WO2024094146A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024094146A1
WO2024094146A1 PCT/CN2023/129491 CN2023129491W WO2024094146A1 WO 2024094146 A1 WO2024094146 A1 WO 2024094146A1 CN 2023129491 W CN2023129491 W CN 2023129491W WO 2024094146 A1 WO2024094146 A1 WO 2024094146A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time
access network
network device
frequency
Prior art date
Application number
PCT/CN2023/129491
Other languages
English (en)
French (fr)
Inventor
陆绍中
郭志恒
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024094146A1 publication Critical patent/WO2024094146A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • the maximum number of orthogonal ports of the channel state information reference signal is 32, and the CSI-RS port can be used to send and receive CSI-RS.
  • access network device 1 generally sends CSI-RS through the CSI-RS port, and access network device 2 can perform channel measurement based on the CSI-RS to obtain the channels on each CSI-RS port on access network device 2.
  • the number of antenna ports that can actually be used by the access network device is much larger than the maximum number of orthogonal ports of CSI-RS, that is, the access network devices cannot accurately measure the channels on each antenna port. Therefore, how to obtain more CSI-RS ports to meet the needs of channel measurement between access network devices has become a technical problem that needs to be solved urgently.
  • the present application provides a communication method and apparatus, which can obtain a greater number of reference signal ports to meet the needs of channel measurement between access network devices.
  • a communication method comprising: a first access network device receives a first signaling sent by operation administration maintenance (OAM), the first signaling being used to indicate the number A of time units, the number B of frequency domain units, and the number P of reference signal ports in a time-frequency unit in a first time-frequency resource set; the first time-frequency resource set is used for the first access network device to send and receive reference signals, a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1; the first access network device determines the total number Q of reference signal ports of the first access network device based on A, B and P, the Q reference signal ports including a reference signal port used for the first access network device to send and receive reference signals.
  • OFAM operation administration maintenance
  • the first access network device can determine the total number Q of reference signal ports of the first access network device based on the number of at least one time unit in the first time-frequency resource set from the OAM device, the number of multiple frequency domain units, and the number of reference signal ports in one time-frequency unit, or the first access network device determines the total number Q of reference signal ports of the first access network device based on the number of multiple time domain units in the first time-frequency resource set from the OAM device, the number of at least one frequency domain unit, and the number of reference signal ports in one time-frequency unit.
  • This provides the first access network device with more reference signal ports for sending and receiving reference signals, so that the first access network device can send and receive reference signals through more reference signal ports on the first time-frequency resource set, thereby meeting the requirements for channel measurement between access network devices, such as meeting the requirement that an access network device can accurately measure the channel on each reference signal port of another access network device, and meeting the requirement that an access network device can simultaneously measure the channel on each reference signal port of each access network device in multiple access network devices.
  • Q A ⁇ B ⁇ P.
  • Q reference signal ports belong to a first reference signal port set, a reference signal port used for the first access network device to receive a reference signal belongs to a second reference signal port set, and a reference signal port used for the first access network device to send a reference signal belongs to a third reference signal port set, and the third reference signal port set is a subset of the first reference signal port set; the second reference signal port set is the first reference signal port set; or, the second reference signal port set is a difference set between the first reference signal port set and the third reference signal port set.
  • the second reference signal port set is the first reference signal port set
  • this provides the first access network device with more reference signal ports for receiving reference signals, thereby better meeting the need for the first access network device to simultaneously measure the channel on each reference signal port of each access network device in multiple access network devices.
  • a reference signal port for sending and receiving reference signals can be provided for the first access network device, which not only meets the requirement that the first access network device can accurately measure the channel on each reference signal port of another access network device, but also meets the requirement that the first access network device sends reference signals to other access network devices so that other access network devices perform channel measurement based on the reference signal.
  • the Q reference signal ports are numbered consecutively by the first access network device in the first time-frequency resource set, first in the order of the index of the frequency domain unit from low to high, and then in the order of the index of the time unit from low to high.
  • the first access network device can associate the reference signal ports with time-frequency resources, code domain resources, etc., and associate the reference signal ports with the ... Resources are used to send reference signals and receive reference signals, which does not require re-notification of time-frequency resources, code domain resources, etc., reducing signaling complexity and overhead.
  • the time-frequency units in the first time-frequency resource set are numbered consecutively by the first access network device first in ascending order of the frequency domain unit index and then in ascending order of the time unit index.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit for sending the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal, and the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, this indicates that the OAM device can implicitly indicate the number of time units in the first time-frequency resource set through the time domain offset of the reference signal.
