WO2024095395A1 - Internal combustion engine control device and internal combustion engine control method - Google Patents

Internal combustion engine control device and internal combustion engine control method Download PDF

Info

Publication number
WO2024095395A1
WO2024095395A1 PCT/JP2022/040999 JP2022040999W WO2024095395A1 WO 2024095395 A1 WO2024095395 A1 WO 2024095395A1 JP 2022040999 W JP2022040999 W JP 2022040999W WO 2024095395 A1 WO2024095395 A1 WO 2024095395A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
oil
internal combustion
combustion engine
crown surface
Prior art date
Application number
PCT/JP2022/040999
Other languages
French (fr)
Japanese (ja)
Inventor
亮 草壁
譲 山崎
圭太郎 宍戸
邦彦 鈴木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/040999 priority Critical patent/WO2024095395A1/en
Publication of WO2024095395A1 publication Critical patent/WO2024095395A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices

Definitions

  • the present invention relates to an internal combustion engine control device and an internal combustion engine control method for controlling an internal combustion engine that injects an oil jet into a piston.
  • Patent Document 1 discloses a method of controlling the ON/OFF of the oil jet to prevent the piston temperature from entering the temperature range where the amount of deposit buildup increases, in order to suppress the buildup of deposits in the cooling channel. In this way, by controlling the piston temperature so that it does not enter the temperature range where the amount of deposit buildup increases, it is possible to suppress the buildup of deposits.
  • one embodiment of the present invention is an internal combustion engine control device that controls an internal combustion engine having an oil pump that discharges a specified flow rate of lubricating oil and an oil jet system that injects the lubricating oil discharged from the oil pump toward a supply portion of a piston, and includes a control unit that stops the injection of lubricating oil from the oil jet system or controls the flow rate of lubricating oil to be lower than the flow rate of the previous cycle when the temperature of the piston crown surface is below the lower limit temperature of a temperature range in which the amount of deposits accumulated on the piston crown surface is less than a threshold value.
  • 1 is a schematic diagram showing an example of a system configuration of an internal combustion engine controlled by an internal combustion engine control device according to a first embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing an example of the configuration of a variable displacement oil pump used in an internal combustion engine.
  • 1 is a block diagram showing an example of the configuration of an internal combustion engine control device according to a first embodiment of the present invention;
  • 1 is a control block diagram showing an overview of control executed by an internal combustion engine control device according to a first embodiment of the present invention.
  • 1 is a map (graph) showing an example of the relationship between oil pressure and oil jet flow rate.
  • 11 is a map showing an example of the relationship between the oil jet flow rate and the heat transfer coefficient between the piston and the oil jet.
  • FIG. 4 is a diagram showing an example of the relationship between engine operation time of an internal combustion engine and THC.
  • FIG. 4 is a diagram showing an example of the relationship between piston crown surface temperature and deposit accumulation amount.
  • 5 is a flowchart showing an example of the operation of a hydraulic pressure setting unit of the internal combustion engine control device according to the first embodiment of the present invention.
  • 1 is a map (graph) showing an example of the relationship between oil temperature and oil jet injectable pressure.
  • FIG. 11 is a schematic diagram showing a configuration example of a piston according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing time series changes in vehicle speed, oil jet flow rate, piston crown surface temperature, and oil temperature at engine start in a second embodiment of the present invention.
  • FIG. 11 is a block diagram showing an example of the configuration of an internal combustion engine control device according to a third embodiment of the present invention.
  • FIG. 11 is a control block diagram showing an overview of control executed by an internal combustion engine control device according to a third embodiment of the present invention.
  • FIG. 11 is a block diagram showing an outline of control by an internal combustion engine control device according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an example of a system configuration of an internal combustion engine controlled by an internal combustion engine control device according to this embodiment.
  • An internal combustion engine 100 shown in Fig. 1 shows the system configuration of a spark ignition internal combustion engine used in automobiles, and is equipped with an in-cylinder fuel injection valve that directly injects fuel made of gasoline into a cylinder.
  • the internal combustion engine 100 is not limited to an in-cylinder injection type internal combustion engine (direct injection engine), and a port injection type internal combustion engine that injects fuel into an intake port may also be used.
  • the internal combustion engine 100 is a four-stroke engine that repeats four strokes: an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke.
  • the internal combustion engine 100 is also a multi-cylinder engine with, for example, four cylinders.
  • the number of cylinders that the internal combustion engine 100 has is not limited to four, and the engine may have six or eight or more cylinders.
  • the number of cycles of the internal combustion engine 100 is also not limited to four.
  • the internal combustion engine 100 includes an airflow sensor 1, an electronically controlled throttle valve 2, an intake pressure sensor 3, a compressor 4a, an intercooler 7, and a cylinder 14.
  • the airflow sensor 1, the electronically controlled throttle valve 2, the intake pressure sensor 3, the compressor 4a, and the intercooler 7 are arranged in the intake pipe 6 up to the cylinder 14.
  • the air flow sensor 1 measures the intake air volume and intake air temperature.
  • the electronically controlled throttle valve 2 is driven to be able to open and close by a drive motor (not shown).
  • the opening of the electronically controlled throttle valve 2 is adjusted based on the driver's accelerator operation. This adjusts the amount of air taken in and the pressure in the intake pipe 6.
  • the intake pressure sensor 3 measures the pressure in the intake pipe 6.
  • the compressor 4a compresses the intake air to be supercharged in the turbocharger. Rotational force is transmitted to the compressor 4a by the turbine 4b, which will be described later.
  • the intercooler 7 is disposed upstream of the cylinder 14 and cools the intake air.
  • the internal combustion engine 100 is provided with an ignition device for each cylinder 14, which is composed of a fuel injection device 13 that injects fuel into the cylinder 14, and an ignition coil 16 and a spark plug 17 that supply ignition energy.
  • the ignition coil 16 Under the control of the internal combustion engine control device 30, the ignition coil 16 generates a high voltage and applies it to the spark plug 17. This generates a spark in the spark plug 17. The spark generated in the spark plug 17 then burns the air-fuel mixture in the cylinder, causing an explosion.
  • an ECU Engine Control Unit
  • a voltage sensor (not shown) is attached to the ignition coil 16.
  • the voltage sensor measures the primary side voltage or secondary side voltage of the ignition coil 16.
  • the voltage information measured by the voltage sensor is sent to the internal combustion engine control device 30.
  • variable valves 5a and 5b are provided in the cylinder head 20 of the cylinder 14.
  • Variable valve 5a adjusts the mixture flowing into the cylinder 14
  • variable valve 5b adjusts the exhaust gas discharged from the cylinder.
  • variable valves 5a and 5b the intake volume and internal EGR (Exhaust Gas Recirculation) volume of all cylinders 14 are adjusted.
  • a piston 21 is slidably disposed within the cylinder 14.
  • the piston 21 compresses the mixture of fuel and gas that flows into the cylinder 14.
  • the piston 21 reciprocates within the cylinder 14 due to the combustion pressure generated within the cylinder.
  • the internal combustion engine 100 is also equipped with a crank angle sensor 19 for detecting the position of the piston 21. Crank angle information (rotation information) measured by the crank angle sensor 19 is sent to the internal combustion engine control device 30.
  • the fuel injection device 13 is controlled by an internal combustion engine control device 30 (ECU) and injects fuel into the cylinder 14. As a result, an air-fuel mixture is generated inside the cylinder 14.
  • a high-pressure fuel pump (not shown) is also connected to the fuel injection device 13. Fuel whose pressure has been increased by the high-pressure fuel pump is supplied to the fuel injection device 13. Furthermore, a fuel pressure sensor for measuring the fuel injection pressure is provided in the fuel pipe connecting the fuel injection device 13 and the high-pressure fuel pump.
  • the cylinder 14 is also provided with a temperature sensor 18.
  • the temperature sensor 18 measures the temperature of the cooling water circulating through the cylinder 14.
  • the cooling water device includes a water pump (not shown), which adjusts the flow rate of the cooling water circulating through the cylinder 14.
  • the water pump may be one that is driven using the output of the internal combustion engine, or an electric water pump (electric water pump).
  • the device for adjusting the cooling water may also include a thermostat that controls the cooling water flowing into the cylinder, and a valve for switching the flow direction to each component such as the cooling water heat exchanger and cylinder provided in the internal combustion engine.
  • each cylinder 14 of the internal combustion engine 100 is provided with an oil jet system 101 (piston cooling device).
  • the oil jet system 101 is connected to a variable displacement oil pump 54 (see FIG. 2), and oil (lubricating oil) for cooling and lubrication is supplied from the oil pump 54.
  • the oil jet system 101 is provided with a throttle section 103 that increases the flow rate of the lubricating oil.
  • Engine oil is generally used as the lubricating oil.
  • the oil jet system 101 injects lubricating oil from the throttle section 103 onto the underside of the piston 21 to lower the temperature of the piston 21.
  • the oil jet system 101 allows the lubricating oil to be appropriately applied to the underside (backside) of the piston 21, and the temperature of the piston crown surface can be accurately controlled.
  • the amount of lubricating oil injected from the oil jet system 101 toward the piston 21 can be changed by the internal combustion engine control device 30 adjusting the output (flow rate, oil pressure) of the oil pump 54.
  • a valve 102 is provided in the oil flow path of the oil jet system 101.
  • the valve 102 is provided between the oil main gallery 110 and the oil jet nozzle outlet.
  • the valve 102 is disposed between the oil pump 54 and the oil jet nozzle outlet.
  • an exhaust pipe 15 is connected to the exhaust port of the cylinder 14.
  • the exhaust pipe 15 is provided with a turbine 4b, an electronically controlled wastegate valve 11, a three-way catalyst 10, and an air-fuel ratio sensor 9.
  • the turbine 4b rotates due to the exhaust gas passing through the exhaust pipe 15, and transmits the rotational force to the compressor 4a.
  • the three-way catalyst 10 is disposed downstream of the turbine 4b.
  • the three-way catalyst 10 purifies harmful substances contained in the exhaust gas by oxidation and reduction reactions.
  • the air-fuel ratio sensor 9 is disposed upstream of the three-way catalyst 10. The air-fuel ratio sensor 9 detects the air-fuel ratio of the exhaust gas passing through the exhaust pipe 15.
  • signals detected by each sensor such as the air flow sensor 1, the intake pressure sensor 3, and the voltage sensor, are sent to the internal combustion engine control device 30.
  • a signal detected by the accelerator opening sensor 12 which detects the amount of depression of the accelerator pedal, i.e., the accelerator opening, is also sent to the internal combustion engine control device 30.
  • the internal combustion engine control device 30 calculates the required torque based on the output signal of the accelerator opening sensor 12. That is, the accelerator opening sensor 12 is used as a required torque detection sensor that detects the torque required for the internal combustion engine 100.
  • the internal combustion engine control device 30 also calculates the rotation speed of the internal combustion engine 100 based on the output signal of the crank angle sensor 19. Then, the internal combustion engine control device 30 optimally calculates the main operating variables of the internal combustion engine 100, such as the air flow rate (intake flow rate), fuel injection amount, ignition timing, throttle opening, and fuel pressure, based on the operating state of the internal combustion engine 100 obtained from the output signals of various sensors.
  • the fuel injection amount calculated by the internal combustion engine control device 30 is converted into a valve opening pulse signal and output to the fuel injection device 13.
  • the ignition timing calculated by the internal combustion engine control device 30 is output to the spark plug 17 as an ignition signal.
  • the throttle opening calculated by the internal combustion engine control device 30 is output to the electronically controlled throttle valve 2 as a throttle drive signal.
  • fuel is injected from the fuel injector 13 into the air that flows into the cylinder 14 from the intake pipe 6 through the intake valve (variable valve 5a), forming an air-fuel mixture inside the cylinder.
  • the air-fuel mixture explodes at a specified ignition timing due to a spark generated by the spark plug 17, and the resulting combustion pressure pushes down the piston 21, providing the driving force for the internal combustion engine 100.
  • the exhaust gas after the explosion is sent through the exhaust pipe 15 to the three-way catalyst 10, where the exhaust components are purified before being discharged to the outside.
  • the internal combustion engine 100 may be provided with an EGR pipe (not shown) that connects the intake pipe 6 and the exhaust pipe 15.
  • This EGR pipe may return a portion of the exhaust gas passing through the exhaust pipe 15 to the intake pipe 6.
  • the oil pump section (oil pump 54) is a variable displacement pump that includes a pump housing 161 having a storage section, a rotor 164 arranged in the storage section and connected to the rotating shaft of the internal combustion engine 100 so as to be capable of transmitting driving force, a cam ring 165 in which the amount of eccentricity between the center of rotation of the rotor 164 and its own center changes between a high discharge amount position and a low discharge amount position, and a control valve section (proportional solenoid 171a in an oil control valve 171, a substantially cylindrical valve body not shown) that changes the amount of eccentricity of the cam ring 165 under the control of a control section (oil jet control section 36 of the internal combustion engine control device 30).
  • the configuration of the oil pump 54 will be described in more detail below.
  • the variable displacement oil pump 54 can variably control the pressure (hydraulic pressure) of the oil it discharges.
  • an intake port and an exhaust port are provided on both sides of the pump housing 161.
  • a drive shaft 162 which transmits rotational force from the crankshaft of the internal combustion engine 100, is disposed and passes through the oil pump 54 at approximately the center.
  • a rotor 164 and a cam ring 165 are housed and arranged inside the pump housing 161.
  • the rotor 164 is connected to the drive shaft 162.
  • the rotor 164 is configured to be able to transmit the driving force of the rotating shaft of the internal combustion engine 100.
  • the rotor 164 holds multiple vanes 163 on its outer periphery so that they can freely move forward and backward in approximately the radial direction.
  • the cam ring 165 is provided on the outer periphery of the rotor 164 so as to be able to eccentrically swing.
  • the tips of the vanes 163 come into sliding contact with the inner periphery of the cam ring 165.
  • a pair of vane rings 150 are slidably arranged on both side surfaces on the inner periphery of the rotor 164.
  • cam ring 165 On the outer periphery side of the cam ring 165, working chambers 167 and 168 are formed so as to be separated by sealing members 166a and 166b.
  • the cam ring 165 swings around pivot pin 169 in a direction that reduces the amount of eccentricity according to the discharge pressure of the oil introduced into working chambers 167 and 168.
  • the cam ring 165 has a lever portion 165a formed integrally with its outer periphery.
  • the lever portion 165a is formed so as to protrude toward the outer periphery of the cam ring 165.
  • the spring force of the coil spring 151 that presses against the lever portion 165a causes the cam ring 165 to swing in a direction that increases the amount of eccentricity in a direction that is approximately perpendicular to the rotational direction of the crankshaft.
  • the internal combustion engine control device 30 uses the spring force of the coil spring 151 to bias the cam ring 165 in the direction that maximizes the amount of eccentricity, thereby increasing the discharge pressure of the oil pump 54.
  • the internal combustion engine control device 30 swings the cam ring 165 against the spring force of the coil spring 170 in the direction that reduces the amount of eccentricity, thereby reducing the discharge pressure.
  • Oil lubricating oil
  • Oil is supplied to the working chamber 167 of the oil pump 54 from the oil main gallery 110, and oil is supplied to the working chamber 168 via an oil control valve 171 consisting of a proportional solenoid valve.
  • the oil discharged from the oil pump 54 is supplied to a hydraulic VTC (Valve Timing Control) mechanism that controls the above-mentioned variable valves 5a, 5b (see Figure 1) of the internal combustion engine 100, an oil jet mechanism that cools the piston 21, etc.
  • VTC Valve Timing Control
  • the oil control valve 171 has a first opening 172 and a second opening 173 formed in the main body.
  • the oil control valve 171 also has a proportional solenoid 171a inside and an approximately cylindrical valve body (not shown) that moves in response to the thrust generated in the proportional solenoid 171a when excited.
  • Grooves designed with the positions of the first opening 172 and the second opening 173 in mind are formed on the circumferential surface of the approximately cylindrical valve body.
  • the valve body moves in the axial direction of the oil control valve 171 (left and right direction in Figure 2) in response to the thrust generated by the proportional solenoid 171a.
  • the relative positional relationship between the groove of the valve body and the first opening 172 and the second opening 173 changes, and the flow path changes.
  • the working chamber 168 of the oil pump communicates with the oil pan through the first opening 172.
  • the oil pump working chamber 168 communicates with the oil main gallery 110 through the first opening 172 and the second opening 173.
  • the oil control valve 171 is duty controlled by a drive signal (PWM (Pulse Width Modulation) signal) from the internal combustion engine control device 30. Depending on the duty ratio of the drive signal, the proportional solenoid 171a in the oil control valve 171 is excited and the valve body is driven to the target control position.
  • PWM Pulse Width Modulation
  • the oil pump 54 has a mechanism for manipulating the hydraulic pressure of the discharge oil (hereinafter also referred to as the "discharge hydraulic pressure") by controlling the amount of eccentricity of the vane 163 in accordance with the hydraulic pressure difference between the working chamber 167 and the working chamber 168.
  • the oil pump 54 performs the following controls. [a] When the difference in oil pressure between the working chambers 167 and 168 is large, the amount of eccentricity of the vane 163 (cam ring 165) is reduced to reduce the discharge oil pressure. [b] When the difference in oil pressure between the working chambers 167 and 168 is small, the amount of eccentricity of the vane 163 (cam ring 165) is increased to increase the discharge oil pressure.
  • the hydraulic pressure in the working chamber 168 can be controlled by controlling the introduction and discharge of oil into and from the working chamber 168. That is, the hydraulic pressure in the working chamber 168 is controlled by the duty ratio of a drive signal supplied to the oil control valve 171.
  • the working chamber 168 communicates with the drain (oil pan) via the oil control valve 171.
  • the oil discharged from the oil pump 54 is in a low-pressure state.
  • the duty ratio of the drive signal is small, the oil main gallery 110 and the working chamber 168 communicate with each other via the oil control valve 171, and hydraulic pressure is applied to the working chamber 167.
  • the oil discharged from the oil pump 54 is in a high-pressure state.
  • manipulating the duty ratio of the drive signal between 100% and 0% it is possible to adjust the pressure of the oil discharged from the oil pump 54 in the range from maximum to minimum.
  • an oil pressure sensor 111 is disposed in the oil main gallery 110.
  • the oil pressure sensor 111 measures the pressure of the oil in the oil main gallery 110 and outputs a signal according to the oil pressure.
  • the oil pressure in the oil main gallery 110 correlates with the pressure of the oil discharged by the oil pump 54 (discharge oil pressure).
  • the discharge oil pressure of the oil pump 54 is detected by acquiring the output signal of the oil pressure sensor 111.
  • the output signal of this oil pressure sensor 111 is input to the internal combustion engine control device 30 and is used for feedback control of the discharge oil pressure of the oil pump 54 to the target discharge oil pressure.
  • the oil pressure obtained from the output signal of the oil pressure sensor 111 can be used for other controls.
  • oil pressure it means the discharge oil pressure of the oil pump 54.
  • the oil supplied and injected to each mechanism, and the oil discharged from the oil control valve 171, is collected in the oil pan and then supplied again to the oil main gallery 110, from where it is supplied and injected to each of the above-mentioned mechanisms.
  • the discharge oil pressure of the oil pump 54 can be set arbitrarily, so the amount of oil supplied to the oil jet can be adjusted. Therefore, in this embodiment, as shown in FIG. 8 and FIG. 12 described later, it is easier to maintain the crown surface temperature of the piston 21 in a temperature range 802 (between a lower limit temperature 805 and an upper limit temperature 806) where the amount of deposit accumulation is equal to or less than a threshold value 804, compared to the case where the oil jet is simply switched ON/OFF.
  • variable displacement oil pump 54 instead of the variable displacement oil pump 54 described above, an oil pump in which the oil pressure increases in proportion to the rotation speed may be used. Generally, such oil pumps cannot reduce the oil pressure completely under low temperature conditions, and the pump alone cannot create an oil jet stop state. Therefore, in order to create an oil jet stop state, it is necessary to provide a solenoid valve for stopping the oil jet. When a variable displacement oil pump 54 is used, hydraulic control is possible over the entire temperature range, including low temperatures, so there is no need for a solenoid valve for switching between on and off oil jet injection.
  • the oil jet system 101 is configured using a variable displacement oil pump 54, it is possible to control the amount of oil supplied to the oil jet even when the ambient temperature is low, making it easier to control the temperature of the piston crown surface, and improving the effect of reducing THC and PN.
  • FIG 3 is a block diagram showing an example configuration of the internal combustion engine control device 30.
  • the internal combustion engine control device 30 which is an ECU, has an input circuit 31, an input/output port 32, a CPU (Central Processing Unit) 33a, a RAM (Random Access Memory) 33c, and a ROM (Read Only Memory) 33b.
  • the internal combustion engine control device 30 also has an oil jet control unit 36.
  • the input circuit 31 receives an air flow rate signal from the air flow sensor 1 (see FIG. 1), an intake pressure signal from the intake pressure sensor 3, and a coil primary voltage or secondary voltage signal from a voltage sensor.
  • the input circuit 31 also receives the crank angle (rpm) from the crank angle sensor 19, and oil pressure (oil pressure) and oil temperature (oil temperature) signals from the various sensors in the oil jet system 101.
  • the input circuit 31 also receives information measured by various sensors, such as the throttle opening and exhaust air-fuel ratio.
  • the input circuit 31 performs signal processing such as noise removal on the input signal and sends it to the input/output port 32.
  • the value of the signal input to the input port of the input/output port 32 is temporarily stored in the RAM 33c.
  • ROM 33b stores a control program describing the contents of the various arithmetic processes executed by CPU 33a, as well as maps and data tables used for each process.
  • the control program and the maps and data tables used for each process may be stored in non-volatile storage (not shown).
  • RAM 33c is provided with a storage area for storing values input to the input port of input/output port 32 and values representing the amount of operation of each actuator calculated according to the control program. In addition, the values representing the amount of operation of each actuator stored in RAM 33c are sent to the output port of input/output port 32.
  • the amount of operation of the oil pump 54 set in the output port of the input/output port 32 is sent to the oil jet control unit 36.
  • the oil jet control unit 36 generates a control signal based on the amount of operation of the oil pump 54, and a drive circuit (not shown) supplies a drive signal based on the control signal to the oil pump 54.
  • the oil jet control unit 36 controls the pressure (hydraulic pressure) of the oil output by the oil pump 54, which supplies oil to the oil jet system 101 (see FIG. 1).
  • the oil jet control unit 36 then controls the hydraulic pressure of the oil pump 54 to adjust the amount of oil sprayed from the oil jet system 101, thereby controlling the temperature change of the piston 21.
  • actuators other than these are also used in the internal combustion engine 100, and the internal combustion engine control device 30 is equipped with an ignition control unit and a fuel injection control unit (not shown) that control these actuators, but their description will be omitted here.
  • the internal combustion engine control device 30 is equipped with an oil jet control unit 36, but this is not limited to this.
  • the oil jet control unit 36 may be implemented in a control device other than the internal combustion engine control device 30.
  • FIG. 4 is a control block diagram showing an overview of the control executed by the internal combustion engine control device 30.
  • the oil jet control unit 36 includes a piston crown surface temperature correlation index estimation unit 41 and an oil pressure setting unit 42.
  • the CPU 33a (see FIG. 3) executes a control program recorded in the ROM 33b or the like, thereby realizing the function of each processing block.
  • the piston crown surface temperature correlation index estimation unit 41 (an example of a correlation index estimation unit) is a processing block that estimates a piston crown surface temperature correlation index that is correlated with the temperature of the piston 21 based on the operating condition parameters and oil jet parameters of the internal combustion engine 100.
  • the air flow rate of the intake pipe 6 and the engine speed (crank angle) are input as the operating condition parameters
  • the discharge oil pressure of the oil pump 54 and the oil temperature of the oil jet are input as the oil jet parameters.
  • an oil temperature sensor is provided in an oil pan (not shown), and the oil temperature sensor measures the temperature of the oil flowing into the oil pan.
  • the location where the oil temperature is measured is not limited to the oil pan, and may be a location closer to the oil pump 54.
  • the piston crown surface temperature correlation index estimation unit 41 may estimate the piston temperature itself as the piston crown surface temperature correlation index.
  • the piston temperature change can be successively estimated from the balance between the energy input to the piston and the energy released.
  • the following equation 1 may be calculated.
  • the energy is assumed to be thermal energy.
  • Tpis (Tpis, 0) + (Qinp-(Qout, 1)-(Qout, oj)-(Qout, res)) ⁇ (MPIS x CPI)
  • Tpis is the updated value (estimated value) of the piston temperature
  • (Tpis, 0) is the current value of the piston temperature
  • Qinp is the energy [J] transferred from the combustion gas to the piston
  • (Oout, l) is the energy [J] transferred from the piston to the cylinder liner through the piston ring and the piston skirt (the part in contact with the cylinder inner wall).
  • (Qout, oj) is the energy [J] transferred from the piston to the oil jet
  • (Qout, res) is the energy [J] flowing from the piston to the outside through the crankshaft, etc.
  • Mpis is the mass of the piston (kg)
  • Cpis is the specific heat of the piston [J/kg/K].
  • Qinp, (Qout, l), and (Qout, oj) can be calculated using the following equations 2, 3, and 5.
  • (Mdot, f) is the fuel flow rate [kg/s]
  • Qf is the lower heating value of the fuel [J]
  • ⁇ pis is the rate of energy transferred to the piston (-)
  • is the calculation period [s].
  • Spl is the contact area between the piston and the liner [m2]
  • ⁇ pl is the thermal conductivity between the piston and the liner [W/(m K)]
  • Tc is the cooling water temperature [°C].
  • Spo is the contact area between the oil jet and the piston [m2]
  • hpis is the heat transfer coefficient of the oil jet
  • Toil is the oil temperature of the oil jet [°C].
  • Qf may be set in advance assuming gasoline, for example.
  • Spl may be given as the contact area between the piston ring and the liner, and can be easily set based on geometric information such as the thickness of the piston ring and the bore diameter (for example, piston ring thickness x bore diameter x pi).
  • Spo may be set based on geometric information of the piston (for example, bore diameter x bore diameter x pi ⁇ 4).
  • ⁇ pis may be given as a map based on the operating conditions, piston temperature, cooling temperature, and oil temperature, and this map must be determined in advance by experiments and simulations.
  • hpis is a parameter that depends on the oil jet shape and the oil jet flow rate.
  • hpis can be identified in advance by measurements such as experiments and simulations, and a map can be created.
  • measurements such as experiments and simulations
  • a map can be created.
  • the relationship between the oil pressure and the oil jet flow rate shown in Figure 5 and the relationship between the oil jet flow rate and the heat transfer coefficient hpis shown in Figure 6 are used.
  • FIG. 5 is a map (graph) showing an example of the relationship between the oil pressure and the oil jet flow rate, in which the vertical axis represents the oil jet flow rate and the horizontal axis represents the oil pressure.
  • 6 is a map showing an example of the relationship between the oil jet flow rate and the heat transfer coefficient hpis between the piston and the oil jet.
  • the vertical axis of Fig. 6 represents the heat transfer coefficient (hpis), and the horizontal axis represents the oil jet flow rate.
  • the oil jet flow rate is equal to or greater than 0 when the oil pressure is equal to or greater than the valve opening pressure of the valve 102, and the flow rate increases as the oil pressure increases.
  • the heat transfer coefficient hpis has a positive correlation with the oil jet flow rate. Therefore, the higher the oil jet flow rate, the higher the heat transfer coefficient hpis.
  • the current oil jet flow rate can be calculated from the oil pressure, oil temperature, and the relationship shown in FIG. 5, and the heat transfer coefficient hpis can be calculated from the calculated oil jet flow rate and the relationship shown in FIG. 6.
  • the fuel flow rate (Mdot, f) can be calculated from the air flow rate (Mdot, a) measured by the air flow sensor 1 and the exhaust air-fuel ratio AbF(-) detected by the air-fuel ratio sensor 9, for example, as shown in Equation 5.
  • Equation 7 is an equation that represents both the state immediately after the internal combustion engine 100 has stopped and the state after the internal combustion engine 100 has been stopped for a while.
  • the value of tcomb (combustion operation duration) will be negative, so as a general rule, tcomb ⁇ 0.
  • ⁇ stop is a parameter that expresses the drop in piston temperature when fuel is cut or the engine is stopped as a decrease in the duration of combustion operation of the internal combustion engine.
  • "- ⁇ stop" represents a temperature drop.
  • ⁇ stop may be set to the calculation period.
  • ⁇ stop can be given in a map with water temperature, oil temperature, and engine speed as its axes. The lower the water temperature and oil temperature, the larger ⁇ stop becomes, while the higher the engine speed, the larger ⁇ stop can be.
  • the initial value of the duration of the combustion operation which is necessary to calculate the duration of the engine combustion operation, can be set based on the oil temperature and water temperature at the time of engine start. For example, a reference value for the coolant temperature is set, and the initial value is set to 0 if the coolant temperature at the start of engine combustion is at the reference value. On the other hand, if the coolant temperature at the start of engine combustion is equal to or higher than the reference value, the initial value is set to a value greater than 0. Conversely, if the coolant temperature at the start of engine combustion is less than the reference value, the initial value is set to a value less than 0. By setting in this manner, it is possible to reproduce a state in which differences in the initial temperature result in differences in the time it takes to reach a predetermined temperature.
  • the initial value of the duration of the combustion operation should also be determined in advance through simulations and engine operation tests.
  • tcomb is the updated value [s] of the index correlated with the piston crown temperature
  • (tcomb, 0) is the current value [s] of the index correlated with the piston crown temperature
  • ⁇ out is a coefficient for reflecting the influence of operating conditions and is an index positively correlated with output.
  • the value of ⁇ out at the reference output can be set to 1, and ⁇ out can be set to a value positively correlated with output.
  • the coefficient is set to a negative value. This makes it possible to express the change in the piston temperature that occurs when the engine is stopped or fuel is cut off. For example, if ⁇ out is set to -1 when the output is 0, then Equation 8 is equivalent to Equation 7.
