WO2024095449A1 - Gallium nitride single crystal substrate and method for producing same - Google Patents

Gallium nitride single crystal substrate and method for producing same Download PDF

Info

Publication number
WO2024095449A1
WO2024095449A1 PCT/JP2022/041170 JP2022041170W WO2024095449A1 WO 2024095449 A1 WO2024095449 A1 WO 2024095449A1 JP 2022041170 W JP2022041170 W JP 2022041170W WO 2024095449 A1 WO2024095449 A1 WO 2024095449A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
dislocation density
gallium nitride
crystal substrate
layer
Prior art date
Application number
PCT/JP2022/041170
Other languages
French (fr)
Japanese (ja)
Inventor
俊佑 西野
拓司 岡久
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2022/041170 priority Critical patent/WO2024095449A1/en
Publication of WO2024095449A1 publication Critical patent/WO2024095449A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Definitions

  • This disclosure relates to a gallium nitride single crystal substrate and a method for manufacturing the same.
  • Patent Document 1 JP Patent Publication No. 2006-052102 (Patent Document 1) and JP Patent Publication No. 2007-519591 (Patent Document 2) disclose a method for manufacturing a gallium nitride single crystal substrate (hereinafter also referred to as "GaN single crystal substrate") having the following surface.
  • a mask with a predetermined opening is first placed on a base substrate, and a gallium nitride single crystal (hereinafter also referred to as "GaN single crystal") having irregularities including pits that are triangular cross-sectional depressions on the surface is grown from the opening.
  • GaN single crystal is grown under conditions that flatten the irregularities.
  • the GaN single crystal is processed to manufacture a GaN single crystal substrate.
  • JP 2021-031329 A discloses a c-plane GaN single crystal substrate that achieves low dislocation density by using a manufacturing method similar to those described in Patent Documents 1 and 2 above.
  • a gallium nitride single crystal substrate according to the present disclosure is a gallium nitride single crystal substrate having a circular main surface, the main surface having a first dislocation density and two or more second dislocation densities, the average value of the second dislocation density being 5.0 ⁇ 10 6 cm ⁇ 2 or less, the standard deviation and the average value of the second dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.40, the standard deviation being in cm ⁇ 2 , and the first dislocation density being determined by measuring the number of dislocations in nine first measurement regions on the main surface, the first measurement regions being squares each having a side of 100 ⁇ m, and calculating the sum of the number of dislocations per cm of the dislocations.
  • the second dislocation density is obtained by converting the number of dislocations per square meter into the number of dislocations per square meter, the second dislocation density being obtained by obtaining a reference area represented by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares each having a side length of 2 mm are laid out in parallel as many times as possible without overlapping each other, and measuring the number of dislocations in second measurement regions each having an area that is 30% of the reference area and set in the center of each of the squares constituting the lattice, and measuring the number of dislocations in each of the second measurement regions.
  • the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
  • the method for manufacturing a gallium nitride single crystal substrate according to the present disclosure is a method for manufacturing a gallium nitride single crystal substrate having a circular main surface, and includes the steps of: preparing a base substrate including a growth substrate and a gallium nitride film to be disposed on the growth substrate; disposing a mask having a structure in which shielding portions and openings are repeated in the width direction on the base substrate; growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by a hydride vapor phase epitaxy method; and growing a second layer made of the gallium nitride single crystal having a ⁇ 0001 ⁇ growth surface on the first layer.
  • the thickness of the mask being 0.2 ⁇ m or less
  • the width of one pitch of the mask which is composed of the width of the shielding portion and the width of the opening, being 10 ⁇ m or less
  • the percentage of the width of the opening relative to the width of one pitch of the mask being 10% or more and 50% or less
  • the thickness of the first layer being 20 ⁇ m or less.
  • FIG. 1 is a schematic diagram illustrating the distribution of dislocations in a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 2 is a schematic diagram illustrating the distribution of dislocations in a conventional gallium nitride single crystal substrate.
  • FIG. 3 is an explanatory diagram illustrating nine first measurement regions on a main surface set to determine a reference area in a gallium nitride single crystal substrate according to this embodiment, and the coordinates (X, Y) of their center points.
  • FIG. 1 is a schematic diagram illustrating the distribution of dislocations in a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 2 is a schematic diagram illustrating the distribution of dislocations in a conventional gallium nitride single crystal substrate.
  • FIG. 3 is an explanatory diagram illustrating nine first measurement regions on a main surface set to determine a reference area in a gallium nitride single crystal substrate according to this embodiment, and the coordinates (X, Y
  • FIG. 4 is an explanatory diagram illustrating a virtual lattice in which squares, each 2 mm on a side, are arranged in parallel on the main surface so as to maximize the number of squares without overlapping each other, in order to determine the second dislocation density in the gallium nitride single crystal substrate according to this embodiment, and a second measurement region.
  • FIG. 5 is a flow chart showing an example of a method for manufacturing a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 6 is a schematic diagram illustrating the structure of a mask used to obtain a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 7 is a schematic cross-sectional view illustrating the state in which the mask of FIG. 6 is disposed on the base substrate.
  • FIG. 8 is a schematic cross-sectional view illustrating a state in which a first layer (single crystal GaN) is formed on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 9 is a schematic cross-sectional view illustrating a structure in which a base substrate, a first layer, and a second layer are laminated in this order in the method for producing a gallium nitride single crystal substrate according to this embodiment.
  • Patent Documents 1 and 2 it is difficult to say that the GaN single crystal substrate is obtained after growing a GaN single crystal with a thickness necessary for uniform dispersion of dislocations. Therefore, it is considered that the dislocation density distribution on the surface of the GaN single crystal substrates of Patent Documents 1 and 2 is substantially uneven and non-uniform.
  • the above substrates have relatively high dislocation regions periodically generated on their surfaces, it is understood that the "substantially uniform dislocation density distribution" is mentioned by arbitrarily setting the unit area used to measure the dislocation density.
  • the GaN single crystal substrate of Patent Document 3 is manufactured by a method similar to that of the GaN single crystal substrates of Patent Documents 1 and 2, and is therefore considered to have the same inherent problems.
  • the present disclosure aims to provide a gallium nitride single crystal substrate that has a uniform in-plane dislocation density distribution and can stably improve device characteristics, and a method for manufacturing the same.
  • the present inventors have made extensive studies to solve the above problems, and have completed the present disclosure.
  • the present inventors have focused on the structure of a mask used for epitaxially growing a GaN single crystal, and on growing the GaN single crystal under specific growth conditions during the epitaxial growth.
  • the inventors have come up with the idea of narrowing the width of one pitch consisting of the width of the shielding portion and the width of the opening (specifically, the width of one pitch is set to 10 ⁇ m or less), and setting the percentage of the width of the opening to 10 to 50%.
  • the conditions for growing a GaN single crystal (first layer) on whose surface the pits are formed using a mask having the above structure were controlled so that the thickness of the first layer was thin, specifically, so that the thickness was 20 ⁇ m or less.
  • This makes it possible to uniformly generate pits on the growth surface of the first layer and to control the degree to which dislocations are concentrated in the pits, thereby completing a gallium nitride single crystal substrate according to the present disclosure having a uniform in-plane dislocation density distribution.
  • a gallium nitride single crystal substrate is a gallium nitride single crystal substrate having a circular main surface, the main surface having a first dislocation density and two or more second dislocation densities, the average value of the second dislocation density being 5.0 ⁇ 10 6 cm -2 or less, the standard deviation and the average value of the second dislocation density satisfy a relationship of standard deviation/average value ⁇ 0.40, the standard deviation being in cm -2 , and the first dislocation density being determined by measuring the number of dislocations in nine first measurement regions on the main surface, the first measurement region being a square with one side measuring 100 ⁇ m, and calculating the sum of the number of dislocations per cm of the dislocations.
  • the second dislocation density is obtained by converting the number of dislocations per square meter into the number of dislocations per square meter, the second dislocation density being obtained by obtaining a reference area represented by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares each having a side length of 2 mm are laid out in parallel as many times as possible without overlapping each other, and measuring the number of dislocations in second measurement regions each having an area that is 30% of the reference area and set in the center of each of the squares constituting the lattice, and measuring the number of dislocations in each of the second measurement regions.
  • the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
  • Gallium nitride single crystal substrates with these characteristics have a uniform in-plane dislocation density distribution, which allows for stable improvement of device characteristics.
  • the diameter of the gallium nitride single crystal substrate is preferably 50 mm or more and 155 mm or less. This allows the gallium nitride single crystal substrate with a diameter of 50 mm or more and 155 mm or less to have a uniform in-plane dislocation density distribution, thereby providing the effect of stably improving device characteristics.
  • the gallium nitride single crystal substrate preferably contains impurity atoms, the impurity atoms being either or both of silicon and germanium, and the concentration of the impurity atoms is 1.0 ⁇ 10 18 cm -3 or more and 5.0 ⁇ 10 18 cm -3 or less. This makes it possible to provide an effect of stably improving device characteristics by providing a uniform in-plane dislocation density distribution in an n-type (electron donor type) gallium nitride single crystal substrate containing either or both of silicon and germanium.
  • the main surface has two or more third dislocation densities, the standard deviation and average value of the third dislocation densities satisfy the relationship of standard deviation/average value ⁇ 0.35, and the third dislocation density is determined by measuring the number of dislocations in third measurement regions each having an area of 50% of the reference area set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the third measurement regions.
  • the main surface has a fourth dislocation density of 2 or more, the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.53, and the fourth dislocation density is determined by measuring the number of dislocations in fourth measurement regions having an area of 10% of the reference area set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the fourth measurement regions.
  • a method for manufacturing a gallium nitride single crystal substrate is a method for manufacturing a gallium nitride single crystal substrate having a circular main surface, comprising the steps of: preparing a base substrate including a growth substrate and a gallium nitride film to be disposed on the growth substrate; disposing a mask having a structure in which shielding portions and openings are repeated in the width direction on the base substrate; growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by a hydride vapor phase epitaxy method; and growing a first layer made of the gallium nitride single crystal having a facet structure on the first layer, the first layer being made of the gallium nitride single crystal whose growth surface is a ⁇ 0001 ⁇ plane.
  • the method includes a step of growing a second layer on the mask to obtain a structure including the base substrate, the first layer, and the second layer in this order, and a step of removing the base substrate and the first layer from the structure and processing the second layer to obtain the gallium nitride single crystal substrate, in which the thickness of the mask is 0.2 ⁇ m or less, the width of one pitch of the mask consisting of the width of the shielding portion and the width of the opening is 10 ⁇ m or less, the percentage of the width of the opening relative to the width of one pitch of the mask is 10% to 50%, and the thickness of the first layer is 20 ⁇ m or less.
  • a manufacturing method having such characteristics can obtain a gallium nitride single crystal substrate having a uniform in-plane dislocation density distribution and capable of stably improving device characteristics.
  • the length direction of the mask is preferably parallel to the ⁇ 11-20> or ⁇ 1-100> direction of the gallium nitride single crystal that constitutes the gallium nitride film on the base substrate. This makes it possible to obtain a gallium nitride single crystal substrate with a more uniform in-plane dislocation density distribution, enabling more stable improvement of device characteristics.
  • the thickness of the second layer is preferably 1000 ⁇ m or less. This makes it possible to obtain a gallium nitride single crystal substrate from a GaN single crystal having a relatively thin second layer, which has a uniform in-plane dislocation density distribution and can stably improve device characteristics.
  • A-B refers to the upper and lower limits of a range (i.e., greater than or equal to A and less than or equal to B). If no unit is stated for A, and only B, the units of A and B are the same. Furthermore, when compounds are expressed in chemical formulas in this specification, if the atomic ratio is not specifically limited, this includes all conventionally known atomic ratios and should not necessarily be limited to only those within the stoichiometric range.
  • the "main surface" of a gallium nitride single crystal substrate means both of the two circular faces of the GaN single crystal substrate.
  • the “face” used in the term “in-plane” means the "main surface.”
  • the diameter of a gallium nitride single crystal substrate is described as "50 mm,” this means that the diameter is approximately 50 mm (approximately 50 to 55.5 mm), or that it is 2 inches.
  • the diameter is described as “100 mm,” this means that the diameter is approximately 100 mm (approximately 95 to 105 mm), or that it is 4 inches.
  • the diameter is described as “150 mm,” this means that the diameter is approximately 150 mm (approximately 145 to 155 mm), or that it is 6 inches.
  • the diameter can be measured using a conventionally known outer diameter measuring device such as a caliper.
  • dislocation and dislocation density refer to “threading dislocations” identified by applying a multiphoton excitation photoluminescence method to the main surface, and “the number of threading dislocations per 1 cm2 of the main surface,” respectively.
  • the above-mentioned “threading dislocations” are known to be non-radiative recombination centers in gallium nitride single crystals, and appear as dark spots when the main surface of a GaN single crystal substrate is observed using a multiphoton excitation microscope or the like.
  • the above-mentioned “threading dislocations” are not academically synonymous with crystal defects, but can be regarded as equivalent to crystal defects in this technical field.
  • a "pit” refers to an inverted hexagonal pyramid or inverted dodecagonal pyramid shaped depression that is formed by being surrounded by flat growth surfaces ((0001) surfaces) when a GaN single crystal is grown by hydride vapor phase epitaxy using the (0001) surface as the growth surface.
  • a "facet structure” refers to a surface structure that includes the growth surface ((0001) surface) of the GaN single crystal and the slope of the pit, called a facet surface, when a GaN single crystal is grown by hydride vapor phase epitaxy using the (0001) surface as the growth surface.
  • the gallium nitride single crystal substrate (GaN single crystal substrate) according to this embodiment is a GaN single crystal substrate having a circular main surface.
  • the main surface has a first dislocation density and a second dislocation density of 2 or more.
  • the average value of the second dislocation density is 5.0 ⁇ 10 6 cm ⁇ 2 or less.
  • the standard deviation and the average value of the second dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.40, and the unit of the standard deviation is cm ⁇ 2 .
  • the first dislocation density is obtained by measuring the number of dislocations in nine first measurement regions on the main surface, each of which is a square with one side of 100 ⁇ m, and converting the sum of the number of dislocations into the number of dislocations per cm 2 .
  • the second dislocation density is determined by obtaining a reference area expressed as a value obtained by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares, each having a side length of 2 mm, are laid out in parallel as many times as possible without overlapping each other, measuring the number of dislocations in second measurement regions having an area of 30% of the reference area set in the centers of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the second measurement regions.
  • the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
  • the main surface has two or more third dislocation densities, and the standard deviation and average value of the third dislocation densities satisfy the relationship of standard deviation/average value ⁇ 0.35.
  • the third dislocation density is determined by measuring the number of dislocations in third measurement regions having an area of 50% of the reference area set in the centers of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the third measurement regions.
  • the main surface has a fourth dislocation density of 2 or more, and the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.53.
  • the fourth dislocation density is determined by measuring the number of dislocations in fourth measurement regions having an area of 10% of the reference area set in the centers of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the fourth measurement regions.
  • a GaN single crystal substrate with these characteristics has a uniform in-plane dislocation density distribution, making it possible to stably improve device characteristics. For example, when a light-emitting device is constructed by stacking a light-emitting layer on the GaN single crystal substrate, the variation in the light-emitting intensity of the light-emitting device can be suppressed.
  • the reason why the GaN single crystal substrate according to this embodiment provides the above-mentioned effects is presumably based on the following characteristics of the GaN single crystal that constitutes the GaN single crystal substrate.
  • the GaN single crystal substrate 1 is a schematic diagram illustrating the distribution of dislocations in the gallium nitride single crystal substrate according to this embodiment.
  • the GaN single crystal substrate 1 according to this embodiment has a uniform distribution of dislocations t on the main surface 11. The reason for this is presumably because the GaN single crystal constituting the GaN single crystal substrate 1 is epitaxially grown in the order of the first layer and the second layer on the base substrate based on the method described in the section [Method of manufacturing a gallium nitride single crystal substrate] below. In this epitaxial growth, the first layer is first formed on a mask arranged on the base substrate.
  • the mask has a structure in which a shielding portion and an opening are repeated in the width direction, and is characterized in that the width of one pitch consisting of the width of the shielding portion and the width of the opening is narrow (specifically, the width of one pitch is 10 ⁇ m or less).
  • the first layer can promote the generation of regular pits on the growth surface of the GaN single crystal, thereby contributing to the uniform distribution of dislocations t on the main surface 11.
  • the mask has a small percentage of the width of the opening relative to the width of one pitch, at 10-50%. This suppresses the amount of dislocations propagating from the base substrate to the first layer.
  • the thickness of the mask is 0.2 ⁇ m or less, the number of new dislocations that are generated during the growth of the first layer can also be suppressed.
  • the growth conditions are changed when the thickness of the first layer is thin (specifically, 20 ⁇ m or less), so that a second layer with a flat growth surface is formed on the first layer.
  • This allows the second layer to be grown on the first layer before dislocations are concentrated in the pits more than necessary.
  • dislocations can be dispersed in a direction perpendicular to the direction of crystal growth, thereby contributing to a uniform distribution of dislocations t on the main surface 11.
  • the GaN single crystal substrate 1 In the GaN single crystal constituting the GaN single crystal substrate 1, the amount of dislocations propagating from the base substrate to the first layer is suppressed as described above, and the number of dislocations newly generated during the growth of the first layer is also suppressed, so there is no need to concentrate dislocations more than necessary in the pits and annihilate them for the purpose of reducing dislocations. From the above, it is considered that the GaN single crystal substrate 1 according to this embodiment has a uniform in-plane dislocation density distribution based on the characteristics of the GaN single crystal described above.
  • FIG. 2 is a schematic diagram explaining the distribution of dislocations in a conventional gallium nitride single crystal substrate.
  • the GaN single crystal constituting the conventional GaN single crystal substrate 101 in the above-mentioned Patent Documents 1 and 2, etc. is epitaxially grown in the order of a first layer and a second layer on a base substrate, like that constituting the GaN single crystal substrate 1 according to this embodiment, but first, the structure of the mask used for the epitaxial growth is different.
  • the first layer and the second layer made of GaN single crystal are epitaxially grown without placing a mask on the base substrate. For this reason, the GaN single crystal that constitutes the conventional GaN single crystal substrate 101 randomly develops pits during the growth process, and the amount of dislocations that propagate from the base substrate to the first layer can be significant.
  • the conventional GaN single crystal substrate 101 Secondly, in the conventional GaN single crystal substrate 101, dislocations are concentrated in the pits formed on the surface of the first layer and annihilated, and then the remaining dislocations are dispersed in the growth of the second layer, so that regions with relatively high dislocation density are periodically generated. As a result, it is estimated that the conventional GaN single crystal substrate 101 has a distribution of dislocations t as shown in FIG. 2. In this case, even if the average value of the second dislocation density is 5.0 ⁇ 10 6 cm ⁇ 2 or less, the main surface 11 of the conventional GaN single crystal substrate 101 cannot satisfy the relationship of standard deviation/average value ⁇ 0.40 for the standard deviation and average value of the second dislocation density.
  • the GaN single crystal substrate according to this embodiment will be described in detail below.
  • the term second dislocation density is defined as a density obtained by a calculation method described later.
  • the diameter of the GaN single crystal substrate is preferably 50 mm or more and 155 mm or less. In other words, the diameter of the GaN single crystal substrate is preferably 2 inches or more and 6 inches or less.
  • the main surface is considered to have a circular shape before the OF, IF, etc. are formed, and the size (diameter) of the main surface is determined.
  • the GaN single crystal substrate according to this embodiment has a circular main surface as described above.
  • the term "circular shape” representing the shape of the main surface includes a geometric circular shape, as well as a shape in which the main surface does not form a geometric circular shape by forming at least one of a notch, an orientation flat (hereinafter also referred to as "OF”), or an index flat (hereinafter also referred to as "IF”) on the periphery of the main surface.
  • shape in which the main surface does not form a geometric circular shape refers to a shape in which, among the line segments extending from any point on the periphery of the main surface to the center of the main surface, the line segments extending from any point on the notch, OF, and IF to the center of the main surface have shorter lengths.
  • shape in which the main surface does not form a geometric circular shape also includes a shape in which the lengths of all the line segments extending from any point on the periphery of the main surface to the center of the main surface are not necessarily the same due to the shape of the gallium nitride single crystal (hereinafter also referred to as "GaN single crystal”) that is the raw material of the GaN single crystal substrate.
  • GaN single crystal gallium nitride single crystal
  • the center of the main surface refers to the position of the center of gravity
  • the diameter of the GaN single crystal substrate refers to the length of the longest line segment that extends from any point on the outer periphery of the GaN single crystal substrate, passing through the center of the main surface, to another point on the outer periphery.
  • the main surface has a first dislocation density and a second dislocation density of 2 or more.
  • the average value of the second dislocation density is 5.0 ⁇ 10 6 cm ⁇ 2 or less.
  • the standard deviation and the average value of the second dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.40.
  • the unit of the standard deviation is cm ⁇ 2 .
  • the main surface has a third dislocation density of 2 or more, and the standard deviation and average value of the third dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.35.
  • the main surface has a fourth dislocation density of 2 or more, and the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.53.
  • the standard deviation and average value of the second dislocation density satisfying the relationship of standard deviation/average value ⁇ 0.40 means that the in-plane dislocation density distribution is uniform.
  • the standard deviation and average value of the third dislocation density satisfying the relationship of standard deviation/average value ⁇ 0.35 and the standard deviation and average value of the fourth dislocation density satisfying the relationship of standard deviation/average value ⁇ 0.53 are preferable because they mean that the in-plane dislocation density distribution is more uniform in the above GaN single crystal substrate.
  • the standard deviation/average value of the second dislocation density, the third dislocation density, and the fourth dislocation density are indices that the present inventors have found in order to appropriately evaluate the uniformity of the in-plane dislocation density distribution.
  • the first dislocation density is necessary to determine the reference area used to calculate the above second dislocation density, third dislocation density, and fourth dislocation density.
  • the inventors have noticed that if the in-plane dislocation density distribution is uniform in a GaN single crystal substrate, the coefficient of variation of the dislocation density is consistently low, regardless of the size of the unit area used to calculate the dislocation density. In other words, if the in-plane dislocation density distribution is uniform in a GaN single crystal substrate, the coefficient of variation of one dislocation density calculated based on one unit area is comparable to the coefficient of variation of another dislocation density calculated based on another unit area, and both are low.
  • the inventors first set an area on the main surface where 100 dislocations exist as a reference area for calculating the dislocation density (hereinafter also referred to as the "reference area"), and calculated the dislocation density in a unit area smaller than the reference area (for example, an area that is 50%, 30%, or 10% of the reference area), and calculated the above-mentioned coefficient of variation from the average value and standard deviation.
  • a reference area for calculating the dislocation density
  • the dislocation density (corresponding to the second dislocation density) of the GaN single crystal substrate according to this embodiment is calculated using an area that is 30% of the reference area as a unit area, if the coefficient of variation is 0.40 or less, the in-plane dislocation density distribution is uniform and the device characteristics can be stably improved.
  • the coefficient of variation is preferably 0.35 or less
  • the dislocation density (corresponding to the fourth dislocation density) of the GaN single crystal substrate is calculated using an area that is 10% of the reference area as a unit area
  • the coefficient of variation is preferably 0.53 or less.
  • FIG. 3 is an explanatory diagram illustrating nine first measurement regions on the main surface set to determine the reference area in the gallium nitride single crystal substrate according to this embodiment, and the coordinates (X, Y) of their center points.
  • FIG. 4 is an explanatory diagram illustrating a virtual lattice in which squares with sides of 2 mm are laid out on the main surface in such a way that the greatest number of squares are arranged in parallel without overlapping each other, and the second measurement regions, in order to determine the second dislocation density in the gallium nitride single crystal substrate according to this embodiment.
  • the second dislocation density can be determined as follows, with reference to FIGS. 3 and 4.
  • the first measurement area A1 is a square area with one side of 100 ⁇ m. If the diameter of the GaN single crystal substrate 1 is represented by D, and the two axes on the main surface 11 that pass through the center of the main surface and are perpendicular to each other at the center are the X-axis and the Y-axis, the coordinates (X, Y) of the X-axis and the Y-axis of the center point C of the first measurement area A1 are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0), and (0, -(D/2-10)). The units of D and X and Y in the coordinates (X, Y
  • the number of dislocations can be obtained by the following method.
  • a multiphoton excitation photoluminescence method is applied to the main surface 11 of the GaN single crystal substrate, and the above-mentioned first measurement area A1 set on the main surface 11 is observed using a multiphoton excitation microscope.
  • the above observation can be performed, for example, by forming an image on a CCD with a 5x objective lens.
  • the image (one field of view) displayed on an external monitor connected to this microscope corresponds to a 2.5 mm x 2.0 mm range including the first measurement area A1 on the main surface 11 of the GaN single crystal substrate 1.
  • the number of dark spots that appear in an image obtained by electronically enlarging the central part of the image (a size of 0.1 mm x 0.1 mm that can be considered to be the first measurement area A1), that is, the number of dislocations, is counted.
  • a high-magnification image can be obtained by setting the magnification of the objective lens to 10 to 100 times, and further combining electronic magnification to count the number of dark spots in the central part of the high-magnification image (a size of 0.1 mm x 0.1 mm that can be considered as the first measurement area A1).
  • the total number of dark spots measured in the nine first measurement areas A1 is calculated, and this is converted into the number of dislocations per cm2 to obtain the first dislocation density.
  • the above-mentioned reference area can be calculated by dividing 100 by the first dislocation density.
  • the unit of the reference area can be, for example, ⁇ m2 .
  • a virtual lattice G is formed on the main surface 11 in which squares with sides of 2 mm are laid out in the greatest number of parallel rows without overlapping each other.