  • the first signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to the reference position, the reference position is predefined, or the reference position is carried in the first signaling.
  • the first signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal, and the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, this indicates that the OAM device can implicitly indicate the number of frequency domain units in the first time-frequency resource set through the frequency domain offset of the reference signal.
  • the first signaling is further used to indicate an index of a reference signal port used by the first access network device to send a reference signal
  • the index of the reference signal port used by the first access network device to send a reference signal corresponds one-to-one to the index of the antenna port of the first access network device.
  • the index of the reference signal port used by the first access network device to send a reference signal corresponds one-to-one to the index of the antenna port of the first access network device in order of the index of the reference signal port from small to large.
  • the first signaling is also used to indicate the index of the reference signal port used by the second access network device to send the reference signal, and the index of the reference signal port used by the first access network device to send the reference signal is different from the index of the reference signal port used by the second access network device to send the reference signal.
  • the first signaling carries a first index
  • the first index is an index in a first correspondence
  • the first correspondence includes a correspondence between multiple indexes and multiple A, multiple B, and multiple P
  • the first correspondence is carried in a second signaling
  • the second signaling is sent by the OAM device to the first access network device.
  • the OAM device can provide the first access network device with a first correspondence including multiple indexes and multiple A, multiple B, and multiple P, and notify the first access network device to use the A, B, and P corresponding to the first index in the first correspondence to determine the total number Q of reference signal ports of the first access network device, so that the first access network device only uses the A, B, and P corresponding to the first index at a time to determine the total number Q of reference signal ports of the first access network device.
  • the method also includes: the first access network device sends a third signaling to the terminal device, the third signaling is used to indicate the number A of time units and the number B of frequency domain units in the first time-frequency resource set used by the first access network device to send and receive reference signals, and the first time-frequency resource set is used for the terminal device not to receive downlink data sent by the first access network device.
  • the terminal device sends a third signaling to the terminal device, the third signaling is used to indicate the number A of time units and the number B of frequency domain units in the first time-frequency resource set used by the first access network device to send and receive reference signals, and the first time-frequency resource set is used for the terminal device not to receive downlink data sent by the first access network device.
  • the terminal device will not decode the signal received on the first time-frequency resource set as downlink data. This avoids the problem of decoding errors.
  • a communication method including: an OAM device generates a first signaling, the first signaling is used to indicate the number A of time units, the number B of frequency domain units and the number P of reference signal ports in a time-frequency unit in a first time-frequency resource set; the first time-frequency resource set is used for a first access network device to send and receive reference signals, a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1; the OAM device sends a first signaling to the first access network device.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit used to send the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal.
  • the first signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to a reference position, the reference position is predefined, or the reference position is carried in the first signaling.
  • the first signaling is also used to indicate the index of the reference signal port used by the second access network device to send a reference signal, and the index of the reference signal port used by the first access network device to send a reference signal is different from the index of the reference signal port used by the second access network device to send a reference signal.
  • the first signaling carries a first index
  • the first index is an index in a first correspondence relationship
  • the first correspondence relationship includes a correspondence between multiple indexes and multiple A, multiple B, and multiple P
  • the first correspondence relationship is carried in the second signaling
  • the second signaling is sent by the OAM device to the first access network device.
  • a communication method including: a terminal device receives a third signaling sent by a first access network device, the third signaling is used to indicate the number of time units A and the number of frequency domain units B in the first time-frequency resource set used by the first access network device to send and receive reference signals; a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1; the terminal device determines a first time-frequency resource set according to A and B, and the first time-frequency resource set is used for the terminal device not to receive downlink data sent by the first access network device.
  • the terminal device can determine the first time-frequency resource set by the number of time units A and the number of frequency domain units B, which avoids the problem of excessive overhead caused by indicating multiple ZP-CSI-RS resources at the same time to determine the first time-frequency resource set.
  • the terminal device can not decode the signal received on the first time-frequency resource set as downlink data, thereby avoiding the problem of decoding errors.
  • the third signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit for sending the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal.
  • the third signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal, and the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, this indicates that the first access network device can implicitly indicate the number of frequency domain units in the first time-frequency resource set through the frequency domain offset of the reference signal.
  • the third signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to the reference position, the reference position is predefined, or the reference position is carried in the third signaling.