  • ⁇ oj is a coefficient for reflecting the influence of the oil jet, and is given as an index that has a positive correlation with the oil jet flow rate or oil pressure. For example, when the oil jet flow rate is 0, ⁇ oj is set to 0, and ⁇ oj is set in a proportional relationship to the oil jet flow rate. Furthermore, when the value of ⁇ oj is given based on the oil pressure, ⁇ oj is set to 0 when the oil pressure is less than the opening pressure of valve 102, and ⁇ oj is set in a positive correlation with the oil pressure when the oil pressure is equal to or greater than the opening pressure. This makes it possible to apply an index that is closer to the behavior of the piston temperature than the combustion operation duration (Equations 6 to 7), and that can be calculated more easily than the piston crown surface temperature estimation (Equations 1 to 5).
  • the temperature of the crown surface of the piston 21 may also be measured directly by providing a temperature sensor 105 for temperature measurement near the crown surface of the piston 21.
  • Figure 1 shows an example in which the temperature sensor 105 is provided in a portion of the outer wall of the cylinder 14 that corresponds to the reciprocating motion area of the piston 21.
  • the oil pressure setting unit 42 (see FIG. 4) is a processing block that sets the oil pressure generated by the variable displacement oil pump 54.
  • the oil pressure setting unit 42 sets the oil pressure (target oil pressure) when oil jet injection is performed, based on the piston crown surface temperature correlation index estimated by the piston crown surface temperature correlation index estimation unit 41.
  • the oil pressure is determined by the branching process shown in FIG. 9 based on the piston crown surface temperature correlation index, and as a result, the oil jet flow rate can be controlled.
  • the oil pressure setting unit 42 may be configured to use the measurement value of the temperature sensor 105 (see FIG. 1) as the piston crown surface temperature instead of the piston crown surface temperature correlation index.
  • FIG. 7 is a diagram showing an example of the relationship between engine operation time [h] of an internal combustion engine and THC emission amount [ppmC].
  • the PN also shows the same tendency as the THC emission amount.
  • substances combustion products derived from unburned or incomplete combustion of fuel or lubricating oil are deposited as deposits in the engine cylinder.
  • the deposits repeatedly adhere to and peel off the walls of the combustion chamber, and the amount of deposits increases over time.
  • the deposits absorb the fuel or lubricating oil, partial misfires or incomplete combustion occurs, and the THC and PN emitted from the engine increase.
  • FIG. 7 shows an example in which the THC emission amount increases from the initial value 701 as the engine operation time elapses, and the increase amount exceeds the allowable amount 702 of THC increase.
  • the inner wall of the cylinder 14 is the sliding part with the piston 21, and near the ignition timing, the position of the piston 21 is close to top dead center. For this reason, the surface area of the inner wall of the cylinder 14, which forms the combustion chamber near the ignition timing, is smaller than the crown surface of the piston 21, and deposits are more likely to accumulate on the crown surface of the piston 21 than on the cylinder 14.
  • Fig. 8 is a diagram showing an example of the relationship between piston crown surface temperature [°C] and deposit accumulation amount [mg]. Note that Fig. 8 shows the deposit accumulation amount after the engine has been operated for a certain period of time. Deposits are likely to accumulate when the piston crown surface temperature is in a low temperature range 801 and when the piston crown surface temperature is in a high temperature range 803. Therefore, in order to suppress deposit accumulation, it is preferable to maintain the piston crown surface temperature of the piston 21 in a temperature range 802 between temperature ranges 801 and 803, where the deposit accumulation amount is "small". As a result, it is possible to suppress increases in THC and PN due to deposit accumulation.
  • the lower limit temperature 805 of the temperature range 802 is set to approximately 150°C and the upper limit temperature 806 is set to approximately 215°C based on the deposit accumulation amount threshold value 804 (tolerance value).
  • the deposit accumulation amount threshold value 804 may be set in advance by the ECU 30 based on the allowable amount 702 of THC increase from the initial value 701 of the emission amount of exhaust gas regulated substances such as THC shown in FIG. 7.
  • FIG. 9 is a flowchart showing an example of the operation of the hydraulic pressure setting unit 42 of the internal combustion engine control device 30.
  • step S901 the hydraulic pressure setting unit 42 determines whether the lubricity of the piston 21 and cylinder 14 has decreased, i.e., whether the piston lubricity is low. For example, if the duration of combustion operation of the internal combustion engine 100 calculated using equations 6 and 7 is less than a predetermined value, it can be determined that the piston lubricity is low. If the determination in step S901 is YES, the hydraulic pressure setting unit 42 proceeds to step S902, and if the determination is NO, the hydraulic pressure setting unit 42 proceeds to step S903.
  • step S902 the oil pressure setting unit 42 sets the target oil pressure of the oil pump 54 to an oil pressure at which oil jet injection is possible.
  • the oil pressure at which oil jet injection is possible is determined according to the specifications of the oil jet nozzle and the valve 102 (see FIG. 1) and the oil temperature. Qualitatively, the lower the oil temperature, the higher the oil pressure at which oil jet injection is possible.
  • the valve 102 is a check valve (non-return valve) that is configured to open when the oil pressure in the oil main gallery 110 reaches or exceeds a predetermined value.
  • a ball valve can be used as the valve 102.
  • FIG. 10 is a map (graph) showing an example of the relationship between the oil temperature and the pressure at which the oil jet can be injected, in which the vertical axis represents the pressure at which the oil jet can be injected, and the horizontal axis represents the oil temperature.
  • the injection pressure is determined by the valve opening pressure of the valve 102.
  • the oil viscosity increases, causing a large pressure loss in the oil jet nozzle, and the pressure required to eject oil from the nozzle tip may be much greater than the injection pressure (oil jet cut pressure Pc) determined by the valve 102.
  • the oil pressure setting unit 42 determines the oil pressure setting value (target oil pressure 62) based on the current oil temperature and the relationship shown in FIG. 10.
  • the target oil pressure 62 may be set to a value equal to or greater than the pressure at which the oil jet can be injected (oil jet injection pressure 61).
  • the mode in which the processing in step S902 is performed is referred to as the "lubrication mode".
  • the oil pressure setting unit 42 can determine when the piston lubricity is low and set the oil pressure at which the oil jet can be injected. Therefore, when the piston lubricity is low, the oil jet supplies oil to improve the lubricity, thereby reducing the deterioration of fuel consumption in a situation where the piston lubricity is low.
  • the oil pressure setting unit 42 is configured to set the target value of the oil pressure of the oil jet (oil jet system 101) to a pressure that allows oil jet injection, and to set a pressure that allows oil to be impregnated into each part of the internal combustion engine.
  • the hydraulic pressure setting unit 42 sets the target hydraulic pressure value of the oil jet (oil jet system 101) to a hydraulic pressure at which the oil jet injection can be stopped or at which the oil jet can be injected, based on the hydraulic pressure at which the hydraulic pressure-responsive valve 102 provided between the oil pump 54 and the oil jet nozzle opens and closes.
  • step S903 in FIG. 9 the oil pressure setting unit 42 determines whether the piston crown surface temperature correlation index is smaller than a first predetermined value.
  • the first predetermined value is set to be the lower limit temperature 805 of the temperature range 802 in FIG. 6 where the amount of deposit accumulation is small.
  • step S903 If the crown surface temperature of the piston 21 is lower than the first predetermined value (YES in S903), the hydraulic pressure setting unit 42 proceeds to step S904. If the crown surface temperature of the piston 21 is equal to or higher than the first predetermined value (NO in S903), the hydraulic pressure setting unit 42 proceeds to step S905.
  • step S904 the oil pressure setting unit 42 sets the target oil pressure of the oil pump 54 to a pressure at which the oil jet can be stopped, based on the relationship shown in FIG. 5. Specifically, the target oil pressure can be set to a pressure lower than the opening pressure of the valve 102 provided between the oil main gallery 110 and the oil jet nozzle. Thereafter, the mode in which the process in step S904 is performed after a YES determination in step S903 is referred to as the "warm-up promotion mode.”
  • step S905 the oil pressure setting unit 42 determines whether the crown surface temperature of the piston 21 is greater than a second predetermined value. If the crown surface temperature of the piston 21 is greater than the second predetermined value (YES judgment in S905), the oil pressure setting unit 42 proceeds to step S906. Then, in step S906, the oil pressure setting unit 42 sets the target oil pressure of the oil pump 54 to a pressure that allows oil jet injection, and performs control to suppress the crown surface temperature of the piston 21.
  • the second predetermined value is set to be the upper limit temperature 806 of the temperature range 802 in FIG. 8 in which the amount of deposit accumulation is small.
  • the hydraulic pressure setting unit 42 proceeds to step S907 and determines whether the change over time in the crown surface temperature of the piston 21 is increasing.
  • the ECU 30 stores in the RAM 33 the direction and amount of change in the crown surface temperature as the change over time in the crown surface temperature of the piston 21.
  • step S907 if the change in the crown surface temperature of the piston 21 over time is increasing (YES in step S907), the hydraulic pressure setting unit 42 proceeds to step S908. Then, in step S908, the hydraulic pressure setting unit 42 controls the amount of oil in the oil jet (oil jet flow rate) to be greater than the amount of oil in the previous cycle, thereby lowering the temperature of the piston crown surface.
  • step S907 if the change over time in the crown surface temperature of the piston 21 is not increasing (is constant or is decreasing) (NO in step S907), the oil pressure setting unit 42 proceeds to step S904. Then, the oil pressure setting unit 42 increases the crown surface temperature of the piston 21 by setting an oil pressure that allows the oil jet to be stopped or by reducing the amount of oil (S904). Thereafter, the mode in which the processes in steps S905, S906, S907, S908, and S904 are performed is referred to as the "deposit suppression mode.”
  • the deposit suppression mode makes it easier for the crown surface temperature of the piston 21 to be maintained between a first predetermined value (e.g., lower limit temperature 805) and a second predetermined value (e.g., upper limit temperature 806).
  • a first predetermined value e.g., lower limit temperature 805
  • a second predetermined value e.g., upper limit temperature 806
  • step S902 When the processing of step S902, S904, S906, or S908 is completed, this processing by the hydraulic pressure setting unit 42 ends.
  • the hydraulic pressure setting unit 42 can also be said to have a function of selecting one of the "lubrication mode,” “warm-up promotion mode,” and “deposit suppression mode” based on the piston crown surface temperature correlation index or the measured value of the piston crown surface temperature, and executing the selected mode.
  • the hydraulic pressure setting unit 42 may select and execute the "warm-up promotion mode" within a first temperature state range that includes a temperature state of the piston crown surface that is identified in advance and in which the deposit accumulation amount on the piston crown surface becomes greater than a threshold value (threshold value 804), as shown by a solid line 1202 in FIG. 12 described later.
  • the first temperature state range is a temperature range (temperature range 801 in FIG. 4) in which the piston crown surface temperature is lower than the lower limit (lower limit temperature 805) of the temperature state of the piston crown surface in which the deposit accumulation amount becomes less than the threshold value.
  • the hydraulic pressure setting unit 42 selects the "warm-up promotion mode” and executes oil jet injection (S904). This makes it easier for the piston crown surface temperature to rise, and the residence time in the temperature range 801 in which the deposit accumulation amount becomes greater than the threshold value can be reduced. As a result, it is possible to suppress THC and PN.
  • the hydraulic pressure setting unit 42 also selects and executes the "deposit suppression mode" in the second temperature state (temperature ranges 802, 803 in FIG. 4) in which the temperature state of the piston crown surface is higher than the first temperature state range, as shown by the solid line 1202 in FIG. 12.
  • the hydraulic pressure setting unit 42 reduces or blocks the oil jet flow rate (S904).
  • the hydraulic pressure setting unit 42 increases the oil jet flow rate (S908).
  • the oil pressure setting unit 42 executes oil jet injection (S906).
  • This control makes it easier to maintain the temperature of the piston crown surface within a temperature range (between the lower limit temperature 805 and the upper limit temperature 806) where the amount of deposit accumulation becomes smaller. This makes it possible to suppress deposit accumulation on the piston crown surface, and as a result, it is possible to reduce THC and PN.
  • the internal combustion engine control device is an internal combustion engine control device that controls an internal combustion engine (internal combustion engine 100) having an oil pump (oil pump 54) that discharges a specified flow rate of lubricating oil, and an oil jet system (oil jet system 101) that sprays the lubricating oil discharged from the oil pump toward the supplied portion (back surface) of the piston (piston 21).
  • an oil pump oil pump 54
  • oil jet system oil jet system 101
  • the internal combustion engine control device also includes a control unit (CPU 33a, oil jet control unit 36) that stops the injection of lubricating oil from the oil jet system or controls the flow rate of lubricating oil to be lower than the flow rate of the previous cycle when the temperature of the piston crown surface is below the lower limit temperature (lower limit temperature 805) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes less than the threshold value (threshold value 804) (corresponding to the accelerated warm-up mode).
  • a control unit CPU 33a, oil jet control unit 36
  • the internal combustion engine control device executes control to inject lubricating oil from the oil jet or reduce the flow rate when the temperature of the piston crown surface is below the lower limit temperature of the temperature range in which the amount of deposits accumulated on the piston crown surface becomes less than a threshold value.
  • This oil jet control allows the temperature of the piston crown surface to quickly pass through a temperature state in which the amount of deposits accumulated on the piston crown surface becomes greater than the threshold value, and to transition to a temperature range in which the amount of deposits accumulated is small. This makes it possible to suppress deposit accumulation and suppress emissions of exhaust gas regulated substances. In other words, it is possible to achieve both suppression of deposit accumulation and suppression of emissions of exhaust gas regulated substances.
  • the control unit is configured to stop the injection of lubricating oil from the oil jet system or to control the flow rate of lubricating oil to be lower than the flow rate of the previous cycle when the temperature of the piston crown surface is equal to or higher than the lower limit temperature (lower limit temperature 805) and equal to or lower than the upper limit temperature (upper limit temperature 806) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes less than a threshold value (threshold value 804) (corresponding to the deposit suppression mode).
  • the oil jet control configured as above maintains the temperature of the piston crown surface within a temperature range that reduces the amount of deposit buildup, suppressing deposit buildup and preventing increases in THC and PN.
  • the control unit is configured to increase the flow rate of lubricating oil from that of the previous cycle when the temperature of the piston crown surface is equal to or higher than the lower limit temperature (lower limit temperature 805) and equal to or lower than the upper limit temperature (upper limit temperature 806) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes less than a threshold value (threshold value 804) (corresponding to the deposit suppression mode), and when the temperature of the piston crown surface shows an increasing tendency over time.
  • a threshold value corresponding to the deposit suppression mode
  • the oil jet control configured as above maintains the temperature of the piston crown surface within a temperature range where the amount of deposit buildup is small, suppressing deposit buildup and suppressing increases in THC and PN.
  • the amount of deposit buildup increases (see Figure 8), but by increasing the flow rate of the lubricating oil injected, the temperature rise of the piston crown surface can be prevented and the increase in the amount of deposit buildup can be suppressed.
  • the control unit (oil jet control unit 36) is configured to inject lubricating oil from the oil jet system when the temperature of the piston crown surface exceeds the upper limit temperature of the temperature range in which the amount of deposits accumulated on the piston crown surface is less than a threshold value (corresponding to the deposit suppression mode).
  • the above-described oil jet control quickly reduces the temperature of the piston crown surface, and by keeping the piston crown surface temperature within the temperature range where the amount of deposit buildup is small, deposit buildup is suppressed and an increase in THC and PN is suppressed.
  • the control unit (oil jet control unit 36) is configured to determine the lubricity between the piston and the cylinder of the internal combustion engine before comparing the temperature of the piston crown surface with the lower limit temperature (lower limit temperature 805) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes smaller than a threshold value (threshold value 804), and to execute the injection of lubricating oil from the oil jet system if it is determined that the lubricity is insufficient (corresponding to the lubrication mode).
  • a threshold value threshold value
  • the oil jet control configured as above can improve the lubrication between the piston and the cylinder of the internal combustion engine, thereby reducing the deterioration of fuel consumption in situations where the piston lubrication is low.
  • the temperature of the piston crown surface is a piston crown surface temperature correlation index that is correlated with the temperature of the piston crown surface and is estimated based on the operating condition parameters of the internal combustion engine and the oil jet parameters for injecting lubricating oil onto the back surface of the piston, or is a measurement value of a temperature sensor (temperature sensor 105) that measures the temperature of the piston crown surface.
  • the second embodiment of the present invention is an example in which the controllability of the piston crown surface temperature is enhanced by improving the piston 21 in the internal combustion engine 100 of the first embodiment.
  • the configuration of a control system in the second embodiment of the present invention will be described with reference to Figs. 11 and 12.
  • FIG. 11 is a schematic diagram showing an example of the configuration of a piston in this embodiment.
  • Fig. 12 is a diagram showing time series changes in vehicle speed [km/h], oil jet flow rate ("OJ flow rate" in the figure) [L/min], piston crown surface temperature [°C], and oil temperature [°C] at engine start in this embodiment.
  • OJ flow rate oil jet flow rate
  • piston crown surface temperature piston crown surface temperature
  • oil temperature oil temperature at engine start in this embodiment.
  • dashed lines 1201 for the first embodiment
  • solid lines 1202 for the second embodiment.
  • (1) lubrication mode, (2) warm-up promotion mode, and (3) deposit suppression mode are assumed to be examples applied to the second embodiment.
  • the piston 21A according to the second embodiment differs from the piston 21 according to the first embodiment in that the piston 21A includes a base material 1101 and a piston crown surface 1102 made of a material having a lower thermal conductivity than the base material 1101 and facing the combustion chamber of the internal combustion engine 100.
  • the action and effect of using the piston 21A in the second embodiment will be described.
  • the piston crown surface 1102 With a material having a lower thermal conductivity than the base material 1101, it is possible to suppress heat escaping from the combustion chamber to the lubricating oil through the base material 1101 of the piston 21A and the piston rings arranged on the side of the piston 21A.
  • time 1203 in FIG. 12 it is possible to increase the rate of temperature rise of the piston crown surface 1102 at engine start more quickly than in the first embodiment.
  • the time until the lower limit temperature 805 (see FIG. 8) at which the amount of deposit accumulation becomes small can be shortened from time 1204 to time 1205.
  • the time during which the piston crown surface temperature stays in the temperature range 802 at which the amount of deposit accumulation becomes small can be increased more than in the first embodiment, and as a result, the accumulation of deposits can be suppressed. As a result, the increase in THC and PN can be suppressed.
  • the value of the thickness 1104 of the piston crown surface 1102 which is provided with a material having a lower thermal conductivity than the base material 1101, should be set sufficiently smaller than the thickness 1103 of the base material 1101. Since the thermal conductivity is determined by the "heat transfer coefficient" and "heat capacity" of the material, by reducing the value of the thickness 1104 of the piston crown surface 1102, the temperature of the piston crown surface 1102 is more likely to increase. This makes it possible to increase the time that the piston crown surface temperature remains in the temperature range 802 where the amount of deposit accumulation is small, thereby suppressing the accumulation of deposits. In order to reduce the value of the thickness of the piston crown surface 1102, the piston crown surface 1102 may be formed by coating the base material 1101.
  • the thermal conductivity of the base material 1101 is set to 135 [W/mK] and the thermal conductivity of the piston crown surface 1102 is set to 10 [W/mK] or less.
  • the thermal conductivity of the piston crown surface 1102 is designed to be sufficiently smaller than that of the base material 1101, the temperature rise rate of the piston crown surface 1102 can be increased, and the effect of suppressing deposit accumulation can be improved.
  • the timing for starting oil jet injection or increasing the amount of oil in the oil jet can be advanced after the warm-up promotion mode.
  • the warm-up judgment temperature Twj is a temperature threshold for determining that the internal combustion engine 100 has warmed up to a set temperature. As a result, the fuel injected into the engine cylinder is more likely to vaporize, and the effect of suppressing THC and PN is improved.
  • the oil pressure setting unit 42 which selects one of the “lubrication mode”, the “warm-up promotion mode”, and the “deposit suppression mode”, may have a function of executing the selected mode by taking into account the thermal conductivity of the piston crown surface to the measured value of the piston crown surface temperature correlation index or the piston crown surface temperature.
  • the oil jet is switched earlier or later, taking into account the delay in the effect of increasing or decreasing the oil jet.
  • the thermal conductivity is greater than a specified value
  • the temperature change of the piston crown surface is fast, so the oil jet is turned ON/OFF or the flow rate is switched later.
  • the thermal conductivity is equal to or less than the specified value
  • the temperature change of the piston crown surface is gradual, so the oil jet is turned ON/OFF or the flow rate is switched earlier.
  • the oil jet flow rate is increased to cool the piston 21A.
  • time 1208 the time when the oil jet flow rate is increased
  • time 1209 the time when the temperature of the piston crown surface of the piston 21A actually starts to decrease
  • the oil pressure setting unit 42 takes into account the time delay due to thermal conductivity and increases the oil jet flow rate in advance when it is predicted that the piston crown surface temperature after a certain time period calculated from the change in piston crown surface temperature over time will exceed the upper limit temperature 806 at which the amount of deposit accumulation becomes small. This makes it possible to shorten the time during which the piston crown surface temperature exceeds the upper limit temperature 806 at which the amount of deposit accumulation becomes small, thereby suppressing the accumulation of deposits.
  • the third embodiment of the present invention is an example of controlling the ignition timing of the mixture in the combustion chamber based on mode information notified from the oil jet control unit 36.
  • mode information notified from the oil jet control unit 36 the configuration of the control system in the third embodiment of the present invention will be described with reference to Figures 13 and 14.
  • FIG. 13 is a block diagram showing an example of the configuration of an internal combustion engine control device according to this embodiment.
  • the internal combustion engine control device 30A according to this embodiment has a configuration in which an ignition timing control unit 1300 is added to the internal combustion engine control device 30 according to the first embodiment.
  • the functions of each processing block are realized by the CPU 33a executing a control program recorded in the ROM 33b, etc.
  • the piston crown surface temperature correlation index estimation unit 41 and the oil pressure setting unit 42 have the same functions as the piston crown surface temperature correlation index estimation unit 41 and the oil pressure setting unit 42 ( Figure 4) according to the first embodiment.
  • the ignition timing control unit 1300 adjusts the timing of sending an ignition signal to the ignition coil 16 based on the mode information (or the state of the piston crown surface temperature) notified by the oil jet control unit 36, and controls the ignition timing of the air-fuel mixture.
  • FIG. 14 is a control block diagram showing an overview of the control executed by the internal combustion engine control device 30A.
  • the ignition timing control unit 1300 performs control to raise the piston crown surface temperature by advancing or retarding the ignition timing of the air-fuel mixture, which is set based on the load of the internal combustion engine 100.
  • the load information of the internal combustion engine 100 is, for example, the intake flow rate and the engine speed.
  • the cylinder pressure increases, causing the temperature inside the cylinder to rise, and the amount of heat that moves from inside the cylinder to the piston crown surface increases.
  • This causes the piston crown surface temperature to rise, and the time it takes for the piston crown surface temperature to reach the lower limit temperature 805 can be shortened. As a result, the effect of reducing THC and PN is greater.
  • the amount of heat transferred from inside the cylinder to the piston crown surface can be suppressed by retarding the ignition timing from the optimal ignition timing. This shortens the time it takes for the piston crown surface temperature to fall below the upper limit temperature 806, thereby enhancing the deposit suppression effect.
  • the ignition timing control unit 1300 adjusts the piston crown surface temperature by advancing or retarding the ignition timing of the air-fuel mixture, which is set based on the load of the internal combustion engine 100.
  • the load information of the internal combustion engine 100 is, for example, the intake air flow rate and the engine speed. For example, when a high engine speed is required, the ignition timing is advanced to quickly increase the engine speed. Also, when a high engine speed is not required, the ignition timing is retarded to quickly reduce the engine speed. This makes it easier to change the piston crown surface temperature, and the time during which the piston crown surface temperature is in the temperature range where deposits are small can be extended. This suppresses deposits and enhances the effect of reducing THC and PN.
  • the internal combustion engine control device includes an ignition timing control unit (ignition timing control unit 1300) that advances the ignition timing, which is set based on the load of the internal combustion engine, when the temperature of the piston crown surface is below the lower limit temperature (lower limit temperature 805) of the temperature range in which the amount of deposits on the piston crown surface becomes less than the threshold value (threshold value 804).
  • the ignition timing is the optimal ignition timing that increases the combustion speed of the mixture in the combustion chamber.
  • the internal combustion engine control device (internal combustion engine control device 30A) according to this embodiment also includes an ignition timing control unit (ignition timing control unit 1300) that advances or retards the ignition timing, which is set based on the load of the internal combustion engine, when the temperature of the piston crown surface is equal to or higher than the lower limit temperature (lower limit temperature 805) of the temperature range in which the amount of deposits on the piston crown surface becomes smaller than a threshold value (threshold value 804).
  • the ignition timing control unit advances the ignition timing when the target rotation speed of the internal combustion engine is higher than a first rotation speed, and retards the ignition timing when the target rotation speed of the internal combustion engine is lower than a second rotation speed that is lower than the first rotation speed.
  • the fourth embodiment of the present invention is an example in which an oil jet control unit includes a mode selection unit in addition to the oil pressure setting unit 42.
  • a mode selection unit in addition to the oil pressure setting unit 42.
  • FIG. 15 is a block diagram showing an overview of the control of the internal combustion engine control device according to this embodiment.
  • the oil jet control unit 36A according to this embodiment includes a piston crown surface temperature correlation index estimation unit 41, a mode selection unit 1500, and an oil pressure setting unit 42A.
  • the CPU 33a executes a control program recorded in the ROM 33b or the like to realize the functions of each processing block.
  • the piston crown surface temperature correlation index estimation unit 41 has the same function as the piston crown surface temperature correlation index estimation unit 41 (FIG. 4) according to the first embodiment.
  • the piston crown surface temperature correlation index estimation unit 41 sends the estimated piston crown surface temperature correlation index to the hydraulic pressure setting unit 42A and the mode selection unit 1500.
  • the mode selection unit 1500 selects one of the "lubrication mode,” “warm-up promotion mode,” or “deposit suppression mode” based on the piston crown surface temperature correlation index or the measured value of the piston crown surface temperature, and sends the selection result (mode information) to the hydraulic pressure setting unit 42A.
  • the mode selection unit 1500 may determine that the piston lubricity is low when the duration of combustion operation of the internal combustion engine 100 is less than a predetermined value, and select the "lubrication mode.” Furthermore, when the duration of combustion operation is equal to or greater than a predetermined value, the mode selection unit 1500 selects the "warm-up promotion mode” or the "deposit suppression mode” based on the piston crown surface temperature.
  • the hydraulic pressure setting unit 42A has the functions of the hydraulic pressure setting unit 42 according to the first embodiment, excluding the mode selection function.
  • the hydraulic pressure setting unit 42A sets the hydraulic pressure (target hydraulic pressure) when performing oil jet injection according to the flowchart of FIG. 9, based on the measured value of the piston crown surface temperature correlation index or the piston crown surface temperature, and the mode information notified from the mode selection unit 1500.
  • the mode selection unit 1500 may have a function of selecting a mode by taking into consideration the thermal conductivity to the piston crown surface temperature correlation index or the piston crown surface temperature, similarly to the hydraulic pressure setting unit 42 according to the modified example of the second embodiment. This makes it easier to control the piston crown surface temperature of the piston 21 within a predetermined range, and enhances the effect of suppressing THC and PN, also in this embodiment.
  • the control system in each of the above-mentioned embodiments is effective for an internal combustion engine equipped with an engine, but may also be used for a series hybrid that uses the engine as a generator, or a PHEV (Plug-in Hybrid Electric Vehicle) that can select the timing of using the engine.
  • a series hybrid or a PHEV can secure the power for running the vehicle with an electric motor, so that the start timing of the internal combustion engine can be set arbitrarily by combining it with the present invention.
  • the engine can be stopped (idling stop) to suppress the amount of deposit accumulation and the increase in THC and PN.
  • the present invention is not limited to the above-described embodiments, and of course various other applications and modifications are possible without departing from the gist of the present invention as set forth in the claims.
  • the above-described embodiments are described in detail and specifically to clearly explain the present invention, and are not necessarily limited to those including all of the components described. It is also possible to replace part of the configuration of one embodiment with a component of another embodiment. It is also possible to add components of another embodiment to the configuration of one embodiment. It is also possible to add, replace, or delete other components from part of the configuration of each embodiment.
  • the above-mentioned configurations, functions, processing units, etc. may be realized in part or in whole in hardware, for example by designing them as integrated circuits.
  • broad processor devices such as FPGAs (Field Programmable Gate Arrays) and ASICs (Application Specific Integrated Circuits) may be used.
  • control lines and information lines are those that are considered necessary for the explanation, and not all control lines and information lines in the product are necessarily shown. In reality, it can be considered that almost all components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