  • squares laid out in the greatest number of parallel rows without overlapping each other on the main surface 11 means that when the squares are laid out in the greatest number of parallel rows without overlapping each other on the main surface 11, if the squares overlap with the periphery of the main surface 11 and its outside, the squares are excluded from being elements that make up the virtual lattice G. This is because the number of dislocations varies greatly from substrate to substrate in the region near the periphery, including the periphery of the main surface 11 of the GaN single crystal substrate 1, and is generally not used as a material for semiconductor devices.
  • a second measurement area A2 is set in the center of each of the squares constituting the lattice G.
  • the second measurement area A2 has an area of 30% of the reference area.
  • the second measurement area A2 is observed using the multiphoton excitation microscope described above.
  • the magnification of the objective lens is appropriately selected so that at least the size of the second measurement area A2 is included in an image (one field of view) displayed on an external monitor connected to this microscope.
  • the number of dark spots, i.e., dislocations that appear in the second measurement area A2 observed using the multiphoton excitation microscope are counted, and the number of dark spots is converted into the number of dislocations per cm2 to calculate the second dislocation density.
  • the size of the second measurement area A2 which is 30% of the reference area, is 0.05 mm x 0.05 mm.
  • a high-magnification image size of 0.125 mm x 0.1 mm
  • the number of dark spots in the central part size of 0.05 mm x 0.05 mm
  • the number of dark spots is converted into the number of dislocations per cm2 , whereby the second dislocation density can be calculated.
  • the above-mentioned observation is performed every time the GaN single crystal substrate 1 is moved at a pitch of 2 mm in the vertical and horizontal directions, thereby calculating the second dislocation density for all the second measurement areas A2 set in the virtual lattice G on the main surface 11. Finally, the average value and standard deviation of the second dislocation density are calculated from the second dislocation density calculated for each of the second measurement areas A2, and thus the fluctuation rate can also be calculated.
  • the third dislocation density and the fourth dislocation density can be calculated in the same manner as the second dislocation density calculation method, except that the areas of the third measurement region and the fourth region, which are set in the center of the squares that make up the virtual lattice G, are 50% and 10% of the reference area, respectively. Furthermore, the average value, standard deviation and coefficient of variation of the third dislocation density can be calculated from the third dislocation density and the fourth dislocation density calculated for each third measurement region and each fourth measurement region, and the average value, standard deviation and coefficient of variation of the fourth dislocation density can be calculated.
  • the average value of the second dislocation density is 5.0 ⁇ 10 6 cm ⁇ 2 or less.
  • the average value of the second dislocation density is preferably 3.5 ⁇ 10 6 cm ⁇ 2 or less.
  • the lower limit of the average value of the second dislocation density is ideally 0 cm ⁇ 2 , but it is realistic to set it to at least 1.0 ⁇ 10 3 cm ⁇ 2 or more from the physical properties of the GaN single crystal.
  • the average value of the third dislocation density and the average value of the fourth dislocation density can be approximately the same as the average value of the second dislocation density, taking into account the effects of the present disclosure.
  • the average values of the third dislocation density and the fourth dislocation density are preferably 5.0 ⁇ 10 6 cm ⁇ 2 or less, and more preferably 3.5 ⁇ 10 6 cm ⁇ 2 or less. This makes it possible to provide a GaN single crystal substrate with reduced dislocation density.
  • the standard deviation and average value of the second dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.40 (i.e., the coefficient of variation is 0.40 or less). It is more preferable that the standard deviation and average value of the third dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.34 (i.e., the coefficient of variation is 0.34 or less), and that the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value ⁇ 0.50 (i.e., the coefficient of variation is 0.50 or less).
  • the lower limit of the coefficient of variation of the above second dislocation density, third dislocation density, and fourth dislocation density is ideally 0, but it is realistic that it is at least 0.10 or more due to the physical properties of GaN single crystal.
  • the GaN single crystal substrate preferably contains impurity atoms.
  • the impurity atoms are both or either of silicon (Si) and germanium (Ge), and the concentration of the impurity atoms is 1.0 ⁇ 10 18 cm ⁇ 3 or more and 5.0 ⁇ 10 18 cm ⁇ 3 or less.
  • This can provide an effect of stably improving device characteristics in an n-type (electron-donating) GaN single crystal substrate containing both or either of Si and Ge.
  • impurity atoms in the above-mentioned concentration range, it is possible to provide a GaN single crystal substrate suitable for device formation, for example, because it is easy to form an n-type electrode.
  • the atomic concentration of the impurity atoms can be measured by using GDMS (glow discharge mass spectrometry). Furthermore, the carrier concentration of the GaN single crystal substrate can be calculated based on the measured value of the resistivity of the GaN single crystal substrate obtained by the Van der Pauw method.
  • the GaN single crystal substrate can be made into an n-type GaN single crystal substrate with a high carrier concentration by introducing a gas containing the above-mentioned impurity atoms during epitaxial growth of the GaN single crystal constituting the substrate.
  • the gas containing the impurity atoms can be tetrachlorosilane ( SiCl4 ) gas, dichlorosilane ( SiH2Cl2 ) gas, or silane ( SiH4 ) gas.
  • the gas can be tetrachlorogermane ( GeCl4 ) gas, dichlorogermane ( GeH2Cl2 ) gas, or germane ( GeH4 ) gas.
  • the manufacturing method of the gallium nitride single crystal substrate (GaN single crystal substrate) according to this embodiment is preferably a manufacturing method of the GaN single crystal substrate having the circular main surface described above, and may include, for example, the following steps.
  • the manufacturing method of the GaN single crystal substrate includes the steps of preparing a base substrate including a growth substrate and a gallium nitride film disposed on the growth substrate, disposing a mask having a structure in which a shielding portion and an opening portion are repeated in the width direction on the base substrate, growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy, growing a second layer made of the gallium nitride single crystal having a ⁇ 0001 ⁇ plane on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order, and removing the base substrate and the first layer from the structure and processing the second layer to obtain the GaN single crystal substrate.
  • the thickness of the mask is 0.2 ⁇ m or less.
  • the width of one pitch formed by the width of the shielding portion of the mask and the width of the opening is 10 ⁇ m or less.
  • the percentage of the width of the opening to the width of one pitch of the mask is 10% to 50%.
  • the thickness of the first layer is 20 ⁇ m or less.
  • the method for producing the GaN single crystal substrate preferably has the steps shown in the flowchart of FIG. 5, for example.
  • FIG. 5 is a flowchart showing an example of a method for producing a gallium nitride single crystal substrate according to this embodiment.
  • the method for producing the GaN single crystal substrate includes the steps of: preparing a base substrate S10 (first step: base substrate preparation step) including a growth substrate and a gallium nitride film (hereinafter also referred to as "GaN film") to be placed on the growth substrate; arranging a mask having a structure in which shielding portions and openings are repeated in the width direction on the base substrate S20 (second step: mask placement step); and growing a first layer of gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy (hereinafter also referred to as "HVPE method").
  • first step base substrate preparation step
  • GaN film gallium nitride film
  • second step mask placement step
  • HVPE method hydride vapor phase epitaxy
  • the method includes a step S30 of growing a layer (third step: step of growing the first layer), a step S40 of growing a second layer made of the gallium nitride single crystal having a ⁇ 0001 ⁇ growth surface on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order (fourth step: step of obtaining a structure), and a step S50 of removing the base substrate and the first layer from the structure and processing the second layer to obtain the GaN single crystal substrate (fifth step: step of obtaining a GaN single crystal substrate).
  • step S30 of growing a layer third step: step of growing the first layer
  • a step S40 of growing a second layer made of the gallium nitride single crystal having a ⁇ 0001 ⁇ growth surface on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order fourth step: step of obtaining a structure
  • the first step is a step S10 of preparing a base substrate including a growth substrate and a GaN film disposed on the growth substrate.
  • the purpose of this step is to prepare a base substrate necessary for growing a GaN single crystal constituting a GaN single crystal substrate that can obtain the effects of the present disclosure by disposing the GaN film on the growth substrate.
  • the material of the growth substrate is not particularly limited as long as it is a substrate on which a GaN film can be grown.
  • a heterogeneous substrate using a material (heterogeneous material) different from GaN can be prepared as the growth substrate, and a homogeneous substrate using GaN (homogeneous material) can also be prepared.
  • a material (heterogeneous material) different from GaN such as a sapphire substrate or a gallium arsenide (GaAs) substrate
  • GaN gallium arsenide
  • an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, a zirconium boride (ZrB 2 ) substrate, a silicon oxide/aluminum oxide (SiO 2 /Al 2 O 3 ) sintered body substrate, a molybdenum (Mo) substrate, etc. can also be applied as the growth substrate.
  • These growth substrates can be commercially available or can be manufactured by conventional methods.
  • the GaN film can be disposed on at least a portion of the surface of the growth substrate by conventional methods such as MOCVD
  • the second step is step S20 of arranging a mask having a structure in which a shielding portion and an opening are repeated in the width direction on the base substrate.
  • the purpose of this step is to arrange the mask 21 on the base substrate by forming a mask 21 having a structure (pattern) in which a shielding portion 21a and an opening 21b are repeated in the width direction as shown in Fig. 6 on the base substrate using a conventionally known method.
  • Fig. 6 is a schematic diagram illustrating the structure of the mask used to obtain the gallium nitride single crystal substrate according to this embodiment.
  • the mask 21 has a rectangular shape in plan view, and has a structure in which the shielding portion 21a and the opening 21b are repeated in the width direction as described above. Furthermore, the shielding portion 21a and the opening 21b have a structure in which they are continuous in the length direction of the mask 21.
  • the pattern of the mask 21 has a pitch width P consisting of the width W1 of the shielding portion 21a and the width W2 of the opening 21b, which is 10 ⁇ m or less. Furthermore, the percentage of the width of the opening 21b to the width P of one pitch of the mask 21 (hereinafter also referred to as the "opening rate”) is 10 to 50% or less.
  • the thickness of the mask 21 is 0.2 ⁇ m or less.
  • the pitch width P consisting of the width W1 of the shielding portion 21a of the mask 21 and the width W2 of the opening 21b is preferably 5 to 8 ⁇ m or less, the opening rate of the mask 21 is preferably 14 to 50%, and the thickness of the mask 21 is preferably 0.1 ⁇ m or less. For structural reasons, it is practical for the thickness of the mask 21 to be 10 ⁇ m or more.
  • the width P of one pitch which is composed of the width W1 of the shielding portion 21a and the width W2 of the opening portion 21b in the mask 21, be 10 ⁇ m or less, it is possible to promote the generation of regular pits on the growth surface of the first layer (GaN single crystal) in step S30, which is described below, for growing the first layer.
  • the opening ratio of the mask 21 be 10-50% or less, it is possible to suppress the amount of dislocations propagating from the base substrate to the first layer in step S30, which is described below, for growing the first layer.
  • the thickness of the mask 21 be 0.2 ⁇ m or less, it is possible to suppress the number of new dislocations that are generated during the growth of the first layer.
  • the mask 21 can be formed, for example, by the following method.
  • a chemical vapor deposition film for example, a silicon-based chemical vapor deposition film, particularly a chemical vapor deposition film of silicon oxide (SiO 2 ), silicon carbide (SiC), silicon nitride (SiN), etc.
  • plasma CVD Chemical Vapor Deposition
  • a resist patterned by photolithography is formed on the chemical vapor deposition film, and etching is performed using the resist as an etching mask. As a result, as shown in FIG.
  • the mask 21 can be formed on the GaN film 32 of the base substrate 30 consisting of the growth substrate 31 and the GaN film 32 disposed on the growth substrate 31.
  • FIG. 7 is a schematic cross-sectional view illustrating the state in which the mask of FIG. 6 is disposed on the base substrate.
  • the symbol Mt represents the thickness (0.2 ⁇ m or less) of the mask 21.
  • the length direction of the mask 21 is preferably parallel to the ⁇ 11-20> or ⁇ 1-100> direction of the GaN single crystal that constitutes the GaN film 32 on the base substrate 30.
  • the direction in which the shielding portions 21a and openings 21b of the mask 21 continue is preferably parallel to the ⁇ 11-20> or ⁇ 1-100> direction of the GaN single crystal that constitutes the GaN film 32. This makes it possible to make the in-plane dislocation density distribution more uniform when a GaN single crystal substrate is obtained from the GaN single crystal.
  • the third step is step S30 of growing a first layer made of gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy (HVPE).
  • HVPE hydride vapor phase epitaxy
  • the purpose of this step is to form a first layer (GaN single crystal) having a facet structure with pits regularly generated on the growth surface on the base substrate.
  • Such a first layer can be formed, for example, in the following manner.
  • a base substrate with a mask placed on it is placed on a quartz or carbon sample holder in a hot wall type reactor, and at least the GaN film in the base substrate is heated to about 1000°C.
  • hydrogen chloride (HCl) gas is sprayed onto metal Ga placed in an upstream boat in the reactor, using nitrogen ( N2 ) gas and hydrogen ( H2 ) gas as carrier gases, to generate gallium chloride (GaCl) gas.
  • ammonia ( NH3 ) gas is introduced into the reactor.
  • the GaCl gas and NH3 gas are supplied to the GaN film in the base substrate through the opening of the mask, using H2 gas as carrier gas, so that a first layer (GaN single crystal) can be grown on the side of the base substrate where the mask is placed, under the following first growth conditions. Furthermore, the thickness of the first layer can be controlled to 20 ⁇ m or less by adjusting the amount or time of supplying GaCl gas and NH3 gas under the first growth conditions.
  • the specific first growth conditions are as follows. GaCl gas partial pressure: 0.8 to 7 kPa NH3 gas partial pressure: 1.5 to 36 kPa GaCl gas flow rate: 50 to 400 SCCM NH3 gas flow rate: 100 to 2000 SCCM Growth temperature: 900 to 1100°C Growth rate: 20-80 ⁇ m/hour V/III (NH 3 gas/GaCl gas) ratio: 2-20.
  • the GaCl gas partial pressure is preferably 2.5 to 5 kPa, and the NH3 gas partial pressure is preferably 3 to 14 kPa.
  • the GaCl gas flow rate is preferably 150 to 300 SCCM, and the NH3 gas flow rate is preferably 200 to 800 SCCM.
  • the growth temperature is preferably 1010 to 1060° C., and the growth rate is preferably 40 to 60 ⁇ m/hour.
  • FIG. 8 is a schematic cross-sectional view illustrating the state in which the first layer (GaN single crystal) is formed on the gallium nitride film in the manufacturing method of the gallium nitride single crystal substrate according to this embodiment.
  • this process can form the first layer 41 made of GaN single crystal with a thickness d1 of 20 ⁇ m or less on the mask 21.
  • the thickness d1 of the first layer 41 is preferably 10 ⁇ m or less.
  • the thickness of the first layer 41 refers to the thickness between the flat portion of the growth surface of the first layer 41 and the base substrate 30, and can be measured by cross-sectional observation using a fluorescent microscope image mapping device (for example, product name: "LEICA DM6000M", manufactured by Leica). Specifically, by irradiating the first layer 41 with fluorescent light having the wavelengths described below, it is possible to measure the thickness of the first layer 41 using the concentration of the above impurities as an index.
  • the average area of one pit 41a formed on the growth surface of the first layer 41 (hereinafter also referred to as "pit area”) is preferably 100 ⁇ m2 or less. This makes it possible to prevent dislocations from concentrating more than necessary in the pit 41a.
  • the pit area is more preferably 50 ⁇ m2 or less.
  • the pit area is naturally determined by the width P of one pitch, which is composed of the width W1 of the shielding portion 21a of the mask 21 and the width W2 of the opening 21b.
  • the pit area can also be determined by irradiating the first layer 41 with fluorescence of the wavelength under the following conditions using the above-mentioned fluorescence microscope image mapping device, based on the difference in impurity concentration between the area where the pit 41a exists and the other areas in the first layer 41.
  • a crystal piece corresponding to the first layer 41 is obtained by cutting it from the GaN single crystal, and the surface of the crystal piece is polished to obtain a measurement sample.
  • the measurement sample is observed using the above-mentioned fluorescence microscope image mapping device under the following conditions and at a magnification such that the size of one field of view is 2.5 mm x 1.9 mm.
  • the above observation is performed by moving the measurement sample, etc., to set the field of view without overlapping and without leaving anything out, and covers the entire surface of the first layer 41.
  • the diameter of the first layer 41 is 105 mm
  • that field of view is excluded from the target for determining the pit area. This is because this area is not normally used as material for semiconductor devices.
  • the fourth step is step S40 of growing a second layer made of GaN single crystal whose growth surface is the ⁇ 0001 ⁇ plane on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order.
  • the purpose of this step is to grow a second layer (GaN single crystal) having a flat growth surface on the first layer.
  • the HVPE method is performed on the first layer having pits on its growth surface, employing the following second growth condition. This allows for the obtaining of a structure including the base substrate, the first layer, and the second layer in this order.
  • the HVPE method based on the second growth conditions can be performed in the same manner as the HVPE method based on the first growth conditions, except for the specific gas partial pressure, growth temperature, and growth rate conditions described below.
  • GaCl gas is generated by spraying HCl gas, for example, tetrachlorosilane (SiCl 4 ) gas can be added to dope Si into the second layer.
  • SiCl 4 tetrachlorosilane
  • the thickness of the second layer can be adjusted by controlling the amount or time of supplying GaCl gas and NH 3 gas.
  • the thickness of the second layer is preferably 1000 ⁇ m or less. It is more preferable that the thickness of the second layer is 500 ⁇ m or less. According to the method for producing a GaN single crystal substrate in this embodiment, even when a GaN single crystal substrate is obtained from a second layer (GaN single crystal) that is grown to a relatively thin thickness of 1000 ⁇ m or less, the in-plane dislocation density distribution is uniform, and device characteristics can be stably improved.
  • the specific second growth conditions are as follows. GaCl gas partial pressure: 3 to 18 kPa NH3 gas partial pressure: 3 to 36 kPa SiCl4 gas partial pressure: 2.5 to 12.5 Pa GaCl gas flow rate: 200 to 1000 SCCM NH3 gas flow rate: 200 to 2000 SCCM SiCl4 gas flow rate: 1.5 to 7.5 SCCM Growth temperature: 1000 to 1100° C. Growth rate: 50-150 ⁇ m/hour V/III (NH 3 gas/GaCl gas) ratio: 1-10.
  • the GaCl gas partial pressure is preferably 5 to 9 kPa, and the NH3 gas partial pressure is preferably 5 to 18 kPa.
  • the GaCl gas flow rate is preferably 300 to 500 SCCM, and the NH3 gas flow rate is preferably 300 to 1000 SCCM.
  • the growth temperature is preferably 1010 to 1060° C., and the growth rate is preferably 80 to 120 ⁇ m/hour.
  • the fourth step can form a second layer (GaN single crystal) 42 having a thickness d2 of, for example, 1000 ⁇ m or less on the first layer 41.
  • a second layer GaN single crystal
  • the thickness d2 of the second layer 42 does not exclude being greater than 1000 ⁇ m.
  • the upper limit of the thickness d2 of the second layer 42 can be 7 mm.
  • the thickness of the second layer 42 can be measured using a stylus-type film thickness gauge (for example, the product name "ABS Digimatic Indicator ID-F125", manufactured by Mitutoyo Corporation).
  • the fifth step is a step S50 of removing the base substrate and the first layer from the structure and processing the second layer to obtain the GaN single crystal substrate.
  • the purpose of this step is to obtain a GaN single crystal substrate having the effect of the present disclosure from the structure.
  • this step referring to FIG. 9, first, in the structure including the growth substrate 31, the GaN film 32, the mask 21, the first layer 41 and the second layer 42, the first layer 41 side of the second layer 42 is ground. This separates the growth substrate 31, the base substrate 30 including the GaN film 32, the mask 21, and the first layer 41 from the structure, thereby obtaining an ingot of GaN single crystal consisting of the second layer 42.
  • a disk-shaped GaN single crystal is cut out to a predetermined thickness from the ingot of GaN single crystal consisting of the second layer 42, and the surface of the GaN single crystal is flattened by grinding, followed by both or at least one of polishing and dry etching. This allows a GaN single crystal substrate to be obtained.
  • the above steps allow the manufacture of the GaN single crystal substrate according to this embodiment.
  • the GaN single crystal substrate can have a uniform dislocation density distribution on the main surface by using a mask structure used in the manufacturing process and reducing the thickness of the first layer, thereby stably improving device characteristics.
  • one each of the GaN single crystal substrate samples was obtained by carrying out the following GaN single crystal substrate manufacturing method.
  • Example 1 [Production of GaN Single Crystal Substrate] ⁇ Sample 1> (First step) A commercially available sapphire substrate having a diameter of 50.8 mm was obtained, and a GaN film was formed on the sapphire substrate by MOCVD to prepare a base substrate. The main surface of the GaN film had a (0001) plane orientation.
  • a plasma CVD method was applied to the GaN film side of the base substrate to form a chemical vapor deposition film made of silicon oxide, and then a resist patterned by photolithography was formed on the chemical vapor deposition film, and etching was performed using the resist as an etching mask to form a mask.
  • a first layer made of a GaN single crystal having a facet structure was grown from the GaN film of the base substrate through the opening of the mask under the following first growth conditions.
  • the base substrate was placed on a carbon sample holder in a hot-wall type reactor, and the reactor was heated to 1050° C., after which HCl gas was sprayed onto metallic Ga placed in an upstream boat in the reactor to generate and supply GaCl gas, and then NH 3 gas was supplied into the reactor.
  • the reactor was then held at 1050° C. for 15 minutes.
  • the first growth conditions were a GaCl gas partial pressure of 3.2 ⁇ 10 3 Pa and an ammonia gas partial pressure of 6.9 ⁇ 10 3 Pa.
  • the growth rate of the growth surface of the first layer was 40 ⁇ m/hour.
  • a first layer made of a GaN single crystal whose growth surface was the (0001) plane and whose thickness measured by the fluorescence microscope was 10 ⁇ m was obtained.
  • the pit area of the first layer was determined to be 49 ⁇ m 2 .
  • the second growth conditions were GaCl gas partial pressure of 5.7 ⁇ 10 3 Pa, SiCl 4 gas partial pressure of 11.7 Pa, and NH 3 gas partial pressure of 6.0 ⁇ 10 3 Pa. Furthermore, the growth rate of the growth surface of the second layer was set to 100 ⁇ m/hour. The temperature inside the reactor was then lowered to room temperature. This resulted in a second layer made of single crystal GaN being grown on the first layer.
  • the growth surface of the second layer was the (0001) plane, and the thickness measured with a stylus-type thickness gauge was 1600 ⁇ m.
  • the first layer side of the second layer was ground to separate the second layer from the base substrate, the GaN film, the mask, and the first layer, thereby obtaining an ingot consisting of the second layer. Furthermore, a disk-shaped GaN single crystal was cut out at a predetermined thickness from the ingot consisting of the second layer. The surface of the GaN single crystal was then flattened by grinding, and then polished to a mirror surface. In this manner, a GaN single crystal substrate of Example 1 having a diameter of 50.8 mm (2 inches), a thickness of 400 ⁇ m, and a circular main surface was produced. The Si concentration and carrier concentration of the GaN single crystal substrate were measured by the above-mentioned measuring method, and were found to be the concentrations shown in Table 1.
  • the GaN single crystal substrates of Samples 2 to 12 were manufactured in the same manner as the manufacturing method of the GaN single crystal substrate of Sample 1, except that a mask having the mask structure shown in Table 1 was formed on the base substrate, the first and second growth conditions were changed so that the thicknesses and pit areas of the first and second layers were as shown in Table 1, and the substrate size was changed as shown in Table 1.
  • the Si concentration and carrier concentration of each of the above GaN single crystal substrates were measured by the above-mentioned measuring method, and were found to be the concentrations shown in Table 1.
  • the " ⁇ 11-20> direction stripes" in the "Pattern” section in Table 1 means that the length direction of the mask is parallel to the ⁇ 11-20> direction of the GaN single crystal constituting the GaN film.
  • the GaN single crystal substrates of Samples 101 to 105 were manufactured in the same manner as the manufacturing method of the GaN single crystal substrate of Sample 1, except that a mask having the mask structure shown in Table 2 was formed on the base substrate, the first and second growth conditions were changed so that the thicknesses and pit areas of the first and second layers were as shown in Table 2, and the substrate size was changed as shown in Table 2.
  • the Si concentration and carrier concentration of each of the above GaN single crystal substrates were measured by the above-mentioned measuring method, and were found to be the concentrations shown in Table 2.
  • Example 106 A GaN single crystal substrate of sample 106 was manufactured according to Example 4 of the above-mentioned Patent Document 1.
  • the size of the substrate was 50.8 mm (2 inches) in diameter.
  • the structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above-mentioned manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
  • Example 107 A GaN single crystal substrate of sample 107 was manufactured according to Example 3 of the above-mentioned Patent Document 1.
  • the size of the substrate was 50.8 mm (2 inches) in diameter.
  • the structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above-mentioned manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
  • Example 108 A GaN single crystal substrate of sample 108 was manufactured according to Example 1 of Patent Document 2.
  • the size of the substrate was 50.8 mm (2 inches) in diameter.
  • the structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
  • the GaN single crystal substrate of sample 109 was manufactured according to Example 3 of Patent Document 1.
  • the size of the substrate was 50.8 mm (2 inches) in diameter.
  • the structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
  • the GaN single crystal substrate of sample 109 has a thicker second layer than the GaN single crystal substrate of sample 107.
  • the GaN single crystal substrate of sample 110 was manufactured according to Example 3 of Patent Document 1.
  • the size of the substrate was 50.8 mm (2 inches) in diameter.
  • the structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
  • the GaN single crystal substrate of sample 110 differs in the thickness of the second layer from the GaN single crystal substrates of samples 107 and 109.
  • any field area was obtained by combining digital zoom on the software. For example, when the digital zoom is 1x, the measurement area of one field of view is about 640x640 ⁇ m 2 . When the magnification is 5 times, the measurement area of one visual field is approximately 130 x 130 ⁇ m 2 , and when the magnification is 12.5 times, the measurement area of one visual field is approximately 50 x 50 ⁇ m 2 .
  • the PL mapping evaluation is the following evaluation method. That is, a PL imaging device (trade name: "VerteX", manufactured by Nanometrics) was used to perform spectrum measurement on the entire surface of the light emitting device structure at 2 mm pitch, and the emission intensity of the multiple quantum well layer around 440 nm at each measurement position was obtained. Next, the difference between the maximum and minimum emission intensities was divided by the average value to calculate the variation in emission intensity for each sample. The variation in emission intensity was expressed as a percentage (%), and the smaller the value, the less the variation in device characteristics, and therefore the better the product. The results are shown in Tables 3 and 4.
  • the GaN single crystal substrates of samples 1 to 12 have an average second dislocation density of 5.0 ⁇ 10 6 cm -2 or less and a coefficient of variation of the second dislocation density of 0.40 or less, so it is understood that the in-plane dislocation density distribution is more uniform than that of the GaN single crystal substrates of samples 101 to 110. Furthermore, the light emitting devices manufactured from samples 1 to 12 all have a variation in emission intensity suppressed to less than 35.0%, suggesting that the GaN single crystal substrates of samples 1 to 12 can stably improve device characteristics. The GaN single crystal substrates of samples 101 to 110 all have a variation in emission intensity exceeding 35.0%.
  • Gallium nitride single crystal substrate (GaN single crystal substrate), 101 Conventional gallium nitride single crystal substrate (GaN single crystal substrate), 11 Main surface, 21 Mask, 21a Shielding portion, 21b Opening, 30 Base substrate, 31 Growth substrate, 32 GaN film, 41 First layer, 41a Pit, 42 Second layer, t Dislocation, OF Orientation flat, G Virtual lattice, A1 First measurement area, A2 Second measurement area, C Center point of first measurement area, P 1 pitch, W1 Width of shielding portion, W2 Width of opening, Mt Mask thickness, d1 Thickness of first layer, d2 Thickness of first layer, S10 Step of preparing base substrate, S20 Step of placing mask, S30 Step of growing first layer, S40 Step of obtaining structure, S50 Step of obtaining GaN single crystal substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This gallium nitride single crystal substrate has a circular main surface. The main surface has first dislocation density and second dislocation density comprising two or more values. The average value of the second dislocation density is 5.0×106cm-2 or less. The standard deviation and average value of the second dislocation density satisfy the following relationship: standard deviation/average value ≤ 0.40. The first dislocation density is obtained by measuring the number of dislocations in each of nine first measurement regions on the main surface, and converting the sum of the number of dislocations into the number of dislocations per 1 cm2, wherein the first measurement regions are each a square 100 μm on a side. The second dislocation density is obtained by obtaining a reference area expressed as a value obtained by dividing 100 by the first dislocation density, forming a virtual lattice in which 2-mm squares are laid out on the main surface so that the squares do not overlap each other and the number of the squares arranged in parallel is maximized, measuring the number of dislocations in a second measurement region that has an area of 30% of the reference area and that is set at the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per 1 cm2 for each second measurement region.

