5%, and TS was reduced.
  • Comparative Example 26 the intermediate air cooling temperature was low, so the generation and grain growth of TiC precipitates were suppressed, and the desired diameter of the TiC precipitates could not be obtained. As a result, the hardness improvement effect of ferrite due to precipitation strengthening could not be fully obtained, and ⁇ and YR were reduced.
  • Comparative Example 27 the intermediate air cooling time was long, so ferrite was generated excessively, and further the TiC precipitates became coarse, and in connection with this, the number density of the TiC precipitates also decreased. As a result, TS, ⁇ , and YR were reduced.
  • Comparative Example 28 the C content was high, so ⁇ and YR were reduced due to the formation of cementite.
  • the Ti content was low, so the TiC precipitates could not be precipitated at a sufficient number density. As a result, TS, ⁇ , and YR were reduced.
  • Comparative Example 30 since the Si content was low, the precipitation of cementite could not be sufficiently suppressed, and it is considered that the C in the steel was consumed in the formation of cementite.
  • the formation of TiC precipitates was suppressed, and the number density of the TiC precipitates was less than 1.0 ⁇ 10 16 / cm 3 , and the effect of improving the hardness of ferrite by precipitation strengthening and the effect of improving the strength of the hot-rolled steel sheet could not be sufficiently obtained, and the TS and YR were reduced.
  • a hot-rolled steel sheet having a predetermined chemical composition and appropriately controlling each condition in the manufacturing method which contains ferrite: 30-60%, bainite: 30-60%, and martensite: 5-20% in terms of area ratio, TiC precipitates having a diameter of 2.0-8.0 nm are present in the ferrite at a number density of 1.0 x 1016 /cm3 or more, and the average aspect ratio of the prior austenite grains in the region containing bainite and martensite is 3.0 or more, was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided is a hot-rolled steel sheet characterized by having a predetermined chemical composition, and having a metal structure which includes, in area%, 30-60 % of ferrite, 30-60 % of bainite, and 5-20 % of martensite and in which TiC deposits having a diameter of 2.0-8.0 nm exist at a number density of at least 1.0 × 1016/cm3 in the ferrite, and the average aspect ratio of prior austenite grains in a region containing bainite and martensite is at least 3.0.

Description

熱間圧延鋼板Hot rolled steel plate
 本発明は、熱間圧延鋼板に関する。 The present invention relates to hot-rolled steel sheets.
 近年、自動車業界では、燃費向上の観点から車体の軽量化が求められている。車体の軽量化と衝突安全性を両立するためには、使用する鋼板の高強度化が有効な方法の一つであり、このような背景から高強度鋼板の開発が進められている。一方で、高強度化とともに鋼板の加工性は一般に低下する。このため、高強度鋼板の開発においては、加工性を一定以上確保しつつ高強度化を図ることが重要である。 In recent years, the automotive industry has been seeking to reduce the weight of vehicle bodies in order to improve fuel efficiency. In order to achieve both a lighter vehicle body and crashworthiness, increasing the strength of the steel plates used is one effective method, and against this background, the development of high-strength steel plates is underway. However, as strength increases, the workability of the steel plate generally decreases. For this reason, when developing high-strength steel plates, it is important to increase strength while maintaining a certain level of workability.
 これに関連して、例えば、特許文献1では、所定の化学組成を有し、[Ti]-48/14×[N]-48/32×[S]で表わされるTiefが0.01~0.30%であり、隣接する結晶粒の粒界の方位差を15°以上とした結晶粒であって、前記結晶粒内の方位差の平均が0~0.5°である結晶粒を面積率で50%以上含み、さらにマルテンサイトと焼き戻しマルテンサイトと残留オーステナイトの合計が面積分率で2%以上10%以下であり、さらにTiefの40%以上の質量%のTiがTi炭化物として存在し、当該Ti炭化物の円相当粒径が7nm以上20nm以下であるものの質量が、全Ti炭化物の質量の50%以上であることを特徴とする高強度熱延鋼板が記載されている。また、特許文献1では、結晶粒内の方位差の平均が0~0.5°である結晶粒は延性が高く、さらにTi炭化物により析出強化されているため、このような結晶粒を面積率で50%以上確保することで、引張強さ(TS)を540MPa以上に維持しつつ、延性を向上させることができると教示されている。 In this regard, for example, Patent Document 1 describes a high-strength hot-rolled steel sheet having a predetermined chemical composition, a Tief represented by [Ti]-48/14 x [N]-48/32 x [S] of 0.01 to 0.30%, crystal grains in which the misorientation of the grain boundaries between adjacent crystal grains is 15° or more, and the average misorientation within the crystal grains is 0 to 0.5° in terms of area fraction, the total of martensite, tempered martensite, and retained austenite is 2% to 10% in terms of area fraction, and Ti is present as Ti carbides at a mass percentage of 40% or more of Tief, and the mass of the Ti carbides having a circle-equivalent grain size of 7 nm to 20 nm or less accounts for 50% or more of the mass of the total Ti carbides. Patent Document 1 also teaches that grains with an average intragrain orientation difference of 0 to 0.5° have high ductility and are further strengthened by precipitation with Ti carbides, so by ensuring that such grains account for 50% or more of the area, it is possible to improve ductility while maintaining a tensile strength (TS) of 540 MPa or more.
 特許文献2では、所定の成分組成を有し、組織全体に占めるフェライト相とベイナイト相の合計の体積率が95%以上で、組織全体に占める前記フェライト相の体積率が50~90%であり、前記フェライト相中には650~1100ppmのTiを含む20nm未満のサイズの析出物が析出しており、かつ前記ベイナイト相のΔHv(圧延方向に沿った板厚断面の板厚1/4の位置にて測定した30箇所のベイナイト相のビッカース硬度の最大値と最小値の差)が150以下であるミクロ組織を有することを特徴とする高強度熱延鋼板が記載されている。また、特許文献2では、フェライト相とベイナイト相を主体とし、フェライト相中には650~1100ppmのTiを含む20nm未満のサイズの析出物を析出させ、ベイナイト相のΔHvを150以下にしたミクロ組織にすれば、780MPa以上のTSを確保して、優れた伸びフランジ性(穴広げ性)と耐衝撃特性を両立できると教示されている。 Patent Document 2 describes a high-strength hot-rolled steel sheet having a predetermined composition, a total volume fraction of the ferrite phase and the bainite phase in the entire structure of 95% or more, a volume fraction of the ferrite phase in the entire structure of 50-90%, precipitates of less than 20 nm in size containing 650-1100 ppm Ti precipitated in the ferrite phase, and a microstructure in which the ΔHv of the bainite phase (the difference between the maximum and minimum Vickers hardness values of the bainite phase measured at 1/4 of the sheet thickness position in the sheet thickness cross section along the rolling direction) is 150 or less. Patent Document 2 also teaches that if a microstructure is formed mainly of ferrite and bainite phases, precipitates of less than 20 nm in size containing 650-1100 ppm Ti precipitated in the ferrite phase, and the ΔHv of the bainite phase is set to 150 or less, a TS of 780 MPa or more can be secured, and excellent stretch flangeability (hole expandability) and impact resistance can be achieved at the same time.
特開2016-204690号公報JP 2016-204690 A 特開2011-068945号公報JP 2011-068945 A
 特許文献2に記載される穴広げ性及び耐衝撃特性に関連して、例えば、穴広げ性が低下すると、自動車の足回り部材などにおいて所望の部材形状に成形することができない場合がある。また、耐衝撃特性が求められる部材については、降伏強さを超える衝撃を受けると塑性変形が生じることから、自動車の衝突安全性を確保する観点からは、引張強さだけでなく降伏強さについても向上させることが求められており、それゆえ降伏強さと引張強さの比である降伏比を高めることが求められている。 In relation to the hole expandability and impact resistance properties described in Patent Document 2, for example, if the hole expandability decreases, it may not be possible to form the desired component shape in automobile chassis components, etc. Furthermore, for components that require impact resistance, plastic deformation occurs when they receive an impact that exceeds the yield strength, so from the perspective of ensuring the collision safety of automobiles, it is necessary to improve not only the tensile strength but also the yield strength, and therefore there is a need to increase the yield ratio, which is the ratio of yield strength to tensile strength.
 そこで、本発明は、高強度でかつ高い穴広げ性及び降伏比を有する熱間圧延鋼板を提供することを目的とする。 The present invention aims to provide a hot-rolled steel sheet that has high strength, high hole expansion property and high yield ratio.
 本発明者らは、上記目的を達成するために、特に熱間圧延鋼板の金属組織に着目して検討を行った。その結果、本発明者らは、所定の化学組成を有する熱間圧延鋼板の金属組織を、フェライト、ベイナイト及びマルテンサイトを主として含むよう構成するとともに、ベイナイト分率を比較的高い範囲に制御しかつ転位強化を利用することで熱間圧延鋼板の強度を顕著に高めることができること、さらにはフェライト中に適度な直径を有するTiC析出物を所定の個数密度で存在させることでフェライトを析出強化し、それによって熱間圧延鋼板をさらに高強度化しつつ、フェライトとベイナイトの硬度差を小さくして穴広げ性及び降伏比を高めることができることを見出し、本発明を完成させた。 In order to achieve the above object, the inventors conducted research, focusing particularly on the metal structure of hot-rolled steel sheet. As a result, the inventors discovered that the strength of hot-rolled steel sheet can be significantly increased by configuring the metal structure of hot-rolled steel sheet having a specified chemical composition to mainly contain ferrite, bainite, and martensite, controlling the bainite fraction to a relatively high range, and utilizing dislocation strengthening, and further discovered that ferrite can be precipitation strengthened by causing TiC precipitates having a suitable diameter to exist in ferrite at a specified number density, thereby further increasing the strength of the hot-rolled steel sheet while reducing the difference in hardness between ferrite and bainite and increasing the hole expandability and yield ratio, thus completing the present invention.
 上記目的を達成し得た本発明は下記のとおりである。
 (1)質量%で、
 C:0.03~0.10%、
 Si:0.010~0.100%、
 Mn:0.50~3.00%、
 Ti:0.05~0.20%、
 Al:0.20~0.40%、
 P:0.100%以下、
 S:0.0100%以下、
 N:0.010%以下、
 O:0.010%以下、
 Nb:0~0.050%、
 V:0~1.000%、
 Cr:0~2.00%、
 Ni:0~2.00%、
 Cu:0~2.00%、
 Mo:0~1.000%、
 B:0~0.0100%、
 Sn:0~1.000%、
 Sb:0~1.000%、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 Hf:0~0.0100%、
 Bi:0~0.010%、
 REM:0~0.0100%、
 As:0~0.010%、
 Zr:0~0.010%、
 Co:0~2.000%、
 Zn:0~0.010%、
 W:0~1.000%、並びに
 残部:Fe及び不純物からなる化学組成を有し、
 面積%で、
 フェライト:30~60%、
 ベイナイト:30~60%、及び
 マルテンサイト:5~20%を含み、
 フェライト中に直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度で存在し、
 ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比が3.0以上である金属組織を有することを特徴とする、熱間圧延鋼板。
 (2)前記化学組成が、質量%で、
 Nb:0.001~0.050%、
 V:0.001~1.000%、
 Cr:0.001~2.00%、
 Ni:0.001~2.00%、
 Cu:0.001~2.00%、
 Mo:0.001~1.000%、
 B:0.0001~0.0100%、
 Sn:0.001~1.000%、
 Sb:0.001~1.000%、
 Ca:0.0001~0.0100%、
 Mg:0.0001~0.0100%、
 Hf:0.0001~0.0100%、
 Bi:0.001~0.010%、
 REM:0.0001~0.0100%、
 As:0.001~0.010%、
 Zr:0.001~0.010%、
 Co:0.001~2.000%、
 Zn:0.001~0.010%、及び
 W:0.001~1.000%
のうち少なくとも1種を含むことを特徴とする、上記(1)に記載の熱間圧延鋼板。
 (3)ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比が0.75~1.20であることを特徴とする、上記(1)又は(2)に記載の熱間圧延鋼板。
The present invention, which has achieved the above object, is as follows.
(1) In mass%,
C: 0.03 to 0.10%,
Si: 0.010 to 0.100%,
Mn: 0.50 to 3.00%,
Ti: 0.05 to 0.20%,
Al: 0.20 to 0.40%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.010% or less,
O: 0.010% or less,
Nb: 0 to 0.050%,
V: 0 to 1.000%,
Cr: 0 to 2.00%,
Ni: 0 to 2.00%,
Cu: 0 to 2.00%,
Mo: 0 to 1.000%,
B: 0 to 0.0100%,
Sn: 0 to 1.000%,
Sb: 0 to 1.000%,
Ca: 0 to 0.0100%,
Mg: 0 to 0.0100%,
Hf: 0 to 0.0100%,
Bi: 0 to 0.010%,
REM: 0 to 0.0100%,
As: 0 to 0.010%,
Zr: 0 to 0.010%,
Co: 0 to 2.000%,
Zn: 0 to 0.010%,
W: 0 to 1.000%, and the balance: Fe and impurities;
In terms of area percentage,
Ferrite: 30-60%,
Bainite: 30-60%; Martensite: 5-20%;
TiC precipitates having a diameter of 2.0 to 8.0 nm are present in the ferrite at a density of 1.0 x 1016 particles/ cm3 or more,
A hot-rolled steel sheet, characterized in that it has a metal structure in which prior austenite grains in a region containing bainite and martensite have an average aspect ratio of 3.0 or more.
(2) The chemical composition is, in mass%,
Nb: 0.001 to 0.050%,
V: 0.001 to 1.000%,
Cr: 0.001 to 2.00%,
Ni: 0.001 to 2.00%,
Cu: 0.001 to 2.00%,
Mo: 0.001 to 1.000%,
B: 0.0001 to 0.0100%,
Sn: 0.001 to 1.000%,
Sb: 0.001 to 1.000%,
Ca: 0.0001 to 0.0100%,
Mg: 0.0001 to 0.0100%,
Hf: 0.0001 to 0.0100%,
Bi: 0.001 to 0.010%,
REM: 0.0001 to 0.0100%,
As: 0.001 to 0.010%,
Zr: 0.001 to 0.010%,
Co: 0.001 to 2.000%,
Zn: 0.001 to 0.010%, and W: 0.001 to 1.000%
The hot-rolled steel sheet according to the above (1), characterized in that it contains at least one of the following:
(3) The hot-rolled steel sheet according to (1) or (2) above, characterized in that the ratio of the average nano-hardness of ferrite to the average nano-hardness of bainite is 0.75 to 1.20.
 本発明によれば、高強度でかつ高い穴広げ性及び降伏比を有する熱間圧延鋼板を提供することができる。 The present invention provides hot-rolled steel sheets that have high strength, high hole expansion properties, and high yield ratios.
<熱間圧延鋼板>
 本発明の実施形態に係る熱間圧延鋼板は、質量%で、
 C:0.03~0.10%、
 Si:0.010~0.100%、
 Mn:0.50~3.00%、
 Ti:0.05~0.20%、
 Al:0.20~0.40%、
 P:0.100%以下、
 S:0.0100%以下、
 N:0.010%以下、
 O:0.010%以下、
 Nb:0~0.050%、
 V:0~1.000%、
 Cr:0~2.00%、
 Ni:0~2.00%、
 Cu:0~2.00%、
 Mo:0~1.000%、
 B:0~0.0100%、
 Sn:0~1.000%、
 Sb:0~1.000%、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 Hf:0~0.0100%、
 Bi:0~0.010%、
 REM:0~0.0100%、
 As:0~0.010%、
 Zr:0~0.010%、
 Co:0~2.000%、
 Zn:0~0.010%、
 W:0~1.000%、並びに
 残部:Fe及び不純物からなる化学組成を有し、
 面積%で、
 フェライト:30~60%、
 ベイナイト:30~60%、及び
 マルテンサイト:5~20%を含み、
 フェライト中に直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度で存在し、
 ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比が3.0以上である金属組織を有することを特徴としている。
<Hot-rolled steel sheets>
The hot-rolled steel sheet according to the embodiment of the present invention has, in mass%,
C: 0.03 to 0.10%,
Si: 0.010 to 0.100%,
Mn: 0.50 to 3.00%,
Ti: 0.05 to 0.20%,
Al: 0.20 to 0.40%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.010% or less,
O: 0.010% or less,
Nb: 0 to 0.050%,
V: 0 to 1.000%,
Cr: 0 to 2.00%,
Ni: 0 to 2.00%,
Cu: 0 to 2.00%,
Mo: 0 to 1.000%,
B: 0 to 0.0100%,
Sn: 0 to 1.000%,
Sb: 0 to 1.000%,
Ca: 0 to 0.0100%,
Mg: 0 to 0.0100%,
Hf: 0 to 0.0100%,
Bi: 0 to 0.010%,
REM: 0 to 0.0100%,
As: 0 to 0.010%,
Zr: 0 to 0.010%,
Co: 0 to 2.000%,
Zn: 0 to 0.010%,
W: 0 to 1.000%, and the balance: Fe and impurities;
In area %,
Ferrite: 30-60%,
Bainite: 30-60%; Martensite: 5-20%;
TiC precipitates having a diameter of 2.0 to 8.0 nm are present in the ferrite at a density of 1.0 x 1016 particles/ cm3 or more,
The steel is characterized by having a metal structure in which the average aspect ratio of prior austenite grains in a region containing bainite and martensite is 3.0 or more.