  • the third signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal, and the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, this indicates that the first access network device can implicitly indicate the number of frequency domain units in the first time-frequency resource set through the frequency domain offset of the reference signal.
  • a communication device which is a first access network device.
  • the first access network device includes a transceiver module and a processing module.
  • the transceiver module is used to receive a first signaling sent by an OAM device, and the first signaling is used to indicate the number A of time units, the number B of frequency domain units, and the number P of reference signal ports in a time-frequency unit in a first time-frequency resource set; the first time-frequency resource set is used for the first access network device to send and receive reference signals, a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is An integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1; a processing module, used to determine the total number Q of reference signal ports of the first access network device according to A, B and P, the Q reference signal ports including reference signal ports used for the first access network device to send and receive reference signals.
  • Q A ⁇ B ⁇ P.
  • Q reference signal ports belong to a first reference signal port set
  • the reference signal port used for the first access network device to receive a reference signal belongs to a second reference signal port set
  • the reference signal port used for the first access network device to send a reference signal belongs to a third reference signal port set
  • the third reference signal port set is a subset of the first reference signal port set
  • the second reference signal port set is the first reference signal port set
  • the second reference signal port set is a difference set between the first reference signal port set and the third reference signal port set.
  • the Q reference signal ports are numbered consecutively by the first access network device in the first time-frequency resource set, first in order of the frequency domain unit index from low to high, and then in order of the time unit index from low to high.
  • the time-frequency units in the first time-frequency resource set are numbered consecutively by the first access network device, first in ascending order of the frequency domain unit index and then in ascending order of the time unit index.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit used to send the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal.
  • the first signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to a reference position, the reference position is predefined, or the reference position is carried in the first signaling.
  • the reference position is the position of the first frequency domain unit indicated by the first signaling, or the reference position is determined according to the position of the first frequency domain unit and the frequency density of the reference signal indicated by the first signaling, and the first frequency domain unit is a common frequency domain unit with an index of 0, a starting frequency domain unit of a partial bandwidth of a first access network device, or a starting frequency domain unit of a frequency band range of a reference signal.
  • the first signaling is further used to indicate an index of a reference signal port used for the first access network device to send a reference signal
  • the index of the reference signal port used for the first access network device to send a reference signal corresponds one-to-one to the index of the antenna port of the first access network device.
  • the index of the reference signal port used for the first access network device to send a reference signal corresponds one-to-one to the index of the antenna port of the first access network device in order of the index of the reference signal port from small to large.
  • the first signaling is also used to indicate the index of the reference signal port used by the second access network device to send a reference signal, and the index of the reference signal port used by the first access network device to send a reference signal is different from the index of the reference signal port used by the second access network device to send a reference signal.
  • the first signaling carries a first index
  • the first index is an index in a first correspondence relationship
  • the first correspondence relationship includes a correspondence between multiple indexes and multiple A, multiple B, and multiple P
  • the first correspondence relationship is carried in the second signaling
  • the second signaling is sent by the OAM device to the first access network device.
  • the transceiver module is also used to send a third signaling to the terminal device, and the third signaling is used to indicate the number A of time units and the number B of frequency domain units in the first time-frequency resource set used by the first access network device to send and receive reference signals, and the first time-frequency resource set is used for the terminal device not to receive downlink data sent by the first access network device.
  • a communication device which is an OAM device.
  • the OAM device includes a processing module and a transceiver module.
  • the processing module is used to generate a first signaling, and the first signaling is used to indicate the number A of time units, the number B of frequency domain units and the number P of reference signal ports in a time-frequency unit in a first time-frequency resource set;
  • the first time-frequency resource set is used for a first access network device to send and receive reference signals, a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1;
  • the transceiver module is used to send the first signaling to the first access network device.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit used to send the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal.
  • the first signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to the reference position, the reference position is predefined, or the reference position is carried in the first signaling.
  • the first signaling is also used to indicate the index of the reference signal port used by the second access network device to send a reference signal, and the index of the reference signal port used by the first access network device to send a reference signal is different from the index of the reference signal port used by the second access network device to send a reference signal.
  • the first signaling carries a first index
  • the first index is an index in a first correspondence relationship
  • the first correspondence relationship includes a correspondence between multiple indexes and multiple A, multiple B, and multiple P
  • the first correspondence relationship is carried in the second signaling
  • the second signaling is sent by the OAM device to the first access network device.