Description

窒化ガリウム単結晶基板およびその製造方法Gallium nitride single crystal substrate and method for producing same
 本開示は、窒化ガリウム単結晶基板およびその製造方法に関する。 This disclosure relates to a gallium nitride single crystal substrate and a method for manufacturing the same.
 特開2006-052102号公報(特許文献1)および特開2007-519591号公報(特許文献2)は、次のような表面を有する窒化ガリウム単結晶基板(以下、「GaN単結晶基板」とも記す)の製造方法を開示している。上記製造方法は、まず下地基板上に所定の開口部を有するマスクを配置し、当該開口部から、表面に断面三角形状の凹みであるピットを含む凹凸を有する窒化ガリウム単結晶(以下、「GaN単結晶」とも記す)を成長させる。次いで上記凹凸を平坦化させる条件にて引続き上記GaN単結晶を成長させる。最後に当該GaN単結晶を加工等することにより、GaN単結晶基板を製造する。これにより転位を上記ピットに集中させるとともに対消滅させ、かつ残余の転位を均一分散させることによって、低転位密度であるとともに転位密度分布が実質的に均一となる表面を得ることができるとしている。特開2021-031329号公報(特許文献3)は、上記特許文献1および2と同様な製造方法を用いることによって低転位化を実現したc面GaN単結晶基板を開示している。  JP Patent Publication No. 2006-052102 (Patent Document 1) and JP Patent Publication No. 2007-519591 (Patent Document 2) disclose a method for manufacturing a gallium nitride single crystal substrate (hereinafter also referred to as "GaN single crystal substrate") having the following surface. In the above manufacturing method, a mask with a predetermined opening is first placed on a base substrate, and a gallium nitride single crystal (hereinafter also referred to as "GaN single crystal") having irregularities including pits that are triangular cross-sectional depressions on the surface is grown from the opening. Next, the GaN single crystal is grown under conditions that flatten the irregularities. Finally, the GaN single crystal is processed to manufacture a GaN single crystal substrate. It is said that this concentrates dislocations in the pits and annihilates them, and uniformly disperses the remaining dislocations, thereby making it possible to obtain a surface with low dislocation density and a substantially uniform dislocation density distribution. JP 2021-031329 A (Patent Document 3) discloses a c-plane GaN single crystal substrate that achieves low dislocation density by using a manufacturing method similar to those described in Patent Documents 1 and 2 above.
特開2006-052102号公報JP 2006-052102 A 特開2007-519591号公報JP 2007-519591 A 特開2021-031329号公報JP 2021-031329 A
 本開示に係る窒化ガリウム単結晶基板は、円形状の主表面を有する窒化ガリウム単結晶基板であって、上記主表面は、第1の転位密度および2以上の第2の転位密度を有し、上記第2の転位密度の平均値は、5.0×106cm-2以下であり、上記第2の転位密度の標準偏差および上記平均値は、標準偏差/平均値≦0.40という関係を満たし、上記標準偏差の単位はcm-2であり、上記第1の転位密度は、上記主表面上の9箇所の1辺が100μmである正方形からなる第1の測定領域において転位の数を測定し、上記転位の数の総和を上記転位の1cm2当たりの数に換算することにより求められ、上記第2の転位密度は、100を上記第1の転位密度で除した値として表される基準面積を得るとともに、上記主表面上において1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子を形成し、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の30%の面積を有する第2の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第2の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められ、上記窒化ガリウム単結晶基板の直径をDで表し、上記主表面の中心を通り、上記中心で直交する上記主表面上の2軸をX軸およびY軸とするとき、上記第1の測定領域の中心点のX軸およびY軸の座標(X、Y)は、(0,0)、(D/4-5,0)、(0,D/4-5)、(-(D/4-5),0)、(0,-(D/4-5))、(D/2-10,0)、(0,D/2-10)、(-(D/2-10),0)および(0,-(D/2-10))であり、上記Dおよび上記座標(X、Y)中のXおよびYの単位はmmである。 A gallium nitride single crystal substrate according to the present disclosure is a gallium nitride single crystal substrate having a circular main surface, the main surface having a first dislocation density and two or more second dislocation densities, the average value of the second dislocation density being 5.0×10 6 cm −2 or less, the standard deviation and the average value of the second dislocation density satisfy the relationship of standard deviation/average value≦0.40, the standard deviation being in cm −2 , and the first dislocation density being determined by measuring the number of dislocations in nine first measurement regions on the main surface, the first measurement regions being squares each having a side of 100 μm, and calculating the sum of the number of dislocations per cm of the dislocations. The second dislocation density is obtained by converting the number of dislocations per square meter into the number of dislocations per square meter, the second dislocation density being obtained by obtaining a reference area represented by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares each having a side length of 2 mm are laid out in parallel as many times as possible without overlapping each other, and measuring the number of dislocations in second measurement regions each having an area that is 30% of the reference area and set in the center of each of the squares constituting the lattice, and measuring the number of dislocations in each of the second measurement regions. 2 , and when the diameter of the gallium nitride single crystal substrate is represented by D and two axes on the main surface that pass through the center of the main surface and are orthogonal to each other at the center are represented by the X-axis and Y-axis, the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
 本開示に係る窒化ガリウム単結晶基板の製造方法は、円形状の主表面を有する窒化ガリウム単結晶基板の製造方法であって、成長用基板と、上記成長用基板上に配置される窒化ガリウム膜とを含む下地基板を準備する工程と、上記下地基板上に、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクを配置する工程と、ハイドライド気相成長法によって上記下地基板からファセット構造を有する窒化ガリウム単結晶からなる第1層を成長させる工程と、上記第1層上に、成長面が{0001}面である上記窒化ガリウム単結晶からなる第2層を成長させることにより、上記下地基板、上記第1層および上記第2層をこの順に含む構造体を得る工程と、上記構造体から上記下地基板および上記第1層を除き、かつ上記第2層を加工することによって上記窒化ガリウム単結晶基板を得る工程とを含み、上記マスクの厚みは、0.2μm以下であり、上記遮蔽部の幅と上記開口部の幅とで構成される上記マスクの1ピッチの幅は、10μm以下であり、上記マスクの上記1ピッチの幅に対する上記開口部の幅の百分率は、10%以上50%以下であり、上記第1層の厚みは、20μm以下である。 The method for manufacturing a gallium nitride single crystal substrate according to the present disclosure is a method for manufacturing a gallium nitride single crystal substrate having a circular main surface, and includes the steps of: preparing a base substrate including a growth substrate and a gallium nitride film to be disposed on the growth substrate; disposing a mask having a structure in which shielding portions and openings are repeated in the width direction on the base substrate; growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by a hydride vapor phase epitaxy method; and growing a second layer made of the gallium nitride single crystal having a {0001} growth surface on the first layer. and a step of obtaining the gallium nitride single crystal substrate by removing the base substrate and the first layer from the structure and processing the second layer, the thickness of the mask being 0.2 μm or less, the width of one pitch of the mask, which is composed of the width of the shielding portion and the width of the opening, being 10 μm or less, the percentage of the width of the opening relative to the width of one pitch of the mask being 10% or more and 50% or less, and the thickness of the first layer being 20 μm or less.
図1は、本実施形態に係る窒化ガリウム単結晶基板の転位の分布を説明する模式図である。FIG. 1 is a schematic diagram illustrating the distribution of dislocations in a gallium nitride single crystal substrate according to this embodiment. 図2は、従来の窒化ガリウム単結晶基板の転位の分布を説明する模式図である。FIG. 2 is a schematic diagram illustrating the distribution of dislocations in a conventional gallium nitride single crystal substrate. 図3は、本実施形態に係る窒化ガリウム単結晶基板において基準面積を求めるために設定する主表面上の9箇所の第1の測定領域およびその中心点の座標(X,Y)を説明する説明図である。FIG. 3 is an explanatory diagram illustrating nine first measurement regions on a main surface set to determine a reference area in a gallium nitride single crystal substrate according to this embodiment, and the coordinates (X, Y) of their center points. 図4は、本実施形態に係る窒化ガリウム単結晶基板において第2の転位密度を求めるために、主表面上に1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子、および第2の測定領域を説明する説明図である。FIG. 4 is an explanatory diagram illustrating a virtual lattice in which squares, each 2 mm on a side, are arranged in parallel on the main surface so as to maximize the number of squares without overlapping each other, in order to determine the second dislocation density in the gallium nitride single crystal substrate according to this embodiment, and a second measurement region. 図5は、本実施形態に係る窒化ガリウム単結晶基板の製造方法の一例を示すフローチャートである。FIG. 5 is a flow chart showing an example of a method for manufacturing a gallium nitride single crystal substrate according to this embodiment. 図6は、本実施形態に係る窒化ガリウム単結晶基板を得るために用いるマスクの構造を説明する模式図である。FIG. 6 is a schematic diagram illustrating the structure of a mask used to obtain a gallium nitride single crystal substrate according to this embodiment. 図7は、図6のマスクを下地基板上に配置した様子を説明する断面模式図である。FIG. 7 is a schematic cross-sectional view illustrating the state in which the mask of FIG. 6 is disposed on the base substrate. 図8は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、窒化ガリウム膜上に第1層(GaN単結晶)を形成した様子を説明する断面模式図である。FIG. 8 is a schematic cross-sectional view illustrating a state in which a first layer (single crystal GaN) is formed on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to this embodiment. 図9は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、下地基板、第1層および第2層がこの順に積層された構造体を説明する断面模式図である。FIG. 9 is a schematic cross-sectional view illustrating a structure in which a base substrate, a first layer, and a second layer are laminated in this order in the method for producing a gallium nitride single crystal substrate according to this embodiment.
 [本開示が解決しようとする課題]
 上記特許文献1および2のGaN単結晶基板においては、上述のようにピットに転位を集中させて対消滅させ、かつ残余の転位を均一に分散させてGaN単結晶を成長させることにより、転位密度分布が実質的に均一な表面層を得ることができるとされる。しかしながら上記非特許文献1によれば、結晶成長に従って転位が分散していく傾きは、結晶成長の方向に対して数度程度であることが報告されている。このため転位密度分布が実質的に均一な表面層を得るには、十分な結晶厚みが要求される。一方、特許文献1および2によれば、転位の均一な分散に必要な厚みのGaN単結晶を成長させてからGaN単結晶基板を得ているとは言い難い。したがって特許文献1および2のGaN単結晶基板の表面の転位密度分布は、実質的にバラツキが生じ不均一であるものと考えられる。とりわけ上記基板は、その表面において比較的高転位である領域が周期的に発生しているものの、転位密度を測定するのに用いる単位面積を恣意的に設定することによって“転位密度分布が実質的に均一である”と言及しているものと解される。上記特許文献3のGaN単結晶基板も、上記特許文献1および2のGaN単結晶基板と同様な方法により製造されるため、同じ問題が内在するものと解される。
[Problem to be solved by this disclosure]
In the GaN single crystal substrates of Patent Documents 1 and 2, dislocations are concentrated in the pits as described above, and the remaining dislocations are uniformly dispersed to grow the GaN single crystal, so that a surface layer with a substantially uniform dislocation density distribution can be obtained. However, according to Non-Patent Document 1, it is reported that the inclination at which dislocations are dispersed as the crystal grows is about several degrees with respect to the direction of crystal growth. Therefore, a sufficient crystal thickness is required to obtain a surface layer with a substantially uniform dislocation density distribution. On the other hand, according to Patent Documents 1 and 2, it is difficult to say that the GaN single crystal substrate is obtained after growing a GaN single crystal with a thickness necessary for uniform dispersion of dislocations. Therefore, it is considered that the dislocation density distribution on the surface of the GaN single crystal substrates of Patent Documents 1 and 2 is substantially uneven and non-uniform. In particular, although the above substrates have relatively high dislocation regions periodically generated on their surfaces, it is understood that the "substantially uniform dislocation density distribution" is mentioned by arbitrarily setting the unit area used to measure the dislocation density. The GaN single crystal substrate of Patent Document 3 is manufactured by a method similar to that of the GaN single crystal substrates of Patent Documents 1 and 2, and is therefore considered to have the same inherent problems.
 加えて上記特許文献1~3のGaN単結晶基板は、その製造過程においてピットが面内で均一に発生しないものがほとんどである。一般に、上記特許文献1の実施例4にて採用されたFIELO法以外、ピットは面内でランダム(不均一)に発生することが知られる。ピットが面内で不均一に発生する場合、転位密度分布も不均一となる傾向がある。したがって、面内の転位密度分布が均一であり、もってデバイス特性を安定的に向上させることが可能な窒化ガリウム単結晶基板は未だ得られておらず、その開発が切望されている。 In addition, in most of the GaN single crystal substrates described in Patent Documents 1 to 3, pits do not occur uniformly within the surface during the manufacturing process. It is generally known that pits occur randomly (non-uniformly) within the surface, except for the FIELO method used in Example 4 of Patent Document 1. When pits occur non-uniformly within the surface, the dislocation density distribution also tends to be non-uniform. Therefore, a gallium nitride single crystal substrate with a uniform dislocation density distribution within the surface, which enables stable improvement of device characteristics, has not yet been obtained, and its development is eagerly awaited.
 以上の点に鑑み、本開示は、面内の転位密度分布が均一であってデバイス特性を安定的に向上させることが可能な窒化ガリウム単結晶基板、およびその製造方法を提供することを目的とする。 In view of the above, the present disclosure aims to provide a gallium nitride single crystal substrate that has a uniform in-plane dislocation density distribution and can stably improve device characteristics, and a method for manufacturing the same.
 [本開示の効果]
 上記によれば、面内の転位密度分布が均一であってデバイス特性を安定的に向上させることが可能な窒化ガリウム単結晶基板、およびその製造方法を提供することができる。
[Effects of the present disclosure]
According to the above, it is possible to provide a gallium nitride single crystal substrate having a uniform in-plane dislocation density distribution and capable of stably improving device characteristics, and a method for manufacturing the same.
 [実施形態の概要]
 以下、本開示の実施形態の概要について説明する。本発明者らは、上記課題を解決するために鋭意検討を重ね、本開示を完成させた。まず本発明者らは、GaN単結晶をエピタキシャル成長させる際に用いるマスクの構造、ならびに上記エピタキシャル成長において上記GaN単結晶を特定の成長条件にて成長させることに着目した。具体的には、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクにおいて、遮蔽部の幅と開口部の幅とで構成される1ピッチの幅を狭くし(具体的には1ピッチの幅を10μm以下とし)、かつ上記1ピッチの幅に対する上記開口部の幅の百分率を10~50%とすることを想到した。さらに上述した構造のマスクを用いて上記ピットが表面に形成されるGaN単結晶(第1層)を成長させる条件を、上記第1層の厚みが薄くなるように、具体的には当該厚みが20μm以下となるように制御した。これによりピットを第1層の成長面にて均一に発生させ、かつ上記ピットに転位を集中させる程度を制御できることを知見し、もって面内の転位密度分布が均一となる本開示に係る窒化ガリウム単結晶基板を完成させた。
[Overview of the embodiment]
The following is an outline of an embodiment of the present disclosure. The present inventors have made extensive studies to solve the above problems, and have completed the present disclosure. First, the present inventors have focused on the structure of a mask used for epitaxially growing a GaN single crystal, and on growing the GaN single crystal under specific growth conditions during the epitaxial growth. Specifically, in a mask having a structure in which a shielding portion and an opening are repeated in the width direction, the inventors have come up with the idea of narrowing the width of one pitch consisting of the width of the shielding portion and the width of the opening (specifically, the width of one pitch is set to 10 μm or less), and setting the percentage of the width of the opening to 10 to 50%. Furthermore, the conditions for growing a GaN single crystal (first layer) on whose surface the pits are formed using a mask having the above structure were controlled so that the thickness of the first layer was thin, specifically, so that the thickness was 20 μm or less. The researchers discovered that this makes it possible to uniformly generate pits on the growth surface of the first layer and to control the degree to which dislocations are concentrated in the pits, thereby completing a gallium nitride single crystal substrate according to the present disclosure having a uniform in-plane dislocation density distribution.
 次に、本開示の実施態様を列記して説明する。
 [1]本開示の一態様に係る窒化ガリウム単結晶基板は、円形状の主表面を有する窒化ガリウム単結晶基板であって、上記主表面は、第1の転位密度および2以上の第2の転位密度を有し、上記第2の転位密度の平均値は、5.0×106cm-2以下であり、上記第2の転位密度の標準偏差および上記平均値は、標準偏差/平均値≦0.40という関係を満たし、上記標準偏差の単位はcm-2であり、上記第1の転位密度は、上記主表面上の9箇所の1辺が100μmである正方形からなる第1の測定領域において転位の数を測定し、上記転位の数の総和を上記転位の1cm2当たりの数に換算することにより求められ、上記第2の転位密度は、100を上記第1の転位密度で除した値として表される基準面積を得るとともに、上記主表面上において1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子を形成し、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の30%の面積を有する第2の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第2の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められ、上記窒化ガリウム単結晶基板の直径をDで表し、上記主表面の中心を通り、上記中心で直交する上記主表面上の2軸をX軸およびY軸とするとき、上記第1の測定領域の中心点のX軸およびY軸の座標(X、Y)は、(0,0)、(D/4-5,0)、(0,D/4-5)、(-(D/4-5),0)、(0,-(D/4-5))、(D/2-10,0)、(0,D/2-10)、(-(D/2-10),0)および(0,-(D/2-10))であり、上記Dおよび上記座標(X、Y)中のXおよびYの単位はmmである。
Next, embodiments of the present disclosure will be listed and described.
[1] A gallium nitride single crystal substrate according to one aspect of the present disclosure is a gallium nitride single crystal substrate having a circular main surface, the main surface having a first dislocation density and two or more second dislocation densities, the average value of the second dislocation density being 5.0 × 10 6 cm -2 or less, the standard deviation and the average value of the second dislocation density satisfy a relationship of standard deviation/average value≦0.40, the standard deviation being in cm -2 , and the first dislocation density being determined by measuring the number of dislocations in nine first measurement regions on the main surface, the first measurement region being a square with one side measuring 100 μm, and calculating the sum of the number of dislocations per cm of the dislocations. The second dislocation density is obtained by converting the number of dislocations per square meter into the number of dislocations per square meter, the second dislocation density being obtained by obtaining a reference area represented by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares each having a side length of 2 mm are laid out in parallel as many times as possible without overlapping each other, and measuring the number of dislocations in second measurement regions each having an area that is 30% of the reference area and set in the center of each of the squares constituting the lattice, and measuring the number of dislocations in each of the second measurement regions. 2 , and when the diameter of the gallium nitride single crystal substrate is represented by D and two axes on the main surface that pass through the center of the main surface and are orthogonal to each other at the center are represented by the X-axis and Y-axis, the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
 このような特徴を備える窒化ガリウム単結晶基板は、面内の転位密度分布が均一であるため、デバイス特性を安定的に向上させることができる。 Gallium nitride single crystal substrates with these characteristics have a uniform in-plane dislocation density distribution, which allows for stable improvement of device characteristics.
 [2]上記窒化ガリウム単結晶基板の直径は、50mm以上155mm以下であることが好ましい。これにより、直径が50mm以上155mm以下の大きさとなる窒化ガリウム単結晶基板において、面内の転位密度分布が均一であってデバイス特性を安定的に向上させる効果を付与することができる。 [2] The diameter of the gallium nitride single crystal substrate is preferably 50 mm or more and 155 mm or less. This allows the gallium nitride single crystal substrate with a diameter of 50 mm or more and 155 mm or less to have a uniform in-plane dislocation density distribution, thereby providing the effect of stably improving device characteristics.
 [3]上記窒化ガリウム単結晶基板は、不純物原子を含み、上記不純物原子は、ケイ素およびゲルマニウムの両方またはいずれか一方であり、上記不純物原子の濃度は、1.0×1018cm-3以上5.0×1018cm-3以下であることが好ましい。これによりケイ素およびゲルマニウムの両方またはいずれか一方を含むn型(電子供与型)の窒化ガリウム単結晶基板において、面内の転位密度分布が均一であってデバイス特性を安定的に向上させる効果を付与することができる。 [3] The gallium nitride single crystal substrate preferably contains impurity atoms, the impurity atoms being either or both of silicon and germanium, and the concentration of the impurity atoms is 1.0×10 18 cm -3 or more and 5.0×10 18 cm -3 or less. This makes it possible to provide an effect of stably improving device characteristics by providing a uniform in-plane dislocation density distribution in an n-type (electron donor type) gallium nitride single crystal substrate containing either or both of silicon and germanium.
 [4]上記主表面は、2以上の第3の転位密度を有し、上記第3の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.35という関係を満たし、上記第3の転位密度は、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の50%の面積を有する第3の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第3の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められることが好ましい。これにより、面内の転位密度分布がさらに均一となるため、デバイス特性をより安定的に向上させることができる。 [4] It is preferable that the main surface has two or more third dislocation densities, the standard deviation and average value of the third dislocation densities satisfy the relationship of standard deviation/average value≦0.35, and the third dislocation density is determined by measuring the number of dislocations in third measurement regions each having an area of 50% of the reference area set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the third measurement regions. This makes the in-plane dislocation density distribution more uniform, thereby making it possible to more stably improve device characteristics.
 [5]上記主表面は、2以上の第4の転位密度を有し、上記第4の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.53という関係を満たし、上記第4の転位密度は、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の10%の面積を有する第4の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第4の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められることが好ましい。これにより、面内の転位密度分布がより均一となるため、デバイス特性をより安定的に向上させることができる。 [5] It is preferable that the main surface has a fourth dislocation density of 2 or more, the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value≦0.53, and the fourth dislocation density is determined by measuring the number of dislocations in fourth measurement regions having an area of 10% of the reference area set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the fourth measurement regions. This makes the in-plane dislocation density distribution more uniform, thereby making it possible to more stably improve device characteristics.
 [6]本開示の一態様に係る窒化ガリウム単結晶基板の製造方法は、円形状の主表面を有する窒化ガリウム単結晶基板の製造方法であって、成長用基板と、上記成長用基板上に配置される窒化ガリウム膜とを含む下地基板を準備する工程と、上記下地基板上に、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクを配置する工程と、ハイドライド気相成長法によって上記下地基板からファセット構造を有する窒化ガリウム単結晶からなる第1層を成長させる工程と、上記第1層上に、成長面が{0001}面である上記窒化ガリウム単結晶からなる第2層を成長させることにより、上記下地基板、上記第1層および上記第2層をこの順に含む構造体を得る工程と、上記構造体から上記下地基板および上記第1層を除き、かつ上記第2層を加工することによって上記窒化ガリウム単結晶基板を得る工程とを含み、上記マスクの厚みは、0.2μm以下であり、上記遮蔽部の幅と上記開口部の幅とで構成される上記マスクの1ピッチの幅は、10μm以下であり、上記マスクの上記1ピッチの幅に対する上記開口部の幅の百分率は、10%以上50%以下であり、上記第1層の厚みは、20μm以下である。このような特徴を備える製造方法により、面内の転位密度分布が均一であってデバイス特性を安定的に向上させることが可能な窒化ガリウム単結晶基板を得ることができる。 [6] A method for manufacturing a gallium nitride single crystal substrate according to one embodiment of the present disclosure is a method for manufacturing a gallium nitride single crystal substrate having a circular main surface, comprising the steps of: preparing a base substrate including a growth substrate and a gallium nitride film to be disposed on the growth substrate; disposing a mask having a structure in which shielding portions and openings are repeated in the width direction on the base substrate; growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by a hydride vapor phase epitaxy method; and growing a first layer made of the gallium nitride single crystal having a facet structure on the first layer, the first layer being made of the gallium nitride single crystal whose growth surface is a {0001} plane. The method includes a step of growing a second layer on the mask to obtain a structure including the base substrate, the first layer, and the second layer in this order, and a step of removing the base substrate and the first layer from the structure and processing the second layer to obtain the gallium nitride single crystal substrate, in which the thickness of the mask is 0.2 μm or less, the width of one pitch of the mask consisting of the width of the shielding portion and the width of the opening is 10 μm or less, the percentage of the width of the opening relative to the width of one pitch of the mask is 10% to 50%, and the thickness of the first layer is 20 μm or less. A manufacturing method having such characteristics can obtain a gallium nitride single crystal substrate having a uniform in-plane dislocation density distribution and capable of stably improving device characteristics.
 [7]上記マスクの長さ方向は、上記下地基板上で上記窒化ガリウム膜を構成する上記窒化ガリウム単結晶の<11-20>方向または<1-100>方向と平行であることが好ましい。これにより面内の転位密度分布がさらに均一であってデバイス特性をより安定的に向上させることが可能な窒化ガリウム単結晶基板を得ることができる。 [7] The length direction of the mask is preferably parallel to the <11-20> or <1-100> direction of the gallium nitride single crystal that constitutes the gallium nitride film on the base substrate. This makes it possible to obtain a gallium nitride single crystal substrate with a more uniform in-plane dislocation density distribution, enabling more stable improvement of device characteristics.
 [8]上記第2層の厚みは、1000μm以下であることが好ましい。これにより第2層の厚みが比較的薄いGaN単結晶から、面内の転位密度分布が均一であってデバイス特性を安定的に向上させることが可能な窒化ガリウム単結晶基板を得ることができる。 [8] The thickness of the second layer is preferably 1000 μm or less. This makes it possible to obtain a gallium nitride single crystal substrate from a GaN single crystal having a relatively thin second layer, which has a uniform in-plane dislocation density distribution and can stably improve device characteristics.
 [実施形態の詳細]
 以下、本開示に係る一実施形態(以下、「本実施形態」とも記す)についてさらに詳細に説明するが、本開示はこれらに限定されるものではない。以下では図面を参照しながら説明する場合があるが、本明細書および図面において同一または対応する要素に同一の符号を付すものとし、それらについて同じ説明は繰り返さない。さらに図面においては、各構成要素を理解しやすくするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。
[Details of the embodiment]
Hereinafter, one embodiment of the present disclosure (hereinafter also referred to as "the present embodiment") will be described in more detail, but the present disclosure is not limited thereto. In the following description, the drawings may be referred to, and the same or corresponding elements in this specification and the drawings will be given the same reference numerals, and the same description will not be repeated. Furthermore, in the drawings, the scale is appropriately adjusted to make each component easy to understand, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。さらに、本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。 In this specification, expressions in the form "A-B" refer to the upper and lower limits of a range (i.e., greater than or equal to A and less than or equal to B). If no unit is stated for A, and only B, the units of A and B are the same. Furthermore, when compounds are expressed in chemical formulas in this specification, if the atomic ratio is not specifically limited, this includes all conventionally known atomic ratios and should not necessarily be limited to only those within the stoichiometric range.
 本明細書において、窒化ガリウム単結晶基板の「主表面」とは、上記GaN単結晶基板における円形状の2つの面の両方を意味する。上記窒化ガリウム単結晶基板においては、この2つの面の少なくともどちらかが本開示に係る請求の範囲を満たす場合、本発明の技術的範囲に属するものとなる。また本明細書において「面内」という用語にて用いられる「面」とは、「主表面」を意味する。さらに窒化ガリウム単結晶基板の直径が「50mm」であると記す場合、上記直径は50mm前後(50~55.5mm程度)であることを意味し、あるいは2インチであることを意味する。上記直径が「100mm」であると記す場合、上記直径は100mm前後(95~105mm程度)であることを意味し、あるいは4インチであることを意味する。上記直径が「150mm」であると記す場合、上記直径は150mm前後(145~155mm程度)であることを意味し、あるいは6インチであることを意味する。なお上記直径は、ノギス等の従来公知の外径測定器を用いることにより測定することができる。 In this specification, the "main surface" of a gallium nitride single crystal substrate means both of the two circular faces of the GaN single crystal substrate. In the above gallium nitride single crystal substrate, if at least one of the two faces satisfies the scope of the claims of this disclosure, it falls within the technical scope of the present invention. Furthermore, in this specification, the "face" used in the term "in-plane" means the "main surface." Furthermore, when the diameter of a gallium nitride single crystal substrate is described as "50 mm," this means that the diameter is approximately 50 mm (approximately 50 to 55.5 mm), or that it is 2 inches. When the diameter is described as "100 mm," this means that the diameter is approximately 100 mm (approximately 95 to 105 mm), or that it is 4 inches. When the diameter is described as "150 mm," this means that the diameter is approximately 150 mm (approximately 145 to 155 mm), or that it is 6 inches. The diameter can be measured using a conventionally known outer diameter measuring device such as a caliper.
