WO2024094155A1 - 条件更新方法及装置、终端、网络设备 - Google Patents

条件更新方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2024094155A1
WO2024094155A1 PCT/CN2023/129516 CN2023129516W WO2024094155A1 WO 2024094155 A1 WO2024094155 A1 WO 2024094155A1 CN 2023129516 W CN2023129516 W CN 2023129516W WO 2024094155 A1 WO2024094155 A1 WO 2024094155A1
Authority
WO
WIPO (PCT)
Prior art keywords
pscell
candidate
scg
scg configuration
base station
Prior art date
Application number
PCT/CN2023/129516
Other languages
English (en)
French (fr)
Inventor
邓云
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024094155A1 publication Critical patent/WO2024094155A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment

Definitions

  • the present application relates to the field of communication technology, and in particular to a condition updating method and apparatus, a terminal, and a network device.
  • a conditional handover (CHO) mechanism In wireless communication, a conditional handover (CHO) mechanism is introduced.
  • the handover command sent by the source base station to the user equipment (UE) contains a handover condition (conditional execution condition), such as determining whether the signal quality of the candidate target cell is higher than the signal quality of the current serving cell by a predetermined offset.
  • a handover condition conditional execution condition
  • the UE determines whether the handover condition of the candidate cell is met. If it is met, the UE uses the configuration parameters of the candidate cell contained in the handover command to access the target cell, synchronize with the target cell, and initiate a random access process in the target cell.
  • the UE switches to the target cell.
  • the UE continues to maintain a radio resource control (RRC) connection with the source base station.
  • RRC radio resource control
  • the source base station can configure multiple candidate cells and corresponding handover execution conditions, which can effectively improve the success rate of handover.
  • the above CHO mechanism can be used in the dual connectivity (DC) scenario.
  • the UE communicates with two base stations, one of which is the master eNB (MN) and the other is the secondary eNB (Secondary eNB).
  • MN master eNB
  • Secondary eNB secondary eNB
  • the UE can receive signaling and data from two base stations at the same time, and send signaling and data to two base stations.
  • the secondary base station (SN) side can adopt a conditional switching mechanism.
  • the primary base station or the secondary base station can configure one or more secondary cell groups (SCG) for the UE, where each SCG can include a candidate primary and secondary cell (PSCell).
  • SCG secondary cell groups
  • the primary base station or the secondary base station configures the SCG for the UE, it also configures the update execution conditions of the corresponding PSCell.
  • the SCG can also include one or more secondary cells (SCell).
  • SCell secondary cells
  • the UE determines that the update execution conditions of a candidate PSCell are met it can access the target PSCell (that is, the candidate PSCell that meets the update execution conditions). Since the change of the PSCell is not a switch in the strict sense, it is usually called a conditional primary and secondary cell change (CPC).
  • CPC conditional primary and secondary cell change
  • the primary base station or the secondary base station usually uses the full configuration method to send the configuration information of the SCG to which the candidate PSCell belongs to the UE.
  • This configuration method has a large signaling overhead, and the existing CPC method still needs to be further optimized.
  • One of the technical objectives of the present application is to provide a condition update method that can help reduce the signaling overhead in the CPC process.
  • an embodiment of the present application provides a conditional update method, the method comprising: obtaining the secondary cell group SCG configuration of the candidate primary and secondary cells PSCell, the candidate PSCell comprising a first candidate PSCell and/or a second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to different reference SCG configurations; evaluating the first candidate PSCell and/or the second candidate PSCell, and accessing the target PSCell that meets the update execution conditions.
  • the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell is specified by the secondary base station;
  • the reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell is specified by the secondary base station;
  • the location is specified by the master base station.
  • the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell is the SCG configuration of the source PSCell, or the terminal performs conditional update within the secondary base station before accessing the source PSCell to send the SCG configuration.
  • obtaining the SCG configuration of the candidate PSCell includes: receiving the SCG configuration of the second candidate PSCell from the main base station, the SCG configuration of the second candidate PSCell being associated with one or more of the reference SCG configurations.
  • the number of second candidate PSCells received from the main base station is multiple, wherein the SCG configuration of each second candidate PSCell is associated with a reference SCG configuration, and the reference SCG configurations associated with the SCG configurations of different second candidate PSCells are the same or different.
  • the method further includes: if the target PSCell and the source PSCell belong to the same secondary base station, releasing the SCG configuration of other first candidate PSCells except the target PSCell; or, continuing to retain the SCG configuration of other first candidate PSCells except the target PSCell.
  • the method further includes: if the target PSCell and the source PSCell do not belong to the same secondary base station, releasing the SCG configuration of the first candidate PSCell.
  • the method further includes: continuing to retain the SCG configuration of other second candidate PSCells except the target PSCell.
  • the method before evaluating the first candidate PSCell and/or the second candidate PSCell, the method also includes: receiving first indication information from a secondary base station, the first indication information being used to indicate that after the PSCell is updated, at least a part of the SCG configuration of the first candidate PSCell continues to be retained; and/or, receiving second indication information from a primary base station, the second indication information being used to indicate that after the PSCell is updated, at least a part of the SCG configuration of the second candidate PSCell continues to be retained.
  • the method before accessing the target PSCell that meets the update execution condition, the method further includes: if a radio link failure occurs in the SCG to which the source PSCell belongs, sending SCG failure information to the main base station, and continuing to evaluate the first candidate PSCell and/or the first candidate PSCell. Second candidate PSCell.
  • the method further includes: after updating the PSCell, continuing to retain the reference SCG configuration.
  • the SCG configuration of the candidate PSCell is an increment of the configuration parameters of the SCG of the candidate PSCell relative to the configuration parameters of the same-frequency cell accessed by the terminal in the SCG to which the source PSCell belongs.
  • an embodiment of the present application provides a conditional update method, the method comprising: sending a secondary cell group SCG configuration of a first candidate primary secondary cell PSCell to a terminal, and specifying a reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell to the terminal.
  • the method further includes: sending first indication information to the terminal, wherein the first indication information is used to indicate that after the PSCell is updated, at least a part of the SCG configuration of the first candidate PSCell continues to be retained.
  • the method further includes: after the terminal executes conditional update in the secondary base station to access the target PSCell, continuing to retain the SCG configuration of other first candidate PSCells except the target PSCell.
  • an embodiment of the present application provides a conditional update method, the method comprising: sending a secondary cell group SCG configuration of a second candidate primary secondary cell PSCell to a terminal, and specifying a reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell to the terminal.
  • the method further includes: sending second indication information to the terminal, wherein the second indication information is used to indicate that after the PSCell is updated, at least a part of the SCG configuration of the second candidate PSCell continues to be retained.
  • an embodiment of the present application provides a conditional update method, the method comprising: receiving a secondary cell group SCG configuration of a candidate primary secondary cell PSCell, the SCG configuration of the candidate PSCell being an increment of the configuration parameters of the SCG to which the candidate PSCell belongs relative to the configuration parameters of the same-frequency cell accessed by the terminal in the SCG to which the source PSCell belongs, the same-frequency cell being the source PSCell or the secondary cell SCell accessed by the terminal.
  • an embodiment of the present application also provides a conditional update device, which includes: an acquisition module, used to obtain the secondary cell group SCG configuration of the candidate primary and secondary cells PSCell, the candidate PSCell includes a first candidate PSCell and/or a second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to different reference SCG configurations; an access module, used to evaluate the first candidate PSCell and/or the second candidate PSCell, and access the target PSCell that meets the update execution conditions.
  • an embodiment of the present application also provides a condition update device, which includes: a sending module, used to send the secondary cell group SCG configuration of the first candidate primary secondary cell PSCell to the terminal, and specify the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell to the terminal.
  • an embodiment of the present application also provides a conditional update device, which includes: a sending module, used to send the secondary cell group SCG configuration of the second candidate primary secondary cell PSCell to the terminal, and specify the reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell to the terminal.
  • an embodiment of the present application also provides a condition update device, which includes: an acquisition module, used to receive the secondary cell group SCG configuration of the candidate primary and secondary cells PSCell, the SCG configuration of the candidate PSCell is the increment of the configuration parameters of the SCG to which the candidate PSCell belongs relative to the configuration parameters of the same-frequency cell accessed by the terminal in the SCG to which the source PSCell belongs, and the same-frequency cell is the source PSCell or the secondary cell SCell accessed by the terminal.
  • an embodiment of the present application provides a computer-readable storage medium having a computer program stored thereon.
  • the computer program is executed by a processor, the conditional update method provided in any of the above aspects is executed.
  • an embodiment of the present application provides a terminal, including a memory and a processor, wherein the memory stores a computer program that can be executed on the processor, and when the processor runs the computer program, the steps of the conditional update method provided in the first aspect or the fourth aspect are executed.
  • an embodiment of the present application provides a network device, including a memory and a processor.
  • a processor wherein the memory stores a computer program that can be run on the processor, and when the processor runs the computer program, the steps of the conditional update method provided by the second aspect are executed.
  • an embodiment of the present application provides a network device, comprising a memory and a processor, wherein the memory stores a computer program that can be executed on the processor, and when the processor runs the computer program, the steps of the conditional update method provided in the third aspect are executed.
  • the terminal obtains the SCG configuration of the candidate PSCell, the candidate PSCell includes the first candidate PSCell and/or the second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to different reference SCG configurations; the first candidate PSCell and/or the second candidate PSCell are evaluated, and the target PSCell that meets the update execution conditions is accessed.
  • the SCG configurations of different candidate PSCells correspond to different reference SCG configurations, and the appropriate reference SCG configuration can be flexibly selected to implement incremental configuration of the candidate PSCell, which is conducive to reducing the signaling overhead of the configuration.
  • the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell is specified by the secondary base station; the reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell is specified by the primary base station.
  • the reference SCG used for CPC within the secondary base station and CPC between secondary base stations is distinguished, and the reference SCG configuration is specified by the secondary base station, which can effectively reduce the signaling overhead of the configuration process when executing CPC within the secondary base station.
  • the SCG configuration of the candidate PSCell is the increment of the configuration parameters of the SCG of the candidate PSCell relative to the configuration parameters of the same-frequency cell accessed by the terminal in the SCG to which the source PSCell belongs.
  • the SCG configuration of the same-frequency cell in the SCG currently accessed by the terminal is used as the reference SCG configuration of the candidate PSCell. Since the similarity of cell configurations on the same frequency is generally large and the similarity of cell configurations on different frequencies is low, implementing the SCG incremental configuration of the candidate PSCell according to the frequency is conducive to further reducing the signaling overhead.
  • FIG1 is a schematic diagram of a flow chart of a condition updating method in an embodiment of the present application.
  • FIG2 is a flow chart of another conditional updating method in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a condition updating device in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of another condition updating device in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of another condition updating device in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure of a terminal in an embodiment of the present application.
  • the communication systems to which the embodiments of the present application are applicable include but are not limited to the third generation system (3rd generation, referred to as 3G), long term evolution (long term evolution, referred to as LTE) system, fourth generation system (4th generation, referred to as 4G), fifth generation (5th generation, referred to as 5G) system, new radio (New Radio, referred to as NR) system, and future evolution system or multiple communication fusion systems.
  • 3G third generation system
  • LTE long term evolution
  • 4G fourth generation system
  • 5G fifth generation
  • 5G new radio
  • NR new Radio
  • the terminal in the embodiments of the present application may refer to various forms of user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), remote station, remote terminal, mobile device, user terminal, terminal equipment (Terminal Equipment), wireless communication equipment, user agent or user device.
  • the terminal may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, and the future 5G network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the present invention is not limited to a terminal in a terminal in a future evolved public land mobile communication network (Public Land Mobile Network, PLMN for short), etc.
  • PLMN Public Land Mobile Network
  • the network device in the embodiment of the present application may also be referred to as an access network device, for example, a base station (BS) (also referred to as a base station device), which is a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • BS base station
  • RAN radio access network
  • the device that provides base station functions in a second-generation (2nd-generation, 2G) network includes a base transceiver station (BTS), the device that provides base station functions in a third-generation (3rd-generation, 3G) network includes a node B, the device that provides base station functions in a fourth-generation (4th-generation, 4G) network includes an evolved Node B (eNB), and in wireless local area networks (WLAN),
  • the device that provides the base station function is the access point (AP for short)
  • the device that provides the base station function in NR is the next generation node base station (gNB for short)
  • the evolving node B (ng-eNB) wherein the gNB and the terminal device use NR technology for communication, and the ng-eNB and the terminal device use Evolved Universal Terrestrial Radio Access (E-UTRA for short) technology for communication, and both gNB and ng-eNB can be connected to the 5G core network.
  • the network device in the embodiment of the present application also includes a
  • Incremental configuration may refer to taking the configuration parameters of a certain SCG as a reference (reference or baseline), and taking the increment of the configuration parameters of the SCG to which the candidate PSCell belongs relative to the configuration parameters of the SCG as the configuration information of the SCG to which the candidate PSCell belongs, and configuring it to the terminal in the form of incremental signaling.
  • the terminal can calculate the complete configuration of the SCG to which the candidate PSCell belongs based on the configuration information of the SCG to which the candidate PSCell belongs (that is, the incremental part) and the configuration parameters of the SCG used as a reference (that is, the baseline part). Parameters, so that random access can be performed.
  • the configuration parameters of the SCG used as a reference are referred to as reference SCG configuration below.
  • an embodiment of the present application provides a conditional update method.
  • the terminal obtains the SCG configuration of the candidate PSCell, and the candidate PSCell includes a first candidate PSCell and/or a second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to different reference SCG configurations; the first candidate PSCell and/or the second candidate PSCell are evaluated, and the target PSCell that meets the update execution conditions is accessed.
  • the SCG configurations of different candidate PSCells correspond to different reference SCG configurations, and the appropriate reference SCG configuration can be flexibly selected to implement incremental configuration of the candidate PSCell, which is beneficial to reduce the signaling overhead of the configuration.
  • the conditional update method provided in the embodiment of the present application can be applied to the Multi Radio Dual Connectivity (MR-DC) scenario.
  • the main base station and the auxiliary base station provide services for the terminal at the same time.
  • the embodiment of the present application does not limit the type of dual connection, and the dual connection can be LTE dual connection, LTE and NR dual connection, NR dual connection, etc.
  • LTE and NR For the dual connection of LTE and NR, it can include EN-DC (E-UTRAN NR Dual Connectivity, that is, the LTE base station is the main base station of the UE, and the NR base station is the auxiliary base station of the UE), NE-DC (NR E-UTRAN Dual Connectivity, that is, the NR base station is the main base station of the UE, and the LTE base station is the auxiliary base station of the UE), NGEN-DC (that is, the LTE base station connected to the 5G core network is the main base station of the UE, and the NR base station is the auxiliary base station of the UE), etc.