According to one aspect of the present invention, an internal combustion engine control device controls an internal combustion engine comprising an oil pump that discharges lubricating oil at a specified flow rate and an oil jet system that injects the lubricating oil discharged from the oil pump toward a supplied portion of a piston, the internal combustion engine control device comprising a control unit that performs, when the temperature of a piston crown surface is lower than a lower limit temperature of a temperature range in which an amount of deposit accumulation on the piston crown surface is smaller than a threshold value, control for stopping the injection of the lubricating oil from the oil jet system or control for reducing the flow rate of the lubricating oil compared with the flow rate in the previous cycle.

Description

内燃機関制御装置及び内燃機関制御方法Internal combustion engine control device and internal combustion engine control method
 本発明は、ピストンにオイルジェットを噴射する内燃機関を制御する内燃機関制御装置及び内燃機関制御方法に関する。 The present invention relates to an internal combustion engine control device and an internal combustion engine control method for controlling an internal combustion engine that injects an oil jet into a piston.
 内燃機関の制御システムにおいて、燃焼室内にデポジットが堆積することで、燃費性能や排気性能が悪化することが知られている。デポジットが堆積した場合には、内燃機関の負荷を高めた運転を行うことで、デポジットを焼く制御を行うことで、燃焼室内に堆積したデポジットを減少させる方法などがある。しかしながら、デポジットの堆積量が大きくなると、デポジットが固まることで、デポジットを焼く制御を行った場合であってもデポジットの堆積が抑制できないなどの課題が生じる場合がある。 In the control system of an internal combustion engine, it is known that the accumulation of deposits in the combustion chamber can lead to a deterioration in fuel efficiency and exhaust performance. When deposits have accumulated, one method is to operate the internal combustion engine at a higher load, thereby controlling the burning of the deposits and thereby reducing the amount of deposits that have built up in the combustion chamber. However, when the amount of deposits increases, the deposits harden, which can lead to issues such as the deposit accumulation not being able to be suppressed even when control is used to burn the deposits.
 特許文献1には、クーリングチャネル内のデポジットの堆積を抑制するため、デポジットの堆積量が増加する温度範囲に、ピストン温度が入らないように、オイルジェットのON/OFFを制御する方法が開示されている。このように、ピストン温度がデポジットの堆積量が増加する温度範囲に入らないよう制御することで、デポジットの堆積抑制が可能となる。 Patent Document 1 discloses a method of controlling the ON/OFF of the oil jet to prevent the piston temperature from entering the temperature range where the amount of deposit buildup increases, in order to suppress the buildup of deposits in the cooling channel. In this way, by controlling the piston temperature so that it does not enter the temperature range where the amount of deposit buildup increases, it is possible to suppress the buildup of deposits.
特開2017-145757号公報JP 2017-145757 A
 しかしながら、特許文献1に記載の技術では、デポジットの堆積を抑制するために、オイルジェットをONにしピストンの温度を下げると、排気量が増加する。その結果、THC(Total Hydro Carbon)やPN(Particulate Number)などの排ガス規制物質が増加する。また、デポジットが増加する温度範囲が複数ある場合には、オイルジェットのON/OFF制御のみでは、ピストン温度をデポジットの堆積を抑えられる温度に維持することが難しく、デポジットの堆積により、THCやPNが増加する場合があった。 However, in the technology described in Patent Document 1, when the oil jet is turned on and the piston temperature is lowered in order to suppress deposit accumulation, the displacement increases. As a result, exhaust gas regulated substances such as THC (Total Hydro Carbon) and PN (Particulate Number) increase. Furthermore, when there are multiple temperature ranges in which deposits increase, it is difficult to maintain the piston temperature at a temperature that suppresses deposit accumulation by only controlling the oil jet on/off, and deposit accumulation can sometimes cause THC and PN to increase.
 上記の状況から、デポジットの堆積抑制と排ガス規制物質の排出抑制を両立する手法が要望されていた。 Given the above situation, there was a demand for a method that could simultaneously suppress deposit accumulation and reduce emissions of substances subject to exhaust gas regulations.
 上記課題を解決するために、本発明の一態様の内燃機関制御装置は、指定された流量の潤滑油を吐出するオイルポンプと、該オイルポンプから吐出される潤滑油をピストンの被供給部に向けて噴射するオイルジェットシステムとを有する内燃機関を制御する内燃機関制御装置であって、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値よりも少なくなる温度範囲の下限温度未満の場合に、オイルジェットシステムからの潤滑油の噴射を停止する、又は潤滑油の流量を前周期の流量よりも低下させる制御を行う制御部、を備える。 In order to solve the above problem, one embodiment of the present invention is an internal combustion engine control device that controls an internal combustion engine having an oil pump that discharges a specified flow rate of lubricating oil and an oil jet system that injects the lubricating oil discharged from the oil pump toward a supply portion of a piston, and includes a control unit that stops the injection of lubricating oil from the oil jet system or controls the flow rate of lubricating oil to be lower than the flow rate of the previous cycle when the temperature of the piston crown surface is below the lower limit temperature of a temperature range in which the amount of deposits accumulated on the piston crown surface is less than a threshold value.
 本発明の少なくとも一態様によれば、デポジットの堆積抑制と排ガス規制物質の排出抑制を両立することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to at least one embodiment of the present invention, it is possible to suppress both the accumulation of deposits and the emission of substances regulated in exhaust gases.
Problems, configurations and effects other than those described above will become apparent from the following description of the embodiments.
本発明の第1の実施形態に係る内燃機関制御装置によって制御される内燃機関のシステム構成の一例を示す概略図である。1 is a schematic diagram showing an example of a system configuration of an internal combustion engine controlled by an internal combustion engine control device according to a first embodiment of the present invention. 内燃機関に使用される可変容量型のオイルポンプの構成例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of the configuration of a variable displacement oil pump used in an internal combustion engine. 本発明の第1の実施形態に係る内燃機関制御装置の構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of an internal combustion engine control device according to a first embodiment of the present invention; 本発明の第1の実施形態に係る内燃機関制御装置で実行される制御の概要を示す制御ブロック図である。1 is a control block diagram showing an overview of control executed by an internal combustion engine control device according to a first embodiment of the present invention. オイル圧力とオイルジェット流量の関係例を示すマップ(グラフ)である。1 is a map (graph) showing an example of the relationship between oil pressure and oil jet flow rate. オイルジェット流量と、ピストンとオイルジェットの間の熱伝達率との関係例を示すマップである。11 is a map showing an example of the relationship between the oil jet flow rate and the heat transfer coefficient between the piston and the oil jet. 内燃機関のエンジン運転時間とTHCの関係例を示す図である。FIG. 4 is a diagram showing an example of the relationship between engine operation time of an internal combustion engine and THC. ピストン冠面温度とデポジット堆積量の関係例を示す図である。FIG. 4 is a diagram showing an example of the relationship between piston crown surface temperature and deposit accumulation amount. 本発明の第1の実施形態に係る内燃機関制御装置の油圧設定部の動作例を示すフローチャートである。5 is a flowchart showing an example of the operation of a hydraulic pressure setting unit of the internal combustion engine control device according to the first embodiment of the present invention. オイル温度とオイルジェット噴射可能圧力の関係例を示すマップ(グラフ)である。1 is a map (graph) showing an example of the relationship between oil temperature and oil jet injectable pressure. 本発明の第2の実施形態におけるピストンの構成例を示す概略図である。FIG. 11 is a schematic diagram showing a configuration example of a piston according to a second embodiment of the present invention. 本発明の第2の実施形態におけるエンジン始動時の車速、オイルジェット流量、ピストン冠面温度、及び油温の時系列変化を示す図である。FIG. 11 is a diagram showing time series changes in vehicle speed, oil jet flow rate, piston crown surface temperature, and oil temperature at engine start in a second embodiment of the present invention. 本発明の第3の実施形態に係る内燃機関制御装置の構成例を示すブロック図である。FIG. 11 is a block diagram showing an example of the configuration of an internal combustion engine control device according to a third embodiment of the present invention. 本発明の第3の実施形態に係る内燃機関制御装置で実行される制御の概要を示す制御ブロック図である。FIG. 11 is a control block diagram showing an overview of control executed by an internal combustion engine control device according to a third embodiment of the present invention. 本発明の第4の実施形態に係る内燃機関制御装置の制御の概要を示すブロック図である。FIG. 11 is a block diagram showing an outline of control by an internal combustion engine control device according to a fourth embodiment of the present invention.
 以下、本発明を実施するための形態(以下、「実施形態」と称する)の例について、添付図面を参照して説明する。本明細書及び添付図面において、同一の構成要素又は実質的に同一の機能を有する構成要素には同一の符号を付して重複する説明を省略する。 Below, examples of modes for carrying out the present invention (hereinafter referred to as "embodiments") will be described with reference to the accompanying drawings. In this specification and the accompanying drawings, identical components or components having substantially the same functions will be designated by the same reference numerals, and duplicate descriptions will be omitted.
<第1の実施形態>
 まず、本発明の第1の実施形態に係る内燃機関制御装置によって制御される内燃機関のシステム構成について図1を参照して説明する。
First Embodiment
First, a system configuration of an internal combustion engine controlled by an internal combustion engine control device according to a first embodiment of the present invention will be described with reference to FIG.
[内燃機関の構成]
 図1は、本実施形態に係る内燃機関制御装置によって制御される内燃機関のシステム構成の一例を示す概略図である。図1に示す-内燃機関100は、自動車に使用される火花点火式内燃機関のシステム構成を示しており、ガソリンからなる燃料を筒内に直接噴射する筒内燃料噴射弁を備えている。なお、-内燃機関100としては、筒内噴射型の内燃機関(直噴エンジン)に限定されるものではなく、吸入ポートに燃料を噴射するポート噴射型の内燃機関を適用してもよい。
[Configuration of the internal combustion engine]
Fig. 1 is a schematic diagram showing an example of a system configuration of an internal combustion engine controlled by an internal combustion engine control device according to this embodiment. An internal combustion engine 100 shown in Fig. 1 shows the system configuration of a spark ignition internal combustion engine used in automobiles, and is equipped with an in-cylinder fuel injection valve that directly injects fuel made of gasoline into a cylinder. Note that the internal combustion engine 100 is not limited to an in-cylinder injection type internal combustion engine (direct injection engine), and a port injection type internal combustion engine that injects fuel into an intake port may also be used.
 内燃機関100は、吸入行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンである。また、内燃機関100は、例えば、4つの気筒(シリンダ)を備えた多気筒エンジンである。なお、内燃機関100が有する気筒の数は、4つに限定されるものではなく、6つ又は8つ以上の気筒を有していてもよい。また、内燃機関100のサイクル数は、4サイクルに限定されるものではない。 The internal combustion engine 100 is a four-stroke engine that repeats four strokes: an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. The internal combustion engine 100 is also a multi-cylinder engine with, for example, four cylinders. The number of cylinders that the internal combustion engine 100 has is not limited to four, and the engine may have six or eight or more cylinders. The number of cycles of the internal combustion engine 100 is also not limited to four.
 図1に示すように、内燃機関100は、エアフローセンサ1と、電子制御スロットル弁2と、吸気圧センサ3と、コンプレッサ4aと、インタークーラ7と、シリンダ14とを備えている。エアフローセンサ1、電子制御スロットル弁2、吸気圧センサ3、コンプレッサ4a、及びインタークーラ7は、吸気管6におけるシリンダ14までの位置に配置されている。 As shown in FIG. 1, the internal combustion engine 100 includes an airflow sensor 1, an electronically controlled throttle valve 2, an intake pressure sensor 3, a compressor 4a, an intercooler 7, and a cylinder 14. The airflow sensor 1, the electronically controlled throttle valve 2, the intake pressure sensor 3, the compressor 4a, and the intercooler 7 are arranged in the intake pipe 6 up to the cylinder 14.
 また、エアフローセンサ1は、吸入空気量と、吸気温度を計測する。電子制御スロットル弁2は、不図示の駆動モータにより開閉可能に駆動する。そして、運転者のアクセル操作に基づいて、電子制御スロットル弁2の開度が調整される。これにより、吸気される空気量を調整し、吸気管6の圧力を調整する。吸気圧センサ3は、吸気管6の圧力を計測する。 In addition, the air flow sensor 1 measures the intake air volume and intake air temperature. The electronically controlled throttle valve 2 is driven to be able to open and close by a drive motor (not shown). The opening of the electronically controlled throttle valve 2 is adjusted based on the driver's accelerator operation. This adjusts the amount of air taken in and the pressure in the intake pipe 6. The intake pressure sensor 3 measures the pressure in the intake pipe 6.
 コンプレッサ4aは、過給機において過給する吸気を圧縮する。このコンプレッサ4aは、後述するタービン4bにより回転力が伝達される。インタークーラ7は、シリンダ14の上流側に配置され、吸気を冷却する。 The compressor 4a compresses the intake air to be supercharged in the turbocharger. Rotational force is transmitted to the compressor 4a by the turbine 4b, which will be described later. The intercooler 7 is disposed upstream of the cylinder 14 and cools the intake air.
 また、内燃機関100は、シリンダ14の筒内に燃料を噴射する燃料噴射装置13と、点火エネルギーを供給する点火コイル16及び点火プラグ17からなる点火装置が、シリンダ14ごとに設けられている。点火コイル16は、内燃機関制御装置30の制御の下、高電圧を生成し、点火プラグ17に印加する。これにより、点火プラグ17に火花が発生する。そして、点火プラグ17に発生した火花により、筒内の混合気が燃焼し、爆発する。例えば、内燃機関制御装置30として、ECU(Engine Control Unit)を用いることができる。 In addition, the internal combustion engine 100 is provided with an ignition device for each cylinder 14, which is composed of a fuel injection device 13 that injects fuel into the cylinder 14, and an ignition coil 16 and a spark plug 17 that supply ignition energy. Under the control of the internal combustion engine control device 30, the ignition coil 16 generates a high voltage and applies it to the spark plug 17. This generates a spark in the spark plug 17. The spark generated in the spark plug 17 then burns the air-fuel mixture in the cylinder, causing an explosion. For example, an ECU (Engine Control Unit) can be used as the internal combustion engine control device 30.
 また、点火コイル16には、不図示の電圧センサが取り付けられている。電圧センサは、点火コイル16の一次側電圧又は二次側電圧を計測する。そして、電圧センサが計測した電圧情報は、内燃機関制御装置30に送られる。 In addition, a voltage sensor (not shown) is attached to the ignition coil 16. The voltage sensor measures the primary side voltage or secondary side voltage of the ignition coil 16. The voltage information measured by the voltage sensor is sent to the internal combustion engine control device 30.
 また、シリンダ14のシリンダヘッド20には、可変バルブ5a及び可変バルブ5bが設けられている。可変バルブ5aは、シリンダ14の筒内に流入する混合気を調整し、可変バルブ5bは、筒内から排出する排気ガスを調整する。可変バルブ5a,5bを調整することにより、全てのシリンダ14の吸気量及び内部EGR(Exhaust Gas Recirculation)量が調整される。 In addition, variable valves 5a and 5b are provided in the cylinder head 20 of the cylinder 14. Variable valve 5a adjusts the mixture flowing into the cylinder 14, and variable valve 5b adjusts the exhaust gas discharged from the cylinder. By adjusting variable valves 5a and 5b, the intake volume and internal EGR (Exhaust Gas Recirculation) volume of all cylinders 14 are adjusted.
 さらに、シリンダ14の筒内には、ピストン21が摺動可能に配置されている。ピストン21は、シリンダ14の筒内に流入した燃料とガスの混合気を圧縮する。そして、ピストン21は、筒内に生じた燃焼圧力によりシリンダ14の筒内を往復運動する。また、内燃機関100には、ピストン21の位置を検出するためのクランク角度センサ19が取り付けられている。クランク角度センサ19が計測したクランク角度情報(回転情報)は、内燃機関制御装置30に送られる。 Furthermore, a piston 21 is slidably disposed within the cylinder 14. The piston 21 compresses the mixture of fuel and gas that flows into the cylinder 14. The piston 21 reciprocates within the cylinder 14 due to the combustion pressure generated within the cylinder. The internal combustion engine 100 is also equipped with a crank angle sensor 19 for detecting the position of the piston 21. Crank angle information (rotation information) measured by the crank angle sensor 19 is sent to the internal combustion engine control device 30.
 燃料噴射装置13は、内燃機関制御装置30(ECU)に制御されて、シリンダ14の筒内に燃料を噴射する。これにより、シリンダ14の筒内には、空気の燃料が混合された混合気が生成される。また、燃料噴射装置13には、不図示の高圧燃料ポンプが接続されている。高圧燃料ポンプにより圧力が高められた燃料が燃料噴射装置13に供給される。さらに、燃料噴射装置13と高圧燃料ポンプとを接続する燃料配管には、燃料噴射圧力を計測するための燃料圧力センサが設けられている。 The fuel injection device 13 is controlled by an internal combustion engine control device 30 (ECU) and injects fuel into the cylinder 14. As a result, an air-fuel mixture is generated inside the cylinder 14. A high-pressure fuel pump (not shown) is also connected to the fuel injection device 13. Fuel whose pressure has been increased by the high-pressure fuel pump is supplied to the fuel injection device 13. Furthermore, a fuel pressure sensor for measuring the fuel injection pressure is provided in the fuel pipe connecting the fuel injection device 13 and the high-pressure fuel pump.
 また、シリンダ14には、温度センサ18が設けられている。温度センサ18は、シリンダ14を巡る冷却水の温度を計測する。冷却水装置として、図示しないウォーターポンプがあり、ウォーターポンプによりシリンダ14を巡る冷却水の流量を調整する。ウォーターポンプは、内燃機関の出力を利用して駆動するものや、電動化されたウォーターポンプ(電動ウォーターポンプ)等が適用される。また、図示していないが、冷却水を調整する装置として、ウォーターポンプの他に、シリンダへの流入する冷却水を制御するサーモスタット、内燃機関に備えられた冷却水の熱交換機やシリンダ等の各構成要素に流れる方向を切り替えるためのバルブが備えられている場合もある。 The cylinder 14 is also provided with a temperature sensor 18. The temperature sensor 18 measures the temperature of the cooling water circulating through the cylinder 14. The cooling water device includes a water pump (not shown), which adjusts the flow rate of the cooling water circulating through the cylinder 14. The water pump may be one that is driven using the output of the internal combustion engine, or an electric water pump (electric water pump). Although not shown, in addition to the water pump, the device for adjusting the cooling water may also include a thermostat that controls the cooling water flowing into the cylinder, and a valve for switching the flow direction to each component such as the cooling water heat exchanger and cylinder provided in the internal combustion engine.
 さらに、内燃機関100の各シリンダ14には、オイルジェットシステム101(ピストン冷却装置)が設けられている。オイルジェットシステム101は、可変容量型のオイルポンプ54(図2参照)に接続されており、オイルポンプ54から冷却用かつ潤滑用のオイル(潤滑油)が供給される。オイルジェットシステム101には、潤滑油の流速を増加させる絞り部103が設けられる。潤滑油としては、一般的にエンジンオイルが用いられる。 Furthermore, each cylinder 14 of the internal combustion engine 100 is provided with an oil jet system 101 (piston cooling device). The oil jet system 101 is connected to a variable displacement oil pump 54 (see FIG. 2), and oil (lubricating oil) for cooling and lubrication is supplied from the oil pump 54. The oil jet system 101 is provided with a throttle section 103 that increases the flow rate of the lubricating oil. Engine oil is generally used as the lubricating oil.
 オイルジェットシステム101は、絞り部103からピストン21の下面に潤滑油を噴射し、ピストン21の温度を下げる。オイルジェットシステム101によって、潤滑油を適切にピストン21の下面(裏面)に当てることができ、ピストン冠面の温度を正確に制御することができる。また、内燃機関制御装置30がオイルポンプ54の出力(流量、油圧)を調整することにより、オイルジェットシステム101からピストン21に向けて噴射される潤滑油の量が変化する。 The oil jet system 101 injects lubricating oil from the throttle section 103 onto the underside of the piston 21 to lower the temperature of the piston 21. The oil jet system 101 allows the lubricating oil to be appropriately applied to the underside (backside) of the piston 21, and the temperature of the piston crown surface can be accurately controlled. In addition, the amount of lubricating oil injected from the oil jet system 101 toward the piston 21 can be changed by the internal combustion engine control device 30 adjusting the output (flow rate, oil pressure) of the oil pump 54.
 オイルジェットシステム101のオイル流路には、バルブ102が設けられている。バルブ102は、オイルメインギャラリ110からオイルジェットノズル出口までの間に設けられる。本例では、オイルポンプ54とオイルジェットノズル出口との間に、バルブ102が配置されている。 A valve 102 is provided in the oil flow path of the oil jet system 101. The valve 102 is provided between the oil main gallery 110 and the oil jet nozzle outlet. In this example, the valve 102 is disposed between the oil pump 54 and the oil jet nozzle outlet.
 さらに、シリンダ14の排気ポートには、排気管15が接続されている。排気管15には、タービン4b、電子制御ウェイストゲート弁11、三元触媒10、及び空燃比センサ9が設けられている。タービン4bは、排気管15を通過する排気ガスにより回転し、コンプレッサ4aに回転力を伝える。また、タービン4bの上流側と下流側を結ぶように接続された電子制御ウェイストゲート弁11は、タービン4bに流れる排気流量を調整する。 Furthermore, an exhaust pipe 15 is connected to the exhaust port of the cylinder 14. The exhaust pipe 15 is provided with a turbine 4b, an electronically controlled wastegate valve 11, a three-way catalyst 10, and an air-fuel ratio sensor 9. The turbine 4b rotates due to the exhaust gas passing through the exhaust pipe 15, and transmits the rotational force to the compressor 4a. In addition, the electronically controlled wastegate valve 11, which is connected to connect the upstream and downstream sides of the turbine 4b, adjusts the exhaust flow rate that flows to the turbine 4b.
 三元触媒10は、タービン4bの下流側に配置されている。三元触媒10は、酸化・還元反応により排気ガスに含まれる有害物質を浄化する。また、空燃比センサ9は、三元触媒10の上流側に配置されている。そして、空燃比センサ9は、排気管15を通る排気ガスの空燃比を検出する。 The three-way catalyst 10 is disposed downstream of the turbine 4b. The three-way catalyst 10 purifies harmful substances contained in the exhaust gas by oxidation and reduction reactions. The air-fuel ratio sensor 9 is disposed upstream of the three-way catalyst 10. The air-fuel ratio sensor 9 detects the air-fuel ratio of the exhaust gas passing through the exhaust pipe 15.
 また、エアフローセンサ1、吸気圧センサ3、及び電圧センサ等の各センサが検出した信号は、内燃機関制御装置30に送られる。また、アクセルペダルの踏み込み量、すなわち、アクセル開度を検出するアクセル開度センサ12が検出した信号も内燃機関制御装置30に送られる。 In addition, signals detected by each sensor, such as the air flow sensor 1, the intake pressure sensor 3, and the voltage sensor, are sent to the internal combustion engine control device 30. In addition, a signal detected by the accelerator opening sensor 12, which detects the amount of depression of the accelerator pedal, i.e., the accelerator opening, is also sent to the internal combustion engine control device 30.
 内燃機関制御装置30は、アクセル開度センサ12の出力信号に基づいて、要求トルクを演算する。すなわち、アクセル開度センサ12は、内燃機関100への要求トルクを検出する要求トルク検出センサとして用いられる。また、内燃機関制御装置30は、クランク角度センサ19の出力信号に基づいて、内燃機関100の回転速度を演算する。そして、内燃機関制御装置30は、各種センサの出力信号から得られる内燃機関100の運転状態に基づき、空気流量(吸気流量)、燃料噴射量、点火時期、スロットル開度、燃料圧力等の内燃機関100の主要な操作量を最適に演算する。 The internal combustion engine control device 30 calculates the required torque based on the output signal of the accelerator opening sensor 12. That is, the accelerator opening sensor 12 is used as a required torque detection sensor that detects the torque required for the internal combustion engine 100. The internal combustion engine control device 30 also calculates the rotation speed of the internal combustion engine 100 based on the output signal of the crank angle sensor 19. Then, the internal combustion engine control device 30 optimally calculates the main operating variables of the internal combustion engine 100, such as the air flow rate (intake flow rate), fuel injection amount, ignition timing, throttle opening, and fuel pressure, based on the operating state of the internal combustion engine 100 obtained from the output signals of various sensors.
 内燃機関制御装置30により演算した燃料噴射量は、開弁パルス信号に変換され、燃料噴射装置13に出力される。また、内燃機関制御装置30により演算された点火時期は、点火信号として点火プラグ17に出力される。さらに、内燃機関制御装置30により演算されたスロットル開度は、スロットル駆動信号として電子制御スロットル弁2に出力される。 The fuel injection amount calculated by the internal combustion engine control device 30 is converted into a valve opening pulse signal and output to the fuel injection device 13. In addition, the ignition timing calculated by the internal combustion engine control device 30 is output to the spark plug 17 as an ignition signal. Furthermore, the throttle opening calculated by the internal combustion engine control device 30 is output to the electronically controlled throttle valve 2 as a throttle drive signal.
 このように構成された内燃機関100は、吸気管6から吸気バルブ(可変バルブ5a)を経てシリンダ14内に流入した空気に対し、燃料噴射装置13から燃料が噴射され、筒内で混合気が形成される。混合気は所定の点火時期で点火プラグ17から発生される火花により爆発し、その燃焼圧によりピストン21が押し下げられて内燃機関100の駆動力となる。さらに、爆発後の排気ガスは排気管15を経て、三元触媒10に送り込まれ、排気成分は三元触媒10内で浄化されて外部へと排出される。 In the internal combustion engine 100 configured in this manner, fuel is injected from the fuel injector 13 into the air that flows into the cylinder 14 from the intake pipe 6 through the intake valve (variable valve 5a), forming an air-fuel mixture inside the cylinder. The air-fuel mixture explodes at a specified ignition timing due to a spark generated by the spark plug 17, and the resulting combustion pressure pushes down the piston 21, providing the driving force for the internal combustion engine 100. Furthermore, the exhaust gas after the explosion is sent through the exhaust pipe 15 to the three-way catalyst 10, where the exhaust components are purified before being discharged to the outside.
 なお、内燃機関100は、吸気管6と排気管15とを接続する不図示のEGR配管を設けてもよい。そして、このEGR配管により、排気管15を通過する排気ガスの一部を吸気管6に戻してもよい。 The internal combustion engine 100 may be provided with an EGR pipe (not shown) that connects the intake pipe 6 and the exhaust pipe 15. This EGR pipe may return a portion of the exhaust gas passing through the exhaust pipe 15 to the intake pipe 6.
[オイルポンプの構成]
 次に、内燃機関100に使用される可変容量型のオイルポンプ54の構成の概要について図2を参照して説明する。
[Oil pump configuration]
Next, the outline of the configuration of the variable displacement oil pump 54 used in the internal combustion engine 100 will be described with reference to FIG.
 図2は、内燃機関100に使用される可変容量型のオイルポンプ54の構成例を示す概略断面図である。オイルポンプ部(オイルポンプ54)は、収容部を有するポンプハウジング161と、収容部内に配置され、内燃機関100の回転軸に駆動力の伝達が可能に連結されているロータ164と、ロータ164の回転中心と自身の中心との偏心量が高吐出量位置と低吐出量位置との間で変化するカムリング165と、制御部(内燃機関制御装置30のオイルジェット制御部36)による制御下でカムリング165の偏心量を変化させる制御弁部(オイルコントロールバルブ171内の比例ソレノイド171a、図示しない略円筒状の弁体)と、を備えた可変容量ポンプである。以下において、オイルポンプ54の構成についてさらに詳細に説明する。 2 is a schematic cross-sectional view showing an example of the configuration of a variable displacement oil pump 54 used in the internal combustion engine 100. The oil pump section (oil pump 54) is a variable displacement pump that includes a pump housing 161 having a storage section, a rotor 164 arranged in the storage section and connected to the rotating shaft of the internal combustion engine 100 so as to be capable of transmitting driving force, a cam ring 165 in which the amount of eccentricity between the center of rotation of the rotor 164 and its own center changes between a high discharge amount position and a low discharge amount position, and a control valve section (proportional solenoid 171a in an oil control valve 171, a substantially cylindrical valve body not shown) that changes the amount of eccentricity of the cam ring 165 under the control of a control section (oil jet control section 36 of the internal combustion engine control device 30). The configuration of the oil pump 54 will be described in more detail below.
 可変容量型のオイルポンプ54は、吐出するオイルの圧力(油圧)を可変制御することができる。オイルポンプ54において、ポンプハウジング161の両側部に、吸入口と吐出口が設けられている。また、オイルポンプ54には、ほぼ中央に内燃機関100のクランクシャフトから回転力が伝達されるドライブシャフト162が貫通、配置されている。 The variable displacement oil pump 54 can variably control the pressure (hydraulic pressure) of the oil it discharges. In the oil pump 54, an intake port and an exhaust port are provided on both sides of the pump housing 161. In addition, a drive shaft 162, which transmits rotational force from the crankshaft of the internal combustion engine 100, is disposed and passes through the oil pump 54 at approximately the center.
 ポンプハウジング161の内部には、ロータ164と、カムリング165とが収容、配置されている。ロータ164は、ドライブシャフト162に結合されている。すなわち、ロータ164は、内燃機関100の回転軸の駆動力が伝達可能に構成されている。そして、ロータ164は、外周側に複数のベーン163をほぼ半径方向へ進退自在に保持する。 A rotor 164 and a cam ring 165 are housed and arranged inside the pump housing 161. The rotor 164 is connected to the drive shaft 162. In other words, the rotor 164 is configured to be able to transmit the driving force of the rotating shaft of the internal combustion engine 100. The rotor 164 holds multiple vanes 163 on its outer periphery so that they can freely move forward and backward in approximately the radial direction.
 カムリング165は、ロータ164の外周側に偏心揺動自在に設けられている。そして、カムリング165の内周面には、各ベーン163の先端が摺接する。また、ロータ164の内周部側の両側面には、一対のベーンリング150が摺動自在に配置されている。 The cam ring 165 is provided on the outer periphery of the rotor 164 so as to be able to eccentrically swing. The tips of the vanes 163 come into sliding contact with the inner periphery of the cam ring 165. In addition, a pair of vane rings 150 are slidably arranged on both side surfaces on the inner periphery of the rotor 164.
 カムリング165の外周部側には、作動室167と作動室168が、シール部材166a,166bによって仕切られるようにして形成されている。カムリング165は、作動室167及び作動室168に導入されるオイルの吐出圧に応じて、ピボットピン169を中心に偏心量が減少する方向へ揺動する。さらに、カムリング165は、その外周に一体的に形成されたレバー部165aを有する。レバー部165aは、カムリング165の外周方向へ突出するように形成されている。カムリング165は、クランクシャフトの回転方向に対しほぼ垂直方向に、レバー部165aを押圧するコイルばね151のばね力によって、偏心量が増大する方向へ揺動する。 On the outer periphery side of the cam ring 165, working chambers 167 and 168 are formed so as to be separated by sealing members 166a and 166b. The cam ring 165 swings around pivot pin 169 in a direction that reduces the amount of eccentricity according to the discharge pressure of the oil introduced into working chambers 167 and 168. Furthermore, the cam ring 165 has a lever portion 165a formed integrally with its outer periphery. The lever portion 165a is formed so as to protrude toward the outer periphery of the cam ring 165. The spring force of the coil spring 151 that presses against the lever portion 165a causes the cam ring 165 to swing in a direction that increases the amount of eccentricity in a direction that is approximately perpendicular to the rotational direction of the crankshaft.
 内燃機関制御装置30は、初期状態では、コイルばね151のばね力によって、カムリング165を偏心量が最大となる方向へ付勢して、オイルポンプ54の吐出圧を増加させる。一方、内燃機関制御装置30は、作動室167内の油圧が所定値以上になると、カムリング165をコイルばね170のばね力に抗して偏心量が小さくなる方向へ揺動させて吐出圧を減少させる。 In the initial state, the internal combustion engine control device 30 uses the spring force of the coil spring 151 to bias the cam ring 165 in the direction that maximizes the amount of eccentricity, thereby increasing the discharge pressure of the oil pump 54. On the other hand, when the oil pressure in the working chamber 167 reaches or exceeds a predetermined value, the internal combustion engine control device 30 swings the cam ring 165 against the spring force of the coil spring 170 in the direction that reduces the amount of eccentricity, thereby reducing the discharge pressure.
 このオイルポンプ54の作動室167には、オイルメインギャラリ110からオイル(潤滑油)が供給され、作動室168には、比例ソレノイドバルブからなるオイルコントロールバルブ171を介してオイルが供給される。そして、オイルポンプ54から吐出されたオイルが、内燃機関100の上述した可変バルブ5a,5b(図1参照)を制御する油圧VTC(Valve Timing Control)機構や、ピストン21を冷却するオイルジェット機構等に供給される。 Oil (lubricating oil) is supplied to the working chamber 167 of the oil pump 54 from the oil main gallery 110, and oil is supplied to the working chamber 168 via an oil control valve 171 consisting of a proportional solenoid valve. The oil discharged from the oil pump 54 is supplied to a hydraulic VTC (Valve Timing Control) mechanism that controls the above-mentioned variable valves 5a, 5b (see Figure 1) of the internal combustion engine 100, an oil jet mechanism that cools the piston 21, etc.