  • a communication device which is a terminal device.
  • the terminal device includes a transceiver module and a processing module.
  • the transceiver module is used to receive a third signaling sent by a first access network device, where the third signaling is used to indicate the number A of time units and the number B of frequency domain units in a first time-frequency resource set used by the first access network device to send and receive reference signals;
  • a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1;
  • the processing module is used to determine a first time-frequency resource set based on A and B, and the first time-frequency resource set is used for the terminal device to not receive downlink data sent by the first access network device.
  • the third signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit used to send the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal.
  • the third signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to the reference position, the reference position is predefined, or the reference position is carried in the third signaling.
  • a communication system comprising a first access network device for executing the method as described in any one of the first aspect, an OAM device for executing the method as described in any one of the second aspect, and a terminal device for executing the method as described in any one of the third aspect.
  • a communication device comprising a processor, wherein the processor is coupled to a memory, and a computer program is stored in the memory; the processor is used to call the computer program in the memory so that the communication device executes any method described in the first aspect, the second aspect, or the third aspect.
  • the communication device may be a chip that implements the method in the first aspect, the second aspect, or the third aspect, or a device including a chip.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement a method as described in any one of the first aspect, the second aspect or the third aspect through a logic circuit or by executing code instructions.
  • a computer-readable storage medium stores a computer program or instruction.
  • the command is executed by a computer, the method described in any one of the first aspect, the second aspect or the third aspect is implemented.
  • a computer program product is provided.
  • the computer reads and executes the computer program product, the computer executes the method described in any one of the first aspect, the second aspect or the third aspect.
  • Figure 1 shows the resource configuration of SBFD
  • FIG2 is a schematic diagram of a communication system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a hardware structure of a communication device applicable to an embodiment of the present application.
  • FIG4 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of determining a slot for sending a reference signal provided by an embodiment of the present application.
  • FIG6 is a schematic diagram of determining an RB for sending a reference signal provided by an embodiment of the present application.
  • FIG7A is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided by an embodiment of the present application.
  • FIG7B is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided by an embodiment of the present application.
  • FIG7C is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in another embodiment of the present application.
  • FIG7D is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in another embodiment of the present application.
  • FIG7E is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in another embodiment of the present application.
  • FIG7F is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in another embodiment of the present application.
  • FIG8A is a schematic diagram of consecutive numbering of 64 reference signal ports in one slot and one RB provided in an embodiment of the present application;
  • FIG8B is a schematic diagram of consecutive numbering of 64 reference signal ports in one slot and one RB provided in another embodiment of the present application;
  • FIG8C is a schematic diagram of consecutive numbering of 64 reference signal ports in one slot and one RB provided in another embodiment of the present application;
  • FIG8D is a schematic diagram of consecutive numbering of 64 reference signal ports in one slot and one RB provided in another embodiment of the present application;
  • FIG8E is a schematic diagram of consecutive numbering of 64 reference signal ports in one slot and one RB provided in another embodiment of the present application;
  • FIG8F is a schematic diagram of consecutive numbering of 64 reference signal ports in multiple slots and multiple RBs provided in an embodiment of the present application;
  • FIG9 is a schematic diagram of a continuous numbering of time-frequency units provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a simplified structure of a terminal device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a simplified access network device provided in an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” etc. described in the embodiments of the present application mean that one or more embodiments of the present application include specific features, structures or characteristics described in conjunction with the embodiment. Therefore, the statements “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. that appear in different places in this specification do not necessarily refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized in other ways.
  • the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
  • an antenna port can be understood as a transmitting antenna that can be identified by a receiving device, or a transmitting antenna that can be distinguished in space.
  • An antenna port can be, for example, a physical antenna on a transmitting device, or a weighted combination of multiple physical antennas on a transmitting device.
  • an antenna port can correspond to a reference signal, that is, an antenna port used to send and/or receive a reference signal can be called a reference signal port, such as a CSI-RS port.
  • the index of the antenna port can be used to uniquely identify the antenna port.
  • the index of the antenna port can also have other names, such as the identifier of the antenna port, the number of the antenna port, the port number of the antenna port, etc., which are not limited in this application.
  • the index of the reference signal port can be used to uniquely identify the reference signal port.
  • the index of the reference signal port can also have other names, such as the identifier of the reference signal port, the number of the reference signal port, the port number of the reference signal port, etc., which are not limited in this application.