 本明細書において「転位」および「転位密度」とは、主表面に対し多光子励起フォトルミネッセンス法を適用することにより識別される「貫通転位」、および「当該貫通転位の主表面1cm2当たりの数」をそれぞれ意味する。上記「貫通転位」は、窒化ガリウム単結晶中において非発光再結合中心となることが知られ、多光子励起顕微鏡等によりGaN単結晶基板の主表面を観察した場合に暗点として現れる。上記「貫通転位」は、学術的には結晶欠陥と同義ではないが、本技術分野において結晶欠陥と等価なものとして捉えることができる。 In this specification, "dislocation" and "dislocation density" refer to "threading dislocations" identified by applying a multiphoton excitation photoluminescence method to the main surface, and "the number of threading dislocations per 1 cm2 of the main surface," respectively. The above-mentioned "threading dislocations" are known to be non-radiative recombination centers in gallium nitride single crystals, and appear as dark spots when the main surface of a GaN single crystal substrate is observed using a multiphoton excitation microscope or the like. The above-mentioned "threading dislocations" are not academically synonymous with crystal defects, but can be regarded as equivalent to crystal defects in this technical field.
 本明細書において「ピット」とは、ハイドライド気相成長法によって(0001)面を成長面としてGaN単結晶を成長させた場合に、平坦な成長面((0001)面)の間に囲まれることによって形成される逆六角錐形状または逆十二角錐形状の凹みをいう。本明細書において「ファセット構造」とは、ハイドライド気相成長法によって(0001)面を成長面としてGaN単結晶を成長させた場合に、上記GaN単結晶における成長面((0001)面)とファセット面と呼ばれる上記ピットの斜面とを含んだ表面構造をいう。 In this specification, a "pit" refers to an inverted hexagonal pyramid or inverted dodecagonal pyramid shaped depression that is formed by being surrounded by flat growth surfaces ((0001) surfaces) when a GaN single crystal is grown by hydride vapor phase epitaxy using the (0001) surface as the growth surface. In this specification, a "facet structure" refers to a surface structure that includes the growth surface ((0001) surface) of the GaN single crystal and the slope of the pit, called a facet surface, when a GaN single crystal is grown by hydride vapor phase epitaxy using the (0001) surface as the growth surface.
 本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、“-(バー)”を数字の上に付すことによって表現されるが、本明細書では数字の前に負の符号を付している。 In the crystallographic descriptions in this specification, individual orientations are indicated with [ ], collective orientations with < >, individual faces with ( ), and collective faces with { }. In addition, when a crystallographic index is negative, it is usually indicated by placing a "- (bar)" above the number, but in this specification, a negative sign is placed before the number.
 〔窒化ガリウム単結晶基板〕
 本実施形態に係る窒化ガリウム単結晶基板(GaN単結晶基板)は、円形状の主表面を有するGaN単結晶基板である。上記主表面は、第1の転位密度および2以上の第2の転位密度を有する。上記第2の転位密度の平均値は、5.0×106cm-2以下である。上記第2の転位密度の標準偏差および上記平均値は、標準偏差/平均値≦0.40という関係を満たし、上記標準偏差の単位はcm-2である。上記第1の転位密度は、上記主表面上の9箇所の1辺が100μmである正方形からなる第1の測定領域において転位の数を測定し、上記転位の数の総和を上記転位の1cm2当たりの数に換算することにより求められる。上記第2の転位密度は、100を上記第1の転位密度で除した値として表される基準面積を得るとともに、上記主表面上において1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子を形成し、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の30%の面積を有する第2の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第2の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められる。上記窒化ガリウム単結晶基板の直径をDで表し、上記主表面の中心を通り、上記中心で直交する上記主表面上の2軸をX軸およびY軸とするとき、上記第1の測定領域の中心点のX軸およびY軸の座標(X、Y)は、(0,0)、(D/4-5,0)、(0,D/4-5)、(-(D/4-5),0)、(0,-(D/4-5))、(D/2-10,0)、(0,D/2-10)、(-(D/2-10),0)および(0,-(D/2-10))であり、上記Dおよび上記座標(X、Y)中のXおよびYの単位はmmである。
[Gallium nitride single crystal substrate]
The gallium nitride single crystal substrate (GaN single crystal substrate) according to this embodiment is a GaN single crystal substrate having a circular main surface. The main surface has a first dislocation density and a second dislocation density of 2 or more. The average value of the second dislocation density is 5.0×10 6 cm −2 or less. The standard deviation and the average value of the second dislocation density satisfy the relationship of standard deviation/average value≦0.40, and the unit of the standard deviation is cm −2 . The first dislocation density is obtained by measuring the number of dislocations in nine first measurement regions on the main surface, each of which is a square with one side of 100 μm, and converting the sum of the number of dislocations into the number of dislocations per cm 2 . The second dislocation density is determined by obtaining a reference area expressed as a value obtained by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares, each having a side length of 2 mm, are laid out in parallel as many times as possible without overlapping each other, measuring the number of dislocations in second measurement regions having an area of 30% of the reference area set in the centers of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the second measurement regions. When the diameter of the gallium nitride single crystal substrate is represented by D and two axes on the main surface that pass through the center of the main surface and intersect at right angles at the center are represented by the X-axis and Y-axis, the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
 上記主表面は、2以上の第3の転位密度を有し、上記第3の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.35という関係を満たすことが好ましい。上記第3の転位密度は、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の50%の面積を有する第3の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第3の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められる。 It is preferable that the main surface has two or more third dislocation densities, and the standard deviation and average value of the third dislocation densities satisfy the relationship of standard deviation/average value≦0.35. The third dislocation density is determined by measuring the number of dislocations in third measurement regions having an area of 50% of the reference area set in the centers of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the third measurement regions.
 さらに上記主表面は、2以上の第4の転位密度を有し、上記第4の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.53という関係を満たすことが好ましい。上記第4の転位密度は、上記格子を構成する上記正方形の中央部にそれぞれ設定した上記基準面積の10%の面積を有する第4の測定領域において上記転位の数を測定し、かつ上記転位の数を上記第4の測定領域毎に1cm2当たりの上記転位の数に換算することにより求められる。 Furthermore, it is preferable that the main surface has a fourth dislocation density of 2 or more, and the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value≦0.53. The fourth dislocation density is determined by measuring the number of dislocations in fourth measurement regions having an area of 10% of the reference area set in the centers of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the fourth measurement regions.
 このような特徴を有するGaN単結晶基板は、面内の転位密度分布が均一であって、デバイス特性を安定的に向上させることが可能となる。たとえば上記GaN単結晶基板に発光層を積層することによって発光素子を構成した場合、当該発光素子の発光強度のバラツキを抑えることができる。本実施形態に係るGaN単結晶基板において上述のような効果が得られる理由は、上記GaN単結晶基板を構成するGaN単結晶が有する次のような特徴に基づくと推定される。 A GaN single crystal substrate with these characteristics has a uniform in-plane dislocation density distribution, making it possible to stably improve device characteristics. For example, when a light-emitting device is constructed by stacking a light-emitting layer on the GaN single crystal substrate, the variation in the light-emitting intensity of the light-emitting device can be suppressed. The reason why the GaN single crystal substrate according to this embodiment provides the above-mentioned effects is presumably based on the following characteristics of the GaN single crystal that constitutes the GaN single crystal substrate.
 図1は、本実施形態に係る窒化ガリウム単結晶基板の転位の分布を説明する模式図である。図1に示すように、本実施形態に係るGaN単結晶基板1は、主表面11における転位tの分布が均一である。その理由は、GaN単結晶基板1を構成するGaN単結晶が後述の〔窒化ガリウム単結晶基板の製造方法〕の項目にて説明する方法に基づいて下地基板上に第1層、第2層の順にエピタキシャル成長するからであると推定される。当該エピタキシャル成長においては、まず第1層が下地基板上に配置されたマスク上に形成される。当該マスクは、幅方向に遮蔽部と開口部とを繰り返す構造を有し、上記遮蔽部の幅と上記開口部の幅とで構成される1ピッチの幅が狭い(具体的には1ピッチの幅が10μm以下である)という特徴がある。これにより上記第1層は、GaN単結晶の成長面において規則的なピットの発生を促すことができ、もって主表面11における転位tの均一な分布に寄与することができる。さらに上記マスクは、上記1ピッチの幅に対する上記開口部の幅の百分率が10~50%と小さい。これにより、下地基板から上記第1層に伝播する転位の量が抑制される。併せて、上記マスクの厚みは0.2μm以下であるため、上記第1層の成長時に新規に発生する転位の数も抑制することができる。 1 is a schematic diagram illustrating the distribution of dislocations in the gallium nitride single crystal substrate according to this embodiment. As shown in FIG. 1, the GaN single crystal substrate 1 according to this embodiment has a uniform distribution of dislocations t on the main surface 11. The reason for this is presumably because the GaN single crystal constituting the GaN single crystal substrate 1 is epitaxially grown in the order of the first layer and the second layer on the base substrate based on the method described in the section [Method of manufacturing a gallium nitride single crystal substrate] below. In this epitaxial growth, the first layer is first formed on a mask arranged on the base substrate. The mask has a structure in which a shielding portion and an opening are repeated in the width direction, and is characterized in that the width of one pitch consisting of the width of the shielding portion and the width of the opening is narrow (specifically, the width of one pitch is 10 μm or less). As a result, the first layer can promote the generation of regular pits on the growth surface of the GaN single crystal, thereby contributing to the uniform distribution of dislocations t on the main surface 11. Furthermore, the mask has a small percentage of the width of the opening relative to the width of one pitch, at 10-50%. This suppresses the amount of dislocations propagating from the base substrate to the first layer. In addition, because the thickness of the mask is 0.2 μm or less, the number of new dislocations that are generated during the growth of the first layer can also be suppressed.
 加えて上記エピタキシャル成長においては、上記第1層の厚みが薄い(具体的には20μm以下の厚みである)段階で成長条件を変えることにより、上記第1層上に成長面が平坦となる第2層を形成する。これにより上記ピットに転位が必要以上に集中する前に第1層上に第2層を成長させることができる。つまり上記エピタキシャル成長の初期の段階から、転位を結晶成長の方向に対し垂直な方向に分散させることができ、もって主表面11における転位tの均一な分布に寄与することができる。なおGaN単結晶基板1を構成するGaN単結晶においては、上述のように下地基板から第1層に伝播する転位の量が抑制され、かつ第1層の成長時に新規に発生する転位の数も抑制されるため、低転位化を目的としてピットに必要以上に転位を集中させ、対消滅させる必要がない。以上より、本実施形態に係るGaN単結晶基板1は、上述した上記GaN単結晶の特徴に基づき、面内の転位密度分布が均一になるものと考えられる。 In addition, in the epitaxial growth, the growth conditions are changed when the thickness of the first layer is thin (specifically, 20 μm or less), so that a second layer with a flat growth surface is formed on the first layer. This allows the second layer to be grown on the first layer before dislocations are concentrated in the pits more than necessary. In other words, from the early stage of the epitaxial growth, dislocations can be dispersed in a direction perpendicular to the direction of crystal growth, thereby contributing to a uniform distribution of dislocations t on the main surface 11. In the GaN single crystal constituting the GaN single crystal substrate 1, the amount of dislocations propagating from the base substrate to the first layer is suppressed as described above, and the number of dislocations newly generated during the growth of the first layer is also suppressed, so there is no need to concentrate dislocations more than necessary in the pits and annihilate them for the purpose of reducing dislocations. From the above, it is considered that the GaN single crystal substrate 1 according to this embodiment has a uniform in-plane dislocation density distribution based on the characteristics of the GaN single crystal described above.
 一方、図2に示すような従来のGaN単結晶基板101は、主表面11において転位tの塊のように集中して存する領域(つまり高転位領域)が散在し、転位密度分布は不均一となるものと解される。その理由は、GaN単結晶基板101を構成するGaN単結晶が、本実施形態に係るGaN単結晶基板1を構成するそれとは異なるからである。図2は、従来の窒化ガリウム単結晶基板の転位の分布を説明する模式図である。すなわち上記特許文献1および2等の従来のGaN単結晶基板101を構成するGaN単結晶は、本実施形態に係るGaN単結晶基板1を構成するそれと同様に、下地基板上に第1層、第2層の順にエピタキシャル成長するものであるが、第1に上記エピタキシャル成長に用いられるマスクの構造が異なる。あるいは下地基板上にマスクを配置することなく、GaN単結晶からなる第1層、第2層をエピタキシャル成長させる。このため従来のGaN単結晶基板101を構成するGaN単結晶は、その成長過程でランダムにピットが発生することとなり、かつ下地基板から第1層に伝播する転位の量も少なくない場合がある。 On the other hand, in the conventional GaN single crystal substrate 101 as shown in FIG. 2, there are scattered regions (i.e., high dislocation regions) in which dislocations t are concentrated like clusters on the main surface 11, and it is understood that the dislocation density distribution is non-uniform. The reason is that the GaN single crystal constituting the GaN single crystal substrate 101 is different from that constituting the GaN single crystal substrate 1 according to this embodiment. FIG. 2 is a schematic diagram explaining the distribution of dislocations in a conventional gallium nitride single crystal substrate. That is, the GaN single crystal constituting the conventional GaN single crystal substrate 101 in the above-mentioned Patent Documents 1 and 2, etc., is epitaxially grown in the order of a first layer and a second layer on a base substrate, like that constituting the GaN single crystal substrate 1 according to this embodiment, but first, the structure of the mask used for the epitaxial growth is different. Alternatively, the first layer and the second layer made of GaN single crystal are epitaxially grown without placing a mask on the base substrate. For this reason, the GaN single crystal that constitutes the conventional GaN single crystal substrate 101 randomly develops pits during the growth process, and the amount of dislocations that propagate from the base substrate to the first layer can be significant.
 第2に、従来のGaN単結晶基板101は、第1層の表面に形成したピットに転位に集中させるとともに対消滅させた後、第2層の成長において残余の転位を分散させるから、比較的高転位である領域が周期的に発生する。その結果、従来のGaN単結晶基板101は、図2に示すような転位tの分布が現れるものと推定される。この場合、従来のGaN単結晶基板101の主表面11は、仮に第2の転位密度の平均値が5.0×106cm-2以下であったとしても、第2の転位密度の標準偏差および平均値が、標準偏差/平均値≦0.40という関係を満たすことができない。以下、本実施形態に係るGaN単結晶基板について詳述する。なお、第2の転位密度という用語は、後述する算出方法によって求められる密度として定義されるものである。 Secondly, in the conventional GaN single crystal substrate 101, dislocations are concentrated in the pits formed on the surface of the first layer and annihilated, and then the remaining dislocations are dispersed in the growth of the second layer, so that regions with relatively high dislocation density are periodically generated. As a result, it is estimated that the conventional GaN single crystal substrate 101 has a distribution of dislocations t as shown in FIG. 2. In this case, even if the average value of the second dislocation density is 5.0×10 6 cm −2 or less, the main surface 11 of the conventional GaN single crystal substrate 101 cannot satisfy the relationship of standard deviation/average value≦0.40 for the standard deviation and average value of the second dislocation density. The GaN single crystal substrate according to this embodiment will be described in detail below. The term second dislocation density is defined as a density obtained by a calculation method described later.
 <直径>
 上記GaN単結晶基板の直径は、50mm以上155mm以下であることが好ましい。換言すれば、上記GaN単結晶基板の直径は、2インチ以上6インチ以下であることが好ましい。ここでGaN単結晶基板の直径については、上記主表面がOF、IF等の影響によって幾何学的な円形状とはならない場合の形状であっても、当該主表面は上記OF、IF等が形成される前の円形状を有するものとみなして、その大きさ(直径)を求めるものとする。
<Diameter>
The diameter of the GaN single crystal substrate is preferably 50 mm or more and 155 mm or less. In other words, the diameter of the GaN single crystal substrate is preferably 2 inches or more and 6 inches or less. Here, regarding the diameter of the GaN single crystal substrate, even if the main surface has a shape that is not geometrically circular due to the influence of OF, IF, etc., the main surface is considered to have a circular shape before the OF, IF, etc. are formed, and the size (diameter) of the main surface is determined.
 <主表面>
 本実施形態に係るGaN単結晶基板は、上述のように円形状の主表面を有する。本明細書において当該主表面の形状を表す「円形状」には、幾何学的な円形状が含まれるほか、上記主表面の外周にノッチ、オリエンテーションフラット(以下、「OF」とも記す)またはインデックスフラット(以下、「IF」とも記す)の少なくともいずれかが形成されることにより、主表面が幾何学的な円形状を形成しない場合の形状が含まれる。ここで「主表面が幾何学的な円形状を形成しない場合の形状」とは、主表面の外周上の任意の点から上記主表面の中心まで延びる線分のうち、上記ノッチ、OFおよびIF上の任意の点から主表面の中心まで延びる線分において長さが短くなる場合の形状を意味する。さらに「主表面が幾何学的な円形状を形成しない場合の形状」には、主表面の外周上の任意の点から上記主表面の中心まで延びる線分すべての長さが、GaN単結晶基板の原料となる窒化ガリウム単結晶(以下、「GaN単結晶」とも記す)の形状に起因して、同一になるとは限らない場合の形状も含まれる。この場合、主表面の中心については、重心の位置をいい、GaN単結晶基板の直径については、GaN単結晶基板の外周上の任意の点から上記主表面の中心を通過し上記外周上の他の点まで延びる線分のうち、最長となる線分の長さをいうものとする。
<Main surface>
The GaN single crystal substrate according to this embodiment has a circular main surface as described above. In this specification, the term "circular shape" representing the shape of the main surface includes a geometric circular shape, as well as a shape in which the main surface does not form a geometric circular shape by forming at least one of a notch, an orientation flat (hereinafter also referred to as "OF"), or an index flat (hereinafter also referred to as "IF") on the periphery of the main surface. Here, the term "shape in which the main surface does not form a geometric circular shape" refers to a shape in which, among the line segments extending from any point on the periphery of the main surface to the center of the main surface, the line segments extending from any point on the notch, OF, and IF to the center of the main surface have shorter lengths. Furthermore, the term "shape in which the main surface does not form a geometric circular shape" also includes a shape in which the lengths of all the line segments extending from any point on the periphery of the main surface to the center of the main surface are not necessarily the same due to the shape of the gallium nitride single crystal (hereinafter also referred to as "GaN single crystal") that is the raw material of the GaN single crystal substrate. In this case, the center of the main surface refers to the position of the center of gravity, and the diameter of the GaN single crystal substrate refers to the length of the longest line segment that extends from any point on the outer periphery of the GaN single crystal substrate, passing through the center of the main surface, to another point on the outer periphery.
 (転位密度)
 上記主表面は、第1の転位密度および2以上の第2の転位密度を有する。上記第2の転位密度の平均値は、5.0×106cm-2以下である。上記第2の転位密度の標準偏差および上記平均値は、標準偏差/平均値≦0.40という関係を満たす。上記標準偏差の単位はcm-2である。さらに上記主表面は、2以上の第3の転位密度を有し、上記第3の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.35という関係を満たすことが好ましい。上記主表面は、2以上の第4の転位密度を有し、上記第4の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.53という関係を満たすことも好ましい。
(Dislocation Density)
The main surface has a first dislocation density and a second dislocation density of 2 or more. The average value of the second dislocation density is 5.0×10 6 cm −2 or less. The standard deviation and the average value of the second dislocation density satisfy the relationship of standard deviation/average value≦0.40. The unit of the standard deviation is cm −2 . Furthermore, it is preferable that the main surface has a third dislocation density of 2 or more, and the standard deviation and average value of the third dislocation density satisfy the relationship of standard deviation/average value≦0.35. It is also preferable that the main surface has a fourth dislocation density of 2 or more, and the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value≦0.53.
 上記GaN単結晶基板においては、第2の転位密度の標準偏差および平均値が標準偏差/平均値≦0.40という関係を満たすことが、面内の転位密度分布が均一であることを意味する。さらに上記と共に、第3の転位密度の標準偏差および平均値が標準偏差/平均値≦0.35という関係を満たすこと、ならびに第4の転位密度の標準偏差および平均値が標準偏差/平均値≦0.53という関係を満たすことは、上記GaN単結晶基板において面内の転位密度分布がより均一であることを意味するので好ましい。ここで上記第2の転位密度、第3の転位密度および第4の転位密度の標準偏差/平均値(以下、「変動係数」とも記す)は、いわば面内の転位密度分布の均一性を適切に評価するために本発明者らが見出した指標である。一方、第1の転位密度は、上記第2の転位密度、第3の転位密度および第4の転位密度を算出するために用いる基準面積を求めるのに必要となる。 In the above GaN single crystal substrate, the standard deviation and average value of the second dislocation density satisfying the relationship of standard deviation/average value≦0.40 means that the in-plane dislocation density distribution is uniform. In addition to the above, the standard deviation and average value of the third dislocation density satisfying the relationship of standard deviation/average value≦0.35 and the standard deviation and average value of the fourth dislocation density satisfying the relationship of standard deviation/average value≦0.53 are preferable because they mean that the in-plane dislocation density distribution is more uniform in the above GaN single crystal substrate. Here, the standard deviation/average value of the second dislocation density, the third dislocation density, and the fourth dislocation density (hereinafter also referred to as "coefficient of variation") are indices that the present inventors have found in order to appropriately evaluate the uniformity of the in-plane dislocation density distribution. On the other hand, the first dislocation density is necessary to determine the reference area used to calculate the above second dislocation density, third dislocation density, and fourth dislocation density.
 本発明者らは、GaN単結晶基板において面内の転位密度分布が均一であれば、転位密度を算出するための単位面積の大小に関わらず、転位密度の変動係数がバラツキなく低い値にて示されることに着目した。すなわちGaN単結晶基板において面内の転位密度分布が均一である場合、一の単位面積に基づいて算出した一の転位密度の変動係数は、他の単位面積に基づいて算出した他の転位密度の変動係数と同程度であり、かつ共に低い値を示す。このような前提の下、本発明者らは、面内の転位密度分布の均一性を適切に評価するために、主表面において転位が100個存する面積を、転位密度を算出するための基準となる面積(以下、「基準面積」とも記す)としてまず設定し、当該基準面積よりも小さな単位面積(たとえば基準面積の50%、30%または10%の面積)にて転位密度を求め、その平均値および標準偏差から上記変動係数を求めた。その結果、当該基準面積よりも小さな単位面積にて算出した転位密度の上記変動係数が後述するような所定値以下となる場合、GaN単結晶基板において面内の転位密度分布が均一となり、デバイス特性を安定的に向上させることができることを知見した。 The inventors have noticed that if the in-plane dislocation density distribution is uniform in a GaN single crystal substrate, the coefficient of variation of the dislocation density is consistently low, regardless of the size of the unit area used to calculate the dislocation density. In other words, if the in-plane dislocation density distribution is uniform in a GaN single crystal substrate, the coefficient of variation of one dislocation density calculated based on one unit area is comparable to the coefficient of variation of another dislocation density calculated based on another unit area, and both are low. Under such a premise, in order to properly evaluate the uniformity of the in-plane dislocation density distribution, the inventors first set an area on the main surface where 100 dislocations exist as a reference area for calculating the dislocation density (hereinafter also referred to as the "reference area"), and calculated the dislocation density in a unit area smaller than the reference area (for example, an area that is 50%, 30%, or 10% of the reference area), and calculated the above-mentioned coefficient of variation from the average value and standard deviation. As a result, it was discovered that when the above-mentioned coefficient of variation of the dislocation density calculated for a unit area smaller than the reference area is equal to or less than a predetermined value described below, the in-plane dislocation density distribution in the GaN single crystal substrate becomes uniform, and device characteristics can be stably improved.
 たとえば本実施形態に係るGaN単結晶基板に対し、基準面積の30%の面積を単位面積として転位密度(第2の転位密度に相当)を算出した場合、その変動係数は0.40以下であれば面内の転位密度分布が均一となり、デバイス特性を安定的に向上させることができることを知見した。併せて上記の効果を得るには、上記GaN単結晶基板に対し、基準面積の50%の面積を単位面積として転位密度(第3の転位密度に相当)を算出した場合、その変動係数は0.35以下となることが好ましく、基準面積の10%の面積を単位面積として転位密度(第4の転位密度に相当)を算出した場合、その変動係数は0.53以下となることが好ましいことも知見した。以下、第2の転位密度、第3の転位密度および第4の転位密度の具体的な算出方法について説明する。 For example, it has been found that when the dislocation density (corresponding to the second dislocation density) of the GaN single crystal substrate according to this embodiment is calculated using an area that is 30% of the reference area as a unit area, if the coefficient of variation is 0.40 or less, the in-plane dislocation density distribution is uniform and the device characteristics can be stably improved. In addition, in order to obtain the above effect, it has been found that when the dislocation density (corresponding to the third dislocation density) of the GaN single crystal substrate is calculated using an area that is 50% of the reference area as a unit area, the coefficient of variation is preferably 0.35 or less, and when the dislocation density (corresponding to the fourth dislocation density) of the GaN single crystal substrate is calculated using an area that is 10% of the reference area as a unit area, the coefficient of variation is preferably 0.53 or less. Specific methods for calculating the second dislocation density, the third dislocation density, and the fourth dislocation density are described below.
 図3は、本実施形態に係る窒化ガリウム単結晶基板において基準面積を求めるために設定する主表面上の9箇所の第1の測定領域およびその中心点の座標(X,Y)を説明する説明図である。図4は、本実施形態に係る窒化ガリウム単結晶基板において第2の転位密度を求めるために、主表面上に1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子、および第2の測定領域を説明する説明図である。第2の転位密度は、図3および図4を参照し、次の要領によって求めることができる。 FIG. 3 is an explanatory diagram illustrating nine first measurement regions on the main surface set to determine the reference area in the gallium nitride single crystal substrate according to this embodiment, and the coordinates (X, Y) of their center points. FIG. 4 is an explanatory diagram illustrating a virtual lattice in which squares with sides of 2 mm are laid out on the main surface in such a way that the greatest number of squares are arranged in parallel without overlapping each other, and the second measurement regions, in order to determine the second dislocation density in the gallium nitride single crystal substrate according to this embodiment. The second dislocation density can be determined as follows, with reference to FIGS. 3 and 4.
 まず図3に示すように、主表面11上の9箇所の第1の測定領域A1を設定し、第1の測定領域A1それぞれで転位の数を測定する。図3において第1の測定領域A1は、1辺が100μmである正方形からなる領域である。またGaN単結晶基板1の直径をDで表し、上記主表面の中心を通り、上記中心で直交する主表面11上の2軸をX軸およびY軸とするとき、第1の測定領域A1の中心点CのX軸およびY軸の座標(X、Y)は、(0,0)、(D/4-5,0)、(0,D/4-5)、(-(D/4-5),0)、(0,-(D/4-5))、(D/2-10,0)、(0,D/2-10)、(-(D/2-10),0)および(0,-(D/2-10))である。なお上記Dおよび上記座標(X、Y)中のXおよびYの単位はmmである。 First, as shown in FIG. 3, nine first measurement areas A1 are set on the main surface 11, and the number of dislocations is measured in each of the first measurement areas A1. In FIG. 3, the first measurement area A1 is a square area with one side of 100 μm. If the diameter of the GaN single crystal substrate 1 is represented by D, and the two axes on the main surface 11 that pass through the center of the main surface and are perpendicular to each other at the center are the X-axis and the Y-axis, the coordinates (X, Y) of the X-axis and the Y-axis of the center point C of the first measurement area A1 are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0), and (0, -(D/2-10)). The units of D and X and Y in the coordinates (X, Y) are mm.
 上記転位の数は、次の方法により求めることができる。GaN単結晶基板の主表面11に対し多光子励起フォトルミネッセンス法を適用し、上記主表面11上に設定した上述した第1の測定領域A1を、多光子励起顕微鏡を用いて観察する。上記の観察は、たとえば対物レンズ5倍でCCD上に結像することにより行うことができる。この場合、本顕微鏡に接続された外部モニター上に映し出される画像(1視野)は、上記GaN単結晶基板1の主表面11において上記第1の測定領域A1を含む2.5mm×2.0mmの範囲に対応する画像となる。このため、上記画像の中央部分(第1の測定領域A1であるとみなすことのできる0.1mm×0.1mmのサイズ)を電子的に拡大した画像に現れた暗点の数、すなわち転位の数をカウントする。ただし、拡大した上記画像の画質が悪い場合、上記対物レンズの倍率を10~100倍とすることによって高倍率画像を得、更に電子的な拡大も組み合わせて当該高倍率画像の中央部分(第1の測定領域A1であるとみなすことのできる0.1mm×0.1mmのサイズ)の暗点の数をカウントすることができる。続いて9箇所の第1の測定領域A1において測定された暗点の総数を求め、これを上記転位の1cm2当たりの数に換算することにより第1の転位密度を求めることができる。さらに100を第1の転位密度で除することにより、上述した基準面積を求めることができる。基準面積の単位としてはたとえばμm2とすることができる。 The number of dislocations can be obtained by the following method. A multiphoton excitation photoluminescence method is applied to the main surface 11 of the GaN single crystal substrate, and the above-mentioned first measurement area A1 set on the main surface 11 is observed using a multiphoton excitation microscope. The above observation can be performed, for example, by forming an image on a CCD with a 5x objective lens. In this case, the image (one field of view) displayed on an external monitor connected to this microscope corresponds to a 2.5 mm x 2.0 mm range including the first measurement area A1 on the main surface 11 of the GaN single crystal substrate 1. Therefore, the number of dark spots that appear in an image obtained by electronically enlarging the central part of the image (a size of 0.1 mm x 0.1 mm that can be considered to be the first measurement area A1), that is, the number of dislocations, is counted. However, if the image quality of the magnified image is poor, a high-magnification image can be obtained by setting the magnification of the objective lens to 10 to 100 times, and further combining electronic magnification to count the number of dark spots in the central part of the high-magnification image (a size of 0.1 mm x 0.1 mm that can be considered as the first measurement area A1). Next, the total number of dark spots measured in the nine first measurement areas A1 is calculated, and this is converted into the number of dislocations per cm2 to obtain the first dislocation density. Furthermore, the above-mentioned reference area can be calculated by dividing 100 by the first dislocation density. The unit of the reference area can be, for example, μm2 .