 オイルコントロールバルブ171は、本体に第1の開口部172と第2の開口部173が形成されている。また、オイルコントロールバルブ171は、内部に比例ソレノイド171aと、励磁により比例ソレノイド171aに発生する推力を受けて移動する略円筒状の弁体(図示略)を有する。略円筒状の弁体の円周面には、第1の開口部172と第2の開口部173の位置を考慮して設計された溝が形成されている。比例ソレノイド171aが発生する推力に応じて、弁体がオイルコントロールバルブ171の軸方向(図2の左右方向)に移動する。弁体の位置によって、弁体の溝と、第1の開口部172及び第2の開口部173との相対的な位置関係が変化し、流路が変わる。弁体が第1の位置にあるのとき、オイルポンプの作動室168が、第1の開口部172を通じてオイルパンと連通する。また、弁体が第2の位置にあるとき、オイルポンプの作動室168が、第1の開口部172及び第2の開口部173を通じてオイルメインギャラリ110と連通する。 The oil control valve 171 has a first opening 172 and a second opening 173 formed in the main body. The oil control valve 171 also has a proportional solenoid 171a inside and an approximately cylindrical valve body (not shown) that moves in response to the thrust generated in the proportional solenoid 171a when excited. Grooves designed with the positions of the first opening 172 and the second opening 173 in mind are formed on the circumferential surface of the approximately cylindrical valve body. The valve body moves in the axial direction of the oil control valve 171 (left and right direction in Figure 2) in response to the thrust generated by the proportional solenoid 171a. Depending on the position of the valve body, the relative positional relationship between the groove of the valve body and the first opening 172 and the second opening 173 changes, and the flow path changes. When the valve body is in the first position, the working chamber 168 of the oil pump communicates with the oil pan through the first opening 172. Furthermore, when the valve body is in the second position, the oil pump working chamber 168 communicates with the oil main gallery 110 through the first opening 172 and the second opening 173.
 オイルコントロールバルブ171は、内燃機関制御装置30からの駆動信号(PWM(Pulse Width Modulation)信号)によりデューティ制御される。駆動信号のデューティ比に応じて、オイルコントロールバルブ171内の比例ソレノイド171aが励磁され、弁体が目標の制御位置に駆動される。 The oil control valve 171 is duty controlled by a drive signal (PWM (Pulse Width Modulation) signal) from the internal combustion engine control device 30. Depending on the duty ratio of the drive signal, the proportional solenoid 171a in the oil control valve 171 is excited and the valve body is driven to the target control position.
 オイルポンプ54は、作動室167と作動室168の油圧差に応じて、ベーン163の偏心量を制御することで、吐出オイルの油圧(以下、「吐出油圧」とも称する)を操作する仕組みである。オイルポンプ54は、以下の制御を行う。
[a]作動室167と作動室168の油圧差が大きいときは、ベーン163(カムリング165)の偏心量を小さくすることで、吐出油圧を小さくする。
[b]作動室167と作動室168の油圧差が小さいときは、ベーン163(カムリング165)の偏心量を大きくすることで、吐出油圧を大きくする。
The oil pump 54 has a mechanism for manipulating the hydraulic pressure of the discharge oil (hereinafter also referred to as the "discharge hydraulic pressure") by controlling the amount of eccentricity of the vane 163 in accordance with the hydraulic pressure difference between the working chamber 167 and the working chamber 168. The oil pump 54 performs the following controls.
[a] When the difference in oil pressure between the working chambers 167 and 168 is large, the amount of eccentricity of the vane 163 (cam ring 165) is reduced to reduce the discharge oil pressure.
[b] When the difference in oil pressure between the working chambers 167 and 168 is small, the amount of eccentricity of the vane 163 (cam ring 165) is increased to increase the discharge oil pressure.
 作動室168内の油圧の操作は、作動室168に対してオイルの導入及び排出を制御することで実現できる。すなわち、作動室168内の油圧は、オイルコントロールバルブ171に供給する駆動信号のデューティ比によって操作される。駆動信号のデューティ比と吐出油圧との関係は以下のとおりである。
[a]デューティ比100%のとき、作動室168がオイルパンと連通する位置にオイルコントロールバルブ171内の弁体が移動し、作動室168内の油圧が減少する(=作動室168内の油圧がオイルパン(1気圧)と同等)。それにより、オイルポンプ54のベーン163(カムリング165)の偏心量が最小になり、吐出油圧が最小となる。
[b]デューティ比0%のとき、作動室168がオイルメインギャラリ110と連通する位置にオイルコントロールバルブ171内の弁体が移動し、作動室167内の油圧が増加する(=作動室168内の油圧がオイルメインギャラリ110と同等)。それにより、オイルポンプ54のベーン163(カムリング165)の偏心量が最大になり、吐出油圧が最大となる。
The hydraulic pressure in the working chamber 168 can be controlled by controlling the introduction and discharge of oil into and from the working chamber 168. That is, the hydraulic pressure in the working chamber 168 is controlled by the duty ratio of a drive signal supplied to the oil control valve 171. The relationship between the duty ratio of the drive signal and the discharge hydraulic pressure is as follows.
[a] When the duty ratio is 100%, the valve body in the oil control valve 171 moves to a position where the working chamber 168 communicates with the oil pan, and the oil pressure in the working chamber 168 decreases (= the oil pressure in the working chamber 168 is equivalent to that of the oil pan (1 atmosphere)). As a result, the eccentricity of the vane 163 (cam ring 165) of the oil pump 54 becomes minimum, and the discharge oil pressure becomes minimum.
[b] When the duty ratio is 0%, the valve body in the oil control valve 171 moves to a position where the working chamber 168 communicates with the oil main gallery 110, and the oil pressure in the working chamber 167 increases (= the oil pressure in the working chamber 168 is equal to that of the oil main gallery 110). As a result, the eccentricity of the vane 163 (cam ring 165) of the oil pump 54 becomes maximum, and the discharge oil pressure becomes maximum.
 このように、駆動信号のデューティ比が大きい場合は、オイルコントロールバルブ171を経由して作動室168がドレイン(オイルパン)に連通する。その結果、オイルポンプ54の吐出オイルが低圧状態となる。一方、駆動信号のデューティ比が小さい場合には、オイルコントロールバルブ171を経由してオイルメインギャラリ110と作動室168が連通し、作動室167に油圧を作用させる。その結果、オイルポンプ54の吐出オイルが高圧状態となる。そして、駆動信号のデューティ比を100%~0%の間で操作することで、オイルポンプ54の吐出オイルの圧力を最大から最小の範囲で調整することが可能である。 In this way, when the duty ratio of the drive signal is large, the working chamber 168 communicates with the drain (oil pan) via the oil control valve 171. As a result, the oil discharged from the oil pump 54 is in a low-pressure state. On the other hand, when the duty ratio of the drive signal is small, the oil main gallery 110 and the working chamber 168 communicate with each other via the oil control valve 171, and hydraulic pressure is applied to the working chamber 167. As a result, the oil discharged from the oil pump 54 is in a high-pressure state. And by manipulating the duty ratio of the drive signal between 100% and 0%, it is possible to adjust the pressure of the oil discharged from the oil pump 54 in the range from maximum to minimum.
 また。オイルメインギャラリ110には、油圧センサ111が配置されている。油圧センサ111は、オイルメインギャラリ110内のオイルの圧力を計測し、油圧に応じた信号を出力する。オイルメインギャラリ110内の油圧は、オイルポンプ54が吐出するオイルの圧力(吐出油圧)と相関がある。本実施形態では、油圧センサ111の出力信号を取得することで、オイルポンプ54の吐出油圧を検出している。この油圧センサ111の出力信号は、内燃機関制御装置30に入力され、オイルポンプ54の吐出油圧を目標吐出油圧にフィードバック制御するために使用される。もちろん、油圧センサ111の出力信号から得られた油圧を、これ以外の制御に使用できることは言うまでもない。以下、単に「油圧」と記載した場合、オイルポンプ54の吐出油圧を意味する。 Also, an oil pressure sensor 111 is disposed in the oil main gallery 110. The oil pressure sensor 111 measures the pressure of the oil in the oil main gallery 110 and outputs a signal according to the oil pressure. The oil pressure in the oil main gallery 110 correlates with the pressure of the oil discharged by the oil pump 54 (discharge oil pressure). In this embodiment, the discharge oil pressure of the oil pump 54 is detected by acquiring the output signal of the oil pressure sensor 111. The output signal of this oil pressure sensor 111 is input to the internal combustion engine control device 30 and is used for feedback control of the discharge oil pressure of the oil pump 54 to the target discharge oil pressure. Of course, it goes without saying that the oil pressure obtained from the output signal of the oil pressure sensor 111 can be used for other controls. Hereinafter, when simply described as "oil pressure", it means the discharge oil pressure of the oil pump 54.
 各機構に供給・噴射されたオイル、及びオイルコントロールバルブ171から排出されたオイルは、オイルパンに回収された後、再びオイルメインギャラリ110に供給され、上述の各機構に供給・噴射される。 The oil supplied and injected to each mechanism, and the oil discharged from the oil control valve 171, is collected in the oil pan and then supplied again to the oil main gallery 110, from where it is supplied and injected to each of the above-mentioned mechanisms.
 図2に示した可変容量型のオイルポンプ54を用いたオイルジェットシステム101の構成によれば、オイルポンプ54の吐出油圧を任意に設定することができるため、オイルジェットに供給する油量を調整することができる。このため、オイルジェットのON/OFFを切り替えるだけの場合に比べて、本実施形態では、後述する図8及び図12に示すように、ピストン21の冠面温度をデポジット堆積量が閾値804以下となる温度範囲802(下限温度805と上限温度806の間)に維持しやすくなる。 According to the configuration of the oil jet system 101 using the variable displacement oil pump 54 shown in FIG. 2, the discharge oil pressure of the oil pump 54 can be set arbitrarily, so the amount of oil supplied to the oil jet can be adjusted. Therefore, in this embodiment, as shown in FIG. 8 and FIG. 12 described later, it is easier to maintain the crown surface temperature of the piston 21 in a temperature range 802 (between a lower limit temperature 805 and an upper limit temperature 806) where the amount of deposit accumulation is equal to or less than a threshold value 804, compared to the case where the oil jet is simply switched ON/OFF.
 なお、上述した可変容量型のオイルポンプ54に代えて、回転数に比例して油圧が上昇するオイルポンプを用いてもよい。一般に、このようなオイルポンプは、低温条件で油圧を下げきれず、ポンプ単体ではオイルジェット停止状態を作れない。そのため、オイルジェット停止状態を作るために、オイルジェット停止用のソレノイドバルブを設ける必要がある。可変容量型のオイルポンプ54を用いた場合は、低温を含む全温度域で油圧制御が可能であるため、オイルジェット噴射の実施/不実施を切り替えるソレノイドバルブが不要となる。 Instead of the variable displacement oil pump 54 described above, an oil pump in which the oil pressure increases in proportion to the rotation speed may be used. Generally, such oil pumps cannot reduce the oil pressure completely under low temperature conditions, and the pump alone cannot create an oil jet stop state. Therefore, in order to create an oil jet stop state, it is necessary to provide a solenoid valve for stopping the oil jet. When a variable displacement oil pump 54 is used, hydraulic control is possible over the entire temperature range, including low temperatures, so there is no need for a solenoid valve for switching between on and off oil jet injection.
 可変容量型のオイルポンプ54を用いたオイルジェットシステム101の構成であれば、環境温度が低温な状態からオイルジェットに供給する油量を制御することが可能となるため、ピストン冠面の温度制御がしやすく、THCやPNを低減する効果が高まる。 If the oil jet system 101 is configured using a variable displacement oil pump 54, it is possible to control the amount of oil supplied to the oil jet even when the ambient temperature is low, making it easier to control the temperature of the piston crown surface, and improving the effect of reducing THC and PN.
[内燃機関制御装置の構成]
 次に、本発明が適用される内燃機関制御装置30の構成例について図3を参照して説明する。
[Configuration of the internal combustion engine control device]
Next, a configuration example of an internal combustion engine control device 30 to which the present invention is applied will be described with reference to FIG.
 図3は、内燃機関制御装置30の構成例を示すブロック図である。図3に示すように、ECUである内燃機関制御装置30は、入力回路31と、入出力ポート32と、CPU(Central Processing Unit)33aと、RAM(Random Access Memory)33cと、ROM(Read Only Memory)33bとを有する。また、内燃機関制御装置30は、オイルジェット制御部36を有している。 Figure 3 is a block diagram showing an example configuration of the internal combustion engine control device 30. As shown in Figure 3, the internal combustion engine control device 30, which is an ECU, has an input circuit 31, an input/output port 32, a CPU (Central Processing Unit) 33a, a RAM (Random Access Memory) 33c, and a ROM (Read Only Memory) 33b. The internal combustion engine control device 30 also has an oil jet control unit 36.
 例えば、入力回路31には、エアフローセンサ1(図1参照)からの空気流量の信号、吸気圧センサ3からの吸気圧の信号、電圧センサからのコイル一次電圧又は二次電圧の信号が入力される。また、入力回路31には、クランク角度センサ19からのクランク角度(回転数)、オイルジェットシステム101が備える各センサからのオイル圧力(油圧)及びオイル温度(油温)の信号が入力される。入力回路31には、これらの情報だけでなく、スロットル開度や排気空燃比等の各種センサが計測した情報が入力される。 For example, the input circuit 31 receives an air flow rate signal from the air flow sensor 1 (see FIG. 1), an intake pressure signal from the intake pressure sensor 3, and a coil primary voltage or secondary voltage signal from a voltage sensor. The input circuit 31 also receives the crank angle (rpm) from the crank angle sensor 19, and oil pressure (oil pressure) and oil temperature (oil temperature) signals from the various sensors in the oil jet system 101. In addition to this information, the input circuit 31 also receives information measured by various sensors, such as the throttle opening and exhaust air-fuel ratio.
 入力回路31は、入力された信号に対してノイズ除去等の信号処理を行って、入出力ポート32へ送る。入出力ポート32の入力ポートに入力された信号の値はRAM33cに一時的に格納される。 The input circuit 31 performs signal processing such as noise removal on the input signal and sends it to the input/output port 32. The value of the signal input to the input port of the input/output port 32 is temporarily stored in the RAM 33c.
 ROM33bには、CPU33aにより実行される各種演算処理の内容を記述した制御プログラムや、各処理に用いられるマップやデータテーブル等が記憶されている。制御プログラムや、各処理に用いられるマップやデータテーブル等は、図示しない不揮発性ストレージに記憶してもよい。RAM33cには、入出力ポート32の入力ポートに入力された値や、制御プログラムに従って演算された各アクチュエータの操作量を表す値を格納する格納領域が設けられている。また、RAM33cに格納された各アクチュエータの操作量を表す値は、入出力ポート32の出力ポートに送られる。 ROM 33b stores a control program describing the contents of the various arithmetic processes executed by CPU 33a, as well as maps and data tables used for each process. The control program and the maps and data tables used for each process may be stored in non-volatile storage (not shown). RAM 33c is provided with a storage area for storing values input to the input port of input/output port 32 and values representing the amount of operation of each actuator calculated according to the control program. In addition, the values representing the amount of operation of each actuator stored in RAM 33c are sent to the output port of input/output port 32.
 入出力ポート32の出力ポートにセットされたオイルポンプ54の操作量は、オイルジェット制御部36に送られる。オイルジェット制御部36は、オイルポンプ54の操作量に基づいて制御信号を生成し、不図示の駆動回路が、制御信号に基づく駆動信号をオイルポンプ54に供給する。このように、オイルジェット制御部36は、オイルジェットシステム101(図1参照)にオイルを供給するオイルポンプ54が出力するオイルの圧力(油圧)を制御する。そして、オイルジェット制御部36は、オイルポンプ54の油圧を制御することで、オイルジェットシステム101から噴射されるオイルの量を調整し、これによりピストン21の温度変化を制御する。 The amount of operation of the oil pump 54 set in the output port of the input/output port 32 is sent to the oil jet control unit 36. The oil jet control unit 36 generates a control signal based on the amount of operation of the oil pump 54, and a drive circuit (not shown) supplies a drive signal based on the control signal to the oil pump 54. In this way, the oil jet control unit 36 controls the pressure (hydraulic pressure) of the oil output by the oil pump 54, which supplies oil to the oil jet system 101 (see FIG. 1). The oil jet control unit 36 then controls the hydraulic pressure of the oil pump 54 to adjust the amount of oil sprayed from the oil jet system 101, thereby controlling the temperature change of the piston 21.
 なお、内燃機関100にはこれら以外のアクチュエータも使用されており、内燃機関制御装置30は、それらのアクチュエータを制御する図示しない点火制御部や燃料噴射制御部等を備えるが、ここでは説明を省略する。本実施形態では、内燃機関制御装置30がオイルジェット制御部36を備えた例を説明したが、これに限定されるものではない。例えば、オイルジェット制御部36が、内燃機関制御装置30とは異なる制御装置に実装されてもよい。 Note that actuators other than these are also used in the internal combustion engine 100, and the internal combustion engine control device 30 is equipped with an ignition control unit and a fuel injection control unit (not shown) that control these actuators, but their description will be omitted here. In this embodiment, an example has been described in which the internal combustion engine control device 30 is equipped with an oil jet control unit 36, but this is not limited to this. For example, the oil jet control unit 36 may be implemented in a control device other than the internal combustion engine control device 30.
[内燃機関制御装置の制御の概要]
 次に、内燃機関制御装置30で実行される制御の概要について図4を参照して説明する。
 図4は、内燃機関制御装置30で実行される制御の概要を示す制御ブロック図である。内燃機関制御装置30において、オイルジェット制御部36は、ピストン冠面温度相関指標推定部41と、油圧設定部42とを備える。CPU33a(図3参照)がROM33b等に記録された制御プログラムを実行することにより、各処理ブロックの機能が実現される。
[Overview of Control in Internal Combustion Engine Control Device]
Next, an overview of the control executed by the internal combustion engine control device 30 will be described with reference to FIG.
4 is a control block diagram showing an overview of the control executed by the internal combustion engine control device 30. In the internal combustion engine control device 30, the oil jet control unit 36 includes a piston crown surface temperature correlation index estimation unit 41 and an oil pressure setting unit 42. The CPU 33a (see FIG. 3) executes a control program recorded in the ROM 33b or the like, thereby realizing the function of each processing block.
[ピストン冠面温度相関指標推定部]
 ピストン冠面温度相関指標推定部41(相関指標推定部の例)は、内燃機関100の運転条件パラメータ及びオイルジェットパラメータに基づき、ピストン21の温度に相関を持つピストン冠面温度相関指標を推定する処理ブロックである。図4の例では、運転条件パラメータとして、吸気管6の空気流量、及びエンジン回転数(クランク角度)が入力され、オイルジェットパラメータとして、オイルポンプ54の吐出油圧、及びオイルジェットの油温が入力されている。例えば、不図示のオイルパンに油温センサが設けられており、油温センサはオイルパンに流れるオイルの温度を計測する。なお、油温を計測する場所は、オイルパンに限らず、よりオイルポンプ54に近い場所でもよい。
[Piston crown surface temperature correlation index estimation unit]
The piston crown surface temperature correlation index estimation unit 41 (an example of a correlation index estimation unit) is a processing block that estimates a piston crown surface temperature correlation index that is correlated with the temperature of the piston 21 based on the operating condition parameters and oil jet parameters of the internal combustion engine 100. In the example of FIG. 4, the air flow rate of the intake pipe 6 and the engine speed (crank angle) are input as the operating condition parameters, and the discharge oil pressure of the oil pump 54 and the oil temperature of the oil jet are input as the oil jet parameters. For example, an oil temperature sensor is provided in an oil pan (not shown), and the oil temperature sensor measures the temperature of the oil flowing into the oil pan. The location where the oil temperature is measured is not limited to the oil pan, and may be a location closer to the oil pump 54.
 例えば、ピストン冠面温度相関指標推定部41は、ピストン冠面温度相関指標としてピストン温度自身を推定してもよい。例えば、ピストンに入力されるエネルギーと放出されるエネルギーとのバランスから、ピストン温度変化を逐次推定することができる。例えば、次の数1を計算すればよい。エネルギーは、熱エネルギーを想定している。 For example, the piston crown surface temperature correlation index estimation unit 41 may estimate the piston temperature itself as the piston crown surface temperature correlation index. For example, the piston temperature change can be successively estimated from the balance between the energy input to the piston and the energy released. For example, the following equation 1 may be calculated. The energy is assumed to be thermal energy.
[数1]
 Tpis=(Tpis,0)
     +(Qinp-(Qout,1)-(Qout,oj)-(Qout,res))
      ÷(Mpis×Cpis)
[Equation 1]
Tpis = (Tpis, 0)
+ (Qinp-(Qout, 1)-(Qout, oj)-(Qout, res))
÷ (MPIS x CPI)
 ここで、Tpisはピストン温度の更新値(推定値)、(Tpis,0)はピストン温度の現在値である。Qinpはピストンへの燃焼ガスからピストンに伝達されるエネルギー[J]、(Oout,l)はピストンからピストンリング、及びピストンスカート(シリンダ内壁と接する部分)を通じてシリンダライナへと伝達されるエネルギー[J]である。(Qout,oj)はピストンからオイルジェットへ伝達されるエネルギー[J]、(Qout,res)は、クランクシャフトなどを通じてピストンから外部へ流れるエネルギー[J]である。さらに、Mpisはピストンの質量(kg)、Cpisはピストンの比熱[J/kg/K]である。例えば、Qinp、(Qout,l)、(Qout,oj)は、以下の数2、数3、及び数5を用いて算出することが可能である。 Here, Tpis is the updated value (estimated value) of the piston temperature, and (Tpis, 0) is the current value of the piston temperature. Qinp is the energy [J] transferred from the combustion gas to the piston, and (Oout, l) is the energy [J] transferred from the piston to the cylinder liner through the piston ring and the piston skirt (the part in contact with the cylinder inner wall). (Qout, oj) is the energy [J] transferred from the piston to the oil jet, and (Qout, res) is the energy [J] flowing from the piston to the outside through the crankshaft, etc. Furthermore, Mpis is the mass of the piston (kg), and Cpis is the specific heat of the piston [J/kg/K]. For example, Qinp, (Qout, l), and (Qout, oj) can be calculated using the following equations 2, 3, and 5.
[数2]
 Qinp=(Mdot,f)×Qf×ηpis×Δτ
[数3]
 (Qout,l)=Spl×λpl×((Tpis,0)-Tc)×Δτ
[数4]
 (Qout,oj)=Spo×hpis×((Tpis,0)-Toil)×Δτ
[Equation 2]
Qinp = (Mdot, f) x Qf x ηpis x Δτ
[Equation 3]
(Qout, l) = Spl x λpl x ((Tpis, 0) - Tc) x Δτ
[Equation 4]
(Qout, oj) = Spo x hpis x ((Tpis, 0) - Toil) x Δτ
 ここで、(Mdot,f)は燃料流量[kg/s]、Qfは燃料の低位発熱量[J]、ηpisはピストンへ伝達されるエネルギーの割合(-)、Δτは計算周期[s]である。Splはピストンとライナ部の接触面積[m2]、λplはピストンとライナ部の間の熱伝導率[W/(m・K)]、Tcは冷却水温度[℃]である。Spoはオイルジェットとピストンの接触面積[m2]、hpisはオイルジェットの熱伝達率、及びToilはオイルジェットの油温[℃]である。 Here, (Mdot, f) is the fuel flow rate [kg/s], Qf is the lower heating value of the fuel [J], ηpis is the rate of energy transferred to the piston (-), and Δτ is the calculation period [s]. Spl is the contact area between the piston and the liner [m2], λpl is the thermal conductivity between the piston and the liner [W/(m K)], and Tc is the cooling water temperature [°C]. Spo is the contact area between the oil jet and the piston [m2], hpis is the heat transfer coefficient of the oil jet, and Toil is the oil temperature of the oil jet [°C].
 Qfは、例えば、ガソリンを想定して予め値を設定すればよい。Splはピストンリングとライナ部の接触面積で与えればよく、ピストンリングの厚さ、ボア径といった幾何学的情報に基づき容易に設定できる(例えば、ピストンリングの厚さ×ボア径×円周率)。Spoはピストンの幾何学的情報に基づき設定できる(例えば、ボア径×ボア径×円周率÷4)。また、ηpisは運転条件、ピストン温度、冷却温度、及びオイル温度に基づくマップで与えることができ、本マップは、実験やシミュレーションにより予め決めておく必要がある。また、hpisは、オイルジェット形状やオイルジェット流量に依存するパラメータである。このことから、hpisに関して、実験やシミュレーション等の計測により予め同定し、マップを作成することができる。例えば、図5に示す油圧とオイルジェット流量の関係、図6に示すオイルジェット流量と熱伝達率hpisの関係を使う。 Qf may be set in advance assuming gasoline, for example. Spl may be given as the contact area between the piston ring and the liner, and can be easily set based on geometric information such as the thickness of the piston ring and the bore diameter (for example, piston ring thickness x bore diameter x pi). Spo may be set based on geometric information of the piston (for example, bore diameter x bore diameter x pi ÷ 4). ηpis may be given as a map based on the operating conditions, piston temperature, cooling temperature, and oil temperature, and this map must be determined in advance by experiments and simulations. hpis is a parameter that depends on the oil jet shape and the oil jet flow rate. For this reason, hpis can be identified in advance by measurements such as experiments and simulations, and a map can be created. For example, the relationship between the oil pressure and the oil jet flow rate shown in Figure 5 and the relationship between the oil jet flow rate and the heat transfer coefficient hpis shown in Figure 6 are used.
 図5は、オイル圧力とオイルジェット流量の関係例を示すマップ(グラフ)である。図5の縦軸はオイルジェット流量を示し、横軸はオイル圧力を示す。
 図6は、オイルジェット流量と、ピストンとオイルジェットの間の熱伝達率hpisとの関係例を示すマップである。図6の縦軸は熱伝達率(hpis)を示し、横軸はオイルジェット流量を示す。
5 is a map (graph) showing an example of the relationship between the oil pressure and the oil jet flow rate, in which the vertical axis represents the oil jet flow rate and the horizontal axis represents the oil pressure.
6 is a map showing an example of the relationship between the oil jet flow rate and the heat transfer coefficient hpis between the piston and the oil jet. The vertical axis of Fig. 6 represents the heat transfer coefficient (hpis), and the horizontal axis represents the oil jet flow rate.
 図5に示すように、オイルジェット流量は、バルブ102の開弁圧以上の油圧で0以上の値となり、油圧の増加に伴い流量は増加する。また、同一の油圧で比較した場合、オイル温度が高いほど、オイル粘性が小さくなりオイルジェット流量が増加する関係にある。また、図6に示すように、オイルジェット流量に対して熱伝達率hpisは正の相関を持つ。このため、オイルジェット流量が増加するほど、熱伝達率hpisが増加する。油圧、油温と図5に示す関係とから、現状のオイルジェット流量を算出し、さらに、算出したオイルジェット流量と図6に示す関係とから、熱伝達率hpisを算出することが可能である。また、燃料流量(Mdot,f)は、例えば数5に示すように、エアフローセンサ1により計測した空気流量(Mdot,a)と、空燃比センサ9により検出した排気空燃比AbF(-)により算出できる。 As shown in FIG. 5, the oil jet flow rate is equal to or greater than 0 when the oil pressure is equal to or greater than the valve opening pressure of the valve 102, and the flow rate increases as the oil pressure increases. In addition, when compared at the same oil pressure, the higher the oil temperature, the lower the oil viscosity and the higher the oil jet flow rate. In addition, as shown in FIG. 6, the heat transfer coefficient hpis has a positive correlation with the oil jet flow rate. Therefore, the higher the oil jet flow rate, the higher the heat transfer coefficient hpis. The current oil jet flow rate can be calculated from the oil pressure, oil temperature, and the relationship shown in FIG. 5, and the heat transfer coefficient hpis can be calculated from the calculated oil jet flow rate and the relationship shown in FIG. 6. In addition, the fuel flow rate (Mdot, f) can be calculated from the air flow rate (Mdot, a) measured by the air flow sensor 1 and the exhaust air-fuel ratio AbF(-) detected by the air-fuel ratio sensor 9, for example, as shown in Equation 5.
[数5]
 (Mdot,f)=(Mdot,a)÷AbF
 以上により、ピストン冠面温度相関指標の計算を行える。
[Equation 5]
(Mdot, f) = (Mdot, a) ÷ AbF
In this manner, the piston crown surface temperature correlation index can be calculated.
(ピストン冠面温度相関指標の他の計算方法)
 また、ピストン温度は、内燃機関における燃焼運転が継続されることで上昇し、内燃機関の燃焼運転が停止すると下がる、といった定性的な傾向があることは明らかである。このことから、ピストン冠面温度相関指標の計算に、内燃機関の燃焼運転が継続されている時間(燃焼運転継続時間)を用いてもよい。例えば、以下のような式で与えることができる。
(Another calculation method for the piston crown surface temperature correlation index)
In addition, it is clear that the piston temperature has a qualitative tendency to rise as the combustion operation of the internal combustion engine continues and to fall when the combustion operation of the internal combustion engine stops. For this reason, the time during which the combustion operation of the internal combustion engine continues (combustion operation duration) may be used to calculate the piston crown surface temperature correlation index. For example, it can be given by the following formula.
[数6]
 tcomb=(tcomb,0)+Δτ (燃焼運転時)
[数7]
 tcomb=(tcomb,0)-Δτstop (燃料カット時、エンジン停止時)
[Equation 6]
tcomb = (tcomb, 0) + Δτ (during combustion operation)
[Equation 7]
tcomb = (tcomb, 0) - Δτstop (when fuel is cut, when the engine is stopped)
 ここで、tcombはエンジンの燃焼運転が継続されている時間の更新値[s]、(tcomb,0)は内燃機関100の燃焼運転が継続されている時間の現在値[s]である。数7は、内燃機関100の停止直後の状態と、内燃機関100がしばらく停止した状態の両方を表す式である。また、数7の場合、内燃機関停止後の時間が長いとtcomb(燃焼運転継続時間)の値がマイナスとなるので、原則としてtcomb≧0とする。 Here, tcomb is the updated value [s] of the time that the engine's combustion operation has continued, and (tcomb, 0) is the current value [s] of the time that the internal combustion engine 100's combustion operation has continued. Equation 7 is an equation that represents both the state immediately after the internal combustion engine 100 has stopped and the state after the internal combustion engine 100 has been stopped for a while. In addition, in the case of Equation 7, if the time after the internal combustion engine has stopped is long, the value of tcomb (combustion operation duration) will be negative, so as a general rule, tcomb ≧ 0.
 Δτstopは燃料カット時やエンジン停止時にピストン温度が低下することを、内燃機関の燃焼運転継続時間の減少で表現するためのパラメータである。すなわち“-Δτstop”は温度低下を表す。最も簡単な形では、Δτstopを計算周期に設定してもよい。また、ピストン温度の低下は、燃料カット時、エンジン停止時、水温、及び油温の影響を受けるため、Δτstopを水温、油温、及びエンジン回転数を軸とするマップで与えることができる。水温、油温が小さいほど、Δτstopは大きくなり、一方で、エンジン回転数が大きいほどΔτstopを大きくすることができる。これは、水温、油温が小さいほど、ピストンからライナ部へ流れるエネルギー量が増えて冷却が進むこと、また、エンジン回転数が大きい条件ほど、筒内に導入された空気との熱伝達が多く行われ、ピストンの冷却が進むことを反映するためである。 Δτstop is a parameter that expresses the drop in piston temperature when fuel is cut or the engine is stopped as a decrease in the duration of combustion operation of the internal combustion engine. In other words, "-Δτstop" represents a temperature drop. In its simplest form, Δτstop may be set to the calculation period. In addition, since the drop in piston temperature is affected by fuel cut, engine stop, water temperature, and oil temperature, Δτstop can be given in a map with water temperature, oil temperature, and engine speed as its axes. The lower the water temperature and oil temperature, the larger Δτstop becomes, while the higher the engine speed, the larger Δτstop can be. This is to reflect the fact that the lower the water temperature and oil temperature, the more energy flows from the piston to the liner, and the more cooling progresses, and that the higher the engine speed, the more heat is transferred to the air introduced into the cylinder, and the more cooling of the piston.
 エンジンの燃焼運転が継続されている時間の算出に必要となる、燃焼運転が継続されている時間の初期値は、エンジン始動時の油温、水温に基づき、設定することができる。例えば、冷却水温度の基準値を定め、エンジン燃焼開始時の冷却水温度が基準値にある場合に初期値を0とする。一方で、エンジン燃焼開始時の冷却水温度が基準値以上である場合は、同初期値を0よりも大きな値に設定する。逆に、エンジン燃焼開始時の冷却水温度が基準値未満である場合は、同初期値を0よりも小さな値に設定する。このように設定することで、初期温度の違いにより、所定温度まで到達する時間に差が出てくる状態が再現できる。なお、燃焼運転が継続されている時間の初期値についても、シミュレーションやエンジン動作試験により予め定めておくことが求められる。 The initial value of the duration of the combustion operation, which is necessary to calculate the duration of the engine combustion operation, can be set based on the oil temperature and water temperature at the time of engine start. For example, a reference value for the coolant temperature is set, and the initial value is set to 0 if the coolant temperature at the start of engine combustion is at the reference value. On the other hand, if the coolant temperature at the start of engine combustion is equal to or higher than the reference value, the initial value is set to a value greater than 0. Conversely, if the coolant temperature at the start of engine combustion is less than the reference value, the initial value is set to a value less than 0. By setting in this manner, it is possible to reproduce a state in which differences in the initial temperature result in differences in the time it takes to reach a predetermined temperature. The initial value of the duration of the combustion operation should also be determined in advance through simulations and engine operation tests.
(ピストン冠面温度相関指標のさらに他の計算方法)
 ピストンの温度が上昇するプロセスにおいては、エンジン出力(例えば、エンジントルク又はエンジン回転数)が大きいほど、ピストンへの熱伝達量も増えるため、温度上昇が大きくなる傾向がある。また、オイルジェット噴射によりピストンからオイルに流れるエネルギーが存在するため、この影響も指標としては反映できたほうがよい。上述した燃焼運転継続時間は、運転条件、オイルジェット動作状態の反映が難しい。そこで、数6に示した燃焼運転継続時間に関する式を改良し、ピストン冠面温度に相関を持つ指標を次の数8のように定義する。これにより、数6では、単純にエンジンの運転時間を積算していたが、数8では、運転時間を積算する際に運転条件やオイルジェットの有無で重みづけをすることで、運転条件及びオイルジェットの影響を反映できる。
(Another method of calculating the piston crown surface temperature correlation index)
In the process of the piston temperature rising, the greater the engine output (for example, engine torque or engine speed), the greater the amount of heat transfer to the piston, and the greater the temperature rise tends to be. In addition, because there is energy flowing from the piston to the oil due to the oil jet injection, it is better to reflect this effect as an index. It is difficult to reflect the operating conditions and the oil jet operating state in the above-mentioned combustion operation duration. Therefore, the formula for the combustion operation duration shown in Equation 6 is improved, and an index correlating with the piston crown surface temperature is defined as shown in the following Equation 8. As a result, while Equation 6 simply integrates the engine operation time, Equation 8 allows the influence of the operating conditions and the oil jet to be reflected by weighting the operating conditions and the presence or absence of the oil jet when integrating the operation time.
[数8]
 tcomb=(tcomb,0)+(αout-αoj)Δτ (燃焼運転時)
[Equation 8]
tcomb = (tcomb, 0) + (αout - αoj) Δτ (during combustion operation)
 ここで、tcombはピストン冠面温度に相関を持つ指標の更新値[s]、(tcomb,0)はピストン冠面温度に相関を持つ指標の現在値[s]、αoutは運転条件の影響を反映するための係数であり、出力に正の相関を持つ指標とする。例えば、基準の出力におけるαoutの値を1とし、αoutを出力と正の相関を持つ値に設定するとよい。また、出力が0の場合は、係数が負の値となるように設定する。これにより、エンジン停止時、燃料カット時に生じるピストン温度が低下する変化も表現できる。例えば、出力が0の場合のαoutを-1とすると、数8は数7と同等である。 Here, tcomb is the updated value [s] of the index correlated with the piston crown temperature, (tcomb, 0) is the current value [s] of the index correlated with the piston crown temperature, and αout is a coefficient for reflecting the influence of operating conditions and is an index positively correlated with output. For example, the value of αout at the reference output can be set to 1, and αout can be set to a value positively correlated with output. Also, when the output is 0, the coefficient is set to a negative value. This makes it possible to express the change in the piston temperature that occurs when the engine is stopped or fuel is cut off. For example, if αout is set to -1 when the output is 0, then Equation 8 is equivalent to Equation 7.