 鋼板の高強度化とともに、穴広げ性等の加工性は一般に低下する。したがって、鋼板の強度を十分に確保しつつ、穴広げ性を改善し、さらには自動車の衝突安全性等の観点から高い降伏比を達成することは一般に非常に困難である。そこで、本発明者らは、熱間圧延鋼板の化学組成を適切なものとすることに加えて、特に当該熱間圧延鋼板の金属組織に着目して検討を行った。より詳しく説明すると、まず、本発明者らは、所定の化学組成を有する熱間圧延鋼板の金属組織を、フェライト、ベイナイト及びマルテンサイトを主として含むよう構成することで、熱間圧延鋼板の強度をある程度高いレベルに維持しつつ、穴広げ性及び降伏比を高めることができることを見出した。次に、本発明者らは、さらなる高強度化のために、上記金属組織中の硬質相であるベイナイトの分率を比較的高い範囲に制御しかつ転位強化を利用することで、熱間圧延鋼板の強度を顕著に高めることができることを見出した。より具体的には、本発明者らは、金属組織中のベイナイトの面積率を30~60%の範囲内に制御することに加えて、熱間圧延鋼板の製造方法に関連して後で詳しく説明されるように、当該ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比が3.0以上となるような転位を熱間圧延において鋼板中に導入することで、熱間圧延鋼板の強度を顕著に高めることができることを見出した。 As the strength of a steel plate increases, its workability, such as hole expandability, generally decreases. Therefore, it is generally very difficult to improve the hole expandability while ensuring sufficient strength of the steel plate, and further to achieve a high yield ratio from the viewpoint of automobile collision safety, etc. Therefore, the present inventors conducted research, focusing in particular on the metal structure of the hot-rolled steel plate, in addition to making the chemical composition of the hot-rolled steel plate appropriate. To explain in more detail, first, the present inventors found that by configuring the metal structure of a hot-rolled steel plate having a predetermined chemical composition to mainly contain ferrite, bainite, and martensite, it is possible to improve the hole expandability and yield ratio while maintaining the strength of the hot-rolled steel plate at a relatively high level. Next, the present inventors found that, in order to further increase the strength, the strength of the hot-rolled steel plate can be significantly increased by controlling the fraction of bainite, which is a hard phase in the metal structure, to a relatively high range and utilizing dislocation strengthening. More specifically, the inventors have discovered that in addition to controlling the area ratio of bainite in the metal structure to within the range of 30 to 60%, the strength of the hot-rolled steel sheet can be significantly increased by introducing dislocations into the steel sheet during hot rolling such that the average aspect ratio of the prior austenite grains in the region containing the bainite and martensite is 3.0 or more, as will be described in detail later in relation to the manufacturing method of the hot-rolled steel sheet.
 一方で、フェライト、ベイナイト及びマルテンサイトから主として構成される3相組織においてベイナイトの分率を上記のように比較的高い範囲に制御した場合には、高強度化の観点では非常に有効であるものの、特に硬質相であるベイナイトと軟質相であるフェライトとの間で硬度差が比較的大きくなってしまう。金属組織中の各相の硬度差が大きくなると、それに起因して穴広げ性及び降伏比が低下する可能性がある。このため、本発明者らは、このような3相組織を含む金属組織において各相の硬度差を低減するという観点から穴広げ性の向上及び高降伏比の実現を検討した。その結果、本発明者らは、3相組織中で最も軟質のフェライトを析出強化すること、より具体的にはフェライト中に直径2.0~8.0nmのTiC析出物を1.0×1016個/cm3以上の個数密度で存在させることでフェライトを析出強化することにより、熱間圧延鋼板全体の強度向上に寄与することは当然ながら、金属組織中で比較的多く存在する硬質相のベイナイトと3相組織中で最も軟質のフェライトとの硬度差を十分に低減することができることを見出した。本発明の実施形態に係る熱間圧延鋼板において、フェライト中に直径2.0~8.0nmのTiC析出物を1.0×1016個/cm3以上の個数密度で存在させるためには、後で詳しく説明される製造方法に加えて、熱間圧延鋼板の化学組成を適切なものとする必要がある。例えば、鋼中に含まれるSi及びAlはセメンタイトの析出を抑制する作用を有する。したがって、これらの元素を鋼中に所定量以上含有させること、より具体的にはSi及びAlをそれぞれ0.010質量%以上及び0.20質量%以上含有させることで、鋼中のCがセメンタイトを形成するのに消費されることを抑制することができ、それによって熱間圧延後の冷却時にTiC析出物の形成を促進させることが可能となる。その結果として、本発明者らは、高強度化を達成するためにベイナイト分率を高めかつ転位強化を利用して比較的硬度差が大きくなりやすい3相組織によって金属組織を構成したにもかかわらず、特定の直径及び個数密度のTiC析出物を利用した析出強化によってフェライトの硬度を高めることで、高強度でかつ高い穴広げ性及び降伏比を有する熱間圧延鋼板を得ることができることを見出した。したがって、本発明の実施形態に係る熱間圧延鋼板は、高強度と優れた加工性の相反する特性の両立が求められ、さらには耐衝撃特性が求められる部材においても有効に使用することができるので、自動車分野の使用において特に有用である。 On the other hand, when the fraction of bainite is controlled to a relatively high range in a three-phase structure mainly composed of ferrite, bainite, and martensite as described above, it is very effective in terms of increasing strength, but the hardness difference between the hard phase bainite and the soft phase ferrite becomes relatively large. If the hardness difference between each phase in the metal structure becomes large, the hole expandability and the yield ratio may decrease. For this reason, the present inventors have studied the improvement of hole expandability and the realization of a high yield ratio from the viewpoint of reducing the hardness difference between each phase in a metal structure including such a three-phase structure. As a result, the inventors found that precipitation strengthening of the softest ferrite in the three-phase structure, more specifically, by having TiC precipitates with a diameter of 2.0 to 8.0 nm in ferrite exist at a number density of 1.0 x 10 16 pieces/cm 3 or more, not only contributes to improving the strength of the hot-rolled steel sheet as a whole, but also sufficiently reduces the hardness difference between the bainite, which is a hard phase relatively abundant in the metal structure, and the softest ferrite in the three-phase structure. In the hot-rolled steel sheet according to the embodiment of the present invention, in order to have TiC precipitates with a diameter of 2.0 to 8.0 nm exist in ferrite at a number density of 1.0 x 10 16 pieces/cm 3 or more, in addition to the manufacturing method described in detail later, it is necessary to make the chemical composition of the hot-rolled steel sheet appropriate. For example, Si and Al contained in the steel have the effect of suppressing the precipitation of cementite. Therefore, by containing these elements in the steel in a predetermined amount or more, more specifically, by containing Si and Al in an amount of 0.010 mass% or more and 0.20 mass% or more, respectively, it is possible to suppress the consumption of C in the steel to form cementite, and thereby to promote the formation of TiC precipitates during cooling after hot rolling. As a result, the inventors have found that, although the metal structure is constituted by a three-phase structure in which the hardness difference is relatively likely to become large by increasing the bainite fraction and utilizing dislocation strengthening to achieve high strength, it is possible to obtain a hot-rolled steel sheet having high strength, hole expansion property and yield ratio by increasing the hardness of ferrite through precipitation strengthening using TiC precipitates of a specific diameter and number density. Therefore, the hot-rolled steel sheet according to the embodiment of the present invention can be effectively used in components that require both the contradictory properties of high strength and excellent workability, and further require impact resistance properties, and is therefore particularly useful in the automotive field.
 以下、本発明の実施形態に係る熱間圧延鋼板についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。 The hot-rolled steel sheet according to an embodiment of the present invention will be described in more detail below. In the following description, the unit of content of each element, "%", means "mass%" unless otherwise specified. Furthermore, in this specification, "to" indicating a numerical range is used to mean that the numerical values before and after it are included as the lower and upper limits, unless otherwise specified.
[C:0.03~0.10%]
 Cは、鋼板の強度を高めるのに有効な元素である。また、Cは、鋼中でTi及びNbと炭化物及び/又は炭窒化物を形成し、形成した析出物に基づく析出強化や、当該析出物のピン止め効果による組織の微細化にも寄与する。これらの効果を十分に得るために、C含有量は0.03%以上とする。C含有量は0.04%以上、0.05%以上又は0.06%以上であってもよい。一方で、Cを過度に含有すると、セメンタイトの形成に起因して穴広げ性や降伏比が低下する場合がある。したがって、C含有量は0.10%以下とする。C含有量は0.09%以下、0.08%以下又は0.07%以下であってもよい。
[C: 0.03 to 0.10%]
C is an element effective in increasing the strength of steel plate. In addition, C forms carbides and/or carbonitrides with Ti and Nb in steel, and contributes to precipitation strengthening based on the formed precipitates and to refinement of the structure due to the pinning effect of the precipitates. In order to fully obtain these effects, the C content is set to 0.03% or more. The C content may be 0.04% or more, 0.05% or more, or 0.06% or more. On the other hand, if C is excessively contained, the hole expandability and yield ratio may decrease due to the formation of cementite. Therefore, the C content is set to 0.10% or less. The C content may be 0.09% or less, 0.08% or less, or 0.07% or less.
[Si:0.010~0.100%]
 Siは、固溶強化元素として強度上昇に有効な元素である。また、Siは、セメンタイトの析出を抑制する作用も有する。このため、Siを含有することで鋼中のCがセメンタイトを形成するのに消費されることを抑制することができ、それによって熱間圧延後の冷却時にTiC析出物の形成を促進させることが可能となる。これらの効果を十分に得るために、Si含有量は0.010%以上とする。Si含有量は0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Siを過度に含有すると、Siスケールと呼ばれる表面品質不良を発生する場合がある。したがって、Si含有量は0.100%以下とする。Si含有量は0.090%以下、0.080%以下、0.070%以下、0.060%以下又は0.050%以下であってもよい。
[Si: 0.010 to 0.100%]
Si is an element effective in increasing strength as a solid solution strengthening element. In addition, Si also has the effect of suppressing the precipitation of cementite. Therefore, by containing Si, it is possible to suppress the consumption of C in the steel to form cementite, and thereby it is possible to promote the formation of TiC precipitates during cooling after hot rolling. In order to fully obtain these effects, the Si content is set to 0.010% or more. The Si content may be 0.020% or more, 0.030% or more, or 0.040% or more. On the other hand, if Si is contained excessively, a surface quality defect called Si scale may occur. Therefore, the Si content is set to 0.100% or less. The Si content may be 0.090% or less, 0.080% or less, 0.070% or less, 0.060% or less, or 0.050% or less.
[Mn:0.50~3.00%]
 Mnは、焼入れ性及び固溶強化元素として強度上昇に有効な元素である。これらの効果を十分に得るために、Mn含有量は0.50%以上とする。Mn含有量は0.70%以上、1.00%以上、1.20%以上又は1.50%以上であってもよい。一方で、Mnを過度に含有すると、MnSが多く生成して靭性を低下させる場合がある。したがって、Mn含有量は3.00%以下とする。Mn含有量は2.80%以下、2.50%以下、2.20%以下又は2.00%以下であってもよい。
[Mn: 0.50 to 3.00%]
Mn is an element that is effective in increasing strength as a hardenability and solid solution strengthening element. In order to fully obtain these effects, the Mn content is set to 0.50% or more. The Mn content may be 0.70% or more, 1.00% or more, 1.20% or more, or 1.50% or more. On the other hand, if Mn is contained excessively, a large amount of MnS may be generated, which may reduce toughness. Therefore, the Mn content is set to 3.00% or less. The Mn content may be 2.80% or less, 2.50% or less, 2.20% or less, or 2.00% or less.
[Ti:0.05~0.20%]
 Tiは、炭化物(TiC)として鋼中に微細に析出し、析出強化により鋼の強度を向上させるとともに、フェライトの硬度を高める元素である。また、Tiは、炭化物を形成することでCを固定し、穴広げ性にとって有害なセメンタイトの生成を抑制する元素でもある。これらの効果を十分に得るために、Ti含有量は0.05%以上とする。Ti含有量は0.08%以上、0.10%以上、0.12%以上又は0.14%以上であってもよい。一方で、Tiを過度に含有すると、炭化物が粗大となり、フェライトにおける所望の析出強化を得ることができない場合がある。加えて、TiC析出物の粗大化に伴い、TiC析出物の個数密度も低下することから、この場合には析出強化によってフェライトの硬度を十分に高めることができなくなる。したがって、Ti含有量は0.20%以下とする。Ti含有量は0.18%以下、0.17%以下、0.16%以下又は0.15%以下であってもよい。
[Ti: 0.05 to 0.20%]
Ti is an element that finely precipitates in steel as carbide (TiC), improves the strength of steel by precipitation strengthening, and increases the hardness of ferrite. Ti also forms carbides to fix C, and is an element that suppresses the formation of cementite, which is harmful to hole expansion. In order to fully obtain these effects, the Ti content is set to 0.05% or more. The Ti content may be 0.08% or more, 0.10% or more, 0.12% or more, or 0.14% or more. On the other hand, if Ti is contained excessively, the carbides become coarse, and the desired precipitation strengthening in ferrite may not be obtained. In addition, as the TiC precipitates become coarse, the number density of the TiC precipitates also decreases, so in this case, the hardness of ferrite cannot be sufficiently increased by precipitation strengthening. Therefore, the Ti content is set to 0.20% or less. The Ti content may be 0.18% or less, 0.17% or less, 0.16% or less, or 0.15% or less.
[Al:0.20~0.40%]
 Alは、溶鋼の脱酸剤として作用する元素である。また、Alは、セメンタイトの析出を抑制する作用も有する。このため、Alを含有することで鋼中のCがセメンタイトを形成するのに消費されることを抑制することができ、それによって熱間圧延後の冷却時にTiC析出物の形成を促進させることが可能となる。これらの効果を十分に得るために、Al含有量は0.20%以上とする。Al含有量は0.22%以上、0.25%以上又は0.28%以上であってもよい。一方で、Alを過度に含有すると、粗大な酸化物が形成し、靭性や延性が低下する場合がある。したがって、Al含有量は0.40%以下とする。Al含有量は0.38%以下、0.35%以下又は0.32%以下であってもよい。
[Al: 0.20 to 0.40%]
Al is an element that acts as a deoxidizer for molten steel. In addition, Al also has the effect of suppressing the precipitation of cementite. Therefore, by containing Al, it is possible to suppress the consumption of C in the steel to form cementite, and thereby it is possible to promote the formation of TiC precipitates during cooling after hot rolling. In order to fully obtain these effects, the Al content is set to 0.20% or more. The Al content may be 0.22% or more, 0.25% or more, or 0.28% or more. On the other hand, if Al is contained excessively, coarse oxides may be formed, and toughness and ductility may be reduced. Therefore, the Al content is set to 0.40% or less. The Al content may be 0.38% or less, 0.35% or less, or 0.32% or less.
[P:0.100%以下]
 Pは、過度に含有すると溶接性などに不利に影響する場合がある。したがって、P含有量は0.100%以下とする。P含有量は0.080%以下、0.050%以下、0.030%以下又は0.020%以下であってもよい。P含有量の下限は特に限定されず0%であってもよいが、過度な低減はコストの上昇を招く。したがって、P含有量は0.0001%以上、0.001%以上又は0.005%以上であってもよい。
[P: 0.100% or less]
If P is contained in an excessive amount, it may adversely affect weldability, etc. Therefore, the P content is set to 0.100% or less. The P content may be 0.080% or less, 0.050% or less, 0.030% or less, or 0.020% or less. The lower limit of the P content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in costs. Therefore, the P content may be 0.0001% or more, 0.001% or more, or 0.005% or more.
[S:0.0100%以下]
 Sは、過度に含有するとMnSが多く生成して靭性を低下させる場合がある。したがって、Si含有量は0.0100%以下とする。S含有量は0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。S含有量の下限は特に限定されず0%であってもよいが、過度な低減はコストの上昇を招く。したがって、S含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。
[S: 0.0100% or less]
If S is contained excessively, a large amount of MnS may be generated, which may reduce toughness. Therefore, the Si content is set to 0.0100% or less. The S content may be 0.0050% or less, 0.0030% or less, or 0.0020% or less. The lower limit of the S content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
[N:0.010%以下]
 Nは、過度に含有すると粗大な窒化物を形成し、靭性を低下させる場合がある。したがって、N含有量は0.010%以下とする。N含有量は0.008%以下、0.005%以下又は0.003%以であってもよい。N含有量の下限は特に限定されず0%であってもよいが、過度な低減はコストの上昇を招く。したがって、N含有量は0.0001%以上、0.0005%以上又は0.001%以上であってもよい。
[N: 0.010% or less]
If N is contained excessively, it may form coarse nitrides and reduce toughness. Therefore, the N content is set to 0.010% or less. The N content may be 0.008% or less, 0.005% or less, or 0.003% or less. The lower limit of the N content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in costs. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
[O:0.010%以下]
 Oは、製造工程で混入する元素である。Oを過度に含有すると、粗大な介在物が形成して鋼板の靭性を低下させる場合がある。したがって、O含有量は0.010%以下とする。O含有量は0.008%以下、0.006%以下又は0.004%以下であってもよい。O含有量の下限は特に限定されず0%であってもよいが、0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、O含有量は0.0001%以上又は0.0005%以上であってもよい。
[O: 0.010% or less]
O is an element that is mixed in during the manufacturing process. If O is contained excessively, coarse inclusions may be formed, which may reduce the toughness of the steel plate. Therefore, the O content is set to 0.010% or less. The O content may be 0.008% or less, 0.006% or less, or 0.004% or less. The lower limit of the O content is not particularly limited and may be 0%, but reducing the O content to less than 0.0001% requires a long time for refining, which leads to a decrease in productivity. Therefore, the O content may be 0.0001% or more, or 0.0005% or more.