 次に、図4に示すように、主表面11上において1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子Gを形成する。ここで主表面11上に「正方形が互いに重なることなく最も多く並列するように敷き詰められた」とは、主表面11上に上記正方形を互いに重なることなく並列するように敷き詰めた場合において、上記正方形と主表面11の外周およびその外側とが重なる場合、当該正方形については仮想の格子Gを構成する要素としては除外されることを意味する。なぜならGaN単結晶基板1の主表面11の外周等を含む外周近傍の領域は、基板毎に転位の数の変動が大きく、かつ通常、半導体デバイスの材料として用いられない領域となるからである。 Next, as shown in FIG. 4, a virtual lattice G is formed on the main surface 11 in which squares with sides of 2 mm are laid out in the greatest number of parallel rows without overlapping each other. Here, "squares laid out in the greatest number of parallel rows without overlapping each other" on the main surface 11 means that when the squares are laid out in the greatest number of parallel rows without overlapping each other on the main surface 11, if the squares overlap with the periphery of the main surface 11 and its outside, the squares are excluded from being elements that make up the virtual lattice G. This is because the number of dislocations varies greatly from substrate to substrate in the region near the periphery, including the periphery of the main surface 11 of the GaN single crystal substrate 1, and is generally not used as a material for semiconductor devices.
 さらに、格子Gを構成する上記正方形の中央部にそれぞれ第2の測定領域A2を設定する。第2の測定領域A2は、上記基準面積の30%の面積を有する。続いて、上記第2の測定領域A2を上述した多光子励起顕微鏡を用いて観察する。この観察では、本顕微鏡に接続された外部モニター上に映し出される画像(1視野)に少なくとも第2の測定領域A2のサイズが含まれるように上記対物レンズの倍率を適宜選択する。その上で、上記多光子励起顕微鏡を用いて観察した第2の測定領域A2内に現れた暗点、すなわち転位の数をカウントし、かつ上記暗点の数を1cm2当たりの転移の数に換算することによって第2の転位密度を算出する。たとえば、基準面積における転位密度が1.0×106cm-2である場合、上記基準面積の30%の面積である第2の測定領域A2のサイズは、0.05mm×0.05mmとなる。この場合、倍率100倍の対物レンズを用いて外部モニター上に高倍率画像(0.125mm×0.1mmのサイズ)を写し出し、当該高倍率画像の中央部分(0.05mm×0.05mmのサイズ)の暗点の数をカウントし、上記暗点の数を1cm2当たりの転位の数に換算することによって第2の転位密度を算出することができる。次に上述した観察を、縦方向および横方向にGaN単結晶基板1を2mmピッチで移動する毎に行うことにより、主表面11上の仮想の格子Gに設定した第2の測定領域A2すべてを対象にして、第2の転位密度を算出する。最後に、上記第2の測定領域A2毎に算出された第2の転位密度から、第2の転位密度の平均値および標準偏差を求め、もって変動率も求めることができる。 Furthermore, a second measurement area A2 is set in the center of each of the squares constituting the lattice G. The second measurement area A2 has an area of 30% of the reference area. Next, the second measurement area A2 is observed using the multiphoton excitation microscope described above. In this observation, the magnification of the objective lens is appropriately selected so that at least the size of the second measurement area A2 is included in an image (one field of view) displayed on an external monitor connected to this microscope. Then, the number of dark spots, i.e., dislocations, that appear in the second measurement area A2 observed using the multiphoton excitation microscope are counted, and the number of dark spots is converted into the number of dislocations per cm2 to calculate the second dislocation density. For example, when the dislocation density in the reference area is 1.0 x 106 cm -2 , the size of the second measurement area A2, which is 30% of the reference area, is 0.05 mm x 0.05 mm. In this case, a high-magnification image (size of 0.125 mm x 0.1 mm) is projected on an external monitor using a 100x objective lens, the number of dark spots in the central part (size of 0.05 mm x 0.05 mm) of the high-magnification image is counted, and the number of dark spots is converted into the number of dislocations per cm2 , whereby the second dislocation density can be calculated. Next, the above-mentioned observation is performed every time the GaN single crystal substrate 1 is moved at a pitch of 2 mm in the vertical and horizontal directions, thereby calculating the second dislocation density for all the second measurement areas A2 set in the virtual lattice G on the main surface 11. Finally, the average value and standard deviation of the second dislocation density are calculated from the second dislocation density calculated for each of the second measurement areas A2, and thus the fluctuation rate can also be calculated.
 第3の転位密度および第4の転位密度については、仮想の格子Gを構成する正方形の中央部にそれぞれ設定する第3の測定領域および第4の領域の面積を、それぞれ上記基準面積の50%および10%とすること以外、第2の転位密度の算出方法と同じ要領により求めることができる。さらに第3の測定領域毎および第4の測定領域毎に算出された第3の転位密度および第4の転位密度から、第3の転位密度の平均値、標準偏差および変動係数を求めることができ、かつ第4の転位密度の平均値、標準偏差および変動係数を求めることができる。 The third dislocation density and the fourth dislocation density can be calculated in the same manner as the second dislocation density calculation method, except that the areas of the third measurement region and the fourth region, which are set in the center of the squares that make up the virtual lattice G, are 50% and 10% of the reference area, respectively. Furthermore, the average value, standard deviation and coefficient of variation of the third dislocation density can be calculated from the third dislocation density and the fourth dislocation density calculated for each third measurement region and each fourth measurement region, and the average value, standard deviation and coefficient of variation of the fourth dislocation density can be calculated.
 ここで上述のように第2の転位密度の平均値は、5.0×106cm-2以下である。第2の転位密度の平均値は、3.5×106cm-2以下であることが好ましい。第2の転位密度の平均値の下限は、理想としては0cm-2であるが、GaN単結晶の物理的性質から少なくとも1.0×103cm-2以上となることが現実的である。さらに第3の転位密度の平均値および第4の転位密度の平均値は、本開示の作用効果を考慮すれば、第2の転位密度の平均値と同程度であることができる。したがって第3の転位密度および第4の転位密度の平均値は、具体的には5.0×106cm-2以下であることが好ましく、3.5×106cm-2以下であることがより好ましい。これにより転位密度が低減したGaN単結晶基板を提供することができる。 Here, as described above, the average value of the second dislocation density is 5.0×10 6 cm −2 or less. The average value of the second dislocation density is preferably 3.5×10 6 cm −2 or less. The lower limit of the average value of the second dislocation density is ideally 0 cm −2 , but it is realistic to set it to at least 1.0×10 3 cm −2 or more from the physical properties of the GaN single crystal. Furthermore, the average value of the third dislocation density and the average value of the fourth dislocation density can be approximately the same as the average value of the second dislocation density, taking into account the effects of the present disclosure. Therefore, the average values of the third dislocation density and the fourth dislocation density are preferably 5.0×10 6 cm −2 or less, and more preferably 3.5×10 6 cm −2 or less. This makes it possible to provide a GaN single crystal substrate with reduced dislocation density.
 さらに上記GaN単結晶基板においては、面内の転位密度分布をより均一とする観点から、第2の転位密度の標準偏差および平均値が標準偏差/平均値≦0.40という関係を満たす(つまり変動係数が0.40以下である)ことが好ましい。さらに第3の転位密度の標準偏差および平均値が標準偏差/平均値≦0.34という関係を満たす(つまり変動係数が0.34以下である)こと、ならびに第4の転位密度の標準偏差および平均値が標準偏差/平均値≦0.50という関係を満たす(つまり変動係数が0.50以下である)ことがより好ましい。ここで上記第2の転位密度、第3の転位密度および第4の転位密度の変動係数の下限は、理想としては0であるが、GaN単結晶の物理的性質から少なくとも0.10以上となることが現実的である。 Furthermore, in the above GaN single crystal substrate, from the viewpoint of making the in-plane dislocation density distribution more uniform, it is preferable that the standard deviation and average value of the second dislocation density satisfy the relationship of standard deviation/average value≦0.40 (i.e., the coefficient of variation is 0.40 or less). It is more preferable that the standard deviation and average value of the third dislocation density satisfy the relationship of standard deviation/average value≦0.34 (i.e., the coefficient of variation is 0.34 or less), and that the standard deviation and average value of the fourth dislocation density satisfy the relationship of standard deviation/average value≦0.50 (i.e., the coefficient of variation is 0.50 or less). Here, the lower limit of the coefficient of variation of the above second dislocation density, third dislocation density, and fourth dislocation density is ideally 0, but it is realistic that it is at least 0.10 or more due to the physical properties of GaN single crystal.
 (不純物原子:ドーパント)
 上記GaN単結晶基板は、不純物原子を含むことが好ましい。この場合において上記不純物原子は、ケイ素(Si)およびゲルマニウム(Ge)の両方またはいずれか一方であり、上記不純物原子の濃度は、1.0×1018cm-3以上5.0×1018cm-3以下である。これによりSiおよびGeの両方またはいずれか一方を含むn型(電子供与型)のGaN単結晶基板において、デバイス特性を安定的に向上させる効果を付与することができる。とりわけ、不純物原子を上述した濃度範囲にて含むことにより、n型電極を形成しやすい等の理由からデバイス形成に好適なGaN単結晶基板を提供することが可能となる。上記不純物原子の原子濃度は、GDMS(グロー放電質量分析法)を用いることにより測定することができる。さらに上記GaN単結晶基板のキャリア濃度は、Van der Pauw法によって求められる上記GaN単結晶基板の比抵抗の測定値に基づいて算出することができる。
(impurity atoms: dopants)
The GaN single crystal substrate preferably contains impurity atoms. In this case, the impurity atoms are both or either of silicon (Si) and germanium (Ge), and the concentration of the impurity atoms is 1.0×10 18 cm −3 or more and 5.0×10 18 cm −3 or less. This can provide an effect of stably improving device characteristics in an n-type (electron-donating) GaN single crystal substrate containing both or either of Si and Ge. In particular, by containing impurity atoms in the above-mentioned concentration range, it is possible to provide a GaN single crystal substrate suitable for device formation, for example, because it is easy to form an n-type electrode. The atomic concentration of the impurity atoms can be measured by using GDMS (glow discharge mass spectrometry). Furthermore, the carrier concentration of the GaN single crystal substrate can be calculated based on the measured value of the resistivity of the GaN single crystal substrate obtained by the Van der Pauw method.
 上記GaN単結晶基板は、これを構成するGaN単結晶のエピタキシャル成長時に上記不純物原子を含むガスを導入することにより、高キャリア濃度のn型GaN単結晶基板とすることができる。不純物原子を含むガスとしては、たとえばSiドープの場合、テトラクロロシラン(SiCl4)ガス、ジクロロシラン(SiH2Cl2)ガスまたはシラン(SiH4)ガスを例示することができる。Geドープの場合、テトラクロロゲルマン(GeCl4)ガス、ジクロロゲルマン(GeH2Cl2)ガスまたはゲルマン(GeH4)ガスを例示することができる。 The GaN single crystal substrate can be made into an n-type GaN single crystal substrate with a high carrier concentration by introducing a gas containing the above-mentioned impurity atoms during epitaxial growth of the GaN single crystal constituting the substrate. For example, in the case of Si doping, the gas containing the impurity atoms can be tetrachlorosilane ( SiCl4 ) gas, dichlorosilane ( SiH2Cl2 ) gas, or silane ( SiH4 ) gas. In the case of Ge doping, the gas can be tetrachlorogermane ( GeCl4 ) gas, dichlorogermane ( GeH2Cl2 ) gas, or germane ( GeH4 ) gas.
 〔窒化ガリウム単結晶基板の製造方法〕
 本実施形態に係る窒化ガリウム単結晶基板(GaN単結晶基板)の製造方法は、上記した円形状の主表面を有するGaN単結晶基板の製造方法であることが好ましく、たとえば次の工程を含むことができる。すなわち上記GaN単結晶基板の製造方法は、成長用基板と、上記成長用基板上に配置される窒化ガリウム膜とを含む下地基板を準備する工程と、上記下地基板上に、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクを配置する工程と、ハイドライド気相成長法によって上記下地基板からファセット構造を有する窒化ガリウム単結晶からなる第1層を成長させる工程と、上記第1層上に、成長面が{0001}面である上記窒化ガリウム単結晶からなる第2層を成長させることにより、上記下地基板、上記第1層および上記第2層をこの順に含む構造体を得る工程と、上記構造体から上記下地基板および上記第1層を除き、かつ上記第2層を加工することによって上記GaN単結晶基板を得る工程とを含む。とりわけ上記マスクの厚みは、0.2μm以下である。上記マスクの上記遮蔽部の幅と上記開口部の幅とで構成される1ピッチの幅は、10μm以下である。上記マスクの一の上記1ピッチの幅に対する上記開口部の幅の百分率は、10%以上50%以下である。上記第1層の厚みは、20μm以下である。このような特徴を備える製造方法により、面内の転位密度分布が均一であってデバイス特性を安定的に向上させることが可能なGaN単結晶基板を得ることができる。
[Method for manufacturing gallium nitride single crystal substrate]
The manufacturing method of the gallium nitride single crystal substrate (GaN single crystal substrate) according to this embodiment is preferably a manufacturing method of the GaN single crystal substrate having the circular main surface described above, and may include, for example, the following steps. That is, the manufacturing method of the GaN single crystal substrate includes the steps of preparing a base substrate including a growth substrate and a gallium nitride film disposed on the growth substrate, disposing a mask having a structure in which a shielding portion and an opening portion are repeated in the width direction on the base substrate, growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy, growing a second layer made of the gallium nitride single crystal having a {0001} plane on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order, and removing the base substrate and the first layer from the structure and processing the second layer to obtain the GaN single crystal substrate. In particular, the thickness of the mask is 0.2 μm or less. The width of one pitch formed by the width of the shielding portion of the mask and the width of the opening is 10 μm or less. The percentage of the width of the opening to the width of one pitch of the mask is 10% to 50%. The thickness of the first layer is 20 μm or less. By using a manufacturing method having such characteristics, it is possible to obtain a GaN single crystal substrate having a uniform in-plane dislocation density distribution and capable of stably improving device characteristics.
 上記GaN単結晶基板の製造方法は、上述した効果を有するGaN単結晶基板を歩留まりよく製造する観点から、たとえば図5のフローチャートに示すような工程を有することが好ましい。図5は、本実施形態に係る窒化ガリウム単結晶基板の製造方法の一例を示すフローチャートである。すなわち上記GaN単結晶基板の製造方法は、成長用基板と、上記成長用基板上に配置される窒化ガリウム膜(以下、「GaN膜」とも記す)とを含む下地基板を準備する工程S10(第1工程:下地基板を準備する工程)と、上記下地基板上に、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクを配置する工程S20(第2工程:マスクを配置する工程)と、ハイドライド気相成長法(以下、「HVPE法」とも記す)によって上記下地基板からファセット構造を有する窒化ガリウム単結晶からなる第1層を成長させる工程S30(第3工程:第1層を成長させる工程)と、上記第1層上に、成長面が{0001}面である上記窒化ガリウム単結晶からなる第2層を成長させることにより、上記下地基板、上記第1層および上記第2層をこの順に含む構造体を得る工程S40(第4工程:構造体を得る工程)と、上記構造体から上記下地基板および上記第1層を除き、かつ上記第2層を加工することによって上記GaN単結晶基板を得る工程S50(第5工程:GaN単結晶基板を得る工程)とを含むことが好ましい。以下、各工程について順に説明する。 From the viewpoint of producing GaN single crystal substrates having the above-mentioned effects with a high yield, the method for producing the GaN single crystal substrate preferably has the steps shown in the flowchart of FIG. 5, for example. FIG. 5 is a flowchart showing an example of a method for producing a gallium nitride single crystal substrate according to this embodiment. That is, the method for producing the GaN single crystal substrate includes the steps of: preparing a base substrate S10 (first step: base substrate preparation step) including a growth substrate and a gallium nitride film (hereinafter also referred to as "GaN film") to be placed on the growth substrate; arranging a mask having a structure in which shielding portions and openings are repeated in the width direction on the base substrate S20 (second step: mask placement step); and growing a first layer of gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy (hereinafter also referred to as "HVPE method"). It is preferable that the method includes a step S30 of growing a layer (third step: step of growing the first layer), a step S40 of growing a second layer made of the gallium nitride single crystal having a {0001} growth surface on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order (fourth step: step of obtaining a structure), and a step S50 of removing the base substrate and the first layer from the structure and processing the second layer to obtain the GaN single crystal substrate (fifth step: step of obtaining a GaN single crystal substrate). Each step will be described in order below.
 <第1工程>
 第1工程は、成長用基板と、上記成長用基板上に配置されるGaN膜とを含む下地基板を準備する工程S10である。本工程の目的は、成長用基板上に上記GaN膜を配置することにより、本開示の効果が得られるGaN単結晶基板を構成するGaN単結晶を成長させるために必要な下地基板を準備することである。成長用基板の材質としては、GaN膜を成長させることができる基板である限り特に制限されない。たとえば成長用基板としてはサファイア基板、ヒ化ガリウム(GaAs)基板などのGaNとは異なる材料(異種材料)を用いた異種基板を準備することができ、GaN(同種材料)を用いた同種基板を準備することもできる。その他、成長用基板としては窒化アルミニウム(AlN)基板、炭化ケイ素(SiC)基板、ホウ化ジルコニウム(ZrB2)基板、酸化ケイ素/酸化アルミニウム(SiO2/Al23)焼結体基板、モリブデン(Mo)基板などを適用することもできる。これらの成長用基板は、市場から入手することができ、あるいは従来公知の方法により製造することができる。GaN膜については、これをMOCVD(有機金属化学気相堆積)法等の従来公知の方法により成長用基板の少なくとも一部の表面上に配置することができる。
<First step>
The first step is a step S10 of preparing a base substrate including a growth substrate and a GaN film disposed on the growth substrate. The purpose of this step is to prepare a base substrate necessary for growing a GaN single crystal constituting a GaN single crystal substrate that can obtain the effects of the present disclosure by disposing the GaN film on the growth substrate. The material of the growth substrate is not particularly limited as long as it is a substrate on which a GaN film can be grown. For example, a heterogeneous substrate using a material (heterogeneous material) different from GaN, such as a sapphire substrate or a gallium arsenide (GaAs) substrate, can be prepared as the growth substrate, and a homogeneous substrate using GaN (homogeneous material) can also be prepared. In addition, an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, a zirconium boride (ZrB 2 ) substrate, a silicon oxide/aluminum oxide (SiO 2 /Al 2 O 3 ) sintered body substrate, a molybdenum (Mo) substrate, etc. can also be applied as the growth substrate. These growth substrates can be commercially available or can be manufactured by conventional methods. The GaN film can be disposed on at least a portion of the surface of the growth substrate by conventional methods such as MOCVD (metal organic chemical vapor deposition).
 <第2工程>
 第2工程は、上記下地基板上に、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクを配置する工程S20である。本工程の目的は、図6に示すような幅方向に遮蔽部21aと開口部21bとを繰り返す構造(パターン)を有するマスク21を、従来公知の方法を用いて下地基板上に形成することによって、下地基板上にマスク21を配置することである。図6は、本実施形態に係る窒化ガリウム単結晶基板を得るために用いるマスクの構造を説明する模式図である。
<Second step>
The second step is step S20 of arranging a mask having a structure in which a shielding portion and an opening are repeated in the width direction on the base substrate. The purpose of this step is to arrange the mask 21 on the base substrate by forming a mask 21 having a structure (pattern) in which a shielding portion 21a and an opening 21b are repeated in the width direction as shown in Fig. 6 on the base substrate using a conventionally known method. Fig. 6 is a schematic diagram illustrating the structure of the mask used to obtain the gallium nitride single crystal substrate according to this embodiment.
 マスク21は、平面視矩形状で、上述のように幅方向に遮蔽部21aと開口部21bとを繰り返す構造を有する。さらに遮蔽部21aおよび開口部21bは、マスク21の長さ方向に連続する構造を有する。マスク21のパターンは、遮蔽部21aの幅W1と開口部21bの幅W2とで構成される1ピッチの幅Pが10μm以下である。さらにマスク21の1ピッチの幅Pに対する開口部21bの幅の百分率(以下、「開口部率」とも記す)は、10~50%以下である。マスク21の厚みは0.2μm以下である。マスク21の遮蔽部21aの幅W1と開口部21bの幅W2とで構成される1ピッチの幅Pは、5~8μm以下であることが好ましく、マスク21の上記開口部率は、14~50%であることが好ましく、マスク21の厚みは0.1μm以下であることが好ましい。構造上の理由から、マスク21の厚みは10μm以上であることが現実的である。 The mask 21 has a rectangular shape in plan view, and has a structure in which the shielding portion 21a and the opening 21b are repeated in the width direction as described above. Furthermore, the shielding portion 21a and the opening 21b have a structure in which they are continuous in the length direction of the mask 21. The pattern of the mask 21 has a pitch width P consisting of the width W1 of the shielding portion 21a and the width W2 of the opening 21b, which is 10 μm or less. Furthermore, the percentage of the width of the opening 21b to the width P of one pitch of the mask 21 (hereinafter also referred to as the "opening rate") is 10 to 50% or less. The thickness of the mask 21 is 0.2 μm or less. The pitch width P consisting of the width W1 of the shielding portion 21a of the mask 21 and the width W2 of the opening 21b is preferably 5 to 8 μm or less, the opening rate of the mask 21 is preferably 14 to 50%, and the thickness of the mask 21 is preferably 0.1 μm or less. For structural reasons, it is practical for the thickness of the mask 21 to be 10 μm or more.
 マスク21において遮蔽部21aの幅W1と開口部21bの幅W2とで構成される1ピッチの幅Pが10μm以下であることにより、後述の第1層を成長させる工程S30において、第1層(GaN単結晶)の成長面に規則的なピットの発生を促すことができる。さらにマスク21の開口部率が10~50%以下であることにより、後述の第1層を成長させる工程S30において、下地基板から第1層に伝播する転位の量を抑制することができる。マスク21の厚みが0.2μm以下であることにより、第1層の成長時に新規に発生する転位の数を抑制することができる。 By having the width P of one pitch, which is composed of the width W1 of the shielding portion 21a and the width W2 of the opening portion 21b in the mask 21, be 10 μm or less, it is possible to promote the generation of regular pits on the growth surface of the first layer (GaN single crystal) in step S30, which is described below, for growing the first layer. Furthermore, by having the opening ratio of the mask 21 be 10-50% or less, it is possible to suppress the amount of dislocations propagating from the base substrate to the first layer in step S30, which is described below, for growing the first layer. By having the thickness of the mask 21 be 0.2 μm or less, it is possible to suppress the number of new dislocations that are generated during the growth of the first layer.
 マスク21は、たとえば次の方法により形成することができる。まず下地基板の表面全面にプラズマCVD(Chemical Vapor Deposition)法等により化学蒸着膜(たとえばシリコン系の化学蒸着膜、とりわけ酸化ケイ素(SiO2)、炭化ケイ素(SiC)、窒化ケイ素(SiN)等の化学蒸着膜)を形成する。その後、当該化学蒸着膜上にフォトリソグラフィー法によりパターニングされたレジストを形成し、当該レジストをエッチングマスクとしたエッチングを行うことによって形成することができる。これにより図7に示すように、成長用基板31と、成長用基板31上に配置されるGaN膜32とからなる下地基板30の上記GaN膜32上に、マスク21を形成することができる。図7は、図6のマスクを下地基板上に配置した様子を説明する断面模式図である。図7において符号Mtは、マスク21の厚み(0.2μm以下)を表す。 The mask 21 can be formed, for example, by the following method. First, a chemical vapor deposition film (for example, a silicon-based chemical vapor deposition film, particularly a chemical vapor deposition film of silicon oxide (SiO 2 ), silicon carbide (SiC), silicon nitride (SiN), etc.) is formed on the entire surface of the base substrate by plasma CVD (Chemical Vapor Deposition) or the like. After that, a resist patterned by photolithography is formed on the chemical vapor deposition film, and etching is performed using the resist as an etching mask. As a result, as shown in FIG. 7, the mask 21 can be formed on the GaN film 32 of the base substrate 30 consisting of the growth substrate 31 and the GaN film 32 disposed on the growth substrate 31. FIG. 7 is a schematic cross-sectional view illustrating the state in which the mask of FIG. 6 is disposed on the base substrate. In FIG. 7, the symbol Mt represents the thickness (0.2 μm or less) of the mask 21.
 ここでマスク21の長さ方向は、下地基板30上でGaN膜32を構成するGaN単結晶の<11-20>方向または<1-100>方向と平行であることが好ましい。つまりマスク21の遮蔽部21aおよび開口部21bが連続する方向と、GaN膜32を構成するGaN単結晶の<11-20>方向または<1-100>方向とが平行であることが好ましい。これにより上記GaN単結晶からGaN単結晶基板を得た場合、面内の転位密度分布をより均一にすることができる。 The length direction of the mask 21 is preferably parallel to the <11-20> or <1-100> direction of the GaN single crystal that constitutes the GaN film 32 on the base substrate 30. In other words, the direction in which the shielding portions 21a and openings 21b of the mask 21 continue is preferably parallel to the <11-20> or <1-100> direction of the GaN single crystal that constitutes the GaN film 32. This makes it possible to make the in-plane dislocation density distribution more uniform when a GaN single crystal substrate is obtained from the GaN single crystal.
 <第3工程>
 第3工程は、ハイドライド気相成長(HVPE:Hydride Vapor Phase Epitaxy)法によって上記下地基板からファセット構造を有する窒化ガリウム単結晶からなる第1層を成長させる工程S30である。本工程の目的は、成長面にピットを規則的に発生させたファセット構造を有する第1層(GaN単結晶)を下地基板上に形成することである。このような第1層は、たとえば次の要領により形成することができる。
<Third step>
The third step is step S30 of growing a first layer made of gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy (HVPE). The purpose of this step is to form a first layer (GaN single crystal) having a facet structure with pits regularly generated on the growth surface on the base substrate. Such a first layer can be formed, for example, in the following manner.
 まず、ホットウォール型反応炉内の石英製またはカーボン製の試料ホルダ上にマスクを配置した下地基板を設置し、この下地基板中の少なくともGaN膜を1000℃程度になるまで加熱する。次に、上記反応炉内の上流側ボート内に設置した金属Gaに対し、窒素(N2)ガスおよび水素(H2)ガスをキャリアガスとして塩化水素(HCl)ガスを吹き付けることにより塩化ガリウム(GaCl)ガスを生成する。さらに上記反応炉内にアンモニア(NH3)ガスを導入する。続いて、上記GaClガスおよびNH3ガスを、H2ガスをキャリアガスとして下地基板中のGaN膜にマスクの開口部を介して供給することにより、下地基板のマスクが配置された側に、第1層(GaN単結晶)を次の第1成長条件にて成長させることができる。さらに第1成長条件においてGaClガスおよびNH3ガスを供給する量、または時間を調整することにより上記第1層の厚みを、20μm以下に制御することができる。 First, a base substrate with a mask placed on it is placed on a quartz or carbon sample holder in a hot wall type reactor, and at least the GaN film in the base substrate is heated to about 1000°C. Next, hydrogen chloride (HCl) gas is sprayed onto metal Ga placed in an upstream boat in the reactor, using nitrogen ( N2 ) gas and hydrogen ( H2 ) gas as carrier gases, to generate gallium chloride (GaCl) gas. Furthermore, ammonia ( NH3 ) gas is introduced into the reactor. Next, the GaCl gas and NH3 gas are supplied to the GaN film in the base substrate through the opening of the mask, using H2 gas as carrier gas, so that a first layer (GaN single crystal) can be grown on the side of the base substrate where the mask is placed, under the following first growth conditions. Furthermore, the thickness of the first layer can be controlled to 20 μm or less by adjusting the amount or time of supplying GaCl gas and NH3 gas under the first growth conditions.
 具体的な第1成長条件は、次のとおりである。
GaClガス分圧:0.8~7kPa
NH3ガス分圧:1.5~36kPa
GaClガス流量:50~400SCCM
NH3ガス流量:100~2000SCCM
成長温度:900~1100℃
成長速度:20~80μm/時
V/III(NH3ガス/GaClガス)比:2~20。
The specific first growth conditions are as follows.
GaCl gas partial pressure: 0.8 to 7 kPa
NH3 gas partial pressure: 1.5 to 36 kPa
GaCl gas flow rate: 50 to 400 SCCM
NH3 gas flow rate: 100 to 2000 SCCM
Growth temperature: 900 to 1100°C
Growth rate: 20-80 μm/hour V/III (NH 3 gas/GaCl gas) ratio: 2-20.
 ここで上記第1成長条件における上記GaClガス分圧は、2.5~5kPaであることが好ましく、上記NH3ガス分圧は3~14kPaであることが好ましい。GaClガス流量は150~300SCCMであることが好ましく、NH3ガス流量は200~800SCCMであることが好ましい。上記第1成長条件における上記成長温度は、1010~1060℃であることが好ましく、上記成長速度は40~60μm/時であることが好ましい。 Here, under the first growth conditions, the GaCl gas partial pressure is preferably 2.5 to 5 kPa, and the NH3 gas partial pressure is preferably 3 to 14 kPa. The GaCl gas flow rate is preferably 150 to 300 SCCM, and the NH3 gas flow rate is preferably 200 to 800 SCCM. Under the first growth conditions, the growth temperature is preferably 1010 to 1060° C., and the growth rate is preferably 40 to 60 μm/hour.
 図8は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、窒化ガリウム膜上に第1層(GaN単結晶)を形成した様子を説明する断面模式図である。図8に示すように本工程により、マスク21上の厚みd1が20μm以下であるGaN単結晶からなる第1層41を形成することができる。第1層41の厚みd1は、10μm以下であることが好ましい。これによりピット41aに転位が必要以上に集中する前に、次工程(第4工程)に進むことによって、GaN単結晶のエピタキシャル成長の初期の段階から、転位を結晶成長の方向に対し垂直な方向に分散させることができる。さらに第1層41の成長面においては、マスク21の構造に基づき、上述のようにピット41aを規則的に発生させることができる。第1層41の厚みは、第1層41の成長面の平坦部分と下地基板30との間の厚みをいい、蛍光顕微鏡像マッピング装置(たとえば商品名:「LEICA DM6000M」、ライカ社製)を用いた断面観察により測定することができる。具体的には、下記条件の波長の蛍光を第1層41に照射することにより、上記不純物の濃度の濃淡を指標として第1層41の厚みを測定することが可能である。 FIG. 8 is a schematic cross-sectional view illustrating the state in which the first layer (GaN single crystal) is formed on the gallium nitride film in the manufacturing method of the gallium nitride single crystal substrate according to this embodiment. As shown in FIG. 8, this process can form the first layer 41 made of GaN single crystal with a thickness d1 of 20 μm or less on the mask 21. The thickness d1 of the first layer 41 is preferably 10 μm or less. By proceeding to the next process (the fourth process) before dislocations are unnecessarily concentrated in the pits 41a, dislocations can be dispersed in a direction perpendicular to the direction of crystal growth from the early stage of epitaxial growth of the GaN single crystal. Furthermore, on the growth surface of the first layer 41, the pits 41a can be generated regularly as described above based on the structure of the mask 21. The thickness of the first layer 41 refers to the thickness between the flat portion of the growth surface of the first layer 41 and the base substrate 30, and can be measured by cross-sectional observation using a fluorescent microscope image mapping device (for example, product name: "LEICA DM6000M", manufactured by Leica). Specifically, by irradiating the first layer 41 with fluorescent light having the wavelengths described below, it is possible to measure the thickness of the first layer 41 using the concentration of the above impurities as an index.
 ここで第1層41の成長面に形成される1個のピット41aの面積(以下、「ピット面積」とも記す)の平均値は、100μm2以下であることが好ましい。これによりピット41aに転位が必要以上に集中することを抑えることができる。上記ピット面積は、50μm2以下であることがより好ましい。上記ピット面積は、マスク21の遮蔽部21aの幅W1と開口部21bの幅W2とで構成される1ピッチの幅Pにより自ずと決まる。 Here, the average area of one pit 41a formed on the growth surface of the first layer 41 (hereinafter also referred to as "pit area") is preferably 100 μm2 or less. This makes it possible to prevent dislocations from concentrating more than necessary in the pit 41a. The pit area is more preferably 50 μm2 or less. The pit area is naturally determined by the width P of one pitch, which is composed of the width W1 of the shielding portion 21a of the mask 21 and the width W2 of the opening 21b.
