WO2024095162A1 - Method of preparing a pouched product comprising a nicotine salt - Google Patents

Method of preparing a pouched product comprising a nicotine salt Download PDF

Info

Publication number
WO2024095162A1
WO2024095162A1 PCT/IB2023/060976 IB2023060976W WO2024095162A1 WO 2024095162 A1 WO2024095162 A1 WO 2024095162A1 IB 2023060976 W IB2023060976 W IB 2023060976W WO 2024095162 A1 WO2024095162 A1 WO 2024095162A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
nicotine
acid
organic acid
weight
Prior art date
Application number
PCT/IB2023/060976
Other languages
French (fr)
Inventor
Brandon Scott DARROW
Michael Andrew Zawadzki
Original Assignee
Nicoventures Trading Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Limited filed Critical Nicoventures Trading Limited
Publication of WO2024095162A1 publication Critical patent/WO2024095162A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances

Definitions

  • compositions intended for human use are adapted for oral use and deliver substances such as nicotine, flavors, and/or active ingredients during use.
  • Such compositions may include tobacco or a product derived from tobacco, or may be tobacco-free alternatives.
  • Such products typically contain flavorants and/or active ingredients such as nicotine, caffeine, botanicals, or cannabidiol.
  • the format of such products can vary and include pouched products containing a powdered or granular composition, lozenges, pastilles, liquids, gels, emulsions, meltable compositions, and the like. See, for example, the types of products described in US Patent App. Pub. Nos.
  • Oral nicotine products are used by placing a nicotine containing matrix between the cheek and the gum. Nicotine is then released from the product and typically absorbed through the oral mucosa, thereby entering the blood stream where it is circulated systemically. Flavor stability and positive sensory attributes are important elements to a consumer-acceptable oral product.
  • the organoleptic impact of flavors has been shown to be particularly sensitive to product pH. When the product pH exceeds ca. 7.0, the visual, aroma, and taste impact of some flavors degrades over time, and nicotine may evaporate from the product. This instability is particularly noticeable for certain flavors such as ethyl vanillin, lime, and cinnamon, which also cause darkening of an otherwise white product over time. However, lowering of pH increases the extent of nicotine present in the protonated form.
  • Passive diffusion of substances such as nicotine across membranes is a function of molecule polarity and membrane properties, as well as molecular size and ionization (Kokate et al., PharmSciTech 2008, 9, 501-504).
  • compositions configured for oral use comprising certain non-polar or lipophilic organic acids or salts thereof enhanced composition stability and enhanced availability of the nicotine with respect to oral absorption in such compositions, relative to composition configured for oral use which included a polar organic acid.
  • at least a portion of the nicotine present is associated with at least a portion of the organic acid or the alkali metal salt thereof, with the association being in the form of an ion pair between the nicotine and a conjugate base of the organic acid.
  • compositions are generally prepared by combining nicotine and organic acid to form a nicotine salt and adding an alkali metal salt of an organic acid to promote ion pairing association between the nicotine and the organic acid and/or alkali metal salt thereof.
  • compositions prepared from simply contacting free base nicotine with an alkali metal salt of an organic acid in an aqueous solution provided compositions with essentially the same properties as those prepared by the previous, more complicated method (e.g., the compositions prepared by the improved method demonstrated similar pH, logP, and logD to those prepared by the previous method, and also exhibited similar sensory qualities when evaluated in sensory panels).
  • a method of preparing a composition configured for oral use comprising at least one filler; a humectant; nicotine; water; and an alkali metal salt of an organic acid, wherein at least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid, the association in the form of an ion pair between the nicotine and a conjugate base of the organic acid
  • the method comprising: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
  • the method further comprises adding an organic acid to the aqueous solution of free base nicotine, the ion paired nicotine solution, or both.
  • the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine. In some embodiments, the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine. In some embodiments, the conjugate base of the organic acid is present in the composition in a range from about 3 to about 6 molar equivalents relative to the nicotine.
  • the organic acid has a logP value of from about 1.4 to about 4.5. In some embodiments, the organic acid has a logP value of from about 2.5 to about 3.5. In some embodiments, the organic acid has a logP value of from about 4.5 to about 8.0.
  • the flavorant solution further comprises a humectant.
  • the humectant is glycerol or propylene glycol.
  • the organic acid is an alkyl carboxylic acid, an aryl carboxylic acid, an alkyl sulfonic acid, an aryl sulfonic acid, or a combination of any thereof. In some embodiments, the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof. In some embodiments, the conjugate base comprises benzoate.
  • the organic acid is benzoic acid.
  • the alkali metal is sodium or potassium.
  • the alkali metal salt of the organic acid is sodium benzoate.
  • the composition is homogenous, and the contacting comprises mixing to form the homogenous composition.
  • the method further comprises adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
  • the nicotine is present in an amount of from about 0.001 to about 10% by weight of the composition, calculated as the free base and based on the total weight of the composition.
  • the at least one filler comprises a cellulose material.
  • the cellulose material comprises microcrystalline cellulose.
  • the at least one filler further comprises a cellulose derivative in an amount by weight of from about 1% to about 3%, based on the total weight of the composition.
  • the cellulose derivative is hydroxypropylcellulose.
  • the composition comprises from about 1 to about 60% by weight of water, based on the total weight of the composition.
  • the method further comprises adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
  • the one or more active ingredients selected from the group consisting of botanical materials, stimulants, amino acids, vitamins, antioxidants, cannabinoids, cannabimimetics, terpenes, pharmaceutical agents, and combinations thereof.
  • the composition comprises no more than about 10% by weight of a tobacco material, excluding any nicotine component present, based on the total weight of the composition. In some embodiments, the composition is free of tobacco material.
  • the composition is enclosed in a pouch to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch.
  • the method further comprises contacting the pouched product with water.
  • Embodiment 1 A method of preparing a composition configured for oral use, the composition comprising at least one filler; a humectant; nicotine; water; and an alkali metal salt of an organic acid, wherein at least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid, the association in the form of an ion pair between the nicotine and a conjugate base of the organic acid, or both, the method comprising: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
  • Embodiment 2 The method of embodiment 1, further comprising adding an organic acid to the aqueous solution of free base nicotine, the ion paired nicotine solution, or both.
  • Embodiment 3 The method of embodiment 1 or 2, wherein the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine.
  • Embodiment 4 The method of any one of embodiments 1-3, wherein the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine.
  • Embodiment 5 The method of any one of embodiments 1-4, wherein the conjugate base of the organic acid is present in the composition in a range from about 3 to about 6 molar equivalents relative to the nicotine.
  • Embodiment 6 The method of any one of embodiments 1-5, wherein the organic acid has a logP value of from about 1.4 to about 4.5.
  • Embodiment 7 The method of any one of embodiments 1-6, wherein the organic acid has a logP value of from about 2.5 to about 3.5.
  • Embodiment 8 The method of any one of embodiments 1-7, wherein the organic acid has a logP value of from about 4.5 to about 8.0.
  • Embodiment 9 The method of any one of embodiments 1-8, wherein the flavorant solution further comprises a humectant.
  • Embodiment 10 The method of embodiment 9, wherein the humectant is glycerol or propylene glycol.
  • Embodiment 11 The method of any one of embodiments 1-10, wherein the organic acid is an alkyl carboxylic acid, an aryl carboxylic acid, an alkyl sulfonic acid, an aryl sulfonic acid, or a combination of any thereof.
  • Embodiment 12 The method of any one of embodiments 1-11, wherein the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof.
  • Embodiment 13 The method of any one of embodiments 1-12, wherein the conjugate base comprises benzoate.
  • Embodiment 14 The method of any one of embodiments 1-13, wherein the organic acid is benzoic acid.
  • Embodiment 15 The method of any one of embodiments 1-14, wherein the alkali metal is sodium or potassium.
  • Embodiment 16 The method of any one of embodiment s 1-15, wherein the alkali metal salt of the organic acid is sodium benzoate.
  • Embodiment 17 The method of any one of embodiments 1-16, wherein the composition is homogenous, and wherein the contacting comprises mixing to form the homogenous composition.
  • Embodiment 18 The method of any one of embodiments 1-17, further comprising adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
  • Embodiment 19 The method of any one of embodiments 1-18, wherein the nicotine is present in an amount of from about 0.001 to about 10% by weight of the composition, calculated as the free base and based on the total weight of the composition.
  • Embodiment 20 The method of any one of embodiments 1-19, wherein the at least one filler comprises a cellulose material.
  • Embodiment 21 The method of embodiment 19, wherein the cellulose material comprises microcrystalline cellulose.
  • Embodiment 22 The method of embodiment 20, wherein the at least one filler further comprises a cellulose derivative in an amount by weight of from about 1% to about 3%, based on the total weight of the composition.
  • Embodiment 23 The method of embodiment 22, wherein the cellulose derivative is hydroxypropylcellulose.
  • Embodiment 24 The method of any one of embodiments 1-23, wherein the composition comprises from about 1 to about 60% by weight of water, based on the total weight of the composition.
  • Embodiment 25 The method of any one of embodiments 1-24, further comprising adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
  • Embodiment 26 The method of embodiment 25, wherein the one or more active ingredients selected from the group consisting of botanical materials, stimulants, amino acids, vitamins, antioxidants, cannabinoids, cannabimimetics, terpenes, pharmaceutical agents, and combinations thereof.
  • the one or more active ingredients selected from the group consisting of botanical materials, stimulants, amino acids, vitamins, antioxidants, cannabinoids, cannabimimetics, terpenes, pharmaceutical agents, and combinations thereof.
  • Embodiment 27 The method of any one of embodiments 1-26, wherein the composition comprises no more than about 10% by weight of a tobacco material, excluding any nicotine component present, based on the total weight of the composition.
  • Embodiment 28 The method of any one of embodiments 1-27, wherein the composition is free of tobacco material.
  • Embodiment 29 The method of any one of embodiments 1-28, wherein the composition is enclosed in a pouch to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch.
  • Embodiment 30 The method of embodiment 29, further comprising contacting the pouched product with water.
  • FIG. 1 is a perspective view of a pouched product embodiment according to an example embodiment of the present disclosure, including a pouch or fleece at least partially filled with a composition configured for oral use.
  • FIG. 2 are plots of pH versus LogD for aqueous solutions containing 5% nicotine on a free-base basis, as free base nicotine or nicotine benzoate, along with various equivalents of sodium benzoate according to embodiments of the disclosure.
  • FIG. 3 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
  • FIG. 4 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
  • FIG. 5 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure combined benzoate and octanoate ion paired nicotine on improving the logD.
  • FIG. 6 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
  • FIG. 7 are plots of pH versus LogD for pouched products containing 5 mg of free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
  • dry weight percent or “dry weight basis” refers to weight on the basis of dry ingredients (i.e., all ingredients except water).
  • wet weight refers to the weight of the mixture including water. Unless otherwise indicated, reference to “weight percent” of a mixture reflects the total wet weight of the mixture (i.e., including water).
  • a nicotine-containing composition configured for oral use which retains the initial basic amine content during storage, and which delivers substantially the full amount of basic amine initially present in the composition.
  • compositions configured for oral use and methods for the preparation thereof.
  • the disclosed compositions comprise at least one filler; nicotine; water; and an alkali metal salt of an organic acid. At least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid. The association is in the form of an ion pair between the nicotine and a conjugate base of the organic acid, or both.
  • the relative amounts of the various components within the composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the composition.
  • the example individual components of the compositions are described further herein below, along with an improved preparative method.
  • the nicotine is associated with at least a portion of an alkali metal salt of an organic acid.
  • the nicotine present in the composition can exist in multiple forms, including ion paired, in solution (i.e., fully solvated), as the free base, as a cation, as a salt, or any combination thereof.
  • the association between the nicotine and at least a portion of the alkali metal salt of the organic acid is in the form of an ion pair between the nicotine and a conjugate base of the organic acid.
  • Ion pairing describes the partial association of oppositely charged ions in relatively concentrated solutions to form distinct chemical species called ion pairs.
  • the strength of the association depends on the electrostatic force of attraction between the positive and negative ions (i.e., a protonated basic amine such as nicotine, and the conjugate base of the organic acid).
  • conjugate base is meant the base resulting from deprotonation of the corresponding acid (e.g., benzoate is the conjugate base of benzoic acid).
  • benzoate is the conjugate base of benzoic acid
  • the nicotine and the conjugate base of the organic acid exist at least partially in the form of an ion pair. Without wishing to be bound by theory, it is believed that such ion pairing may minimize chemical degradation of the nicotine and/or enhance the oral availability of the nicotine.
  • alkaline pH values e.g., such as from about 7.5 to about 9
  • nicotine is largely present in the free base form, which has relatively low water solubility, and low stability with respect to evaporation and oxidative decomposition, but high mucosal availability.
  • nicotine is largely present in a protonated form, which has relatively high water-solubility, and higher stability with respect to evaporation and oxidative decomposition, but low mucosal availability.
  • acidic pH values such as from about 6.5 to about 4
  • nicotine is largely present in a protonated form, which has relatively high water-solubility, and higher stability with respect to evaporation and oxidative decomposition, but low mucosal availability.
  • the properties of stability, solubility, and availability of the nicotine in a composition configured for oral use can be mutually enhanced through ion pairing or salt formation of nicotine with appropriate organic acids and/or their conjugate bases.
  • nicotine-organic acid ion pairs of moderate lipophilicity result in favorable stability and absorption properties.
  • Lipophilicity is conveniently measured in terms of logP, the partition coefficient of a molecule between a lipophilic phase and an aqueous phase (usually water).
  • the lipophilic phase is octanol, although other lipophilic solvents may also be used.
  • logP means the partition coefficient between octanol and water.
  • a logD value herein means a logD obtained by partition between octanol and water (buffered to be at a specific pH value).
  • a logP (or logD) favoring distribution of a nicotine-organic acid ion pair into the lipophilic phase (a positive logP or logD) is predictive of good absorption of the nicotine present in the composition through the oral mucosa.
  • the extent of ion pairing in the disclosed composition may vary based on, for example, pH, the nature of the organic acid, the concentration of nicotine, the concentration of the conjugate base of the organic acid present in the composition, the moisture content of the composition, the ionic strength of the composition, and the like.
  • ion pairing is an equilibrium process influenced by the foregoing variables. Accordingly, quantification of the extent of ion pairing is difficult or impossible by calculation or direct observation.
  • ion pairing may be demonstrated through surrogate measures, such as partitioning of a solution comprising an ion paired between octanol and water, or by performing membrane permeation studies of aqueous solutions of nicotine plus organic acids and/or their conjugate bases.
  • surrogate measures such as partitioning of a solution comprising an ion paired between octanol and water, or by performing membrane permeation studies of aqueous solutions of nicotine plus organic acids and/or their conjugate bases.
  • organic acid refers to an organic (i.e., carbon-based) compound that is characterized by acidic properties.
  • organic acids are relatively weak acids (i.e., they do not dissociate completely in the presence of water), such as carboxylic acids (-CO2H) or sulfonic acids (- SO2OH).
  • reference to organic acid means an organic acid that is intentionally added.
  • an organic acid may be intentionally added as a specific composition ingredient as opposed to merely being inherently present as a component of another composition ingredient (e.g., the small amount of organic acid which may inherently be present in a composition ingredient, such as a tobacco material).
  • Suitable organic acids will typically have a range of lipophilicities (i.e., a polarity giving an appropriate balance of water and organic solubility).
  • lipophilicities of suitable organic acids as indicated by logP, will vary between about 1 and about 12 (more soluble in octanol than in water).
  • the organic acid has a logP value from about 1 to about 12, e.g., from about 1.0.
  • moderately lipophilic organic acids e.g., logP of from about 1.4 to about 4.5
  • produce ion pairs with nicotine which are of a polarity providing good octanol-water partitioning of the ion pair, and hence partitioning of nicotine, into octanol versus water.
  • partitioning into octanol is predictive of favorable oral availability.
  • the organic acid has a logP value from about 3.0 to about 8.0, about 10.0, or even 12.0.
  • certain solvents or solubilizing agents e.g., inclusion in the composition of glycerin or propylene glycol
  • solubilizing agents may be beneficial in solubilizing organic acids and the corresponding salts or ion pairs thereof with the basic amine for highly lipophilic organic acids (e.g., higher than about 4.5).
  • the organic acid is a carboxylic acid or a sulfonic acid.
  • the carboxylic acid or sulfonic acid functional group may be attached to any alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group having, for example, from one to twenty carbon atoms (C1-C20).
  • the organic acid is an alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl carboxylic or sulfonic acid.
  • alkyl refers to any straight chain or branched chain hydrocarbon.
  • the alkyl group may be saturated (i.e., having all sp 3 carbon atoms), or may be unsaturated (i.e., having at least one site of unsaturation).
  • unsaturated refers to the presence of a carbon-carbon, sp 2 double bond in one or more positions within the alkyl group.
  • Unsaturated alkyl groups may be mono- or polyunsaturated.
  • Representative straight chain alkyl groups include, but are not limited to, methyl, ethyl, n- propyl, n-butyl, n-pentyl, and n-hexyl.
  • Branched chain alkyl groups include, but are not limited to, isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and 2-methylbutyl.
  • Representative unsaturated alkyl groups include, but are not limited to, ethylene or vinyl, allyl, 1-butenyl, 2-butenyl, isobutylenyl, 1 -pentenyl, 2-pentenyl, 3 -methyl- 1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.
  • An alkyl group can be unsubstituted or substituted.
  • Cycloalkyl refers to a carbocyclic group, which may be mono- or bicyclic. Cycloalkyl groups include rings having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as a bicycle. Examples of monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. A cycloalkyl group can be unsubstituted or substituted, and may include one or more sites of unsaturation (e.g., cyclopentenyl or cyclohexenyl).
  • aryl refers to a carbocyclic aromatic group. Examples of aryl groups include, but are not limited to, phenyl and naphthyl. An aryl group can be unsubstituted or substituted.
  • Heteroaryl and “heterocycloalkyl” as used herein refer to an aromatic or non-aromatic ring system, respectively, in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur.
  • the heteroaryl or heterocycloalkyl group comprises up to 20 carbon atoms and from 1 to 3 heteroatoms selected from N, O, and S.
  • a heteroaryl or heterocycloalkyl may be a monocycle having 3 to 7 ring members (for example, 2 to 6 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S) or a bicycle having 7 to 10 ring members (for example, 4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S), for example: a bicyclo[4,5], [5,5], [5,6], or [6,6] system.
  • heteroaryl groups include by way of example and not limitation, pyridyl, thiazolyl, tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H- indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-car
  • heterocycloalkyls include by way of example and not limitation, dihydroypyridyl, tetrahydropyridyl (piperidyl), tetrahydrothiophenyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, piperazinyl, quinuclidinyl, and morpholinyl. Heteroaryl and heterocycloalkyl groups can be unsubstituted or substituted.
  • Substituted as used herein and as applied to any of the above alkyl, aryl, cycloalkyl, heteroaryl, heterocyclyl, means that one or more hydrogen atoms are each independently replaced with a substituent.
  • a group is described as “optionally substituted,” that group can be substituted with one or more of the above substituents, independently selected for each occasion.
  • the substituent may be one or more methyl groups or one or more hydroxyl groups.
  • the organic acid is an alkyl carboxylic acid.
  • alkyl carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like.
  • the organic acid is an alkyl sulfonic acid.
  • alkyl sulfonic acids include propanesulfonic acid, heptanesulfonic acid, and octanesulfonic acid.
  • the alkyl carboxylic or sulfonic acid is substituted with one or more hydroxyl groups.
  • Non-limiting examples include glycolic acid, 4-hydroxybutyric acid, and lactic acid.
  • an organic acid may include more than one carboxylic acid group or more than one sulfonic acid group (e.g., two, three, or more carboxylic acid groups).
  • Non-limiting examples include oxalic acid, fumaric acid, maleic acid, and glutaric acid.
  • organic acids containing multiple carboxylic acids e.g., from two to four carboxylic acid groups
  • one or more of the carboxylic acid groups may be esterified.
  • Non-limiting examples include succinic acid monoethyl ester, monomethyl fumarate, mo no methyl or dimethyl citrate, and the like.
  • the organic acid may include more than one carboxylic acid group and one or more hydroxyl groups.
  • Non-limiting examples of such acids include tartaric acid, citric acid, and the like.
  • the organic acid is an aryl carboxylic acid or an aryl sulfonic acid.
  • aryl carboxylic and sulfonic acids include benzoic acid, toluic acids, salicylic acid, benzenesulfonic acid, and -tohicncsulfonic acid.
  • organic acids which may be useful in certain embodiments include 2-(4-isobutylphenyl)propanoic acid, 2,2-dichloroacetic acid, 2-hydroxyethanesulfonic acid, 2-oxoglutaric acid, 4-acetamidobenzoic acid, 4-aminosalicylic acid, adipic acid, ascorbic acid (L), aspartic acid (L), alphamethylbutyric acid, camphoric acid (+), camphor-10-sulfonic acid (+), cinnamic acid, cyclamic acid, dodecylsulfuric acid, ethane- 1,2-disulfonic acid, ethanesulfonic acid, furoic acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, isovaleric acid, lactobi
  • suitable acids include, but are not limited to, the list of organic acids in Table 1.
  • organic acid may further depend on additional properties in addition to consideration of the logP value. For example, an organic acid should be one recognized as safe for human consumption, and which has acceptable flavor, odor, volatility, stability, and the like. Determination of appropriate organic acids is within the purview of one of skill in the art.
  • the organic acid is a mono ester of a dicarboxylic acid or a poly -carboxylic acid.
  • the dicarboxylic acid is malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, or a combination thereof.
  • the dicarboxylic acid is succinic acid, glutaric acid, fumaric acid, maleic acid, or a combination thereof.
  • the dicarboxylic acid is succinic acid, glutaric acid, or a combination thereof.
  • the alcohol forming the mono ester of the dicarboxylic acid is a lipophilic alcohol.
  • suitable lipophilic alcohols include, but are not limited to, octanol, menthol, and tocopherol.
  • the organic acid is an octyl mono ester of a dicarboxylic acid, such as monooctyl succinate, monooctyl fumarate, or the like.
  • the organic acid is a monomenthyl ester of a dicarboxylic acid.
  • Certain menthyl esters may be desirable in oral compositions as described herein by virtue of the cooling sensation they may provide upon use of the product comprising the composition.
  • the organic acid is monomenthyl succinate, monomenthyl fumarate, monomenthyl glutarate, or a combination thereof.
  • the organic acid is a monotocopheryl ester of a dicarboxylic acid. Certain tocopheryl esters may be desirable in oral compositions as described herein by virtue of the antioxidant effects they may provide.
  • the organic acid is tocopheryl succinate, tocopheryl fumarate, tocopheryl glutarate, or a combination thereof.
  • the organic acid is a carotenoid derivative having one or more carboxylic acids.
  • Carotenoids are tetraterpenes, meaning that they are produced from 8 isoprene molecules and contain 40 carbon atoms. Accordingly, they are usually lipophilic due to the presence of long unsaturated aliphatic chains, and are generally yellow, orange, or red in color.
  • Certain carotenoid derivatives can be advantageous in oral compositions by virtue of providing both ion pairing and serving as a colorant in the composition.
  • the organic acid is 2E,4E,6E,8E,10E,12E,14E,16Z,18£)-20-methoxy- 4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid (bixin) or an isomer thereof.
  • Bixin is an apocarotenoid found in annatto seeds from the achiote tree (Bixa orellana) and is the naturally occurring pigment providing the reddish orange color to annatto.
  • Bixin is soluble in fats and alcohols but insoluble in water, and is chemically unstable when isolated, converting via isomerization into the double bond isomer, trans-bixin ( -bixin), having the structure:
  • the organic acid is (2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17- tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaenedioic acid (norbixin), a water-soluble hydrolysis product of bixin having the structure:
  • more than one organic acid may be present.
  • the composition may comprise two, or three, or four, or more organic acids.
  • an organic acid contemplates mixtures of two or more organic acids.
  • the relative amounts of the multiple organic acids may vary.
  • a composition may comprise equal amounts of two, or three, or more organic acids, or may comprise different relative amounts.
  • certain organic acids e.g., citric acid or myristic acid
  • it is possible to include certain organic acids e.g., citric acid or myristic acid which have a logP value outside the desired range, when combined with other organic acids to provide the desired average logP range for the combination.
  • organic acids in the composition which have logP values outside the desired range for purposes such as, but not limited to, providing desirable organoleptic properties, stability, as flavor components, and the like.
  • certain lipophilic organic acids have undesirable flavor and or aroma characteristics which would preclude their presence as the sole organic acid (e.g., in equimolar or greater quantities relative to nicotine).
  • a combination of different organic acids may provide the desired ion pairing while the concentration of any single organic acid in the composition remains below the threshold which would be found objectionable from a sensory perspective.
  • the composition comprises an organic acid which is a monoester of a dicarboxylic acid or is a carotenoid derivative having one or more carboxylic acids as described herein above, and further comprises an additional organic acid or salt thereof.
  • the additional organic acid is benzoic acid, an alkali metal salt thereof, or a combination thereof.
  • the composition comprises an alkali metal salt of an organic acid.
  • the organic acid may be present in the composition in the form of an alkali metal salt.
  • Suitable alkali metal salts include lithium, sodium, and potassium.
  • the alkali metal is sodium or potassium.
  • the alkali metal is sodium.
  • the composition comprises an organic acid and a sodium salt of the organic acid.
  • the composition comprises sodium benzoate.
  • the amount of alkali metal salt of the organic acid present in the composition, relative to the nicotine, may vary, and may be expressed as the concentration of conjugate base of the organic acid. Generally, as the concentration of the conjugate base of the organic acid increases, the percent of nicotine that is ion paired increases. This typically increases the partitioning of the nicotine, in the form of an ion pair, into octanol versus water as measured by the logP (the logic of the partitioning coefficient).
  • the composition comprises from about 0.05, about 0.1, about 1, about 1.5, about 2, or about 5, to about 10, about 15, or about 20 molar equivalents of the conjugate base of the organic acid, relative to the nicotine, calculated as the free base of the nicotine.
  • the composition comprises from about 2 to about 10, or from about 2 to about 5 molar equivalents of the conjugate base of the organic acid, relative to the nicotine, on a free-base basis.
  • the conjugate base of the organic acid is present in a molar ratio with nicotine from about 2, about 3, about 4, or about 5, to about 6, about 7, about 8, about 9, or about 10.
  • the conjugate base of the organic acid is present in a molar ratio with nicotine from about 3 to about 6.
  • more than one conjugate base e.g., from multiple organic acid alkali metal salts
  • the conjugate base of the organic acid inclusion is sufficient to provide a composition pH of from about 4.0 to about 9.0, such as from about 4.5 to about 7.0, or from about 5.5 to about 7.0, from about 4.0 to about 5.5, or from about 7.0 to about 9.0.
  • the inclusion is sufficient to provide a composition pH of from about 4.5 to about 6.5, for example, from about 4.5, about 5.0, or about 5.5, to about 6.0, or about 6.5.
  • the alkali metal salt of the organic acid is provided in a quantity sufficient to provide a pH of the composition of from about 5.5 to about 6.5, for example, from about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0, to about 6.1, about 6.2, about 6.3, about 6.4, or about 6.5.
  • a mineral acid e.g., hydrochloric acid, sulfuric acid, phosphoric acid, or the like
  • the conjugate base i.e., an alkali metal salt of the organic acid
  • the conjugate base is added either neat (i.e., native solid or liquid form) or as a solution in, e.g., water, to the other composition components as described hereinbelow.
  • the conjugate base i.e., an alkali metal salt of the organic acid
  • the conjugate base is added, either neat or as a solution in, e.g., water, to the other composition components.
  • the composition comprises nicotine and sodium benzoate, wherein at least a portion of the nicotine and benzoate ions present are in an ion paired form.
  • the oral composition further comprises a solubility enhancer to increase the solubility of the alkali metal salt of the organic acid.
  • Suitable solubility enhancers include, but are not limited to, humectants as described herein, such as glycerol or propylene glycol.
  • the composition as disclosed herein comprises nicotine.
  • the nicotine is released from the composition and absorbed through the oral mucosa, thereby entering the blood stream, where it is circulated systemically.
  • the source of the nicotine present in the composition may vary and may be natural or synthetic.
  • Nicotine may be tobacco-derived (e.g., a tobacco extract) or non-tobacco derived (e.g., synthetic or otherwise obtained). Most preferably, the nicotine is naturally occurring and obtained as an extract from a Nicotiana species (e.g., tobacco).
  • the nicotine can have the enantiomeric form S(-)-nicotine, R(+)-nicotine, or a mixture of .S'(-)-nicotinc and R (+) -nicotine.
  • the nicotine is in the form of .S'(-)-nicotinc (e.g., in a form that is virtually all S(-)-nicotine) or a racemic mixture composed primarily or predominantly of .S'(-)-nicotinc (e.g., a mixture composed of about 95 weight parts .S'(-)-nicotinc and about 5 weight parts R(+)-nicotine).