 また、αojはオイルジェットの影響を反映するための係数であり、オイルジェット流量、又は油圧に正の相関を持つ指標として与える。例えば、オイルジェット流量が0のときにαojを0とし、αojをオイルジェット流量に比例する関係で設定するとよい。また、油圧に基づいてαojの値を与える場合は、バルブ102の開弁圧未満の油圧でαojを0とし、油圧が開弁圧以上の範囲ではαojを油圧と正の相関関係で設定するとよい。これにより、燃焼運転継続時間(数6~数7)に比べてよりピストン温度の振る舞いに近く、かつ、ピストン冠面温度推定(数1~数5)に比べて容易に計算できる指標を適用できる。 Also, αoj is a coefficient for reflecting the influence of the oil jet, and is given as an index that has a positive correlation with the oil jet flow rate or oil pressure. For example, when the oil jet flow rate is 0, αoj is set to 0, and αoj is set in a proportional relationship to the oil jet flow rate. Furthermore, when the value of αoj is given based on the oil pressure, αoj is set to 0 when the oil pressure is less than the opening pressure of valve 102, and αoj is set in a positive correlation with the oil pressure when the oil pressure is equal to or greater than the opening pressure. This makes it possible to apply an index that is closer to the behavior of the piston temperature than the combustion operation duration (Equations 6 to 7), and that can be calculated more easily than the piston crown surface temperature estimation (Equations 1 to 5).
 また、ピストン21の冠面温度は、ピストン21の冠面近くに温度測定用の温度センサ105を設けて直接測定してもよい。図1では、シリンダ14外壁のピストン21の往復運動領域に相当する部分に、温度センサ105が設けられている例が示されている。 The temperature of the crown surface of the piston 21 may also be measured directly by providing a temperature sensor 105 for temperature measurement near the crown surface of the piston 21. Figure 1 shows an example in which the temperature sensor 105 is provided in a portion of the outer wall of the cylinder 14 that corresponds to the reciprocating motion area of the piston 21.
[油圧設定部]
 油圧設定部42(図4参照)は、可変容量型のオイルポンプ54で生成するオイル圧力を設定する処理ブロックである。油圧設定部42は、ピストン冠面温度相関指標推定部41で推定されたピストン冠面温度相関指標に基づいて、オイルジェット噴射を実施するときの油圧(目標油圧)を設定する。油圧は、ピストン冠面温度相関指標に基づいて図9に示す分岐処理により決定され、この結果、オイルジェット流量の制御が可能となる。
[Hydraulic pressure setting section]
The oil pressure setting unit 42 (see FIG. 4) is a processing block that sets the oil pressure generated by the variable displacement oil pump 54. The oil pressure setting unit 42 sets the oil pressure (target oil pressure) when oil jet injection is performed, based on the piston crown surface temperature correlation index estimated by the piston crown surface temperature correlation index estimation unit 41. The oil pressure is determined by the branching process shown in FIG. 9 based on the piston crown surface temperature correlation index, and as a result, the oil jet flow rate can be controlled.
 このように、本実施形態では、ピストン冠面温度相関指標推定部41と油圧設定部42を設けることで、ピストン冠面温度に相関のある指標に基づき、オイルジェット流量の制御が可能となる。また、油圧設定部42が、ピストン冠面温度相関指標の代わりに、温度センサ105(図1参照)の測定値をピストン冠面温度として用いる構成としてもよい。 In this way, in this embodiment, by providing the piston crown surface temperature correlation index estimation unit 41 and the oil pressure setting unit 42, it becomes possible to control the oil jet flow rate based on an index that is correlated with the piston crown surface temperature. In addition, the oil pressure setting unit 42 may be configured to use the measurement value of the temperature sensor 105 (see FIG. 1) as the piston crown surface temperature instead of the piston crown surface temperature correlation index.
[エンジン運転時間とTHCの排出量]
 ここで、内燃機関のエンジン運転時間とTHCの排出量との関係について説明する。
 図7は、内燃機関のエンジン運転時間[h]とTHCの排出量[ppmC]との関係例を示す図である。PNについてもTHCの排出量と同様の傾向である。エンジンの運転時間が長くなると、燃料や潤滑油の未燃又は不完全燃焼に由来する物質(燃焼生成物)がエンジン筒内にデポジットとして堆積する。デポジットは燃焼室の壁面に付着したりはがれたりを繰り返しながら、その堆積量は時間の経過とともに増加する。デポジットが燃料又は潤滑油を吸収することで、部分失火や不完全燃焼が生じ、エンジンから排出されるTHCやPNが増加する。図7では、THCの排出量が初期値701からエンジン運転時間の経過とともに増加して、増加量がTHC増加の許容量702を超えた例が示されている。
[Engine operating time and THC emissions]
Here, the relationship between the engine operation time of the internal combustion engine and the amount of THC emissions will be described.
FIG. 7 is a diagram showing an example of the relationship between engine operation time [h] of an internal combustion engine and THC emission amount [ppmC]. The PN also shows the same tendency as the THC emission amount. As the engine operation time increases, substances (combustion products) derived from unburned or incomplete combustion of fuel or lubricating oil are deposited as deposits in the engine cylinder. The deposits repeatedly adhere to and peel off the walls of the combustion chamber, and the amount of deposits increases over time. When the deposits absorb the fuel or lubricating oil, partial misfires or incomplete combustion occurs, and the THC and PN emitted from the engine increase. FIG. 7 shows an example in which the THC emission amount increases from the initial value 701 as the engine operation time elapses, and the increase amount exceeds the allowable amount 702 of THC increase.
 デポジットは、シリンダヘッド20、ピストン21、シリンダ14、吸気用の可変バルブ5a、排気用の可変バルブ5b、及び燃料噴射装置13の各々の壁面に堆積する。シリンダ14の内壁はピストン21との摺動部であり、点火タイミング付近では、ピストン21の位置が上死点に近い位置にある。このため、点火タイミング付近において燃焼室を形成するシリンダ14の内壁の表面積は、ピストン21の冠面に比べて小さく、デポジットはシリンダ14よりもピストン21の冠面に堆積しやすい。 Deposits accumulate on the walls of the cylinder head 20, piston 21, cylinder 14, intake variable valve 5a, exhaust variable valve 5b, and fuel injector 13. The inner wall of the cylinder 14 is the sliding part with the piston 21, and near the ignition timing, the position of the piston 21 is close to top dead center. For this reason, the surface area of the inner wall of the cylinder 14, which forms the combustion chamber near the ignition timing, is smaller than the crown surface of the piston 21, and deposits are more likely to accumulate on the crown surface of the piston 21 than on the cylinder 14.
[ピストン冠面温度とデポジット堆積量]
 次に、デポジットが堆積する主部品であるピストン21の冠面温度とデポジットの堆積量との関係について説明する。
 図8は、ピストン冠面温度[℃]とデポジット堆積量[mg]の関係例を示す図である。なお、図8ではエンジン運転時間が一定時間経過した後のデポジット堆積量としている。デポジットは、ピストン冠面温度が低い温度範囲801のときと、ピストン冠面温度が高い温度範囲803のときに堆積しやすい。したがって、デポジットの堆積を抑制するためには、温度範囲801と温度範囲803の間の、デポジット堆積量が“少”となる温度範囲802にピストン21の冠面温度を維持するのが良い。この結果、デポジットの堆積によるTHC、PNの増加を抑制することができる。
[Piston crown temperature and deposit amount]
Next, the relationship between the crown surface temperature of the piston 21, which is the main component on which deposits accumulate, and the amount of deposits will be described.
Fig. 8 is a diagram showing an example of the relationship between piston crown surface temperature [°C] and deposit accumulation amount [mg]. Note that Fig. 8 shows the deposit accumulation amount after the engine has been operated for a certain period of time. Deposits are likely to accumulate when the piston crown surface temperature is in a low temperature range 801 and when the piston crown surface temperature is in a high temperature range 803. Therefore, in order to suppress deposit accumulation, it is preferable to maintain the piston crown surface temperature of the piston 21 in a temperature range 802 between temperature ranges 801 and 803, where the deposit accumulation amount is "small". As a result, it is possible to suppress increases in THC and PN due to deposit accumulation.
 図8では、デポジット堆積量の閾値804(許容値)に基づいて、温度範囲802の下限温度805が約150[℃]、上限温度806が約215[℃]に設定されている例が示されている。なお、デポジット堆積量の閾値804(許容値)は、図7に示したTHC等の、排ガス規制物質の排出量の初期値701からのTHC増加の許容量702を基に、予めECU30で設定するとよい。 In FIG. 8, an example is shown in which the lower limit temperature 805 of the temperature range 802 is set to approximately 150°C and the upper limit temperature 806 is set to approximately 215°C based on the deposit accumulation amount threshold value 804 (tolerance value). The deposit accumulation amount threshold value 804 (tolerance value) may be set in advance by the ECU 30 based on the allowable amount 702 of THC increase from the initial value 701 of the emission amount of exhaust gas regulated substances such as THC shown in FIG. 7.
[油圧設定部の動作]
 次に、内燃機関制御装置30の油圧設定部42の動作について図9を参照して説明する。
 図9は、内燃機関制御装置30の油圧設定部42の動作例を示すフローチャートである。
[Operation of hydraulic pressure setting unit]
Next, the operation of the oil pressure setting section 42 of the internal combustion engine control device 30 will be described with reference to FIG.
FIG. 9 is a flowchart showing an example of the operation of the hydraulic pressure setting unit 42 of the internal combustion engine control device 30.
 まず、ステップS901において、油圧設定部42は、ピストン21とシリンダ14の潤滑性が低下しているかどうか、すなわちピストン潤滑性が低いか否かを判定する。例えば、数6と数7で算出する内燃機関100の燃焼運転継続時間が所定値より小さい場合に、ピストン潤滑性が低いと判断できる。油圧設定部42は、ステップS901における判定がYESの場合、ステップS902に進み、判定がNOの場合、ステップS903に進む。 First, in step S901, the hydraulic pressure setting unit 42 determines whether the lubricity of the piston 21 and cylinder 14 has decreased, i.e., whether the piston lubricity is low. For example, if the duration of combustion operation of the internal combustion engine 100 calculated using equations 6 and 7 is less than a predetermined value, it can be determined that the piston lubricity is low. If the determination in step S901 is YES, the hydraulic pressure setting unit 42 proceeds to step S902, and if the determination is NO, the hydraulic pressure setting unit 42 proceeds to step S903.
 内燃機関100の燃焼運転継続時間が所定値より小さい場合(S901のYES判定)、ステップS902において、油圧設定部42は、オイルポンプ54の目標油圧をオイルジェット噴射可能な油圧に設定する。オイルジェットノズルやバルブ102(図1参照)の仕様及びオイル温度に応じて、オイルジェット噴射可能な油圧が決まる。定性的には、オイル温度が低いほど、オイルジェット噴射可能な油圧は高くなる。バルブ102は、オイルメインギャラリ110の油圧が所定値以上になると開くように構成されているチェックバルブ(逆止弁)である。例えば、バルブ102として、ボールバルブを用いることができる。 If the duration of the combustion operation of the internal combustion engine 100 is less than a predetermined value (YES judgment in S901), in step S902, the oil pressure setting unit 42 sets the target oil pressure of the oil pump 54 to an oil pressure at which oil jet injection is possible. The oil pressure at which oil jet injection is possible is determined according to the specifications of the oil jet nozzle and the valve 102 (see FIG. 1) and the oil temperature. Qualitatively, the lower the oil temperature, the higher the oil pressure at which oil jet injection is possible. The valve 102 is a check valve (non-return valve) that is configured to open when the oil pressure in the oil main gallery 110 reaches or exceeds a predetermined value. For example, a ball valve can be used as the valve 102.
 ここで、オイル温度とオイルジェット噴射可能圧力の関係について図10を参照して説明する。
 図10は、オイル温度とオイルジェット噴射可能圧力の関係例を示すマップ(グラフ)である。図10の縦軸はオイルジェット噴射可能圧力を示し、横軸はオイル温度を示す。
Here, the relationship between the oil temperature and the oil jet injectable pressure will be described with reference to FIG.
10 is a map (graph) showing an example of the relationship between the oil temperature and the pressure at which the oil jet can be injected, in which the vertical axis represents the pressure at which the oil jet can be injected, and the horizontal axis represents the oil temperature.
 図10に示すように、オイル温度が高い条件では、バルブ102の開弁圧により噴射圧力が決まる。そして、低温では、オイル粘性が大きくなるため、オイルジェットノズルにおける圧力損失が大きくなるため、ノズル先端からオイルを噴出させるために必要となる圧力が、バルブ102により決まる噴射圧力(オイルジェットカット圧Pc)よりも非常に大きくなる場合がある。油圧設定部42は、現時点のオイル温度と図10に示す関係とに基づき、油圧の設定値(目標油圧62)を決める。目標油圧62は、オイルジェットを噴射可能な圧力(オイルジェット噴射可能圧力61)以上の値に設定すればよい。以降、ステップS902による処理が行われるモードを「潤滑モード」とする。 As shown in FIG. 10, when the oil temperature is high, the injection pressure is determined by the valve opening pressure of the valve 102. At low temperatures, the oil viscosity increases, causing a large pressure loss in the oil jet nozzle, and the pressure required to eject oil from the nozzle tip may be much greater than the injection pressure (oil jet cut pressure Pc) determined by the valve 102. The oil pressure setting unit 42 determines the oil pressure setting value (target oil pressure 62) based on the current oil temperature and the relationship shown in FIG. 10. The target oil pressure 62 may be set to a value equal to or greater than the pressure at which the oil jet can be injected (oil jet injection pressure 61). Hereinafter, the mode in which the processing in step S902 is performed is referred to as the "lubrication mode".
 このように設定することで、油圧設定部42はピストン潤滑性が低い場合を判断し、オイルジェット噴射可能な油圧を設定することができる。このため、ピストン潤滑性が低い条件において、オイルジェットによるオイル供給を実施し潤滑性を向上することで、ピストン潤滑性の低い状況における燃料消費量の悪化を低減することができる。 By setting it in this way, the oil pressure setting unit 42 can determine when the piston lubricity is low and set the oil pressure at which the oil jet can be injected. Therefore, when the piston lubricity is low, the oil jet supplies oil to improve the lubricity, thereby reducing the deterioration of fuel consumption in a situation where the piston lubricity is low.
 以上のとおり、油圧設定部42は、オイルジェット(オイルジェットシステム101)の油圧の目標値を、オイルジェット噴射可能な油圧に設定するとともに、オイルを内燃機関の各部に含浸させうる油圧を設定するように構成されている。 As described above, the oil pressure setting unit 42 is configured to set the target value of the oil pressure of the oil jet (oil jet system 101) to a pressure that allows oil jet injection, and to set a pressure that allows oil to be impregnated into each part of the internal combustion engine.
 また、油圧設定部42は、オイルポンプ54からオイルジェットノズルの間に備えた油圧に応動するバルブ102が開閉する油圧に基づき、オイルジェット(オイルジェットシステム101)の油圧の目標値を、オイルジェット噴射が停止可能な油圧、又は、オイルジェットが噴射可能な油圧に設定する。 In addition, the hydraulic pressure setting unit 42 sets the target hydraulic pressure value of the oil jet (oil jet system 101) to a hydraulic pressure at which the oil jet injection can be stopped or at which the oil jet can be injected, based on the hydraulic pressure at which the hydraulic pressure-responsive valve 102 provided between the oil pump 54 and the oil jet nozzle opens and closes.
 内燃機関100の燃焼運転継続時間が所定値以上の場合(S901のNO判定)、図9のステップS903において、油圧設定部42は、ピストン冠面温度相関指標が第一所定値よりも小さいかどうかを判定する。第一所定値は、図6のデポジット堆積量が少となる温度範囲802の下限温度805となるように定める。 If the duration of combustion operation of the internal combustion engine 100 is equal to or longer than the predetermined value (NO in S901), in step S903 in FIG. 9, the oil pressure setting unit 42 determines whether the piston crown surface temperature correlation index is smaller than a first predetermined value. The first predetermined value is set to be the lower limit temperature 805 of the temperature range 802 in FIG. 6 where the amount of deposit accumulation is small.
 このように、油圧設定部42は、ピストン21の冠面温度が、第一所定値未満である場合に、オイルジェット(オイルジェットシステム101)の油圧を、オイルジェット噴射が停止可能な油圧に設定する。 In this way, when the crown surface temperature of the piston 21 is less than the first predetermined value, the oil pressure setting unit 42 sets the oil pressure of the oil jet (oil jet system 101) to a pressure at which the oil jet injection can be stopped.
 そして、油圧設定部42は、ピストン21の冠面温度が第一所定値よりも小さい場合は(S903のYES判定)、ステップS904に進む。また、油圧設定部42は、ピストン21の冠面温度が第一所定値以上である場合は(S903のNO判定)、ステップS905に進む。 If the crown surface temperature of the piston 21 is lower than the first predetermined value (YES in S903), the hydraulic pressure setting unit 42 proceeds to step S904. If the crown surface temperature of the piston 21 is equal to or higher than the first predetermined value (NO in S903), the hydraulic pressure setting unit 42 proceeds to step S905.
 ステップS904では、油圧設定部42は、図5に示す関係に基づいて、オイルポンプ54の目標油圧をオイルジェット停止可能な油圧に設定する。具体的には、オイルメインギャラリ110からオイルジェットノズルの間に設けられたバルブ102の開弁圧よりも低い圧力に設定すればよい。以降、ステップS903のYES判定後にステップS904による処理が行われるモードを「暖機促進モード」とする。 In step S904, the oil pressure setting unit 42 sets the target oil pressure of the oil pump 54 to a pressure at which the oil jet can be stopped, based on the relationship shown in FIG. 5. Specifically, the target oil pressure can be set to a pressure lower than the opening pressure of the valve 102 provided between the oil main gallery 110 and the oil jet nozzle. Thereafter, the mode in which the process in step S904 is performed after a YES determination in step S903 is referred to as the "warm-up promotion mode."
 ステップS905では、油圧設定部42は、ピストン21の冠面温度が第二所定値よりも大きいかどうかを判断する。油圧設定部42は、ピストン21の冠面温度が第二所定値よりも大きい場合には(S905のYES判定)、ステップS906に進む。そして、ステップS906において、油圧設定部42は、オイルポンプ54の目標油圧をオイルジェット噴射可能な油圧に設定し、ピストン21の冠面温度を抑制する制御を行う。第二所定値は、図8のデポジット堆積量が少となる温度範囲802の上限温度806となるように定める。 In step S905, the oil pressure setting unit 42 determines whether the crown surface temperature of the piston 21 is greater than a second predetermined value. If the crown surface temperature of the piston 21 is greater than the second predetermined value (YES judgment in S905), the oil pressure setting unit 42 proceeds to step S906. Then, in step S906, the oil pressure setting unit 42 sets the target oil pressure of the oil pump 54 to a pressure that allows oil jet injection, and performs control to suppress the crown surface temperature of the piston 21. The second predetermined value is set to be the upper limit temperature 806 of the temperature range 802 in FIG. 8 in which the amount of deposit accumulation is small.
 一方、油圧設定部42は、ピストン21の冠面温度が第二所定値以下である場合には(S905のNO判定)、ステップS907に進み、ピストン21の冠面温度の時間変化が増加しているかどうかを判定する。ECU30では、ピストン21の冠面温度の時間変化として、冠面温度の変化方向と変化量をRAM33に記憶するものとする。 On the other hand, if the crown surface temperature of the piston 21 is equal to or lower than the second predetermined value (NO in S905), the hydraulic pressure setting unit 42 proceeds to step S907 and determines whether the change over time in the crown surface temperature of the piston 21 is increasing. The ECU 30 stores in the RAM 33 the direction and amount of change in the crown surface temperature as the change over time in the crown surface temperature of the piston 21.
 ステップS907において、油圧設定部42は、ピストン21の冠面温度の時間変化が増加している場合には(ステップS907のYES判定)、ステップS908に進む。そして、ステップS908において、油圧設定部42は、オイルジェットの油量(オイルジェット流量)を前周期の油量よりも増加させる制御を行うことで、ピストン冠面の温度を低下させる。 In step S907, if the change in the crown surface temperature of the piston 21 over time is increasing (YES in step S907), the hydraulic pressure setting unit 42 proceeds to step S908. Then, in step S908, the hydraulic pressure setting unit 42 controls the amount of oil in the oil jet (oil jet flow rate) to be greater than the amount of oil in the previous cycle, thereby lowering the temperature of the piston crown surface.
 一方、ピストン21の冠面温度の時間変化が増加していない(一定又は減少している)場合には(ステップS907のNO判定)、油圧設定部42はステップS904に進む。そして、油圧設定部42は、オイルジェット停止可能な油圧設定又は油量低下によってピストン21の冠面温度を上昇させる(S904)。以降、ステップS905,S906,S907,S908,S904による処理が行われるモードを「デポジット抑制モード」とする。 On the other hand, if the change over time in the crown surface temperature of the piston 21 is not increasing (is constant or is decreasing) (NO in step S907), the oil pressure setting unit 42 proceeds to step S904. Then, the oil pressure setting unit 42 increases the crown surface temperature of the piston 21 by setting an oil pressure that allows the oil jet to be stopped or by reducing the amount of oil (S904). Thereafter, the mode in which the processes in steps S905, S906, S907, S908, and S904 are performed is referred to as the "deposit suppression mode."
 デポジット抑制モードによって、ピストン21の冠面温度が第一所定値(例えば、下限温度805)から第二所定値(例えば、上限温度806)の間に維持されやすくなる。この結果、ピストン21の冠面温度は、デポジット堆積量が少となる温度範囲802に維持されるため、デポジットの堆積が抑制されて、THCやPNの増加を抑制することができる。 The deposit suppression mode makes it easier for the crown surface temperature of the piston 21 to be maintained between a first predetermined value (e.g., lower limit temperature 805) and a second predetermined value (e.g., upper limit temperature 806). As a result, the crown surface temperature of the piston 21 is maintained in the temperature range 802 where the amount of deposit accumulation is small, so that deposit accumulation is suppressed and an increase in THC and PN can be suppressed.
 ステップS902,S904,S906又はS908の処理が完了したら、油圧設定部42による本処理を終了する。図12に示すように、油圧設定部42は、ピストン冠面温度相関指標又はピストン冠面温度の測定値に基づいて、「潤滑モード」、「暖機促進モード」、「デポジット抑制モード」のいずれかを選択し、選択したモードを実行する機能を備えるとも言える。 When the processing of step S902, S904, S906, or S908 is completed, this processing by the hydraulic pressure setting unit 42 ends. As shown in FIG. 12, the hydraulic pressure setting unit 42 can also be said to have a function of selecting one of the "lubrication mode," "warm-up promotion mode," and "deposit suppression mode" based on the piston crown surface temperature correlation index or the measured value of the piston crown surface temperature, and executing the selected mode.
 例えば、油圧設定部42は、後述する図12の実線1202に示すように、予め同定されている、ピストン冠面のデポジット堆積量が閾値(閾値804)よりも多くなるピストン冠面の温度状態が含まれる第1の温度状態範囲内で「暖機促進モード」を選択して実行するとよい。第1の温度状態範囲は、ピストン冠面温度が、デポジット堆積量が閾値よりも少となるピストン冠面の温度状態の下限(下限温度805)より低い温度範囲(図4の温度範囲801)とする。油圧設定部42は、ピストン冠面の温度が、デポジット堆積量が閾値よりも多くなる第1の温度状態範囲内のとき「暖機促進モード」を選択し、オイルジェット噴射を実行する(S904)。これにより、ピストン冠面温度が上がりやすくなり、デポジット堆積量が閾値よりも多くなる温度範囲801における滞在時間を少なくすることができる。この結果、THCやPNの抑制が可能となる。 For example, the hydraulic pressure setting unit 42 may select and execute the "warm-up promotion mode" within a first temperature state range that includes a temperature state of the piston crown surface that is identified in advance and in which the deposit accumulation amount on the piston crown surface becomes greater than a threshold value (threshold value 804), as shown by a solid line 1202 in FIG. 12 described later. The first temperature state range is a temperature range (temperature range 801 in FIG. 4) in which the piston crown surface temperature is lower than the lower limit (lower limit temperature 805) of the temperature state of the piston crown surface in which the deposit accumulation amount becomes less than the threshold value. When the piston crown surface temperature is within the first temperature state range in which the deposit accumulation amount becomes greater than the threshold value, the hydraulic pressure setting unit 42 selects the "warm-up promotion mode" and executes oil jet injection (S904). This makes it easier for the piston crown surface temperature to rise, and the residence time in the temperature range 801 in which the deposit accumulation amount becomes greater than the threshold value can be reduced. As a result, it is possible to suppress THC and PN.
 また、油圧設定部42は、図12の実線1202に示すように、ピストン冠面の温度状態が上記第1の温度状態範囲よりも高温状態である第2の温度状態(図4の温度範囲802,803)で「デポジット抑制モード」を選択して実行する。第2の温度状態でのデポジット抑制モードでは、予め同定されている、ピストン冠面のデポジット堆積量が閾値(閾値804)よりも少となるピストン冠面の温度状態の上限(上限温度806)と比べて、ピストン冠面の温度状態が下回っている場合(S905のNO判定)には、油圧設定部42は、オイルジェット流量を低下又は遮断する(S904)。ただし、このピストン冠面の温度状態が、デポジット堆積量が閾値よりも少となるピストン冠面の温度状態の上限を下回っている場合において、ピストン冠面温度の時間変化が増加傾向にあるときは(S907のYES判定)、油圧設定部42は、オイルジェット流量を増加する(S908)。 The hydraulic pressure setting unit 42 also selects and executes the "deposit suppression mode" in the second temperature state (temperature ranges 802, 803 in FIG. 4) in which the temperature state of the piston crown surface is higher than the first temperature state range, as shown by the solid line 1202 in FIG. 12. In the deposit suppression mode in the second temperature state, when the temperature state of the piston crown surface is lower than the upper limit (upper limit temperature 806) of the temperature state of the piston crown surface at which the deposit accumulation amount on the piston crown surface is less than the threshold value (threshold value 804) that has been identified in advance (NO judgment in S905), the hydraulic pressure setting unit 42 reduces or blocks the oil jet flow rate (S904). However, when the temperature state of the piston crown surface is lower than the upper limit of the temperature state of the piston crown surface at which the deposit accumulation amount is less than the threshold value, and the time change of the piston crown surface temperature is on the rise (YES judgment in S907), the hydraulic pressure setting unit 42 increases the oil jet flow rate (S908).
 一方、デポジット堆積量が閾値(閾値804)よりも少となるピストン冠面の温度状態の上限と比べて、ピストン冠面の温度状態が上回っている場合(S905のYES判定)、油圧設定部42は、オイルジェット噴射を実行する(S906)。この制御により、ピストン冠面の温度をデポジット堆積量が少なくなる温度範囲(下限温度805から上限温度806の間)に維持しやすくなる。それにより、ピストン冠面のデポジット堆積を抑制でき、結果としてTHCやPNを低減することができる。 On the other hand, if the temperature state of the piston crown surface is higher than the upper limit of the temperature state of the piston crown surface at which the amount of deposit accumulation becomes smaller than the threshold value (threshold value 804) (YES judgment in S905), the oil pressure setting unit 42 executes oil jet injection (S906). This control makes it easier to maintain the temperature of the piston crown surface within a temperature range (between the lower limit temperature 805 and the upper limit temperature 806) where the amount of deposit accumulation becomes smaller. This makes it possible to suppress deposit accumulation on the piston crown surface, and as a result, it is possible to reduce THC and PN.
 ここでは、オイルジェット噴射(流量)の制御について、図12の実線1202を例に説明したが、図12の破線1201でも同様の制御が可能である。 Here, the control of oil jet injection (flow rate) has been explained using the solid line 1202 in Figure 12 as an example, but similar control is also possible using the dashed line 1201 in Figure 12.
 上述したとおり、本実施形態に係る内燃機関制御装置(内燃機関制御装置30)は、指定された流量の潤滑油を吐出するオイルポンプ(オイルポンプ54)と、該オイルポンプから吐出される潤滑油をピストン(ピストン21)の被供給部(裏面)に向けて噴射するオイルジェットシステム(オイルジェットシステム101)とを有する内燃機関(内燃機関100)を制御する内燃機関制御装置である。そして、内燃機関制御装置は、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値(閾値804)よりも少なくなる温度範囲(温度範囲802)の下限温度(下限温度805)未満の場合に(暖機促進モードに相当)、オイルジェットシステムからの潤滑油の噴射を停止する、又は潤滑油の流量を前周期の流量よりも低下させる制御を行う制御部(CPU33a、オイルジェット制御部36)、を備える。 As described above, the internal combustion engine control device (internal combustion engine control device 30) according to this embodiment is an internal combustion engine control device that controls an internal combustion engine (internal combustion engine 100) having an oil pump (oil pump 54) that discharges a specified flow rate of lubricating oil, and an oil jet system (oil jet system 101) that sprays the lubricating oil discharged from the oil pump toward the supplied portion (back surface) of the piston (piston 21). The internal combustion engine control device also includes a control unit (CPU 33a, oil jet control unit 36) that stops the injection of lubricating oil from the oil jet system or controls the flow rate of lubricating oil to be lower than the flow rate of the previous cycle when the temperature of the piston crown surface is below the lower limit temperature (lower limit temperature 805) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes less than the threshold value (threshold value 804) (corresponding to the accelerated warm-up mode).
 上述した本実施形態に係る内燃機関制御装置によれば、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値よりも少なくなる温度範囲の下限温度未満の場合に、オイルジェットからの潤滑油の噴射、又は、流量を低下させる制御を実行する。このようなオイルジェット制御により、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値よりも多くなる温度状態を速やかに通過し、デポジットの堆積量が少となる温度範囲に移行することができる。これにより、デポジットの堆積を抑制し、排ガス規制物質の排出を抑制することができる。すなわち、デポジットの堆積抑制と排ガス規制物質の排出抑制を両立することができる。 The internal combustion engine control device according to the present embodiment described above executes control to inject lubricating oil from the oil jet or reduce the flow rate when the temperature of the piston crown surface is below the lower limit temperature of the temperature range in which the amount of deposits accumulated on the piston crown surface becomes less than a threshold value. This oil jet control allows the temperature of the piston crown surface to quickly pass through a temperature state in which the amount of deposits accumulated on the piston crown surface becomes greater than the threshold value, and to transition to a temperature range in which the amount of deposits accumulated is small. This makes it possible to suppress deposit accumulation and suppress emissions of exhaust gas regulated substances. In other words, it is possible to achieve both suppression of deposit accumulation and suppression of emissions of exhaust gas regulated substances.
 上記制御部(オイルジェット制御部36)は、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値(閾値804)よりも少なくなる温度範囲(温度範囲802)の下限温度(下限温度805)以上かつ上限温度(上限温度806)以下の場合に(デポジット抑制モードに相当)、オイルジェットシステムからの潤滑油の噴射を停止する、又は潤滑油の流量を前周期の流量よりも低下させる制御を行うように構成される。 The control unit (oil jet control unit 36) is configured to stop the injection of lubricating oil from the oil jet system or to control the flow rate of lubricating oil to be lower than the flow rate of the previous cycle when the temperature of the piston crown surface is equal to or higher than the lower limit temperature (lower limit temperature 805) and equal to or lower than the upper limit temperature (upper limit temperature 806) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes less than a threshold value (threshold value 804) (corresponding to the deposit suppression mode).
 上記構成のオイルジェット制御によって、デポジットの堆積量が少となる温度範囲にピストン冠面の温度が維持されることで、デポジットの堆積を抑制し、THCやPNの増加を抑制することができる。 The oil jet control configured as above maintains the temperature of the piston crown surface within a temperature range that reduces the amount of deposit buildup, suppressing deposit buildup and preventing increases in THC and PN.
 上記制御部(オイルジェット制御部36)は、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値(閾値804)よりも少なくなる温度範囲(温度範囲802)の下限温度(下限温度805)以上かつ上限温度(上限温度806)以下の場合(デポジット抑制モードに相当)であって、ピストン冠面の温度の時間変化が増加傾向にあるときは、潤滑油の流量を前周期の流量よりも増加させるように構成される。 The control unit (oil jet control unit 36) is configured to increase the flow rate of lubricating oil from that of the previous cycle when the temperature of the piston crown surface is equal to or higher than the lower limit temperature (lower limit temperature 805) and equal to or lower than the upper limit temperature (upper limit temperature 806) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes less than a threshold value (threshold value 804) (corresponding to the deposit suppression mode), and when the temperature of the piston crown surface shows an increasing tendency over time.
 上記構成のオイルジェット制御によって、デポジットの堆積量が少となる温度範囲にピストン冠面の温度が維持されることで、デポジットの堆積を抑制し、THCやPNの増加を抑制することができる。特に、ピストン冠面の温度の時間変化が増加傾向にあるときには、デポジットの堆積量が増加するが(図8参照)、噴射する潤滑油の流量を増加させることでピストン冠面の温度上昇を防止し、デポジットの堆積量の増加を抑制できる。 The oil jet control configured as above maintains the temperature of the piston crown surface within a temperature range where the amount of deposit buildup is small, suppressing deposit buildup and suppressing increases in THC and PN. In particular, when the temperature of the piston crown surface shows an increasing trend over time, the amount of deposit buildup increases (see Figure 8), but by increasing the flow rate of the lubricating oil injected, the temperature rise of the piston crown surface can be prevented and the increase in the amount of deposit buildup can be suppressed.
 上記制御部(オイルジェット制御部36)は、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値よりも少なくなる温度範囲の上限温度を超える場合に(デポジット抑制モードに相当)、オイルジェットシステムからの潤滑油の噴射を実行するように構成される。 The control unit (oil jet control unit 36) is configured to inject lubricating oil from the oil jet system when the temperature of the piston crown surface exceeds the upper limit temperature of the temperature range in which the amount of deposits accumulated on the piston crown surface is less than a threshold value (corresponding to the deposit suppression mode).