 本発明の実施形態に係る熱間圧延鋼板の基本化学組成は上記のとおりである。さらに、当該熱間圧延鋼板は、必要に応じて、残部のFeの一部に代えて以下の任意選択元素のうち少なくとも1種を含有してもよい。 The basic chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention is as described above. Furthermore, the hot-rolled steel sheet may contain at least one of the following optional elements in place of a portion of the remaining Fe, as necessary.
[Nb:0~0.050%]
 Nbは、鋼中に炭化物、窒化物及び/又は炭窒化物を形成してピン止め効果により組織の微細化、ひいては鋼板の高強度化に寄与する元素である。Nb含有量は0%であってもよいが、このような効果を得るためには、Nb含有量は0.001%以上であることが好ましい。Nb含有量は0.005%以上、0.010%以上、0.012%以上、0.015%以上又は0.020%以上であってもよい。一方で、Nbを過度に含有すると、鋼中に粗大な炭化物等が生成して鋼板の延性が低下する場合がある。したがって、Nb含有量は0.050%以下であることが好ましい。Nb含有量は0.040%以下、0.030%以下又は0.025%以下であってもよい。
[Nb: 0 to 0.050%]
Nb is an element that forms carbides, nitrides and/or carbonitrides in steel and contributes to refining the structure and thus increasing the strength of the steel sheet by the pinning effect. The Nb content may be 0%, but in order to obtain such an effect, the Nb content is preferably 0.001% or more. The Nb content may be 0.005% or more, 0.010% or more, 0.012% or more, 0.015% or more, or 0.020% or more. On the other hand, if Nb is contained excessively, coarse carbides and the like may be generated in the steel, and the ductility of the steel sheet may decrease. Therefore, the Nb content is preferably 0.050% or less. The Nb content may be 0.040% or less, 0.030% or less, or 0.025% or less.
[V:0~1.000%]
 Vは、析出強化等により強度の向上に寄与する元素である。V含有量は0%であってもよいが、このような効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.010%以上、0.030%以上又は0.050%以上であってもよい。一方で、Vを過度に含有しても効果が飽和し、製造コストの上昇を招く虞がある。したがって、V含有量は1.000%以下であることが好ましい。V含有量は0.500%以下、0.200%以下、0.100%以下又は0.080%以下であってもよい。
[V: 0 to 1.000%]
V is an element that contributes to improving strength by precipitation strengthening, etc. The V content may be 0%, but in order to obtain such an effect, the V content is preferably 0.001% or more. The V content may be 0.010% or more, 0.030% or more, or 0.050% or more. On the other hand, even if V is contained excessively, the effect is saturated and there is a risk of increasing the manufacturing cost. Therefore, the V content is preferably 1.000% or less. The V content may be 0.500% or less, 0.200% or less, 0.100% or less, or 0.080% or less.
[Cr:0~2.00%]
 Crは、鋼の焼入れ性を高め、強度の向上に寄与する元素である。Cr含有量は0%であってもよいが、このような効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Crを過度に含有しても効果が飽和し、製造コストの上昇を招く虞がある。したがって、Cr含有量は2.00%以下であることが好ましい。Cr含有量は1.50%以下、1.00%以下、0.50%以下、0.30%以下、0.15%以下又は0.10%以下であってもよい。
[Cr: 0 to 2.00%]
Cr is an element that enhances the hardenability of steel and contributes to improving strength. The Cr content may be 0%, but in order to obtain such an effect, the Cr content is preferably 0.001% or more. The Cr content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, even if Cr is contained excessively, the effect is saturated and there is a risk of increasing the manufacturing cost. Therefore, the Cr content is preferably 2.00% or less. The Cr content may be 1.50% or less, 1.00% or less, 0.50% or less, 0.30% or less, 0.15% or less, or 0.10% or less.
[Ni:0~2.00%]
[Cu:0~2.00%]
 Ni及びCuは、析出強化又は固溶強化により強度の向上に寄与する元素である。Ni及びCu含有量は0%であってもよいが、このような効果を得るためには、これらの元素の含有量はそれぞれ0.001%以上であることが好ましく、0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、これらの元素を過度に含有しても効果が飽和し、製造コストの上昇を招く虞がある。したがって、Ni及びCu含有量はそれぞれ2.00%以下であることが好ましく、1.50%以下、1.00%以下、0.50%以下、0.30%以下、0.15%以下又は0.10%以下であってもよい。
[Ni: 0 to 2.00%]
[Cu: 0 to 2.00%]
Ni and Cu are elements that contribute to improving strength by precipitation strengthening or solid solution strengthening. The Ni and Cu contents may be 0%, but in order to obtain such effects, the contents of these elements are preferably 0.001% or more, and may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, even if these elements are contained excessively, the effects are saturated and there is a risk of increasing manufacturing costs. Therefore, the Ni and Cu contents are preferably 2.00% or less, and may be 1.50% or less, 1.00% or less, 0.50% or less, 0.30% or less, 0.15% or less, or 0.10% or less.
[Mo:0~1.000%]
 Moは、鋼の焼入れ性を高め、強度の向上に寄与する元素である。Mo含有量は0%であってもよいが、このような効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.010%以上、0.020%以上又は0.050%以上であってもよい。一方で、Moを過度に含有すると、熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Mo含有量は1.000%以下であることが好ましい。Mo含有量は0.800%以下、0.500%以下、0.200%以下、0.100%以下又は0.080%以下であってもよい。
[Mo: 0 to 1.000%]
Mo is an element that improves the hardenability of steel and contributes to improving strength. The Mo content may be 0%, but in order to obtain such an effect, the Mo content is preferably 0.001% or more. The Mo content may be 0.010% or more, 0.020% or more, or 0.050% or more. On the other hand, if Mo is excessively contained, the deformation resistance during hot working may increase, and the equipment load may become large. Therefore, the Mo content is preferably 1.000% or less. The Mo content may be 0.800% or less, 0.500% or less, 0.200% or less, 0.100% or less, or 0.080% or less.
[B:0~0.0100%]
 Bは、粒界に偏析して粒界強度を高めることで低温靭性を向上させる。B含有量は0%であってもよいが、このような効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0002%以上、0.0003%以上又は0.0005%以上であってもよい。一方で、Bを過度に含有しても効果が飽和し、製造コストの上昇を招く虞がある。したがって、B含有量は0.0100%以下であることが好ましい。B含有量は0.0050%以下、0.0030%以下、0.0015%以下又は0.0010%以下であってもよい。
[B: 0 to 0.0100%]
B segregates at grain boundaries to increase grain boundary strength, thereby improving low-temperature toughness. The B content may be 0%, but in order to obtain such an effect, the B content is preferably 0.0001% or more. The B content may be 0.0002% or more, 0.0003% or more, or 0.0005% or more. On the other hand, even if B is contained excessively, the effect becomes saturated and there is a risk of causing an increase in manufacturing costs. Therefore, the B content is preferably 0.0100% or less. The B content may be 0.0050% or less, 0.0030% or less, 0.0015% or less, or 0.0010% or less.
[Sn:0~1.000%]
[Sb:0~1.000%]
 Sn及びSbは、耐食性の向上に有効な元素である。Sn及びSb含有量は0%であってもよいが、このような効果を得るためには、これら元素の含有量はそれぞれ0.001%以上であることが好ましく、0.010%以上、0.020%以上又は0.050%以上であってもよい。一方で、これらの元素を過度に含有すると、靭性の低下を招く場合がある。したがって、Sn及びSb含有量は1.000%以下であることが好ましく、0.800%以下、0.500%以下、0.300%以下、0.100%以下又は0.080%以下であってもよい。
[Sn: 0 to 1.000%]
[Sb: 0 to 1.000%]
Sn and Sb are elements effective for improving corrosion resistance. The Sn and Sb contents may be 0%, but in order to obtain such effects, the contents of these elements are preferably 0.001% or more, and may be 0.010% or more, 0.020% or more, or 0.050% or more. On the other hand, excessive inclusion of these elements may cause a decrease in toughness. Therefore, the Sn and Sb contents are preferably 1.000% or less, and may be 0.800% or less, 0.500% or less, 0.300% or less, 0.100% or less, or 0.080% or less.
[Ca:0~0.0100%]
[Mg:0~0.0100%]
[Hf:0~0.0100%]
 Ca、Mg及びHfは、非金属介在物の形態を制御することができる元素である。Ca、Mg及びHf含有量は0%であってもよいが、このような効果を得るためには、これら元素の含有量はそれぞれ0.0001%以上であることが好ましく、0.0005%以上又は0.0010%以上であってもよい。一方で、これらの元素を過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、Ca、Mg及びHf含有量はそれぞれ0.0100%以下であることが好ましく、0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。
[Ca: 0 to 0.0100%]
[Mg: 0 to 0.0100%]
[Hf: 0 to 0.0100%]
Ca, Mg and Hf are elements capable of controlling the morphology of nonmetallic inclusions. The Ca, Mg and Hf contents may be 0%, but in order to obtain such effects, the contents of these elements are preferably 0.0001% or more, and may be 0.0005% or more or 0.0010% or more. On the other hand, even if these elements are contained in excess, the effect is saturated, and containing more than necessary in the steel sheet leads to an increase in manufacturing costs. Therefore, the Ca, Mg and Hf contents are preferably 0.0100% or less, and may be 0.0050% or less, 0.0030% or less, or 0.0020% or less.
[Bi:0~0.010%]
 Biは、耐食性の向上に有効な元素である。Bi含有量は0%であってもよいが、このような効果を得るためには、Bi含有量は0.001%以上であることが好ましい。Bi含有量は0.001%以上又は0.002%以上であってもよい。一方で、Biを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、Bi含有量は0.010%以下であることが好ましい。Bi含有量は0.005%以下又は0.003%以下であってもよい。
[Bi: 0 to 0.010%]
Bi is an element effective in improving corrosion resistance. The Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.001% or more. The Bi content may be 0.001% or more or 0.002% or more. On the other hand, even if Bi is contained excessively, the effect is saturated, and containing more than necessary in the steel sheet leads to an increase in manufacturing costs. Therefore, the Bi content is preferably 0.010% or less. The Bi content may be 0.005% or less or 0.003% or less.
[REM:0~0.0100%]
 REMは、非金属介在物の形態を制御することができる元素である。REM含有量は0%であってもよいが、このような効果を得るためには、REM含有量は0.0001%以上であることが好ましい。REM含有量は0.0005%以上又は0.0010%以上であってもよい。一方で、REMを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、REM含有量は0.0100%以下であることが好ましい。REM含有量は0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、REM含有量はこれら元素の合計含有量である。
[REM: 0 to 0.0100%]
REM is an element capable of controlling the form of nonmetallic inclusions. The REM content may be 0%, but in order to obtain such an effect, the REM content is preferably 0.0001% or more. The REM content may be 0.0005% or more or 0.0010% or more. On the other hand, even if REM is contained excessively, the effect is saturated, and the inclusion of more REM than necessary in the steel sheet leads to an increase in manufacturing costs. Therefore, the REM content is preferably 0.0100% or less. The REM content may be 0.0050% or less, 0.0030% or less, or 0.0020% or less. In this specification, REM is a collective term for 17 elements, namely, scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71, and the REM content is the total content of these elements.
[As:0~0.010%]
 Asは、耐食性の向上に有効な元素である。As含有量は0%であってもよいが、このような効果を得るためには、As含有量は0.001%以上であることが好ましい。As含有量は0.002%以上又は0.003%以上であってもよい。一方で、Asを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、As含有量は0.010%以下であることが好ましい。As含有量は0.008%以下又は0.005%以下であってもよい。
[As: 0 to 0.010%]
As is an element effective in improving corrosion resistance. The As content may be 0%, but in order to obtain such an effect, the As content is preferably 0.001% or more. The As content may be 0.002% or more or 0.003% or more. On the other hand, even if As is excessively contained, the effect is saturated, and containing more than necessary in the steel sheet leads to an increase in manufacturing costs. Therefore, the As content is preferably 0.010% or less. The As content may be 0.008% or less or 0.005% or less.
[Zr:0~0.010%]
 Zrは、非金属介在物の形態を制御することができる元素である。Zr含有量は0%であってもよいが、このような効果を得るためには、Zr含有量は0.001%以上であることが好ましい。Zr含有量は0.002%以上又は0.003%以上であってもよい。一方で、Zrを過度に含有しても効果が飽和し、必要以上に鋼板中に含有させることは製造コストの上昇を招く。したがって、Zr含有量は0.010%以下であることが好ましい。Zr含有量は0.008%以下又は0.005%以下であってもよい。
[Zr: 0 to 0.010%]
Zr is an element capable of controlling the form of nonmetallic inclusions. The Zr content may be 0%, but in order to obtain such an effect, the Zr content is preferably 0.001% or more. The Zr content may be 0.002% or more or 0.003% or more. On the other hand, even if Zr is contained excessively, the effect is saturated, and the inclusion of more Zr than necessary in the steel sheet leads to an increase in manufacturing costs. Therefore, the Zr content is preferably 0.010% or less. The Zr content may be 0.008% or less or 0.005% or less.
[Co:0~2.000%]
 Coは、焼入れ性及び/又は耐熱性の向上に寄与する元素である。Co含有量は0%であってもよいが、これらの効果を得るためには、Co含有量は0.001%以上であることが好ましい。Co含有量は0.010%以上、0.050%以上又は0.100%以上であってもよい。一方で、Coを過度に含有すると、熱間加工性が低下する場合があり、原料コストの増加にも繋がる。したがって、Co含有量は2.000%以下であることが好ましい。Co含有量は1.000%以下、0.500%以下、0.300%以下又は0.200%以下であってもよい。
[Co: 0 to 2.000%]
Co is an element that contributes to improving hardenability and/or heat resistance. The Co content may be 0%, but in order to obtain these effects, the Co content is preferably 0.001% or more. The Co content may be 0.010% or more, 0.050% or more, or 0.100% or more. On the other hand, excessive Co content may deteriorate hot workability and lead to an increase in raw material costs. Therefore, the Co content is preferably 2.000% or less. The Co content may be 1.000% or less, 0.500% or less, 0.300% or less, or 0.200% or less.
[Zn:0~0.010%]
 Znは、鋼原料としてスクラップ等を用いた場合に鋼板に含有し得る元素である。したがって、Zn含有量は0.010%以下であることが好ましく、0.008%以下又は0.005%以下であってもよい。Zn含有量は0%であってもよいが、0.001%未満に低減するには精錬に時間を要し、生産性の低下を招く。したがって、Zn含有量は0.001%以上、0.002%以上又は0.003%以上であってもよい。
[Zn: 0 to 0.010%]
Zn is an element that may be contained in a steel sheet when scrap or the like is used as a steel raw material. Therefore, the Zn content is preferably 0.010% or less, and may be 0.008% or less or 0.005% or less. The Zn content may be 0%, but reducing the Zn content to less than 0.001% requires a long time for refining, which leads to a decrease in productivity. Therefore, the Zn content may be 0.001% or more, 0.002% or more, or 0.003% or more.
[W:0~1.000%]
 Wは、鋼の焼入れ性を高め、強度の向上に寄与する元素である。W含有量は0%であってもよいが、このような効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.010%以上、0.050%以上又は0.100%以上であってもよい。一方で、Wを過度に含有すると、溶接性が低下する場合がある。したがって、W含有量は1.000%以下であることが好ましい。W含有量は0.800%以下、0.500%以下、0.300%以下又は0.200%以下であってもよい。
[W: 0 to 1.000%]
W is an element that enhances the hardenability of steel and contributes to improving strength. The W content may be 0%, but in order to obtain such an effect, the W content is preferably 0.001% or more. The W content may be 0.010% or more, 0.050% or more, or 0.100% or more. On the other hand, excessive W content may reduce weldability. Therefore, the W content is preferably 1.000% or less. The W content may be 0.800% or less, 0.500% or less, 0.300% or less, or 0.200% or less.
 本発明の実施形態に係る熱間圧延鋼板において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、熱間圧延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。 In the hot-rolled steel sheet according to the embodiment of the present invention, the remainder other than the above elements consists of Fe and impurities. Impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially manufacturing hot-rolled steel sheets.
 本発明の実施形態に係る熱間圧延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、当該熱間圧延鋼板の化学組成は、誘導結合プラズマ発光分光分析(ICP-AES:Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。C及びSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。 The chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention may be measured by a general analytical method. For example, the chemical composition of the hot-rolled steel sheet may be measured using inductively coupled plasma atomic emission spectrometry (ICP-AES). C and S may be measured using the combustion-infrared absorption method, N may be measured using the inert gas fusion-thermal conductivity method, and O may be measured using the inert gas fusion-non-dispersive infrared absorption method.