  • the nicotine is employed in virtually pure form or in an essentially pure form. Highly preferred nicotine that is employed has a purity of greater than about 95 percent, more preferably greater than about 98 percent, and most preferably greater than about 99 percent, on a weight basis.
  • the nicotine is selected from the group consisting of nicotine free base, nicotine as an ion pair, and a nicotine salt. In some embodiments, at least a portion of the nicotine is in its free base form. In some embodiments, at least a portion of the nicotine is present as a nicotine salt, or at least a portion of the nicotine is present as an ion pair with at least a portion of the conjugate base of the organic acid, as disclosed herein above.
  • the nicotine (calculated as the free base) is present in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition.
  • the nicotine is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition.
  • composition as described herein comprises at least one fdler.
  • Fillers may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
  • the amount of filler can vary but is typically up to about 75 percent of the composition by weight, based on the total weight of the composition.
  • a typical range of filler within the composition can be from about 10 to about 75 percent by total weight of the composition, for example, from about 10, about 15, about 20, about 25, or about 30, to about 35, about 40, about 45, or about 50 weight percent (e.g., about 20 to about 50 weight percent or about 25 to about 45 weight percent).
  • the amount of filler is at least about 10 percent by weight, such as at least about 20 percent, or at least about 25 percent, or at least about 30 percent, or at least about 35 percent, or at least about 40 percent, based on the total weight of the composition.
  • fillers are porous particulate materials and are cellulose-based.
  • suitable fillers are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources.
  • cellulosic non-tobacco plant material include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX® brand filler available from International Fiber Corporation), bran fiber, and mixtures thereof.
  • Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, com), natural cellulose, and modified cellulosic materials.
  • Starch as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the mixture based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used.
  • starch major sources include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava).
  • sources of starch include acoms, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams.
  • modified starches are modified starches.
  • a modified starch has undergone one or more structural modifications, often designed to alter its high heat properties. Some starches have been developed by genetic modifications and are considered to be "modified” starches. Other starches are obtained and subsequently modified.
  • modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, enzyme treatment, acetylation, hydroxypropylation, and/or partial hydrolysis.
  • modified starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes.
  • Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
  • fillers include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, and sugar alcohols. Combinations of fillers can also be used.
  • the filler comprises or is a mixture of glucose and starch-derived polysaccharides.
  • One such suitable mixture of glucose and starch-derived polysaccharides is EMDEX®, available from JRS PHARMA LP, USA, 2981 Route 22, Patterson, NY 12563-2359.
  • the particulate filler is a cellulose material or cellulose derivative.
  • One particularly suitable particulate filler for use in the compositions described herein is microcrystalline cellulose ("mcc").
  • the mcc may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses.
  • the mcc may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH- 103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof.
  • the composition comprises mcc as the particulate fdler.
  • the quantity of mcc present may vary according to the desired properties.
  • the filler further comprises a cellulose derivative or a combination of such derivatives.
  • the composition comprises from about 1 to about 10% of the cellulose derivative by weight, based on the total weight of the composition, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative, or about 1 to about 3% by weight of cellulose derivative.
  • the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group.
  • Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC”), hydroxypropylmethylcellulose (“HPMC”), hydroxyethyl cellulose, and carboxymethylcellulose (“CMC”).
  • the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC.
  • the cellulose derivative is HPC.
  • the composition comprises from about 1 to about 3% HPC by weight, based on the total weight of the composition. Water
  • the water content of the composition may vary according to the desired properties.
  • the composition is less than about 60 percent by weight of water, and generally is from about 1 to about 60% by weight of water, for example, from about 5 to about 55, about 10 to about 50, about 20 to about 45, or about 25 to about 40 percent water by weight, including water amounts of at least about 5% by weight, at least about 10% by weight, at least about 15% by weight, and at least about 20% by weight.
  • the composition is less than about 10 percent by weight of water, such as about 9 weight percent or less, about 7 weight percent or less, about 5 weight percent or less, about 4 weight percent or less, about 3 weight percent or less, or about 2 weight percent or less.
  • the water content of the composition is in a range from about 0.1 weight percent to about 10 weight percent, based on the total weight of the composition.
  • composition as disclosed herein comprises an active ingredient in addition to the nicotine present.
  • an "active ingredient” refers to one or more substances belonging to any of the following categories: API (active pharmaceutical substances), food additives, natural medicaments, and naturally occurring substances that can have an effect on humans.
  • Example active ingredients include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body).
  • the active ingredient may be of the type generally referred to as dietary supplements, nutraceuticals, "phytochemicals” or "functional foods”.
  • dietary supplements e.g., nutraceuticals, "phytochemicals” or “functional foods”.
  • Non-limiting examples of active ingredients include those falling in the categories of botanical ingredients, stimulants, amino acids, and/or pharmaceutical, nutraceutical, and medicinal ingredients (e.g., vitamins, such as B6, B12, and C, and/or cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD)). Each of these categories is further described herein below.
  • the particular choice of active ingredients will vary depending upon the desired flavor, texture, and desired characteristics of the particular product.
  • an active ingredient or combination thereof is present in a total concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 20%.
  • the active ingredient or combination of active ingredients is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about from about 0.5% w/w to about 10%, from about 1% to about 10%, from about 1% to about 5% by weight, based on the total weight of the composition.
  • the active ingredient or combination of active ingredients is present in a concentration of from about 0.001%, about 0.01%, about 0.1% , or about 1%, up to about 20% by weight, such as, e.g., from about from about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18
  • the active ingredient comprises a botanical ingredient.
  • botanical ingredient or “botanical” refers to any plant material or fungal-derived material, including plant material in its natural form and plant material derived from natural plant materials, such as extracts or isolates from plant materials or treated plant materials (e.g., plant materials subjected to heat treatment, fermentation, bleaching, or other treatment processes capable of altering the physical and/or chemical nature of the material).
  • a “botanical” includes, but is not limited to, “herbal materials,” which refer to seed-producing plants that do not develop persistent woody tissue and are often valued for their medicinal or sensory characteristics (e.g., teas or tisanes).
  • Reference to botanical material as "non-tobacco” is intended to exclude tobacco materials (i.e., does not include any Nicotiana species).
  • a botanical When present, a botanical is typically at a concentration of from about 0.01% w/w to about 10% by weight, such as, e.g., from about from about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the effervescent composition.
  • the botanical materials useful in the present disclosure may comprise, without limitation, any of the compounds and sources set forth herein, including mixtures thereof. Certain botanical materials of this type are sometimes referred to as dietary supplements, nutraceuticals, "phytochemicals” or “functional foods.” Certain botanicals, as the plant material or an extract thereof, have found use in traditional herbal medicine, and are described further herein.
  • Non-limiting examples of non-tobacco botanical materials include without limitation acai berry (Euterpe oleracea martius), acerola (Malpighia glabra), alfalfa, allspice, Angelica root, anise (e.g., star anise), annatto seed, apple (Malus domestica), apricot oil, ashwagandha, Bacopa monniera, baobab, basil (Ocimum basilicum), bay, bee balm, beet root, bergamot, blackberry (Morus nigra), black cohosh, black pepper, black tea, blueberries, boldo (Peumus boldus), borage, bugleweed, cacao, calamus root, camu (Myrcaria dubia), cannabis/hemp, caraway seed, cardamom, cassis, catnip, catuaba, cayenne pepper, Centella asiatica, chaga mushroom, Chai-hu, cham
  • the active ingredient comprises one or more stimulants.
  • stimulants refers to a material that increases activity of the central nervous system and/or the body, for example, enhancing focus, cognition, vigor, mood, alertness, and the like.
  • Non-limiting examples of stimulants include caffeine, theacrine, theobromine, and theophylline.
  • Theacrine (1,3,7,9-tetramethyluric acid) is a purine alkaloid which is structurally related to caffeine, and possesses stimulant, analgesic, and anti-inflammatory effects.
  • Present stimulants may be natural, naturally derived, or wholly synthetic.
  • certain botanical materials may possess a stimulant effect by virtue of the presence of e.g., caffeine or related alkaloids, and accordingly are “natural” stimulants.
  • the stimulant e.g., caffeine, theacrine
  • caffeine can be obtained by extraction and purification from botanical sources (e.g., tea).
  • whole synthetic it is meant that the stimulant has been obtained by chemical synthesis.
  • the active ingredient comprises caffeine.
  • the active ingredient is caffeine.
  • the caffeine is present in an encapsulated form.
  • Vitashure® available from Balchem Corp., 52 Sunrise Park Road, New Hampton, NY, 10958.
  • a stimulant or combination of stimulants is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
  • the active ingredient comprises an amino acid.
  • amino acid refers to an organic compound that contains amine (-NH 2 ) and carboxyl (-COOH) or sulfonic acid (SO3H) functional groups, along with a side chain (R group), which is specific to each amino acid.
  • Amino acids may be proteinogenic or non-proteinogenic. By “proteinogenic” is meant that the amino acid is one of the twenty naturally occurring amino acids found in proteins.
  • the proteinogenic amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine.
  • non-proteinogenic is meant that either the amino acid is not found naturally in protein, or is not directly produced by cellular machinery (e.g., is the product of post-tranlational modification).
  • Non-limiting examples of non-proteinogenic amino acids include gamma-aminobutyric acid (GABA), taurine (2- aminoethanesulfonic acid), theanine (L-y-glutamylethylamide), hydroxyproline, and beta-alanine.
  • GABA gamma-aminobutyric acid
  • taurine (2- aminoethanesulfonic acid
  • theanine L-y-glutamylethylamide
  • hydroxyproline hydroxyproline
  • beta-alanine beta-alanine
  • an amino acid or combination of amino acids is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the effervescent composition.
  • the active ingredient comprises a vitamin or combination of vitamins.
  • vitamin refers to an organic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of metabolism in a mammal.
  • vitamins required by human metabolism which are: vitamin A (as all-trans-retinol, all-trans-retinyl-esters, as well as all-trans-beta-carotene and other provitamin A carotenoids), vitamin Bl (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), vitamin B12 (cobalamins), vitamin C (ascorbic acid), vitamin D (calciferols), vitamin E (tocopherols and tocotrienols), and vitamin K (quinones).
  • the active ingredient comprises vitamin C. In some embodiments, the active ingredient is a combination of vitamin C, caffeine, and taurine. In some embodiments, the active ingredient comprises one or more of vitamin B6 and B12. In some embodiments, the active ingredient comprises theanine and one or more of vitamin B6 and B12.
  • a vitamin or combination of vitamins is typically at a concentration of from about 0.01% w/w to about 1% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% w/w, to about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% by weight, based on the total weight of the composition.
  • the active ingredient comprises vitamin A.
  • the vitamin A is encapsulated.
  • the vitamin is vitamin B6, vitamin B12, vitamin E, vitamin C, or a combination thereof.
  • the active ingredient comprises a mineral.
  • mineral refers to an inorganic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of various systems in a mammal.
  • minerals include iron, zinc, copper, selenium, chromium, cobalt, manganese, calcium, phosphorus, sulfur, magnesium, and the like.
  • the active ingredient comprises iron. Suitable sources of iron include, but are not limited to, ferrous salts such as ferrous sulfate and ferrous gluconate. In some embodiments, the iron is encapsulated.
  • the active ingredient comprises one or more cannabinoids.
  • cannabinoid refers to a class of diverse natural or synthetic chemical compounds that acts on cannabinoid receptors (i.e., CB1 and CB2) in cells that alter neurotransmitter release in the brain.
  • Cannabinoids are cyclic molecules exhibiting particular properties such as the ability to easily cross the blood-brain barrier.
  • Cannabinoids may be naturally occurring (Phytocannabinoids) from plants such as cannabis, (endocannabinoids) from animals, or artificially manufactured (synthetic cannabinoids).
  • Cannabis species express at least 85 different phytocannabinoids, and these may be divided into subclasses, including cannabigerols, cannabichromenes, cannabidiols, tetrahydrocannabinols, cannabinols and cannabinodiols, and other cannabinoids, such as cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, can
  • the cannabinoid is selected from the group consisting of cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBDA), Cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarinic acid (THCV A), and mixtures thereof.
  • CBG
  • the cannabinoid comprises at least tetrahydrocannabinol (THC). In some embodiments, the cannabinoid is tetrahydrocannabinol (THC). In some embodiments, the cannabinoid comprises at least cannabidiol (CBD). In some embodiments, the cannabinoid is cannabidiol (CBD). In some embodiments, the CBD is synthetic CBD.
  • the cannabinoid e.g., CBD
  • CBD cannabinoid
  • An isolate is an extract from a plant, such as cannabis, where the active material of interest (in this case the cannabinoid, such as CBD) is present in a high degree of purity, for example greater than 95%, greater than 96%, greater than 97%, greater than 98%, or around 99% purity.
  • the cannabinoid is an isolate of CBD in a high degree of purity, and the amount of any other cannabinoid in the composition is no greater than about 1% by weight of the composition, such as no greater than about 0.5% by weight of the composition, such as no greater than about 0.1% by weight of the composition, such as no greater than about 0.01% by weight of the composition.
  • cannabinoid and the particular percentages thereof which may be present within the disclosed composition will vary depending upon the desired flavor, texture, and other characteristics of the composition.
  • the cannabinoid (such as CBD) is present in the composition in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 2% by weight of the composition. In some embodiments, the cannabinoid (such as CBD) is present in the composition in a concentration of from about 0.1% to about 1.5% by weight, based on the total weight of the composition. In some embodiments, the cannabinoid (such as CBD) is present in a concentration from about 0.4% to about 1.5% by weight, based on the total weight of the oral composition.
  • the active ingredient may include a cannabimimetic, which is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids.
  • cannabimimetic is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids. Examples include yangonin, alpha-amyrin or beta-amyrin (also classified as terpenes), cyanidin, curcumin (tumeric), catechin, quercetin, salvinorin A, N- acylethanolamines, and N-alkylamide lipids. Such compounds can be used in the same amounts and ratios noted herein for cannabinoids.
  • Active ingredients suitable for use in the present disclosure can also be classified as terpenes, many of which are associated with biological effects, such as calming effects.
  • Terpenes are understood to have the general formula of (C5H 8 ) n and include monoterpenes, sesquiterpenes, and diterpenes.
  • Terpenes can be acyclic, monocyclic or bicyclic in structure. Some terpenes provide an entourage effect when used in combination with cannabinoids or cannabimimetics.
  • Examples include beta-caryophyllene, linalool, limonene, beta-citronellol, linalyl acetate, pinene (alpha or beta), geraniol, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, and germacrene, which may be used singly or in combination.
  • the terpene is a terpene derivable from a phytocannabinoid producing plant, such as a plant from the stain of the cannabis sativa species, such as hemp.
  • Suitable terpenes in this regard include so-called “CIO” terpenes, which are those terpenes comprising 10 carbon atoms, and so-called “C15” terpenes, which are those terpenes comprising 15 carbon atoms.
  • the active ingredient comprises more than one terpene.
  • the active ingredient may comprise one, two, three, four, five, six, seven, eight, nine, ten or more terpenes as defined herein.
  • the terpene is selected from pinene (alpha and beta), geraniol, linalool, limonene, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, germacrene and mixtures thereof.
  • the active ingredient comprises one or more antioxidants.
  • antioxidant refers to a substance which prevents or suppresses oxidation by terminating free radical reactions and may delay or prevent some types of cellular damage. Antioxidants may be naturally occurring or synthetic. Naturally occurring antioxidants include those found in foods and botanical materials. Non-limiting examples of antioxidants include certain botanical materials, vitamins, polyphenols, and phenol derivatives.
  • Examples of botanical materials which are associated with antioxidant characteristics include without limitation acai berry, alfalfa, allspice, annatto seed, apricot oil, basil, bee balm, wild bergamot, black pepper, blueberries, borage seed oil, bugleweed, cacao, calamus root, catnip, catuaba, cayenne pepper, chaga mushroom, chervil, cinnamon, dark chocolate, potato peel, grape seed, ginseng, gingko biloba, Saint John's Wort, saw palmetto, green tea, black tea, black cohosh, cayenne, chamomile, cloves, cocoa powder, cranberry, dandelion, grapefruit, honeybush, echinacea, garlic, evening primrose, feverfew, ginger, goldenseal, hawthorn, hibiscus flower, jiaogulan, kava, lavender, licorice, magoram, milk thistle, mints (menthe), oo
  • Such botanical materials may be provided in fresh or dry form, essential oils, or may be in the form of an extracts.
  • the botanical materials (as well as their extracts) often include compounds from various classes known to provide antioxidant effects, such as minerals, vitamins, isoflavones, phytoesterols, allyl sulfides, dithiolthiones, isothiocyanates, indoles, lignans, flavonoids, polyphenols, and carotenoids.
  • Examples of compounds found in botanical extracts or oils include ascorbic acid, peanut endocarb, resveratrol, sulforaphane, beta-carotene, lycopene, lutein, coenzyme Q, carnitine, quercetin, kaempferol, and the like. See, e.g., Santhosh et al., Phytomedicine, 12(2005) 216-220, which is incorporated herein by reference.
  • Non-limiting examples of other suitable antioxidants include citric acid, Vitamin E or a derivative thereof, a tocopherol, epicatechol, epigallocatechol, epigallocatechol gallate, erythorbic acid, sodium erythorbate, 4-hexylresorcinol, theaflavin, theaflavin monogallate A or B, theaflavin digallate, phenolic acids, glycosides, quercitrin, isoquercitrin, hyperoside, polyphenols, catechols, resveratrols, oleuropein, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and combinations thereof.
  • a tocopherol epicatechol, epigallocatechol, epigallocatechol gallate
  • erythorbic acid sodium erythorbate
  • 4-hexylresorcinol theaf
  • an antioxidant is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about from about 0.001%, about 0.005%, about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, based on the total weight of the composition.
  • the active ingredient comprises an active pharmaceutical ingredient (API).
  • API can be any known agent adapted for therapeutic, prophylactic, or diagnostic use. These can include, for example, synthetic organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, phospholipids, inorganic compounds (e.g., magnesium, selenium, zinc, nitrate), neurotransmitters or precursors thereof (e.g., serotonin, 5 -hydroxy tryptophan, oxitriptan, acetylcholine, dopamine, melatonin), and nucleic acid sequences, having therapeutic, prophylactic, or diagnostic activity.
  • synthetic organic compounds proteins and peptides, polysaccharides and other sugars, lipids, phospholipids, inorganic compounds (e.g., magnesium, selenium, zinc, nitrate), neurotransmitters or precursors thereof (e.g., serotonin, 5 -hydroxy tryptophan, oxitriptan, ace
  • Non-limiting examples of APIs include analgesics and antipyretics (e.g., acetylsalicylic acid, acetaminophen, 3-(4- isobutylphenyl)propanoic acid), phosphatidylserine, myoinositol, docosahexaenoic acid (DHA, Omega-3), arachidonic acid (AA, Omega-6), S-adenosylmethionine (SAM), beta-hydroxy-beta-methylbutyrate (HMB), citicoline (cytidine-5'-diphosphate-choline), and cotinine.
  • analgesics and antipyretics e.g., acetylsalicylic acid, acetaminophen, 3-(4- isobutylphenyl)propanoic acid
  • phosphatidylserine myoinositol
  • DHA docosahexaenoic acid
  • an API is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1%, to about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, based on the total weight of the composition.
  • the active ingredient as described herein may be sensitive to degradation (e.g., oxidative, photolytic, thermal, evaporative) during processing or upon storage of the composition.
  • the active ingredient such as caffeine, vitamin A, and iron (Fe)
  • the active ingredient may be encapsulated, or the composition otherwise modified with suitable components (such as fillers, binders, and the like), to provide enhanced stability to the active ingredient.
  • suitable components such as fillers, binders, and the like
  • suitable components such as fillers, binders, and the like
  • binders such as functional celluloses (e.g., cellulose ethers including, but not limited to, hydroxypropyl cellulose) or alginate-based materials (e.g., cross linked alginate) may be employed to enhance stability of such actives toward degradation, or to provide extended and/or separate delivery of active ingredients.
  • encapsulated actives may need to be paired with an excipient in the composition to increase their solubility and/or bioavailability.
  • suitable excipients include beta-carotene, lycopene, Vitamin D, Vitamin E, Coenzyme Q10, Vitamin K, and curcumin.
  • an initial quantity of the active ingredient may be increased to compensate for a gradual degradative loss. Accordingly, larger initial amounts than those disclosed herein are contemplated by the present disclosure.
  • the composition as described herein comprises a flavoring agent.
  • a flavoring agent or “flavorant” is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product. Examples of sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma. Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
  • Flavoring agents may be imitation, synthetic or natural ingredients or blends thereof. Flavoring agents may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, Wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fmit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom
  • Flavorants may further include flavor enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, and trigeminal sensates,
  • trigeminal sensate refers to a flavoring agent which has an effect on the trigeminal nerve, producing sensations including heating, cooling, tingling, and the like.
  • Non-limiting examples of trigeminal sensate flavoring agents include capsaicin, citric acid, menthol, Sichuan buttons, erythritol, and cubebol.
  • a suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether, and a suitable cooling agent may be, but is not limited to eucalyptol or N-ethyl-p-menthane-3-carboxamide (WS-3).
  • Flavoring agents may be in any suitable form, for example, liquid such as an oil, solid such as a powder, or gas.
  • the flavoring agent may be provided in a spray-dried form or a liquid form.
  • a liquid flavorant is disposed (i.e., adsorbed or absorbed in or on) a porous particulate carrier, for example microcrystalline cellulose, which is then combined with the other composition ingredients.
  • the amount of flavoring agent utilized in the composition can vary, but is typically up to about 10% by weight, and certain embodiments are characterized by a flavoring agent content of at least about 0.1% by weight, such as about 0.5 to about 10%, about 1 to about 5%, or about 2 to about 4% weight, based on the total weight of the composition.
  • the composition may include one or more taste modifying agents ("taste modifiers") which may serve to mask, alter, block, or improve e.g., the flavor of a composition as described herein.
  • taste modifiers include analgesic or anesthetic herbs, spices, and flavors which produce a perceived cooling (e.g., menthol, eucalyptus, mint), warming (e.g., cinnamon), or painful (e.g., capsaicin) sensation.
  • Certain taste modifiers fall into more than one overlapping category.
  • the taste modifier modifies one or more of bitter, sweet, salty, or sour tastes.
  • the taste modifier targets pain receptors.
  • the composition comprises an active ingredient having a bitter taste, and a taste modifier which masks or blocks the perception of the bitter taste.
  • the taste modifier is a substance which targets pain receptors (e.g., vanilloid receptors) in the user's mouth to mask e.g., a bitter taste of another component (e.g., an active ingredient).
  • Suitable taste modifiers include, but are not limited to, capsaicin, gamma-amino butyric acid (GABA), adenosine monophosphate (AMP), lactisole, or a combination thereof.
  • a representative amount of taste modifier is about 0.01% by weight or more, about 0.1% by weight or more, or about 1.0% by weight or more, but will typically make up less than about 10% by weight of the total weight of the composition, (e.g., from about 0.01%, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 5%, or about 10% by weight of the total weight of the composition).
  • Salts e.g., from about 0.01%, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 5%, or about 10% by weight of the total weight of the composition.
  • the composition may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the composition.
  • a salt e.g., alkali metal salts
  • suitable salts include sodium chloride, potassium chloride, ammonium chloride, flour salt, and the like.
  • a representative amount of salt is about 0.5 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the composition, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight).
  • sweeteners may be added.
  • the sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners.
  • natural sweeteners include fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like.
  • artificial sweeteners include sucralose, isomaltulose, maltodextrin, saccharin, aspartame, acesulfame K, neotame, and the like.
  • the sweetener comprises one or more sugar alcohols.
  • Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form.
  • Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates).
  • the sweetener is sucralose, acesulfame K, or a combination thereof.
  • a sweetener or combination of sweeteners may make up from about 0.01 to about 20% or more of the of the composition by weight, for example, from about 0.01 to about 0.1, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% by weight, based on the total weight of the composition.
  • a combination of sweeteners is present at a concentration of from about 0.01% to about 0.1% by weight of the composition, such as about 0.01, about 0.02, about 0.03, about 0.04, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, or about 0.1% by weight of the composition.
  • a combination of sweeteners is present at a concentration of from about 0.1% to about 0.5% by weight of the composition, such as about 0.1, about 0.2, about 0.3, about 0.4, or about 0.5% by weight of the composition. In some embodiments, a combination of sweeteners is present at a concentration of from about 1% to about 3% by weight of the composition.
  • a binder (or combination of binders) may be employed in certain embodiments.
  • Typical binders can be organic or inorganic, or a combination thereof.
  • Representative binders include povidone, sodium alginate, starch-based binders, pectin, carrageenan, pullulan, zein, and the like, and combinations thereof.
  • a binder may be employed in amounts sufficient to provide the desired physical attributes and physical integrity to the composition.
  • the amount of binder utilized in the composition can vary, but is typically up to about 30 weight percent, and certain embodiments are characterized by a binder content of at least about 0.1% by weight, such as about 1 to about 30% by weight, or about 5 to about 10% by weight, based on the total weight of the composition.
  • binders include a gum, for example, a natural gum.
  • a natural gum refers to polysaccharide materials of natural origin that have binding properties, and which are also useful as a thickening or gelling agents.
  • Representative natural gums derived from plants, which are typically water soluble to some degree, include xanthan gum, guar gum, gum arabic, ghatti gum, gum tragacanth, karaya gum, locust bean gum, gellan gum, and combinations thereof.
  • natural gum binder materials are typically present in an amount of up to about 5% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, to about 2, about 3, about 4, or about 5% by weight, based on the total weight of the composition.
  • one or more humectants may be employed in the composition.
  • humectants include, but are not limited to, polyols such as glycerin, propylene glycol, and the like.
  • the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition. Further, in some instances, the humectant may impart desirable flow characteristics to the composition for depositing in a mold.
  • a humectant When present, a humectant will typically make up about 5% or less of the weight of the composition (e.g., from about 0.5 to about 5% by weight). When present, a representative amount of humectant is about 0.1% to about 1% by weight, or about 1% to about 5% by weight, based on the total weight of the composition.
  • the composition of the present disclosure can comprise pH adjusters or buffering agents.
  • pH adjusters and buffering agents that can be used include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like.
  • suitable buffers include alkali metals acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof.
  • the buffering agent is typically present in an amount less than about 5 percent based on the weight of the composition, for example, from about 0.5% to about 5%, such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or from about 1% to about 2% by weight, based on the total weight of the composition.
  • Colorants such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or from about 1% to about 2% by weight, based on the total weight of the composition.
  • a colorant may be employed in amounts sufficient to provide the desired physical attributes to the composition.
  • Natural or synthetic colorants such as natural or synthetic dyes, food-grade colorants and pharmaceutical-grade colorants may be used. Examples of colorants include various dyes and pigments, such as caramel coloring and titanium dioxide. Natural colorants such as curcumin, beet juice extract, spirulina; also a variety of synthetic pigments may also be used.
  • the amount of colorant utilized in the composition can vary, but when present is typically up to about 3% by weight, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the composition.
  • the composition may include a tobacco material.
  • the tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species.
  • Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N.
  • Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic-modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al.
  • Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein.
  • plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom.
  • plants of the Nicotiana species e.g., Galpao commun tobacco
  • Tobacco plants can be grown in greenhouses, growth chambers, or outdoors in fields, or grown hydroponically.
  • the plant of the Nicotiana species can be included within a composition as disclosed herein.
  • virtually all of the plant e.g. , the whole plant
  • various parts or pieces of the plant can be harvested or separated for further use after harvest.
  • the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment.
  • the tobacco material comprises tobacco leaf (lamina).
  • composition disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
  • the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems.