 上記構成オイルジェット制御によって、ピストン冠面の温度が速やかに低下し、デポジットの堆積量が少となる温度範囲内にピストンの冠面温度が含まれることで、デポジットの堆積を抑制し、THCやPNの増加を抑制する。 The above-described oil jet control quickly reduces the temperature of the piston crown surface, and by keeping the piston crown surface temperature within the temperature range where the amount of deposit buildup is small, deposit buildup is suppressed and an increase in THC and PN is suppressed.
 上記制御部(オイルジェット制御部36)は、ピストン冠面の温度と、ピストン冠面へのデポジット堆積量が閾値(閾値804)よりも少なくなる温度範囲(温度範囲802)の下限温度(下限温度805)とを比較する前に、ピストンと内燃機関の円筒との間の潤滑性を判定し、潤滑性が不足していると判定した場合は(潤滑モードに相当)、オイルジェットシステムからの潤滑油の噴射を実行するように構成される。 The control unit (oil jet control unit 36) is configured to determine the lubricity between the piston and the cylinder of the internal combustion engine before comparing the temperature of the piston crown surface with the lower limit temperature (lower limit temperature 805) of the temperature range (temperature range 802) in which the amount of deposits accumulated on the piston crown surface becomes smaller than a threshold value (threshold value 804), and to execute the injection of lubricating oil from the oil jet system if it is determined that the lubricity is insufficient (corresponding to the lubrication mode).
 上記構成のオイルジェット制御によって、ピストンと内燃機関の円筒との間の潤滑性を向上することができ、ピストン潤滑性の低い状況における燃料消費量の悪化を低減することができる。 The oil jet control configured as above can improve the lubrication between the piston and the cylinder of the internal combustion engine, thereby reducing the deterioration of fuel consumption in situations where the piston lubrication is low.
 上記ピストン冠面の温度は、内燃機関の運転条件パラメータと、ピストンの裏面に潤滑油を噴射するためのオイルジェットパラメータとに基づいて推定された、ピストン冠面の温度に相関を持つピストン冠面温度相関指標、又は、ピストン冠面の温度を測定する温度センサ(温度センサ105)の測定値である。 The temperature of the piston crown surface is a piston crown surface temperature correlation index that is correlated with the temperature of the piston crown surface and is estimated based on the operating condition parameters of the internal combustion engine and the oil jet parameters for injecting lubricating oil onto the back surface of the piston, or is a measurement value of a temperature sensor (temperature sensor 105) that measures the temperature of the piston crown surface.
<第2の実施形態>
 本発明の第2の実施形態は、第1の実施形態における内燃機関100において、ピストン21に改良を加えてピストン冠面温度の制御性を高めた例である。以下、本発明の第2の実施形態における制御システムの構成について、図11及び図12を用いて説明する。
Second Embodiment
The second embodiment of the present invention is an example in which the controllability of the piston crown surface temperature is enhanced by improving the piston 21 in the internal combustion engine 100 of the first embodiment. Hereinafter, the configuration of a control system in the second embodiment of the present invention will be described with reference to Figs. 11 and 12.
 図11は、本実施形態におけるピストンの構成例を示す概略図である。
 図12は、本実施形態におけるエンジン始動時の車速[km/h]、オイルジェット流量(図中「OJ流量」)[L/min]、ピストン冠面温度[℃]、及び油温[℃]の時系列変化を示す図である。図12では、オイルジェット流量、ピストン冠面温度、及び油温について、第1の実施形態の場合を破線1201で、第2の実施形態の場合を実線1202で示している。なお、図12において、(1)潤滑モード、(2)暖機促進モード、(3)デポジット抑制モードは、第2の実施形態に適用した例を想定している。
FIG. 11 is a schematic diagram showing an example of the configuration of a piston in this embodiment.
Fig. 12 is a diagram showing time series changes in vehicle speed [km/h], oil jet flow rate ("OJ flow rate" in the figure) [L/min], piston crown surface temperature [°C], and oil temperature [°C] at engine start in this embodiment. In Fig. 12, the oil jet flow rate, piston crown surface temperature, and oil temperature are shown by dashed lines 1201 for the first embodiment and by solid lines 1202 for the second embodiment. In Fig. 12, (1) lubrication mode, (2) warm-up promotion mode, and (3) deposit suppression mode are assumed to be examples applied to the second embodiment.
 第2の実施形態に係るピストン21Aが第1の実施形態のピストン21と異なる点は、ピストン21Aが、母材1101と、該母材1101よりも熱伝導率が低い材質を配して内燃機関100の燃焼室内に臨ませるピストン冠面1102とを備えることである。 The piston 21A according to the second embodiment differs from the piston 21 according to the first embodiment in that the piston 21A includes a base material 1101 and a piston crown surface 1102 made of a material having a lower thermal conductivity than the base material 1101 and facing the combustion chamber of the internal combustion engine 100.
 図11及び図12を用いて第2の実施形態におけるピストン21Aを用いた場合の作用と効果について説明する。母材1101よりも熱伝導率が低い材質をピストン冠面1102に備えることで、燃焼室内からピストン21Aの母材1101やピストン21Aの側面に配置するピストンリングを通して潤滑油に逃げる熱を抑制することができる。それにより、図12の時刻1203に示すように、エンジン始動時のピストン冠面1102の温度の上昇速度を、第1の実施形態よりも早めることが可能となる。この結果、デポジットの堆積量が少となる下限温度805(図8参照)に到達するまでの時間を、時刻1204から時刻1205まで短縮することができる。エンジンは停止と始動を繰り返すため、第2の実施形態におけるピストン21Aの構成によれば、ピストン冠面温度のデポジット堆積量が少となる温度範囲802の滞在時間を第1の実施形態よりも増やすことができ、結果としてデポジットの堆積を抑制できる。その結果、THCやPNの増加を抑制することができる。 11 and 12, the action and effect of using the piston 21A in the second embodiment will be described. By providing the piston crown surface 1102 with a material having a lower thermal conductivity than the base material 1101, it is possible to suppress heat escaping from the combustion chamber to the lubricating oil through the base material 1101 of the piston 21A and the piston rings arranged on the side of the piston 21A. As a result, as shown at time 1203 in FIG. 12, it is possible to increase the rate of temperature rise of the piston crown surface 1102 at engine start more quickly than in the first embodiment. As a result, the time until the lower limit temperature 805 (see FIG. 8) at which the amount of deposit accumulation becomes small can be shortened from time 1204 to time 1205. Since the engine repeatedly stops and starts, according to the configuration of the piston 21A in the second embodiment, the time during which the piston crown surface temperature stays in the temperature range 802 at which the amount of deposit accumulation becomes small can be increased more than in the first embodiment, and as a result, the accumulation of deposits can be suppressed. As a result, the increase in THC and PN can be suppressed.
 また、母材1101よりも熱伝導率が小さい材質を設けたピストン冠面1102の厚さ1104の値は、母材1101の厚さ1103よりも十分小さく設定すると良い。熱伝導率は材料の「熱伝達率」と「熱容量」によって決まるため、ピストン冠面1102の厚さ1104の値を小さくすることで、ピストン冠面1102の温度が上がりやすくなる。それにより、ピストン冠面温度に対して、デポジットの堆積量が少となる温度範囲802の滞在時間を増やすことができ、デポジットの堆積が抑制できる。ピストン冠面1102の厚さの値を小さくするために、ピストン冠面1102は母材1101にコーティングをすることで形成してもよい。 In addition, the value of the thickness 1104 of the piston crown surface 1102, which is provided with a material having a lower thermal conductivity than the base material 1101, should be set sufficiently smaller than the thickness 1103 of the base material 1101. Since the thermal conductivity is determined by the "heat transfer coefficient" and "heat capacity" of the material, by reducing the value of the thickness 1104 of the piston crown surface 1102, the temperature of the piston crown surface 1102 is more likely to increase. This makes it possible to increase the time that the piston crown surface temperature remains in the temperature range 802 where the amount of deposit accumulation is small, thereby suppressing the accumulation of deposits. In order to reduce the value of the thickness of the piston crown surface 1102, the piston crown surface 1102 may be formed by coating the base material 1101.
 ピストン21Aでは、例えば母材1101にアルミニウム、ピストン冠面1102にセラミック系の材質を用い、母材1101の熱伝導率を135[W/mK]、ピストン冠面1102の熱伝導率を10[W/mK]以下にすると良い。このように、ピストン冠面1102の熱伝導率が母材1101の熱伝導率よりも十分小さくなるように設計することで、ピストン冠面1102の昇温速度を高めることができ、デポジット堆積を抑制する効果を高められる。 In the piston 21A, for example, aluminum is used for the base material 1101 and a ceramic material is used for the piston crown surface 1102, and the thermal conductivity of the base material 1101 is set to 135 [W/mK] and the thermal conductivity of the piston crown surface 1102 is set to 10 [W/mK] or less. In this way, by designing the thermal conductivity of the piston crown surface 1102 to be sufficiently smaller than that of the base material 1101, the temperature rise rate of the piston crown surface 1102 can be increased, and the effect of suppressing deposit accumulation can be improved.
 また、オイルジェットの油温については、第2の実施形態における構成及び制御を用いることで、暖機促進モード以降でオイルジェット噴射開始又はオイルジェットの油量を多くするタイミングを早期化できる。ピストン21A下面にオイルジェットを噴射することで、ピストン21Aから潤滑油に熱が移動し、油温の昇温速度が上がる。その結果、オイルジェットを停止又はオイルジェットの油温が暖機判定温度Twjに到達するまでの時間を、時刻1206から時刻1207まで早めることが可能となる。暖機判定温度Twjは、内燃機関100が設定した温度に暖まったことを判定するための温度閾値である。この結果、エンジン筒内に注入された燃料が気化しやすくなり、THCやPNの抑制効果が高まる。 Furthermore, by using the configuration and control in the second embodiment for the oil temperature of the oil jet, the timing for starting oil jet injection or increasing the amount of oil in the oil jet can be advanced after the warm-up promotion mode. By injecting the oil jet onto the underside of the piston 21A, heat is transferred from the piston 21A to the lubricating oil, and the rate at which the oil temperature rises increases. As a result, it is possible to advance the time until the oil jet is stopped or the oil temperature of the oil jet reaches the warm-up judgment temperature Twj from time 1206 to time 1207. The warm-up judgment temperature Twj is a temperature threshold for determining that the internal combustion engine 100 has warmed up to a set temperature. As a result, the fuel injected into the engine cylinder is more likely to vaporize, and the effect of suppressing THC and PN is improved.
<第2の実施形態の変形例>
 また、第2の実施形態に係る制御システムでは、「潤滑モード」、「暖機促進モード」、及び「デポジット抑制モード」のいずれかを選択する油圧設定部42は、ピストン冠面温度相関指標又はピストン冠面温度の測定値に、ピストン冠面の熱伝導率を加味して選択したモードを実行する機能を備えてもよい。
<Modification of the second embodiment>
In addition, in the control system according to the second embodiment, the oil pressure setting unit 42, which selects one of the “lubrication mode”, the “warm-up promotion mode”, and the “deposit suppression mode”, may have a function of executing the selected mode by taking into account the thermal conductivity of the piston crown surface to the measured value of the piston crown surface temperature correlation index or the piston crown surface temperature.
 例えば、オイルジェットをONにしてから、ピストン冠面1102の温度が低下するまでにはピストン冠面1102の熱伝導率(熱伝達率と熱容量分)に応じた時間遅れが生じる。このため、予めピストン21Aの温度変化に熱伝導率を加味してピストン冠面温度を予測し、ピストン冠面温度の予測値に応じて、「潤滑モード」、「暖機促進モード」、「デポジット抑制モード」のいずれかを選択すると良い。 For example, after the oil jet is turned on, there is a time delay depending on the thermal conductivity (heat transfer rate and heat capacity) of the piston crown surface 1102 until the temperature of the piston crown surface 1102 drops. For this reason, it is advisable to predict the piston crown surface temperature in advance by taking into account the thermal conductivity in the temperature change of the piston 21A, and select one of the "lubrication mode," "warm-up promotion mode," or "deposit suppression mode" depending on the predicted value of the piston crown surface temperature.
 これにより、本実施形態においてピストン21の冠面温度を所定の範囲に制御しやすくなり、THCやPN抑制の効果を高めることができる。すなわち、オイルジェット増減の効果の遅延を考慮して、オイルジェットを早め又は遅めに切り替える。例えば、熱伝導率が所定値よりも大きい場合にはピストン冠面の温度変化が速いため、オイルジェットのON/OFF又は流量切替えを遅めに行う。また、熱伝導率が所定値以下の場合にはピストン冠面の温度変化が緩やかであるため、オイルジェットのON/OFF又は流量切替えを速めに行う。 As a result, in this embodiment, it becomes easier to control the crown surface temperature of the piston 21 within a specified range, and the effect of suppressing THC and PN can be improved. In other words, the oil jet is switched earlier or later, taking into account the delay in the effect of increasing or decreasing the oil jet. For example, when the thermal conductivity is greater than a specified value, the temperature change of the piston crown surface is fast, so the oil jet is turned ON/OFF or the flow rate is switched later. Also, when the thermal conductivity is equal to or less than the specified value, the temperature change of the piston crown surface is gradual, so the oil jet is turned ON/OFF or the flow rate is switched earlier.
 第2の実施形態における制御システムの一例では、ピストン冠面1102の温度が、デポジット堆積量が少となる上限温度806に到達すると、オイルジェット流量を大きくし、ピストン21Aを冷却する。しかし、オイルジェット流量を増やしたタイミング(例えば、時刻1208)から、実際にピストン21Aの冠面温度が下がり始めるタイミング(例えば、時刻1209)までには熱伝導率分の遅れが生じる。 In one example of the control system in the second embodiment, when the temperature of the piston crown surface 1102 reaches the upper limit temperature 806 at which the amount of deposit accumulation becomes small, the oil jet flow rate is increased to cool the piston 21A. However, there is a delay due to the thermal conductivity between the time when the oil jet flow rate is increased (e.g., time 1208) and the time when the temperature of the piston crown surface of the piston 21A actually starts to decrease (e.g., time 1209).
 したがって、ピストン冠面温度の時間変化をECU30に記憶しておく。そして、油圧設定部42は、熱伝導率分の時間遅れを考慮し、ピストン冠面温度の時間変化から求めた一定時間後のピストン冠面温度が、デポジットの堆積量が少となる上限温度806を超えると予測される場合に、オイルジェット流量を予め増加させると良い。これにより、ピストン冠面温度が、デポジット堆積量が少となる上限温度806を超える時間を短くすることができ、デポジットの堆積を抑制できる。 Therefore, the change in piston crown surface temperature over time is stored in the ECU 30. Then, the oil pressure setting unit 42 takes into account the time delay due to thermal conductivity and increases the oil jet flow rate in advance when it is predicted that the piston crown surface temperature after a certain time period calculated from the change in piston crown surface temperature over time will exceed the upper limit temperature 806 at which the amount of deposit accumulation becomes small. This makes it possible to shorten the time during which the piston crown surface temperature exceeds the upper limit temperature 806 at which the amount of deposit accumulation becomes small, thereby suppressing the accumulation of deposits.
 また、ピストン冠面温度が、デポジット堆積量が少となる下限温度805を下回ると予測される場合には、オイルジェット流量を予め少なくするか、オイルジェットを停止すると良い。これにより、ピストン冠面温度が、デポジットの堆積量が少となる下限温度805を下回る時間を短くすることができ、デポジットの堆積を抑制できる。 In addition, if it is predicted that the piston crown surface temperature will fall below the lower limit temperature 805 at which the amount of deposit accumulation becomes small, it is advisable to reduce the oil jet flow rate in advance or to stop the oil jet. This makes it possible to shorten the time that the piston crown surface temperature falls below the lower limit temperature 805 at which the amount of deposit accumulation becomes small, thereby suppressing the accumulation of deposits.
 ここでは、オイルジェット流量の制御について、第2の実施形態の場合(図12の実線1202)を例に説明したが、第1の実施形態の場合(破線1201)でも同様の制御が可能である。 Here, the control of the oil jet flow rate has been explained using the second embodiment (solid line 1202 in FIG. 12) as an example, but similar control is also possible in the first embodiment (dashed line 1201).
<第3の実施形態>
 本発明の第3の実施形態は、オイルジェット制御部36から通知されるモード情報に基づいて、燃焼室内の混合気の点火タイミングを制御する例である。以下、本発明の第3の実施形態における制御システムの構成について、図13及び図14を用いて説明する。
Third Embodiment
The third embodiment of the present invention is an example of controlling the ignition timing of the mixture in the combustion chamber based on mode information notified from the oil jet control unit 36. Hereinafter, the configuration of the control system in the third embodiment of the present invention will be described with reference to Figures 13 and 14.
 図13は、本実施形態に係る内燃機関制御装置の構成例を示すブロック図である。図13に示すように、本実施形態に係る内燃機関制御装置30Aは、第1の実施形態に係る内燃機関制御装置30に対して、点火タイミング制御部1300が追加された構成である。CPU33aがROM33b等に記録された制御プログラムを実行することにより、各処理ブロックの機能が実現される。 FIG. 13 is a block diagram showing an example of the configuration of an internal combustion engine control device according to this embodiment. As shown in FIG. 13, the internal combustion engine control device 30A according to this embodiment has a configuration in which an ignition timing control unit 1300 is added to the internal combustion engine control device 30 according to the first embodiment. The functions of each processing block are realized by the CPU 33a executing a control program recorded in the ROM 33b, etc.
 ピストン冠面温度相関指標推定部41及び油圧設定部42は、第1の実施形態に係るピストン冠面温度相関指標推定部41及び油圧設定部42(図4)と同様の機能を有する。 The piston crown surface temperature correlation index estimation unit 41 and the oil pressure setting unit 42 have the same functions as the piston crown surface temperature correlation index estimation unit 41 and the oil pressure setting unit 42 (Figure 4) according to the first embodiment.
 点火タイミング制御部1300は、オイルジェット制御部36から通知されるモード情報(又はピストン冠面温度の状態)に基づいて点火コイル16に点火信号を送るタイミングを調整し、混合気の点火タイミングを制御する。 The ignition timing control unit 1300 adjusts the timing of sending an ignition signal to the ignition coil 16 based on the mode information (or the state of the piston crown surface temperature) notified by the oil jet control unit 36, and controls the ignition timing of the air-fuel mixture.
 図14は、内燃機関制御装置30Aで実行される制御の概要を示す制御ブロック図である。点火タイミング制御部1300は、油圧設定部42から通知されるモード情報が「(2)暖機促進モード」の場合に、内燃機関100の負荷に基づいて設定される混合気の点火タイミングを進角又は遅角することによって、ピストン冠面温度を上昇させる制御を行う。内燃機関100の負荷情報は、例えば吸気流量とエンジン回転数である。 FIG. 14 is a control block diagram showing an overview of the control executed by the internal combustion engine control device 30A. When the mode information notified from the hydraulic pressure setting unit 42 is "(2) warm-up promotion mode", the ignition timing control unit 1300 performs control to raise the piston crown surface temperature by advancing or retarding the ignition timing of the air-fuel mixture, which is set based on the load of the internal combustion engine 100. The load information of the internal combustion engine 100 is, for example, the intake flow rate and the engine speed.
 点火タイミングを燃費が最適となる時期、すなわち燃焼速度が速くなる最適点火時期よりも進角すると、筒内圧が高くなることで筒内温度が上昇し、筒内からピストン冠面に移動する熱量が大きくなる。それにより、ピストン冠面温度が上昇し、ピストン冠面温度が下限温度805に到達するまでの時間を短くできる。この結果、THC、PNの低減効果が大きくなる。 If the ignition timing is advanced beyond the time when fuel economy is optimal, i.e., the optimal ignition timing when the combustion speed is faster, the cylinder pressure increases, causing the temperature inside the cylinder to rise, and the amount of heat that moves from inside the cylinder to the piston crown surface increases. This causes the piston crown surface temperature to rise, and the time it takes for the piston crown surface temperature to reach the lower limit temperature 805 can be shortened. As a result, the effect of reducing THC and PN is greater.
 また、図12に示す「(3)デポジット抑制モード」以降においてピストン冠面温度が上限温度806を超える場合には、点火タイミングを最適点火時期よりも遅角することで、筒内からピストン冠面に移動する熱量を抑制することができる。それにより、ピストン冠面温度が上限温度806以下となるまでの時間を短くすることができ、デポジットの抑制効果を高められる。 In addition, when the piston crown surface temperature exceeds the upper limit temperature 806 in the "(3) deposit suppression mode" and subsequent modes shown in FIG. 12, the amount of heat transferred from inside the cylinder to the piston crown surface can be suppressed by retarding the ignition timing from the optimal ignition timing. This shortens the time it takes for the piston crown surface temperature to fall below the upper limit temperature 806, thereby enhancing the deposit suppression effect.
 また、点火タイミング制御部1300は、油圧設定部42から通知されるモード情報が「(3)デポジット抑制モード」の場合に、内燃機関100の負荷に基づいて設定される混合気の点火タイミングを進角又は遅角することによって、ピストン冠面温度を調節する。内燃機関100の負荷情報は、例えば吸気流量とエンジン回転数である。例えば、高いエンジン回転数が必要なときは、点火タイミングを進角して、エンジン回転数を速やかに上昇させる。また、高いエンジン回転数が必要ないときは、点火タイミングを遅角して、エンジン回転数を早めに低下させる。これにより、ピストン冠面温度を変化させやすくなり、ピストン冠面温度が、デポジットが小となる温度範囲に存在する時間を長くすることができる。それにより、デポジットが抑制でき、THCやPNの低減効果を高められる。 When the mode information notified from the hydraulic pressure setting unit 42 is "(3) deposit suppression mode", the ignition timing control unit 1300 adjusts the piston crown surface temperature by advancing or retarding the ignition timing of the air-fuel mixture, which is set based on the load of the internal combustion engine 100. The load information of the internal combustion engine 100 is, for example, the intake air flow rate and the engine speed. For example, when a high engine speed is required, the ignition timing is advanced to quickly increase the engine speed. Also, when a high engine speed is not required, the ignition timing is retarded to quickly reduce the engine speed. This makes it easier to change the piston crown surface temperature, and the time during which the piston crown surface temperature is in the temperature range where deposits are small can be extended. This suppresses deposits and enhances the effect of reducing THC and PN.
 以上のとおり、本実施形態に係る内燃機関制御装置(内燃機関制御装置30A)は、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値(閾値804)よりも少なくなる温度範囲の下限温度(下限温度805)未満の場合に、内燃機関の負荷に基づいて設定される点火タイミングを進角する点火タイミング制御部(点火タイミング制御部1300)を備える。例えば、点火タイミングは燃焼室内の混合気の燃焼速度が速くなる最適点火時期である。 As described above, the internal combustion engine control device (internal combustion engine control device 30A) according to this embodiment includes an ignition timing control unit (ignition timing control unit 1300) that advances the ignition timing, which is set based on the load of the internal combustion engine, when the temperature of the piston crown surface is below the lower limit temperature (lower limit temperature 805) of the temperature range in which the amount of deposits on the piston crown surface becomes less than the threshold value (threshold value 804). For example, the ignition timing is the optimal ignition timing that increases the combustion speed of the mixture in the combustion chamber.
 また、本実施形態に係る内燃機関制御装置(内燃機関制御装置30A)は、ピストン冠面の温度が、ピストン冠面へのデポジット堆積量が閾値(閾値804)よりも少なくなる温度範囲の下限温度(下限温度805)以上の場合に、内燃機関の負荷に基づいて設定される点火タイミングを進角又は遅角する点火タイミング制御部(点火タイミング制御部1300)を備える。例えば、点火タイミング制御部は、内燃機関の目標回転数が第1の回転数よりも高い場合には点火タイミングを進角し、内燃機関の目標回転数が第1の回転数より小さい第2の回転数よりも低い場合には点火タイミングを遅角する。 The internal combustion engine control device (internal combustion engine control device 30A) according to this embodiment also includes an ignition timing control unit (ignition timing control unit 1300) that advances or retards the ignition timing, which is set based on the load of the internal combustion engine, when the temperature of the piston crown surface is equal to or higher than the lower limit temperature (lower limit temperature 805) of the temperature range in which the amount of deposits on the piston crown surface becomes smaller than a threshold value (threshold value 804). For example, the ignition timing control unit advances the ignition timing when the target rotation speed of the internal combustion engine is higher than a first rotation speed, and retards the ignition timing when the target rotation speed of the internal combustion engine is lower than a second rotation speed that is lower than the first rotation speed.
<第4の実施形態>
 本発明の第4の実施形態は、オイルジェット制御部が、油圧設定部42とは別にモード選択部を備えた例である。以下、本発明の第4の実施形態における制御システムの構成について、図15を用いて説明する。
Fourth Embodiment
The fourth embodiment of the present invention is an example in which an oil jet control unit includes a mode selection unit in addition to the oil pressure setting unit 42. Hereinafter, the configuration of a control system in the fourth embodiment of the present invention will be described with reference to FIG.
 図15は、本実施形態に係る内燃機関制御装置の制御の概要を示すブロック図である。図15に示すように、本実施形態に係るオイルジェット制御部36Aは、ピストン冠面温度相関指標推定部41と、モード選択部1500と、油圧設定部42Aとを備える。CPU33aがROM33b等に記録された制御プログラムを実行することにより、各処理ブロックの機能が実現される。 FIG. 15 is a block diagram showing an overview of the control of the internal combustion engine control device according to this embodiment. As shown in FIG. 15, the oil jet control unit 36A according to this embodiment includes a piston crown surface temperature correlation index estimation unit 41, a mode selection unit 1500, and an oil pressure setting unit 42A. The CPU 33a executes a control program recorded in the ROM 33b or the like to realize the functions of each processing block.
 ピストン冠面温度相関指標推定部41は、第1の実施形態に係るピストン冠面温度相関指標推定部41(図4)と同様の機能を有する。ピストン冠面温度相関指標推定部41は、推定したピストン冠面温度相関指標を、油圧設定部42Aとモード選択部1500に送る。 The piston crown surface temperature correlation index estimation unit 41 has the same function as the piston crown surface temperature correlation index estimation unit 41 (FIG. 4) according to the first embodiment. The piston crown surface temperature correlation index estimation unit 41 sends the estimated piston crown surface temperature correlation index to the hydraulic pressure setting unit 42A and the mode selection unit 1500.
 モード選択部1500は、ピストン冠面温度相関指標又はピストン冠面温度の測定値に基づいて、「潤滑モード」、「暖機促進モード」、「デポジット抑制モード」のいずれかを選択し、選択結果(モード情報)を油圧設定部42Aに送る。なお、モード選択部1500は、第1の実施形態と同様に、内燃機関100の燃焼運転継続時間が所定値より小さい場合にピストン潤滑性が低いと判断し、「潤滑モード」を選択してもよい。また、モード選択部1500は、燃焼運転継続時間が所定値以上の場合には、ピストン冠面温度に基づいて、「暖機促進モード」又は「デポジット抑制モード」を選択する。 The mode selection unit 1500 selects one of the "lubrication mode," "warm-up promotion mode," or "deposit suppression mode" based on the piston crown surface temperature correlation index or the measured value of the piston crown surface temperature, and sends the selection result (mode information) to the hydraulic pressure setting unit 42A. As in the first embodiment, the mode selection unit 1500 may determine that the piston lubricity is low when the duration of combustion operation of the internal combustion engine 100 is less than a predetermined value, and select the "lubrication mode." Furthermore, when the duration of combustion operation is equal to or greater than a predetermined value, the mode selection unit 1500 selects the "warm-up promotion mode" or the "deposit suppression mode" based on the piston crown surface temperature.
 油圧設定部42Aは、第1の実施形態に係る油圧設定部42からモード選択機能を除いた機能を備える。油圧設定部42Aは、ピストン冠面温度相関指標又はピストン冠面温度の測定値と、モード選択部1500とから通知されるモード情報とに基づいて、図9のフローチャートに従いオイルジェット噴射を実施するときの油圧(目標油圧)を設定する。 The hydraulic pressure setting unit 42A has the functions of the hydraulic pressure setting unit 42 according to the first embodiment, excluding the mode selection function. The hydraulic pressure setting unit 42A sets the hydraulic pressure (target hydraulic pressure) when performing oil jet injection according to the flowchart of FIG. 9, based on the measured value of the piston crown surface temperature correlation index or the piston crown surface temperature, and the mode information notified from the mode selection unit 1500.
<第4の実施形態の変形例>
 なお、モード選択部1500は、第2の実施形態の変形例に係る油圧設定部42と同様に、ピストン冠面温度相関指標又はピストン冠面温度に熱伝導率を加味してモードを選択する機能を備えてもよい。これにより、本実施形態においても、ピストン21の冠面温度を所定の範囲に制御しやすくなり、THCやPN抑制の効果を高めることができる。
<Modification of the Fourth Embodiment>
The mode selection unit 1500 may have a function of selecting a mode by taking into consideration the thermal conductivity to the piston crown surface temperature correlation index or the piston crown surface temperature, similarly to the hydraulic pressure setting unit 42 according to the modified example of the second embodiment. This makes it easier to control the piston crown surface temperature of the piston 21 within a predetermined range, and enhances the effect of suppressing THC and PN, also in this embodiment.
<制御システムが搭載される車両の例>
 上述した各実施形態における制御システムは、エンジンを搭載した内燃機関に有効であるが、エンジンを発電機として用いるシリーズハイブリッドや、エンジンを使用するタイミングを選択可能なPHEV(Plug-in Hybrid Electric Vehicle)に用いてもよい。エンジンを搭載した内燃機関に比べ、シリーズハイブリッドやPHEVでは、電気モータで車両を走行するための動力を確保することができるので、本発明と組み合わせることで内燃機関の始動タイミングを任意に設定できる。例えば、ピストン冠面温度が上限温度806を超えて上がり過ぎた場合に、シリーズハイブリッドやPHEVであれば、エンジンを停止(アイドリングストップ)することで、デポジット堆積量の抑制、及びTHC、PNの増加を抑制することができる。
<Examples of vehicles equipped with the control system>
The control system in each of the above-mentioned embodiments is effective for an internal combustion engine equipped with an engine, but may also be used for a series hybrid that uses the engine as a generator, or a PHEV (Plug-in Hybrid Electric Vehicle) that can select the timing of using the engine. Compared to an internal combustion engine equipped with an engine, a series hybrid or a PHEV can secure the power for running the vehicle with an electric motor, so that the start timing of the internal combustion engine can be set arbitrarily by combining it with the present invention. For example, if the piston crown surface temperature rises too much beyond the upper limit temperature 806, in the case of a series hybrid or a PHEV, the engine can be stopped (idling stop) to suppress the amount of deposit accumulation and the increase in THC and PN.
 さらに、本発明は上述した実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。例えば、上述した実施形態は本発明を分かりやすく説明するためにその構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成要素を備えるものに限定されない。また、ある実施形態の構成の一部を他の実施形態の構成要素に置き換えることが可能である。また、ある実施形態の構成に他の実施形態の構成要素を加えることも可能である。また、各実施形態の構成の一部について、他の構成要素の追加又は置換、削除をすることも可能である。 Furthermore, the present invention is not limited to the above-described embodiments, and of course various other applications and modifications are possible without departing from the gist of the present invention as set forth in the claims. For example, the above-described embodiments are described in detail and specifically to clearly explain the present invention, and are not necessarily limited to those including all of the components described. It is also possible to replace part of the configuration of one embodiment with a component of another embodiment. It is also possible to add components of another embodiment to the configuration of one embodiment. It is also possible to add, replace, or delete other components from part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。ハードウェアとして、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの広義のプロセッサデバイスを用いてもよい。 Furthermore, the above-mentioned configurations, functions, processing units, etc. may be realized in part or in whole in hardware, for example by designing them as integrated circuits. As hardware, broad processor devices such as FPGAs (Field Programmable Gate Arrays) and ASICs (Application Specific Integrated Circuits) may be used.
 また、上述した実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成要素が相互に接続されていると考えてもよい。 In addition, in the above-described embodiment, the control lines and information lines are those that are considered necessary for the explanation, and not all control lines and information lines in the product are necessarily shown. In reality, it can be considered that almost all components are connected to each other.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.
 21,21A…ピストン、 30,30A…内燃機関制御装置(ECU)、 36,36A…オイルジェット制御部、 41…ピストン冠面温度相関指標推定部、 42,42A…油圧設定部、 54…オイルポンプ、 101…オイルジェットシステム、 701…初期値、 702…増加量、 801~803…温度範囲、 804…閾値、 805…下限温度、 806…上限温度、 1101…母材、 1102…ピストン冠面、 1300…点火タイミング制御部 21, 21A...piston, 30, 30A...internal combustion engine control unit (ECU), 36, 36A...oil jet control unit, 41...piston crown surface temperature correlation index estimation unit, 42, 42A...oil pressure setting unit, 54...oil pump, 101...oil jet system, 701...initial value, 702...increase amount, 801-803...temperature range, 804...threshold value, 805...lower limit temperature, 806...upper limit temperature, 1101...base material, 1102...piston crown surface, 1300...ignition timing control unit