 また上記ピット面積は、第1層41においてピット41aが存する領域とその他の領域とで不純物の濃度が異なることに基づいて、上述した蛍光顕微鏡像マッピング装置を用い、下記条件の波長の蛍光を第1層41に照射することによって求めることもできる。まずGaN単結晶から切り離すことにより第1層41に相当する部分の結晶片を得、当該結晶片の表面を研磨加工することにより被測定試料を得る。次に上記被測定試料に対し、上述した蛍光顕微鏡像マッピング装置を用い、下記条件、および1視野の大きさが2.5mm×1.9mmとなる倍率にて観察する。上記の観察は、上記被測定試料を移動させること等によって重複がないように、かつ余すところなく視野を設定し、第1層41の全面すべてを対象とする。たとえば上記第1層41の直径が105mmである場合、視野の総数は41×54(=2214視野)である。ただし、1視野内に第1層41の外周およびその外側に相当する箇所が現れる場合、当該視野についてはピット面積を特定する対象から除外するものとする。当該領域は、通常、半導体デバイスの材料として用いられない領域となるからである。 The pit area can also be determined by irradiating the first layer 41 with fluorescence of the wavelength under the following conditions using the above-mentioned fluorescence microscope image mapping device, based on the difference in impurity concentration between the area where the pit 41a exists and the other areas in the first layer 41. First, a crystal piece corresponding to the first layer 41 is obtained by cutting it from the GaN single crystal, and the surface of the crystal piece is polished to obtain a measurement sample. Next, the measurement sample is observed using the above-mentioned fluorescence microscope image mapping device under the following conditions and at a magnification such that the size of one field of view is 2.5 mm x 1.9 mm. The above observation is performed by moving the measurement sample, etc., to set the field of view without overlapping and without leaving anything out, and covers the entire surface of the first layer 41. For example, if the diameter of the first layer 41 is 105 mm, the total number of fields of view is 41 x 54 (= 2214 fields of view). However, if the outer periphery of the first layer 41 and a place corresponding to the outside thereof appear within one field of view, that field of view is excluded from the target for determining the pit area. This is because this area is not normally used as material for semiconductor devices.
 上記蛍光顕微鏡像マッピング測定の各条件は、次のとおりである。
照射光:水銀ランプによる紫外励起(波長365nm)
蛍光波長領域:365~650nm
温度:室温(25℃)。
The conditions for the above-mentioned fluorescence microscope image mapping measurement are as follows.
Irradiation light: ultraviolet excitation by a mercury lamp (wavelength 365 nm)
Fluorescence wavelength range: 365 to 650 nm
Temperature: room temperature (25°C).
 <第4工程>
 第4工程は、上記第1層上に、成長面が{0001}面であるGaN単結晶からなる第2層を成長させることにより、上記下地基板、上記第1層および上記第2層をこの順に含む構造体を得る工程S40である。本工程は、平坦な成長面を有する第2層(GaN単結晶)を上記第1層上に成長させることを目的とする。具体的にはピットを成長面に有する第1層に対し、次の第2成長条件を採用したHVPE法を実行する。これにより下地基板、第1層および第2層をこの順に含む構造体を得ることができる。
<Fourth step>
The fourth step is step S40 of growing a second layer made of GaN single crystal whose growth surface is the {0001} plane on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order. The purpose of this step is to grow a second layer (GaN single crystal) having a flat growth surface on the first layer. Specifically, the HVPE method is performed on the first layer having pits on its growth surface, employing the following second growth condition. This allows for the obtaining of a structure including the base substrate, the first layer, and the second layer in this order.
 上記第2成長条件に基づくHVPE法は、下記の具体的なガス分圧、成長温度および成長速度の各条件を除いて、上記第1成長条件に基づくHVPE法と同じ要領により行うことができる。さらにHClガスを吹き付けることによりGaClガスを生成する際に、たとえばテトラクロロシラン(SiCl4)ガスを添加することにより、Siを第2層中にドープすることができる。これにより第1層上、具体的には上記第1層の成長面側に、成長面が{0001}面である第2層(GaN単結晶)を成長させることができる。上記第2層の厚みは、GaClガスおよびNH3ガスを供給する量、または時間を制御することにより調整することができる。ここで上記第2層の厚みは、1000μm以下であることが好ましい。上記第2層の厚みは、500μm以下であることがより好ましい。本実施形態に係るGaN単結晶基板の製造方法によれば、厚みが1000μm以下と比較的薄く成長させた第2層(GaN単結晶)から、GaN単結晶基板を得た場合であっても、面内の転位密度分布が均一であってデバイス特性を安定的に向上させることができる。 The HVPE method based on the second growth conditions can be performed in the same manner as the HVPE method based on the first growth conditions, except for the specific gas partial pressure, growth temperature, and growth rate conditions described below. Furthermore, when GaCl gas is generated by spraying HCl gas, for example, tetrachlorosilane (SiCl 4 ) gas can be added to dope Si into the second layer. This allows a second layer (GaN single crystal) whose growth surface is a {0001} surface to be grown on the first layer, specifically on the growth surface side of the first layer. The thickness of the second layer can be adjusted by controlling the amount or time of supplying GaCl gas and NH 3 gas. Here, the thickness of the second layer is preferably 1000 μm or less. It is more preferable that the thickness of the second layer is 500 μm or less. According to the method for producing a GaN single crystal substrate in this embodiment, even when a GaN single crystal substrate is obtained from a second layer (GaN single crystal) that is grown to a relatively thin thickness of 1000 μm or less, the in-plane dislocation density distribution is uniform, and device characteristics can be stably improved.
 具体的な第2成長条件は、次のとおりである。
GaClガス分圧:3~18kPa
NH3ガス分圧:3~36kPa
SiCl4ガス分圧:2.5~12.5Pa
GaClガス流量:200~1000SCCM
NH3ガス流量:200~2000SCCM
SiCl4ガス流量:1.5~7.5SCCM
成長温度:1000~1100℃
成長速度:50~150μm/時
V/III(NH3ガス/GaClガス)比:1~10。
The specific second growth conditions are as follows.
GaCl gas partial pressure: 3 to 18 kPa
NH3 gas partial pressure: 3 to 36 kPa
SiCl4 gas partial pressure: 2.5 to 12.5 Pa
GaCl gas flow rate: 200 to 1000 SCCM
NH3 gas flow rate: 200 to 2000 SCCM
SiCl4 gas flow rate: 1.5 to 7.5 SCCM
Growth temperature: 1000 to 1100° C.
Growth rate: 50-150 μm/hour V/III (NH 3 gas/GaCl gas) ratio: 1-10.
 ここで上記第2成長条件における上記GaClガス分圧は、5~9kPaであることが好ましく、上記NH3ガス分圧は5~18kPaであることが好ましい。GaClガス流量は300~500SCCMであることが好ましく、NH3ガス流量は300~1000SCCMであることが好ましい。上記第2成長条件における上記成長温度は、1010~1060℃であることが好ましく、上記成長速度は80~120μm/時であることが好ましい。 Here, under the second growth conditions, the GaCl gas partial pressure is preferably 5 to 9 kPa, and the NH3 gas partial pressure is preferably 5 to 18 kPa. The GaCl gas flow rate is preferably 300 to 500 SCCM, and the NH3 gas flow rate is preferably 300 to 1000 SCCM. Under the second growth conditions, the growth temperature is preferably 1010 to 1060° C., and the growth rate is preferably 80 to 120 μm/hour.
 図9は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、下地基板、第1層および第2層がこの順に積層された構造体を説明する断面模式図である。図9に示すように第4工程により、第1層41上にたとえば1000μm以下の厚みd2を有する第2層(GaN単結晶)42を形成することができる。第2層42は、上記第2成長条件で成長することによって成長面({0001}面)にピットは形成されず、平坦面となる。なお本実施形態に係るGaN単結晶基板の製造方法において、第2層42の厚みd2は、1000μmを超えることを除外するものではない。たとえば第2層42の厚みd2の上限値は、7mmとすることができる。第2層42の厚みは、触針式の膜厚計(たとえば商品名:「ABSデジマチックインジケータ ID-F125」、株式会社ミツトヨ製)により測定することができる。 9 is a schematic cross-sectional view illustrating a structure in which a base substrate, a first layer, and a second layer are laminated in this order in the manufacturing method of a gallium nitride single crystal substrate according to this embodiment. As shown in FIG. 9, the fourth step can form a second layer (GaN single crystal) 42 having a thickness d2 of, for example, 1000 μm or less on the first layer 41. By growing the second layer 42 under the second growth conditions, no pits are formed on the growth surface ({0001} surface) of the second layer 42, resulting in a flat surface. Note that in the manufacturing method of a GaN single crystal substrate according to this embodiment, the thickness d2 of the second layer 42 does not exclude being greater than 1000 μm. For example, the upper limit of the thickness d2 of the second layer 42 can be 7 mm. The thickness of the second layer 42 can be measured using a stylus-type film thickness gauge (for example, the product name "ABS Digimatic Indicator ID-F125", manufactured by Mitutoyo Corporation).
 <第5工程>
 第5工程は、上記構造体から上記下地基板および上記第1層を除き、かつ上記第2層を加工することによって上記GaN単結晶基板を得る工程S50である。本工程の目的は、上記構造体から本開示の効果を有するGaN単結晶基板を得ることである。本工程においては図9を参照し、まず成長用基板31、GaN膜32、マスク21、第1層41および第2層42を含む構造体において、第2層42の第1層41側を研削する。これにより上記構造体から成長用基板31、GaN膜32を含む下地基板30、マスク21、ならびに第1層41を切り離し、もって第2層42からなるGaN単結晶のインゴットを得ることができる。さらに第2層42からなるGaN単結晶のインゴットより所定の厚みにて円盤状のGaN単結晶を切り出し、当該GaN単結晶の表面を研削により平坦化し、続いて研磨およびドライエッチングの両方または少なくともいずれかを行う。これによりGaN単結晶基板を得ることができる。
<Fifth step>
The fifth step is a step S50 of removing the base substrate and the first layer from the structure and processing the second layer to obtain the GaN single crystal substrate. The purpose of this step is to obtain a GaN single crystal substrate having the effect of the present disclosure from the structure. In this step, referring to FIG. 9, first, in the structure including the growth substrate 31, the GaN film 32, the mask 21, the first layer 41 and the second layer 42, the first layer 41 side of the second layer 42 is ground. This separates the growth substrate 31, the base substrate 30 including the GaN film 32, the mask 21, and the first layer 41 from the structure, thereby obtaining an ingot of GaN single crystal consisting of the second layer 42. Furthermore, a disk-shaped GaN single crystal is cut out to a predetermined thickness from the ingot of GaN single crystal consisting of the second layer 42, and the surface of the GaN single crystal is flattened by grinding, followed by both or at least one of polishing and dry etching. This allows a GaN single crystal substrate to be obtained.
 <作用効果>
 以上の工程により、本実施形態に係るGaN単結晶基板を製造することができる。上記GaN単結晶基板は、その製造過程で用いたマスクの構造および第1層の厚みを薄くすること等によって、主表面の転位密度分布を均一とすることができ、もってデバイス特性を安定的に向上させることができる。
<Action and effect>
The above steps allow the manufacture of the GaN single crystal substrate according to this embodiment. The GaN single crystal substrate can have a uniform dislocation density distribution on the main surface by using a mask structure used in the manufacturing process and reducing the thickness of the first layer, thereby stably improving device characteristics.
 以下、実施例を挙げて本開示をより詳細に説明するが、本開示はこれらに限定されるものではない。本実施例では、以下のGaN単結晶基板の製造方法を実行することにより、GaN単結晶基板の各試料をそれぞれ1枚得た。 The present disclosure will be described in more detail below with reference to examples, but the present disclosure is not limited to these. In the examples, one each of the GaN single crystal substrate samples was obtained by carrying out the following GaN single crystal substrate manufacturing method.
 〔GaN単結晶基板の製造〕
 <試料1>
 (第1工程)
 市販の直径50.8mmのサファイア基板を入手し、当該サファイア基板上にMOCVD法を用いてGaN膜を形成することにより、下地基板を準備した。上記GaN膜の主表面の面方位は(0001)面であった。
[Production of GaN Single Crystal Substrate]
<Sample 1>
(First step)
A commercially available sapphire substrate having a diameter of 50.8 mm was obtained, and a GaN film was formed on the sapphire substrate by MOCVD to prepare a base substrate. The main surface of the GaN film had a (0001) plane orientation.
 (第2工程)
 上記下地基板のGaN膜側に、幅方向に遮蔽部と開口部とが交互に繰り返され、かつ下記表1に示すとおりの厚み、パターン、開口部率、開口部幅および遮蔽部幅を有する構造のマスクを形成した。ここで表1中の「パターン」の項目における「<1-100>方向ストライプ」とは、上記マスクの長さ方向とGaN膜を構成するGaN単結晶の<1-100>方向とが平行であることを意味する。具体的には、下地基板のGaN膜側にプラズマCVD法を適用し、酸化ケイ素からなる化学蒸着膜を形成した後、上記化学蒸着膜上にフォトリソグラフィー法によりパターニングされたレジストを形成し、当該レジストをエッチングマスクとしてエッチングを行うことによりマスクを形成した。
(Second step)
A mask was formed on the GaN film side of the base substrate, in which shielding portions and openings were alternately repeated in the width direction, and which had a thickness, pattern, opening rate, opening width, and shielding portion width as shown in Table 1 below. Here, "<1-100> direction stripes" in the "Pattern" section in Table 1 means that the length direction of the mask is parallel to the <1-100> direction of the GaN single crystal that constitutes the GaN film. Specifically, a plasma CVD method was applied to the GaN film side of the base substrate to form a chemical vapor deposition film made of silicon oxide, and then a resist patterned by photolithography was formed on the chemical vapor deposition film, and etching was performed using the resist as an etching mask to form a mask.
 (第3工程)
 HVPE法を適用することによって下地基板の上記GaN膜から、上記マスクの開口部を介してファセット構造を有するGaN単結晶からなる第1層を、次の第1成長条件にて成長させた。具体的には、ホットウォール型反応炉内のカーボン製の試料ホルダ上に下地基板を設置し、上記反応炉内を1050℃まで加熱後、上記反応炉内の上流側ボート内に設置した金属Gaに対し、HClガスを吹き付けることによってGaClガスを生成して供給し、続いてNH3ガスを上記反応炉内に供給した。さらに上記反応炉を1050℃にて15分間保持した。上記第1成長条件としては、GaClガス分圧を3.2×103Paとし、アンモニアガス分圧を6.9×103Paとした。さらに第1層の成長面の成長速度を40μm/時間とした。以上により、成長面が(0001)面であり、上記蛍光顕微鏡により測定した厚みが10μmのGaN単結晶からなる第1層を得た。さらに第1層のピット面積を求めたところ、49μm2であった。
(Third process)
By applying the HVPE method, a first layer made of a GaN single crystal having a facet structure was grown from the GaN film of the base substrate through the opening of the mask under the following first growth conditions. Specifically, the base substrate was placed on a carbon sample holder in a hot-wall type reactor, and the reactor was heated to 1050° C., after which HCl gas was sprayed onto metallic Ga placed in an upstream boat in the reactor to generate and supply GaCl gas, and then NH 3 gas was supplied into the reactor. The reactor was then held at 1050° C. for 15 minutes. The first growth conditions were a GaCl gas partial pressure of 3.2×10 3 Pa and an ammonia gas partial pressure of 6.9×10 3 Pa. Furthermore, the growth rate of the growth surface of the first layer was 40 μm/hour. As a result of the above, a first layer made of a GaN single crystal whose growth surface was the (0001) plane and whose thickness measured by the fluorescence microscope was 10 μm was obtained. Furthermore, the pit area of the first layer was determined to be 49 μm 2 .
 (第4工程)
 HVPE法を引き続き適用することにより、上記第1層上に、成長面が{0001}面であるGaN単結晶からなる第2層を成長させた。これにより、上記下地基板、上記第1層および上記第2層をこの順に含む構造体を得た。具体的には、ホットウォール型反応炉内のカーボン製の試料ホルダ上に設置された上記第1層の成長面に対し、上記反応炉内を1050℃まで加熱後、HClガスをGaと反応させることにより生成したGaClガスと、NH3ガスと、SiCl4ガスとを上記反応炉内へ供給した。さらに上記反応炉を1050℃にて16時間保持した。上記第2成長条件としては、GaClガス分圧を5.7×103Paとし、SiCl4ガス分圧を11.7Paとし、NH3ガス分圧を6.0×103Paとした。さらに第2層の成長面の成長速度を100μm/時間とした。その後、上記反応炉内を室温まで降温した。これにより、上記第1層上にGaN単結晶からなる第2層を成長させた。第2層は、成長面が(0001)面であり、触針式の膜厚計で測定した厚みが1600μmであった。
(Fourth step)
By continuing to apply the HVPE method, a second layer made of GaN single crystal with a growth surface of the {0001} surface was grown on the first layer. As a result, a structure including the base substrate, the first layer, and the second layer in this order was obtained. Specifically, the inside of the hot-wall type reactor was heated to 1050° C., and then GaCl gas generated by reacting HCl gas with Ga, NH 3 gas, and SiCl 4 gas were supplied into the reactor with respect to the growth surface of the first layer placed on a carbon sample holder in the hot-wall type reactor. The reactor was then held at 1050° C. for 16 hours. The second growth conditions were GaCl gas partial pressure of 5.7×10 3 Pa, SiCl 4 gas partial pressure of 11.7 Pa, and NH 3 gas partial pressure of 6.0×10 3 Pa. Furthermore, the growth rate of the growth surface of the second layer was set to 100 μm/hour. The temperature inside the reactor was then lowered to room temperature. This resulted in a second layer made of single crystal GaN being grown on the first layer. The growth surface of the second layer was the (0001) plane, and the thickness measured with a stylus-type thickness gauge was 1600 μm.
 (第5工程)
 上記下地基板、マスク、第1層および第2層を含む構造体において、第2層の第1層側を研削することにより、当該第2層を下地基板、GaN膜およびマスクおよび第1層から切り離すことにより、上記第2層からなるインゴットを得た。さらに、上記第2層からなるインゴットから所定の厚みにて円盤状のGaN単結晶を切り出した。続いて当該GaN単結晶の表面を研削により平坦化し、続いて研磨を行い鏡面とした。以上により、直径50.8mm(2インチ)、厚み400μmで、円形状の主表面を備える実施例1のGaN単結晶基板を製造した。上記GaN単結晶基板のSi濃度およびキャリア濃度を上述した測定方法により測定したところ、表1に示すとおりの濃度であった。
(Fifth step)
In the structure including the base substrate, the mask, the first layer, and the second layer, the first layer side of the second layer was ground to separate the second layer from the base substrate, the GaN film, the mask, and the first layer, thereby obtaining an ingot consisting of the second layer. Furthermore, a disk-shaped GaN single crystal was cut out at a predetermined thickness from the ingot consisting of the second layer. The surface of the GaN single crystal was then flattened by grinding, and then polished to a mirror surface. In this manner, a GaN single crystal substrate of Example 1 having a diameter of 50.8 mm (2 inches), a thickness of 400 μm, and a circular main surface was produced. The Si concentration and carrier concentration of the GaN single crystal substrate were measured by the above-mentioned measuring method, and were found to be the concentrations shown in Table 1.
 <試料2~試料12>
 表1に示すマスク構造を有するマスクを下地基板上に形成したこと、第1層および第2層の厚みおよびピット面積が表1に示すとおりとなるように第1成長条件および第2成長条件を変更したこと、ならびに基板サイズを表1に示すとおりに変更したこと以外、試料1のGaN単結晶基板の製造方法と同じ要領により、試料2~12のGaN単結晶基板を製造した。上記の各GaN単結晶基板のSi濃度およびキャリア濃度を上述した測定方法により測定したところ、表1に示すとおりの濃度であった。表1中の「パターン」の項目における「<11-20>方向ストライプ」とは、マスクの長さ方向とGaN膜を構成するGaN単結晶の<11-20>方向とが平行であることを意味する。
<Samples 2 to 12>
The GaN single crystal substrates of Samples 2 to 12 were manufactured in the same manner as the manufacturing method of the GaN single crystal substrate of Sample 1, except that a mask having the mask structure shown in Table 1 was formed on the base substrate, the first and second growth conditions were changed so that the thicknesses and pit areas of the first and second layers were as shown in Table 1, and the substrate size was changed as shown in Table 1. The Si concentration and carrier concentration of each of the above GaN single crystal substrates were measured by the above-mentioned measuring method, and were found to be the concentrations shown in Table 1. The "<11-20> direction stripes" in the "Pattern" section in Table 1 means that the length direction of the mask is parallel to the <11-20> direction of the GaN single crystal constituting the GaN film.
 <試料101~試料105>
 表2に示すマスク構造を有するマスクを下地基板上に形成したこと、第1層および第2層の厚みおよびピット面積が表2に示すとおりとなるように第1成長条件および第2成長条件を変更したこと、ならびに基板サイズを表2に示すとおりに変更したこと以外、試料1のGaN単結晶基板の製造方法と同じ要領により、試料101~試料105のGaN単結晶基板を製造した。上記の各GaN単結晶基板のSi濃度およびキャリア濃度を上述した測定方法により測定したところ、表2に示すとおりの濃度であった。
<Samples 101 to 105>
The GaN single crystal substrates of Samples 101 to 105 were manufactured in the same manner as the manufacturing method of the GaN single crystal substrate of Sample 1, except that a mask having the mask structure shown in Table 2 was formed on the base substrate, the first and second growth conditions were changed so that the thicknesses and pit areas of the first and second layers were as shown in Table 2, and the substrate size was changed as shown in Table 2. The Si concentration and carrier concentration of each of the above GaN single crystal substrates were measured by the above-mentioned measuring method, and were found to be the concentrations shown in Table 2.
 <試料106>
 上記特許文献1の実施例4に従って、試料106のGaN単結晶基板を製造した。基板のサイズは、直径50.8mm(2インチ)とした。当該GaN単結晶基板の製造に際して用いたマスクの構造、上記製造に際して得られた第1層および第2層の厚み、ピット面積、ならびにSi濃度およびキャリア濃度は、表2に示すとおりである。
<Sample 106>
A GaN single crystal substrate of sample 106 was manufactured according to Example 4 of the above-mentioned Patent Document 1. The size of the substrate was 50.8 mm (2 inches) in diameter. The structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above-mentioned manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
 <試料107>
 上記特許文献1の実施例3に従って、試料107のGaN単結晶基板を製造した。基板のサイズは、直径50.8mm(2インチ)とした。当該GaN単結晶基板の製造に際して用いたマスクの構造、上記製造に際して得られた第1層および第2層の厚み、ピット面積、ならびにSi濃度およびキャリア濃度は、表2に示すとおりである。
<Sample 107>
A GaN single crystal substrate of sample 107 was manufactured according to Example 3 of the above-mentioned Patent Document 1. The size of the substrate was 50.8 mm (2 inches) in diameter. The structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above-mentioned manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
 <試料108>
 上記特許文献2の実施例1に従って、試料108のGaN単結晶基板を製造した。基板のサイズは、直径50.8mm(2インチ)とした。当該GaN単結晶基板の製造に際して用いたマスクの構造、上記製造に際して得られた第1層および第2層の厚み、ピット面積、ならびにSi濃度およびキャリア濃度は、表2に示すとおりである。
<Sample 108>
A GaN single crystal substrate of sample 108 was manufactured according to Example 1 of Patent Document 2. The size of the substrate was 50.8 mm (2 inches) in diameter. The structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2.
 <試料109>
 上記特許文献1の実施例3に従って、試料109のGaN単結晶基板を製造した。基板のサイズは、直径50.8mm(2インチ)とした。当該GaN単結晶基板の製造に際して用いたマスクの構造、上記製造に際して得られた第1層および第2層の厚み、ピット面積、ならびにSi濃度およびキャリア濃度は、表2に示すとおりである。試料109のGaN単結晶基板は、試料107のGaN単結晶基板と比べ第2層の厚みがなる。
<Sample 109>
The GaN single crystal substrate of sample 109 was manufactured according to Example 3 of Patent Document 1. The size of the substrate was 50.8 mm (2 inches) in diameter. The structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2. The GaN single crystal substrate of sample 109 has a thicker second layer than the GaN single crystal substrate of sample 107.
 <試料110>
 上記特許文献1の実施例3に従って、試料110のGaN単結晶基板を製造した。基板のサイズは、直径50.8mm(2インチ)とした。当該GaN単結晶基板の製造に際して用いたマスクの構造、上記製造に際して得られた第1層および第2層の厚み、ピット面積、ならびにSi濃度およびキャリア濃度は、表2に示すとおりである。試料110のGaN単結晶基板は、試料107および試料109のGaN単結晶基板と比べ第2層の厚みが異なる。
<Sample 110>
The GaN single crystal substrate of sample 110 was manufactured according to Example 3 of Patent Document 1. The size of the substrate was 50.8 mm (2 inches) in diameter. The structure of the mask used in manufacturing the GaN single crystal substrate, the thicknesses of the first and second layers obtained in the above manufacturing, the pit area, and the Si concentration and carrier concentration are as shown in Table 2. The GaN single crystal substrate of sample 110 differs in the thickness of the second layer from the GaN single crystal substrates of samples 107 and 109.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔GaN単結晶基板の評価〕
 <面内の転位密度分布の均一性評価>
 試料1~試料12および試料101~試料110のGaN単結晶基板に対し、上述した測定方法および算出方法に基づき、第1の転位密度(cm-2)、基準面積(μm2)、第2の転位密度の平均値(cm-2)および変動係数(標準偏差/平均値)、第3の転位密度の変動係数(標準偏差/平均値)ならびに第4の転位密度の変動係数(標準偏差/平均値)を求めた。結果を表3および4に示す。第2の転位密度の変動係数、第3の転位密度の変動係数および第4の転位密度の変動係数はそれぞれ、数値が小さいほど面内の転位密度分布がより均一であることを示す。なお本評価においては、多光子励起顕微鏡を用いて第2の転位密度等を求めるため、倍率20倍の対物レンズを使用した。但し、ソフトウエア上のデジタルズームを組合せることにより、任意の視野面積を得ることとした。たとえばデジタルズーム1倍である場合、1視野の測定面積は約640×640μm2となる。同5倍である場合、1視野の測定面積は約130×130μm2となり、同12.5倍である場合、1視野の測定面積は約50×50μm2となる。
[Evaluation of GaN Single Crystal Substrate]
<Evaluation of uniformity of in-plane dislocation density distribution>
For the GaN single crystal substrates of Samples 1 to 12 and Samples 101 to 110, the first dislocation density (cm -2 ), reference area (μm 2 ), average value (cm -2 ) and coefficient of variation (standard deviation/average value) of the second dislocation density, the coefficient of variation (standard deviation/average value) of the third dislocation density, and the coefficient of variation (standard deviation/average value) of the fourth dislocation density were obtained based on the above-mentioned measurement method and calculation method. The results are shown in Tables 3 and 4. The smaller the value of the coefficient of variation of the second dislocation density, the coefficient of variation of the third dislocation density, and the coefficient of variation of the fourth dislocation density, respectively, the more uniform the in-plane dislocation density distribution is. In this evaluation, a 20x objective lens was used to obtain the second dislocation density and the like using a multiphoton excitation microscope. However, any field area was obtained by combining digital zoom on the software. For example, when the digital zoom is 1x, the measurement area of one field of view is about 640x640μm 2 . When the magnification is 5 times, the measurement area of one visual field is approximately 130 x 130 μm 2 , and when the magnification is 12.5 times, the measurement area of one visual field is approximately 50 x 50 μm 2 .
 <発光強度のバラツキ評価>
 (発光素子の作製)
 試料1~試料12および試料101~試料110のGaN単結晶基板の主表面上に、n-AlGaNクラッド層/(InGaN/GaN)4周期の多重量子井戸層/p-AlGaNクラッド層構造を有機金属気相エピタキシャル成長法(MOVPE法)により成長させ、もって略440nmに発光波長を有する発光素子構造を形成した。これにより、試料1~試料12および試料101~試料110の発光素子を得た。続いて各試料の発光素子に対し、PLマッピング評価を実行することにより、各試料における発光強度のバラツキを評価した。ここでPLマッピング評価とは、以下のような評価手法である。すなわちPLイメージング装置(商品名:「VerteX」、ナノメトリクス社製)を用い、上記発光素子構造の全面を2mmピッチでスペクトル測定を行い、各測定位置での440nm付近の多重量子井戸層の発光強度を求める。次いで、上記発光強度の最大値と最小値との差を平均値で除した値を算出し、もって各試料の発光強度のバラツキを評価する。上記発光強度のバラツキは百分率(%)で表され、数値が小さいほどデバイス特性にバラツキがないことから良品であると評価することができる。結果を表3および表4に示す。
<Evaluation of variation in luminescence intensity>
(Fabrication of Light-Emitting Element)
On the main surface of the GaN single crystal substrate of Samples 1 to 12 and Samples 101 to 110, an n-AlGaN cladding layer/(InGaN/GaN) 4-period multiple quantum well layer/p-AlGaN cladding layer structure was grown by metal organic vapor phase epitaxy (MOVPE), thereby forming a light emitting device structure having an emission wavelength of about 440 nm. In this way, the light emitting devices of Samples 1 to 12 and Samples 101 to 110 were obtained. Then, PL mapping evaluation was performed on the light emitting device of each sample to evaluate the variation in emission intensity of each sample. Here, the PL mapping evaluation is the following evaluation method. That is, a PL imaging device (trade name: "VerteX", manufactured by Nanometrics) was used to perform spectrum measurement on the entire surface of the light emitting device structure at 2 mm pitch, and the emission intensity of the multiple quantum well layer around 440 nm at each measurement position was obtained. Next, the difference between the maximum and minimum emission intensities was divided by the average value to calculate the variation in emission intensity for each sample. The variation in emission intensity was expressed as a percentage (%), and the smaller the value, the less the variation in device characteristics, and therefore the better the product. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 〔考察〕
 試料1~試料12のGaN単結晶基板は、第2の転位密度の平均値が、5.0×106cm-2以下であり、かつ第2の転位密度の変動係数がいずれも0.40以下であるので、試料101~試料110のGaN単結晶基板に比し面内の転位密度分布がより均一であることが理解される。さらに試料1~試料12から製造された発光素子は、いずれも発光強度のバラツキが35.0%未満に抑えられていることから、試料1~試料12のGaN単結晶基板はデバイス特性を安定的に向上させることができると示唆される。試料101~試料110のGaN単結晶基板は、いずれも発光強度のバラツキが35.0%を超えた。
[Considerations]
The GaN single crystal substrates of samples 1 to 12 have an average second dislocation density of 5.0×10 6 cm -2 or less and a coefficient of variation of the second dislocation density of 0.40 or less, so it is understood that the in-plane dislocation density distribution is more uniform than that of the GaN single crystal substrates of samples 101 to 110. Furthermore, the light emitting devices manufactured from samples 1 to 12 all have a variation in emission intensity suppressed to less than 35.0%, suggesting that the GaN single crystal substrates of samples 1 to 12 can stably improve device characteristics. The GaN single crystal substrates of samples 101 to 110 all have a variation in emission intensity exceeding 35.0%.
 以上のように本開示の実施形態および実施例について説明を行ったが、上述の各実施形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present disclosure have been described above, it is also planned from the beginning to combine the configurations of the above-mentioned embodiments and examples as appropriate.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein are illustrative in all respects and should not be considered limiting. The scope of the present invention is indicated by the claims rather than the embodiments and examples described above, and is intended to include the meaning equivalent to the claims and all modifications within the scope.
 1 窒化ガリウム単結晶基板(GaN単結晶基板)、101 従来の窒化ガリウム単結晶基板(GaN単結晶基板)、11 主表面、21 マスク、21a 遮蔽部、21b 開口部、30 下地基板、31 成長用基板、32 GaN膜、41 第1層、41a ピット、42 第2層、t 転位、OF オリエンテーションフラット、G 仮想の格子、A1 第1の測定領域、A2 第2の測定領域、C 第1の測定領域の中心点、P 1ピッチ、W1 遮蔽部の幅、W2 開口部の幅、Mt マスクの厚み、d1 第1層の厚み、d2 第1層の厚み、S10 下地基板を準備する工程 S20 マスクを配置する工程、S30 第1層を成長させる工程、S40 構造体を得る工程 S50 GaN単結晶基板を得る工程。 1 Gallium nitride single crystal substrate (GaN single crystal substrate), 101 Conventional gallium nitride single crystal substrate (GaN single crystal substrate), 11 Main surface, 21 Mask, 21a Shielding portion, 21b Opening, 30 Base substrate, 31 Growth substrate, 32 GaN film, 41 First layer, 41a Pit, 42 Second layer, t Dislocation, OF Orientation flat, G Virtual lattice, A1 First measurement area, A2 Second measurement area, C Center point of first measurement area, P 1 pitch, W1 Width of shielding portion, W2 Width of opening, Mt Mask thickness, d1 Thickness of first layer, d2 Thickness of first layer, S10 Step of preparing base substrate, S20 Step of placing mask, S30 Step of growing first layer, S40 Step of obtaining structure, S50 Step of obtaining GaN single crystal substrate.