  • the tobacco that is used for the mixture most preferably includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated).
  • Portions of the tobaccos within the mixture may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)). See, for example, the tobacco expansion processes set forth in US Pat. Nos.
  • the d mixture optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
  • the tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form).
  • the manner by which the tobacco material is provided in a finely divided or powder type of form may vary.
  • plant parts or pieces are comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like.
  • the plant material is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent or less than about 5 weight percent.
  • the tobacco material is employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns.
  • the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required.
  • air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected.
  • differently sized pieces of granulated tobacco may be mixed together.
  • tobacco parts or pieces are comminuted, ground or pulverized into a powder type of form using equipment and techniques for grinding, milling, or the like.
  • the tobacco is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent to less than about 5 weight percent.
  • the tobacco plant or portion thereof can be separated into individual parts or pieces (e.g., the leaves can be removed from the stems, and/or the stems and leaves can be removed from the stalk).
  • the harvested plant or individual parts or pieces can be further subdivided into parts or pieces (e.g., the leaves can be shredded, cut, comminuted, pulverized, milled or ground into pieces or parts that can be characterized as filler-type pieces, granules, particulates or fine powders).
  • the plant, or parts thereof can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment).
  • the plant or portion thereof can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the plant or portion thereof, or a moisture content that results from the drying of the plant or portion thereof.
  • powdered, pulverized, ground or milled pieces of plants or portions thereof can have moisture contents of less than about 25 weight percent, often less than about 20 weight percent, and frequently less than about 15 weight percent.
  • compositions For the preparation of oral compositions, it is typical for a harvested plant of the Nicotiana species to be subjected to a curing process.
  • the tobacco materials incorporated within the composition as disclosed herein are those that have been appropriately cured and/or aged. Descriptions of various types of curing processes for various types of tobaccos are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Examples of techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch. Int, 20, 467-475 (2003) and US Pat. No. 6,895,974 to Peele, which are incorporated herein by reference. Representative techniques and conditions for air curing tobacco are set forth in US Pat. No.
  • tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), burley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos.
  • the tobacco material may also have a so-called "blended" form.
  • the tobacco material may include a mixture of parts or pieces of flue-cured, burley (e.g., Malawi burley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem).
  • a representative blend may incorporate about 30 to about 70 parts burley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis.
  • example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts burley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis.
  • Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
  • Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like.
  • the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment.
  • controlled heat treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference.
  • tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof.
  • an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di
  • the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached).
  • Tobacco pulp can be whitened in certain embodiments according to any means known in the art.
  • bleached tobacco material produced by various whitening methods using various bleaching or oxidizing agents and oxidation catalysts can be used.
  • Example oxidizing agents include peroxides (e.g., hydrogen peroxide), chlorite salts, chlorate salts, perchlorate salts, hypochlorite salts, ozone, ammonia, potassium permanganate, and combinations thereof.
  • Example oxidation catalysts are titanium dioxide, manganese dioxide, and combinations thereof.
  • the whitened tobacco material can have an ISO brightness of at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%. In some embodiments, the whitened tobacco material can have an ISO brightness in the range of about 50% to about 90%, about 55% to about 75%, or about 60% to about 70%. ISO brightness can be measured according to ISO 3688:1999 or ISO 2470-1:2016.
  • the whitened tobacco material can be characterized as lightened in color (e.g., "whitened") in comparison to an untreated tobacco material.
  • White colors are often defined with reference to the International Commission on Illumination's (CIE's) chromaticity diagram.
  • CIE's International Commission on Illumination's
  • the whitened tobacco material can, in certain embodiments, be characterized as closer on the chromaticity diagram to pure white than an untreated tobacco material.
  • the tobacco material can be treated to extract a soluble component of the tobacco material therefrom.
  • tobacco extract refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process.
  • extraction techniques of tobacco materials can be used to provide a tobacco extract and tobacco solid material. See, for example, the extraction processes described in US Pat. Appl. Pub. No. 2011/0247640 to Beeson et al., which is incorporated herein by reference.
  • Other example techniques for extracting components of tobacco are described in US Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr.
  • Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final mixture, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the composition (e.g., about 0.1 to about 15% by weight).
  • the compositions of the disclosure can be characterized as completely free or substantially free of tobacco material (other than purified nicotine as an active ingredient).
  • certain embodiments can be characterized as having less than 1% by weight, or less than 0.5% by weight, or less than 0.1% by weight of tobacco material, or 0% by weight of tobacco material.
  • the composition comprises an oral care ingredient (or mixture of such ingredients).
  • Oral care ingredients provide the ability to inhibit tooth decay or loss, inhibit gum disease, relieve mouth pain, whiten teeth, or otherwise inhibit tooth staining, elicit salivary stimulation, inhibit breath malodor, freshen breath, or the like.
  • effective amounts of ingredients such as thyme oil, eucalyptus oil and zinc (e.g., such as the ingredients of formulations commercially available as ZYTEX® from Discus Dental) can be incorporated into the composition.
  • ingredients that can be incorporated in desired effective amounts within the present composition can include those that are incorporated within the types of oral care compositions set forth in Takahashi et al., Oral Microbiology and Immunology, 19(1), 61-64 (2004); U.S. Pat. No. 6,083,527 to Thistle; and US Pat. Appl. Pub. Nos. 2006/0210488 to Jakubowski and 2006/02228308 to Cummins et al.
  • Other exemplary ingredients of tobacco containing-formulation include those contained in formulations marketed as MALTISORB® by Roquette and DENTIZYME® by NatraRx.
  • a representative amount of oral care additive is at least about 1%, often at least about 3%, and frequently at least about 5% of the total dry weight of the effervescent composition.
  • the amount of oral care additive within the effervescent composition will not typically exceed about 30%, often will not exceed about 25%, and frequently will not exceed about 20%, of the total dry weight of the effervescent composition.
  • a flow aid can also be added to the composition in order to enhance flowability of the composition.
  • exemplary flow aids include microcrystalline cellulose, silica, polyethylene glycol, stearic acid, calcium stearate, magnesium stearate, zinc stearate, sodium stearyl fumarate, canauba wax, and combinations thereof.
  • the flow aid is sodium stearyl fumarate.
  • a representative amount of flow aid may make up at least about 0.5 percent or at least about 1 percent, of the total dry weight of the composition.
  • the amount of flow aid within the composition will not exceed about 5 percent, and frequently will not exceed about 3 percent, of the total dry weight of the composition.
  • additives can be included in the disclosed composition.
  • the composition can be processed, blended, formulated, combined and/or mixed with other materials or ingredients.
  • the additives can be artificial or can be obtained or derived from herbal or biological sources.
  • further types of additives include thickening or gelling agents (e.g., fish gelatin), emulsifiers, preservatives (e.g., potassium sorbate and the like), disintegration aids, or combinations thereof. See, for example, those representative components, combination of components, relative amounts of those components, and manners and methods for employing those components, set forth in US Pat. No. 9,237,769 to Mua et al., US Pat. No. 7,861,728 to Holton, Jr.
  • Typical inclusion ranges for such additional additives can vary depending on the nature and function of the additive and the intended effect on the final composition, with an example range of up to about 10% by weight, based on total weight of the composition (e.g., about 0.1 to about 5% by weight).
  • additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final mixture).
  • aforementioned types of additives may be encapsulated as provided in the final product or composition.
  • Example encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
  • any one or more of the filler, tobacco material, other composition components, and the overall composition described herein can be described as a particulate material.
  • the term "particulate” refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2:1, such as less than 1.5:1, such as about 1:1.
  • the particles of a particulate material can be described as substantially spherical or granular.
  • the particle size of a particulate material may be measured by sieve analysis.
  • sieve analysis is a method used to measure the particle size distribution of a particulate material.
  • sieve analysis involves a nested column of sieves which comprise screens, preferably in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e. the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above.
  • a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
  • the column of sieves may be placed on or in a mechanical agitator.
  • the agitator causes the vibration of each of the sieves in the column.
  • the mechanical agitator may be activated for a pre-determined period of time in order to ensure that all particles are collected in the correct sieve.
  • the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes.
  • the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed.
  • a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves.
  • a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves.
  • the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
  • any particulate material referenced herein can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
  • composition configured for oral use.
  • the term "configured for oral use” as used herein means that the composition is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the composition (e.g., basic amine, flavoring agents and/or active ingredients) to pass into the mouth of the user.
  • the components of the composition e.g., basic amine, flavoring agents and/or active ingredients
  • the composition is adapted to deliver components to a user through mucous membranes in the user's mouth, the user's digestive system, or both, and, in some instances, said component is a nicotine component or an active ingredient (including, but not limited to, for example, nicotine, a stimulant, vitamin, amino acid, botanical, or a combination thereof) that can be absorbed through the mucous membranes in the mouth or absorbed through the digestive tract when the product is used.
  • a nicotine component or an active ingredient including, but not limited to, for example, nicotine, a stimulant, vitamin, amino acid, botanical, or a combination thereof
  • the composition of the present disclosure is disposed within a moisture- permeable container (e.g., a water-permeable pouch).
  • a moisture- permeable container e.g., a water-permeable pouch
  • the composition enclosed in the pouch may be in any desired form.
  • the composition is in granular form.
  • Such compositions in the water- permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user.
  • the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used.
  • the pouch preferably is not chewed or swallowed unless the pouch composition or materials are ingestible (e.g., dissolvable or dispersable) as described herein below.
  • the components of the composition therein e.g., flavoring agents and/or nicotine
  • the pouch may be removed from the mouth of the human subject for disposal.
  • the composition as disclosed herein and any other components noted above are combined within a moisture-permeable packet or pouch that acts as a container for use of the composition to provide a pouched product configured for oral use.
  • Certain embodiments of the disclosure will be described with reference to FIG. 1 of the accompanying drawings, and these described embodiments involve snus-type products having an outer pouch and containing a mixture as described herein.
  • the pouched products of the present disclosure can include the composition in other forms.
  • the mixture/construction of such packets or pouches, such as the container pouch 102 in the embodiment illustrated in Fig. 1, may be varied. Referring to FIG. 1, there is shown a first embodiment of a pouched product 100.
  • the pouched product 100 includes a moisture-permeable container in the form of a pouch 102, which contains a material 104 comprising a composition as described herein.
  • Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf and TreAnkrare.
  • the mixture may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products.
  • the pouch provides a liquid- permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the mixture readily diffuse through the pouch and into the mouth of the user.
  • Non-limiting examples of suitable types of pouches are set forth in, for example, US Pat. Nos. 5,167,244 to Kjerstad and 8,931,493 to Sebastian et al.; as well as US Patent App. Pub. Nos. 2016/0000140 to Sebastian et al.; 2016/0073689 to Sebastian et al.; 2016/0157515 to Chapman et al.; and 2016/0192703 to Sebastian et al., each of which are incorporated herein by reference.
  • Pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can be connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
  • a plurality of pouches e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches
  • An example pouch may be manufactured from materials, and in such a manner, such that during use by the user, the pouch undergoes a controlled dispersion or dissolution.
  • Such pouch materials may have the form of a mesh, screen, perforated paper, permeable fabric, or the like.
  • pouch material manufactured from a mesh-like form of rice paper, or perforated rice paper may dissolve in the mouth of the user. As a result, the pouch and mixture each may undergo complete dispersion within the mouth of the user during normal conditions of use, and hence the pouch and mixture both may be ingested by the user.
  • pouch materials may be manufactured using water dispersible film forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp).
  • Preferred pouch materials though water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the mixture contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity.
  • flavoring ingredients, disintegration aids, and other desired components may be incorporated within, or applied to, the pouch material.
  • the amount of material contained within each product unit, for example, a pouch may vary.
  • the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 1 gram, from about 100 to 800 about mg, or from about 200 to about 700 mg. In some smaller embodiments, the weight of the composition within each pouch may be from about 100 to about 300 mg. For a larger embodiment, the weight of the composition within each pouch may be from about 300 mg to about 700 mg.
  • other components can be contained within each pouch. For example, at least one flavored strip, piece or sheet of flavored water dispersible or water-soluble material (e.g., a breath-freshening edible film type of material) may be disposed within each pouch along with or without at least one capsule.
  • Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
  • a pouched product as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for smokeless types of products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos.
  • compositions of the present disclosure configured for oral use may be packaged and stored in any suitable packaging in much the same manner that conventional types of smokeless tobacco products are packaged and stored.
  • a plurality of packets or pouches may be contained in a cylindrical container.
  • the storage period of the product after preparation may vary.
  • “storage period” refers to the period of time after the preparation of the disclosed product.
  • one or more of the characteristics of the products disclosed herein e.g., lack of color change, retention of volatile flavor components, retention of nicotine
  • the storage period i.e., the time period after preparation
  • the storage period is from about about 1 day, about 2 days, or about 3 days, to about 1 week, or from about 1 week to about 2 weeks, from about 2 weeks to about 1 month, or from about 1 month to about 2 months, about 3 months, about 4 months, about 5 months, or about 6 months.
  • the storage period is any number of days between about 1 and about 180.
  • the storage period may be longer than 6 months, for example, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 12 months, about 18 months, or about 24 months.
  • compositions comprising ion paired nicotine as described in US Patent Application Publication No. 2022/0071984 to Poole et al., previously incorporated by reference, may be prepared by a simplified procedure which avoids use or formation of a discrete solution of nicotine and an organic acid in the form of a salt (e.g., nicotine benzoate solution), and allows in situ preparation of nicotine ion paired with a conjugate base of an organic acid (e.g., by combining nicotine directly with sodium benzoate). This is advantageous in reducing the number of process steps, materials which must be sourced, avoidance of potential waste, and the like).
  • a salt e.g., nicotine benzoate solution
  • a method of preparing a composition configured for oral use generally comprises: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
  • the method comprises providing an aqueous solution of free base nicotine.
  • free base nicotine described herein above
  • a suitable amount of water This may be accomplished at various temperatures, optionally with stirring, to facilitate dissolution.
  • a commercial, pre-made nicotine solution may be utilized.
  • the concentration of nicotine in the water may vary based on, for example, the intended nicotine content of the final product.
  • the method further comprises adding an organic acid as described herein above to the aqueous solution of free base nicotine. Adding such an organic acid may form in situ a nicotine salt, ion pair, or combination thereof to varying extents depending on, for example, the concentration of each of the nicotine and organic acid, the relative ratio of organic acid to nicotine, and the nature of the organic acid. In some embodiments, no organic acid is added beyond that comprising the alkali metal salt of the organic acid.
  • the method comprises providing an alkali metal salt of an organic acid.
  • Suitable organic acids and alkali metal salts thereof are described herein above.
  • the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof.
  • the organic acid comprises or is benzoic acid.
  • the conjugate base of the organic acid comprises or is benzoate.
  • the alkali metal is sodium or potassium.
  • the alkali metal salt of the organic acid is sodium benzoate.
  • Such alkali metal salts may be obtained commercially or may be prepared from the appropriate organic acid and an alkali metal base such as carbonate, bicarbonate, or hydroxide according to known procedures.
  • the amount of conjugate base present in the composition may vary.
  • the quantity of alkali metal salt of the organic acid added is such that the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine.
  • the quantity of alkali metal salt of the organic acid added is such that the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine, or from about 3 to about 6 molar equivalents relative to the nicotine.
  • the method comprises combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution.
  • the alkali metal salt of the organic acid may be added in solid or solution form to the aqueous solution of free base nicotine.
  • the aqueous solution of free base nicotine may be added to the alkali metal salt of the organic acid as a solid or in a solution form.
  • the combined aqueous solution of free base nicotine and the alkali metal salt of the organic acid are combined or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation.
  • the aqueous solution of free base nicotine and the alkali metal salt of the organic acid mixture is stirred, agitated, or otherwise mixed for a period of time sufficient to produce a homogenous solution.
  • the method further comprises adding an organic acid as described herein above to the ion paired nicotine solution, followed by combining the organic acid with the solution as described for the alkali metal salt.
  • the organic acid may be added before the alkali metal salt, with the alkali metal salt, after the alkali metal salt, or any combination thereof.
  • the method optionally comprises providing a flavorant solution comprising one or more flavoring agents as described herein above.
  • the flavorant solution may be prepared from one or more flavorants, e.g., by dissolving or suspending the desired flavorants in an appropriate solvent or may be purchased in solution or dispersed form.
  • the flavorant solution further comprises a humectant as described herein above.
  • the method comprises contacting the at least one filler with the ion paired nicotine solution to form the composition.
  • the method comprises providing a flavorant solution comprising one or more flavoring agents; and optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture, followed by contacting the aqueous mixture with the filler.
  • the flavorant solution is added to the ion paired nicotine solution.
  • the ion paired nicotine solution is added to the flavorant solution.
  • the flavorant solution and the ion paired nicotine solution are both added together into a separate vessel (i.e., simultaneously combined).
  • the flavorant solution and the ion paired nicotine solution are combined or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation. Generally, the mixture of the flavorant solution and the ion paired nicotine solution is stirred, agitated, or otherwise mixed for a period of time sufficient to produce a homogenous aqueous mixture (i.e., a solution).
  • the method comprises providing at least one filler as described herein above, and contacting the at least one filler with the aqueous mixture of the flavorant solution and ion paired nicotine solution to form the composition, or directly with the ion paired nicotine solution.
  • the composition is homogenous, and the contacting comprises mixing to form the homogenous composition.
  • the at least one filler may be added to the ion paired nicotine solution, or the ion paired nicotine solution may be added to the filler.
  • the method comprises forming an aqueous mixture comprising the the ion paired nicotine solution and the flavorant solution
  • the at least one filler may be added to the aqueous mixture, or the aqueous mixture may be added to the at least one filler.
  • the addition may be performed in portions, or as one single addition.
  • the at least one filler and the aqueous mixture of the flavorant solution and ion paired nicotine solution may be contacted, combined, or mixed together using any mixing technique or equipment known in the art.
  • Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation.
  • mixing equipment include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like.
  • the method further comprises adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
  • the method further comprises adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof, each as described herein above, to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
  • the composition is enclosed in a pouch as described herein above to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch. In some embodiments, the method further comprises contacting the pouched product with water.
  • Aqueous nicotine-sodium benzoate solutions with 5% nicotine content were prepared using a stock solution of 12% aqueous nicotine, water, and various molar ratios of sodium benzoate to nicotine (1, 3.2, 6, 10, and 13 equivalents of sodium benzoate relative to nicotine).
  • Aqueous nicotine benzoate solutions were made at 5% nicotine content using a nicotine benzoate solution (12% nicotine), water, and additional sodium benzoate at various molar ratios (1, 3.2, and 6 equivalents of sodium benzoate to nicotine).
  • aqueous nicotine octanoate solution was made at 5% nicotine content using a nicotine solution (12% nicotine), water, and sodium octanoate at a molar ratio of 1 equivalent of sodium octanoate to nicotine.
  • aqueous nicotine octanoate-banzoate solution was made at 5% nicotine content using a nicotine solution (12% nicotine), water, sodium octanoate at a molar ratio of 1 equivalent of sodium octanoate to nicotine, and sodium benzoate at a molar ratio of 1 equivalent of sodium benzoate to nicotine
  • the individual solutions were divided into portions, and each was adjusted to a different pH level between about 6 and about 8.5 by titration with the appropriate quantity of hydrochloric acid or sodium hydroxide.
  • LogD data was obtained at each pH value from octanol-water partitioning of the test solutions according to known techniques.
  • a non-ion paired aqueous nicotine solution was also prepared and evaluated (5% nicotine content).
  • FIG. 2 shows the measured logD at specific pH values for each solution, demonstrating that the ion paired complexes prepared from free base nicotine and an organic acid salt have a similar logD as the ion paired complexes prepared from nicotine benzoate and an organic acid salt.
  • the data provide evidence for the existing of non-stoichiometric hydrophobic ion paired nicotine complexes, which are different and distinct from a nicotine salt (1:1 molar ratio of nicotine and benzoic acid).
  • non-stoichiometric ion-paired nicotine complexes e.g., with about 3.2- to about 6-fold excess benzoate
  • Log D values clearly different from a nicotine benzoate salt
  • the higher Log D of the ion paired complex versus nicotine benzoate or nicotine alone was maintained across a wide pH range.
  • Larger excesses of benzoate (for example, 10- and 13 -fold excess) gave smaller increase in Log D than would be predicted if the influence of benzoate was directly proportional, further evidencing the existence of ion paired complexes.
  • the stability of the ion pair in solution is demonstrated by the obtained LogD values.
  • nicotine and a 3.2-fold excess of benzoate is expected to have an overall charge and is stable in aqueous solution, demonstrated by the obtained LogD values.
  • Figure 3 shows the measured logD at specific pH values for each solution, demonstrating that logD increases with higher molar excess of organic acid salt.
  • Figure 4 shows the measured logD at specific pH values for each solution, demonstrating that different ion pair salts have different effects on logD. For example, a smaller excess of NaOct is required to increase logD relative to NaBz.
  • Figure 5 shows the additive effect of combined benzoate and octanoate ion paired nicotine on logD.
  • the data demonstrate that combining benzoate and octanoate ion paired nicotine provides an improvement in LogD, defined as the logD measurement minus the logD of neat nicotine at each pH level.
  • Figure 6 shows the measured logD at extended pH levels for each solution shown, demonstrating that the logD differentials are maintained even at pH values as low as 4.
  • a composition comprising ion paired nicotine, filler (microcrystalline cellulose; mcc), water, and additional components as disclosed herein (salt, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine benzoate solution (12% nicotine benzoate by weight), solid sodium benzoate, and benzoic acid according to Table 2.
  • the filler (mcc) and sodium chloride were mixed for 10 minutes in a mixer.
  • the remaining ingredients except flavor and propylene glycol
  • the propylene glycol and flavor were mixed together to form a flavorant solution.
  • the aqueous ion paired nicotine solution and the flavorant solution were mixed together and added to the dry mix, followed by 10 minutes of mixing.
  • the resulting composition contained a molar ratio of benzoate to nicotine of about 6.
  • the composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece.
  • the final pouched product contained about 500 mg of the composition. Water was added to the pouch, giving a final weight of about 600 mg. The nicotine content of each pouch, in the form of a nicotine benzoate ion pair, was about 5 mg on a free base nicotine basis.
  • the pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
  • Example 3 Pouched product with ion paired nicotine and benzoate (nicotine benzoate, nicotine, benzoic acid, and sodium benzoate; Reference method)
  • a composition comprising ion paired nicotine, filler (mcc), water, and additional components as disclosed herein (salt, binder, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine benzoate solution (12% nicotine benzoate by weight) and solid sodium benzoate according to Table 3. The components were combined as in Example 2 to form the composition, which contained a molar ratio of benzoate to nicotine of about 3.2. The composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece. The final pouched product contained about 500 mg of the composition.
  • the pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
  • Example 4 Pouched product with ion paired nicotine and benzoate (nicotine and sodium benzoate; Inventive
  • a composition comprising ion paired nicotine, filler (mcc), water, and additional components as disclosed herein (salt, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine solution (12% nicotine by weight), benzoic acid, and solid sodium benzoate according to Table 4.
  • the filler (mcc) and sodium chloride were mixed for 10 minutes in a mixer.
  • the remaining ingredients except flavor and propylene glycol
  • the propylene glycol and flavor were mixed together to form a flavorant solution.
  • the aqueous ion paired nicotine solution and the flavorant solution were mixed together and added to the dry mix, followed by 10 minutes of mixing to form the composition, which contained a molar ratio of benzoate to nicotine of about 6.
  • the composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece.
  • the final pouched product contained about 500 mg of the composition. Water was added to the pouch, giving a final weight of about 600 mg.
  • the nicotine content of each pouch, in the form of a nicotine benzoate ion pair was about 5 mg on a free base nicotine basis.
  • the pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
  • Example 5 Pouched product with ion paired nicotine and benzoate (nicotine and sodium benzoate; Inventive method)
  • a composition comprising ion paired nicotine, microcrystalline cellulose (mcc), water, and additional components as disclosed herein (salt, binder, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine solution (12% nicotine by weight), benzoic acid, and solid sodium benzoate according to Table 5. The components were combined as in Example 4 to form the composition, which contained a molar ratio of benzoate to nicotine of about 3.2. The composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece. The final pouched product contained about 500 mg of the composition.
  • a non-woven fleece viscose polyester blend fleece, with an acrylate binder
  • the pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
  • LogD values of the pouched compositions of the above examples were determined by the following procedure.
  • Pouches are cut into quarters. To the quartered pouch was 1 mL artificial saliva (pH ⁇ 7.4) per 300 mg of product. Each sample was placed on a heated shaker at 37°C for 2 hours, then filtered. A pre-partition aliquot of extract was sampled. The extract was then partitioned with an equal volume of octanol for 1 hour while mixing. After phase separation, a post-partition aliquot was taken from the top (octanol) phase and the bottom (aqueous) phase. Both pre- and post-partition samples were appropriately diluted and analyzed for nicotine concentration via LC with UV detection. Using any two data points (pre-partition aqueous, post- partition aqueous, and post-partition octanol) and the following formulae, LogD was calculated:
  • Figure 7 shows the measured logD for the pouched prototypes as well as two pH/logD curves from Figure 2 for reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The disclosure provides a method for preparing a composition configured for oral use. The method includes providing an aqueous solution of free base nicotine; an alkali metal salt of an organic acid; and combining the aqueous solution with the alkali metal salt of the organic acid to form an ion paired nicotine solution. The method further optionally includes providing a flavorant solution; optionally combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition. At least a portion of the nicotine in the composition is associated with at least a portion of the alkali metal salt of the organic acid in the form of an ion pair between the nicotine and a conjugate base of the organic acid.