  • EN-DC E-UTRAN NR Dual Connectivity
  • NE-DC NR E-UTRAN Dual Connectivity
  • NGEN-DC that is, the LTE base station connected to the 5G core network is the main base station of the UE
  • the NR base station is the auxiliary base station of the UE
  • Figure 1 is a flow chart of a condition updating method in an embodiment of the present application.
  • the condition updating method shown in Figure 1 may include steps S11 to S15.
  • Step S11 The primary base station receives configuration parameters of a source PSCell and/or SCell from a source secondary base station.
  • the source PSCell refers to the PSCell that the terminal is currently connected to
  • the source secondary base station is Refers to the secondary base station that the terminal is currently accessing, and the source PSCell is the cell of the source secondary base station.
  • the source secondary base station can send the configuration parameters of the source PSCell to the primary base station.
  • the configuration parameters can refer to the wireless parameters for the UE to access or the wireless parameters configured for the UE.
  • the secondary base station may also send configuration parameters of the SCell currently connected to the primary base station.
  • the PSCell and SCell currently connected to the UE belong to the same SCG, and the PSCell and SCell are located at different frequencies.
  • the configuration parameters of the source PSCell and the configuration parameters of the SCell may be sent at different times or simultaneously, and this embodiment does not limit this.
  • the primary base station can request the source secondary base station for the configuration parameters of the cell currently accessed by the terminal.
  • the source secondary base station sends the configuration parameters of the PSCell and SCell currently accessed by the terminal to the primary base station.
  • the source secondary base station can inform the primary base station of the configuration parameters of the PSCell and SCell to which the terminal is currently connected when sending an update request for the candidate PSCell to the primary base station.
  • Step S12 The primary base station sends a condition update request to other secondary base stations, which includes a reference SCG configuration.
  • the other secondary base stations may refer to other secondary base stations other than the currently accessed secondary base station.
  • the other secondary base stations may be secondary base stations adjacent to the currently accessed secondary base station.
  • the main base station after the main base station selects a candidate PSCell, it can send a conditional update request (i.e., an SN addition request) to the secondary base station to which each candidate PSCell belongs.
  • a conditional update request i.e., an SN addition request
  • the candidate PSCell selected by the main base station can be determined by the main base station based on the measurement report of the terminal, or it can be determined by the source secondary base station based on the measurement report of the terminal, and this embodiment does not limit this.
  • the conditional update request sent by the main base station to the secondary base station to which each candidate PSCell belongs can include a reference SCG configuration.
  • the secondary base station to which the candidate PSCell belongs is the candidate secondary base station.
  • the reference SCG configuration may be selected from the step S11 in which the primary base station receives the secondary base station More specifically, the primary base station may determine the configuration parameters of one or more cells in the cell belonging to the secondary base station to which the terminal currently accesses as the reference SCG configuration.
  • the primary base station may take the received configuration parameters of the source PSCell and SCell as an overall SCG configuration, take the SCG configuration as a reference SCG configuration, and send the reference SCG configuration to other secondary base stations.
  • the primary base station may select one or more SCells from the multiple SCells, and send the configuration parameters of the selected SCell and the configuration parameters of the source PSCell as a reference SCG configuration to other secondary base stations.
  • Step S13 Other secondary base stations send a condition update request confirmation to the primary base station, which includes the SCG configuration of the candidate PSCell.
  • other secondary base stations determine the candidate PSCell. Furthermore, the secondary base station can determine the increment of the configuration parameters of the SCG to which the candidate PSCell belongs relative to the reference SCG configuration based on the received reference SCG configuration and the configuration parameters of the candidate PSCell, that is, the SCG configuration of the candidate PSCell.
  • this article refers to the configuration parameters of the SCG to which the candidate PSCell belongs as the SCG configuration of the candidate PSCell (the SCG configuration contains the configuration parameters of the PSCell).
  • the reference SCG configuration sent by the primary base station is the configuration parameters of the source PSCell.
  • the candidate secondary base station can calculate the increment of the configuration parameters of the SCG to which the candidate PSCell belongs relative to the configuration parameters of the source PSCell to obtain the SCG configuration of the candidate PSCell.
  • the reference SCG configuration sent by the primary base station includes configuration parameters of multiple cells.
  • the reference SCG configuration includes configuration parameters of the source PSCell and configuration parameters of the SCells accessed by one or more terminals.
  • the candidate secondary base station can use the configuration parameters of the cell with the same frequency as the candidate PScell in the reference SCG configuration as a reference to calculate the configuration parameters of the SCG to which the candidate PSCell belongs relative to the cell with the same frequency.
  • the SCG configuration of the candidate PSCell is obtained by increasing the configuration parameters of the source PSCell. Further, if the candidate secondary base station finds that the received reference SCG configuration does not include the configuration parameters of the cell with the same frequency as the candidate PSCell, the configuration parameters of the source PSCell can be used as the reference SCG configuration.
  • the candidate secondary base station sends the SCG configuration of the candidate PSCell to the primary base station.
  • the candidate secondary base station may send a conditional update request confirmation to the primary base station, wherein the conditional update request confirmation carries the SCG configuration of the candidate PSCell.
  • the reference SCG configurations of different PSCells may be the same or different.
  • the master base station can obtain the SCG configurations of multiple candidate PSCells, wherein the SCG configuration of each candidate PSCell is configured in an incremental signaling manner.
  • Step S14 The primary base station sends the SCG configuration and update execution conditions of the candidate PSCell to the terminal.
  • the master base station may configure corresponding update execution conditions for multiple candidate PSCells, that is, PSCell change execution conditions.
  • the update execution conditions may be execution conditions in the existing CPC method, and this embodiment does not limit this. Among them, the update execution conditions corresponding to different candidate PSCells may be the same or different.
  • the main base station may also indicate to the terminal the reference SCG configuration associated with the SCG configuration of each candidate PSCell.
  • the main base station may send the SCG configuration of the candidate PSCell, as well as the reference SCG configuration (if explicit indication is required) through RRC reconfiguration.
  • the main base station may explicitly indicate the reference SCG configuration of the candidate PSCell to the terminal.
  • the main base station may send the SCG configuration of the PSCell to the terminal through RRC reconfiguration signaling.
  • the reference SCG configuration may also be indicated to the terminal through RRC reconfiguration signaling.
  • the RRC reconfiguration signaling may carry an identifier or index of the reference SCG configuration.
  • the reference SCG configuration may not be explicitly indicated, such as when the reference SCG configuration is the SCG configuration applied when the terminal receives the SCG configuration of the candidate PSCell, or when the reference SCG configuration is the cell configuration parameters of the secondary base station side that is currently applied and has the same frequency as the candidate PSCell. If the reference SCG configuration is not the SCG configuration currently applied by the terminal, the primary base station needs to additionally indicate the specific reference SCG configuration to the terminal.
  • the terminal can obtain complete configuration parameters of the SCG to which the candidate PSCell belongs according to the SCG configuration of each candidate PSCell and the reference SCG configuration corresponding to the candidate PSCell.
  • Step S15 The terminal evaluates candidate PSCells and accesses a target PSCell that meets the update execution conditions.
  • the terminal may evaluate one or more candidate PSCells among the candidate PSCells received in step S14, and when any candidate PSCell meets the corresponding update execution condition, the terminal may determine the candidate PSCell as the target PSCell, and perform random access according to the SCG configuration of the target PSCell. Thus, the terminal completes this PSCell update.
  • the terminal before accessing the target PSCell, if the terminal detects that a radio link failure (Radio Link Failure) occurs in the SCG to which the source PSCell belongs, the terminal sends SCG failure information to the main base station to report the radio link failure of the source SCG to the main base station.
  • a radio link failure Radio Link Failure
  • the terminal may continue to evaluate candidate PSCells during and/or after sending the SCG failure information. If a candidate PSCell that meets the update execution conditions is evaluated, the candidate PSCell is accessed. If a response to the SCG failure information from the main base station is received before accessing the target PSCell, the corresponding process may be executed according to the response of the main base station to the SCG failure information. For example, the response sent by the main base station may trigger the terminal to perform a PSCell update or reconfigure the current PSCell or release the PSCell. The current PSCell, etc. Compared with the solution of stopping the evaluation of the candidate PSCell after sending the SCG failure information, the candidate PSCell is continuously evaluated in this embodiment, which is conducive to timely finding a suitable PSCell and improving the success rate of the PSCell update.
  • the SCG configuration of other candidate PSCells except the target PSCell configured for the terminal during the CPC process can be retained to facilitate subsequent PSCell update.
  • the terminal when the terminal retains the SCG configuration of the candidate PSCell, it may also retain the corresponding reference SCG configuration. In other embodiments, the terminal may also retain the complete SCG configuration parameters restored based on the SCG configuration of the candidate PSCell and the corresponding reference SCG configuration.
  • the configuration parameters of the same-frequency cell accessed by the terminal on the source SCG side are used as the reference SCG configuration for incremental configuration, which is beneficial to reduce the number of bits required to configure the SCG of the candidate PSCell, thereby reducing the signaling overhead in the CPC process.
  • Fig. 2 is a flow chart of a condition updating method in an embodiment of the present application.
  • the condition updating method shown in Fig. 2 can be executed by a terminal.
  • Fig. 2 can include step S21 and step S22.
  • Step S21 obtaining the SCG configuration of the candidate PSCell, the candidate PSCell includes a first candidate PSCell and a second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to different reference SCG configurations.
  • the terminal may obtain SCG configurations of multiple candidate PSCells, wherein the SCG configurations of different candidate PSCells may be the same as or different from the corresponding reference SCG configurations.
  • both the first candidate PSCell and the second candidate PSCell are It can be configured by the master base station, where the frequencies of the first candidate PSCell and the second candidate PSCell are different, so the corresponding reference SCG configurations are different.
  • the master base station sends the SCG configuration of the candidate PSCell, it can also indicate the reference SCG configuration corresponding to each candidate PSCell and the update execution conditions.
  • the first candidate PSCell and the second candidate PSCell may both be configured by the source secondary base station, wherein the frequencies of the first candidate PSCell and the second candidate PSCell are different, and therefore the corresponding reference SCG configurations are different.
  • the source secondary base station sends the SCG configuration of the candidate PSCell, it may also indicate the reference SCG configuration corresponding to each candidate PSCell and the update execution conditions.
  • the terminal receives the SCG configuration of the first candidate PSCell from the source secondary base station, and/or the terminal receives the SCG configuration of the second candidate PSCell from the main base station.
  • the second candidate PSCell may be configured by triggering the main base station or by triggering the source secondary base station.
  • the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell may be specified to the terminal by the source secondary base station, and the reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell may be specified to the terminal by the main base station.
  • the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell and the reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell may be the same or different.
  • the following describes in detail how the source secondary base station configures the first candidate PSCell for the terminal.
  • the source secondary base station may determine a plurality of first candidate PSCells, where the first candidate PSCell is a candidate PSCell belonging to the source secondary base station.
  • the first candidate PSCell and the source PSCell belong to the same secondary base station.
  • the source secondary base station can determine the reference SCG configuration corresponding to each first candidate PSCell, and then calculate the increment of the SCG configuration parameters of each first candidate PSCell relative to the reference SCG configuration to obtain the SCG configuration of each first candidate PSCell. Further, the source secondary base station can directly send the SCG configurations of multiple first candidate PSCells and the update execution conditions corresponding to each first candidate PSCell to the terminal through RRC signaling.
  • the source secondary base station directly sends the SCG of the first candidate PSCell to the terminal.
  • the configuration is called intra-SN CPC configuration.
  • the source secondary base station side is configured with Signaling Radio Bearer 3 (SRB3 for short)
  • the source secondary base station can directly send the intra-SN CPC configuration to the terminal.
  • SRB3 Signaling Radio Bearer 3
  • the source secondary base station may explicitly indicate to the terminal the reference SCG configuration corresponding to the SCG configuration of each first candidate PSCell.
  • the source secondary base station and the terminal may also default the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell as the SCG configuration of the source PSCell. If the currently applied SCG configuration (i.e., the source SCG) is used as the reference SCG configuration of the SCG configuration of the first candidate PSCell, the source secondary base station may not explicitly indicate the reference SCG configuration.
  • the reference SCG configurations corresponding to the SCG configurations of different first candidate PSCells are the same or different.
  • the SCG configuration applied when the terminal receives the SCG configuration of the first candidate PSCell (from the source base station for the first time) is used as the reference SCG configuration
  • the currently applied SCG configuration ie, the source SCG
  • the source auxiliary base station needs to explicitly indicate to the terminal the identifier or index of the reference SCG configuration corresponding to the SCG configurations of different first candidate PSCells.
  • the source secondary base station can use the SCG configuration of the source PSCell (i.e., the source SCG, or the SCG configuration applied when receiving the SCG configuration of the first candidate PSCell) as the reference SCG configuration of each first candidate PSCell.
  • the source secondary base station and the terminal can default to the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell configured by the source secondary base station as the SCG configuration of the source PSCell.
  • the terminal receives the SCG configuration of the first candidate PSCell sent by the source secondary base station, it can be known that the corresponding reference SCG configuration is the SCG configuration of the source PSCell.
  • the source PSCell is the PSCell currently accessed by the terminal
  • the reference SCG configuration may be the SCG configuration of the source PSCell, or may be the SCG configuration sent by the source secondary base station to the terminal before the terminal accesses the source PSCell.
  • the source PSCell is PSCell1
  • the PSCell that the terminal accessed before accessing PSCell1 is PSCell0
  • both PSCell0 and PSCell1 belong to the source secondary base station.
  • the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell configured by the source secondary base station to the terminal may be the SCG configuration of PSCell0.
  • the source secondary base station before the terminal accesses PSCell1, the source secondary base station also configures PSCell2, PSCell3 and PSCell4 of the same secondary base station when configuring PSCell1 for the terminal (all using the SCG configuration of PSCell0 as the reference SCG configuration).
  • the terminal executes intra-SN CPC to access PSCell1, the SCG configurations of PSCell2 to 4 can continue to be retained.
  • the source secondary base station configures other first candidate PSCells for the terminal, it can continue to use the SCG configuration of PSCell0 as the reference SCG configuration; or when configuring other first candidate PSCells, it can use the SCG configuration of PSCell1 (i.e., the source SCG configuration) as a reference.
  • the secondary base station needs to explicitly indicate the identifier or index of the reference SCG configuration when configuring other candidate PSCells for the terminal.
  • the following describes in detail how the primary base station configures the second candidate PSCell for the terminal.
  • the second candidate PSCell may be configured by the primary base station for the terminal when the primary base station initiates the configuration of inter-SN CPC.
  • the second candidate PSCell may also be configured by the source secondary base station for the terminal through the primary base station when the source secondary base station initiates the configuration of inter-SN CPC.
  • the master base station can specify the reference SCG configuration corresponding to the second candidate PSCell and obtain the SCG configuration of the second candidate PSCell based on the reference SCG configuration.
  • the specific process of the master base station obtaining the SCG configuration of the candidate PSCell can refer to the above description of steps S12 and S13 in Figure 1, which will not be repeated here.
  • the primary base station may send the SCG configuration of the second candidate PSCell to the terminal.