  • the reference signal may be, for example, CSI-RS.
  • LTE long term evolution
  • 3GPP 3rd generation partnership project
  • CSI-RS provides a more effective possibility of obtaining CSI while supporting more antenna ports.
  • the CSI-RS in new radio can be used for one or more of the following: obtaining channel state information for scheduling, link adaptation, and MIMO-related transmission settings; beam management, by obtaining the beamforming weights of the terminal device and the access network device to support beam management; accurate time-frequency tracking, by setting TRS to achieve time-frequency tracking; mobility management, by obtaining and tracking the CSI-RS of the cell and the neighboring cell to complete the measurement requirements related to the mobility management of the terminal device; rate matching, by setting the zero-power CSI-RS to complete the rate matching function at the resource element (RE) level of the data channel.
  • RE is a time-frequency resource composed of a subcarrier in the frequency domain and a symbol in the time domain. Symbols can also be called orthogonal frequency-division multiplexing (OFDM) symbols, and this application does not limit the name.
  • the time unit may be, for example, a time slot
  • the sub-time unit may be, for example, a symbol.
  • the duration of a frame is 10 ms, and each frame is divided into 10 subframes, each subframe being 1 ms long.
  • Each subframe is divided into a number of time slots: when the cyclic prefix (CP) is a normal cyclic prefix (NCP), each slot is composed of 14 symbols; when the cyclic prefix is an extended cyclic prefix (ECP), each slot is composed of 12 symbols.
  • the time length of each slot is determined by a parameter set (numerology).
  • a parameter set may include a subcarrier spacing and a CP.
  • the CP may be, for example, an NCP or an ECP.
  • is an index of a parameter set
  • ⁇ f represents a subcarrier spacing (SCS)
  • normal represents NCP
  • extended represents ECP.
  • the value of ⁇ can be substituted into the formula for calculation to determine the relevant parameters. For example, when ⁇ is 0, ⁇ f is 15kHz, and a slot is 1ms long; when ⁇ is 1, ⁇ f is 30kHz, and a slot is 0.5ms long, etc.
  • the number of symbols included in a time slot may also be other values, which is not limited in this application.
  • the time unit index may be used to uniquely identify the time unit.
  • the time unit index may also have other names, such as the time unit identifier, the time unit number, etc., which are not limited in this application.
  • the frequency domain unit may be, for example, a resource block (RB), and the sub-frequency domain unit may be, for example, a subcarrier.
  • RB resource block
  • a plurality of subcarriers that are continuous in the frequency domain may be referred to as an RB.
  • an RB in an LTE system includes 12 subcarriers
  • an RB in an NR system in 5G also includes 12 subcarriers.
  • the number of subcarriers included in an RB may also be other values, which is not limited in the present application.
  • the frequency domain unit index may be used to uniquely identify the frequency domain unit.
  • the frequency domain unit index may also have other names, such as the identification of the frequency domain unit, the number of the frequency domain unit, etc., which are not limited in the present application.
  • the frame number of the system frame can be referred to as the system frame number (SFN).
  • SFN system frame number
  • the system frame number is the number of the system wireless frame.
  • the SFN number range can be 0 to 1023, that is, SFN has 1024 values.
  • SBFD can divide the frequency band on the downlink symbol into one or more uplink subbands and one or more downlink subbands, and allow the downlink to be sent on the uplink subband of the downlink symbol.
  • the present application refers to the time slot where the symbol on the frequency band is divided into both the uplink subband and the downlink subband as the SBFD time slot, denoted by X (used to distinguish D, U, and S, D represents the downlink time slot, each symbol in the downlink time slot is a downlink symbol, U represents the uplink time slot, each symbol in the uplink time slot is an uplink symbol, S is a special time slot, and the special time slot includes at least a flexible symbol, which can be dynamically adjusted to an uplink symbol or a downlink symbol).
  • the resource configuration of SBFD can be seen in Figure 1.
  • the resource configuration of SBFD is XXXXX
  • the resource configuration of SBFD is XXXXU
  • the resource configuration of SBFD is DXXXU.
  • the access network equipment supports full-duplex (FD) SBFD, that is, it can simultaneously send on the uplink subband and receive on the downlink subband in one time slot; the terminal equipment only supports half-duplex (HF) SBFD, that is, it can only send on the uplink subband or only receive on the downlink subband in one time slot.