Description

METHOD OF PREPARING A POUCHED PRODUCT COMPRISING A NICOTINE SALT
FIELD OF THE DISCLOSURE
The present disclosure relates to compositions intended for human use. The compositions are adapted for oral use and deliver substances such as nicotine, flavors, and/or active ingredients during use. Such compositions may include tobacco or a product derived from tobacco, or may be tobacco-free alternatives.
BACKGROUND
There are many categories of products intended for oral use and enjoyment. For example, oral tobacco products containing nicotine, which is known to have both stimulant and anxiolytic properties, have been available for many years. Conventional formats for so-called “smokeless” tobacco products include moist snuff, snus, and chewing tobacco, which are typically formed almost entirely of particulate, granular, or shredded tobacco, and which are either portioned by the user or presented to the user in individual portions, such as in single-use pouches or sachets. See for example, the types of smokeless tobacco formulations, ingredients, and processing methodologies set forth in US Pat. Nos. 6,668,839 to Williams; 6,834,654 to Williams; 6,953,040 to Atchley et al.; 7,032,601 to Atchley et al.; and 7,694,686 to Atchley et al.; 7,810,507 to Dube et al.; 7,819,124 to Strickland et al.; 7,861,728 to Holton, Jr. et al.; 7,901,512 to Quinter et al.; 8,627,828 to Strickland et al.; 11,246,334 to Atchley, each of which is incorporated herein by reference.
In addition, traditional tobacco materials and non-tobacco materials have been combined with other ingredients to form product formats distinct from traditional smokeless products, with example formats including lozenges, pastilles, gels, and the like. See, for example, the types of products described in US Patent App. Pub. Nos. 2008/0196730 to Engstrom et al.; 2008/0305216 to Crawford et al.; 2009/0293889 to Kumar et al.; 2010/0291245 to Gao et al; 2011/0139164 to Mua et al.; 2012/0037175 to Cantrell et al.; 2012/0055494 to Hunt et al.; 2012/0138073 to Cantrell et al.; 2012/0138074 to Cantrell et al.; 2013/0074855 to Holton, Jr.; 2013/0074856 to Holton, Jr.; 2013/0152953 to Mua et al.; 2013/0274296 to Jackson et al.; 2015/0068545 to Moldoveanu et al.; 2015/0101627 to Marshall et al.; and 2015/0230515 to Lampe et al., each of which is incorporated herein by reference.
There is continuing interest in the development of new types of oral products that deliver advantageous sensorial or biological activity. Such products typically contain flavorants and/or active ingredients such as nicotine, caffeine, botanicals, or cannabidiol. The format of such products can vary and include pouched products containing a powdered or granular composition, lozenges, pastilles, liquids, gels, emulsions, meltable compositions, and the like. See, for example, the types of products described in US Patent App. Pub. Nos. 2022/0160675 to Gerardi et al.; 2022/0071984 to Poole et al.; 2021/0378948 to Gerardi et al.; 2021/0330590 to Hutchens et al.; 2021/0186081 to Gerardi et al.; 2021/0177754 to Keller et al; 2021/0177043 to Gerardi et al.; 2021/0177038 to Gerardi et al.; 2021/0169867 to Holton, Jr. et al.; 2021/0169792 to Holton, Jr. et al.; 2021/0169132 to Holton, Jr. et al.; 2021/0169121 to St. Charles, and 2021/0169122 to St. Charles, each of which is incorporated herein by reference.
BRIEF SUMMARY
Oral nicotine products are used by placing a nicotine containing matrix between the cheek and the gum. Nicotine is then released from the product and typically absorbed through the oral mucosa, thereby entering the blood stream where it is circulated systemically. Flavor stability and positive sensory attributes are important elements to a consumer-acceptable oral product. The organoleptic impact of flavors has been shown to be particularly sensitive to product pH. When the product pH exceeds ca. 7.0, the visual, aroma, and taste impact of some flavors degrades over time, and nicotine may evaporate from the product. This instability is particularly noticeable for certain flavors such as ethyl vanillin, lime, and cinnamon, which also cause darkening of an otherwise white product over time. However, lowering of pH increases the extent of nicotine present in the protonated form. As a dibasic alkaloid, nicotine is capable of accepting two protons (pyridine ring nitrogen: log Ka = 3.41; and pyrrolidine ring nitrogen: log Kai = 8.02), significantly changing the polarity. The overall polarity of nicotine increases from log(P) = 1.09 (unprotonated nicotine) to -2.07 (for nicotine protonated on the pyrrolidine ring nitrogen). Passive diffusion of substances such as nicotine across membranes (e.g., mucosal membranes) is a function of molecule polarity and membrane properties, as well as molecular size and ionization (Kokate et al., PharmSciTech 2008, 9, 501-504).
Without wishing to be bound by theory, it is believed that downward shift in logP as a result of protonation state is the predominant driving force behind the reduction in nicotine absorption with descending pH (Nair et al., Journal of Pharmaceutical Sciences 1997, 86, 257-262; Chen et al., International Journal of Pharmaceutics 1999, 184, 63-72; Adrian et al., International Journal of Pharmaceutics 2006, 311, 196-202). Specifically, as reported in Adrian et al., while there was still some diffusion across human buccal tissue in a perfusion cell for a nicotine solution at pH=6 (when nicotine is predominantly monoprotonated), the rate was greatly reduced relative a nicotine solution at pH 8.1 (by a factor of ~7).
It was previously found by the present inventors that compositions configured for oral use comprising certain non-polar or lipophilic organic acids or salts thereof enhanced composition stability and enhanced availability of the nicotine with respect to oral absorption in such compositions, relative to composition configured for oral use which included a polar organic acid. Particularly, in such compositions, at least a portion of the nicotine present is associated with at least a portion of the organic acid or the alkali metal salt thereof, with the association being in the form of an ion pair between the nicotine and a conjugate base of the organic acid. See, e.g., US Patent Application Publication No. 2022/0071984 to Poole et al., incorporated by reference herein in its entirety. As described therein, such compositions are generally prepared by combining nicotine and organic acid to form a nicotine salt and adding an alkali metal salt of an organic acid to promote ion pairing association between the nicotine and the organic acid and/or alkali metal salt thereof.
Surprisingly, it has been found according to the present disclosure that the method may be simplified by eliminating the use of or need to pre-form a nicotine-organic acid salt. Specifically, it was surprisingly found that compositions prepared from simply contacting free base nicotine with an alkali metal salt of an organic acid in an aqueous solution provided compositions with essentially the same properties as those prepared by the previous, more complicated method (e.g., the compositions prepared by the improved method demonstrated similar pH, logP, and logD to those prepared by the previous method, and also exhibited similar sensory qualities when evaluated in sensory panels).
Accordingly, in one aspect is provided a method of preparing a composition configured for oral use, the composition comprising at least one filler; a humectant; nicotine; water; and an alkali metal salt of an organic acid, wherein at least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid, the association in the form of an ion pair between the nicotine and a conjugate base of the organic acid, the method comprising: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
In some embodiments, the method further comprises adding an organic acid to the aqueous solution of free base nicotine, the ion paired nicotine solution, or both.
In some embodiments, the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine. In some embodiments, the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine. In some embodiments, the conjugate base of the organic acid is present in the composition in a range from about 3 to about 6 molar equivalents relative to the nicotine.
In some embodiments, the organic acid has a logP value of from about 1.4 to about 4.5. In some embodiments, the organic acid has a logP value of from about 2.5 to about 3.5. In some embodiments, the organic acid has a logP value of from about 4.5 to about 8.0.
In some embodiments, the flavorant solution further comprises a humectant. In some embodiments, the humectant is glycerol or propylene glycol.
In some embodiments, the organic acid is an alkyl carboxylic acid, an aryl carboxylic acid, an alkyl sulfonic acid, an aryl sulfonic acid, or a combination of any thereof. In some embodiments, the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof. In some embodiments, the conjugate base comprises benzoate.
In some embodiments, the organic acid is benzoic acid.
In some embodiments, the alkali metal is sodium or potassium.
In some embodiments, the alkali metal salt of the organic acid is sodium benzoate.
In some embodiments, the composition is homogenous, and the contacting comprises mixing to form the homogenous composition.
In some embodiments, the method further comprises adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
In some embodiments, the nicotine is present in an amount of from about 0.001 to about 10% by weight of the composition, calculated as the free base and based on the total weight of the composition.
In some embodiments, the at least one filler comprises a cellulose material. In some embodiments, the cellulose material comprises microcrystalline cellulose.
In some embodiments, the at least one filler further comprises a cellulose derivative in an amount by weight of from about 1% to about 3%, based on the total weight of the composition.
In some embodiments, the cellulose derivative is hydroxypropylcellulose.
In some embodiments, the composition comprises from about 1 to about 60% by weight of water, based on the total weight of the composition.
In some embodiments, the method further comprises adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
In some embodiments, the one or more active ingredients selected from the group consisting of botanical materials, stimulants, amino acids, vitamins, antioxidants, cannabinoids, cannabimimetics, terpenes, pharmaceutical agents, and combinations thereof.
In some embodiments, the composition comprises no more than about 10% by weight of a tobacco material, excluding any nicotine component present, based on the total weight of the composition. In some embodiments, the composition is free of tobacco material.
In some embodiments, the composition is enclosed in a pouch to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch.
In some embodiments, the method further comprises contacting the pouched product with water.
The disclosure includes, without limitations, the following embodiments.
Embodiment 1: A method of preparing a composition configured for oral use, the composition comprising at least one filler; a humectant; nicotine; water; and an alkali metal salt of an organic acid, wherein at least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid, the association in the form of an ion pair between the nicotine and a conjugate base of the organic acid, or both, the method comprising: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
Embodiment 2: The method of embodiment 1, further comprising adding an organic acid to the aqueous solution of free base nicotine, the ion paired nicotine solution, or both.
Embodiment 3 : The method of embodiment 1 or 2, wherein the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine.
Embodiment 4: The method of any one of embodiments 1-3, wherein the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine.
Embodiment 5: The method of any one of embodiments 1-4, wherein the conjugate base of the organic acid is present in the composition in a range from about 3 to about 6 molar equivalents relative to the nicotine.
Embodiment 6: The method of any one of embodiments 1-5, wherein the organic acid has a logP value of from about 1.4 to about 4.5.
Embodiment 7: The method of any one of embodiments 1-6, wherein the organic acid has a logP value of from about 2.5 to about 3.5.
Embodiment 8: The method of any one of embodiments 1-7, wherein the organic acid has a logP value of from about 4.5 to about 8.0.
Embodiment 9: The method of any one of embodiments 1-8, wherein the flavorant solution further comprises a humectant.
Embodiment 10: The method of embodiment 9, wherein the humectant is glycerol or propylene glycol.
Embodiment 11: The method of any one of embodiments 1-10, wherein the organic acid is an alkyl carboxylic acid, an aryl carboxylic acid, an alkyl sulfonic acid, an aryl sulfonic acid, or a combination of any thereof.
Embodiment 12: The method of any one of embodiments 1-11, wherein the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof. Embodiment 13: The method of any one of embodiments 1-12, wherein the conjugate base comprises benzoate.
Embodiment 14: The method of any one of embodiments 1-13, wherein the organic acid is benzoic acid.
Embodiment 15: The method of any one of embodiments 1-14, wherein the alkali metal is sodium or potassium.
Embodiment 16: The method of any one of embodiment s 1-15, wherein the alkali metal salt of the organic acid is sodium benzoate.
Embodiment 17: The method of any one of embodiments 1-16, wherein the composition is homogenous, and wherein the contacting comprises mixing to form the homogenous composition.
Embodiment 18: The method of any one of embodiments 1-17, further comprising adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
Embodiment 19: The method of any one of embodiments 1-18, wherein the nicotine is present in an amount of from about 0.001 to about 10% by weight of the composition, calculated as the free base and based on the total weight of the composition.
Embodiment 20: The method of any one of embodiments 1-19, wherein the at least one filler comprises a cellulose material.
Embodiment 21: The method of embodiment 19, wherein the cellulose material comprises microcrystalline cellulose.
Embodiment 22: The method of embodiment 20, wherein the at least one filler further comprises a cellulose derivative in an amount by weight of from about 1% to about 3%, based on the total weight of the composition.
Embodiment 23: The method of embodiment 22, wherein the cellulose derivative is hydroxypropylcellulose.
Embodiment 24: The method of any one of embodiments 1-23, wherein the composition comprises from about 1 to about 60% by weight of water, based on the total weight of the composition.
Embodiment 25: The method of any one of embodiments 1-24, further comprising adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
Embodiment 26: The method of embodiment 25, wherein the one or more active ingredients selected from the group consisting of botanical materials, stimulants, amino acids, vitamins, antioxidants, cannabinoids, cannabimimetics, terpenes, pharmaceutical agents, and combinations thereof.
Embodiment 27: The method of any one of embodiments 1-26, wherein the composition comprises no more than about 10% by weight of a tobacco material, excluding any nicotine component present, based on the total weight of the composition. Embodiment 28: The method of any one of embodiments 1-27, wherein the composition is free of tobacco material.
Embodiment 29: The method of any one of embodiments 1-28, wherein the composition is enclosed in a pouch to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch.
Embodiment 30: The method of embodiment 29, further comprising contacting the pouched product with water.
These and other features, aspects, and advantages of the disclosure will be apparent from a reading of the following detailed description together with the accompanying drawings, which are briefly described below. The invention includes any combination of two, three, four, or more of the above-noted embodiments as well as combinations of any two, three, four, or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined in a specific embodiment description herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosed invention, in any of its various aspects and embodiments, should be viewed as intended to be combinable unless the context clearly dictates otherwise.
BRIEF DESCRIPTION OF THE DRAWING
Having thus described aspects of the disclosure in the foregoing general terms, reference will now be made to the accompanying drawing, which is not necessarily drawn to scale. The drawing is exemplary only and should not be construed as limiting the disclosure.
FIG. 1 is a perspective view of a pouched product embodiment according to an example embodiment of the present disclosure, including a pouch or fleece at least partially filled with a composition configured for oral use.
FIG. 2 are plots of pH versus LogD for aqueous solutions containing 5% nicotine on a free-base basis, as free base nicotine or nicotine benzoate, along with various equivalents of sodium benzoate according to embodiments of the disclosure.
FIG. 3 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
FIG. 4 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
FIG. 5 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure combined benzoate and octanoate ion paired nicotine on improving the logD.
FIG. 6 are plots of pH versus LogD for aqueous solutions containing 5% free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure.
FIG. 7 are plots of pH versus LogD for pouched products containing 5 mg of free base nicotine and various equivalents of sodium benzoate according to embodiments of the disclosure. DETAILED DESCRIPTION
The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
As used in this specification and the claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise.
Reference to "dry weight percent" or "dry weight basis" refers to weight on the basis of dry ingredients (i.e., all ingredients except water). Reference to "wet weight" refers to the weight of the mixture including water. Unless otherwise indicated, reference to "weight percent" of a mixture reflects the total wet weight of the mixture (i.e., including water).
For customer satisfaction, it is desirable to provide a nicotine-containing composition configured for oral use which retains the initial basic amine content during storage, and which delivers substantially the full amount of basic amine initially present in the composition. The present disclosure provides
Compositions
The present disclosure provides compositions configured for oral use and methods for the preparation thereof. The disclosed compositions comprise at least one filler; nicotine; water; and an alkali metal salt of an organic acid. At least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid. The association is in the form of an ion pair between the nicotine and a conjugate base of the organic acid, or both. The relative amounts of the various components within the composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the composition. The example individual components of the compositions are described further herein below, along with an improved preparative method.
Ion Pairins
As disclosed herein, in the present compositions, at least a portion of the nicotine is associated with at least a portion of an alkali metal salt of an organic acid. Depending on multiple variables (concentration, pH, nature of the organic acid, and the like), the nicotine present in the composition can exist in multiple forms, including ion paired, in solution (i.e., fully solvated), as the free base, as a cation, as a salt, or any combination thereof. In some embodiments, the association between the nicotine and at least a portion of the alkali metal salt of the organic acid is in the form of an ion pair between the nicotine and a conjugate base of the organic acid. Ion pairing describes the partial association of oppositely charged ions in relatively concentrated solutions to form distinct chemical species called ion pairs. The strength of the association (i.e., the ion pairing) depends on the electrostatic force of attraction between the positive and negative ions (i.e., a protonated basic amine such as nicotine, and the conjugate base of the organic acid). By "conjugate base" is meant the base resulting from deprotonation of the corresponding acid (e.g., benzoate is the conjugate base of benzoic acid). On average, a certain population of these ion pairs exists at any given time, although the formation and dissociation of ion pairs is continuous. In the composition as disclosed herein, and/or upon oral use of said composition (e.g., upon contact with saliva), the nicotine and the conjugate base of the organic acid exist at least partially in the form of an ion pair. Without wishing to be bound by theory, it is believed that such ion pairing may minimize chemical degradation of the nicotine and/or enhance the oral availability of the nicotine. At alkaline pH values (e.g., such as from about 7.5 to about 9), nicotine is largely present in the free base form, which has relatively low water solubility, and low stability with respect to evaporation and oxidative decomposition, but high mucosal availability. Conversely, at acidic pH values (such as from about 6.5 to about 4), nicotine is largely present in a protonated form, which has relatively high water-solubility, and higher stability with respect to evaporation and oxidative decomposition, but low mucosal availability. Surprisingly, according to the present disclosure, it has been found that the properties of stability, solubility, and availability of the nicotine in a composition configured for oral use can be mutually enhanced through ion pairing or salt formation of nicotine with appropriate organic acids and/or their conjugate bases. Specifically, nicotine-organic acid ion pairs of moderate lipophilicity result in favorable stability and absorption properties. Lipophilicity is conveniently measured in terms of logP, the partition coefficient of a molecule between a lipophilic phase and an aqueous phase (usually water). Typically, the lipophilic phase is octanol, although other lipophilic solvents may also be used. For avoidance of doubt, reference in the present disclosure to logP means the partition coefficient between octanol and water. Similarly, reference to a logD value herein means a logD obtained by partition between octanol and water (buffered to be at a specific pH value). A logP (or logD) favoring distribution of a nicotine-organic acid ion pair into the lipophilic phase (a positive logP or logD) is predictive of good absorption of the nicotine present in the composition through the oral mucosa.
One of skill in the art will recognize that the extent of ion pairing in the disclosed composition, both before and during use by the consumer, may vary based on, for example, pH, the nature of the organic acid, the concentration of nicotine, the concentration of the conjugate base of the organic acid present in the composition, the moisture content of the composition, the ionic strength of the composition, and the like. One of skill in the art will also recognize that ion pairing is an equilibrium process influenced by the foregoing variables. Accordingly, quantification of the extent of ion pairing is difficult or impossible by calculation or direct observation. However, the presence of ion pairing may be demonstrated through surrogate measures, such as partitioning of a solution comprising an ion paired between octanol and water, or by performing membrane permeation studies of aqueous solutions of nicotine plus organic acids and/or their conjugate bases. Organic acid
As used herein, the term "organic acid" refers to an organic (i.e., carbon-based) compound that is characterized by acidic properties. Typically, organic acids are relatively weak acids (i.e., they do not dissociate completely in the presence of water), such as carboxylic acids (-CO2H) or sulfonic acids (- SO2OH). As used herein, reference to organic acid means an organic acid that is intentionally added. In this regard, an organic acid may be intentionally added as a specific composition ingredient as opposed to merely being inherently present as a component of another composition ingredient (e.g., the small amount of organic acid which may inherently be present in a composition ingredient, such as a tobacco material).
Suitable organic acids will typically have a range of lipophilicities (i.e., a polarity giving an appropriate balance of water and organic solubility). Typically, lipophilicities of suitable organic acids, as indicated by logP, will vary between about 1 and about 12 (more soluble in octanol than in water). In some embodiments, the organic acid has a logP value from about 1 to about 12, e.g., from about 1.0. about 1.5, about 2.0, about 2.5, about 3.0, about 3.5, about 4.0, about 4.5, about 5.0, about 5.5, about 6.0, about 6.5, about 7.0, about 7.5, or about 8.0, to about 8.5, about 9.0, about 9.5, about 10.0, about 10.5, about 11.0, about 11.5, or about 12.0.
Without wishing to be bound by theory, it is believed that moderately lipophilic organic acids (e.g., logP of from about 1.4 to about 4.5) produce ion pairs with nicotine which are of a polarity providing good octanol-water partitioning of the ion pair, and hence partitioning of nicotine, into octanol versus water. As discussed above, such partitioning into octanol is predictive of favorable oral availability.
In specific embodiments, the organic acid has a logP value from about 3.0 to about 8.0, about 10.0, or even 12.0. In some embodiments, the presence of certain solvents or solubilizing agents (e.g., inclusion in the composition of glycerin or propylene glycol) may be beneficial in solubilizing organic acids and the corresponding salts or ion pairs thereof with the basic amine for highly lipophilic organic acids (e.g., higher than about 4.5).
In some embodiments, the organic acid is a carboxylic acid or a sulfonic acid. The carboxylic acid or sulfonic acid functional group may be attached to any alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group having, for example, from one to twenty carbon atoms (C1-C20). In some embodiments, the organic acid is an alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl carboxylic or sulfonic acid.
As used herein, "alkyl" refers to any straight chain or branched chain hydrocarbon. The alkyl group may be saturated (i.e., having all sp3 carbon atoms), or may be unsaturated (i.e., having at least one site of unsaturation). As used herein, the term "unsaturated" refers to the presence of a carbon-carbon, sp2 double bond in one or more positions within the alkyl group. Unsaturated alkyl groups may be mono- or polyunsaturated. Representative straight chain alkyl groups include, but are not limited to, methyl, ethyl, n- propyl, n-butyl, n-pentyl, and n-hexyl. Branched chain alkyl groups include, but are not limited to, isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and 2-methylbutyl. Representative unsaturated alkyl groups include, but are not limited to, ethylene or vinyl, allyl, 1-butenyl, 2-butenyl, isobutylenyl, 1 -pentenyl, 2-pentenyl, 3 -methyl- 1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like. An alkyl group can be unsubstituted or substituted.
"Cycloalkyl" as used herein refers to a carbocyclic group, which may be mono- or bicyclic. Cycloalkyl groups include rings having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as a bicycle. Examples of monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. A cycloalkyl group can be unsubstituted or substituted, and may include one or more sites of unsaturation (e.g., cyclopentenyl or cyclohexenyl).
The term "aryl" as used herein refers to a carbocyclic aromatic group. Examples of aryl groups include, but are not limited to, phenyl and naphthyl. An aryl group can be unsubstituted or substituted.
"Heteroaryl" and "heterocycloalkyl" as used herein refer to an aromatic or non-aromatic ring system, respectively, in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur. The heteroaryl or heterocycloalkyl group comprises up to 20 carbon atoms and from 1 to 3 heteroatoms selected from N, O, and S. A heteroaryl or heterocycloalkyl may be a monocycle having 3 to 7 ring members (for example, 2 to 6 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S) or a bicycle having 7 to 10 ring members (for example, 4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S), for example: a bicyclo[4,5], [5,5], [5,6], or [6,6] system. Examples of heteroaryl groups include by way of example and not limitation, pyridyl, thiazolyl, tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H- indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, benzotriazolyl, benzisoxazolyl, and isatinoyl. Examples of heterocycloalkyls include by way of example and not limitation, dihydroypyridyl, tetrahydropyridyl (piperidyl), tetrahydrothiophenyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, piperazinyl, quinuclidinyl, and morpholinyl. Heteroaryl and heterocycloalkyl groups can be unsubstituted or substituted.
"Substituted" as used herein and as applied to any of the above alkyl, aryl, cycloalkyl, heteroaryl, heterocyclyl, means that one or more hydrogen atoms are each independently replaced with a substituent. Typical substituents include, but are not limited to, -Cl, Br, F, alkyl, -OH, -OCH3, NH2, -NHCH3, -N(CH3)2, -CN, -NC(=O)CH3, -C(=O)-, -C(=O)NH2, and -C(=O)N(CH3)2. Wherever a group is described as "optionally substituted," that group can be substituted with one or more of the above substituents, independently selected for each occasion. In some embodiments, the substituent may be one or more methyl groups or one or more hydroxyl groups.
In some embodiments, the organic acid is an alkyl carboxylic acid. Non-limiting examples of alkyl carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like.
In some embodiments, the organic acid is an alkyl sulfonic acid. Non-limiting examples of alkyl sulfonic acids include propanesulfonic acid, heptanesulfonic acid, and octanesulfonic acid.
In some embodiments, the alkyl carboxylic or sulfonic acid is substituted with one or more hydroxyl groups. Non-limiting examples include glycolic acid, 4-hydroxybutyric acid, and lactic acid.
In some embodiments, an organic acid may include more than one carboxylic acid group or more than one sulfonic acid group (e.g., two, three, or more carboxylic acid groups). Non-limiting examples include oxalic acid, fumaric acid, maleic acid, and glutaric acid. In organic acids containing multiple carboxylic acids (e.g., from two to four carboxylic acid groups), one or more of the carboxylic acid groups may be esterified. Non-limiting examples include succinic acid monoethyl ester, monomethyl fumarate, mo no methyl or dimethyl citrate, and the like.
In some embodiments, the organic acid may include more than one carboxylic acid group and one or more hydroxyl groups. Non-limiting examples of such acids include tartaric acid, citric acid, and the like.
In some embodiments, the organic acid is an aryl carboxylic acid or an aryl sulfonic acid. Nonlimiting examples of aryl carboxylic and sulfonic acids include benzoic acid, toluic acids, salicylic acid, benzenesulfonic acid, and -tohicncsulfonic acid.
Further non-limiting examples of organic acids which may be useful in certain embodiments include 2-(4-isobutylphenyl)propanoic acid, 2,2-dichloroacetic acid, 2-hydroxyethanesulfonic acid, 2-oxoglutaric acid, 4-acetamidobenzoic acid, 4-aminosalicylic acid, adipic acid, ascorbic acid (L), aspartic acid (L), alphamethylbutyric acid, camphoric acid (+), camphor-10-sulfonic acid (+), cinnamic acid, cyclamic acid, dodecylsulfuric acid, ethane- 1,2-disulfonic acid, ethanesulfonic acid, furoic acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, isovaleric acid, lactobionic acid, lauric acid, levulinic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, naphthalene-l,5-disulfonic acid, naphthalene-2-sulfonic acid, oleic acid, palmitic acid, pamoic acid, phenylacetic acid, pyroglutamic acid, pyruvic acid, sebacic acid, stearic acid, and undecylenic acid.