Claims (13)

  1.  指定された流量の潤滑油を吐出するオイルポンプと、前記オイルポンプから吐出される前記潤滑油をピストンの被供給部に向けて噴射するオイルジェットシステムとを有する内燃機関を制御する内燃機関制御装置であって、
     ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が閾値よりも少なくなる温度範囲の下限温度未満の場合に、前記オイルジェットシステムからの前記潤滑油の噴射を停止する、又は前記潤滑油の流量を前周期の流量よりも低下させる制御を行う制御部、を備える
     内燃機関制御装置。
    An internal combustion engine control device for controlling an internal combustion engine having an oil pump that discharges a specified flow rate of lubricating oil and an oil jet system that injects the lubricating oil discharged from the oil pump toward a portion of a piston that is supplied with the lubricating oil,
    An internal combustion engine control device comprising: a control unit that stops injection of the lubricating oil from the oil jet system or controls the flow rate of the lubricating oil to be lower than the flow rate in a previous cycle when the temperature of a piston crown surface is lower than a lower limit temperature of a temperature range in which an amount of deposits accumulated on the piston crown surface becomes smaller than a threshold value.
  2.  前記制御部は、前記ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が前記閾値よりも少なくなる温度範囲の下限温度以上かつ上限温度以下の場合に、前記オイルジェットシステムからの前記潤滑油の噴射を停止する、又は前記潤滑油の流量を前周期の流量よりも低下させる制御を行う
     請求項1に記載の内燃機関制御装置。
    2. The internal combustion engine control device according to claim 1, wherein the control unit stops injection of the lubricating oil from the oil jet system or controls the flow rate of the lubricating oil to be lower than the flow rate in the previous cycle when the temperature of the piston crown surface is equal to or higher than a lower limit temperature and equal to or lower than an upper limit temperature of a temperature range in which the amount of deposits accumulated on the piston crown surface becomes smaller than the threshold value.
  3.  前記制御部は、前記ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が前記閾値よりも少なくなる温度範囲の下限温度以上かつ上限温度以下の場合であって、前記ピストン冠面の温度の時間変化が増加傾向にあるときは、前記潤滑油の流量を前周期の流量よりも増加させる
     請求項2に記載の内燃機関制御装置。
    3. The internal combustion engine control device according to claim 2, wherein the control unit increases the flow rate of the lubricating oil to be greater than or equal to a lower limit temperature and less than or equal to an upper limit temperature of a temperature range in which a deposit accumulation amount on the piston crown surface becomes smaller than the threshold value and when a time change in the temperature of the piston crown surface shows an increasing tendency.
  4.  前記制御部は、前記ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が前記閾値よりも少なくなる温度範囲の上限温度を超える場合に、前記オイルジェットシステムからの前記潤滑油の噴射を実行する
     請求項3に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 3 , wherein the control unit executes injection of the lubricating oil from the oil jet system when the temperature of the piston crown surface exceeds an upper limit temperature of a temperature range in which an amount of deposits accumulated on the piston crown surface becomes smaller than the threshold value.
  5.  前記制御部は、前記ピストン冠面の温度と、前記ピストン冠面へのデポジット堆積量が前記閾値よりも少なくなる前記温度範囲の下限温度とを比較する前に、前記ピストンと前記内燃機関の円筒との間の潤滑性を判定し、前記潤滑性が不足していると判定した場合は、前記オイルジェットシステムからの前記潤滑油の噴射を実行する
     請求項1に記載の内燃機関制御装置。
    2. The internal combustion engine control device according to claim 1, wherein the control unit determines a lubrication between the piston and a cylinder of the internal combustion engine before comparing the temperature of the piston crown surface with a lower limit temperature of the temperature range at which the amount of deposit accumulation on the piston crown surface becomes smaller than the threshold value, and when it determines that the lubrication is insufficient, executes injection of the lubricating oil from the oil jet system.
  6.  前記ピストンは、前記被供給部を形成する母材と、前記母材よりも熱伝導率が低い材質を配して前記内燃機関の燃焼室内に臨ませる前記ピストン冠面と、を備える
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1 , wherein the piston comprises: a base material that forms the supplied portion; and the piston crown surface that faces a combustion chamber of the internal combustion engine and is made of a material having a lower thermal conductivity than the base material.
  7.  前記制御部は、前記ピストン冠面の温度変化に     前記ピストン冠面の熱伝導率を加味して前記ピストン冠面の温度を予測し、前記ピストン冠面の温度の予測値に基づいて、前記オイルジェットシステムからの前記潤滑油の噴射を制御する
     請求項6に記載の内燃機関制御装置。
    7. The internal combustion engine control device according to claim 6, wherein the control unit predicts a temperature of the piston crown surface by taking into account a thermal conductivity of the piston crown surface in relation to a temperature change of the piston crown surface, and controls injection of the lubricating oil from the oil jet system based on a predicted value of the temperature of the piston crown surface.
  8.  前記オイルポンプは、
     収容部を有するポンプハウジングと、前記収容部内に配置され、前記内燃機関の回転軸に駆動力の伝達が可能に連結されているロータと、前記ロータの回転中心と自身の中心との偏心量が高吐出量位置と低吐出量位置との間で変化するカムリングと、前記制御部による制御下で前記カムリングの偏心量を変化させる制御弁部と、を備えた可変容量ポンプである
     請求項1に記載の内燃機関制御装置。
    The oil pump is
    2. The internal combustion engine control device according to claim 1, wherein the variable displacement pump comprises: a pump housing having an accommodation portion; a rotor that is disposed within the accommodation portion and is connected to a rotating shaft of the internal combustion engine so as to be capable of transmitting driving force; a cam ring whose eccentricity between a center of rotation of the rotor and its own center changes between a high discharge rate position and a low discharge rate position; and a control valve portion that changes the eccentricity of the cam ring under the control of the control portion.
  9.  前記ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が閾値よりも少なくなる温度範囲の下限温度未満の場合に、前記内燃機関の負荷に基づいて設定される点火タイミングを進角する点火タイミング制御部、を備え、
     前記点火タイミングは燃焼室内の混合気の燃焼速度が速くなる最適点火時期である
     請求項1に記載の内燃機関制御装置。
    an ignition timing control unit that advances an ignition timing that is set based on a load of the internal combustion engine when the temperature of the piston crown surface is lower than a lower limit temperature of a temperature range in which an amount of deposits accumulated on the piston crown surface becomes smaller than a threshold value,
    2. The internal combustion engine control device according to claim 1, wherein the ignition timing is an optimum ignition timing that increases the combustion speed of the air-fuel mixture in the combustion chamber.
  10.  前記ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が前記閾値よりも少なくなる温度範囲の下限温度以上の場合に、前記内燃機関の負荷に基づいて設定される点火タイミングを進角又は遅角する点火タイミング制御部、を備え、
     前記点火タイミング制御部は、前記内燃機関の目標回転数が第1の回転数よりも高い場合には前記点火タイミングを進角し、前記内燃機関の目標回転数が前記第1の回転数より小さい第2の回転数よりも低い場合には前記点火タイミングを遅角する
     請求項2に記載の内燃機関制御装置。
    an ignition timing control unit that advances or retards an ignition timing that is set based on a load of the internal combustion engine when the temperature of the piston crown surface is equal to or higher than a lower limit temperature of a temperature range in which an amount of deposits on the piston crown surface becomes smaller than the threshold value,
    3. The internal combustion engine control device according to claim 2, wherein the ignition timing control unit advances the ignition timing when the target rotation speed of the internal combustion engine is higher than a first rotation speed, and retards the ignition timing when the target rotation speed of the internal combustion engine is lower than a second rotation speed that is lower than the first rotation speed.
  11.  前記デポジット堆積量の閾値は、排ガス規制物質の排出量の初期値からの増加の許容量を基に設定される
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1 , wherein the threshold value of the deposit amount is set based on an allowable increase from an initial value of the emission amount of the exhaust gas regulated substance.
  12.  前記ピストン冠面の温度は、前記内燃機関の運転条件パラメータと、前記ピストンの裏面に前記潤滑油を噴射するためのオイルジェットパラメータとに基づいて推定された、前記ピストン冠面の温度に相関を持つピストン冠面温度相関指標、又は、前記ピストン冠面の温度を測定する温度センサの測定値である
     請求項1に記載の内燃機関制御装置。
    2. The internal combustion engine control device according to claim 1, wherein the temperature of the piston crown surface is a piston crown surface temperature correlation index having a correlation with the temperature of the piston crown surface, the correlation index being estimated based on an operating condition parameter of the internal combustion engine and an oil jet parameter for injecting the lubricating oil onto a back surface of the piston, or a measurement value of a temperature sensor that measures the temperature of the piston crown surface.
  13.  指定された流量の潤滑油を吐出するオイルポンプと、前記オイルポンプから吐出される前記潤滑油をピストンの被供給部に向けて噴射するオイルジェットシステムとを有する内燃機関を制御する内燃機関制御装置における内燃機関制御方法であって、
     ピストン冠面の温度が、前記ピストン冠面へのデポジット堆積量が閾値よりも少なくなる温度範囲の下限温度未満かどうかを判定する処理と、
     前記ピストン冠面の温度が、前記デポジット堆積量が前記閾値よりも少なくなる前記温度範囲の下限温度未満の場合に、前記オイルジェットシステムからの前記潤滑油の噴射を停止する、又は前記潤滑油の流量を前周期の流量よりも低下させる処理と、を含む
     内燃機関制御方法。
    1. An internal combustion engine control method for an internal combustion engine having an oil pump that discharges a specified flow rate of lubricating oil and an oil jet system that injects the lubricating oil discharged from the oil pump toward a portion of a piston that is supplied with the lubricating oil, comprising:
    A process of determining whether a temperature of a piston crown surface is less than a lower limit temperature of a temperature range in which an amount of deposits accumulated on the piston crown surface becomes less than a threshold value;
    When the temperature of the piston crown surface is lower than a lower limit temperature of the temperature range in which the deposit accumulation amount becomes smaller than the threshold value, the injection of the lubricating oil from the oil jet system is stopped or the flow rate of the lubricating oil is reduced below the flow rate of the previous cycle.
PCT/JP2022/040999 2022-11-02 2022-11-02 Internal combustion engine control device and internal combustion engine control method WO2024095395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040999 WO2024095395A1 (en) 2022-11-02 2022-11-02 Internal combustion engine control device and internal combustion engine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040999 WO2024095395A1 (en) 2022-11-02 2022-11-02 Internal combustion engine control device and internal combustion engine control method