  • the master base station may specify the reference SCG configuration corresponding to each second candidate PSCell to the terminal at the same time.
  • the SCG configuration corresponding to the second candidate PSCell may be specified in advance by the master base station to the terminal.
  • the number of second candidate PSCells received by the terminal from the main base station is multiple, wherein the SCG configuration of each second candidate PSCell is associated with a reference SCG configuration, and the reference SCG configurations associated with the SCG configurations of different second candidate PSCells are the same or different.
  • Multiple second candidate PSCells can be associated with multiple reference SCG configurations.
  • the associated reference SCG configuration may refer to the "corresponding reference SCG configuration" described above.
  • the SCG configurations of multiple second candidate PSCells may all be associated with the SCG configuration of a specified PSCell, and the SCG configuration of the PSCell is saved at the terminal.
  • the SCG configuration of each second candidate PSCell uses the configuration of the same-frequency cell in the current SCG configuration as a reference.
  • the terminal can obtain the first candidate PSCell and the second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell can correspond to different reference SCG configurations.
  • the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to the same reference SCG configuration, which is specified by the main base station.
  • the main base station needs to indicate the reference SCG configuration to the secondary base station through the interface between base stations, so that the secondary base station can use this as a reference to configure the SCG configuration of the first candidate PSCell for the terminal.
  • first candidate PSCell and the second candidate PSCell can be configured for the terminal by the main base station and/or the secondary base station in the same CPC process, or can be configured for the terminal by the main base station and/or the secondary base station in different CPC configuration processes.
  • the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell can correspond to the same reference SCG configuration. Allowing the SCG configuration of the first candidate PSCell to apply different reference SCG configurations is to enable the secondary base station to configure the candidate PSCell more flexibly, which can further save air interface signaling.
  • Step S22 Evaluate the first candidate PSCell and/or the second candidate PSCell, and access the target PSCell that meets the update execution conditions.
  • the terminal may evaluate each candidate PSCell, and when any candidate PSCell satisfies its associated update execution condition, the candidate PSCell is used as the target PSCell, and random access is performed to access the target PSCell.
  • the target PSCell and the source PSCell belong to the same secondary base station, and the terminal executes intra-SN CPC.
  • the terminal may release or continue to retain the SCG configuration of the first candidate PSCell configured by the source secondary base station.
  • Mode 1 After the terminal accesses the target PSCell or during the process of the terminal accessing the target PSCell, the terminal may release the SCG configuration of other first candidate PSCells except the target PSCell in the first candidate PSCell.
  • "Release” in this embodiment may be deletion, discarding, etc.
  • Method 2 After the terminal accesses the target PSCell, the terminal can continue to retain the SCG configuration of other first candidate PSCells in the first candidate PSCell except the target PSCell.
  • the "retention" referred to in the solution of the embodiment of the present application means to continue to retain (for example, store or cache, etc.) without deleting or discarding. Furthermore, it can continue to be used after retention.
  • the source secondary base station may send the first indication information to the terminal.
  • the first indication information may be sent together with the SCG configuration of the first candidate PSCell sent to the terminal.
  • the first indication information may be used to indicate that the terminal should continue to retain at least a portion of the SCG configuration of the first candidate PSCell after updating the PSCell.
  • the first indication information may be used to indicate that after the terminal performs intra-SN CPC access to the target PSCell, the SCG configuration of other first candidate PSCells may be retained.
  • the first indication information may also be sent independently so that the source secondary base station can dynamically adjust the configuration strategy.
  • the source secondary base station can continue to retain the SCG configuration of other first candidate PSCells except the target PSCell. Adopting such a solution is conducive to avoiding repeated configuration during the execution of continuous intra-SN CPC and is conducive to reducing signaling overhead.
  • the target PSCell and the source PSCell do not belong to the same secondary base station, and the terminal executes inter-SN CPC. Further, after the terminal accesses the target PSCell or during the terminal access to the target PSCell, the SCG configuration of the first candidate PSCell can be released in whole or in part. More specifically, once the terminal executes inter-SN CPC, the terminal can release the SCG configuration of the first candidate PSCell configured by the source secondary base station.
  • the terminal may not release the SCG configuration of the first candidate PSCell.
  • the main base station may continue to update the SCG configuration of the first candidate PSCell. For example, at least the retained security parameters related to the first candidate PSCell need to be configured so that the terminal can use appropriate security parameters when accessing these cells.
  • the target PSCell is selected from the second candidate PSCell, and during and/or after the terminal accesses the target PSCell, the SCG configurations of other second candidate PSCells except the target PSCell may continue to be retained.
  • the main base station may send a second indication message to the terminal.
  • the second indication message may be sent together with the SCG configuration of the second candidate PSCell sent to the terminal.
  • the second indication message may be used to instruct the terminal to continue to retain at least a portion of the SCG configuration of the second candidate PSCell after updating the PSCell.
  • the second indication message may be used to instruct the terminal to retain the SCG configuration of other second candidate PSCells after executing CPC access to the target PSCell.
  • the second indication message may also be sent independently so that the main base station can dynamically adjust the configuration strategy.
  • the main base station may configure the update execution conditions of the source PSCell to the terminal after the terminal accesses the target PSCell. Specifically, after the terminal accesses the target PSCell, it may send RRC signaling to the main base station to notify the main base station that the terminal has accessed the target PSCell. If the main base station expects the source PSCell to be a candidate PSCell after the terminal accesses the target PSCell, the main base station may send the update execution conditions corresponding to the source PSCell to the terminal.
  • the terminal may continue to retain the SCG configuration of the source PSCell, but does not use it as a candidate PSCell after accessing the target PSCell.
  • the terminal may continue to retain one or more reference SCG configurations for use in performing continuous CPC.
  • the terminal may also retain the reference SCG configuration associated with each candidate PSCell. In other words, the terminal can continue to retain the SCG configuration corresponding to the candidate PSCell that is retained after the CPC execution is completed.
  • the reference SCG configuration in inter-SN CPC is specified by the primary base station
  • the reference SCG configuration in intra-SN CPC is specified by the secondary base station. Since intra-SN CPC usually does not involve the update of security keys, while inter-SN CPC requires the implementation of key updates, special processing for intra-SN CPC configuration can effectively reduce signaling overhead.
  • the master base station and/or the source secondary base station may send PSCell update signaling to the terminal.
  • the PSCell update signaling sent by the master base station implements incremental configuration based on the reference SCG adopted by the SCG configuration of the second candidate PSCell
  • the PSCell update signaling sent by the source secondary base station implements incremental configuration based on the reference SCG adopted by the SCG configuration of the first candidate PSCell.
  • the master base station configures intra-SN CPC or configures inter-SN CPC with the source secondary base station, both use only one reference SCG configuration
  • the PSCell update signaling sent by the master base station and/or the PSCell update signaling sent by the secondary base station may not explicitly indicate their respective reference SCG configurations, and the terminal may apply the correct reference SCG configuration according to the sender of the PSCell update signaling to obtain a complete SCG configuration.
  • conditional update method provided in the embodiment of the present application is given by way of example.
  • the terminal establishes a dual connection, which can be any one of the MR-DCs. Assume that the currently connected PSCell is PSCell1, and the SCG configuration applied by the terminal is the SCG configuration of PSCell1.
  • the master base station may send multiple SCG configurations of the second candidate PSCells to the terminal, namely PSCell2, PSCell3 and PSCell4.
  • the master base station may indicate to the terminal that the reference SCG configuration corresponding to the SCG configurations of PSCell2-4 is the SCG configuration of PSCell1.
  • the reference SCG configuration corresponding to the SCG configurations of PSCell2-4 may be defaulted to be the SCG configuration of PSCell1.
  • the SCG configuration that is, the SCG configuration applied when the SCG configuration of the candidate PSCell is received by default, is the reference SCG configuration.
  • the terminal After the terminal has been connected to PSCell1 for a period of time, the terminal performs PSCell update. Specifically, the terminal evaluates PSCell2-4 and uses PSCell2 as the target PSCell. After the terminal is connected to PSCell2, the terminal can continue to retain the SCG configuration of PSCell3 and PSCell4 for subsequent CPC.
  • the terminal can continue to retain the SCG configuration of PSCell1. If the master base station expects PSCell1 to continue to be a candidate PSCell, the master base station can configure the update execution conditions of PSCell1 to the terminal. If the terminal receives the update execution conditions of PSCell1 configured by the master base station after PSCell2, the terminal can use PSCell1 as a candidate PSCell; if the update execution conditions of PSCell1 are not received from the master base station, PSCell1 may not be used as a candidate PSCell1.
  • the secondary base station can trigger the configuration of inter-SN CPC or intra-SN CPC.
  • the secondary base station here refers to the secondary base station to which PSCell2 belongs.
  • the secondary base station can configure multiple first candidate PSCells to the terminal, namely PSCell5, PSCell6 and PSCell7.
  • the secondary base station can use the SCG configuration of PSCell2 as the reference SCG configuration and send the SCG configuration of PSCell5-7 to the terminal.
  • the secondary base station can also send the update execution conditions associated with PSCell5-7 to the terminal. Since a new reference SCG configuration is used, the reference SCG configuration associated with PSCell5-7 can also be indicated to the terminal. Or the default intra-SN CPC configuration always uses the currently applied SCG configuration as the reference SCG configuration. In this case, the secondary base station does not need to explicitly indicate the reference SCG configuration.
  • the terminal can evaluate the candidate PSCell.
  • the candidate PSCells at this time may include: PSCell3, 4, PSCell5-7.
  • CPC can be executed to access the candidate PSCell.
  • the above method can be implemented in the form of a software program, which runs in a processor integrated inside a chip or a chip module; or, the method can be implemented in hardware or a combination of hardware and software, such as using a dedicated chip or chip module, or using a dedicated chip or chip module in combination with a software program.
  • FIG. 3 is a schematic diagram of the structure of a condition updating device in an embodiment of the present application.
  • the condition updating device shown in FIG. 3 may be deployed in the above-mentioned terminal.
  • the device shown in FIG. 3 may include:
  • An acquisition module 31 is used to acquire a secondary cell group SCG configuration of a candidate primary and secondary cell PSCell, wherein the candidate PSCell includes a first candidate PSCell and/or a second candidate PSCell, wherein the SCG configuration of the first candidate PSCell and the SCG configuration of the second candidate PSCell correspond to different reference SCG configurations;
  • the access module 32 is used to evaluate the first candidate PSCell and/or the second candidate PSCell and access the target PSCell that meets the update execution condition.
  • the acquisition module 31 can also be used to receive the secondary cell group SCG configuration of the candidate primary and secondary cells PSCell, where the SCG configuration of the candidate PSCell is the increment of the configuration parameters of the SCG to which the candidate PSCell belongs relative to the configuration parameters of the same-frequency cell accessed by the terminal in the SCG to which the source PSCell belongs, and the same-frequency cell is the source PSCell or the secondary cell SCell accessed by the terminal.
  • condition updating device shown in FIG. 3 may correspond to a chip with a communication function in a terminal; or correspond to a chip or chip module with a communication function in a terminal, or correspond to a terminal.
  • FIG. 4 is a schematic diagram of the structure of another condition updating device in an embodiment of the present application.
  • the condition updating device shown in FIG. 4 may be deployed in a network device, and more specifically, may be deployed in the above-mentioned source secondary base station.
  • the device shown in FIG. 4 may include:
  • the sending module 41 is used to send the secondary cell group SCG configuration of the first candidate primary secondary cell PSCell to the terminal, and specify the reference SCG configuration corresponding to the SCG configuration of the first candidate PSCell to the terminal.
  • condition updating device shown in FIG. 4 may correspond to a chip with a communication function in a network device; or correspond to a chip or chip module with a communication function in a network device, or correspond to a network device.
  • FIG. 5 is a schematic diagram of the structure of another condition updating device in an embodiment of the present application.
  • the condition updating device shown in FIG. 5 may be deployed in a network device, more specifically, may be deployed in the above-mentioned master base station.
  • the device shown in FIG. 5 may include:
  • the sending module 51 is used to send the secondary cell group SCG configuration of the second candidate primary secondary cell PSCell to the terminal, and specify the reference SCG configuration corresponding to the SCG configuration of the second candidate PSCell to the terminal.
  • condition updating device shown in FIG. 5 may correspond to a chip with a communication function in a network device; or correspond to a chip or chip module with a communication function in a network device, or correspond to a network device.
  • conditional updating device for more information about the working principle, working method, beneficial effects, etc. of the conditional updating device in the embodiment of the present application, please refer to the above description of the conditional updating method, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned conditional update method is executed.
  • the storage medium may include ROM, RAM, a disk or an optical disk, etc.
  • the storage medium may also include a non-volatile memory (non-volatile) or a non-transitory memory, etc.
  • the embodiment of the present application also provides a terminal, including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes the steps of the above-mentioned condition update method when running the computer program.
  • the terminal includes but is not limited to terminal devices such as mobile phones, computers, and tablet computers.
  • the terminal can be a mobile phone, a computer, or a tablet computer. Computers, tablet computers, vehicle-mounted terminals and wearable devices, but not limited to these.
  • FIG. 6 is a schematic diagram of the structure of a terminal in an embodiment of the present application.
  • the terminal shown in FIG. 6 includes a memory 61 and a processor 62, the processor 62 and the memory 61 are coupled, and the memory 61 can be located inside the terminal or outside the terminal.
  • the memory 61 and the processor 62 can be connected via a communication bus.
  • the memory 61 stores a computer program that can be run on the processor 62, and the processor 62 executes the steps in the data transmission method provided in the above embodiment when running the computer program.
  • An embodiment of the present application further provides a network device, including a memory and a processor, wherein the memory stores a computer program that can be executed on the processor, and the processor executes the steps of the above-mentioned conditional update method when running the computer program.
  • the structure of the network device can be referred to the related description of FIG6 , which will not be repeated here.
  • the processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static RAM static Random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination thereof.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program may be stored in a computer-readable storage medium, or may be transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are merely schematic; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • each module/unit contained therein may be implemented in the form of hardware such as circuits, or at least part of the modules/units may be implemented in the form of software programs, which run on a processor integrated inside the chip, and the remaining (if any) modules/units may be implemented in the form of hardware such as circuits; for each device or product applied to or integrated in a chip module, each module/unit contained therein may be implemented in the form of hardware such as circuits, and different modules/units may be located in the same component (such as a chip, circuit module, etc.) or different components of the chip module, or at least part of the modules/units may be implemented in the form of software programs.
  • the element can be implemented in the form of a software program, which runs on a processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented in the form of hardware such as circuits; for various devices and products applied to or integrated in the terminal, the various modules/units contained therein can be implemented in the form of hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components in the terminal, or, at least some modules/units can be implemented in the form of a software program, which runs on a processor integrated inside the terminal, and the remaining (if any) modules/units can be implemented in the form of hardware such as circuits.
  • the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute some steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (Random Access Memory, RAM for short), magnetic disks or optical disks, etc., which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种条件更新方法及装置、终端、网络设备,所述方法包括:获取候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,所述第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置对应不同的参考SCG配置;评估所述第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。本申请提供的条件更新方法有利于降低信令开销。