Examples of suitable acids include, but are not limited to, the list of organic acids in Table 1.
Table 1. Non-limiting examples of suitable organic acids
Figure imgf000014_0001
Figure imgf000015_0001
*Values obtained from PubChem or calculated
The selection of organic acid may further depend on additional properties in addition to consideration of the logP value. For example, an organic acid should be one recognized as safe for human consumption, and which has acceptable flavor, odor, volatility, stability, and the like. Determination of appropriate organic acids is within the purview of one of skill in the art.
In some embodiments, the organic acid is a mono ester of a dicarboxylic acid or a poly -carboxylic acid. In some embodiments, the dicarboxylic acid is malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, or a combination thereof. In some embodiments, the dicarboxylic acid is succinic acid, glutaric acid, fumaric acid, maleic acid, or a combination thereof. In some embodiments, the dicarboxylic acid is succinic acid, glutaric acid, or a combination thereof.
In some embodiments, the alcohol forming the mono ester of the dicarboxylic acid is a lipophilic alcohol. Examples of suitable lipophilic alcohols include, but are not limited to, octanol, menthol, and tocopherol. In some embodiments, the organic acid is an octyl mono ester of a dicarboxylic acid, such as monooctyl succinate, monooctyl fumarate, or the like. In some embodiments, the organic acid is a monomenthyl ester of a dicarboxylic acid. Certain menthyl esters may be desirable in oral compositions as described herein by virtue of the cooling sensation they may provide upon use of the product comprising the composition. In some embodiments, the organic acid is monomenthyl succinate, monomenthyl fumarate, monomenthyl glutarate, or a combination thereof. In some embodiments, the organic acid is a monotocopheryl ester of a dicarboxylic acid. Certain tocopheryl esters may be desirable in oral compositions as described herein by virtue of the antioxidant effects they may provide. In some embodiments, the organic acid is tocopheryl succinate, tocopheryl fumarate, tocopheryl glutarate, or a combination thereof.
In some embodiments, the organic acid is a carotenoid derivative having one or more carboxylic acids. Carotenoids are tetraterpenes, meaning that they are produced from 8 isoprene molecules and contain 40 carbon atoms. Accordingly, they are usually lipophilic due to the presence of long unsaturated aliphatic chains, and are generally yellow, orange, or red in color. Certain carotenoid derivatives can be advantageous in oral compositions by virtue of providing both ion pairing and serving as a colorant in the composition. In some embodiments, the organic acid is 2E,4E,6E,8E,10E,12E,14E,16Z,18£)-20-methoxy- 4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid (bixin) or an isomer thereof. Bixin is an apocarotenoid found in annatto seeds from the achiote tree (Bixa orellana) and is the naturally occurring pigment providing the reddish orange color to annatto. Bixin is soluble in fats and alcohols but insoluble in water, and is chemically unstable when isolated, converting via isomerization into the double bond isomer, trans-bixin ( -bixin), having the structure:
Figure imgf000016_0001
In some embodiments, the organic acid is (2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17- tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaenedioic acid (norbixin), a water-soluble hydrolysis product of bixin having the structure:
Figure imgf000016_0002
In some embodiments, more than one organic acid may be present. For example, the composition may comprise two, or three, or four, or more organic acids. Accordingly, reference herein to "an organic acid" contemplates mixtures of two or more organic acids. The relative amounts of the multiple organic acids may vary. For example, a composition may comprise equal amounts of two, or three, or more organic acids, or may comprise different relative amounts. In this manner, it is possible to include certain organic acids (e.g., citric acid or myristic acid) which have a logP value outside the desired range, when combined with other organic acids to provide the desired average logP range for the combination. In some embodiments, it may be desirable to include organic acids in the composition which have logP values outside the desired range for purposes such as, but not limited to, providing desirable organoleptic properties, stability, as flavor components, and the like. Further, certain lipophilic organic acids have undesirable flavor and or aroma characteristics which would preclude their presence as the sole organic acid (e.g., in equimolar or greater quantities relative to nicotine). Without wishing to be bound by theory, it is believed that a combination of different organic acids may provide the desired ion pairing while the concentration of any single organic acid in the composition remains below the threshold which would be found objectionable from a sensory perspective.
In some embodiments, the composition comprises an organic acid which is a monoester of a dicarboxylic acid or is a carotenoid derivative having one or more carboxylic acids as described herein above, and further comprises an additional organic acid or salt thereof. In some embodiments, the additional organic acid is benzoic acid, an alkali metal salt thereof, or a combination thereof.
In some embodiments, the composition comprises an alkali metal salt of an organic acid. For example, at least a portion of the organic acid may be present in the composition in the form of an alkali metal salt. Suitable alkali metal salts include lithium, sodium, and potassium. In some embodiments, the alkali metal is sodium or potassium. In some embodiments, the alkali metal is sodium. In some embodiments, the composition comprises an organic acid and a sodium salt of the organic acid. In some embodiments, the composition comprises sodium benzoate.
The amount of alkali metal salt of the organic acid present in the composition, relative to the nicotine, may vary, and may be expressed as the concentration of conjugate base of the organic acid. Generally, as the concentration of the conjugate base of the organic acid increases, the percent of nicotine that is ion paired increases. This typically increases the partitioning of the nicotine, in the form of an ion pair, into octanol versus water as measured by the logP (the logic of the partitioning coefficient). In some embodiments, the composition comprises from about 0.05, about 0.1, about 1, about 1.5, about 2, or about 5, to about 10, about 15, or about 20 molar equivalents of the conjugate base of the organic acid, relative to the nicotine, calculated as the free base of the nicotine.
In some embodiments, the composition comprises from about 2 to about 10, or from about 2 to about 5 molar equivalents of the conjugate base of the organic acid, relative to the nicotine, on a free-base basis. In some embodiments, the conjugate base of the organic acid is present in a molar ratio with nicotine from about 2, about 3, about 4, or about 5, to about 6, about 7, about 8, about 9, or about 10. In some embodiments, the conjugate base of the organic acid is present in a molar ratio with nicotine from about 3 to about 6. In embodiments wherein more than one conjugate base (e.g., from multiple organic acid alkali metal salts) is present, it is to be understood that such molar ratios reflect the totality of the conjugate bases of the organic acids present.
In certain embodiments the conjugate base of the organic acid inclusion is sufficient to provide a composition pH of from about 4.0 to about 9.0, such as from about 4.5 to about 7.0, or from about 5.5 to about 7.0, from about 4.0 to about 5.5, or from about 7.0 to about 9.0. In some embodiments, the inclusion is sufficient to provide a composition pH of from about 4.5 to about 6.5, for example, from about 4.5, about 5.0, or about 5.5, to about 6.0, or about 6.5. In some embodiments, the alkali metal salt of the organic acid is provided in a quantity sufficient to provide a pH of the composition of from about 5.5 to about 6.5, for example, from about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0, to about 6.1, about 6.2, about 6.3, about 6.4, or about 6.5. In other embodiments, a mineral acid (e.g., hydrochloric acid, sulfuric acid, phosphoric acid, or the like) is added to adjust the pH of the composition to the desired value.
In some embodiments, the conjugate base (i.e., an alkali metal salt of the organic acid) is added either neat (i.e., native solid or liquid form) or as a solution in, e.g., water, to the other composition components as described hereinbelow. In some embodiments, the conjugate base (i.e., an alkali metal salt of the organic acid) is added, either neat or as a solution in, e.g., water, to the other composition components.
In particular embodiments, the composition comprises nicotine and sodium benzoate, wherein at least a portion of the nicotine and benzoate ions present are in an ion paired form.
In some embodiments, the oral composition further comprises a solubility enhancer to increase the solubility of the alkali metal salt of the organic acid. Suitable solubility enhancers include, but are not limited to, humectants as described herein, such as glycerol or propylene glycol.
Nicotine
The composition as disclosed herein comprises nicotine. Generally, the nicotine is released from the composition and absorbed through the oral mucosa, thereby entering the blood stream, where it is circulated systemically. The source of the nicotine present in the composition may vary and may be natural or synthetic. Nicotine may be tobacco-derived (e.g., a tobacco extract) or non-tobacco derived (e.g., synthetic or otherwise obtained). Most preferably, the nicotine is naturally occurring and obtained as an extract from a Nicotiana species (e.g., tobacco). The nicotine can have the enantiomeric form S(-)-nicotine, R(+)-nicotine, or a mixture of .S'(-)-nicotinc and R (+) -nicotine. Most preferably, the nicotine is in the form of .S'(-)-nicotinc (e.g., in a form that is virtually all S(-)-nicotine) or a racemic mixture composed primarily or predominantly of .S'(-)-nicotinc (e.g., a mixture composed of about 95 weight parts .S'(-)-nicotinc and about 5 weight parts R(+)-nicotine). Most preferably, the nicotine is employed in virtually pure form or in an essentially pure form. Highly preferred nicotine that is employed has a purity of greater than about 95 percent, more preferably greater than about 98 percent, and most preferably greater than about 99 percent, on a weight basis.
Typically, the nicotine is selected from the group consisting of nicotine free base, nicotine as an ion pair, and a nicotine salt. In some embodiments, at least a portion of the nicotine is in its free base form. In some embodiments, at least a portion of the nicotine is present as a nicotine salt, or at least a portion of the nicotine is present as an ion pair with at least a portion of the conjugate base of the organic acid, as disclosed herein above.
Typically, the nicotine (calculated as the free base) is present in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%. In some embodiments, the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition. In some embodiments, the nicotine is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition.
Filler
The composition as described herein comprises at least one fdler. Fillers may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
The amount of filler can vary but is typically up to about 75 percent of the composition by weight, based on the total weight of the composition. A typical range of filler within the composition can be from about 10 to about 75 percent by total weight of the composition, for example, from about 10, about 15, about 20, about 25, or about 30, to about 35, about 40, about 45, or about 50 weight percent (e.g., about 20 to about 50 weight percent or about 25 to about 45 weight percent). In certain embodiments, the amount of filler is at least about 10 percent by weight, such as at least about 20 percent, or at least about 25 percent, or at least about 30 percent, or at least about 35 percent, or at least about 40 percent, based on the total weight of the composition.
Generally, fillers are porous particulate materials and are cellulose-based. For example, suitable fillers are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources. Examples of cellulosic non-tobacco plant material include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX® brand filler available from International Fiber Corporation), bran fiber, and mixtures thereof. Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, com), natural cellulose, and modified cellulosic materials.
"Starch" as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the mixture based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used. For example, major sources of starch include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava). Other examples of sources of starch include acoms, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams. Certain starches are modified starches. A modified starch has undergone one or more structural modifications, often designed to alter its high heat properties. Some starches have been developed by genetic modifications and are considered to be "modified" starches. Other starches are obtained and subsequently modified. For example, modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, enzyme treatment, acetylation, hydroxypropylation, and/or partial hydrolysis. Other starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes. Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
Additional examples of potential fillers include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, and sugar alcohols. Combinations of fillers can also be used. In some embodiments, the filler comprises or is a mixture of glucose and starch-derived polysaccharides. One such suitable mixture of glucose and starch-derived polysaccharides is EMDEX®, available from JRS PHARMA LP, USA, 2981 Route 22, Patterson, NY 12563-2359.
In some embodiments, the particulate filler is a cellulose material or cellulose derivative. One particularly suitable particulate filler for use in the compositions described herein is microcrystalline cellulose ("mcc"). The mcc may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses. The mcc may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH- 103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof. In one embodiment, the composition comprises mcc as the particulate fdler. The quantity of mcc present may vary according to the desired properties.
In some embodiments, the filler further comprises a cellulose derivative or a combination of such derivatives. In some embodiments, the composition comprises from about 1 to about 10% of the cellulose derivative by weight, based on the total weight of the composition, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative, or about 1 to about 3% by weight of cellulose derivative. In certain embodiments, the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group. Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC"), hydroxypropylmethylcellulose ("HPMC"), hydroxyethyl cellulose, and carboxymethylcellulose ("CMC"). In one embodiment, the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC. In one embodiment, the cellulose derivative is HPC. In some embodiments, the composition comprises from about 1 to about 3% HPC by weight, based on the total weight of the composition. Water
The water content of the composition, prior to use by a consumer of the composition, may vary according to the desired properties. Typically, the composition is less than about 60 percent by weight of water, and generally is from about 1 to about 60% by weight of water, for example, from about 5 to about 55, about 10 to about 50, about 20 to about 45, or about 25 to about 40 percent water by weight, including water amounts of at least about 5% by weight, at least about 10% by weight, at least about 15% by weight, and at least about 20% by weight. In some embodiments, the composition is less than about 10 percent by weight of water, such as about 9 weight percent or less, about 7 weight percent or less, about 5 weight percent or less, about 4 weight percent or less, about 3 weight percent or less, or about 2 weight percent or less. In some embodiments, the water content of the composition is in a range from about 0.1 weight percent to about 10 weight percent, based on the total weight of the composition.
Active ingredient
The composition as disclosed herein, in certain embodiments, comprises an active ingredient in addition to the nicotine present. As used herein, an "active ingredient" refers to one or more substances belonging to any of the following categories: API (active pharmaceutical substances), food additives, natural medicaments, and naturally occurring substances that can have an effect on humans. Example active ingredients include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body). In some embodiments, the active ingredient may be of the type generally referred to as dietary supplements, nutraceuticals, "phytochemicals" or "functional foods". These types of additives are sometimes defined in the art as encompassing substances typically available from naturally-occurring sources (e.g., botanical materials) that provide one or more advantageous biological effects (e.g., health promotion, disease prevention, or other medicinal properties), but are not classified or regulated as drugs.
Non-limiting examples of active ingredients include those falling in the categories of botanical ingredients, stimulants, amino acids, and/or pharmaceutical, nutraceutical, and medicinal ingredients (e.g., vitamins, such as B6, B12, and C, and/or cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD)). Each of these categories is further described herein below. The particular choice of active ingredients will vary depending upon the desired flavor, texture, and desired characteristics of the particular product.
The particular percentages of active ingredients present will vary depending upon the desired characteristics of the particular product. Typically, an active ingredient or combination thereof is present in a total concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 20%. In some embodiments, the active ingredient or combination of active ingredients is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about from about 0.5% w/w to about 10%, from about 1% to about 10%, from about 1% to about 5% by weight, based on the total weight of the composition. In some embodiments, the active ingredient or combination of active ingredients is present in a concentration of from about 0.001%, about 0.01%, about 0.1% , or about 1%, up to about 20% by weight, such as, e.g., from about from about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20% by weight, based on the total weight of the composition. Further suitable ranges for specific active ingredients are provided herein below.
Botanical
In some embodiments, the active ingredient comprises a botanical ingredient. As used herein, the term "botanical ingredient" or "botanical" refers to any plant material or fungal-derived material, including plant material in its natural form and plant material derived from natural plant materials, such as extracts or isolates from plant materials or treated plant materials (e.g., plant materials subjected to heat treatment, fermentation, bleaching, or other treatment processes capable of altering the physical and/or chemical nature of the material). For the purposes of the present disclosure, a "botanical" includes, but is not limited to, "herbal materials," which refer to seed-producing plants that do not develop persistent woody tissue and are often valued for their medicinal or sensory characteristics (e.g., teas or tisanes). Reference to botanical material as "non-tobacco" is intended to exclude tobacco materials (i.e., does not include any Nicotiana species).
When present, a botanical is typically at a concentration of from about 0.01% w/w to about 10% by weight, such as, e.g., from about from about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the effervescent composition.
The botanical materials useful in the present disclosure may comprise, without limitation, any of the compounds and sources set forth herein, including mixtures thereof. Certain botanical materials of this type are sometimes referred to as dietary supplements, nutraceuticals, "phytochemicals" or "functional foods." Certain botanicals, as the plant material or an extract thereof, have found use in traditional herbal medicine, and are described further herein.
Non-limiting examples of non-tobacco botanical materials include without limitation acai berry (Euterpe oleracea martius), acerola (Malpighia glabra), alfalfa, allspice, Angelica root, anise (e.g., star anise), annatto seed, apple (Malus domestica), apricot oil, ashwagandha, Bacopa monniera, baobab, basil (Ocimum basilicum), bay, bee balm, beet root, bergamot, blackberry (Morus nigra), black cohosh, black pepper, black tea, blueberries, boldo (Peumus boldus), borage, bugleweed, cacao, calamus root, camu (Myrcaria dubia), cannabis/hemp, caraway seed, cardamom, cassis, catnip, catuaba, cayenne pepper, Centella asiatica, chaga mushroom, Chai-hu, chamomile, cherry, chervil, chive, chlorophyll, chocolate, cilantro, cinnamon (Cinnamomum cassia), citron grass (Cymbopogon citratus), citrus, clary sage, cloves, coconut (Cocos nucifera), coffee, comfrey leaf and root, cordyceps, coriander seed, cranberry, cumin, curcumin, damiana, dandelion, Dorstenia arifolia, Dorstenia odorata, Echinacea, elderberry, elderflower, endro (Anethum graveolens), evening primrose, eucalyptus, fennel, feverfew, flax, Galphimia glauca, garlic, ginger (Zingiber officinale), gingko biloba, ginseng, goji berries, goldenseal, grape seed, grapefruit, grapefruit rose (Citrus paradisi), graviola (Annona muricata), green tea, guarana, gutu kola, hawthorn, hazel, hemp, hibiscus flower (Hibiscus sabdariffa), honeybush, hops, jiaogulan, jambu (Spilanthes oleraceae), jasmine (Jasminum officinale), juniper berry (Juniperus communis), Kaempferia parviflora (Thai ginseng), kava, laurel, lavender, lemon (Citrus limon), lemon balm, lemongrass, licorice, lilac, Lion’s mane, lutein, maca (Lepidium meyenii), mace, maijoram, matcha, milk thistle, mints (menthe), mulberry, Nardostachys chinensis, nutmeg, olive, oolong tea, orange (Citrus sinensis), oregano, papaya, paprika, pennyroyal, peppermint (Mentha piperita), pimento, potato peel, primrose, quercetin, quince, red clover, resveratrol, Rhizoma gastrodiae, Rhodiola, rooibos (red or green), rosehip (Rosa canina), rosemary, saffron, sage, Saint John's Wort, sandalwood, salvia (Salvia officinalis), savory, saw palmetto, Sceletium tortuosum, Schisandra, silybum marianum, Skullcap, spearmint, Spikenard, spirulina, slippery elm bark, sorghum bran hi-tannin, sorghum grain hi-tannin, spearmint (Mentha spicata), spirulina, star anise, sumac bran, tarragon, thyme, tisanes, turmeric, Turnera aphrodisiaca, uva ursi, valerian, vanilla, Viola odorata, wild yam root, Wintergreen, withania somnifera, yacon root, yellow dock, yerba mate, and yerba santa.
Stimulants
In some embodiments, the active ingredient comprises one or more stimulants. As used herein, the term "stimulant" refers to a material that increases activity of the central nervous system and/or the body, for example, enhancing focus, cognition, vigor, mood, alertness, and the like. Non-limiting examples of stimulants include caffeine, theacrine, theobromine, and theophylline. Theacrine (1,3,7,9-tetramethyluric acid) is a purine alkaloid which is structurally related to caffeine, and possesses stimulant, analgesic, and anti-inflammatory effects. Present stimulants may be natural, naturally derived, or wholly synthetic. For example, certain botanical materials (guarana, tea, coffee, cocoa, and the like) may possess a stimulant effect by virtue of the presence of e.g., caffeine or related alkaloids, and accordingly are "natural" stimulants. By "naturally derived" is meant the stimulant (e.g., caffeine, theacrine) is in a purified form, outside its natural (e.g., botanical) matrix. For example, caffeine can be obtained by extraction and purification from botanical sources (e.g., tea). By "wholly synthetic", it is meant that the stimulant has been obtained by chemical synthesis. In some embodiments, the active ingredient comprises caffeine. In some embodiments, the active ingredient is caffeine. In some embodiments, the caffeine is present in an encapsulated form. On example of an encapsulated caffeine is Vitashure®, available from Balchem Corp., 52 Sunrise Park Road, New Hampton, NY, 10958.
When present, a stimulant or combination of stimulants (e.g., caffeine, theacrine, and combinations thereof) is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
Amino acids
In some embodiments, the active ingredient comprises an amino acid. As used herein, the term "amino acid" refers to an organic compound that contains amine (-NH2) and carboxyl (-COOH) or sulfonic acid (SO3H) functional groups, along with a side chain (R group), which is specific to each amino acid. Amino acids may be proteinogenic or non-proteinogenic. By "proteinogenic" is meant that the amino acid is one of the twenty naturally occurring amino acids found in proteins. The proteinogenic amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. By "non-proteinogenic" is meant that either the amino acid is not found naturally in protein, or is not directly produced by cellular machinery (e.g., is the product of post-tranlational modification). Non-limiting examples of non-proteinogenic amino acids include gamma-aminobutyric acid (GABA), taurine (2- aminoethanesulfonic acid), theanine (L-y-glutamylethylamide), hydroxyproline, and beta-alanine.
When present, an amino acid or combination of amino acids (e.g., taurine, theanine, and combinations thereof) is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the effervescent composition.
Vitamins and Minerals
In some embodiments, the active ingredient comprises a vitamin or combination of vitamins. As used herein, the term "vitamin" refers to an organic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of metabolism in a mammal. There are thirteen vitamins required by human metabolism, which are: vitamin A (as all-trans-retinol, all-trans-retinyl-esters, as well as all-trans-beta-carotene and other provitamin A carotenoids), vitamin Bl (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), vitamin B12 (cobalamins), vitamin C (ascorbic acid), vitamin D (calciferols), vitamin E (tocopherols and tocotrienols), and vitamin K (quinones). In some embodiments, the active ingredient comprises vitamin C. In some embodiments, the active ingredient is a combination of vitamin C, caffeine, and taurine. In some embodiments, the active ingredient comprises one or more of vitamin B6 and B12. In some embodiments, the active ingredient comprises theanine and one or more of vitamin B6 and B12.
When present, a vitamin or combination of vitamins (e.g., vitamin B6, vitamin B12, vitamin E, vitamin C, or a combination thereof) is typically at a concentration of from about 0.01% w/w to about 1% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% w/w, to about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% by weight, based on the total weight of the composition.
In some embodiments, the active ingredient comprises vitamin A. In some embodiments, the vitamin A is encapsulated. In some embodiments, the vitamin is vitamin B6, vitamin B12, vitamin E, vitamin C, or a combination thereof.
In some embodiments, the active ingredient comprises a mineral. As used herein, the term "mineral" refers to an inorganic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of various systems in a mammal. Non-limiting examples of minerals include iron, zinc, copper, selenium, chromium, cobalt, manganese, calcium, phosphorus, sulfur, magnesium, and the like. In some embodiments, the active ingredient comprises iron. Suitable sources of iron include, but are not limited to, ferrous salts such as ferrous sulfate and ferrous gluconate. In some embodiments, the iron is encapsulated.
Cannabinoids
In some embodiments, the active ingredient comprises one or more cannabinoids. As used herein, the term "cannabinoid" refers to a class of diverse natural or synthetic chemical compounds that acts on cannabinoid receptors (i.e., CB1 and CB2) in cells that alter neurotransmitter release in the brain. Cannabinoids are cyclic molecules exhibiting particular properties such as the ability to easily cross the blood-brain barrier. Cannabinoids may be naturally occurring (Phytocannabinoids) from plants such as cannabis, (endocannabinoids) from animals, or artificially manufactured (synthetic cannabinoids). Cannabis species express at least 85 different phytocannabinoids, and these may be divided into subclasses, including cannabigerols, cannabichromenes, cannabidiols, tetrahydrocannabinols, cannabinols and cannabinodiols, and other cannabinoids, such as cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBD A), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabmolic acid (THCA), and tetrahydrocannabivarinic acid (THCV A). In some embodiments, the cannabinoid is selected from the group consisting of cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBDA), Cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarinic acid (THCV A), and mixtures thereof. In some embodiments, the cannabinoid comprises at least tetrahydrocannabinol (THC). In some embodiments, the cannabinoid is tetrahydrocannabinol (THC). In some embodiments, the cannabinoid comprises at least cannabidiol (CBD). In some embodiments, the cannabinoid is cannabidiol (CBD). In some embodiments, the CBD is synthetic CBD.
In some embodiments, the cannabinoid (e.g., CBD) is added to the composition in the form of an isolate. An isolate is an extract from a plant, such as cannabis, where the active material of interest (in this case the cannabinoid, such as CBD) is present in a high degree of purity, for example greater than 95%, greater than 96%, greater than 97%, greater than 98%, or around 99% purity.
In some embodiments, the cannabinoid is an isolate of CBD in a high degree of purity, and the amount of any other cannabinoid in the composition is no greater than about 1% by weight of the composition, such as no greater than about 0.5% by weight of the composition, such as no greater than about 0.1% by weight of the composition, such as no greater than about 0.01% by weight of the composition.
The choice of cannabinoid and the particular percentages thereof which may be present within the disclosed composition will vary depending upon the desired flavor, texture, and other characteristics of the composition.
In some embodiments, the cannabinoid (such as CBD) is present in the composition in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 2% by weight of the composition. In some embodiments, the cannabinoid (such as CBD) is present in the composition in a concentration of from about 0.1% to about 1.5% by weight, based on the total weight of the composition. In some embodiments, the cannabinoid (such as CBD) is present in a concentration from about 0.4% to about 1.5% by weight, based on the total weight of the oral composition.
Alternatively, or in addition to the cannabinoid, the active ingredient may include a cannabimimetic, which is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids. Examples include yangonin, alpha-amyrin or beta-amyrin (also classified as terpenes), cyanidin, curcumin (tumeric), catechin, quercetin, salvinorin A, N- acylethanolamines, and N-alkylamide lipids. Such compounds can be used in the same amounts and ratios noted herein for cannabinoids.