  • FD full-duplex
  • HF half-duplex
  • LTE long term evolution
  • 5G fifth generation
  • WLAN wireless local area networks
  • V2X communication systems etc.
  • the technical solutions of the embodiments of the present application can also be applied to communication systems evolved after 5G, such as 6G communication systems, and the functions may remain the same, but the names may change.
  • the communication system may include an access network device 20, an access network device 21, and an OAM device 22.
  • the access network device 20 can communicate with the access network device 21, and the access network device 20 and the access network device 21 can also communicate with the OAM device 22.
  • the communication system can also access one or more terminal devices in the cell of the access network device 20, such as the terminal device 23, and the terminal device 20 can communicate with the access network device 20.
  • the communication system can also access one or more terminal devices in the cell of the access network device 21, such as the terminal device 24, and the terminal device 24 can communicate with the access network device 21.
  • Figure 2 is only a schematic diagram and does not constitute a limitation on the applicable scenarios of the technical solution provided in this application.
  • the access network device shown in FIG2 is an entity on the network side for sending signals, or receiving signals, or sending and receiving signals.
  • the access network device can be a device deployed in a radio access network (RAN) to provide wireless communication functions for terminal devices, such as a transmission reception point (TRP), a base station, and various forms of control nodes.
  • RAN radio access network
  • TRP transmission reception point
  • base station a base station
  • control nodes such as a network controller, a wireless controller, a wireless controller in a cloud radio access network (CRAN) scenario, etc.
  • the access network equipment can be various forms of macro base stations, micro base stations (also called small stations), relay stations, access points (AP), radio network controllers (RNC), node B (NB), base station controllers (BSC), base transceiver stations (BTS), home base stations (e.g., home evolved node B, or home node B, HNB), baseband units (BBU), transmission points (TRP), transmitting points (TP), mobile switching centers, etc., and can also be antenna panels of base stations.
  • the control node can connect to multiple base stations and configure resources for multiple terminals covered by multiple base stations. In systems using different wireless access technologies, the names of devices with base station functions may be different.
  • the access network device may be a gNB in 5G, or a network-side device in a network after 5G, or an access network device in a future evolved public land mobile (communication) network (public land mobile network, PLMN) network, or a device that performs base station functions in device-to-device (D2D) communication, machine-to-machine (machine-to-machine, M2M) communication, or vehicle networking communication, etc.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • M2M machine-to-machine
  • vehicle networking communication etc.
  • the access network device may also include a distributed unit (distributed unit, DU) and a centralized unit (centralized unit, CU).
  • the access network device may also be a base station for wireless communication such as an artificial earth satellite and a high-altitude aircraft, such as a medium earth orbit (MEO) satellite in a non-geostationary earth orbit (NGEO), a low earth orbit (LEO) satellite, a high altitude platform station (HAPS), etc.
  • a base station for wireless communication such as an artificial earth satellite and a high-altitude aircraft, such as a medium earth orbit (MEO) satellite in a non-geostationary earth orbit (NGEO), a low earth orbit (LEO) satellite, a high altitude platform station (HAPS), etc.
  • MEO medium earth orbit
  • NGEO non-geostationary earth orbit
  • LEO low earth orbit
  • HAPS high altitude platform station
  • the terminal device shown in FIG2 is an entity on the user side for receiving signals, or sending signals, or receiving and sending signals.
  • the terminal device can be used to provide one or more of voice services and data connectivity services to users.
  • the terminal device can be a device that includes wireless transceiver functions and can cooperate with access network equipment to provide communication services to users.
  • the terminal device can refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, terminal, Wireless communication device, user agent, user equipment or road side unit (RSU).
  • UE user equipment
  • RSU road side unit
  • the terminal device may also be a drone, an Internet of Things (IoT) device, a station (ST) in a WLAN, a cellular phone, a smart phone, a cordless phone, a wireless data card, a tablet computer, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a laptop computer, a machine type communication (MTC) terminal, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device (also referred to as a wearable smart device), a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a smart home, etc.
  • IoT Internet of Things
  • ST wireless terminal
  • the terminal device may also be a device-to-device (D2D) device, such as an electric meter, a water meter, etc.
  • D2D device-to-device
  • the terminal device may also be a terminal in a 5G system or a terminal in a next-generation communication system, which is not limited in the embodiments of the present application.
  • the OAM device shown in FIG. 2 may be used to provide network management functions, including one or more of fault monitoring, fault reporting, fault location, and fault repair.