Description

条件更新方法及装置、终端、网络设备
本申请要求于2022年11月4日提交中国专利局、申请号为202211378440.1、发明名称为“条件更新方法及装置、终端、网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种条件更新方法及装置、终端、网络设备。
背景技术
在无线通信中,引入了一种条件切换(Conditional Handover,简称CHO)机制,在CHO机制中,源基站向用户设备(User Equipment,简称UE)发送的切换命令中包含切换条件(切换执行条件,conditional execution condition),如判断候选目标小区的信号质量是否比当前服务小区的信号质量高预定的偏移量。UE在接收到该切换命令之后,判断候选小区的切换条件是否满足,在满足时,UE利用切换命令中包含的候选小区的配置参数接入目标小区,与目标小区取得同步,在目标小区发起随机接入流程。UE在发送了切换完成命令之后,实现切换到目标小区。如果切换条件不满足,UE继续维持与源基站的无线资源控制(Radio Resource Control,简称RRC)连接。在这种CHO机制中,源基站可以配置多个候选小区以及对应的切换执行条件,可以有效提高切换的成功率。
上述的CHO机制可以用于双连接(Dual Connectivity,简称DC)的场景。在双连接状态下,UE与两个基站通信连接,其中一个为主基站(Master eNB,简称MN),另一个为辅基站(Secondary eNB, 简称SN),UE可以同时接收两个基站的信令和数据,以及向两个基站发送信令和数据。
对于建立了双连接的UE,辅基站(SN)侧可以采用条件切换机制。具体地,主基站或辅基站可以为UE配置一个或多个辅小区组(Secondary Cell Group,简称SCG),其中,每个SCG可以包括一个候选主辅小区(Primary SCG Cell,简称PSCell),主基站或辅基站为UE配置SCG时还一并配置对应的PSCell的更新执行条件。可选的,SCG还可以包括一个或多个辅小区(Secondary Cell,简称SCell)。UE判断某一候选PSCell的更新执行条件满足时,可以接入目标PSCell(即满足更新执行条件的候选PSCell)。由于PSCell的改变并不是严格意义上的切换,此时,通常称为条件主辅小区更新(Conditional PSCell Change,简称CPC)。
在现有的方案中,主基站或辅基站通常采用全配置(Full Configuration)的方式向UE发送候选PSCell所属的SCG的配置信息。这种配置方式信令开销较大,现有的CPC方法仍然有待进一步优化。
发明内容
本申请的技术目的之一在于提供一种条件更新方法,能够有利于降低CPC过程中的信令开销。
为解决上述技术问题,第一方面,本申请实施例提供一种条件更新方法,所述方法包括:获取候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,所述第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置对应不同的参考SCG配置;评估所述第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。
可选的,所述第一候选PSCell的SCG配置对应的参考SCG配置由辅基站指定;所述第二候选PSCell的SCG配置对应的参考SCG配 置由主基站指定。
可选的,所述第一候选PSCell的SCG配置对应的参考SCG配置为源PSCell的SCG配置,或者,终端执行辅基站内条件更新接入所述源PSCell之前辅基站发送的SCG配置。
可选的,获取候选PSCell的SCG配置包括:从主基站接收所述第二候选PSCell的SCG配置,所述第二候选PSCell的SCG配置关联一个或多个所述参考SCG配置。
可选的,从主基站接收的第二候选PSCell的数量为多个,其中,每个第二候选PSCell的SCG配置关联一个参考SCG配置,不同第二候选PSCell的SCG配置关联的参考SCG配置相同或者不同。
可选的,所述方法还包括:如果所述目标PSCell和源PSCell属于同一辅基站,则释放除所述目标PSCell之外的其他第一候选PSCell的SCG配置;或者,继续保留除所述目标PSCell之外的其他第一候选PSCell的SCG配置。
可选的,所述方法还包括:如果所述目标PSCell和源PSCell不属于同一辅基站,则释放所述第一候选PSCell的SCG配置。
可选的,所述方法还包括:继续保留除所述目标PSCell之外的其他第二候选PSCell的SCG配置。
可选的,评估所述第一候选PSCell和/或第二候选PSCell之前,所述方法还包括:从辅基站接收第一指示信息,所述第一指示信息用于指示更新PSCell之后,继续保留所述第一候选PSCell的SCG配置的至少一部分;和/或,从主基站接收第二指示信息,所述第二指示信息用于指示更新PSCell之后,继续保留所述第二候选PSCell的SCG配置的至少一部分。
可选的,接入满足更新执行条件的目标PSCell之前,所述方法还包括:如果探测到源PSCell所属的SCG发生无线链路失败,则向主基站发送SCG失败信息,并继续评估所述第一候选PSCell和/或第 二候选PSCell。
可选的,所述方法还包括:在更新PSCell之后,继续保留所述参考SCG配置。
可选的,所述候选PSCell的SCG配置为所述候选PSCell的SCG的配置参数相对于所述源PSCell所属的SCG中终端接入的同频小区的配置参数的增量。
第二方面,本申请实施例提供一种条件更新方法,所述方法包括:向终端发送第一候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第一候选PSCell的SCG配置对应的参考SCG配置。
可选的,所述方法还包括:向终端发送第一指示信息,所述第一指示信息用于指示更新PSCell之后,继续保留所述第一候选PSCell的SCG配置的至少一部分。
可选的,所述方法还包括:在所述终端执行辅基站内条件更新接入目标PSCell之后,继续保留除所述目标PSCell之外的其他第一候选PSCell的SCG配置。
第三方面,本申请实施例提供一种条件更新方法,所述方法包括:向终端发送第二候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第二候选PSCell的SCG配置对应的参考SCG配置。
可选的,所述方法还包括:向终端发送第二指示信息,所述第二指示信息用于指示更新PSCell之后,继续保留所述第二候选PSCell的SCG配置的至少一部分。
第四方面,本申请实施例提供一种条件更新方法,所述方法包括:接收候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell的SCG配置为所述候选PSCell所属的SCG的配置参数相对于源PSCell所属的SCG中终端接入的同频小区的配置参数的增量,所述同频小区为所述源PSCell或者终端接入的辅小区SCell。
第五方面,本申请实施例还提供一种条件更新装置,所述装置包括:获取模块,用于获取候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,所述第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置对应不同的参考SCG配置;接入模块,用于评估所述第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。
第六方面,本申请实施例还提供一种条件更新装置,所述装置包括:发送模块,用于向终端发送第一候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第一候选PSCell的SCG配置对应的参考SCG配置。
第七方面,本申请实施例还提供一种条件更新装置,所述装置包括:发送模块,用于向终端发送第二候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第二候选PSCell的SCG配置对应的参考SCG配置。
第八方面,本申请实施例还提供一种条件更新装置,所述装置包括:获取模块,用于接收候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell的SCG配置为所述候选PSCell所属的SCG的配置参数相对于源PSCell所属的SCG中终端接入的同频小区的配置参数的增量,所述同频小区为所述源PSCell或者终端接入的辅小区SCell。
第九方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时,使得上述任一方面提供的条件更新方法被执行。
第十方面,本申请实施例提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行第一方面或第四方面提供的条件更新方法的步骤。
第十一方面,本申请实施例提供一种网络设备,包括存储器和处 理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行第二方面提供的条件更新方法的步骤。
第十二方面,本申请实施例提供一种网络设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行第三方面提供的条件更新方法的步骤。
与现有技术相比,本申请实施例的技术方案具有以下有益效果:
本申请实施例的方案中,终端获取候选PSCell的SCG配置,候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,第一候选PSCell的SCG配置和第二候选PSCell的SCG配置对应不同的参考SCG配置;评估第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。本申请实施例提供的方案中不同的候选PSCell的SCG配置对应的参考SCG配置不同,可以灵活地选择合适的参考SCG配置对候选PSCell实施增量配置,有利于降低配置的信令开销。
进一步,本申请实施例的方案中,第一候选PSCell的SCG配置对应的参考SCG配置由辅基站指定;第二候选PSCell的SCG配置对应的参考SCG配置由主基站指定。上述方案中对辅基站内CPC和辅基站间CPC采用的参考SCG进行区分,由辅基站指定参考SCG配置,能够在执行辅基站内CPC时有效地降低配置过程的信令开销。
进一步,本申请实施例的方案中,候选PSCell的SCG配置为候选PSCell的SCG的配置参数相对于源PSCell所属的SCG中终端接入的同频小区的配置参数的增量。上述方案中以终端当前接入的SCG中同频小区的SCG配置作为候选PSCell的参考SCG配置,由于通常同一频率上的小区配置相似度较大,不同频率上的小区配置相似度较低,因此根据频率实施候选PSCell的SCG增量配置有利于进一步降低信令开销。
附图说明
图1是本申请实施例中一种条件更新方法的流程示意图;
图2是本申请实施例中另一种条件更新方法的流程示意图;
图3是本申请实施例中一种条件更新装置的结构示意图;
图4是本申请实施例中另一种条件更新装置的结构示意图;
图5是本申请实施例中又一种条件更新装置的结构示意图;
图6是本申请实施例中一种终端的结构示意图。
具体实施方式
需要说明的是,本申请实施例适用的通信系统包括但不限于第三代系统(3th-generation,简称3G)、长期演进(long term evolution,简称LTE)系统、第四代系统(4th-generation,简称4G)、第五代(5th-generation,简称5G)系统、新空口(New Radio,简称NR)系统,以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,简称NSA)的5G系统或独立组网(standalone,简称SA)的5G系统。本申请实施例的方案还可适用于未来新的各种通信系统,例如,6G、7G等。
本申请实施例中的终端可以指各种形式的用户设备(User Equipment,简称UE)、接入终端、用户单元、用户站、移动站、移动台(Mobile Station,简称MS)、远方站、远程终端、移动设备、用户终端、终端设备(Terminal Equipment)、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络 中的终端或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的网络设备也可以称为接入网设备,例如,可以为基站(base station,简称BS)(也可称为基站设备),网络设备是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如在第二代(2nd-generation,简称2G)网络中提供基站功能的设备包括基地无线收发站(base transceiver station,简称BTS),第三代(3rd-generation,简称3G)网络中提供基站功能的设备包括节点B(Node B),在第四代(4th-generation,简称4G)网络中提供基站功能的设备包括演进的节点B(evolved NodeB,简称eNB),在无线局域网络(wireless local area networks,简称WLAN)中,提供基站功能的设备为接入点(access point,简称AP),NR中的提供基站功能的设备下一代基站节点(next generation node base station,简称gNB),以及继续演进的节点B(ng-eNB),其中gNB和终端设备之间采用NR技术进行通信,ng-eNB和终端设备之间采用演进的通用地面无线电接入(Evolved Universal Terrestrial Radio Access,简称E-UTRA)技术进行通信,gNB和ng-eNB均可连接到5G核心网。本申请实施例中的网络设备还包含在未来新的通信系统中提供基站功能的设备等。
如背景技术所述,在CPC过程中,如果采用全配置的方式向UE发送各个候选PSCell所属的SCG的配置信息的方式,信令开销较大。
为了降低信令配置的开销,考虑引入增量配置(delta configuration或delta signaling)的方式。增量配置可以是指以某一SCG的配置参数为参考(reference或baseline),将候选PSCell所属SCG的配置参数相对于该SCG的配置参数的增量作为候选PSCell所属SCG的配置信息,并以增量信令的方式配置给终端。终端可以根据候选PSCell所属SCG的配置信息(也即,增量部分)和用作参考的SCG的配置参数(也即,基准部分)计算得到候选PSCell所属SCG完整的配置 参数,从而可以执行随机接入。为便于描述,下文将用作参考的SCG的配置参数称之为参考SCG配置。
有鉴于此,本申请实施例提供一种条件更新方法,本申请实施例的方案中,终端获取候选PSCell的SCG配置,候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,第一候选PSCell的SCG配置和第二候选PSCell的SCG配置对应不同的参考SCG配置;评估第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。本申请实施例提供的方案中不同的候选PSCell的SCG配置对应的参考SCG配置不同,可以灵活地选择合适的参考SCG配置对候选PSCell实施增量配置,有利于降低配置的信令开销。