Terpenes
Active ingredients suitable for use in the present disclosure can also be classified as terpenes, many of which are associated with biological effects, such as calming effects. Terpenes are understood to have the general formula of (C5H8)n and include monoterpenes, sesquiterpenes, and diterpenes. Terpenes can be acyclic, monocyclic or bicyclic in structure. Some terpenes provide an entourage effect when used in combination with cannabinoids or cannabimimetics. Examples include beta-caryophyllene, linalool, limonene, beta-citronellol, linalyl acetate, pinene (alpha or beta), geraniol, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, and germacrene, which may be used singly or in combination.
In some embodiments, the terpene is a terpene derivable from a phytocannabinoid producing plant, such as a plant from the stain of the cannabis sativa species, such as hemp. Suitable terpenes in this regard include so-called “CIO” terpenes, which are those terpenes comprising 10 carbon atoms, and so-called “C15” terpenes, which are those terpenes comprising 15 carbon atoms. In some embodiments, the active ingredient comprises more than one terpene. For example, the active ingredient may comprise one, two, three, four, five, six, seven, eight, nine, ten or more terpenes as defined herein. In some embodiments, the terpene is selected from pinene (alpha and beta), geraniol, linalool, limonene, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, germacrene and mixtures thereof.
Antioxidants
In some embodiments, the active ingredient comprises one or more antioxidants. As used herein, the term "antioxidant" refers to a substance which prevents or suppresses oxidation by terminating free radical reactions and may delay or prevent some types of cellular damage. Antioxidants may be naturally occurring or synthetic. Naturally occurring antioxidants include those found in foods and botanical materials. Non-limiting examples of antioxidants include certain botanical materials, vitamins, polyphenols, and phenol derivatives.
Examples of botanical materials which are associated with antioxidant characteristics include without limitation acai berry, alfalfa, allspice, annatto seed, apricot oil, basil, bee balm, wild bergamot, black pepper, blueberries, borage seed oil, bugleweed, cacao, calamus root, catnip, catuaba, cayenne pepper, chaga mushroom, chervil, cinnamon, dark chocolate, potato peel, grape seed, ginseng, gingko biloba, Saint John's Wort, saw palmetto, green tea, black tea, black cohosh, cayenne, chamomile, cloves, cocoa powder, cranberry, dandelion, grapefruit, honeybush, echinacea, garlic, evening primrose, feverfew, ginger, goldenseal, hawthorn, hibiscus flower, jiaogulan, kava, lavender, licorice, magoram, milk thistle, mints (menthe), oolong tea, beet root, orange, oregano, papaya, pennyroyal, peppermint, red clover, rooibos (red or green), rosehip, rosemary, sage, clary sage, savory, spearmint, spirulina, slippery elm bark, sorghum bran hi- tannin, sorghum grain hi-tannin, sumac bran, comfrey leaf and root, goji berries, gutu kola, thyme, turmeric, uva ursi, valerian, wild yam root, Wintergreen, yacon root, yellow dock, yerba mate, yerba santa, bacopa monniera, withania somnifera, Lion’s mane, and silybum marianum. Such botanical materials may be provided in fresh or dry form, essential oils, or may be in the form of an extracts. The botanical materials (as well as their extracts) often include compounds from various classes known to provide antioxidant effects, such as minerals, vitamins, isoflavones, phytoesterols, allyl sulfides, dithiolthiones, isothiocyanates, indoles, lignans, flavonoids, polyphenols, and carotenoids. Examples of compounds found in botanical extracts or oils include ascorbic acid, peanut endocarb, resveratrol, sulforaphane, beta-carotene, lycopene, lutein, coenzyme Q, carnitine, quercetin, kaempferol, and the like. See, e.g., Santhosh et al., Phytomedicine, 12(2005) 216-220, which is incorporated herein by reference.
Non-limiting examples of other suitable antioxidants include citric acid, Vitamin E or a derivative thereof, a tocopherol, epicatechol, epigallocatechol, epigallocatechol gallate, erythorbic acid, sodium erythorbate, 4-hexylresorcinol, theaflavin, theaflavin monogallate A or B, theaflavin digallate, phenolic acids, glycosides, quercitrin, isoquercitrin, hyperoside, polyphenols, catechols, resveratrols, oleuropein, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and combinations thereof.
When present, an antioxidant is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about from about 0.001%, about 0.005%, about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, based on the total weight of the composition.
Pharmaceutical ingredients
In some embodiments, the active ingredient comprises an active pharmaceutical ingredient (API). The API can be any known agent adapted for therapeutic, prophylactic, or diagnostic use. These can include, for example, synthetic organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, phospholipids, inorganic compounds (e.g., magnesium, selenium, zinc, nitrate), neurotransmitters or precursors thereof (e.g., serotonin, 5 -hydroxy tryptophan, oxitriptan, acetylcholine, dopamine, melatonin), and nucleic acid sequences, having therapeutic, prophylactic, or diagnostic activity. Non-limiting examples of APIs include analgesics and antipyretics (e.g., acetylsalicylic acid, acetaminophen, 3-(4- isobutylphenyl)propanoic acid), phosphatidylserine, myoinositol, docosahexaenoic acid (DHA, Omega-3), arachidonic acid (AA, Omega-6), S-adenosylmethionine (SAM), beta-hydroxy-beta-methylbutyrate (HMB), citicoline (cytidine-5'-diphosphate-choline), and cotinine.
When present, the amount of API may vary. For example, when present, an API is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1%, to about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, based on the total weight of the composition.
Encapsulation and Stabilization of Active Ingredients
In some embodiments, the active ingredient as described herein may be sensitive to degradation (e.g., oxidative, photolytic, thermal, evaporative) during processing or upon storage of the composition. In such embodiments, the active ingredient (such as caffeine, vitamin A, and iron (Fe)) may be encapsulated, or the composition otherwise modified with suitable components (such as fillers, binders, and the like), to provide enhanced stability to the active ingredient. For example, binders such as functional celluloses (e.g., cellulose ethers including, but not limited to, hydroxypropyl cellulose) or alginate-based materials (e.g., cross linked alginate) may be employed to enhance stability of such actives toward degradation, or to provide extended and/or separate delivery of active ingredients. Additionally, encapsulated actives may need to be paired with an excipient in the composition to increase their solubility and/or bioavailability. Non-limiting examples of suitable excipients include beta-carotene, lycopene, Vitamin D, Vitamin E, Coenzyme Q10, Vitamin K, and curcumin.
In other embodiments, in order to provide a desired concentration of the active ingredient by weight, an initial quantity of the active ingredient may be increased to compensate for a gradual degradative loss. Accordingly, larger initial amounts than those disclosed herein are contemplated by the present disclosure.
Flavoring agent
In some embodiments, the composition as described herein comprises a flavoring agent. As used herein, a "flavoring agent" or "flavorant" is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product. Examples of sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma. Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
Flavoring agents may be imitation, synthetic or natural ingredients or blends thereof. Flavoring agents may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, Wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fmit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, khat, naswar, betel, shisha, pine, honey essence, rose oil, vanilla, lemon oil, orange oil, orange blossom, cherry blossom, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, wasabi, piment, ginger, coriander, coffee, hemp, a mint oil from any species of the genus Mentha, eucalyptus, star anise, cocoa, lemongrass, rooibos, flax, ginkgo biloba, hazel, hibiscus, laurel, mate, orange skin, rose, tea such as green tea or black tea, thyme, juniper, elderflower, basil, bay leaves, cumin, oregano, paprika, rosemary, saffron, lemon peel, mint, beefsteak plant, curcuma, cilantro, myrtle, cassis, valerian, pimento, mace, damien, maijoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, limonene, thymol, camphene), flavor enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars and/or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as charcoal, chlorophyll, minerals, botanicals, or breath freshening agents.
Flavorants may further include flavor enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, and trigeminal sensates, As used herein, "trigeminal sensate" refers to a flavoring agent which has an effect on the trigeminal nerve, producing sensations including heating, cooling, tingling, and the like. Non-limiting examples of trigeminal sensate flavoring agents include capsaicin, citric acid, menthol, Sichuan buttons, erythritol, and cubebol. A suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether, and a suitable cooling agent may be, but is not limited to eucalyptol or N-ethyl-p-menthane-3-carboxamide (WS-3).
Flavoring agents may be in any suitable form, for example, liquid such as an oil, solid such as a powder, or gas. In some instances, the flavoring agent may be provided in a spray-dried form or a liquid form. In some embodiments, a liquid flavorant is disposed (i.e., adsorbed or absorbed in or on) a porous particulate carrier, for example microcrystalline cellulose, which is then combined with the other composition ingredients.
The amount of flavoring agent utilized in the composition can vary, but is typically up to about 10% by weight, and certain embodiments are characterized by a flavoring agent content of at least about 0.1% by weight, such as about 0.5 to about 10%, about 1 to about 5%, or about 2 to about 4% weight, based on the total weight of the composition.
Taste modifiers
In order to improve the organoleptic properties of a composition as disclosed herein, the composition may include one or more taste modifying agents ("taste modifiers") which may serve to mask, alter, block, or improve e.g., the flavor of a composition as described herein. Non-limiting examples of such taste modifiers include analgesic or anesthetic herbs, spices, and flavors which produce a perceived cooling (e.g., menthol, eucalyptus, mint), warming (e.g., cinnamon), or painful (e.g., capsaicin) sensation. Certain taste modifiers fall into more than one overlapping category.
In some embodiments, the taste modifier modifies one or more of bitter, sweet, salty, or sour tastes. In some embodiments, the taste modifier targets pain receptors. In some embodiments, the composition comprises an active ingredient having a bitter taste, and a taste modifier which masks or blocks the perception of the bitter taste. In some embodiments, the taste modifier is a substance which targets pain receptors (e.g., vanilloid receptors) in the user's mouth to mask e.g., a bitter taste of another component (e.g., an active ingredient). Suitable taste modifiers include, but are not limited to, capsaicin, gamma-amino butyric acid (GABA), adenosine monophosphate (AMP), lactisole, or a combination thereof.
When present, a representative amount of taste modifier is about 0.01% by weight or more, about 0.1% by weight or more, or about 1.0% by weight or more, but will typically make up less than about 10% by weight of the total weight of the composition, (e.g., from about 0.01%, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 5%, or about 10% by weight of the total weight of the composition). Salts
In some embodiments, the composition may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the composition. Nonlimiting examples of suitable salts include sodium chloride, potassium chloride, ammonium chloride, flour salt, and the like.
When present, a representative amount of salt is about 0.5 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the composition, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight).
Sweeteners
In order to improve the sensory properties of the composition according to the disclosure, one or more sweeteners may be added. The sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners. Examples of natural sweeteners include fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like. Examples of artificial sweeteners include sucralose, isomaltulose, maltodextrin, saccharin, aspartame, acesulfame K, neotame, and the like. In some embodiments, the sweetener comprises one or more sugar alcohols. Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form. Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates). In some embodiments, the sweetener is sucralose, acesulfame K, or a combination thereof.
When present, a sweetener or combination of sweeteners may make up from about 0.01 to about 20% or more of the of the composition by weight, for example, from about 0.01 to about 0.1, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% by weight, based on the total weight of the composition. In some embodiments, a combination of sweeteners is present at a concentration of from about 0.01% to about 0.1% by weight of the composition, such as about 0.01, about 0.02, about 0.03, about 0.04, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, or about 0.1% by weight of the composition. In some embodiments, a combination of sweeteners is present at a concentration of from about 0.1% to about 0.5% by weight of the composition, such as about 0.1, about 0.2, about 0.3, about 0.4, or about 0.5% by weight of the composition. In some embodiments, a combination of sweeteners is present at a concentration of from about 1% to about 3% by weight of the composition.
Bindins agents
A binder (or combination of binders) may be employed in certain embodiments. Typical binders can be organic or inorganic, or a combination thereof. Representative binders include povidone, sodium alginate, starch-based binders, pectin, carrageenan, pullulan, zein, and the like, and combinations thereof. A binder may be employed in amounts sufficient to provide the desired physical attributes and physical integrity to the composition. The amount of binder utilized in the composition can vary, but is typically up to about 30 weight percent, and certain embodiments are characterized by a binder content of at least about 0.1% by weight, such as about 1 to about 30% by weight, or about 5 to about 10% by weight, based on the total weight of the composition.
Other suitable binders include a gum, for example, a natural gum. As used herein, a natural gum refers to polysaccharide materials of natural origin that have binding properties, and which are also useful as a thickening or gelling agents. Representative natural gums derived from plants, which are typically water soluble to some degree, include xanthan gum, guar gum, gum arabic, ghatti gum, gum tragacanth, karaya gum, locust bean gum, gellan gum, and combinations thereof. When present, natural gum binder materials are typically present in an amount of up to about 5% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, to about 2, about 3, about 4, or about 5% by weight, based on the total weight of the composition.
Humectants
In certain embodiments, one or more humectants may be employed in the composition. Examples of humectants include, but are not limited to, polyols such as glycerin, propylene glycol, and the like. Where included, the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition. Further, in some instances, the humectant may impart desirable flow characteristics to the composition for depositing in a mold.
When present, a humectant will typically make up about 5% or less of the weight of the composition (e.g., from about 0.5 to about 5% by weight). When present, a representative amount of humectant is about 0.1% to about 1% by weight, or about 1% to about 5% by weight, based on the total weight of the composition.
Buffering agents
In certain embodiments, the composition of the present disclosure can comprise pH adjusters or buffering agents. Examples of pH adjusters and buffering agents that can be used include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like. Non-limiting examples of suitable buffers include alkali metals acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof.
Where present, the buffering agent is typically present in an amount less than about 5 percent based on the weight of the composition, for example, from about 0.5% to about 5%, such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or from about 1% to about 2% by weight, based on the total weight of the composition. Colorants
A colorant may be employed in amounts sufficient to provide the desired physical attributes to the composition. Natural or synthetic colorants, such as natural or synthetic dyes, food-grade colorants and pharmaceutical-grade colorants may be used. Examples of colorants include various dyes and pigments, such as caramel coloring and titanium dioxide. Natural colorants such as curcumin, beet juice extract, spirulina; also a variety of synthetic pigments may also be used. The amount of colorant utilized in the composition can vary, but when present is typically up to about 3% by weight, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the composition.
Tobacco material
In some embodiments, the composition may include a tobacco material. The tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species. Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N. x sanderae, N. africana, N. amplexicaulis, N. benavidesii, N. bonariensis, N. debneyi, N. longiflora, N. maritina, N. megalosiphon, N. occidentalis, N. paniculata, N. plumbaginifolia, N. raimondii, N. rosulata, N. simulans, N. stocktonii, N. suaveolens, N. umbratica, N. velutina, N. wigandioides, N. acaulis, N. acuminata, N. attenuata, N. benthamiana, N. cavicola, N. clevelandii, N. cordifolia, N. corymbosa, N. fragrans, N. goodspeedii, N. linearis, N. miersii, N. nudicaulis, N. obtusifolia, N. occidentalis subsp. Hersperis, N. pauciflora, N. petunioides, N. quadrivalvis, N. repanda, N. rotundifolia, N. solanifolia, and N. spegazzinii. Various representative other types of plants from the Nicotiana species are set forth in Goodspeed, The Genus Nicotiana, (Chonica Botanica) (1954); US Pat. Nos. 4,660,577 to Sensabaugh, Jr. et al.; 5,387,416 to White et al., 7,025,066 to Lawson et al.; 7,798,153 to Lawrence, Jr. and 8,186,360 to Marshall et al.; each of which is incorporated herein by reference. Descriptions of various types of tobaccos, growing practices and harvesting practices are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999), which is incorporated herein by reference.
Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic-modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al. and 7,230,160 to Benning et al.; US Patent Appl. Pub. No. 2006/0236434 to Conkling et al.; and PCT W02008/103935 to Nielsen et al. See, also, the types of tobaccos that are set forth in US Pat. Nos. 4,660,577 to Sensabaugh, Jr. et al.; 5,387,416 to White et al.; and 6,730,832 to Dominguez et al., each of which is incorporated herein by reference. The Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein. For example, plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom. In certain embodiments, plants of the Nicotiana species (e.g., Galpao commun tobacco) are specifically grown for their abundance of leaf surface compounds. Tobacco plants can be grown in greenhouses, growth chambers, or outdoors in fields, or grown hydroponically.
Various parts or portions of the plant of the Nicotiana species can be included within a composition as disclosed herein. For example, virtually all of the plant (e.g. , the whole plant) can be harvested, and employed as such. Alternatively, various parts or pieces of the plant can be harvested or separated for further use after harvest. For example, the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment. In some embodiments, the tobacco material comprises tobacco leaf (lamina). The composition disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
In certain embodiments, the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems. The tobacco that is used for the mixture most preferably includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated). Portions of the tobaccos within the mixture may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)). See, for example, the tobacco expansion processes set forth in US Pat. Nos. 4,340,073 to de la Burde et al.; 5,259,403 to Guy et al.; and 5,908,032 to Poindexter, et al.; and 7,556,047 to Poindexter, et al., all of which are incorporated by reference. In addition, the d mixture optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
The tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form). The manner by which the tobacco material is provided in a finely divided or powder type of form may vary. Preferably, plant parts or pieces are comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like. Most preferably, the plant material is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like. For example, tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent or less than about 5 weight percent. Most preferably, the tobacco material is employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns. In some instances, the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required. If desired, air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected. If desired, differently sized pieces of granulated tobacco may be mixed together.
The manner by which the tobacco is provided in a finely divided or powder type of form may vary. Preferably, tobacco parts or pieces are comminuted, ground or pulverized into a powder type of form using equipment and techniques for grinding, milling, or the like. Most preferably, the tobacco is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like. For example, tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent to less than about 5 weight percent. For example, the tobacco plant or portion thereof can be separated into individual parts or pieces (e.g., the leaves can be removed from the stems, and/or the stems and leaves can be removed from the stalk). The harvested plant or individual parts or pieces can be further subdivided into parts or pieces (e.g., the leaves can be shredded, cut, comminuted, pulverized, milled or ground into pieces or parts that can be characterized as filler-type pieces, granules, particulates or fine powders). The plant, or parts thereof, can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment). When carrying out such processing conditions, the plant or portion thereof can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the plant or portion thereof, or a moisture content that results from the drying of the plant or portion thereof. For example, powdered, pulverized, ground or milled pieces of plants or portions thereof can have moisture contents of less than about 25 weight percent, often less than about 20 weight percent, and frequently less than about 15 weight percent.
For the preparation of oral compositions, it is typical for a harvested plant of the Nicotiana species to be subjected to a curing process. The tobacco materials incorporated within the composition as disclosed herein are those that have been appropriately cured and/or aged. Descriptions of various types of curing processes for various types of tobaccos are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Examples of techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch. Int, 20, 467-475 (2003) and US Pat. No. 6,895,974 to Peele, which are incorporated herein by reference. Representative techniques and conditions for air curing tobacco are set forth in US Pat. No. 7,650,892 to Groves et al.; Roton et al., Beitrage Tabakforsch. Int., 21, 305-320 (2005) and Staaf et al., Beitrage Tabakforsch. Int., 21, 321-330 (2005), which are incorporated herein by reference. Certain types of tobaccos can be subjected to alternative types of curing processes, such as fire curing or sun curing.
In certain embodiments, tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), burley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos. The tobacco material may also have a so-called "blended" form. For example, the tobacco material may include a mixture of parts or pieces of flue-cured, burley (e.g., Malawi burley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem). For example, a representative blend may incorporate about 30 to about 70 parts burley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis. Other example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts burley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis. Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like. If desired, the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment. Such treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference. In certain embodiments, tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof. See, for example, the types of treatment processes described in US Pat. Pub. Nos. 8,434,496, 8,944,072, and 8,991,403 to Chen et al., which are all incorporated herein by reference. In certain embodiments, this type of treatment is useful where the original tobacco material is subjected to heat in the processes previously described.
In some embodiments, the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached). Tobacco pulp can be whitened in certain embodiments according to any means known in the art. For example, bleached tobacco material produced by various whitening methods using various bleaching or oxidizing agents and oxidation catalysts can be used. Example oxidizing agents include peroxides (e.g., hydrogen peroxide), chlorite salts, chlorate salts, perchlorate salts, hypochlorite salts, ozone, ammonia, potassium permanganate, and combinations thereof. Example oxidation catalysts are titanium dioxide, manganese dioxide, and combinations thereof. Processes for treating tobacco with bleaching agents are discussed, for example, in US Patent Nos. 787,611 to Daniels, Jr.; 1,086,306 to Oelenheinz; 1,437,095 to Delling; 1,757,477 to Rosenhoch; 2,122,421 to Hawkinson; 2,148,147 to Baier; 2,170,107 to Baier; 2,274,649 to Baier; 2,770,239 to Prats et al.; 3,612,065 to Rosen; 3,851,653 to Rosen; 3,889,689 to Rosen; 3,943,940 to Minami; 3,943,945 to Rosen; 4,143,666 to Rainer; 4,194,514 to Campbell; 4,366,823, 4,366,824, and 4,388,933 to Rainer et al.; 4,641,667 to Schmekel et al.; 5,713,376 to Berger; 9,339,058 to Byrd Jr. et al.; 9,420,825 to Beeson et al.; and 9,950,858 to Byrd Jr. et al.; as well as in US Pat. App. Pub. Nos. 2012/0067361 to Bjorkholm et al.; 2016/0073686 to Crooks; 2017/0020183 to Bjorkholm; and 2017/0112183 to Bjorkholm, and in PCT Publ. Appl. Nos. WO1996/031255 to Giolvas and W02018/083114 to Bjorkholm, all of which are incorporated herein by reference.
In some embodiments, the whitened tobacco material can have an ISO brightness of at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%. In some embodiments, the whitened tobacco material can have an ISO brightness in the range of about 50% to about 90%, about 55% to about 75%, or about 60% to about 70%. ISO brightness can be measured according to ISO 3688:1999 or ISO 2470-1:2016.
In some embodiments, the whitened tobacco material can be characterized as lightened in color (e.g., "whitened") in comparison to an untreated tobacco material. White colors are often defined with reference to the International Commission on Illumination's (CIE's) chromaticity diagram. The whitened tobacco material can, in certain embodiments, be characterized as closer on the chromaticity diagram to pure white than an untreated tobacco material.
In various embodiments, the tobacco material can be treated to extract a soluble component of the tobacco material therefrom. "Tobacco extract" as used herein refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process. Various extraction techniques of tobacco materials can be used to provide a tobacco extract and tobacco solid material. See, for example, the extraction processes described in US Pat. Appl. Pub. No. 2011/0247640 to Beeson et al., which is incorporated herein by reference. Other example techniques for extracting components of tobacco are described in US Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr. et al.; 4,267,847 to Reid; 4,289,147 to Wildman et al.; 4,351,346 to Brummer et al.; 4,359,059 to Brummer et al.; 4,506,682 to Muller; 4,589,428 to Keritsis; 4,605,016 to Soga et al.; 4,716,911 to Poulose et al.; 4,727,889 to Niven, Jr. et al.; 4,887,618 to Bemasek et al.; 4,941,484 to Clapp et al.; 4,967,771 to Fagg et al.; 4,986,286 to Roberts et al.; 5,005,593 to Fagg et al.; 5,018,540 to Grubbs et al.; 5,060,669 to White et al.; 5,065,775 to Fagg; 5,074,319 to White et al.; 5,099,862 to White et al.; 5,121,757 to White et al.; 5,131,414 to Fagg; 5,131,415 to Munoz et al.; 5,148,819 to Fagg; 5,197,494 to Kramer; 5,230,354 to Smith et al.; 5,234,008 to Fagg; 5,243,999 to Smith; 5,301,694 to Raymond et al.; 5,318,050 to Gonzalez-Parra et al.; 5,343,879 to Teague; 5,360,022 to Newton; 5,435,325 to Clapp et al.; 5,445,169 to Brinkley et al.; 6,131,584 to Lauterbach; 6,298,859 to Kierulff et al.; 6,772,767 to Mua et al.; and 7,337,782 to Thompson, all of which are incorporated by reference herein.
Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final mixture, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the composition (e.g., about 0.1 to about 15% by weight). In some embodiments, the compositions of the disclosure can be characterized as completely free or substantially free of tobacco material (other than purified nicotine as an active ingredient). For example, certain embodiments can be characterized as having less than 1% by weight, or less than 0.5% by weight, or less than 0.1% by weight of tobacco material, or 0% by weight of tobacco material.
Oral care additives
In some embodiments, the composition comprises an oral care ingredient (or mixture of such ingredients). Oral care ingredients provide the ability to inhibit tooth decay or loss, inhibit gum disease, relieve mouth pain, whiten teeth, or otherwise inhibit tooth staining, elicit salivary stimulation, inhibit breath malodor, freshen breath, or the like. For example, effective amounts of ingredients such as thyme oil, eucalyptus oil and zinc (e.g., such as the ingredients of formulations commercially available as ZYTEX® from Discus Dental) can be incorporated into the composition. Other examples of ingredients that can be incorporated in desired effective amounts within the present composition can include those that are incorporated within the types of oral care compositions set forth in Takahashi et al., Oral Microbiology and Immunology, 19(1), 61-64 (2004); U.S. Pat. No. 6,083,527 to Thistle; and US Pat. Appl. Pub. Nos. 2006/0210488 to Jakubowski and 2006/02228308 to Cummins et al. Other exemplary ingredients of tobacco containing-formulation include those contained in formulations marketed as MALTISORB® by Roquette and DENTIZYME® by NatraRx. When present, a representative amount of oral care additive is at least about 1%, often at least about 3%, and frequently at least about 5% of the total dry weight of the effervescent composition. The amount of oral care additive within the effervescent composition will not typically exceed about 30%, often will not exceed about 25%, and frequently will not exceed about 20%, of the total dry weight of the effervescent composition.
Processing aids