Claims (8)

  1.  円形状の主表面を有する窒化ガリウム単結晶基板であって、
     前記主表面は、第1の転位密度および2以上の第2の転位密度を有し、
     前記第2の転位密度の平均値は、5.0×106cm-2以下であり、
     前記第2の転位密度の標準偏差および前記平均値は、標準偏差/平均値≦0.40という関係を満たし、前記標準偏差の単位はcm-2であり、
     前記第1の転位密度は、前記主表面上の9箇所の1辺が100μmである正方形からなる第1の測定領域において転位の数を測定し、前記転位の数の総和を前記転位の1cm2当たりの数に換算することにより求められ、
     前記第2の転位密度は、100を前記第1の転位密度で除した値として表される基準面積を得るとともに、前記主表面上において1辺が2mmである正方形が互いに重なることなく最も多く並列するように敷き詰められた仮想の格子を形成し、前記格子を構成する前記正方形の中央部にそれぞれ設定した前記基準面積の30%の面積を有する第2の測定領域において前記転位の数を測定し、かつ前記転位の数を前記第2の測定領域毎に1cm2当たりの前記転位の数に換算することにより求められ、
     前記窒化ガリウム単結晶基板の直径をDで表し、前記主表面の中心を通り、前記中心で直交する前記主表面上の2軸をX軸およびY軸とするとき、前記第1の測定領域の中心点のX軸およびY軸の座標(X、Y)は、(0,0)、(D/4-5,0)、(0,D/4-5)、(-(D/4-5),0)、(0,-(D/4-5))、(D/2-10,0)、(0,D/2-10)、(-(D/2-10),0)および(0,-(D/2-10))であり、前記Dおよび前記座標(X、Y)中のXおよびYの単位はmmである、窒化ガリウム単結晶基板。
    A gallium nitride single crystal substrate having a circular main surface,
    the main surface has a first dislocation density and a second dislocation density that is two or more;
    the second average dislocation density is 5.0×10 6 cm −2 or less;
    the standard deviation of the second dislocation density and the average value satisfy a relationship of standard deviation/average value≦0.40, and the unit of the standard deviation is cm
    the first dislocation density is determined by measuring the number of dislocations in nine first measurement regions on the main surface, each of which is a square with one side measuring 100 μm, and converting the sum of the numbers of dislocations into the number of dislocations per cm2 ;
    the second dislocation density is obtained by obtaining a reference area expressed as a value obtained by dividing 100 by the first dislocation density, forming a virtual lattice on the main surface in which squares each having a side length of 2 mm are laid out in parallel as many times as possible without overlapping each other, measuring the number of dislocations in second measurement regions each having an area of 30% of the reference area and set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the second measurement regions;
    a gallium nitride single crystal substrate, wherein a diameter of the gallium nitride single crystal substrate is represented by D, and two axes on the main surface that pass through the center of the main surface and intersect at the center are represented by X-axis and Y-axis, respectively, and the X-axis and Y-axis coordinates (X, Y) of the center point of the first measurement region are (0, 0), (D/4-5, 0), (0, D/4-5), (-(D/4-5), 0), (0, -(D/4-5)), (D/2-10, 0), (0, D/2-10), (-(D/2-10), 0) and (0, -(D/2-10)), and the units of D and X and Y in the coordinates (X, Y) are mm.
  2.  前記窒化ガリウム単結晶基板の直径は、50mm以上155mm以下である、請求項1に記載の窒化ガリウム単結晶基板。 The gallium nitride single crystal substrate according to claim 1, wherein the diameter of the gallium nitride single crystal substrate is 50 mm or more and 155 mm or less.
  3.  前記窒化ガリウム単結晶基板は、不純物原子を含み、
     前記不純物原子は、ケイ素およびゲルマニウムの両方またはいずれか一方であり、
     前記不純物原子の濃度は、1.0×1018cm-3以上5.0×1018cm-3以下である、請求項1または請求項2に記載の窒化ガリウム単結晶基板。
    The gallium nitride single crystal substrate contains impurity atoms,
    the impurity atoms are silicon and/or germanium;
    3. The gallium nitride single crystal substrate according to claim 1, wherein a concentration of said impurity atoms is not less than 1.0×10 18 cm −3 and not more than 5.0×10 18 cm −3 .
  4.  前記主表面は、2以上の第3の転位密度を有し、
     前記第3の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.35という関係を満たし、
     前記第3の転位密度は、前記格子を構成する前記正方形の中央部にそれぞれ設定した前記基準面積の50%の面積を有する第3の測定領域において前記転位の数を測定し、かつ前記転位の数を前記第3の測定領域毎に1cm2当たりの前記転位の数に換算することにより求められる、請求項1から請求項3のいずれか1項に記載の窒化ガリウム単結晶基板。
    the main surface has a third dislocation density of 2 or greater;
    the standard deviation and average value of the third dislocation density satisfy the relationship of standard deviation/average value≦0.35;
    4. The gallium nitride single crystal substrate according to claim 1, wherein the third dislocation density is determined by measuring the number of dislocations in a third measurement region having an area that is 50% of the reference area set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the third measurement regions.
  5.  前記主表面は、2以上の第4の転位密度を有し、
     前記第4の転位密度の標準偏差および平均値は、標準偏差/平均値≦0.53という関係を満たし、
     前記第4の転位密度は、前記格子を構成する前記正方形の中央部にそれぞれ設定した前記基準面積の10%の面積を有する第4の測定領域において前記転位の数を測定し、かつ前記転位の数を前記第4の測定領域毎に1cm2当たりの前記転位の数に換算することにより求められる、請求項1から請求項4のいずれか1項に記載の窒化ガリウム単結晶基板。
    the main surface has a fourth dislocation density of 2 or greater;
    the standard deviation and average value of the fourth dislocation density satisfy a relationship of standard deviation/average value≦0.53;
    5. The gallium nitride single crystal substrate according to claim 1, wherein the fourth dislocation density is determined by measuring the number of dislocations in fourth measurement regions having an area of 10% of the reference area set in the center of each of the squares constituting the lattice, and converting the number of dislocations into the number of dislocations per cm2 for each of the fourth measurement regions.
  6.  円形状の主表面を有する窒化ガリウム単結晶基板の製造方法であって、
     成長用基板と、前記成長用基板上に配置される窒化ガリウム膜とを含む下地基板を準備する工程と、
     前記下地基板上に、幅方向に遮蔽部と開口部とを繰り返す構造を有するマスクを配置する工程と、
     ハイドライド気相成長法によって前記下地基板からファセット構造を有する窒化ガリウム単結晶からなる第1層を成長させる工程と、
     前記第1層上に、成長面が{0001}面である前記窒化ガリウム単結晶からなる第2層を成長させることにより、前記下地基板、前記第1層および前記第2層をこの順に含む構造体を得る工程と、
     前記構造体から前記下地基板および前記第1層を除き、かつ前記第2層を加工することによって前記窒化ガリウム単結晶基板を得る工程とを含み、
     前記マスクの厚みは、0.2μm以下であり、
     前記遮蔽部の幅と前記開口部の幅とで構成される前記マスクの1ピッチの幅は、10μm以下であり、
     前記マスクの前記1ピッチの幅に対する前記開口部の幅の百分率は、10%以上50%以下であり、
     前記第1層の厚みは、20μm以下である、窒化ガリウム単結晶基板の製造方法。
    A method for producing a gallium nitride single crystal substrate having a circular main surface, comprising the steps of:
    preparing a base substrate including a growth substrate and a gallium nitride film disposed on the growth substrate;
    A step of disposing a mask having a structure in which a shielding portion and an opening portion are repeated in a width direction on the base substrate;
    growing a first layer made of a gallium nitride single crystal having a facet structure from the base substrate by hydride vapor phase epitaxy;
    growing a second layer made of the gallium nitride single crystal, the growth surface of which is a {0001} plane, on the first layer to obtain a structure including the base substrate, the first layer, and the second layer in this order;
    removing the base substrate and the first layer from the structure and processing the second layer to obtain the gallium nitride single crystal substrate;
    The thickness of the mask is 0.2 μm or less,
    a width of one pitch of the mask, which is formed by a width of the shielding portion and a width of the opening, is 10 μm or less;
    a percentage of a width of the opening with respect to a width of one pitch of the mask is 10% or more and 50% or less;
    A method for producing a gallium nitride single crystal substrate, wherein the first layer has a thickness of 20 μm or less.
  7.  前記マスクの長さ方向は、前記下地基板上で前記窒化ガリウム膜を構成する前記窒化ガリウム単結晶の<11-20>方向または<1-100>方向と平行である、請求項6に記載の窒化ガリウム単結晶基板の製造方法。 The method for manufacturing a gallium nitride single crystal substrate according to claim 6, wherein the length direction of the mask is parallel to the <11-20> direction or the <1-100> direction of the gallium nitride single crystal that constitutes the gallium nitride film on the base substrate.
  8.  前記第2層の厚みは、1000μm以下である、請求項6または請求項7に記載の窒化ガリウム単結晶基板の製造方法。 The method for manufacturing a gallium nitride single crystal substrate according to claim 6 or 7, wherein the thickness of the second layer is 1000 μm or less.
PCT/JP2022/041170 2022-11-04 2022-11-04 Gallium nitride single crystal substrate and method for producing same WO2024095449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041170 WO2024095449A1 (en) 2022-11-04 2022-11-04 Gallium nitride single crystal substrate and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041170 WO2024095449A1 (en) 2022-11-04 2022-11-04 Gallium nitride single crystal substrate and method for producing same