本申请实施例提供的条件更新方法可以适用于多无线双连接(Multi Radio Dual Connectivity,简称MR-DC)场景中。具体而言,主基站和辅基站同时为终端提供服务。本申请实施例对于双连接的类型并不进行限制,所述双连接可以是LTE双连接、LTE和NR双连接、NR双连接等。对于LTE和NR的双连接,可以包括EN-DC(E-UTRAN NR Dual Connectivity,也即LTE基站作为UE的主基站,NR基站作为UE的辅基站)、NE-DC(NR E-UTRAN Dual Connectivity,也即,NR基站作为UE的主基站,LTE基站作为UE的辅基站)、NGEN-DC(也即,连接5G核心网的LTE基站作为UE的主基站、NR基站作为UE的辅基站)等。
为使本申请的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。
参照图1,图1是本申请实施例中一种条件更新方法的流程示意图。图1示出的条件更新方法可以包括步骤S11至步骤S15。
步骤S11,主基站从源辅基站接收源PSCell和/或SCell的配置参数。
具体而言,源PSCell是指终端当前接入的PSCell,源辅基站是 指终端当前接入的辅基站,源PSCell为源辅基站的小区。源辅基站可以向主基站发送源PSCell的配置参数。配置参数可以是指供UE接入的无线参数或为UE配置的无线参数等。
进一步地,如果终端当前还接入了SCell,辅基站还可以向主基站发送UE当前接入的SCell的配置参数。其中,UE当前接入的PSCell和SCell属于同一SCG,且PSCell和SCell所处的频率不同。
在具体实施中,源PSCell的配置参数和SCell的配置参数可以是不同时刻发送的,也可以是同时发送的,本实施例对此并不进行限制。
在主基站发起配置辅基站间CPC(inter-SN CPC)的场景下,主基站可以向源辅基站请求终端当前接入的小区的配置参数。响应于主基站的请求,源辅基站向主基站发送终端当前接入的PSCell和SCell的配置参数。
在源辅基站发起配置inter-SN CPC的场景下,源辅基站在确定候选PSCell之后,可以在向主基站发送候选PSCell的更新请求时一并告知主基站终端当前接入的PSCell和SCell的配置参数。
步骤S12,主基站向其他辅基站发送条件更新请求,其中包含参考SCG配置。
其中,其他辅基站可以是指当前接入的辅基站以外的其他辅基站,例如,其他辅基站可以是当前接入的辅基站邻近的辅基站。
在具体实施中,主基站选定候选PSCell之后,可以向各个候选PSCell所属的辅基站发送条件更新请求(即SN添加请求)。其中,主基站选取的候选PSCell可以是由主基站依据终端的测量报告确定的,也可以是由源辅基站依据终端的测量报告确定的,本实施例对此并不限制。进一步地,主基站向各个候选PSCell所属的辅基站发送的条件更新请求可以包括参考SCG配置。候选PSCell所属的辅基站即为候选辅基站。
其中,参考SCG配置可以选自步骤S11中主基站从辅基站接收 到的源PSCell和SCell的配置参数。更具体地,主基站可以终端当前接入的属于辅基站的小区中确定一个或多个小区的配置参数作为参考SCG配置。
作为一个示例,主基站可以将接收到的源PSCell和SCell的配置参数作为一个整体的SCG配置,将这个SCG配置作为参考SCG配置,将参考SCG配置发送至其他辅基站。
作为另一个示例,如果终端接入的SCell的数量为多个,主基站可以从多个SCell中选取一个或多个SCell,并将选取的SCell的配置参数和源PSCell的配置参数这一整体作为参考SCG配置发送至其他辅基站。
步骤S13,其他辅基站向主基站发送条件更新请求确认,其中包含候选PSCell的SCG配置。
具体而言,其他辅基站(即候选辅基站)接收到条件更新请求之后,确定候选PSCell。进一步地,辅基站可以根据接收到的参考SCG配置和候选PSCell的配置参数,确定候选PSCell所属SCG的配置参数相对于参考SCG配置的增量,也即,候选PSCell的SCG配置。为便于描述,本文将候选PSCell所属的SCG的配置参数记为候选PSCell的SCG配置(SCG配置中包含着PSCell的配置参数)。
作为一个示例,主基站发送的参考SCG配置为源PSCell的配置参数。对于每个候选PScell,候选辅基站可以计算该候选PSCell所属的SCG的配置参数相对于源PSCell的配置参数的增量,得到该候选PSCell的SCG配置。
作为另一个示例,主基站发送的参考SCG配置包括多个小区的配置参数。例如,参考SCG配置包括源PSCell的配置参数和一个或多个终端接入的SCell的配置参数。对于每个候选PScell,候选辅基站可以将参考SCG配置中与该候选PScell同频的小区的配置参数作为参考,计算该候选PSCell所属的SCG的配置参数相对于同频小区 的配置参数的增量,得到该候选PSCell的SCG配置。进一步地,候选辅基站如果发现接收的参考SCG配置中不包括与候选PSCell同频的小区的配置参数,则可以将源PSCell的配置参数作为参考SCG配置。
进一步地,候选辅基站将候选PSCell的SCG配置发送至主基站。在具体实施中,候选辅基站可以向主基站发送条件更新请求确认,其中,条件更新请求确认携带有候选PSCell的SCG配置。当候选PSCell的数量为多个时,不同PSCell的参考SCG配置可以相同或不同。
由此,主基站可以获取多个候选PSCell的SCG配置,其中,各个候选PSCell的SCG配置以增量信令的方式配置。
需要说明的是,其他辅基站也可以不采用增量信令的方式配置候选PSCell的SCG配置,此时需要采用全配置(Full configuration)方式配置候选PSCell的SCG配置。
步骤S14,主基站向终端发送候选PSCell的SCG配置和更新执行条件。
具体而言,主基站可以为多个候选PSCell配置各自对应的更新执行条件,也即PSCell change执行条件。更新执行条件可以是现有的CPC方法中的执行条件,本实施例对此并不进行限制。其中,不同的候选PSCell对应的更新执行条件可以相同或不同。
在具体实施中,主基站还可以向终端指示各个候选PSCell的SCG配置关联的参考SCG配置。主基站可以通过RRC重配置发送候选PSCell的SCG配置,以及参考SCG配置(如果需要显式指示)。具体地,主基站可以向终端显式地指示候选PSCell的参考SCG配置。在具体实施中,主基站可以通过RRC重配置信令向终端发送PSCell的SCG配置,在需要显式指示参考SCG配置的情况下,也可以一并通过RRC重配置信令向终端指示参考SCG配置,例如,RRC重配置信令中可以携带有参考SCG配置的标识或索引。
在有多个参考SCG配置时,需要显式指示候选PSCell对应的参考SCG配置的标识或索引。
在仅有一个参考SCG配置时,可以不显式指示参考SCG配置,如参考SCG配置为终端收到候选PSCell的SCG配置时应用的SCG配置,或者参考SCG配置为当前应用的辅基站侧与候选PSCell同频的小区配置参数。如果参考SCG配置不是终端当前应用的SCG配置,主基站需要向终端额外指示具体的参考SCG配置。
进一步地,终端接收到各个候选PSCell的SCG配置之后,可以根据每个候选PSCell的SCG配置和候选PSCell对应的参考SCG配置,得到该候选PSCell所属SCG完整的配置参数。
步骤S15,终端评估候选PSCell,接入满足更新执行条件的目标PSCell。
在具体实施中,终端可以对步骤S14中接收到的候选PSCell中的一个或多个候选PSCell进行评估,当任意一个候选PSCell满足对应的更新执行条件时,终端可以该候选PSCell确定为目标PSCell,并根据目标PSCell的SCG配置执行随机接入。由此,终端完成本次PSCell更新。
在一个非限制性的例子中,终端在接入目标PSCell之前,如果探测到源PSCell所属的SCG发生无线链路失败(Radio Link Failure),则向主基站发送SCG失败信息,以向主基站报告源SCG的无线链路失败。
进一步地,终端在发送SCG失败信息的过程中和/或发送SCG失败信息之后,可以继续评估候选PSCell。如果评估到满足更新执行条件的候选PSCell,则接入该候选PSCell。如果在接入目标PSCell之前接收到主基站对于SCG失败信息的响应,则可以根据主基站对于SCG失败信息的响应执行相应流程。例如,主基站发送的响应可以是触发终端执行PSCell更新或者重配置当前的PSCell或者可以释放 当前的PSCell等。相较于发送SCG失败信息之后停止对候选PSCell的评估的方案,本实施例中继续评估候选PSCell,有利于及时发现合适的PSCell,提高PSCell更新的成功率。
进一步地,本申请实施例的方案可以应用于连续的CPC的场景中。
具体而言,终端完成本次PSCell更新之后,可以保留本次CPC过程中为终端配置的除目标PSCell之外的其他候选PSCell的SCG配置,以便后续执行PSCell更新。
在具体实施中,终端保留候选PSCell的SCG配置时,还可以一并保留对应的参考SCG配置。在其他实施例中,终端也可以保留根据候选PSCell的SCG配置和对应的参考SCG配置还原得到的完整的SCG配置参数。
采用上述方案,同时考虑到终端接入的源SCG可以包括PSCell和处于不同频率的SCell,且通常同一频率上的小区配置相似度较大,不同频率上的小区配置相似度较低,为此,将源SCG侧终端接入的同频小区的配置参数作为参考SCG配置进行增量配置,有利于减少配置候选PSCell的SCG所需的比特数,从而降低CPC过程中的信令开销。
参照图2,图2是本申请实施例中一种条件更新方法的流程示意图。图2示出的条件更新方法可以由终端执行。图2可以包括步骤S21和步骤S22。
步骤S21,获取候选PSCell的SCG配置,候选PSCell包括第一候选PSCell和第二候选PSCell,其中,第一候选PSCell的SCG配置和第二候选PSCell的SCG配置对应不同的参考SCG配置。
具体而言,终端可以获取多个候选PSCell的SCG配置,其中,不同候选PSCell的SCG配置可以对应的参考SCG配置相同或不同。
在本申请的一实施例中,第一候选PSCell和第二候选PSCell均 可以是主基站配置的,其中,第一候选PSCell和第二候选PSCell的频率不同,因此对应的参考SCG配置不同。主基站发送候选PSCell的SCG配置时,还可以一并指示各个候选PSCell对应的参考SCG配置以及更新执行条件。
在本申请的另一实施例中,第一候选PSCell和第二候选PSCell均可以是由源辅基站配置的,其中,第一候选PSCell和第二候选PSCell的频率不同,因此对应的参考SCG配置不同。源辅基站发送候选PSCell的SCG配置时,可以一并指示各个候选PSCell对应的参考SCG配置以及更新执行条件。
在本申请的又一实施例中,终端从源辅基站接收第一候选PSCell的SCG配置,和/或,终端从主基站接收第二候选PSCell的SCG配置。其中,第二候选PSCell可以是由主基站触发配置的,也可以是由源辅基站触发配置的。第一候选PSCell的SCG配置对应的参考SCG配置可以由源辅基站向终端指定,第二候选PSCell的SCG配置对应的参考SCG配置可以由主基站向终端指定。其中,第一候选PSCell的SCG配置对应的参考SCG配置和第二候选PSCell的SCG配置对应的参考SCG配置相同或者不同。
下面对源辅基站为终端配置第一候选PSCell进行具体描述。
具体而言,源辅基站可以确定多个第一候选PSCell,第一候选PSCell为属于源辅基站的候选PSCell。换言之,第一候选PSCell和源PSCelll属于同一辅基站。
进一步地,源辅基站可以确定各个第一候选PSCell对应的参考SCG配置,然后可以计算各个第一候选PSCell的SCG配置参数相对于参考SCG配置的增量,得到各个第一候选PSCell的SCG配置。进一步地,源辅基站可以通过RRC信令直接向终端发送多个第一候选PSCell的SCG配置,以及各个第一候选PSCell对应的更新执行条件。
在具体实施中,源辅基站直接向终端发送第一候选PSCell的SCG 配置称为intra-SN CPC配置。例如,如果源辅基站侧配置了无线信令承载3(Signaling Radio Bearer3,简称SRB3),源辅基站可以直接向终端发送intra-SN CPC配置。
进一步地,源辅基站可以向终端显式指示各个第一候选PSCell的SCG配置对应的参考SCG配置。或者,源辅基站和终端也可以默认第一候选PSCell的SCG配置对应的参考SCG配置为源PSCell的SCG配置。如果以当前所应用的SCG配置(即源SCG)作为第一候选PSCell的SCG配置的参考SCG配置,源辅基站可以不显式指示参考SCG配置。
不同第一候选PSCell的SCG配置对应的参考SCG配置相同或不同。例如,以终端(从源基站第一次)接收第一候选PSCell的SCG配置时应用的SCG配置作为参考SCG配置,或者,以当前所应用的SCG配置(即源SCG)作为第一候选PSCell的SCG配置的参考SCG配置。如果采用不同的参考SCG配置,源辅基站需要向终端显式指示不同第一候选PSCell的SCG配置对应的参考SCG配置的标识或索引。
作为一个示例,源辅基站可以将源PSCell的SCG配置(即源SCG,或接收第一候选PSCell的SCG配置时应用的SCG配置)作为各个第一候选PSCell的参考SCG配置。换言之,源辅基站和终端可以默认源辅基站配置的第一候选PSCell的SCG配置对应的参考SCG配置为源PSCell的SCG配置。进一步地,终端接收到源辅基站发送的第一候选PSCell的SCG配置时,可以知晓对应的参考SCG配置为源PSCell的SCG配置。
作为另一个示例,源PSCell是终端当前接入的PSCell,参考SCG配置可以是源PSCell的SCG配置,或者可以是终端接入源PSCell之前源辅基站向终端发送的SCG配置。
假设源PSCell为PSCell1,终端接入PSCell1之前终端接入的PSCell为PSCell0,且PSCell0和PSCell1均属于源辅基站,终端接入 PSCell1之后,源辅基站向终端配置的第一候选PSCell的SCG配置对应的参考SCG配置可以是PSCell0的SCG配置。
或者,终端接入PSCell1之前,源辅基站向终端配置PSCell1时还一并配置了同一辅基站的PSCell2、PSCell3和PSCell4(均以PSCell0的SCG配置作为参考SCG配置)。终端执行intra-SN CPC接入PSCell1之后,可以继续保留PSCell2至4的SCG配置。终端接入PSCell1之后,源辅基站向终端配置其他第一候选PSCell时,可以继续以PSCell0的SCG配置作为参考SCG配置;或者配置其他第一候选PSCell时,可以以PSCell1的SCG配置(即源SCG配置)作为参考,此时因为同时存在两种参考SCG配置,辅基站向终端配置其他候选PSCell时需要明确指示参考SCG配置的标识或索引。
下面对主基站为终端配置第二候选PSCell进行具体描述。
在具体实施中,第二候选PSCell可以是主基站发起配置inter-SN CPC时主基站为终端配置的。或者,第二候选PSCell也可以是源辅基站发起配置inter-SN CPC时源辅基站通过主基站为终端配置的。