If necessary for downstream processing of the composition, such as granulation, mixing, or molding, a flow aid can also be added to the composition in order to enhance flowability of the composition. Exemplary flow aids include microcrystalline cellulose, silica, polyethylene glycol, stearic acid, calcium stearate, magnesium stearate, zinc stearate, sodium stearyl fumarate, canauba wax, and combinations thereof. In some embodiments, the flow aid is sodium stearyl fumarate.
When present, a representative amount of flow aid may make up at least about 0.5 percent or at least about 1 percent, of the total dry weight of the composition. Preferably, the amount of flow aid within the composition will not exceed about 5 percent, and frequently will not exceed about 3 percent, of the total dry weight of the composition.
Other additives
Other additives can be included in the disclosed composition. For example, the composition can be processed, blended, formulated, combined and/or mixed with other materials or ingredients. The additives can be artificial or can be obtained or derived from herbal or biological sources. Examples of further types of additives include thickening or gelling agents (e.g., fish gelatin), emulsifiers, preservatives (e.g., potassium sorbate and the like), disintegration aids, or combinations thereof. See, for example, those representative components, combination of components, relative amounts of those components, and manners and methods for employing those components, set forth in US Pat. No. 9,237,769 to Mua et al., US Pat. No. 7,861,728 to Holton, Jr. et al., US Pat. App. Pub. No. 2010/0291245 to Gao et al., and US Pat. App. Pub. No. 2007/0062549 to Holton, Jr. et al., each of which is incorporated herein by reference.
Typical inclusion ranges for such additional additives can vary depending on the nature and function of the additive and the intended effect on the final composition, with an example range of up to about 10% by weight, based on total weight of the composition (e.g., about 0.1 to about 5% by weight).
The aforementioned additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final mixture). Furthermore, the aforementioned types of additives may be encapsulated as provided in the final product or composition. Example encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
Particulate
In some embodiments, any one or more of the filler, tobacco material, other composition components, and the overall composition described herein can be described as a particulate material. As used herein, the term "particulate" refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2:1, such as less than 1.5:1, such as about 1:1. In various embodiments, the particles of a particulate material can be described as substantially spherical or granular.
The particle size of a particulate material may be measured by sieve analysis. As the skilled person will readily appreciate, sieve analysis (otherwise known as a gradation test) is a method used to measure the particle size distribution of a particulate material. Typically, sieve analysis involves a nested column of sieves which comprise screens, preferably in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e. the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above. Typically, at the base of the column of sieves is a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
In some embodiments, the column of sieves may be placed on or in a mechanical agitator. The agitator causes the vibration of each of the sieves in the column. The mechanical agitator may be activated for a pre-determined period of time in order to ensure that all particles are collected in the correct sieve. In some embodiments, the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes. Once the agitation of the sieves in the column is complete, the material collected on each sieve is weighed. The weight of each sample on each sieve may then be divided by the total weight in order to obtain a percentage of the mass retained on each sieve. As the skilled person will readily appreciate, the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed. In some embodiments, a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves. In some embodiments, a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves. In some embodiments, the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
In some embodiments, any particulate material referenced herein (e.g., filler, tobacco material, and the overall composition) can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm. In some embodiments, at least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
Configured for oral use
Provided herein is a composition configured for oral use. The term "configured for oral use" as used herein means that the composition is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the composition (e.g., basic amine, flavoring agents and/or active ingredients) to pass into the mouth of the user. In certain embodiments, the composition is adapted to deliver components to a user through mucous membranes in the user's mouth, the user's digestive system, or both, and, in some instances, said component is a nicotine component or an active ingredient (including, but not limited to, for example, nicotine, a stimulant, vitamin, amino acid, botanical, or a combination thereof) that can be absorbed through the mucous membranes in the mouth or absorbed through the digestive tract when the product is used.
In one embodiment, the composition of the present disclosure is disposed within a moisture- permeable container (e.g., a water-permeable pouch). The composition enclosed in the pouch may be in any desired form. In certain embodiments, the composition is in granular form. Such compositions in the water- permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user. Generally, the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used. The pouch preferably is not chewed or swallowed unless the pouch composition or materials are ingestible (e.g., dissolvable or dispersable) as described herein below. Exposure to saliva then causes some of the components of the composition therein (e.g., flavoring agents and/or nicotine) to pass through e.g., the water-permeable pouch and provide the user with flavor and satisfaction, and the user is not required to spit out any portion of the mixture. After about 10 minutes to about 60 minutes, typically about 15 minutes to about 45 minutes of use/enjoyment, substantial amounts of the mixture have been ingested by the human subject, and the pouch may be removed from the mouth of the human subject for disposal.
Accordingly, in certain embodiments, the composition as disclosed herein and any other components noted above are combined within a moisture-permeable packet or pouch that acts as a container for use of the composition to provide a pouched product configured for oral use. Certain embodiments of the disclosure will be described with reference to FIG. 1 of the accompanying drawings, and these described embodiments involve snus-type products having an outer pouch and containing a mixture as described herein. As explained in greater detail below, such embodiments are provided by way of example only, and the pouched products of the present disclosure can include the composition in other forms. The mixture/construction of such packets or pouches, such as the container pouch 102 in the embodiment illustrated in Fig. 1, may be varied. Referring to FIG. 1, there is shown a first embodiment of a pouched product 100. The pouched product 100 includes a moisture-permeable container in the form of a pouch 102, which contains a material 104 comprising a composition as described herein.
Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf and TreAnkrare. The mixture may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products. The pouch provides a liquid- permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the mixture readily diffuse through the pouch and into the mouth of the user.
Non-limiting examples of suitable types of pouches are set forth in, for example, US Pat. Nos. 5,167,244 to Kjerstad and 8,931,493 to Sebastian et al.; as well as US Patent App. Pub. Nos. 2016/0000140 to Sebastian et al.; 2016/0073689 to Sebastian et al.; 2016/0157515 to Chapman et al.; and 2016/0192703 to Sebastian et al., each of which are incorporated herein by reference. Pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can be connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
An example pouch may be manufactured from materials, and in such a manner, such that during use by the user, the pouch undergoes a controlled dispersion or dissolution. Such pouch materials may have the form of a mesh, screen, perforated paper, permeable fabric, or the like. For example, pouch material manufactured from a mesh-like form of rice paper, or perforated rice paper, may dissolve in the mouth of the user. As a result, the pouch and mixture each may undergo complete dispersion within the mouth of the user during normal conditions of use, and hence the pouch and mixture both may be ingested by the user. Other examples of pouch materials may be manufactured using water dispersible film forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp). Preferred pouch materials, though water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the mixture contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity. If desired, flavoring ingredients, disintegration aids, and other desired components, may be incorporated within, or applied to, the pouch material. The amount of material contained within each product unit, for example, a pouch, may vary. In some embodiments, the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 1 gram, from about 100 to 800 about mg, or from about 200 to about 700 mg. In some smaller embodiments, the weight of the composition within each pouch may be from about 100 to about 300 mg. For a larger embodiment, the weight of the composition within each pouch may be from about 300 mg to about 700 mg. If desired, other components can be contained within each pouch. For example, at least one flavored strip, piece or sheet of flavored water dispersible or water-soluble material (e.g., a breath-freshening edible film type of material) may be disposed within each pouch along with or without at least one capsule. Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
A pouched product as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for smokeless types of products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos. 2008/0173317 to Robinson et al.; 2009/0014343 to Clark et al.; 2009/0014450 to Bjorkholm; 2009/0250360 to Bellamah et al.; 2009/0266837 to Gelardi et al.; 2009/0223989 to Gelardi; 2009/0230003 to Thiellier; 2010/0084424 to Gelardi; and 2010/0133140 to Bailey et al; 2010/0264157 to Bailey et al.; and 2011/0168712 to Bailey et al. which are incorporated herein by reference.
Storage and storage period
Compositions of the present disclosure configured for oral use (e.g., in pouched form) may be packaged and stored in any suitable packaging in much the same manner that conventional types of smokeless tobacco products are packaged and stored. For example, a plurality of packets or pouches may be contained in a cylindrical container. The storage period of the product after preparation may vary. As used herein, "storage period" refers to the period of time after the preparation of the disclosed product. In some embodiments, one or more of the characteristics of the products disclosed herein (e.g., lack of color change, retention of volatile flavor components, retention of nicotine) is exhibited over some or all of the storage period. In some embodiments, the storage period (i.e., the time period after preparation) is at least one day. In some embodiments, the storage period is from about about 1 day, about 2 days, or about 3 days, to about 1 week, or from about 1 week to about 2 weeks, from about 2 weeks to about 1 month, or from about 1 month to about 2 months, about 3 months, about 4 months, about 5 months, or about 6 months. In some embodiments, the storage period is any number of days between about 1 and about 180. In certain embodiments, the storage period may be longer than 6 months, for example, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 12 months, about 18 months, or about 24 months.
Preparation of the composition
The manner by which the various components of the composition are combined to form the composition may vary. As discussed herein above, it has been found according to the present disclosure that compositions comprising ion paired nicotine as described in US Patent Application Publication No. 2022/0071984 to Poole et al., previously incorporated by reference, may be prepared by a simplified procedure which avoids use or formation of a discrete solution of nicotine and an organic acid in the form of a salt (e.g., nicotine benzoate solution), and allows in situ preparation of nicotine ion paired with a conjugate base of an organic acid (e.g., by combining nicotine directly with sodium benzoate). This is advantageous in reducing the number of process steps, materials which must be sourced, avoidance of potential waste, and the like).
Accordingly, provided herein is a method of preparing a composition configured for oral use. The method generally comprises: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
Each of the foregoing instances of providing, combining, and contacting are described further below.
Providing an aqueous solution of free base nicotine
The method comprises providing an aqueous solution of free base nicotine. Generally, free base nicotine, described herein above, is dissolved in a suitable amount of water. This may be accomplished at various temperatures, optionally with stirring, to facilitate dissolution. In other embodiments, a commercial, pre-made nicotine solution may be utilized. The concentration of nicotine in the water may vary based on, for example, the intended nicotine content of the final product.
In some embodiments, the method further comprises adding an organic acid as described herein above to the aqueous solution of free base nicotine. Adding such an organic acid may form in situ a nicotine salt, ion pair, or combination thereof to varying extents depending on, for example, the concentration of each of the nicotine and organic acid, the relative ratio of organic acid to nicotine, and the nature of the organic acid. In some embodiments, no organic acid is added beyond that comprising the alkali metal salt of the organic acid.
Providing an alkali metal salt of an organic acid
The method comprises providing an alkali metal salt of an organic acid. Suitable organic acids and alkali metal salts thereof are described herein above. In some embodiments, the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof. In some embodiments, the organic acid comprises or is benzoic acid. Accordingly, in some embodiments, the conjugate base of the organic acid comprises or is benzoate. In some embodiments, the alkali metal is sodium or potassium. In some embodiments, the alkali metal salt of the organic acid is sodium benzoate. Such alkali metal salts may be obtained commercially or may be prepared from the appropriate organic acid and an alkali metal base such as carbonate, bicarbonate, or hydroxide according to known procedures.
As described herein above, the amount of conjugate base present in the composition, and accordingly, the amount of the alkali metal salt of the organic acid added, may vary. In some embodiments, the quantity of alkali metal salt of the organic acid added is such that the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine. In some embodiments, the quantity of alkali metal salt of the organic acid added is such that the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine, or from about 3 to about 6 molar equivalents relative to the nicotine.
Combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid
The method comprises combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution. For example, the alkali metal salt of the organic acid may be added in solid or solution form to the aqueous solution of free base nicotine. Alternatively, the aqueous solution of free base nicotine may be added to the alkali metal salt of the organic acid as a solid or in a solution form. Generally, the combined aqueous solution of free base nicotine and the alkali metal salt of the organic acid are combined or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation. Generally, the aqueous solution of free base nicotine and the alkali metal salt of the organic acid mixture is stirred, agitated, or otherwise mixed for a period of time sufficient to produce a homogenous solution.
In some embodiments, the method further comprises adding an organic acid as described herein above to the ion paired nicotine solution, followed by combining the organic acid with the solution as described for the alkali metal salt. The organic acid may be added before the alkali metal salt, with the alkali metal salt, after the alkali metal salt, or any combination thereof.
Providing a flavorant solution comprising one or more flavoring agents In some embodiments, the method optionally comprises providing a flavorant solution comprising one or more flavoring agents as described herein above. The flavorant solution may be prepared from one or more flavorants, e.g., by dissolving or suspending the desired flavorants in an appropriate solvent or may be purchased in solution or dispersed form. In some embodiments, the flavorant solution further comprises a humectant as described herein above.
Combining the flavorant solution and the ion paired nicotine solution
In some embodiments, the method comprises contacting the at least one filler with the ion paired nicotine solution to form the composition. In some embodiments, the method comprises providing a flavorant solution comprising one or more flavoring agents; and optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture, followed by contacting the aqueous mixture with the filler. In some embodiments, the flavorant solution is added to the ion paired nicotine solution. In some embodiments, the ion paired nicotine solution is added to the flavorant solution. In some embodiments, the flavorant solution and the ion paired nicotine solution are both added together into a separate vessel (i.e., simultaneously combined). Generally, in embodiments comprising a flavorant solution, the flavorant solution and the ion paired nicotine solution are combined or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation. Generally, the mixture of the flavorant solution and the ion paired nicotine solution is stirred, agitated, or otherwise mixed for a period of time sufficient to produce a homogenous aqueous mixture (i.e., a solution).
Providing at least one filler and contacting the at least one filler with the aqueous mixture
The method comprises providing at least one filler as described herein above, and contacting the at least one filler with the aqueous mixture of the flavorant solution and ion paired nicotine solution to form the composition, or directly with the ion paired nicotine solution. In some embodiments, the composition is homogenous, and the contacting comprises mixing to form the homogenous composition. The at least one filler may be added to the ion paired nicotine solution, or the ion paired nicotine solution may be added to the filler. In embodiments where the method comprises forming an aqueous mixture comprising the the ion paired nicotine solution and the flavorant solution, the at least one filler may be added to the aqueous mixture, or the aqueous mixture may be added to the at least one filler. The addition may be performed in portions, or as one single addition. The at least one filler and the aqueous mixture of the flavorant solution and ion paired nicotine solution may be contacted, combined, or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation. Examples of mixing equipment include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See also, for example, the types of methodologies set forth in US Pat. Nos. 4,148,325 to Solomon et al.; 6,510,855 to Korte et al.; and 6,834,654 to Williams, each of which is incorporated herein by reference. Manners and methods for formulating mixtures will be apparent to those skilled in the art. See, for example, the types of methodologies set forth in US Pat. No. 4,148,325 to Solomon et al.; US Pat. No. 6,510,855 to Korte et al.; and US Pat. No. 6,834,654 to Williams, US Pat. Nos. 4,725,440 to Ridgway et al., and 6,077,524 to Bolder et al., each of which is incorporated herein by reference. The contacting, combining, or mixing is generally performed for a period of time sufficient to produce a homogenous moist solid composition, with each component evenly distributed throughout the composition.
In some embodiments, the method further comprises adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
In some embodiments, the method further comprises adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof, each as described herein above, to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
In some embodiments, the composition is enclosed in a pouch as described herein above to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch. In some embodiments, the method further comprises contacting the pouched product with water.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
EXAMPLES
Aspects of the present invention are more fully illustrated by the following examples, which are set forth to illustrate certain aspects of the present invention and are not to be construed as limiting thereof.
Example 1. LogD deter ination of nicotine-sodiwm benzoate solutions
Several aqueous ion-paired nicotine solutions were made and the LogD values of each solution evaluated over a range of pH values.
Aqueous nicotine-sodium benzoate solutions with 5% nicotine content were prepared using a stock solution of 12% aqueous nicotine, water, and various molar ratios of sodium benzoate to nicotine (1, 3.2, 6, 10, and 13 equivalents of sodium benzoate relative to nicotine). Aqueous nicotine benzoate solutions were made at 5% nicotine content using a nicotine benzoate solution (12% nicotine), water, and additional sodium benzoate at various molar ratios (1, 3.2, and 6 equivalents of sodium benzoate to nicotine).
An aqueous nicotine octanoate solution was made at 5% nicotine content using a nicotine solution (12% nicotine), water, and sodium octanoate at a molar ratio of 1 equivalent of sodium octanoate to nicotine.
An aqueous nicotine octanoate-banzoate solution was made at 5% nicotine content using a nicotine solution (12% nicotine), water, sodium octanoate at a molar ratio of 1 equivalent of sodium octanoate to nicotine, and sodium benzoate at a molar ratio of 1 equivalent of sodium benzoate to nicotine
The individual solutions were divided into portions, and each was adjusted to a different pH level between about 6 and about 8.5 by titration with the appropriate quantity of hydrochloric acid or sodium hydroxide.
LogD data was obtained at each pH value from octanol-water partitioning of the test solutions according to known techniques. A non-ion paired aqueous nicotine solution was also prepared and evaluated (5% nicotine content).
Figure imgf000048_0001
The LogD versus pH for the solutions at various pH values is provided in Figures 2-6. Figure 2 shows the measured logD at specific pH values for each solution, demonstrating that the ion paired complexes prepared from free base nicotine and an organic acid salt have a similar logD as the ion paired complexes prepared from nicotine benzoate and an organic acid salt. With further reference to Figure 2, the data provide evidence for the existing of non-stoichiometric hydrophobic ion paired nicotine complexes, which are different and distinct from a nicotine salt (1:1 molar ratio of nicotine and benzoic acid). Particularly, non-stoichiometric ion-paired nicotine complexes (e.g., with about 3.2- to about 6-fold excess benzoate) exhibited Log D values clearly different from a nicotine benzoate salt, and the higher Log D of the ion paired complex versus nicotine benzoate or nicotine alone was maintained across a wide pH range. Larger excesses of benzoate (for example, 10- and 13 -fold excess) gave smaller increase in Log D than would be predicted if the influence of benzoate was directly proportional, further evidencing the existence of ion paired complexes. The stability of the ion pair in solution is demonstrated by the obtained LogD values. Unlike a nicotine benzoate salt, nicotine and a 3.2-fold excess of benzoate is expected to have an overall charge and is stable in aqueous solution, demonstrated by the obtained LogD values.
Figure 3 shows the measured logD at specific pH values for each solution, demonstrating that logD increases with higher molar excess of organic acid salt.
Figure 4 shows the measured logD at specific pH values for each solution, demonstrating that different ion pair salts have different effects on logD. For example, a smaller excess of NaOct is required to increase logD relative to NaBz.
Figure 5 shows the additive effect of combined benzoate and octanoate ion paired nicotine on logD. Particularly, the data demonstrate that combining benzoate and octanoate ion paired nicotine provides an improvement in LogD, defined as the logD measurement minus the logD of neat nicotine at each pH level.
Figure 6 shows the measured logD at extended pH levels for each solution shown, demonstrating that the logD differentials are maintained even at pH values as low as 4.
Overall, the foregoing data support the existence in solution of non-stoichiometric ion-paired nicotine, which is distinct and different chemical species relative to nicotine benzoate salt.
Example 2. Pouched product with ion paired nicotine and benzoate (nicotine benzoate and sodium benzoate; Reference method)
A composition comprising ion paired nicotine, filler (microcrystalline cellulose; mcc), water, and additional components as disclosed herein (salt, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine benzoate solution (12% nicotine benzoate by weight), solid sodium benzoate, and benzoic acid according to Table 2.
The filler (mcc) and sodium chloride were mixed for 10 minutes in a mixer. The remaining ingredients (except flavor and propylene glycol) were mixed into the aqueous nicotine benzoate solution to form an aqueous ion paired nicotine solution. The propylene glycol and flavor were mixed together to form a flavorant solution. The aqueous ion paired nicotine solution and the flavorant solution were mixed together and added to the dry mix, followed by 10 minutes of mixing. The resulting composition contained a molar ratio of benzoate to nicotine of about 6. The composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece. The final pouched product contained about 500 mg of the composition. Water was added to the pouch, giving a final weight of about 600 mg. The nicotine content of each pouch, in the form of a nicotine benzoate ion pair, was about 5 mg on a free base nicotine basis. The pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
Table 2, Oral pouched product composition components and amounts
Figure imgf000050_0001
Example 3. Pouched product with ion paired nicotine and benzoate (nicotine benzoate, nicotine, benzoic acid, and sodium benzoate; Reference method)
A composition comprising ion paired nicotine, filler (mcc), water, and additional components as disclosed herein (salt, binder, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine benzoate solution (12% nicotine benzoate by weight) and solid sodium benzoate according to Table 3. The components were combined as in Example 2 to form the composition, which contained a molar ratio of benzoate to nicotine of about 3.2. The composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece. The final pouched product contained about 500 mg of the composition. Water was added to the pouch, giving a final weight of about 600 mg. The nicotine content of each pouch, in the form of a nicotine benzoate ion pair, was about 5 mg on a free base nicotine basis. The pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
Table 3, Oral pouched product composition components and amounts
Figure imgf000050_0002
Figure imgf000051_0002
Example 4. Pouched product with ion paired nicotine and benzoate (nicotine and sodium benzoate; Inventive
Figure imgf000051_0001
A composition comprising ion paired nicotine, filler (mcc), water, and additional components as disclosed herein (salt, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine solution (12% nicotine by weight), benzoic acid, and solid sodium benzoate according to Table 4. The filler (mcc) and sodium chloride were mixed for 10 minutes in a mixer. The remaining ingredients (except flavor and propylene glycol) were mixed into the aqueous nicotine solution to form an aqueous ion paired nicotine solution. The propylene glycol and flavor were mixed together to form a flavorant solution. The aqueous ion paired nicotine solution and the flavorant solution were mixed together and added to the dry mix, followed by 10 minutes of mixing to form the composition, which contained a molar ratio of benzoate to nicotine of about 6. The composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece. The final pouched product contained about 500 mg of the composition. Water was added to the pouch, giving a final weight of about 600 mg. The nicotine content of each pouch, in the form of a nicotine benzoate ion pair, was about 5 mg on a free base nicotine basis. The pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
Table 4, Oral pouched product composition components and amounts
Figure imgf000051_0003
Figure imgf000052_0001
Example 5. Pouched product with ion paired nicotine and benzoate (nicotine and sodium benzoate; Inventive method)
A composition comprising ion paired nicotine, microcrystalline cellulose (mcc), water, and additional components as disclosed herein (salt, binder, sweetener, humectant, flavorant) was prepared using a combination of an aqueous nicotine solution (12% nicotine by weight), benzoic acid, and solid sodium benzoate according to Table 5. The components were combined as in Example 4 to form the composition, which contained a molar ratio of benzoate to nicotine of about 3.2. The composition was transferred to a pouch filler, and the oral pouched product fabricated by adding the pouch filler contents into a non-woven fleece (viscose polyester blend fleece, with an acrylate binder) and heat sealing the fleece. The final pouched product contained about 500 mg of the composition. Water was added to the pouch, giving a final weight of about 600 mg. The nicotine content of each pouch, in the form of a nicotine benzoate ion pair, was about 5 mg on a free base nicotine basis. The pouched product was packaged in a standard flex-lid canister with side seal and stored at room temperature (20-25°C).
Table 5, Oral pouched product composition components and amounts
Figure imgf000052_0002
Example 6. LogD determination of pouched son paired nicotine compositions
LogD values of the pouched compositions of the above examples were determined by the following procedure. Pouches are cut into quarters. To the quartered pouch was 1 mL artificial saliva (pH~7.4) per 300 mg of product. Each sample was placed on a heated shaker at 37°C for 2 hours, then filtered. A pre-partition aliquot of extract was sampled. The extract was then partitioned with an equal volume of octanol for 1 hour while mixing. After phase separation, a post-partition aliquot was taken from the top (octanol) phase and the bottom (aqueous) phase. Both pre- and post-partition samples were appropriately diluted and analyzed for nicotine concentration via LC with UV detection. Using any two data points (pre-partition aqueous, post- partition aqueous, and post-partition octanol) and the following formulae, LogD was calculated:
(1) Pre-Partition Aqueous = Post-Partition Aqueous + Post-Partition Octanol
(2) LogD = log(Nicotine Cone Post-Partition Octanol / Nicotine Cone Post-Partition Aqueous)
Figure 7 shows the measured logD for the pouched prototypes as well as two pH/logD curves from Figure 2 for reference.