Publications (1)

Publication Number Publication Date
WO2024095449A1 true WO2024095449A1 (en) 2024-05-10

Family

ID=90930074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041170 WO2024095449A1 (en) 2022-11-04 2022-11-04 Gallium nitride single crystal substrate and method for producing same

Country Status (1)

Country Link
WO (1) WO2024095449A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349338A (en) * 1998-09-30 2000-12-15 Nec Corp GaN CRYSTAL FILM, AND III-FAMILY ELEMENT NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURE
JP2006273716A (en) * 1997-10-30 2006-10-12 Sumitomo Electric Ind Ltd METHOD OF MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP2007519591A (en) * 2003-11-13 2007-07-19 クリー インコーポレイテッド Large area and uniform low dislocation density GaN substrate and its manufacturing process
JP2019112266A (en) * 2017-12-25 2019-07-11 株式会社サイオクス Nitride semiconductor substrate, semiconductor laminate, laminated structure, method for manufacturing nitride semiconductor substrate and method for manufacturing semiconductor laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273716A (en) * 1997-10-30 2006-10-12 Sumitomo Electric Ind Ltd METHOD OF MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP2000349338A (en) * 1998-09-30 2000-12-15 Nec Corp GaN CRYSTAL FILM, AND III-FAMILY ELEMENT NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURE
JP2007519591A (en) * 2003-11-13 2007-07-19 クリー インコーポレイテッド Large area and uniform low dislocation density GaN substrate and its manufacturing process
JP2019112266A (en) * 2017-12-25 2019-07-11 株式会社サイオクス Nitride semiconductor substrate, semiconductor laminate, laminated structure, method for manufacturing nitride semiconductor substrate and method for manufacturing semiconductor laminate

Similar Documents

Publication Publication Date Title
JP5446622B2 (en) Group III nitride crystal and method for producing the same
JP6031733B2 (en) GaN crystal manufacturing method
US20110175200A1 (en) Manufacturing method of conductive group iii nitride crystal, manufacturing method of conductive group iii nitride substrate and conductive group iii nitride substrate
WO2006013957A1 (en) NITRIDE SEMICONDUCTOR SINGLE CRYSTAL INCLUDING Ga, METHOD FOR MANUFACTURING THE SAME, AND SUBSTRATE AND DEVICE USING THE CRYSTAL
CN101410950A (en) Growth method using nanostructure compliant layers and HVPE for producing high quality compound semiconductor materials
US10822718B2 (en) Method for producing aluminum nitride single crystal substrate
US20130264606A1 (en) Group iii nitride semiconductor substrate and method for producing the same, and semiconductor light-emitting device and method for producing the same
JP6187576B2 (en) Group III nitride crystals
JP2006290697A (en) Nitride semiconductor substrate and its manufacturing method
US10177217B2 (en) C-plane GaN substrate
WO2013147203A1 (en) Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals
WO2013058352A1 (en) Group iii nitride semiconductor crystal
CN106536794B (en) Gallium nitride substrate
WO2024095449A1 (en) Gallium nitride single crystal substrate and method for producing same
JP7207440B2 (en) n-type GaN crystal, GaN wafer, and method for manufacturing GaN crystal, GaN wafer, and nitride semiconductor device
JP2013209273A (en) Periodic table group 13 metal nitride semiconductor crystal
WO2020203541A1 (en) GaN SUBSTRATE WAFER AND METHOD FOR MANUFACTURING GaN SUBSTRATE WAFER
TW202419694A (en) Gallium nitride single crystal substrate and manufacturing method thereof
JP2013212945A (en) Method for producing group 13 nitride crystal and group 13 nitride crystal
JP2014088272A (en) Nitride semiconductor crystal of group 13 metal in periodic table
WO2024095448A1 (en) Gallium nitride single crystal substrate and method for producing same
JP7409556B1 (en) Gallium nitride single crystal substrate and its manufacturing method
WO2024135744A1 (en) GaN SUBSTRATE
US20230399770A1 (en) Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal
WO2020241761A1 (en) Gan substrate wafer and production method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964466

Country of ref document: EP

Kind code of ref document: A1