主基站可以指定第二候选PSCell对应的参考SCG配置,并基于参考SCG配置获取第二候选PSCell的SCG配置。主基站获取候选PSCell的SCG配置的具体过程可以参照上文关于图1中步骤S12和S13的相关描述,在此不再赘述。
进一步地,主基站可以向终端发送第二候选PSCell的SCG配置。
在具体实施中,主基站可以一并向终端指定各个第二候选PSCell对应的参考SCG配置。或者,第二候选PSCell对应的SCG配置可以是主基站预先向终端指定的。
在一个具体的例子中,终端从主基站接收的第二候选PSCell的数量为多个,其中,每个第二候选PSCell的SCG配置关联一个参考SCG配置,不同第二候选PSCell的SCG配置关联的参考SCG配置相同或者不同。多个第二候选PSCell可以关联多个参考SCG配置。 其中,关联的参考SCG配置可以是指上文描述的“对应的参考SCG配置”。例如,多个第二候选PSCell的SCG配置可以均关联于某一指定的PSCell的SCG配置,且终端处保存有该PSCell的SCG配置。又例如,各个第二候选PSCell的SCG配置以当前SCG配置中的同频小区的配置为参考。
由上,终端可以获取第一候选PSCell和第二候选PSCell,其中,第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置可以对应不同的参考SCG配置。
作为一个特定实施例,第一候选PSCell的SCG配置和第二候选PSCell的SCG配置对应相同的参考SCG配置,该参考SCG配置由主基站指定,主基站需要通过基站之间的接口向辅基站指示该参考SCG配置,以便辅基站以此为基准,为终端配置第一候选PSCell的SCG配置。
需要说明的是,上述的第一候选PSCell和第二候选PSCell可以是在同一次CPC过程中主基站和/或辅基站为终端配置的,也可以是在不同次配置CPC过程中主基站和/或辅基站为终端配置的。在某些时刻,第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置可以对应同一个参考SCG配置,允许第一候选PSCell的SCG配置应用不同的参考SCG配置是为了辅基站更加灵活的配置候选PSCell,可以进一步节省空口信令。
步骤S22:评估第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。
具体而言,终端可以对各个候选PSCell进行评估,当任意一个候选PSCell满足其关联的更新执行条件时,将该候选PSCell作为目标PSCell,并执行随机接入,以接入目标PSCell。
在第一个例子中,目标PSCell和源PSCell属于同一辅基站,则终端执行的是intra-SN CPC。进一步地,执行本次intra-SN CPC之后, 源辅基站配置的第一候选PSCell的SCG配置,终端可以释放或者继续保留。
方式一:终端接入目标PSCell之后或者终端接入目标PSCell的过程中,终端可以释放第一候选PSCell中除目标PSCell以外的其他第一候选PSCell的SCG配置。本实施例中的“释放”可以是删除、丢弃等。
方式二:终端接入目标PSCell之后,终端可以继续保留第一候选PSCell中除目标PSCell以外的其他第一候选PSCell的SCG配置。需要说明的是,本申请实施例的方案中所称的“保留”是指继续留存(例如,存储或者缓存等),而不做删除或丢弃。进一步地,保留之后可以继续使用。
在一个非限制性的例子中,源辅基站可以向终端发送第一指示信息,例如,可以在向终端发送第一候选PSCell的SCG配置时一并发送第一指示信息。第一指示信息可以用于指示终端在更新PSCell之后,继续保留第一候选PSCell的SCG配置的至少一部分。例如,第一指示信息可以用于指示终端执行intra-SN CPC接入目标PSCell之后,可以保留其他第一候选PSCell的SCG配置。或者,第一指示信息也可以独立发送,以便源辅基站可以动态调整配置策略。
在具体实施中,终端执行intra-SN CPC接入目标PSCell之后,源辅基站可以继续保留除目标PSCell之外的其他第一候选PSCell的SCG配置。采用这样的方案有利于在执行连续intra-SN CPC过程中避免重复的配置,有利于降低信令开销。
在第二个例子中,目标PSCell和源PSCell不属于同一辅基站,则终端执行的是inter-SN CPC。进一步地,终端接入目标PSCell之后或者终端接入目标PSCell的过程中,可以释放全部或部分的第一候选PSCell的SCG配置。更具体地,终端一旦执行了inter-SN CPC,终端可以释放源辅基站配置的第一候选PSCell的SCG配置。
或者,在其他实施例中,终端在执行了inter-SN CPC之后,也可以不释放第一候选PSCell的SCG配置,在后续CPC的配置过程中,主基站可以继续更新第一候选PSCell的SCG配置,例如,至少需要配置所保留的第一候选PSCell相关的安全参数,以便终端接入这些小区时可以采用合适的安全参数。
在第三个例子中,目标PSCell选自第二候选PSCell,终端接入目标PSCell的过程中和/或终端接入目标PSCell之后,可以继续保留除目标PSCell之外的其他第二候选PSCell的SCG配置。
在一个非限制性的例子中,主基站可以向终端发送第二指示信息,例如,可以在向终端发送第二候选PSCell的SCG配置时一并发送第二指示信息。第二指示信息可以用于指示终端在更新PSCell之后,继续保留第二候选PSCell的SCG配置的至少一部分。例如,第二指示信息可以用于指示终端执行CPC接入目标PSCell之后,可以保留其他第二候选PSCell的SCG配置。或者,第二指示信息也可以独立发送,以便主基站可以动态调整配置策略。
进一步地,如果主基站期望源PSCell作为接入目标PSCell之后的候选PSCell,主基站可以在终端接入目标PSCell之后向终端配置源PSCell的更新执行条件。具体地,终端接入目标PSCell后可以向主基站发送RRC信令通知主基站终端已接入目标PSCell,如果主基站期望源PSCell作为终端接入目标PSCell之后的候选PSCell,主基站可以向终端发送源PSCell对应的更新执行条件。如果接收到终端发送的RRC信令之后,主基站未向终端发送源PSCell对应的更新执行条件,则终端可以继续保留源PSCell的SCG配置,但并不将其作为接入目标PSCell之后的候选PSCell。
在执行步骤S22之后,终端还可以继续保留一个或多个参考SCG配置,以便用于执行连续的CPC。
例如,对于被继续保留的其他第一候选PSCell和/或其他第二候选PSCell,终端还可以一并保留各个候选PSCell关联的参考SCG配 置。换言之,终端可以继续保留本次CPC执行完成之后被保留的候选PSCell对应的SCG配置。
由上,本申请实施例提供的方案中,考虑对区分intra-SN CPC和inter-SN CPC采用不同的参考SCG。例如,inter-SN CPC中的参考SCG配置由主基站指定,intra-SN CPC中的参考SCG配置由辅基站指定。由于intra-SN CPC通常不涉及安全密钥的更新,而inter-SN CPC需要实施密钥更新,因此对于intra-SN CPC配置采用特殊处理能够有效降低信令的开销。
在一个非限制性的例子中,在终端收到第一候选PSCell的SCG配置和第二候选PSCell的SCG配置之后,且在终端尚未接入目标PSCell之前,主基站和/或源辅基站可以向终端发送PSCell更新信令。其中,主基站发送的PSCell更新信令以第二候选PSCell的SCG配置采用的参考SCG为基准实施增量配置,源辅基站发送的PSCell更新信令以第一候选PSCell的SCG配置采用的参考SCG为基准实施增量配置。如果主基站配置intra-SN CPC或与源辅基站配置inter-SN CPC均只采用一个参考SCG配置,主基站发送的PSCell更新信令和/或辅基站发送的PSCell更新信令可以不显式指示各自的参考SCG配置,终端可以依据PSCell更新信令的发送方应用正确的参考SCG配置从而获得完整的SCG配置。
下面通过示例对本申请实施例提供的条件更新方法进行非限制性的说明。
终端建立了双连接,该双连接可以是MR-DC中任何一种。假设当前接入的PSCell为PSCell1,此时终端应用的SCG配置为PSCell1的SCG配置。
主基站可以向终端发送多个第二候选PSCell的SCG配置,分别是PSCell2、PSCell3和PSCell4。主基站可以向终端指示PSCell2-4的SCG配置对应的参考SCG配置为PSCell1的SCG配置。或者,也可以默认PSCell2-4的SCG配置对应的参考SCG配置为PSCell1的 SCG配置,即默认接收候选PSCell的SCG配置时应用的SCG配置为参考SCG配置。
终端接入了PSCell1一段时间之后,终端执行PSCell更新。具体地,终端对PSCell2-4进行评估,并将PSCell2作为目标PSCell。终端接入PSCell2之后,终端可以继续保留PSCell3和PSCell4的SCG配置,用于后续的CPC。
终端接入PSCell2之后,终端还可以继续保留PSCell1的SCG配置。如果主基站期望PSCell1继续作为候选PSCell,主基站可以向终端配置PSCell1的更新执行条件。如果终端PSCell2之后,接收到主基站配置的PSCell1的更新执行条件,则终端可以将PSCell1作为候选PSCell;如果未从主基站接收到PSCell1的更新执行条件,则可以不将PSCell1作为候选PSCell1。
终端接入PSCell2之后,辅基站可以触发配置inter-SN的CPC或者intra-SN CPC。此处的辅基站为PSCell2所属的辅基站。
以辅基站触发配置intra-SN CPC为例,辅基站可以向终端配置多个第一候选PSCell,分别是PSCell5、PSCell6和PSCell7。辅基站可以以PSCell2的SCG配置为参考SCG配置,向终端配置送PSCell5-7的SCG配置。辅基站还可以向终端发送PSCell5-7关联的更新执行条件。由于采用了新的参考SCG配置,因此还可以一并向终端指示PSCell5-7关联的参考SCG配置。或者默认intra-SN CPC配置总是以当前应用的SCG配置为参考SCG配置,此时辅基站不需要明确指示参考SCG配置。
进一步地,终端接收到PSCell5-7的SCG配置、关联的参考SCG配置和关联的更新执行条件之后,可以对候选PSCell进行评估。此时的候选PSCell可以包括:PSCell3、4、PSCell5-7。当任意一个候选PSCell满足其关联的更新执行条件之后,可以执行CPC以接入该候选PSCell。
关于图2示出的条件更新方法的更多内容可以参见上文关于图1的相关描述,在此不再赘述。
可以理解的是,在具体实施中,上述方法可以采用软件程序的方式实现,该软件程序运行于芯片或芯片模组内部集成的处理器中;或者,该方法可以采用硬件或者软硬结合的方式来实现,例如用专用的芯片或芯片模组来实现,或者,用专用的芯片或芯片模组结合软件程序来实现。
参照图3,图3是本申请实施例中一种条件更新装置的结构示意图,图3示出的条件更新装置可以部署于上述的终端,图3示出的装置可以包括:
获取模块31,用于获取候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,所述第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置对应不同的参考SCG配置;
接入模块32,用于评估所述第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。
或者,获取模块31也可以用于接收候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell的SCG配置为所述候选PSCell所属的SCG的配置参数相对于源PSCell所属的SCG中终端接入的同频小区的配置参数的增量,所述同频小区为所述源PSCell或者终端接入的辅小区SCell。
在具体实施中,图3示出的条件更新装置可以对应于终端中具有通信功能的芯片;或者对应于终端中包括具有通信功能的芯片或芯片模组,或者对应于终端。
参照图4,图4是本申请实施例中另一种条件更新装置的结构示意图,图4示出的条件更新装置可以部署于网络设备,更具体地,可以部署于上述的源辅基站,图4示出的装置可以包括:
发送模块41,用于向终端发送第一候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第一候选PSCell的SCG配置对应的参考SCG配置。
在具体实施中,图4示出的条件更新装置可以对应于网络设备中具有通信功能的芯片;或者对应于网络设备中包括具有通信功能的芯片或芯片模组,或者对应于网络设备。
参照图5,图5是本申请实施例中又一种条件更新装置的结构示意图,图5示出的条件更新装置可以部署于网络设备,更具体地,可以部署于上述的主基站,图5示出的装置可以包括:
发送模块51,用于向终端发送第二候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第二候选PSCell的SCG配置对应的参考SCG配置。
在具体实施中,图5示出的条件更新装置可以对应于网络设备中具有通信功能的芯片;或者对应于网络设备中包括具有通信功能的芯片或芯片模组,或者对应于网络设备。
关于本申请实施例中的条件更新装置的工作原理、工作方法和有益效果等更多内容,可以参照上文关于条件更新方法的相关描述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时,上述的条件更新方法被执行。所述存储介质可以包括ROM、RAM、磁盘或光盘等。所述存储介质还可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器等。
本申请实施例还提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述的条件更新方法的步骤。所述终端包括但不限于手机、计算机、平板电脑等终端设备。所述终端可以是手机、计 算机、平板电脑、车载终端和穿戴式设备等,但并不限于此。
参照图6,图6是本申请实施例中一种终端的结构示意图。图6示出的终端包括存储器61和处理器62,处理器62和存储器61耦合,存储器61可以位于终端内,也可以位于终端外。存储器61和处理器62可以通过通信总线连接。所述存储器61上存储有可在所述处理器62上运行的计算机程序,所述处理器62运行所述计算机程序时执行上述实施例所提供的数据传输方法中的步骤。
本申请实施例还提供一种网络设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述的条件更新方法的步骤。
关于所述网络设备的结构可以参照图6的相关描述,在此不再赘述。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,简称ASIC)、现场可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态 随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory, 简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (18)