[金属組織]
 本発明の実施形態に係る熱間圧延鋼板の金属組織は、面積%で、フェライト:30~60%、ベイナイト:30~60%、及びマルテンサイト:5~20%を含む。熱間圧延鋼板の金属組織をこれら3つの組織を主として含み、しかもベイナイトを比較的多く含むよう構成することで、熱間圧延鋼板の高強度化を図りつつ、穴広げ性及び降伏比を高めることが可能となる。これら3つの組織を上記のような特定の面積率で含むことに加えて、後で詳しく説明する転位強化を利用することにより、熱間圧延鋼板の強度をさらに高めることが可能となる。また、これら3つの組織を上記のような特定の面積率で含むことで、後で詳しく説明するフェライトの析出強化によって金属組織中の硬度差を適切に低減することが可能となる。例えば、フェライトの面積率が小さいと、硬質相であるベイナイト及びマルテンサイトの割合、特にベイナイトの割合が高くなり、フェライトの析出強化によっても金属組織中の硬度差、より具体的にはフェライトとベイナイトの硬度差を適切に低減することができない場合がある。このような場合には、所望の穴広げ性及び/又は降伏比を達成することができなくなる。したがって、フェライトの面積率は30%以上とする必要があり、例えば35%以上、40%以上又は45%以上であってもよい。一方で、フェライトの面積率が高くなると、硬質相であるベイナイト及びマルテンサイトの割合が低くなり、その結果として所望の強度、例えば780MPa以上の引張強さを達成することができない場合がある。したがって、フェライトの面積率は60%以下とし、例えば60%未満、59%以下、58%以下、55%以下、52%以下又は50%以下であってもよい。
[Metal structure]
The metal structure of the hot rolled steel sheet according to the embodiment of the present invention includes, in terms of area percentage, ferrite: 30 to 60%, bainite: 30 to 60%, and martensite: 5 to 20%. By configuring the metal structure of the hot rolled steel sheet to mainly include these three structures and to include a relatively large amount of bainite, it is possible to increase the hole expandability and yield ratio while increasing the strength of the hot rolled steel sheet. In addition to including these three structures at the specific area percentage as described above, the strength of the hot rolled steel sheet can be further increased by utilizing dislocation strengthening, which will be described in detail later. In addition, by including these three structures at the specific area percentage as described above, it is possible to appropriately reduce the hardness difference in the metal structure by precipitation strengthening of ferrite, which will be described in detail later. For example, if the area percentage of ferrite is small, the proportion of bainite and martensite, which are hard phases, and especially the proportion of bainite, will be high, and the hardness difference in the metal structure, more specifically the hardness difference between ferrite and bainite, may not be appropriately reduced even by precipitation strengthening of ferrite. In such a case, the desired hole expandability and/or yield ratio cannot be achieved. Therefore, the area ratio of ferrite needs to be 30% or more, and may be, for example, 35% or more, 40% or more, or 45% or more. On the other hand, if the area ratio of ferrite is high, the ratio of bainite and martensite, which are hard phases, decreases, and as a result, the desired strength, for example, a tensile strength of 780 MPa or more, may not be achieved. Therefore, the area ratio of ferrite is 60% or less, and may be, for example, less than 60%, 59% or less, 58% or less, 55% or less, 52% or less, or 50% or less.
 引張強さを向上させる観点からは、硬質相であるベイナイト及びマルテンサイトの面積率は高い方が好ましい。このような観点から、例えば、ベイナイトの面積率は30%超、31%以上、32%以上、35%以上、40%以上又は45%以上であってもよい。同様に、マルテンサイトの面積率は8%以上、10%以上又は12%以上であってもよい。一方で、金属組織中の硬度差を低減して穴広げ性及び降伏比をより向上させる観点からは、ベイナイト及びマルテンサイトの面積率は低い方が好ましい。このような観点から、例えば、ベイナイトの面積率は58%以下、55%以下、52%以下又は50%以下であってもよい。同様に、マルテンサイトの面積率は18%以下、16%以下又は14%以下であってもよい。 From the viewpoint of improving tensile strength, it is preferable that the area ratios of the hard phases bainite and martensite are high. From this viewpoint, for example, the area ratio of bainite may be more than 30%, 31% or more, 32% or more, 35% or more, 40% or more, or 45% or more. Similarly, the area ratio of martensite may be 8% or more, 10% or more, or 12% or more. On the other hand, from the viewpoint of reducing the hardness difference in the metal structure and further improving the hole expandability and yield ratio, it is preferable that the area ratios of bainite and martensite are low. From this viewpoint, for example, the area ratio of bainite may be 58% or less, 55% or less, 52% or less, or 50% or less. Similarly, the area ratio of martensite may be 18% or less, 16% or less, or 14% or less.
[残部組織]
 本発明の実施形態に係る熱間圧延鋼板の金属組織は、上記のとおり、フェライト、ベイナイト及びマルテンサイトを含み、それら以外の残部組織を含んでもよいが、残部組織の面積率は小さいことが好ましく、0%であってもよい。残部組織の面積率は、特に限定されないが、例えば0~5%、0~4%又は0~3%であってもよい。言い換えると、フェライト、ベイナイト及びマルテンサイトの合計面積率は、例えば95~100%、96~100%又は97~100%であってもよい。残部組織の下限値は1%又は2%であってもよい。残部組織が存在する場合には、当該残部組織はパーライト及び残留オーステナイトの少なくとも1種を含むか又はそれらの少なくとも1種であり得る。
[Remainder structure]
As described above, the metal structure of the hot-rolled steel sheet according to the embodiment of the present invention includes ferrite, bainite, and martensite, and may include other remaining structures, but the area ratio of the remaining structure is preferably small and may be 0%. The area ratio of the remaining structure is not particularly limited, and may be, for example, 0 to 5%, 0 to 4%, or 0 to 3%. In other words, the total area ratio of ferrite, bainite, and martensite may be, for example, 95 to 100%, 96 to 100%, or 97 to 100%. The lower limit of the remaining structure may be 1% or 2%. When a remaining structure is present, the remaining structure may include at least one of pearlite and retained austenite or may be at least one of them.
[金属組織の同定及び面積率の算出]
 組織観察は、走査型電子顕微鏡で行う。観察に先立ち、組織観察用のサンプルを、エメリー紙による湿式研磨及び1μmの平均粒子サイズをもつダイヤモンド砥粒により研磨し、観察面を鏡面に仕上げた後、3%硝酸アルコール溶液にて組織をエッチングしておく。観察の倍率を2000倍とし、表面から板厚の1/4位置における30μm×40μmの視野をランダムに10枚撮影する。組織の比率は、ポイントカウント法で求める。得られた組織画像に対して、縦3μmかつ横4μmの間隔で並ぶ格子点を計225点定め、格子点の下に存在する組織を判別し、10枚の平均値から鋼材に含まれる組織比率を求める。フェライトは、塊状の結晶粒であって、内部に、長径100nm以上の鉄系炭化物を含まないものである。ベイナイトは、ラス状の結晶粒の集合であり、内部に長径20nm以上の鉄系炭化物を含まないもの、又は、内部に長径20nm以上の鉄系炭化物を含み、その炭化物が、単一のバリアント、即ち、同一方向に伸張した鉄系炭化物群に属するものである。ここで、同一方向に伸長した鉄系炭化物群とは、鉄系炭化物群の伸長方向の差異が5°以内であるものをいう。ベイナイトは、方位差15°以上の粒界によって囲まれたベイナイトを1個のベイナイト粒として数える。また、多量の固溶炭素を含むマルテンサイトは他の組織と比べて輝度が高く、白く見えることから、他の組織と区別することができる。フェライト、ベイナイト及びマルテンサイト以外の組織が存在する場合には、100%からフェライト、ベイナイト及びマルテンサイトの合計面積率を差し引くことによって残部組織の面積率を決定する。残部組織を具体的に同定する必要はないが、残部組織がパーライト及び残留オーステナイト等を含む場合には、パーライトはセメンタイトがラメラ状に析出した特有の組織を有するため、走査型電子顕微鏡により識別可能である。また、残留オーステナイトは、X線回折測定によりその体積率を算出することができ、残留オーステナイトの体積率は面積率と同等であるため、これを残留オーステナイトの面積率とすることができる。
[Identification of metal structure and calculation of area ratio]
The structure observation is performed with a scanning electron microscope. Prior to the observation, the sample for structure observation is polished by wet polishing with emery paper and diamond abrasive grains having an average particle size of 1 μm, and the observation surface is mirror-finished, and then the structure is etched with a 3% nitric acid alcohol solution. The magnification of the observation is 2000 times, and 10 random images of a 30 μm x 40 μm field of view at a position of 1/4 of the plate thickness from the surface are taken. The ratio of the structure is obtained by the point count method. A total of 225 lattice points are set at intervals of 3 μm vertically and 4 μm horizontally for the obtained structure image, and the structure present under the lattice points is identified, and the structure ratio contained in the steel material is obtained from the average value of the 10 sheets. Ferrite is a blocky crystal grain that does not contain iron-based carbides with a major axis of 100 nm or more inside. Bainite is a collection of lath-shaped crystal grains, and does not contain iron-based carbides with a major axis of 20 nm or more inside, or contains iron-based carbides with a major axis of 20 nm or more inside, and the carbides belong to a single variant, i.e., a group of iron-based carbides elongated in the same direction. Here, the group of iron-based carbides elongated in the same direction refers to iron-based carbides whose elongation directions differ by 5° or less. Bainite is counted as one bainite grain when it is surrounded by grain boundaries with an orientation difference of 15° or more. In addition, martensite, which contains a large amount of dissolved carbon, has a higher brightness and appears whiter than other structures, so it can be distinguished from other structures. When structures other than ferrite, bainite, and martensite are present, the area ratio of the remaining structure is determined by subtracting the total area ratio of ferrite, bainite, and martensite from 100%. Although it is not necessary to specifically identify the remaining structure, when the remaining structure includes pearlite and retained austenite, etc., pearlite has a unique structure in which cementite is precipitated in a lamellar form, and therefore can be identified by a scanning electron microscope. In addition, the volume fraction of the retained austenite can be calculated by X-ray diffraction measurement, and since the volume fraction of the retained austenite is equivalent to the area fraction, this can be regarded as the area fraction of the retained austenite.
[フェライト中の直径2.0~8.0nmのTiC析出物の個数密度:1.0×1016個/cm3以上]
 本発明の実施形態に係る熱間圧延鋼板においては、フェライト中に直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度で存在している。ここで、TiC析出物とは、TiCだけでなく、TiとTi以外の他の元素、例えばVやNbとを含む複合炭化物をも包含するものである。直径2.0~8.0nmのTiC析出物をこのような個数密度でフェライト中に存在させることで、析出強化によりフェライトの硬度を高めることができる。より具体的には、フェライトの硬度を高めて、金属組織中で比較的多く存在する硬質相のベイナイトとの硬度差を小さくすることで、フェライト、ベイナイト及びマルテンサイトから主として構成される金属組織中の硬度差を小さくすることができる。その結果として、熱間圧延鋼板の穴広げ性及び降伏比を顕著に高めることが可能となり、例えば60.0%以上の穴広げ率(λ)及び0.70以上の降伏比(YR)を達成することが可能となる。当然ながら、TiC析出物による析出強化は、熱間圧延鋼板全体の強度の向上にも寄与する。TiC析出物の直径が2.0nmよりも小さいと、当該TiC析出物が転位運動の障害物として十分に作用することができず、それゆえ析出強化によるフェライトの硬度向上効果を十分に得ることができない。加えて、熱間圧延鋼板の強度向上効果も十分に発揮できない場合がある。一方で、TiC析出物の直径が大きすぎても、フェライトにおける所望の析出強化を得ることができない場合がある。
[Number density of TiC precipitates with a diameter of 2.0 to 8.0 nm in ferrite: 1.0 x 10 16 /cm 3 or more]
In the hot-rolled steel sheet according to the embodiment of the present invention, TiC precipitates having a diameter of 2.0 to 8.0 nm are present in the ferrite at a number density of 1.0 x 10 16 pieces/cm 3 or more. Here, TiC precipitates include not only TiC but also composite carbides containing Ti and other elements other than Ti, such as V and Nb. By allowing TiC precipitates having a diameter of 2.0 to 8.0 nm to exist in the ferrite at such a number density, the hardness of the ferrite can be increased by precipitation strengthening. More specifically, by increasing the hardness of ferrite and reducing the hardness difference with bainite, a hard phase that is relatively abundant in the metal structure, the hardness difference in the metal structure mainly composed of ferrite, bainite and martensite can be reduced. As a result, it is possible to significantly increase the hole expandability and yield ratio of the hot-rolled steel sheet, and it is possible to achieve, for example, a hole expansion ratio (λ) of 60.0% or more and a yield ratio (YR) of 0.70 or more. Naturally, the precipitation strengthening by TiC precipitates also contributes to improving the strength of the entire hot-rolled steel sheet. If the diameter of the TiC precipitates is smaller than 2.0 nm, the TiC precipitates cannot act sufficiently as obstacles to dislocation motion, and therefore the effect of improving the hardness of ferrite by precipitation strengthening cannot be fully obtained. In addition, the effect of improving the strength of the hot-rolled steel sheet may not be fully exhibited. On the other hand, if the diameter of the TiC precipitates is too large, the desired precipitation strengthening in ferrite may not be obtained.
 何ら特定の理論に束縛されることを意図するものではないが、これは、TiC析出物が粗大となることで転位運動との関係で強化機構が変化し、例えば転位線がTiC析出物を横切って通過するのではなく、粗大なTiC析出物の周りに転位線のループを残して通過するようになり、析出強化量としては小さくなってしまうためと考えられる。加えて、TiC析出物の粗大化に伴い、当該TiC析出物の個数密度も大きく低下してしまうため、析出強化によってフェライトの硬度を十分に高めることができなくなる。したがって、析出強化によってフェライトの硬度を効果的に高めるためには、TiC析出物の直径は2.0~8.0nmの範囲に制御することが有効であり、析出強化によってフェライトの硬度を所望のレベルまで向上させるためには、このような直径を有するTiC析出物の個数密度を所定の範囲内に制御することが重要となる。このような観点から、直径2.0~8.0nmのTiC析出物を、上記のとおりフェライト中に1.0×1016個/cm3以上の個数密度で存在させる必要がある。フェライトの硬度向上効果をさらに高めるためには、当該個数密度は高いほど好ましく、例えば1.2×1016個/cm3以上、1.5×1016個/cm3以上、2.0×1016個/cm3以上、5.0×1016個/cm3以上又は10.0×1016個/cm3以上であってもよい。一方で、TiC析出物の供給源であるC及びTiの含有量に制限があるため、個数密度が高くなりすぎると、TiC析出物の直径を所望の範囲内に制御することが困難になる場合がある。したがって、個数密度は、直径2.0~8.0nmを満足する限り特に限定されないが、例えば75.0×1016個/cm3以下、50.0×1016個/cm3以下、30.0×1016個/cm3以下又は20.0×1016個/cm3以下であってもよい。本発明の実施形態に係る熱間圧延鋼板では、後で詳しく説明する三次元アトムプローブ測定法によって測定した場合に、直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度でフェライト中に存在していればよく、それゆえ上記の直径及び個数密度の要件を満足する限り、例えば粗大なTiC析出物がフェライト中に存在していてもよい。 Although it is not intended to be bound by any particular theory, this is believed to be because the strengthening mechanism changes in relation to dislocation motion as the TiC precipitates become coarse, and for example, dislocation lines do not pass across the TiC precipitates, but pass around the coarse TiC precipitates while leaving a loop of dislocation lines, resulting in a small amount of precipitation strengthening. In addition, as the TiC precipitates become coarse, the number density of the TiC precipitates also decreases significantly, making it impossible to sufficiently increase the hardness of ferrite by precipitation strengthening. Therefore, in order to effectively increase the hardness of ferrite by precipitation strengthening, it is effective to control the diameter of the TiC precipitates to a range of 2.0 to 8.0 nm, and in order to increase the hardness of ferrite to a desired level by precipitation strengthening, it is important to control the number density of TiC precipitates having such a diameter within a predetermined range. From this viewpoint, TiC precipitates having a diameter of 2.0 to 8.0 nm need to be present in the ferrite at a number density of 1.0×10 16 /cm 3 or more as described above. In order to further enhance the effect of improving the hardness of ferrite, the higher the number density, the more preferable it is, and it may be, for example, 1.2×10 16 /cm 3 or more, 1.5×10 16 /cm 3 or more, 2.0×10 16 /cm 3 or more, 5.0×10 16 /cm 3 or more, or 10.0×10 16 /cm 3 or more. On the other hand, since there is a limit to the contents of C and Ti, which are the supply sources of TiC precipitates, if the number density becomes too high, it may be difficult to control the diameter of the TiC precipitates within the desired range. Therefore, the number density is not particularly limited as long as the diameter of 2.0 to 8.0 nm is satisfied, but may be, for example, 75.0 x 10 16 pieces/cm 3 or less, 50.0 x 10 16 pieces/cm 3 or less, 30.0 x 10 16 pieces/cm 3 or less, or 20.0 x 10 16 pieces/cm 3 or less. In the hot-rolled steel sheet according to the embodiment of the present invention, when measured by a three-dimensional atom probe measurement method described in detail later, TiC precipitates having a diameter of 2.0 to 8.0 nm may be present in the ferrite at a number density of 1.0 x 10 16 pieces/cm 3 or more, and therefore, as long as the above diameter and number density requirements are satisfied, for example, coarse TiC precipitates may be present in the ferrite.