Publications (1)

Publication Number Publication Date
WO2024095395A1 true WO2024095395A1 (en) 2024-05-10

Family

ID=90929968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040999 WO2024095395A1 (en) 2022-11-02 2022-11-02 Internal combustion engine control device and internal combustion engine control method

Country Status (1)

Country Link
WO (1) WO2024095395A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147236A (en) * 2000-11-16 2002-05-22 Daihatsu Motor Co Ltd Method of controlling temperature of piston top surface of cylinder fuel injection type internal combustion engine
JP2008267293A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Control system of internal combustion engine
JP2013064374A (en) * 2011-09-20 2013-04-11 Nissan Motor Co Ltd Cooling control device for internal combustion engine
WO2015029985A1 (en) * 2013-08-26 2015-03-05 日本碍子株式会社 Internal combustion engine
JP2018131941A (en) * 2017-02-14 2018-08-23 株式会社豊田自動織機 Control device for internal combustion engine
JP2018189022A (en) * 2017-05-01 2018-11-29 トヨタ自動車株式会社 Hydraulic control device
JP2018193878A (en) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 Piston temperature estimation device and piston temperature estimation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147236A (en) * 2000-11-16 2002-05-22 Daihatsu Motor Co Ltd Method of controlling temperature of piston top surface of cylinder fuel injection type internal combustion engine
JP2008267293A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Control system of internal combustion engine
JP2013064374A (en) * 2011-09-20 2013-04-11 Nissan Motor Co Ltd Cooling control device for internal combustion engine
WO2015029985A1 (en) * 2013-08-26 2015-03-05 日本碍子株式会社 Internal combustion engine
JP2018131941A (en) * 2017-02-14 2018-08-23 株式会社豊田自動織機 Control device for internal combustion engine
JP2018189022A (en) * 2017-05-01 2018-11-29 トヨタ自動車株式会社 Hydraulic control device
JP2018193878A (en) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 Piston temperature estimation device and piston temperature estimation method

Similar Documents

Publication Publication Date Title
RU2702065C2 (en) Method for engine (embodiments) and engine system
US9670802B2 (en) Approach for controlling operation of oil injectors
US8607564B2 (en) Automobile-mount diesel engine with turbocharger and method of controlling the diesel engine
RU2705349C2 (en) Method and system for reducing particulate emissions
JP4525517B2 (en) Internal combustion engine
CN1934351B (en) Fuel injection apparatus and fuel injection control method for internal combustion engine
US20130000613A1 (en) Method for operating an internal combustion engine
US8788182B2 (en) Engine speed based valvetrain control systems and methods
KR20040025552A (en) Controlling apparatus for multi-cylindered engine and controlling method thereof
CN104093960A (en) Control device for internal combustion engine
RU152674U1 (en) ENGINE SYSTEM
CN105317562A (en) Throttle control systems and methods for cylinder activation and deactivation
US9394835B2 (en) Four-cylinder in-line engine with partial shutdown and method for operating such a four-cylinder in-line engine
JP2016014380A (en) Internal combustion engine control unit
US8868319B2 (en) System and method for controlling intake valve timing in homogeneous charge compression ignition engines
CN108331673B (en) Variable second injection control for an internal combustion engine assembly
US8707679B2 (en) Catalyst temperature based valvetrain control systems and methods
WO2024095395A1 (en) Internal combustion engine control device and internal combustion engine control method
JP5704106B2 (en) Lubricating device for internal combustion engine
WO2023135679A1 (en) Internal combustion engine control device and internal combustion engine control method
JP5935275B2 (en) Start control device for compression self-ignition engine
JP2010024970A (en) Driving force control device
US20230243315A1 (en) Method to mitigate reverse oil flow to the combustion chamber via hybrid cylinder cutout for internal combustion engines
JP5948815B2 (en) Start control device for compression self-ignition engine
US11203954B2 (en) Pre-lubrication and skip fire operations during engine cranking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964415

Country of ref document: EP

Kind code of ref document: A1