  1. 一种条件更新方法,其特征在于,所述方法包括:
    获取候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,所述第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置对应不同的参考SCG配置;
    评估所述第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。
  2. 根据权利要求1所述的条件更新方法,其特征在于,所述第一候选PSCell的SCG配置对应的参考SCG配置由辅基站指定;所述第二候选PSCell的SCG配置对应的参考SCG配置由主基站指定。
  3. 根据权利要求1所述的条件更新方法,其特征在于,所述第一候选PSCell的SCG配置对应的参考SCG配置为源PSCell的SCG配置,或者,终端执行辅基站内条件更新接入所述源PSCell之前辅基站发送的SCG配置。
  4. 根据权利要求1所述的条件更新方法,其特征在于,获取候选PSCell的SCG配置包括:
    从主基站接收所述第二候选PSCell的SCG配置,所述第二候选PSCell的SCG配置关联一个或多个所述参考SCG配置。
  5. 根据权利要求4所述的条件更新方法,其特征在于,从主基站接收的第二候选PSCell的数量为多个,其中,每个第二候选PSCell的SCG配置关联一个参考SCG配置,不同第二候选PSCell的SCG配置关联的参考SCG配置相同或者不同。
  6. 根据权利要求1所述的条件更新方法,其特征在于,所述方法还包括:
    如果所述目标PSCell和源PSCell属于同一辅基站,则释放除所述 目标PSCell之外的其他第一候选PSCell的SCG配置;或者,继续保留除所述目标PSCell之外的其他第一候选PSCell的SCG配置。
  7. 根据权利要求1所述的条件更新方法,其特征在于,所述方法还包括:
    如果所述目标PSCell和源PSCell不属于同一辅基站,则释放所述第一候选PSCell的SCG配置。
  8. 根据权利要求1所述的条件更新方法,其特征在于,所述方法还包括:
    继续保留除所述目标PSCell之外的其他第二候选PSCell的SCG配置。
  9. 根据权利要求1所述的条件更新方法,其特征在于,评估所述第一候选PSCell和/或第二候选PSCell之前,所述方法还包括:
    从辅基站接收第一指示信息,所述第一指示信息用于指示更新PSCell之后,继续保留所述第一候选PSCell的SCG配置的至少一部分;
    和/或,
    从主基站接收第二指示信息,所述第二指示信息用于指示更新PSCell之后,继续保留所述第二候选PSCell的SCG配置的至少一部分。
  10. 根据权利要求1所述的条件更新方法,其特征在于,接入满足更新执行条件的目标PSCell之前,所述方法还包括:
    如果探测到源PSCell所属的SCG发生无线链路失败,则向主基站发送SCG失败信息,并继续评估所述第一候选PSCell和/或第二候选PSCell。
  11. 根据权利要求1所述的条件更新方法,其特征在于,所述方法还 包括:
    在更新PSCell之后,继续保留所述参考SCG配置。
  12. 根据权利要求1所述的条件更新方法,其特征在于,所述候选PSCell的SCG配置为所述候选PSCell的SCG的配置参数相对于源PSCell所属的SCG中终端接入的同频小区的配置参数的增量。
  13. 一种条件更新方法,其特征在于,所述方法包括:
    向终端发送第一候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第一候选PSCell的SCG配置对应的参考SCG配置。
  14. 一种条件更新装置,其特征在于,所述装置包括:
    获取模块,用于获取候选主辅小区PSCell的辅小区组SCG配置,所述候选PSCell包括第一候选PSCell和/或第二候选PSCell,其中,所述第一候选PSCell的SCG配置和所述第二候选PSCell的SCG配置对应不同的参考SCG配置;
    接入模块,用于评估所述第一候选PSCell和/或第二候选PSCell,接入满足更新执行条件的目标PSCell。
  15. 一种条件更新装置,其特征在于,所述装置包括:
    发送模块,用于向终端发送第一候选主辅小区PSCell的辅小区组SCG配置,并向终端指定所述第一候选PSCell的SCG配置对应的参考SCG配置。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时,使得权利要求1至13任一项所述的条件更新方法被执行。
  17. 一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至12任一项所述的条件更新方法的步骤。
  18. 一种网络设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求13所述的条件更新方法的步骤。
PCT/CN2023/129516 2022-11-04 2023-11-03 条件更新方法及装置、终端、网络设备 WO2024094155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211378440.1 2022-11-04
CN202211378440.1A CN118042534A (zh) 2022-11-04 2022-11-04 条件更新方法及装置、终端、网络设备