Claims

CLAIMS What is claimed is:
1. A method of preparing a composition configured for oral use, the composition comprising at least one filler; a humectant; nicotine; water; and an alkali metal salt of an organic acid, wherein at least a portion of the nicotine is associated with at least a portion of the alkali metal salt of the organic acid, the association in the form of an ion pair between the nicotine and a conjugate base of the organic acid, the method comprising: providing an aqueous solution of free base nicotine; providing an alkali metal salt of an organic acid; combining the aqueous solution of free base nicotine and the alkali metal salt of the organic acid to form an ion paired nicotine solution; optionally, providing a flavorant solution comprising one or more flavoring agents; optionally, combining the flavorant solution and the ion paired nicotine solution to form an aqueous mixture; providing at least one filler; and contacting the at least one filler with the aqueous mixture to form the composition.
2. The method of claim 1, further comprising adding an organic acid to the aqueous solution of free base nicotine, the ion paired nicotine solution, or both.
3. The method of claim 1 or 2, wherein the conjugate base of the organic acid is present in the composition in a range from about 1 to about 20 molar equivalents relative to the nicotine.
4. The method of any one of claims 1-3, wherein the conjugate base of the organic acid is present in the composition in a range from about 2 to about 10 molar equivalents relative to the nicotine.
5. The method of any one of claims 1-4, wherein the conjugate base of the organic acid is present in the composition in a range from about 3 to about 6 molar equivalents relative to the nicotine.
6. The method of any one of claims 1-5, wherein the organic acid has a logP value of from about 1.4 to about 4.5.
7. The method of any one of claims 1-6, wherein the organic acid has a logP value of from about 2.5 to about 3.5.
8. The method of any one of claims 1-7, wherein the organic acid has a logP value of from about 4.5 to about 8.0.
9. The method of any one of claims 1-8, wherein the flavorant solution further comprises a humectant.
10. The method of claim 9, wherein the humectant is glycerol or propylene glycol.
11. The method of any one of claims 1-10, wherein the organic acid is an alkyl carboxylic acid, an aryl carboxylic acid, an alkyl sulfonic acid, an aryl sulfonic acid, or a combination of any thereof.
12. The method of any one of claims 1-11, wherein the organic acid is octanoic acid, decanoic acid, benzoic acid, heptanesulfonic acid, or a combination thereof.
13. The method of any one of claims 1-12, wherein the conjugate base comprises benzoate.
14. The method of any one of claims 1-13, wherein the organic acid is benzoic acid.
15. The method of any one of claims 1-14, wherein the alkali metal is sodium or potassium.
16. The method of any one of claims 1-15, wherein the alkali metal salt of the organic acid is sodium benzoate.
17. The method of any one of claims 1-16, wherein the composition is homogenous, and wherein the contacting comprises mixing to form the homogenous composition.
18. The method of any one of claims 1-17, further comprising adjusting the pH of the composition to a pH less than about 7.0, wherein adjusting the pH comprises adding an organic acid, a mineral acid, or both, to the ion paired nicotine solution, the composition, or both.
19. The method of any one of claims 1-18, wherein the nicotine is present in an amount of from about 0.001 to about 10% by weight of the composition, calculated as the free base and based on the total weight of the composition.
20. The method of any one of claims 1-19, wherein the at least one filler comprises a cellulose material.
21. The method of claim 19, wherein the cellulose material comprises microcrystalline cellulose.
22. The method of claim 20, wherein the at least one filler further comprises a cellulose derivative in an amount by weight of from about 1% to about 3%, based on the total weight of the composition.
23. The method of claim 22, wherein the cellulose derivative is hydroxypropylcellulose.
24. The method of any one of claims 1-23, wherein the composition comprises from about 1 to about 60% by weight of water, based on the total weight of the composition.
25. The method of any one of claims 1-24, further comprising adding one or more active ingredients, one or more salts, one or more sweeteners, one or more binding agents, one or more gums, a tobacco material, or a combination thereof to the ion paired nicotine solution, the flavorant solution, the aqueous mixture, the filler, the composition, or a combination thereof.
26. The method of claim 25, wherein the one or more active ingredients selected from the group consisting of botanical materials, stimulants, amino acids, vitamins, antioxidants, cannabinoids, cannabimimetics, terpenes, pharmaceutical agents, and combinations thereof.
27. The method of any one of claims 1-26, wherein the composition comprises no more than about 10% by weight of a tobacco material, excluding any nicotine component present, based on the total weight of the composition.
28. The method of any one of claims 1-27, wherein the composition is free of tobacco material.
29. The method of any one of claims 1-28, wherein the composition is enclosed in a pouch to form a pouched product, the composition optionally being in a granular form, the method further comprising providing a pouch, and enclosing the composition within the pouch.
30. The method of claim 29, further comprising contacting the pouched product with water.
PCT/IB2023/060976 2022-11-01 2023-10-31 Method of preparing a pouched product comprising a nicotine salt WO2024095162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263421409P 2022-11-01 2022-11-01
US63/421,409 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024095162A1 true WO2024095162A1 (en) 2024-05-10

Family

ID=88731403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/060976 WO2024095162A1 (en) 2022-11-01 2023-10-31 Method of preparing a pouched product comprising a nicotine salt

Country Status (1)

Country Link
WO (1) WO2024095162A1 (en)

Citations (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787611A (en) 1903-06-17 1905-04-18 American Cigar Company Treating tobacco.
US1086306A (en) 1912-11-11 1914-02-03 Theodor Oelenheinz Process of bleaching tobacco-leaves.
US1437095A (en) 1920-06-01 1922-11-28 August Wasmuth Process of bleaching tobacco
US1757477A (en) 1927-07-11 1930-05-06 Rosenhoch Samuel Process and device for ozonizing tobacco
US2122421A (en) 1937-07-30 1938-07-05 Du Pont Tobacco treatment
US2148147A (en) 1933-12-30 1939-02-21 Degussa Process for bleaching tobacco
US2170107A (en) 1935-01-28 1939-08-22 Degussa Process for bleaching tobacco
US2274649A (en) 1935-01-28 1942-03-03 Degussa Process for bleaching tobacco
US2770239A (en) 1952-02-04 1956-11-13 Prats Jose Romero Process of treating tobacco
US3612065A (en) 1970-03-09 1971-10-12 Creative Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3851653A (en) 1972-10-11 1974-12-03 Rosen Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3889689A (en) 1971-12-20 1975-06-17 Rosen Enterprise Inc Method of treating tobacco with catalase and hydrogen peroxide
US3943940A (en) 1974-09-13 1976-03-16 Isao Minami Method of removing nicotine in smoking and a smoking filter to be used therefor
US3943945A (en) 1971-09-20 1976-03-16 Rosen Enterprises, Inc. Process for preparation of reconstituted tobacco sheet
US4143666A (en) 1975-08-15 1979-03-13 Philip Morris Incorporated Smoking material
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4194514A (en) 1976-09-27 1980-03-25 Stauffer Chemical Company Removal of radioactive lead and polonium from tobacco
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4366824A (en) 1981-06-25 1983-01-04 Philip Morris Incorporated Process for expanding tobacco
US4366823A (en) 1981-06-25 1983-01-04 Philip Morris, Incorporated Process for expanding tobacco
US4388933A (en) 1981-06-25 1983-06-21 Philip Morris, Inc. Tobacco stem treatment and expanded tobacco product
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4641667A (en) 1983-12-09 1987-02-10 B.A.T. Cigarettenfabriken Gmbh Process of preparing nicotine N'-oxide and smoking products containing it
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5167244A (en) 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
WO1996031255A1 (en) 1995-04-07 1996-10-10 George Giolvas Method and apparatus for the removal of harmful constituents from cigarettes and tobacco before smoking
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5713376A (en) 1996-05-13 1998-02-03 Berger; Carl Non-addictive tobacco products
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US6083527A (en) 1998-11-05 2000-07-04 Thistle; Robert Breath mint with tooth decay and halitosis prevention characteristics
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
WO2005063060A1 (en) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US20060210488A1 (en) 2005-03-19 2006-09-21 Jakubowski Henryk P Teeth whitening candy with tartar removal and breath freshening properties
US20060228308A1 (en) 2004-02-26 2006-10-12 Cummins Barry W Oral health care drink and method for reducing malodors
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
WO2008103935A2 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
US20080305216A1 (en) 2007-06-08 2008-12-11 Philip Morris Usa Inc. Capsule clusters for oral consumption
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20090293889A1 (en) 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
WO2010132444A2 (en) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Method and device for flavoring smokeless tobacco
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US7901512B2 (en) 2003-11-03 2011-03-08 U.S. Smokeless Tobacco Company Flavored smokeless tobacco and methods of making
US20110139164A1 (en) 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20120037175A1 (en) 2010-08-11 2012-02-16 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US20120055494A1 (en) 2010-09-07 2012-03-08 Rj Reynolds Tobacco Company Smokeless Tobacco Product Comprising Effervescent Composition
US20120067361A1 (en) 2009-04-03 2012-03-22 X-International Aps Plant fiber product and method for its manufacture
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20120138073A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US20120138074A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20130074856A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130074855A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20130152953A1 (en) 2011-12-14 2013-06-20 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US20130274296A1 (en) 2012-04-17 2013-10-17 R.J. Reynolds Tobacco Company Remelted ingestible products
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20150068545A1 (en) 2013-09-09 2015-03-12 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20150101627A1 (en) 2013-10-16 2015-04-16 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US20150230515A1 (en) 2014-02-14 2015-08-20 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
US20160192703A1 (en) 2015-01-07 2016-07-07 R.J. Reynolds Tobacco Company Oral pouch products
US9420825B2 (en) 2012-02-13 2016-08-23 R.J. Reynolds Tobacco Company Whitened tobacco composition
US20170020183A1 (en) 2014-04-04 2017-01-26 X-International Aps Tobacco Raw Material
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
WO2018083114A1 (en) 2016-11-02 2018-05-11 Winnington Ab Defibrated tobacco material
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210169122A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral foam composition
US20210169792A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210169867A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Moist oral compositions
US20210177754A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
US20210177043A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
US20210177038A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
US20210186081A1 (en) 2019-12-09 2021-06-24 Nicoventures Trading Limited Pouched oral product with cannabinoid
US20210330590A1 (en) 2019-12-09 2021-10-28 Nicoventures Trading Limited Agents for oral composition
US20210378948A1 (en) 2020-06-08 2021-12-09 Nicoventures Trading Limited Effervescent oral composition
US20220071984A1 (en) 2019-09-11 2022-03-10 Nicoventures Trading Limited Oral product with nicotine and ion pairing agent
US20220160675A1 (en) 2020-11-25 2022-05-26 Nicoventures Trading Limited Oral cannabinoid product with lipid component
WO2022224196A1 (en) * 2021-04-22 2022-10-27 Nicoventures Trading Limited Orally dissolving films
WO2022224200A1 (en) * 2021-04-22 2022-10-27 Nicoventures Trading Limited Oral compositions and methods of manufacture
WO2022224198A1 (en) * 2021-04-22 2022-10-27 Nicoventures Trading Limited Oral lozenge products

Patent Citations (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787611A (en) 1903-06-17 1905-04-18 American Cigar Company Treating tobacco.
US1086306A (en) 1912-11-11 1914-02-03 Theodor Oelenheinz Process of bleaching tobacco-leaves.
US1437095A (en) 1920-06-01 1922-11-28 August Wasmuth Process of bleaching tobacco
US1757477A (en) 1927-07-11 1930-05-06 Rosenhoch Samuel Process and device for ozonizing tobacco
US2148147A (en) 1933-12-30 1939-02-21 Degussa Process for bleaching tobacco
US2170107A (en) 1935-01-28 1939-08-22 Degussa Process for bleaching tobacco
US2274649A (en) 1935-01-28 1942-03-03 Degussa Process for bleaching tobacco
US2122421A (en) 1937-07-30 1938-07-05 Du Pont Tobacco treatment
US2770239A (en) 1952-02-04 1956-11-13 Prats Jose Romero Process of treating tobacco
US3612065A (en) 1970-03-09 1971-10-12 Creative Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3943945A (en) 1971-09-20 1976-03-16 Rosen Enterprises, Inc. Process for preparation of reconstituted tobacco sheet
US3889689A (en) 1971-12-20 1975-06-17 Rosen Enterprise Inc Method of treating tobacco with catalase and hydrogen peroxide
US3851653A (en) 1972-10-11 1974-12-03 Rosen Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US3943940A (en) 1974-09-13 1976-03-16 Isao Minami Method of removing nicotine in smoking and a smoking filter to be used therefor
US4143666A (en) 1975-08-15 1979-03-13 Philip Morris Incorporated Smoking material
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4194514A (en) 1976-09-27 1980-03-25 Stauffer Chemical Company Removal of radioactive lead and polonium from tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4366824A (en) 1981-06-25 1983-01-04 Philip Morris Incorporated Process for expanding tobacco
US4366823A (en) 1981-06-25 1983-01-04 Philip Morris, Incorporated Process for expanding tobacco
US4388933A (en) 1981-06-25 1983-06-21 Philip Morris, Inc. Tobacco stem treatment and expanded tobacco product
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4641667A (en) 1983-12-09 1987-02-10 B.A.T. Cigarettenfabriken Gmbh Process of preparing nicotine N'-oxide and smoking products containing it
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5167244A (en) 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
WO1996031255A1 (en) 1995-04-07 1996-10-10 George Giolvas Method and apparatus for the removal of harmful constituents from cigarettes and tobacco before smoking
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5713376A (en) 1996-05-13 1998-02-03 Berger; Carl Non-addictive tobacco products
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6083527A (en) 1998-11-05 2000-07-04 Thistle; Robert Breath mint with tooth decay and halitosis prevention characteristics
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US7173170B2 (en) 2001-09-10 2007-02-06 Reynolds Technologies, Inc. High threonine producing lines of Nicotiana tobacum and methods of producing
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US7901512B2 (en) 2003-11-03 2011-03-08 U.S. Smokeless Tobacco Company Flavored smokeless tobacco and methods of making
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US7694686B2 (en) 2003-12-22 2010-04-13 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
WO2005063060A1 (en) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US20060228308A1 (en) 2004-02-26 2006-10-12 Cummins Barry W Oral health care drink and method for reducing malodors
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20060210488A1 (en) 2005-03-19 2006-09-21 Jakubowski Henryk P Teeth whitening candy with tartar removal and breath freshening properties
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
WO2008103935A2 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
US20080305216A1 (en) 2007-06-08 2008-12-11 Philip Morris Usa Inc. Capsule clusters for oral consumption
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US9237769B2 (en) 2007-07-23 2016-01-19 R. J. Reynolds Tobacco Company Smokeless tobacco composition
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US20090293889A1 (en) 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US20120067361A1 (en) 2009-04-03 2012-03-22 X-International Aps Plant fiber product and method for its manufacture
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
WO2010132444A2 (en) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Method and device for flavoring smokeless tobacco
US11246334B2 (en) 2009-05-11 2022-02-15 Altria Client Services Llc Method and device for flavoring smokeless tobacco
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20110139164A1 (en) 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US20120037175A1 (en) 2010-08-11 2012-02-16 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US20120055494A1 (en) 2010-09-07 2012-03-08 Rj Reynolds Tobacco Company Smokeless Tobacco Product Comprising Effervescent Composition
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US20120138074A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US20120138073A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US20130074856A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130074855A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130152953A1 (en) 2011-12-14 2013-06-20 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US9420825B2 (en) 2012-02-13 2016-08-23 R.J. Reynolds Tobacco Company Whitened tobacco composition
US20130274296A1 (en) 2012-04-17 2013-10-17 R.J. Reynolds Tobacco Company Remelted ingestible products
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20150068545A1 (en) 2013-09-09 2015-03-12 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US20150101627A1 (en) 2013-10-16 2015-04-16 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US20150230515A1 (en) 2014-02-14 2015-08-20 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
US20170020183A1 (en) 2014-04-04 2017-01-26 X-International Aps Tobacco Raw Material
US20170112183A1 (en) 2014-04-04 2017-04-27 X-International Aps Tobacco Raw Material
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
US20160192703A1 (en) 2015-01-07 2016-07-07 R.J. Reynolds Tobacco Company Oral pouch products
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
WO2018083114A1 (en) 2016-11-02 2018-05-11 Winnington Ab Defibrated tobacco material
US20220071984A1 (en) 2019-09-11 2022-03-10 Nicoventures Trading Limited Oral product with nicotine and ion pairing agent
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210330590A1 (en) 2019-12-09 2021-10-28 Nicoventures Trading Limited Agents for oral composition
US20210169867A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Moist oral compositions
US20210177754A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
US20210177043A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
US20210177038A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
US20210186081A1 (en) 2019-12-09 2021-06-24 Nicoventures Trading Limited Pouched oral product with cannabinoid
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210169122A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral foam composition
US20210169792A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210378948A1 (en) 2020-06-08 2021-12-09 Nicoventures Trading Limited Effervescent oral composition
US20220160675A1 (en) 2020-11-25 2022-05-26 Nicoventures Trading Limited Oral cannabinoid product with lipid component
WO2022224196A1 (en) * 2021-04-22 2022-10-27 Nicoventures Trading Limited Orally dissolving films
WO2022224200A1 (en) * 2021-04-22 2022-10-27 Nicoventures Trading Limited Oral compositions and methods of manufacture
WO2022224198A1 (en) * 2021-04-22 2022-10-27 Nicoventures Trading Limited Oral lozenge products

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Tobacco Production, Chemistry and Technology", 1999
ADRIAN ET AL., INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 311, 2006, pages 196 - 202
CHEN ET AL., INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 184, 1999, pages 63 - 72
GOODSPEED: "Chonica Botanica", THE GENUS NICOTIANA, 1954
KOKATE ET AL., PHARMSCITECH, vol. 9, 2008, pages 501 - 504
NAIR ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 86, 1997, pages 257 - 262
NESTOR ET AL., BEITRAGE TABAKFORSCH. INT., vol. 20, 2003, pages 467 - 475
SANTHOSH ET AL., PHYTOMEDICINE, vol. 12, 2005, pages 216 - 220
STAAF ET AL., BEITRAGE TABAKFORSCH. INT., vol. 21, 2005, pages 321 - 330
TAKAHASHI ET AL., ORAL MICROBIOLOGY AND IMMUNOLOGY, vol. 19, no. 1, 2004, pages 61 - 64
THE EFSA JOURNAL, vol. 85, 2004, pages 1 - 32

Similar Documents

Publication Publication Date Title
EP4027813B1 (en) Oral product with a basic amine and an ion pairing agent
US20220071984A1 (en) Oral product with nicotine and ion pairing agent
JP2023505351A (en) Agents for oral compositions
US11969502B2 (en) Oral products
WO2021116856A2 (en) Oral products
US20220409549A1 (en) Oral product tablet and method of manufacture
US20220347165A1 (en) Effervescent oral composition
JP2023505803A (en) Oral products with reduced irritation
US20230138306A1 (en) Oral product with a basic amine and an ion pairing agent
US20220354156A1 (en) Oral pouched product with high density load
WO2024095162A1 (en) Method of preparing a pouched product comprising a nicotine salt
US20220354155A1 (en) Multi-compartment oral pouched product
US20230200430A1 (en) Oral products with high-density load
US20240008522A1 (en) Oral products
US20220400744A1 (en) Pouched product comprising dissolvable composition
US20220369688A1 (en) Oral compositions and related methods for reducing throat irritation
WO2024095163A1 (en) Oral composition comprising encapsulated ph adjusting agent
AU2020403234A1 (en) Oral products