  • each device in FIG3 may be implemented by one device, or by multiple devices, or by a functional module in one device, and the present application embodiment does not specifically limit this. It is understandable that the above functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (e.g., a cloud platform).
  • a platform e.g., a cloud platform
  • each device in FIG3 can be implemented by the communication device 300 in FIG3.
  • FIG3 is a schematic diagram of a hardware structure of a communication device that can be applied to an embodiment of the present application.
  • the communication device 300 includes at least one processor 301, a communication line 302, and at least one communication interface 303.
  • the communication device 300 also includes a memory 304.
  • Processor 301 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication link 302 may include a pathway for transmitting information between the above-mentioned components.
  • the communication interface 303 is any transceiver-like device (such as an antenna, etc.) used to communicate with other devices or communication networks.
  • the communication network can be, for example, Ethernet, RAN, wireless local area networks (WLAN), etc.
  • the memory 304 may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory may be independent and connected to the processor via a communication line 302.
  • the memory may also be integrated with the processor.
  • the memory provided in the embodiment of the present application may generally be non-volatile.
  • the memory 304 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 301.
  • the processor 301 is used to execute the computer-executable instructions stored in the memory 304, thereby implementing the method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the communication device 300 may include multiple processors, such as the processor 301 and the processor 307 in FIG3 . Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the communication device 300 may further include an output device 305 and an input device 306.
  • the output device 305 communicates with the processor 301 and may display information in a variety of ways.
  • the output device 305 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • the input device 306 communicates with the processor 301 and may receive user input in a variety of ways.
  • the input device 306 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the communication device 300 may be a general device or a dedicated device. In a specific implementation, the communication device 300 may be any of the above terminal devices or access network devices or OAM devices. The embodiment of the present application does not limit the type of the communication device 300.
  • FIG 4 is a flow chart of a communication method provided in an embodiment of the present application.
  • the access network device, OAM device, and terminal device involved in Figure 4 may be, for example, the access network device, OAM device, and terminal device in Figure 2, respectively.
  • the method includes but is not limited to the following steps:
  • the OAM device generates a first signaling; the first signaling is used to indicate the number A of time units, the number B of frequency domain units, and the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set; or, the first signaling is used to indicate the number A of time units, the number B of frequency domain units, and the total number Q of reference signal ports of the first access network device in the first time-frequency resource set; the first time-frequency resource set is used for the first access network device to send and receive reference signals.
  • the values of A and B may be, for example, any of the following methods, and the specific method may depend on the specific implementation, pre-agreed agreement or standard definition, etc.
  • A is 1, and B is 1.
  • P can be, for example, 64, or other values, which are not limited in this application.
  • Mode 1.2 A is an integer greater than or equal to 1, and B is an integer greater than 1.
  • Mode 1.3 A is an integer greater than 1, and B is an integer greater than or equal to 1.
  • P can be, for example, 1, 2, 4, 8, 12, 16, 24, 32 or 64, and of course can be other values, which are not limited in this application.
  • the first signaling is further used to indicate a pseudo-random sequence parameter n ID , where n ID is used by the first access network device to determine an initial value c init of the pseudo-random sequence, and c init is used by the first access network device to generate a reference signal.
  • n ID is used by the first access network device to determine an initial value c init of the pseudo-random sequence
  • c init is used by the first access network device to generate a reference signal.
  • the reference signal is a CSI-RS
  • the initial value c init of the pseudo-random sequence may satisfy the following formula (1):
  • the first signaling is also used to indicate the period of the reference signal.
  • the length of the reference signal period may be, for example, 4 time units, 5 time units, 8 time units, 10 time units, 16 time units, 20 time units, 32 time units, 40 time units, 64 time units, 80 time units, 160 time units, 320 time units or 640 time units, etc. It should be understood that since the location of the access network device is fixed and the channel between base stations changes slowly, a longer reference signal period may be used.
  • the length of the reference signal period may be 1280 time units, 2560 time units, 5120 time units or 10240 time units, etc., which are not limited here.
  • the starting position of the period of the reference signal may be, for example, in any of the following ways, and the specific one may depend on the specific implementation, pre-agreed agreement or standard definition, etc.
  • the starting position of the reference signal period is predefined. This does not require the start position of the reference signal period to be indicated by signaling, saving signaling overhead.
  • the start position of the reference signal period is the time slot with index 0 in the system frame with system frame number 0.