[TiC析出物の直径及び個数密度の算出]
 TiC析出物の直径及び個数密度の算出は、三次元アトムプローブ測定法により以下のようにして行われる。まず、測定対象の試料から、切断及び電解研磨法により、必要に応じて電解研磨法と併せて集束イオンビーム加工法を活用し、針状の試料を作製する。三次元アトムプローブ測定では、積算されたデータを再構築して実空間での実際の原子の分布像として求めることができる。Na-Cl構造の微細TiC析出物の場合、単位格子は4.33Åであるため、TiとTiの原子間距離は4.33×√2=6.1Åとする。そこで、ほぼ同一座標位置(7Å以下)にTi原子が複数存在している場合には、これらのTi原子は同一の析出物中にあると判断し、この同一の析出物中にあると判断されたTi原子の個数をカウントし、この個数が50個以上存在した場合に、この析出物を微細TiC析出物と定義する。上記微細TiC析出物の直径は、観察した微細Ti析出物を構成するTiの原子の数と微細Ti析出物の格子定数から、微細Ti析出物を球状と仮定して算出した円相当直径とする。三次元アトムプローブ測定法で得られた微細TiC析出物のTi原子の個数を用いて、当該微細TiC析出物の直径(円相当直径)Rを求める方法を以下に示す。三次元アトムプローブ測定法で対象サンプルの全ての原子の数Nを測定するが、実際には、三次元アトムプローブ測定法では対象サンプルの全ての原子の数Nを検出することはできない。各装置固有の原子の検出率α(=検出した原子の数/原子の総数)があるため、実際の測定値nから存在したであろう原子の数Nを算出する。すなわち、原子の総数N=n/αである。次に、この原子の総数Nに対して、Na-Cl構造のTiC析出物は単位格子に8個のTi原子が存在するとし、また、Na-Cl構造の格子定数aを4.33Åとして、下記式にてTiC析出物の直径(円相当直径)Rを算出する。
   TiC析出物の直径R={(6/8)・(1/π)・N・a3(1/3)
 最後に、TiC析出物の個数密度を、測定視野を分母とし、微細TiC析出物の数を分子として算出する。
[Calculation of diameter and number density of TiC precipitates]
The diameter and number density of TiC precipitates are calculated by the three-dimensional atom probe measurement method as follows. First, a needle-shaped sample is prepared from the sample to be measured by cutting and electrolytic polishing, and if necessary, by using a focused ion beam processing method in combination with the electrolytic polishing method. In the three-dimensional atom probe measurement, the accumulated data can be reconstructed to obtain an actual atomic distribution image in real space. In the case of a fine TiC precipitate with a Na-Cl structure, the unit cell is 4.33 Å, so the interatomic distance between Ti and Ti is 4.33×√2=6.1 Å. Therefore, when a plurality of Ti atoms are present at approximately the same coordinate position (7 Å or less), it is determined that these Ti atoms are in the same precipitate, and the number of Ti atoms determined to be in the same precipitate is counted, and when the number is 50 or more, the precipitate is defined as a fine TiC precipitate. The diameter of the fine TiC precipitate is the circle equivalent diameter calculated from the number of Ti atoms constituting the observed fine Ti precipitate and the lattice constant of the fine Ti precipitate, assuming that the fine Ti precipitate is spherical. The method of calculating the diameter (circle equivalent diameter) R of the fine TiC precipitate using the number of Ti atoms of the fine TiC precipitate obtained by the three-dimensional atom probe measurement method is shown below. The number N of all atoms of the target sample is measured by the three-dimensional atom probe measurement method, but in reality, the number N of all atoms of the target sample cannot be detected by the three-dimensional atom probe measurement method. Since each device has its own atomic detection rate α (= number of detected atoms / total number of atoms), the number N of atoms that would have existed is calculated from the actual measured value n. That is, the total number of atoms N = n / α. Next, for this total number of atoms N, the TiC precipitate of the Na-Cl structure has 8 Ti atoms in the unit lattice, and the lattice constant a of the Na-Cl structure is 4.33 Å, and the diameter (circle equivalent diameter) R of the TiC precipitate is calculated by the following formula.
Diameter of TiC precipitate R = {(6/8) x (1/π) x N x a 3 } (1/3)
Finally, the number density of TiC precipitates is calculated using the measurement field of view as the denominator and the number of fine TiC precipitates as the numerator.
[ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比:0.75~1.20]
 本発明の好ましい実施形態においては、ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比、すなわち(フェライトの平均ナノ硬度)/(ベイナイトの平均ナノ硬度)は0.75~1.20の範囲内に制御される。ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比をこのような範囲内に制御することで、金属組織中のフェライトとベイナイトの硬度差をさらに小さくすることができる。その結果として、熱間圧延鋼板の穴広げ性及び降伏比をさらに高めることが可能となり、例えば65.0%以上の穴広げ率(λ)及び0.75以上の降伏比(YR)を達成することが可能となる。穴広げ率及び降伏比をより高める観点から、ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比は、0.80以上、0.85以上又は0.90以上であってもよく、同様に1.15以下、1.10以下、1.05以下又は1.00以下であってもよい。ベイナイトの平均ナノ硬度は、特に限定されないが、例えば3.0~5.0GPa、3.2~4.8GPa又は3.5~4.5GPaであってもよい。同様に、フェライトの平均ナノ硬度は、特に限定されないが、例えば2.5~5.0GPa、2.8~4.8GPa又は3.0~4.5GPaであってもよい。
[Ratio of average nanohardness of ferrite to average nanohardness of bainite: 0.75 to 1.20]
In a preferred embodiment of the present invention, the ratio of the average nanohardness of ferrite to the average nanohardness of bainite, i.e., (average nanohardness of ferrite)/(average nanohardness of bainite), is controlled within the range of 0.75 to 1.20. By controlling the ratio of the average nanohardness of ferrite to the average nanohardness of bainite within such a range, the hardness difference between ferrite and bainite in the metal structure can be further reduced. As a result, it is possible to further increase the hole expandability and yield ratio of the hot-rolled steel sheet, and for example, it is possible to achieve a hole expansion ratio (λ) of 65.0% or more and a yield ratio (YR) of 0.75 or more. From the viewpoint of further increasing the hole expansion ratio and the yield ratio, the ratio of the average nanohardness of ferrite to the average nanohardness of bainite may be 0.80 or more, 0.85 or more, or 0.90 or more, and may be 1.15 or less, 1.10 or less, 1.05 or less, or 1.00 or less. The average nanohardness of bainite is not particularly limited, but may be, for example, 3.0 to 5.0 GPa, 3.2 to 4.8 GPa, or 3.5 to 4.5 GPa. Similarly, the average nanohardness of ferrite is not particularly limited, but may be, for example, 2.5 to 5.0 GPa, 2.8 to 4.8 GPa, or 3.0 to 4.5 GPa.
[ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比の決定方法]
 ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比は、以下のようにして決定される。まず、熱間圧延鋼板から表面に垂直な板厚断面が観察できるようにサンプルを切り出す。サンプルの断面をエメリー紙による湿式研磨及び1μmの平均粒子サイズをもつダイヤモンド砥粒により研磨して鏡面に仕上げる。鏡面に仕上げた断面に対し、表面から板厚の1/4深さ位置において、微小硬さ試験機を用いて、試験荷重3gfで圧痕を打ち、ナノ硬度を測定し、合計で100点以上の測定値を得る。次に、走査型電子顕微鏡を用いて同じサンプルを測定し、得られた組織解析結果を参照して、フェライト結晶粒内部及びベイナイト内部に圧痕がある測定点のみを抽出する。最後に、抽出された10個以上のフェライト結晶粒に関するナノ硬度の算術平均をフェライトの平均ナノ硬度とし、同様に抽出された10個以上のベイナイトに関するナノ硬度の算術平均をベイナイトの平均ナノ硬度として、それらの比(フェライトの平均ナノ硬度)/(ベイナイトの平均ナノ硬度)をベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比として決定する。
[Method for determining the ratio of the average nanohardness of ferrite to that of bainite]
The ratio of the average nanohardness of ferrite to the average nanohardness of bainite is determined as follows. First, a sample is cut out from a hot-rolled steel sheet so that a cross section perpendicular to the surface can be observed. The cross section of the sample is polished to a mirror finish by wet polishing with emery paper and diamond abrasive grains with an average particle size of 1 μm. The mirror-finished cross section is indented with a test load of 3 gf at a depth position of 1/4 of the plate thickness from the surface using a microhardness tester, and the nanohardness is measured, obtaining a total of 100 or more measured values. Next, the same sample is measured using a scanning electron microscope, and only measurement points with indentations inside the ferrite grains and inside the bainite are extracted with reference to the obtained structure analysis results. Finally, the arithmetic average of the nanohardnesses for the 10 or more extracted ferrite crystal grains is determined as the average nanohardness of ferrite, and the arithmetic average of the nanohardnesses for the 10 or more extracted bainite grains is determined as the average nanohardness of bainite, and the ratio thereof (average nanohardness of ferrite)/(average nanohardness of bainite) is determined as the ratio of the average nanohardness of ferrite to the average nanohardness of bainite.
[ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比:3.0以上]
 本発明の実施形態に係る熱間圧延鋼板においては、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比は3.0以上であることが必要である。上記のとおり、金属組織を30~60面積%の比較的多い量にて硬質相のベイナイトを含むよう構成することで熱間圧延鋼板の強度を高めることができる。しかしながら、単にベイナイトの面積率を高めただけでは、所望の高強度を確実に達成することができない場合がある。そこで、本発明の実施形態に係る熱間圧延鋼板では、ベイナイトを比較的多く含むことに加えて、転位強化を利用することでさらなる高強度化を可能としている。より詳しく説明すると、熱間圧延の際に適切な圧下を施すことにより、金属組織の再結晶を抑えつつ鋼板中に転位を導入することができる。このようにして適切に転位が導入された金属組織は、再結晶が抑制されているために、アスペクト比が比較的大きな組織となる。すなわち、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比を適切に制御することにより、ベイナイトを比較的多く含むことで得られる強度向上効果を転位強化に起因してさらに高めることが可能となる。本発明の実施形態に係る熱間圧延鋼板においては、金属組織を30~60面積%のベイナイトを含むよう構成するとともに、当該ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比を3.0以上に制御することにより、ベイナイトによる強度向上効果と転位強化の組み合わせに起因して熱間圧延鋼板の強度を顕著に高めることが可能となる。熱間圧延鋼板の強度をさらに高める観点からは、平均アスペクト比は大きいほど好ましく、例えば3.2以上、3.5以上、3.8以上又は4.0以上であってもよい。平均アスペクト比の上限は特に限定されないが、例えば、平均アスペクト比は6.0以下、5.5以下又は5.0以下であってもよい。
[Average aspect ratio of prior austenite grains in region containing bainite and martensite: 3.0 or more]
In the hot-rolled steel sheet according to the embodiment of the present invention, the average aspect ratio of the prior austenite grains in the region containing bainite and martensite must be 3.0 or more. As described above, the strength of the hot-rolled steel sheet can be increased by configuring the metal structure to contain a relatively large amount of bainite, 30 to 60 area %, of the hard phase. However, there are cases where the desired high strength cannot be reliably achieved simply by increasing the area ratio of bainite. Therefore, in the hot-rolled steel sheet according to the embodiment of the present invention, in addition to containing a relatively large amount of bainite, dislocation strengthening is utilized to further increase the strength. To explain in more detail, dislocations can be introduced into the steel sheet while suppressing recrystallization of the metal structure by applying an appropriate reduction during hot rolling. The metal structure in which dislocations are appropriately introduced in this way has a relatively large aspect ratio because recrystallization is suppressed. That is, by appropriately controlling the average aspect ratio of the prior austenite grains in the region containing bainite and martensite, the strength improvement effect obtained by containing a relatively large amount of bainite can be further increased due to dislocation strengthening. In the hot-rolled steel sheet according to the embodiment of the present invention, the metal structure is configured to contain 30 to 60 area % of bainite, and the average aspect ratio of the prior austenite grains in the region containing the bainite and martensite is controlled to 3.0 or more, so that the strength of the hot-rolled steel sheet can be significantly increased due to a combination of the strength improving effect of bainite and dislocation strengthening. From the viewpoint of further increasing the strength of the hot-rolled steel sheet, the larger the average aspect ratio, the more preferable it is, and it may be, for example, 3.2 or more, 3.5 or more, 3.8 or more, or 4.0 or more. The upper limit of the average aspect ratio is not particularly limited, but for example, the average aspect ratio may be 6.0 or less, 5.5 or less, or 5.0 or less.
[ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比の測定]
 ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比の測定は、走査型電子顕微鏡で行う。測定に先立ち、まず、組織観察用のサンプルをエメリー紙による湿式研磨及び1μmの平均粒子サイズをもつダイヤモンド砥粒により研磨し、L方向断面(圧延方向と板厚方向に平行な断面)を観察面として鏡面に仕上げた後、ピクリン酸溶液にて組織をエッチングする。観察の倍率を1000倍とし、表面から板厚の1/4位置における60μm×80μmの視野をランダムに10枚撮影する。ピクリン酸による腐食で現出した結晶粒界を対象として、切断法により板厚方向と圧延方向のそれぞれの結晶粒径を求める。切断法は、撮影像の板厚方向、圧延方向のそれぞれに平行な5本の直線を等間隔に引き、結晶粒界との交点をカウントする。5本の直線の合計長さを、交点の数で割った値を結晶粒径とする。圧延方向の結晶粒径を、板厚方向の結晶粒径で割った値をベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比として決定する。
[Measurement of the average aspect ratio of prior austenite grains in the region containing bainite and martensite]
The average aspect ratio of the prior austenite grains in the region containing bainite and martensite is measured by a scanning electron microscope. Prior to the measurement, the sample for structure observation is first polished by wet polishing with emery paper and diamond abrasives with an average particle size of 1 μm, and the L-direction cross section (cross section parallel to the rolling direction and the plate thickness direction) is mirror-finished as the observation surface, and then the structure is etched with a picric acid solution. The magnification of the observation is 1000 times, and 10 random photographs are taken of a 60 μm x 80 μm field of view at a position of 1/4 of the plate thickness from the surface. The grain size in each of the plate thickness direction and the rolling direction is obtained by a cutting method, with the grain boundaries revealed by corrosion with picric acid as the target. In the cutting method, five straight lines parallel to the plate thickness direction and the rolling direction of the photographed image are drawn at equal intervals, and the intersections with the grain boundaries are counted. The total length of the five straight lines divided by the number of intersections is taken as the grain size. The grain size in the rolling direction is divided by the grain size in the sheet thickness direction to determine the average aspect ratio of the prior austenite grains in the region containing bainite and martensite.
[板厚]
 本発明の実施形態に係る熱間圧延鋼板は、特に限定されないが、一般的には1.0~6.0mmの板厚を有する。例えば、板厚は1.2mm以上、1.6mm以上若しくは2.0mm以上であってもよく、及び/又は5.0mm以下若しくは4.0mm以下であってもよい。
[Thickness]
The hot rolled steel sheet according to the embodiment of the present invention generally has a thickness of 1.0 to 6.0 mm, although not particularly limited thereto. For example, the thickness may be 1.2 mm or more, 1.6 mm or more, or 2.0 mm or more, and/or 5.0 mm or less, or 4.0 mm or less.
[機械的特性]
[引張強さ:TS]
 上記の化学組成及び金属組織を有する熱間圧延鋼板によれば、高い引張強さ、具体的には780MPa以上の引張強さを達成することができる。引張強さは、好ましくは800MPa以上、820MPa以上又は840MPa以上である。本発明の実施形態に係る熱間圧延鋼板によれば、このような非常に高い引張強さを有するにもかかわらず、上で説明した化学組成と金属組織の特定の組み合わせにより、穴広げ性の向上と高降伏比を実現することができる。引張強さの上限は特に限定されないが、例えば、熱間圧延鋼板の引張強さは1180MPa以下、980MPa以下、940MPa以下、900MPa以下又は860MPa以下であってもよい。引張強さは、試験片の長手方向が熱間圧延鋼板の圧延直角方向と平行になる向き(C方向)からJIS5号試験片を採取し、JIS Z 2241:2011に準拠した引張試験を行うことで測定される。
[Mechanical properties]
[Tensile strength: TS]
According to the hot-rolled steel sheet having the above chemical composition and metal structure, a high tensile strength, specifically a tensile strength of 780 MPa or more can be achieved. The tensile strength is preferably 800 MPa or more, 820 MPa or more, or 840 MPa or more. According to the hot-rolled steel sheet according to the embodiment of the present invention, despite having such a very high tensile strength, the specific combination of the chemical composition and metal structure described above can realize an improvement in hole expandability and a high yield ratio. The upper limit of the tensile strength is not particularly limited, but for example, the tensile strength of the hot-rolled steel sheet may be 1180 MPa or less, 980 MPa or less, 940 MPa or less, 900 MPa or less, or 860 MPa or less. The tensile strength is measured by taking a JIS No. 5 test piece from a direction (C direction) in which the longitudinal direction of the test piece is parallel to the rolling perpendicular direction of the hot-rolled steel sheet, and performing a tensile test in accordance with JIS Z 2241:2011.
[降伏比:YR]
 上記の化学組成及び金属組織を有する熱間圧延鋼板によれば、高い引張強さに加えて、降伏比を高めることもでき、より具体的には0.70以上の降伏比を達成することができる。降伏比は、好ましくは0.75以上、より好ましくは0.80以上である。上限は特に限定されないが、例えば、降伏比は0.90以下又は0.85以下であってもよい。降伏比は、試験片の長手方向が熱間圧延鋼板の圧延直角方向と平行になる向き(C方向)からJIS5号試験片を採取し、JIS Z 2241:2011に準拠した引張試験を行うことで測定した引張強さ及び0.2%耐力に基づき、下記式により決定される。
  降伏比YR=0.2%耐力/引張強さTS
[Yield ratio: YR]
According to the hot-rolled steel sheet having the above chemical composition and metal structure, in addition to high tensile strength, the yield ratio can be increased, and more specifically, a yield ratio of 0.70 or more can be achieved. The yield ratio is preferably 0.75 or more, more preferably 0.80 or more. The upper limit is not particularly limited, but for example, the yield ratio may be 0.90 or less or 0.85 or less. The yield ratio is determined by the following formula based on the tensile strength and 0.2% proof stress measured by taking a JIS No. 5 test piece from a direction (C direction) in which the longitudinal direction of the test piece is parallel to the rolling perpendicular direction of the hot-rolled steel sheet and performing a tensile test in accordance with JIS Z 2241:2011.