Publications (1)

Publication Number Publication Date
WO2024094155A1 true WO2024094155A1 (zh) 2024-05-10

Family

ID=90929778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129516 WO2024094155A1 (zh) 2022-11-04 2023-11-03 条件更新方法及装置、终端、网络设备

Country Status (2)

Country Link
CN (1) CN118042534A (zh)
WO (1) WO2024094155A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788619A (zh) * 2019-11-06 2021-05-11 大唐移动通信设备有限公司 一种辅小区组配置方法、主基站、辅基站和终端
WO2021179911A1 (zh) * 2020-03-09 2021-09-16 华为技术有限公司 通信方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788619A (zh) * 2019-11-06 2021-05-11 大唐移动通信设备有限公司 一种辅小区组配置方法、主基站、辅基站和终端
WO2021179911A1 (zh) * 2020-03-09 2021-09-16 华为技术有限公司 通信方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE INC: "Description of a Reference Config for multi-SN handling", 3GPP TSG RAN WG2#119BIS-E R2-2209788, 30 September 2022 (2022-09-30), XP052263115 *
QUALCOMM INCORPORATED: "Selective activation of cell groups in NR-DC", 3GPP TSG-RAN WG2 MEETING #119-BIS-E R2-2209685, 30 September 2022 (2022-09-30), XP052263012 *

Also Published As

Publication number Publication date
CN118042534A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US20220078673A1 (en) Mobility management method, user equipment, and base station
US20200022083A1 (en) Method for controlling status of terminal device, terminal device, and network device
US20220225203A1 (en) Communication Method and Communications Apparatus
RU2763519C2 (ru) Способ передачи обслуживания, терминальное устройство и сетевое устройство
WO2022021247A1 (zh) 基于条件的辅节点或主辅小区变更方法及设备
WO2022199371A1 (zh) 小区切换方法及装置、存储介质、用户设备、基站设备
EP3934312A1 (en) Measurement interval configuration method and device, terminal, and network device
WO2022051900A1 (zh) 发送成功切换报告的方法、终端设备和网络设备
US20210250819A1 (en) Communication method and apparatus
WO2019242722A1 (zh) 一种测量控制方法及装置、终端设备
WO2022017400A1 (zh) 一种移动性信息上报的方法和ue
US12089107B2 (en) Release of configurations for conditional handovers based on security configurations
US20220240141A1 (en) Method and device for cell change
WO2022068485A1 (zh) 用于双连接中PSCell条件更新的配置方法及装置、存储介质、基站、终端
WO2021026747A1 (zh) 无线通信方法和终端设备
US20240172062A1 (en) Reporting Inter-RAT Mobility Failures
WO2022083411A1 (zh) 辅小区变换的错误类型的判定方法及设备
EP3965455B1 (en) Multi-cell configuration method and apparatus, storage medium, terminal and base station
WO2024094155A1 (zh) 条件更新方法及装置、终端、网络设备
WO2024061165A1 (zh) 通信方法及通信装置
WO2023078340A1 (zh) 一种无线通信链路失败处理方法及装置
WO2023109936A1 (zh) 一种小区切换的方法和通信装置
US20230337030A1 (en) Method and apparatus for configuring secondary cell group
WO2024051584A1 (zh) 配置的方法和装置
WO2024088164A1 (zh) 优化配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885080

Country of ref document: EP

Kind code of ref document: A1