Yield ratio YR = 0.2% proof stress / tensile strength TS
[穴広げ率:λ]
 上記の化学組成及び金属組織を有する熱間圧延鋼板によれば、高い穴広げ性、具体的には60.0%以上の穴広げ率を達成することができる。穴広げ率は、好ましくは65.0%以上、より好ましくは70.0%以上又は80%以上であってもよい。穴広げ率の上限は特に限定されないが、例えば、穴広げ率は120%以下、110%以下又は100%以下であってもよい。穴広げ率は以下のようにして決定される。まず、熱間圧延鋼板から幅100mm×長さ100mmの試験片を採取し、ポンチ径:10mm及びダイス径:10.25~11.5mm(クリアランス12.5%)の打ち抜き工具を用いて打ち抜き穴(初期穴:穴径d0=10mm)を作製する。次いで、かえり(バリ)がダイ側となるようにし、頂角60°の円錐ポンチにて板厚を貫通する割れが発生するまで初期穴を押し広げ、割れ発生時の穴径d1mmを測定して、下記式にて各試験片の穴広げ率λ(%)を求める。この穴広げ試験を3回実施し、それらの平均値を穴広げ率λとして決定する。
   λ=100×{(d1-d0)/d0}
[Hole expansion ratio: λ]
According to the hot-rolled steel sheet having the above chemical composition and metal structure, high hole expansion property, specifically, a hole expansion ratio of 60.0% or more can be achieved. The hole expansion ratio may be preferably 65.0% or more, more preferably 70.0% or more or 80% or more. The upper limit of the hole expansion ratio is not particularly limited, but for example, the hole expansion ratio may be 120% or less, 110% or less, or 100% or less. The hole expansion ratio is determined as follows. First, a test piece having a width of 100 mm and a length of 100 mm is taken from the hot-rolled steel sheet, and a punch hole (initial hole: hole diameter d0 = 10 mm) is made using a punching tool with a punch diameter of 10 mm and a die diameter of 10.25 to 11.5 mm (clearance 12.5%). Next, the initial hole is expanded with a conical punch having an apex angle of 60° until a crack penetrating the plate thickness occurs, with the burr facing the die side, and the hole diameter d1 mm at the time of crack occurrence is measured, and the hole expansion ratio λ (%) of each test piece is calculated using the following formula. This hole expansion test is carried out three times, and the average value is determined as the hole expansion ratio λ.
λ = 100 × {(d1 - d0) / d0}
<熱間圧延鋼板の製造方法>
 次に、本発明の実施形態に係る熱間圧延鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係る熱間圧延鋼板を製造するための特徴的な方法の例示を意図するものであって、当該熱間圧延鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
<Method of manufacturing hot-rolled steel sheet>
Next, a preferred method for manufacturing the hot-rolled steel sheet according to the embodiment of the present invention will be described. The following description is intended to exemplify a characteristic method for manufacturing the hot-rolled steel sheet according to the embodiment of the present invention, and is not intended to limit the hot-rolled steel sheet to one manufactured by the manufacturing method described below.
 本発明の実施形態に係る熱間圧延鋼板の製造方法は、
 熱間圧延鋼板に関連して上で説明した化学組成を有するスラブを加熱し、次いで仕上げ圧延することを含み、下記(a)~(e)の条件を満足する熱間圧延工程、
  (a)スラブの加熱温度が1200~1300℃であること、
  (b)1200~1300℃の温度域における保持時間が1000~4000秒であること、
  (c)仕上げ圧延が5基以上の圧延スタンドからなるタンデム圧延機を用いて行われ、後段3段以外の前段の圧延パスにおける合計圧下率が60~90%であること、
  (d)後段3段の各圧延パスにおける圧下率が10%以上であり、かつ後段3段の圧延パスにおける合計圧下率が30~50%であること、及び
  (e)仕上げ圧延の終了温度が900~1000℃であること
 仕上げ圧延された鋼板を50~200℃/秒の平均冷却速度で670~750℃の中間空冷温度まで1次冷却し、次いで3~10秒間にわたり中間空冷する中間空冷工程、並びに
 中間空冷された鋼板を50~200℃/秒の平均冷却速度で2次冷却し、次いで20~200℃の巻取温度で巻き取る冷却工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
The method for producing a hot-rolled steel sheet according to an embodiment of the present invention includes:
A hot rolling process comprising heating a slab having the chemical composition described above in relation to the hot rolled steel sheet and then finish rolling the slab, the hot rolling process satisfying the following conditions (a) to (e):
(a) The heating temperature of the slab is 1200 to 1300°C;
(b) the holding time in the temperature range of 1200 to 1300° C. is 1000 to 4000 seconds;
(c) The finish rolling is performed using a tandem rolling mill consisting of five or more rolling stands, and the total reduction in the rolling passes of the front stages other than the rear three stages is 60 to 90%;
(d) the rolling reduction in each rolling pass of the latter three stages is 10% or more, and the total rolling reduction in the rolling passes of the latter three stages is 30 to 50%, and (e) the end temperature of finish rolling is 900 to 1000°C. The method is characterized by including an intermediate air-cooling step in which the finish-rolled steel sheet is primarily cooled to an intermediate air-cooling temperature of 670 to 750°C at an average cooling rate of 50 to 200°C/s, and then intermediate air-cooled for 3 to 10 seconds, and a cooling step in which the intermediate air-cooled steel sheet is secondarily cooled at an average cooling rate of 50 to 200°C/s, and then coiled at a coiling temperature of 20 to 200°C. Each step will be described in detail below.
[熱間圧延工程]
[(a)スラブの加熱温度:1200~1300℃]
[(b)1200~1300℃の温度域における保持時間:1000~4000秒]
 まず、熱間圧延鋼板に関連して上で説明した化学組成を有するスラブが加熱される。使用するスラブは、生産性の観点から連続鋳造法において鋳造することが好ましいが、造塊法又は薄スラブ鋳造法によって製造してもよい。使用されるスラブは、高強度鋼板を得るために合金元素を比較的多く含有している。このため、スラブを熱間圧延に供する前に加熱して合金元素をスラブ中に固溶させる必要がある。加熱温度が低いと、合金元素がスラブ中に十分に固溶せずに粗大な合金炭化物が残り、熱間圧延中に脆化割れを生じる場合がある。このため、加熱温度は1200℃以上であることが好ましい。加熱温度の上限は、特に限定されないが、加熱設備の能力や生産性の観点から1300℃以下であることが好ましい。また、1200~1300℃の温度域における保持時間を1000秒以上とすることで、合金元素をスラブ中に確実に固溶させることができる。保持時間の上限は特に限定されないが、生産性等の観点から4000秒以下であることが好ましい。粗圧延を実施する場合には、1200~1300℃の温度域における保持は粗圧延後に行ってもよい。
[Hot rolling process]
[(a) Slab heating temperature: 1200 to 1300° C.]
[(b) Holding time in the temperature range of 1200 to 1300° C.: 1000 to 4000 seconds]
First, a slab having the chemical composition described above in relation to the hot-rolled steel sheet is heated. The slab used is preferably cast by a continuous casting method from the viewpoint of productivity, but may be manufactured by an ingot casting method or a thin slab casting method. The slab used contains a relatively large amount of alloying elements in order to obtain a high-strength steel sheet. For this reason, it is necessary to heat the slab before subjecting it to hot rolling to dissolve the alloying elements in the slab. If the heating temperature is low, the alloying elements may not be sufficiently dissolved in the slab, leaving coarse alloy carbides, which may cause embrittlement cracking during hot rolling. For this reason, the heating temperature is preferably 1200°C or higher. The upper limit of the heating temperature is not particularly limited, but is preferably 1300°C or lower from the viewpoint of the capacity and productivity of the heating equipment. In addition, by setting the holding time in the temperature range of 1200 to 1300°C to 1000 seconds or more, the alloying elements can be reliably dissolved in the slab. The upper limit of the holding time is not particularly limited, but is preferably 4000 seconds or less from the viewpoint of productivity, etc. When rough rolling is performed, holding in the temperature range of 1200 to 1300° C. may be performed after the rough rolling.
[粗圧延]
 本方法では、例えば、加熱されたスラブに対し、板厚調整等のために、仕上げ圧延の前に粗圧延を施してもよい。粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
[Rough rolling]
In this method, for example, the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness, etc. The conditions of the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be secured.
[(c)仕上げ圧延の前段の圧延パスにおける合計圧下率:60~90%]
 加熱されたスラブ又はそれに加えて必要に応じて粗圧延されたスラブは、次に仕上げ圧延を施される。本製造方法では、仕上げ圧延は、5基以上の圧延スタンド、より具体的には5~8基の圧延スタンドからなるタンデム圧延機を用いて行われる。本製造方法では、加熱されたスラブに対して行われる仕上げ圧延において、後段3段(最終3段)以外の前段の圧延パスにおける合計圧下率は、60~90%に制御される。前段の圧延パスにおいて、このような高圧下率の圧延を行うことで、再結晶を促進して金属組織を微細化することができる。ただし、前段の各圧延パスにおける再結晶率が100%である必要はない。このような再結晶による金属組織の微細化は、所望の金属組織を形成し、穴広げ性等の特性を向上させる上でも非常に有利である。前段の圧延パスにおける合計圧下率が60%未満であると、フェライト、ベイナイト及びマルテンサイトを特定の割合で含む所望の金属組織が得られず、穴広げ性等の特性が低下する場合がある。したがって、前段の圧延パスにおける合計圧下率は60%以上とし、好ましくは70%以上である。一方で、前段の圧延パスにおける合計圧下率が高すぎると、圧延荷重が過大となり、圧延機の負荷が高くなる。このため、前段の圧延パスにおける合計圧下率は90%以下とする。
[(c) Total reduction in rolling passes prior to finish rolling: 60 to 90%]
The heated slab or the slab that has been rough-rolled as necessary is then subjected to finish rolling. In this manufacturing method, the finish rolling is performed using a tandem rolling mill consisting of five or more rolling stands, more specifically, five to eight rolling stands. In this manufacturing method, in the finish rolling performed on the heated slab, the total reduction in the rolling passes of the front stages other than the rear three stages (final three stages) is controlled to 60 to 90%. By performing rolling at such a high reduction rate in the rolling passes of the front stages, recrystallization can be promoted to refine the metal structure. However, the recrystallization rate in each rolling pass of the front stages does not need to be 100%. Refining the metal structure by such recrystallization is very advantageous in forming a desired metal structure and improving properties such as hole expandability. If the total reduction rate in the rolling passes of the front stages is less than 60%, the desired metal structure containing ferrite, bainite, and martensite in a specific ratio cannot be obtained, and properties such as hole expandability may be reduced. Therefore, the total reduction in the front rolling passes is set to 60% or more, and preferably 70% or more. On the other hand, if the total reduction in the front rolling passes is too high, the rolling load becomes excessive, and the load on the rolling mill increases. For this reason, the total reduction in the front rolling passes is set to 90% or less.
[(d)後段3段の各圧延パスにおける圧下率:10%以上、及び仕上げ圧延の後段3段の圧延パスにおける合計圧下率:30~50%]
 本製造方法の仕上げ圧延では、後段3段の各圧延パスにおける圧下率が10%以上に制御されるとともに、後段3段の圧延パスにおける合計圧下率が30~50%の範囲内に制御される。仕上げ圧延の後段の圧延パスでは、前段の圧延パスの場合とは異なり、再結晶を抑制する必要がある。後段3段の各圧延パスにおける圧下率を10%以上としつつ、後段3段の圧延パスにおける合計圧下率を30~50%の範囲内に制御することで、各圧延パスの圧下率が実質的に10~30%の範囲内に制限される。このような比較的軽圧下の条件下で後段3段の圧延パスを実施することで、各圧延パスにおいて再結晶を抑制して転位を確実に導入することができ、最終的に得られる熱間圧延鋼板の金属組織においてベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比を3.0以上に制御することが可能となる。
[(d) Reduction in each rolling pass of the last three stages: 10% or more, and total reduction in the last three rolling passes of the finish rolling: 30 to 50%]
In the finish rolling of the present manufacturing method, the reduction in each rolling pass of the latter three stages is controlled to 10% or more, and the total reduction in the rolling passes of the latter three stages is controlled to within a range of 30 to 50%. In the latter rolling passes of the finish rolling, unlike the rolling passes of the former stages, it is necessary to suppress recrystallization. By controlling the reduction in each rolling pass of the latter three stages to 10% or more and the total reduction in the rolling passes of the latter three stages to within a range of 30 to 50%, the reduction in each rolling pass is substantially limited to within a range of 10 to 30%. By performing the rolling passes of the latter three stages under such relatively light reduction conditions, it is possible to suppress recrystallization in each rolling pass and reliably introduce dislocations, and it is possible to control the average aspect ratio of the prior austenite grains in the region containing bainite and martensite in the metal structure of the finally obtained hot-rolled steel sheet to 3.0 or more.
 後段3段の各圧延パスにおける圧下率が10%未満であると、各圧延パスにおいて再結晶は抑制されるものの、各圧延パスにおいて転位を十分に導入することができず、最終的に得られる金属組織において所望のアスペクト比を達成することができなくなる。同様に、後段3段の圧延パスにおける合計圧下率が30%未満である場合にも、後段3段の少なくとも1つの圧延パスにおいて転位を十分に導入することができず、最終的に得られる金属組織において、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒の平均アスペクト比3.0以上を達成することができなくなる。一方で、後段3段の各圧延パスにおける圧下率が30%超であるか又は後段3段の圧延パスにおける合計圧下率が50%超であると、再結晶が促進されて転位を十分に導入することができず、同様に最終的に得られる金属組織において、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒の平均アスペクト比3.0以上を達成することができなくなる。仕上げ圧延の後段3段の圧延パスにおける合計圧下率は、好ましくは35~50%の範囲内に制御される。 If the reduction rate in each rolling pass of the last three stages is less than 10%, recrystallization is suppressed in each rolling pass, but dislocations cannot be sufficiently introduced in each rolling pass, and the desired aspect ratio cannot be achieved in the final metal structure. Similarly, if the total reduction rate in the rolling passes of the last three stages is less than 30%, dislocations cannot be sufficiently introduced in at least one rolling pass of the last three stages, and the average aspect ratio of the old austenite grains in the region containing bainite and martensite cannot be achieved in the final metal structure. On the other hand, if the reduction rate in each rolling pass of the last three stages is more than 30% or the total reduction rate in the last three stages is more than 50%, recrystallization is promoted and dislocations cannot be sufficiently introduced, and similarly, the average aspect ratio of the old austenite grains in the region containing bainite and martensite cannot be achieved in the final metal structure. The total reduction rate in the last three rolling passes of the finish rolling is preferably controlled within the range of 35 to 50%.
[(e)仕上げ圧延の終了温度:900~1000℃]
 本製造方法においては、仕上げ圧延の前段及び後段の圧下率制御に加えて、仕上げ圧延の終了温度も鋼板の金属組織を制御する上で重要である。仕上げ圧延の終了温度が低いと、金属組織が不均一となり、強度及び/又は穴広げ性等が低下する場合がある。このため、仕上げ圧延の終了温度は900℃以上とする。一方で、仕上げ圧延の終了温度が高いと、仕上げ圧延の後段3段の圧延パスにおいて再結晶が促進されてしまい、転位を十分に導入することができなくなる。その結果として、最終的に得られる金属組織において、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒の平均アスペクト比3.0以上を達成することができなくなる。したがって、仕上げ圧延の終了温度は1000℃以下とする。
[(e) End temperature of finish rolling: 900 to 1000° C.]
In this manufacturing method, in addition to controlling the reduction ratios in the front and rear stages of the finish rolling, the finish rolling end temperature is also important in controlling the metal structure of the steel sheet. If the finish rolling end temperature is low, the metal structure may become non-uniform, and the strength and/or hole expandability may decrease. For this reason, the finish rolling end temperature is set to 900°C or higher. On the other hand, if the finish rolling end temperature is high, recrystallization is promoted in the rolling passes in the rear three stages of the finish rolling, and dislocations cannot be sufficiently introduced. As a result, in the finally obtained metal structure, it is not possible to achieve an average aspect ratio of 3.0 or more of the prior austenite grains in the region including bainite and martensite. Therefore, the finish rolling end temperature is set to 1000°C or lower.
[中間空冷工程]
 仕上げ圧延された鋼板は、次の中間空冷工程において、ランアウトテーブル(ROT)上で、50~200℃/秒の平均冷却速度で670~750℃の中間空冷温度まで1次冷却され、次いで3~10秒間にわたり中間空冷される。50~200℃/秒の平均冷却速度で670~750℃の中間空冷温度まで1次冷却することで、フェライトが過度に生成することを抑制しつつ、次の高温下での中間空冷によってTiC析出物の析出を促進させることができる。その結果として、フェライトが十分に析出強化され、それによってフェライトとベイナイトの硬度差を小さくして穴広げ性及び降伏比を高めることができる。より詳しく説明すると、中間空冷時におけるTiC析出物の生成及び粒成長を促進させてフェライトを十分に析出強化するためには、中間空冷温度を比較的高い温度域、すなわち670~750℃の温度域に設定する必要がある。しかしながら、この場合には、フェライトが過度に生成し、最終的な金属組織においてフェライトの面積率が60%を超えてしまい、所望の特性を得ることができなくなる。そこで、本製造方法では、仕上げ圧延後から中間空冷温度までの1次冷却における平均冷却速度を50℃/秒以上とすることで、フェライトの過度な生成を抑制するとともに、次の高温下での中間空冷によってTiC析出物が十分に析出されるようにしている。一方で、1次冷却の平均冷却速度が200℃を超えると、フェライトの生成が過度に抑制され、最終的な金属組織においてフェライトの面積率が30%未満となり、穴広げ性等の特性が低下する。したがって、1次冷却の平均冷却速度は200℃/秒以下とし、好ましくは160℃/秒以下である。
[Intermediate air cooling process]
In the next intermediate cooling step, the finish-rolled steel sheet is primarily cooled on a run-out table (ROT) to an intermediate cooling temperature of 670 to 750 ° C. at an average cooling rate of 50 to 200 ° C./s, and then intermediate cooling is performed for 3 to 10 seconds. By primarily cooling to an intermediate cooling temperature of 670 to 750 ° C. at an average cooling rate of 50 to 200 ° C./s, it is possible to suppress excessive generation of ferrite while promoting the precipitation of TiC precipitates by the next intermediate cooling at high temperatures. As a result, ferrite is sufficiently precipitation strengthened, thereby reducing the hardness difference between ferrite and bainite, and improving the hole expandability and yield ratio. To explain in more detail, in order to sufficiently precipitation strengthen ferrite by promoting the generation and grain growth of TiC precipitates during intermediate cooling, it is necessary to set the intermediate cooling temperature to a relatively high temperature range, i.e., a temperature range of 670 to 750 ° C. However, in this case, ferrite is generated excessively, and the area ratio of ferrite in the final metal structure exceeds 60%, making it impossible to obtain the desired characteristics. Therefore, in this manufacturing method, the average cooling rate in the primary cooling from the finish rolling to the intermediate air cooling temperature is set to 50 ° C / sec or more, thereby suppressing excessive generation of ferrite and allowing TiC precipitates to be sufficiently precipitated by the next intermediate air cooling at high temperature. On the other hand, if the average cooling rate of the primary cooling exceeds 200 ° C, the generation of ferrite is excessively suppressed, and the area ratio of ferrite in the final metal structure is less than 30%, and properties such as hole expansion property are deteriorated. Therefore, the average cooling rate of the primary cooling is set to 200 ° C / sec or less, preferably 160 ° C / sec or less.
 中間空冷温度が750℃超であるか又は中間空冷の時間が10秒超であると、フェライトが過度に生成したり、TiC析出物が粗大化してしまったりする。フェライトが過度に生成すると、最終的に得られる熱間圧延鋼板においてフェライト、ベイナイト及びマルテンサイトを特定の割合で含む所望の金属組織を形成することができなくなる。また、TiC析出物が粗大化すると、当該TiC析出物の個数密度も大きく低下してしまうため、析出強化によるフェライトの硬度向上効果を十分に得ることができなくなる。一方で、中間空冷温度が670℃未満であるか又は中間空冷の時間が3秒未満であると、TiC析出物の生成及び粒成長が抑制され、所望の直径及び/又は個数密度が得られない。この場合も同様に、析出強化によるフェライトの硬度向上効果を十分に得ることができない。加えて、フェライトの生成が過度に抑制されることもあり、このような場合には、最終的に得られる熱間圧延鋼板においてフェライト、ベイナイト及びマルテンサイトを特定の割合で含む所望の金属組織を形成することができなくなる。 If the intermediate cooling temperature is above 750°C or the intermediate cooling time is more than 10 seconds, excessive ferrite is generated or the TiC precipitates become coarse. If excessive ferrite is generated, the desired metal structure containing ferrite, bainite and martensite in a specific ratio cannot be formed in the final hot-rolled steel sheet. In addition, if the TiC precipitates become coarse, the number density of the TiC precipitates also decreases significantly, and the hardness improvement effect of ferrite due to precipitation strengthening cannot be fully obtained. On the other hand, if the intermediate cooling temperature is below 670°C or the intermediate cooling time is less than 3 seconds, the generation and grain growth of TiC precipitates are suppressed, and the desired diameter and/or number density cannot be obtained. In this case, too, the hardness improvement effect of ferrite due to precipitation strengthening cannot be fully obtained. In addition, the formation of ferrite may be suppressed too much, which makes it impossible to form the desired metal structure containing ferrite, bainite, and martensite in specific proportions in the final hot-rolled steel sheet.
 これに対し、中間空冷工程において、50~200℃/秒、好ましくは50~160℃/秒の平均冷却速度で670~750℃、好ましくは690~750℃の中間空冷温度まで1次冷却し、次いで3~10秒間、好ましくは4~9秒間にわたり中間空冷することで、フェライトを所望の割合で析出させるとともに、当該フェライト中にTiC析出物を生成させ、それを適切に粒成長させて最終的に2.0~8.0nmの直径を有するTiC析出物を1.0×1016個/cm3以上の個数密度で存在させることが可能となる。その結果として、析出強化によるフェライトの硬度向上効果を十分に発揮することで、金属組織中のフェライトとベイナイトの硬度差を低減して穴広げ性及び降伏比を顕著に高めることが可能となる。 In contrast, in the intermediate cooling step, the intermediate cooling temperature is primarily cooled to 670 to 750 ° C., preferably 690 to 750 ° C. at an average cooling rate of 50 to 200 ° C./s, preferably 50 to 160 ° C./s, and then intermediate cooling is performed for 3 to 10 seconds, preferably 4 to 9 seconds, to precipitate ferrite in a desired ratio, generate TiC precipitates in the ferrite, and allow them to grow appropriately, so that TiC precipitates having a diameter of 2.0 to 8.0 nm are finally present at a number density of 1.0 × 10 16 / cm 3 or more. As a result, by fully exerting the effect of improving the hardness of ferrite by precipitation strengthening, it is possible to reduce the hardness difference between ferrite and bainite in the metal structure and significantly increase the hole expandability and yield ratio.
[冷却工程]
 中間空冷後の鋼板は、次の冷却工程において、50~200℃/秒の平均冷却速度で2次冷却され、次いで20~200℃の巻取温度で巻き取られる。中間空冷後の鋼板をこのような比較的速い平均冷却速度で2次冷却することにより、ベイナイト及びマルテンサイトを適切に析出させることができるので、最終的に得られる熱間圧延鋼板においてフェライト、ベイナイト及びマルテンサイトを特定の割合で含む金属組織を形成することが可能となる。これに対し、2次冷却の平均冷却速度が50℃/秒未満であると、ベイナイト及び/又はマルテンサイトを適切に析出させることができず、それゆえ最終的に得られる熱間圧延鋼板において所望の金属組織を得ることができなくなる。このような場合には、780MPa以上の引張強さを達成することができなくなる。一方で、2次冷却の平均冷却速度が200℃超であると、ベイナイトが十分に生成しないか及び/又はマルテンサイトが過度に生成してしまい、同様に最終的に得られる熱間圧延鋼板において所望の金属組織を得ることができなくなる。したがって、2次冷却の平均冷却速度は200℃/秒以下とし、好ましくは180℃/秒以下である。
[Cooling process]
The steel sheet after the intermediate air cooling is secondarily cooled at an average cooling rate of 50 to 200 ° C./s in the next cooling step, and then wound at a winding temperature of 20 to 200 ° C. By subjecting the steel sheet after the intermediate air cooling to such a relatively fast average cooling rate for the second cooling, bainite and martensite can be appropriately precipitated, so that it is possible to form a metal structure containing ferrite, bainite and martensite in a specific ratio in the finally obtained hot rolled steel sheet. On the other hand, if the average cooling rate of the second cooling is less than 50 ° C./s, bainite and/or martensite cannot be appropriately precipitated, and therefore the desired metal structure cannot be obtained in the finally obtained hot rolled steel sheet. In such a case, it becomes impossible to achieve a tensile strength of 780 MPa or more. On the other hand, if the average cooling rate of the second cooling is more than 200 ° C., bainite is not sufficiently generated and/or martensite is excessively generated, and similarly, the desired metal structure cannot be obtained in the finally obtained hot rolled steel sheet. Therefore, the average cooling rate of the secondary cooling is set to 200° C./sec or less, and preferably 180° C./sec or less.
 一方で、巻取温度が200℃超であると、セメンタイトが比較的多く析出してしまうことがある。このような場合には、鋼中のCがセメンタイトの形成に消費されてしまう。その結果として、TiC析出物の形成が抑制され、当該TiC析出物を利用した析出強化によるフェライトの硬度向上効果を十分に得ることができなくなる。加えて、熱間圧延鋼板の強度向上効果も十分に発揮できない場合がある。一方で、巻取温度が低すぎると、過度な水冷等が必要になり、生産性が低下する。また、熱間圧延鋼板の脆化を引き起こす場合もある。したがって、巻取温度は20℃以上とする。 On the other hand, if the coiling temperature is above 200°C, a relatively large amount of cementite may precipitate. In such a case, the C in the steel is consumed in the formation of cementite. As a result, the formation of TiC precipitates is suppressed, and the effect of improving the hardness of ferrite by precipitation strengthening using the TiC precipitates cannot be fully obtained. In addition, the effect of improving the strength of the hot-rolled steel sheet may not be fully achieved. On the other hand, if the coiling temperature is too low, excessive water cooling, etc. will be required, reducing productivity. It may also cause embrittlement of the hot-rolled steel sheet. Therefore, the coiling temperature is set to 20°C or higher.
 上記の製造方法によって製造された熱間圧延鋼板によれば、金属組織中の硬質層であるベイナイトの面積率が30~60%の比較的高い範囲内に制御されることに加えて、当該ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比が3.0以上となることで、これに関連する転位強化を利用することができ、その結果として熱間圧延鋼板の強度を顕著に高めることができる。さらに、フェライト中に直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度で存在するため、析出強化により、熱間圧延鋼板全体の強度向上に寄与することは当然ながら、金属組織中で比較的多く存在する硬質相のベイナイトと3相組織中で最も軟質のフェライトとの硬度差を十分に低減することができ、その結果として熱間圧延鋼板の穴広げ性及び降伏比を顕著に高めることが可能となる。したがって、上記の製造方法によって製造された熱間圧延鋼板は、高強度と優れた加工性の相反する特性の両立が求められ、さらには耐衝撃特性が求められる部材においても有効に使用することができるので、自動車分野の使用において特に有用である。 According to the hot-rolled steel sheet manufactured by the above manufacturing method, the area ratio of bainite, which is a hard layer in the metal structure, is controlled within a relatively high range of 30 to 60%, and the average aspect ratio of the prior austenite grains in the region containing the bainite and martensite is 3.0 or more, and the dislocation strengthening associated therewith can be utilized, and as a result, the strength of the hot-rolled steel sheet can be significantly increased. Furthermore, since TiC precipitates having a diameter of 2.0 to 8.0 nm are present in the ferrite at a number density of 1.0 x 1016 precipitates/ cm3 or more, the precipitation strengthening naturally contributes to improving the strength of the entire hot-rolled steel sheet, and the hardness difference between the bainite, which is a hard phase relatively abundant in the metal structure, and the ferrite, which is the softest of the three-phase structure, can be sufficiently reduced, and as a result, the hole expandability and yield ratio of the hot-rolled steel sheet can be significantly increased. Therefore, the hot-rolled steel sheet manufactured by the above-mentioned manufacturing method is particularly useful in the automotive field because it can be effectively used in components that require both the contradictory properties of high strength and excellent workability, and furthermore, impact resistance.
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples in any way.
 以下の実施例では、本発明の実施形態に係る熱間圧延鋼板を種々の条件下で製造し、得られた熱間圧延鋼板の引張強さ(TS)、穴広げ率(λ)及び降伏比(YR)について調べた。 In the following examples, hot-rolled steel sheets according to the embodiments of the present invention were manufactured under various conditions, and the tensile strength (TS), hole expansion ratio (λ), and yield ratio (YR) of the obtained hot-rolled steel sheets were investigated.
 まず、真空溶解炉で表1に示す種々の化学組成を有する鋳塊を生成し、次いで、表2に示す加熱温度に再加熱した後、粗圧延で30mm厚の粗バーを作製した。当該粗バーを1200~1300℃の温度域にて3600秒間保持し、次いで複数の圧延スタンドからなる圧延機を用いて、表2に示す条件下で前段2段以上の圧延パスと後段3段の圧延パスによる仕上げ圧延を実施した。仕上げ圧延の終了温度は表2に示すとおりであった。次に、仕上げ圧延された鋼板を、表2に示す条件下で中間空冷温度まで1次冷却し、次いで中間空冷を行った。最後に、中間空冷された鋼板を表2に示す条件下で巻取温度まで2次冷却し、次いで当該巻取温度にて巻き取り、2.5mmの板厚を有する熱間圧延鋼板を得た。 First, ingots having various chemical compositions shown in Table 1 were produced in a vacuum melting furnace, then reheated to the heating temperature shown in Table 2, and rough rolled to produce rough bars with a thickness of 30 mm. The rough bars were held at a temperature range of 1200 to 1300°C for 3600 seconds, and then finish rolling was performed using a rolling mill consisting of multiple rolling stands, with two or more rolling passes in the front stage and three rolling passes in the rear stage, under the conditions shown in Table 2. The end temperature of the finish rolling was as shown in Table 2. Next, the finish-rolled steel plate was primarily cooled to the intermediate air-cooling temperature under the conditions shown in Table 2, and then intermediate air-cooled. Finally, the intermediate air-cooled steel plate was secondarily cooled to the coiling temperature under the conditions shown in Table 2, and then coiled at the coiling temperature, to obtain a hot-rolled steel plate with a thickness of 2.5 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた熱間圧延鋼板の特性は以下の方法によって測定及び評価した。 The properties of the resulting hot-rolled steel sheets were measured and evaluated using the following methods.
[TiC析出物の直径及び個数密度の算出]
 TiC析出物の直径及び個数密度は、本明細書で詳述した三次元アトムプローブ測定法により、装置固有の原子の検出率αを0.35として算出した。
[Calculation of diameter and number density of TiC precipitates]
The diameter and number density of TiC precipitates were calculated using the three-dimensional atom probe measurement technique detailed herein, with an instrument specific atomic detection rate α of 0.35.
[引張強さ(TS)及び降伏比(YR)]
 引張強さ(TS)は、試験片の長手方向が熱間圧延鋼板の圧延直角方向と平行になる向き(C方向)から、長さ200mm及び厚さ2.5mmのJIS5号試験片を採取し、JIS Z 2241:2011に準拠した引張試験を行うことで測定した。より具体的には、試験は10~35℃の範囲内の室温で行い、試験片に引張試験力を加え、破断に至るまでひずみを与えた。また、降伏比(YR)は、同様にJIS5号試験片を用いてJIS Z 2241:2011に準拠した引張試験を行うことで測定した引張強さ(TS)及び0.2%耐力に基づき、下記式により決定した。
  降伏比YR=0.2%耐力/引張強さTS
[Tensile strength (TS) and yield ratio (YR)]
The tensile strength (TS) was measured by taking a JIS No. 5 test piece having a length of 200 mm and a thickness of 2.5 mm from a direction (C direction) in which the longitudinal direction of the test piece was parallel to the rolling direction perpendicular to the rolling direction of the hot-rolled steel plate, and performing a tensile test in accordance with JIS Z 2241:2011. More specifically, the test was performed at room temperature in the range of 10 to 35°C, and a tensile test force was applied to the test piece, and strain was applied until it broke. The yield ratio (YR) was determined by the following formula based on the tensile strength (TS) and 0.2% proof stress measured by performing a tensile test in accordance with JIS Z 2241:2011 using a JIS No. 5 test piece in the same manner.
Yield ratio YR = 0.2% proof stress / tensile strength TS
[穴広げ率:λ]
 穴広げ率は以下のようにして決定した。まず、熱間圧延鋼板から厚さ2.5mm×幅100mm×長さ100mmの試験片を採取し、ポンチ径:10mm、ダイス径:10.25~11.5mm(クリアランス12.5%)の打ち抜き工具を用いて打ち抜き穴(初期穴:穴径d0=10mm)を作製した。次いで、かえり(バリ)がダイ側となるようにし、頂角60°の円錐ポンチにて板厚を貫通する割れが発生するまで初期穴を押し広げ、割れ発生時の穴径d1mmを測定して、下記式にて各試験片の穴広げ率λ(%)を求めた。この穴広げ試験を3回実施し、それらの平均値を穴広げ率λとして決定した。
   λ=100×{(d1-d0)/d0}
[Hole expansion ratio: λ]
The hole expansion ratio was determined as follows. First, a test piece having a thickness of 2.5 mm x width of 100 mm x length of 100 mm was taken from the hot-rolled steel sheet, and a punching tool having a punch diameter of 10 mm and a die diameter of 10.25 to 11.5 mm (clearance 12.5%) was used to make a punched hole (initial hole: hole diameter d0 = 10 mm). Next, the burr was set to be on the die side, and the initial hole was pushed out with a conical punch having an apex angle of 60 ° until a crack penetrating the plate thickness occurred, and the hole diameter d1 mm at the time of the crack occurrence was measured, and the hole expansion ratio λ (%) of each test piece was calculated using the following formula. This hole expansion test was performed three times, and the average value was determined as the hole expansion ratio λ.
λ = 100 × {(d1 - d0) / d0}
 熱間圧延鋼板の引張強さ(TS)が780MPa以上であり、穴広げ率(λ)が60.0%以上であり、かつ降伏比(YR)が0.70以上である場合を、高強度でかつ高い穴広げ性及び降伏比を有する熱間圧延鋼板として評価した。その結果を表3に示す。 Hot-rolled steel sheets with a tensile strength (TS) of 780 MPa or more, a hole expansion ratio (λ) of 60.0% or more, and a yield ratio (YR) of 0.70 or more were evaluated as hot-rolled steel sheets with high strength, high hole expansion property, and high yield ratio. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3を参照すると、比較例18は、中間空冷温度までの1次冷却における平均冷却速度が速かったために、フェライトの生成が過度に抑制され、最終的な金属組織においてフェライトの面積率が30%未満となった。その結果としてλが低下した。比較例19は、仕上げ圧延の前段の圧延パスにおける合計圧下率が低かったために、前段の圧延パスにおいて再結晶が抑制されてしまい、金属組織を微細化することができなかったと考えられる。その結果として、所望の金属組織が得られず、λが低下した。比較例20は、仕上げ圧延の後段3段の圧延パスにおける合計圧下率が高かったために、後段の圧延パスにおいて再結晶が促進されてしまい、転位を十分に導入することができなかったと考えられる。その結果として、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒の平均アスペクト比が3.0未満となり、TSが低下した。比較例21は、巻取温度が高かったために、セメンタイトが比較的多く析出してしまい、鋼中のCがセメンタイトの形成に消費されてしまったと考えられる。その結果として、TiC析出物の形成が抑制されて当該TiC析出物の個数密度が1.0×1016個/cm3未満となり、析出強化によるフェライトの硬度向上効果、さらには熱間圧延鋼板の強度向上効果を十分に得ることができず、TS、λ及びYRが低下した。比較例22は、中間空冷温度が高かったために、フェライトが過度に生成してしまい、さらにTiC析出物が粗大化し、これに関連して当該TiC析出物の個数密度も低下した。その結果として、TS、λ及びYRが低下した。比較例23は、仕上げ圧延の終了温度が高かったために、仕上げ圧延の後段3段の圧延パスにおいて再結晶が促進されてしまい、転位を十分に導入することができなかったと考えられる。その結果として、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒の平均アスペクト比3.0未満となり、TSが低下した。比較例24は、中間空冷温度までの1次冷却における平均冷却速度が遅かったために、フェライトが過度に生成してしまい、最終的な金属組織においてフェライトの面積率が60%超となった。その結果としてTSが低下した。 With reference to Tables 1 to 3, in Comparative Example 18, the average cooling rate in the primary cooling to the intermediate air-cooling temperature was high, so that the generation of ferrite was excessively suppressed, and the area ratio of ferrite in the final metal structure was less than 30%. As a result, λ was reduced. In Comparative Example 19, it is considered that the total reduction rate in the rolling passes in the front stages of the finish rolling was low, so that recrystallization was suppressed in the front rolling passes, and the metal structure could not be refined. As a result, the desired metal structure was not obtained, and λ was reduced. In Comparative Example 20, it is considered that the total reduction rate in the rolling passes in the rear three stages of the finish rolling was high, so that recrystallization was promoted in the rear rolling passes, and dislocations could not be sufficiently introduced. As a result, the average aspect ratio of the prior austenite grains in the region including bainite and martensite was less than 3.0, and TS was reduced. In Comparative Example 21, it is considered that the coiling temperature was high, so that a relatively large amount of cementite was precipitated, and C in the steel was consumed in the formation of cementite. As a result, the formation of TiC precipitates was suppressed, and the number density of the TiC precipitates was less than 1.0 x 1016 /cm3, and the effect of improving the hardness of ferrite by precipitation strengthening and the effect of improving the strength of the hot-rolled steel sheet could not be sufficiently obtained, and TS, λ, and YR were reduced. In Comparative Example 22, the intermediate air-cooling temperature was high, so that ferrite was excessively generated, and further the TiC precipitates were coarsened, and in connection with this, the number density of the TiC precipitates was also reduced. As a result, TS, λ, and YR were reduced. In Comparative Example 23, it is considered that the end temperature of the finish rolling was high, so that recrystallization was promoted in the rolling passes in the latter three stages of the finish rolling, and dislocations could not be sufficiently introduced. As a result, the average aspect ratio of the prior austenite grains in the region including bainite and martensite was less than 3.0, and TS was reduced. In Comparative Example 24, the average cooling rate in the primary cooling to the intermediate air-cooling temperature was slow, so that ferrite was generated excessively, and the area ratio of ferrite in the final metal structure was more than 60%, resulting in a decrease in TS.
 比較例25は、中間空冷後の2次冷却における平均冷却速度が遅かったために、マルテンサイトの面積率が5%未満となり、TSが低下した。比較例26は、中間空冷温度が低かったために、TiC析出物の生成及び粒成長が抑制され、当該TiC析出物の所望の直径を得ることができなかった。その結果として、析出強化によるフェライトの硬度向上効果を十分に得ることができず、λ及びYRが低下した。比較例27は、中間空冷の時間が長かったために、フェライトが過度に生成してしまい、さらにTiC析出物が粗大化し、これに関連して当該TiC析出物の個数密度も低下した。その結果として、TS、λ及びYRが低下した。比較例28は、C含有量が高かったために、セメンタイトの形成に起因してλ及びYRが低下した。比較例29は、Ti含有量が低かったために、TiC析出物を十分な個数密度において析出させることができなかった。その結果として、TS、λ及びYRが低下した。比較例30は、Si含有量が低かったために、セメンタイトの析出を十分に抑制することができず、鋼中のCがセメンタイトの形成に消費されてしまったと考えられる。その結果として、TiC析出物の形成が抑制されて当該TiC析出物の個数密度が1.0×1016個/cm3未満となり、析出強化によるフェライトの硬度向上効果を十分に得ることができず、YRが低下した。比較例31は、Al含有量が低かったために、同様にセメンタイトの析出を十分に抑制することができず、鋼中のCがセメンタイトの形成に消費されてしまったと考えられる。その結果として、TiC析出物の形成が抑制されて当該TiC析出物の個数密度が1.0×1016個/cm3未満となり、析出強化によるフェライトの硬度向上効果、さらには熱間圧延鋼板の強度向上効果を十分に得ることができず、TS及びYRが低下した。 In Comparative Example 25, the average cooling rate in the secondary cooling after the intermediate air cooling was slow, so the area ratio of martensite was less than 5%, and TS was reduced. In Comparative Example 26, the intermediate air cooling temperature was low, so the generation and grain growth of TiC precipitates were suppressed, and the desired diameter of the TiC precipitates could not be obtained. As a result, the hardness improvement effect of ferrite due to precipitation strengthening could not be fully obtained, and λ and YR were reduced. In Comparative Example 27, the intermediate air cooling time was long, so ferrite was generated excessively, and further the TiC precipitates became coarse, and in connection with this, the number density of the TiC precipitates also decreased. As a result, TS, λ, and YR were reduced. In Comparative Example 28, the C content was high, so λ and YR were reduced due to the formation of cementite. In Comparative Example 29, the Ti content was low, so the TiC precipitates could not be precipitated at a sufficient number density. As a result, TS, λ, and YR were reduced. In Comparative Example 30, since the Si content was low, the precipitation of cementite could not be sufficiently suppressed, and it is considered that the C in the steel was consumed in the formation of cementite. As a result, the formation of TiC precipitates was suppressed, and the number density of the TiC precipitates was less than 1.0 × 10 16 / cm 3 , and the effect of improving the hardness of ferrite by precipitation strengthening could not be sufficiently obtained, and the YR was reduced. In Comparative Example 31, since the Al content was low, it is considered that the precipitation of cementite could not be sufficiently suppressed, and the C in the steel was consumed in the formation of cementite. As a result, the formation of TiC precipitates was suppressed, and the number density of the TiC precipitates was less than 1.0 × 10 16 / cm 3 , and the effect of improving the hardness of ferrite by precipitation strengthening and the effect of improving the strength of the hot-rolled steel sheet could not be sufficiently obtained, and the TS and YR were reduced.
 これとは対照的に、全ての発明例に係る熱間圧延鋼板において、所定の化学組成を有し、さらに製造方法における各条件を適切に制御することで、面積率で、フェライト:30~60%、ベイナイト:30~60%、及びマルテンサイト:5~20%を含み、フェライト中に直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度で存在し、ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比が3.0以上である金属組織を有する熱間圧延鋼板を得ることができた。また、その結果として、比較的高いベイナイト分率と、転位強化及びTiC析出物による析出強化とに起因して、引張強さが780MPa以上の高強度を達成しつつ、フェライトとベイナイトの硬度差を小さくして穴広げ性及び降伏比を高めることができた。また、ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比が0.75~1.20の範囲内に制御された発明例2~17に係る熱間圧延鋼板において、65.0%以上の穴広げ率及び0.75以上の降伏比を達成することができ、それゆえ当該熱間圧延鋼板の穴広げ性及び降伏比をさらに顕著に高めることができた。また、発明例において残部組織が存在する場合、当該残部組織はパーライト及び残留オーステナイトの少なくとも1種であった。 In contrast, in all the hot-rolled steel sheets according to the invention, a hot-rolled steel sheet having a predetermined chemical composition and appropriately controlling each condition in the manufacturing method, which contains ferrite: 30-60%, bainite: 30-60%, and martensite: 5-20% in terms of area ratio, TiC precipitates having a diameter of 2.0-8.0 nm are present in the ferrite at a number density of 1.0 x 1016 /cm3 or more, and the average aspect ratio of the prior austenite grains in the region containing bainite and martensite is 3.0 or more, was obtained. As a result, due to the relatively high bainite fraction, dislocation strengthening, and precipitation strengthening by TiC precipitates, it was possible to achieve a high strength of tensile strength of 780 MPa or more, while reducing the hardness difference between ferrite and bainite, and increasing the hole expandability and yield ratio. In addition, in the hot-rolled steel sheets according to Examples 2 to 17 in which the ratio of the average nanohardness of ferrite to the average nanohardness of bainite was controlled within the range of 0.75 to 1.20, a hole expansion ratio of 65.0% or more and a yield ratio of 0.75 or more could be achieved, and therefore the hole expandability and yield ratio of the hot-rolled steel sheets could be further significantly improved. In addition, when a residual structure was present in the examples, the residual structure was at least one of pearlite and retained austenite.

Claims (3)

  1.  質量%で、
     C:0.03~0.10%、
     Si:0.010~0.100%、
     Mn:0.50~3.00%、
     Ti:0.05~0.20%、
     Al:0.20~0.40%、
     P:0.100%以下、
     S:0.0100%以下、
     N:0.010%以下、
     O:0.010%以下、
     Nb:0~0.050%、
     V:0~1.000%、
     Cr:0~2.00%、
     Ni:0~2.00%、
     Cu:0~2.00%、
     Mo:0~1.000%、
     B:0~0.0100%、
     Sn:0~1.000%、
     Sb:0~1.000%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     Hf:0~0.0100%、
     Bi:0~0.010%、
     REM:0~0.0100%、
     As:0~0.010%、
     Zr:0~0.010%、
     Co:0~2.000%、
     Zn:0~0.010%、
     W:0~1.000%、並びに
     残部:Fe及び不純物からなる化学組成を有し、
     面積%で、
     フェライト:30~60%、
     ベイナイト:30~60%、及び
     マルテンサイト:5~20%を含み、
     フェライト中に直径2.0~8.0nmのTiC析出物が1.0×1016個/cm3以上の個数密度で存在し、
     ベイナイト及びマルテンサイトを含む領域の旧オーステナイト粒における平均アスペクト比が3.0以上である金属組織を有することを特徴とする、熱間圧延鋼板。
    In mass percent,
    C: 0.03 to 0.10%,
    Si: 0.010 to 0.100%,
    Mn: 0.50 to 3.00%,
    Ti: 0.05 to 0.20%,
    Al: 0.20 to 0.40%,
    P: 0.100% or less,
    S: 0.0100% or less,
    N: 0.010% or less,
    O: 0.010% or less,
    Nb: 0 to 0.050%,
    V: 0 to 1.000%,
    Cr: 0 to 2.00%,
    Ni: 0 to 2.00%,
    Cu: 0 to 2.00%,
    Mo: 0 to 1.000%,
    B: 0 to 0.0100%,
    Sn: 0 to 1.000%,
    Sb: 0 to 1.000%,
    Ca: 0 to 0.0100%,
    Mg: 0 to 0.0100%,
    Hf: 0 to 0.0100%,
    Bi: 0 to 0.010%,
    REM: 0 to 0.0100%,
    As: 0 to 0.010%,
    Zr: 0 to 0.010%,
    Co: 0 to 2.000%,
    Zn: 0 to 0.010%,
    W: 0 to 1.000%, and the balance: Fe and impurities;
    In terms of area percentage,
    Ferrite: 30-60%,
    Bainite: 30-60%; Martensite: 5-20%;
    TiC precipitates having a diameter of 2.0 to 8.0 nm are present in the ferrite at a density of 1.0 x 1016 particles/ cm3 or more,
    A hot-rolled steel sheet, characterized in that it has a metal structure in which prior austenite grains in a region containing bainite and martensite have an average aspect ratio of 3.0 or more.
  2.  前記化学組成が、質量%で、
     Nb:0.001~0.050%、
     V:0.001~1.000%、
     Cr:0.001~2.00%、
     Ni:0.001~2.00%、
     Cu:0.001~2.00%、
     Mo:0.001~1.000%、
     B:0.0001~0.0100%、
     Sn:0.001~1.000%、
     Sb:0.001~1.000%、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     Hf:0.0001~0.0100%、
     Bi:0.001~0.010%、
     REM:0.0001~0.0100%、
     As:0.001~0.010%、
     Zr:0.001~0.010%、
     Co:0.001~2.000%、
     Zn:0.001~0.010%、及び
     W:0.001~1.000%
    のうち少なくとも1種を含むことを特徴とする、請求項1に記載の熱間圧延鋼板。
    The chemical composition, in mass%,
    Nb: 0.001 to 0.050%,
    V: 0.001 to 1.000%,
    Cr: 0.001 to 2.00%,
    Ni: 0.001 to 2.00%,
    Cu: 0.001 to 2.00%,
    Mo: 0.001 to 1.000%,
    B: 0.0001 to 0.0100%,
    Sn: 0.001 to 1.000%,
    Sb: 0.001 to 1.000%,
    Ca: 0.0001 to 0.0100%,
    Mg: 0.0001 to 0.0100%,
    Hf: 0.0001 to 0.0100%,
    Bi: 0.001 to 0.010%,
    REM: 0.0001 to 0.0100%,
    As: 0.001 to 0.010%,
    Zr: 0.001 to 0.010%,
    Co: 0.001 to 2.000%,
    Zn: 0.001 to 0.010%, and W: 0.001 to 1.000%
    The hot-rolled steel sheet according to claim 1, characterized in that it contains at least one of the following:
  3.  ベイナイトの平均ナノ硬度に対するフェライトの平均ナノ硬度の比が0.75~1.20であることを特徴とする、請求項1又は2に記載の熱間圧延鋼板。 The hot-rolled steel sheet according to claim 1 or 2, characterized in that the ratio of the average nanohardness of ferrite to the average nanohardness of bainite is 0.75 to 1.20.
PCT/JP2023/024346 2022-11-02 2023-06-30 Hot-rolled steel sheet WO2024095533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022176607 2022-11-02
JP2022-176607 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095533A1 true WO2024095533A1 (en) 2024-05-10

Family

ID=90930120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024346 WO2024095533A1 (en) 2022-11-02 2023-06-30 Hot-rolled steel sheet

Country Status (1)

Country Link
WO (1) WO2024095533A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052321A (en) * 2009-08-06 2011-03-17 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent low temperature toughness and method for producing the same
WO2013024860A1 (en) * 2011-08-17 2013-02-21 株式会社神戸製鋼所 High-strength hot-rolled steel plate
WO2018179388A1 (en) * 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
WO2021210644A1 (en) * 2020-04-17 2021-10-21 日本製鉄株式会社 High-strength hot-rolled steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052321A (en) * 2009-08-06 2011-03-17 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent low temperature toughness and method for producing the same
WO2013024860A1 (en) * 2011-08-17 2013-02-21 株式会社神戸製鋼所 High-strength hot-rolled steel plate
WO2018179388A1 (en) * 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
WO2021210644A1 (en) * 2020-04-17 2021-10-21 日本製鉄株式会社 High-strength hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
TWI453286B (en) Hot rolled steel sheet and manufacturing method thereof
KR101536845B1 (en) Hot-rolled steel sheet and production method therefor
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
WO2021149676A1 (en) Steel sheet and method for producing same
JP5720612B2 (en) High strength hot rolled steel sheet excellent in formability and low temperature toughness and method for producing the same
TW202039881A (en) Steel sheet, manufacturing method thereof, and formed product
CN112088225B (en) Hot-rolled steel sheet and method for producing same
JP2017186634A (en) Hot rolled steel sheet and manufacturing method therefor
KR20240042470A (en) hot rolled steel plate
EP4265771A1 (en) High strength steel sheet having excellent workability and method for manufacturing same
EP4265764A1 (en) High strength steel sheet having excellent workability, and method for manufacturing same
CN114829654B (en) Hot rolled steel sheet
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
WO2020179387A1 (en) Hot rolled steel sheet and production method thereof
US11186900B2 (en) High-strength cold rolled steel sheet and method for manufacturing the same
TWI635187B (en) Hot rolled steel sheet and steel forged parts and manufacturing method thereof
CN112840057A (en) Hot rolled steel plate
CN114599813B (en) Hot rolled steel plate
EP4265765A1 (en) High strength steel sheet having excellent workability and method for manufacturing same
WO2024095533A1 (en) Hot-rolled steel sheet
JP7397380B2 (en) Steel plates for hot stamping and hot stamping molded bodies
JP7397381B2 (en) Steel plates for hot stamping and hot stamping molded bodies
WO2024095534A1 (en) Hot-rolled steel plate
JP6668662B2 (en) Steel sheet excellent in fatigue characteristics and formability and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885306

Country of ref document: EP

Kind code of ref document: A1