  • the first signaling is also used for the index of the first time unit in the first time-frequency resource set, the frame number of the system frame where the first time unit is located, the time occupied by the first time unit, the parameter set, and the first duration; the parameter set is used to determine the length of the first time unit.
  • the method may also include: the first access network device determines the starting position of the reference signal period according to the index of the first time unit and the frame number of the system frame where the first time unit is located; or, the first access network device determines the starting position of the reference signal period according to the time occupied by the first time unit and the parameter set; or, the first access network device determines the starting position of the reference signal period according to the time when the first access network device receives the first signaling and the first duration.
  • the index of the first time unit can be, for example, That is, the index of the first time unit is numbered continuously in the system frame where the first time unit is located in the order of the index of the time unit from low to high, and ⁇ is the index of the parameter set.
  • the time unit occupied by the first time unit is in seconds.
  • the first duration can also be called a delay. This indicates that the OAM device can implicitly indicate the starting position parameter for determining the period of the reference signal through the first signaling.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal; wherein, the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, a time domain offset of the reference signal is the offset of the position of a time unit for sending the reference signal relative to the starting position of the period of the reference signal in the time domain, and the period of the reference signal in the time domain includes at least one time unit for sending the reference signal. It should be noted that when the number of time domain offsets of the reference signal indicated by the first signaling is multiple, the multiple time domain offsets are different from each other.
  • the first signaling is used to indicate at least one of the following: the number of time domain offsets of the reference signal, the time domain offset of the reference signal, and the number of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal, this indicates that the OAM device can implicitly indicate the number of time units in the first time-frequency resource set through the time domain offset of the reference signal.
  • T is the period of the reference signal, in time units.
  • the information element (IE) of the period of the reference signal and the time domain offset of the reference signal may be, for example:
  • slots4 indicates that the period of the reference signal is 4 slots
  • INTEGER(0..3) is used to indicate that the offsets of the reference signal are 0, 1, 2 and 3 respectively, and the others are similar and will not be elaborated here.
  • the first signaling may include, for example, a first sub-signaling, and the first sub-signaling may carry the period of the reference signal and the time domain offset of the reference signal.
  • the first sub-signaling may be CSI-RS-ResourcePeriodicityAndOffset signaling or a signaling with similar definition or function, or a signaling of an extended field, or a signaling of an extended field of CSI-RS-ResourcePeriodicityAndOffset, which is not limited here.
  • the first access network device can determine the time unit for sending the reference signal based on the period of the reference signal, the starting position of the period of the reference signal, and the time domain offset of the reference signal.
  • the time unit for sending the reference signal may include A time units in the first time-frequency resource set.
  • the A time units in the first time-frequency resource set are time units determined by the first access network device based on a period of the reference signal, the starting position of the period, and the time domain offset of the reference signal. It should be understood that the number of time units used to send the reference signal in each period is the number of time units in the first time-frequency resource set, that is, the reference signal is periodically sent in the time domain.
  • Figure 5 is a schematic diagram of a slot for determining the sending of a reference signal provided in an embodiment of the present application.
  • the offsets of the reference signal are 0 and 1, respectively. Both periods of the reference signal are 10 slots.
  • the starting position of the first cycle is located at the starting position of the second slot (from left to right), the offset of the reference signal is 0, which indicates that the second slot is the slot for the first access network device to send the reference signal, and the offset of the reference signal is 1, which indicates that the third slot (from left to right) is the slot for the first access network device to send the reference signal.
  • the second cycle is similar and will not be repeated here.
  • the first signaling may also be used to indicate the position of at least one sub-time unit carrying a reference signal in a time unit in the first time-frequency resource set, and the position of the at least one sub-time unit may include the position l 0 of the first sub-time unit, and the first sub-time unit is any sub-time unit indexed from 0 to 13 in the time unit.
  • the position of the at least one sub-time unit may also include the position l 1 of the second sub-time unit, the position l 2 of the third sub-time unit, and the position l 3 of the fourth sub-time unit, and the second sub-time unit is any sub-time unit indexed from 2 to 12 in the time unit, the third sub-time unit is any sub-time unit indexed from 4 to 12 in the time unit, and the fourth sub-time unit is any sub-time unit indexed from 6 to 12 in the time unit.
  • the positions of more sub-time units of a time unit the number of sub-time units used for sending and receiving reference signals is increased, and the number of reference signal ports in a time-frequency unit may be increased.
  • the first signaling may also be used to indicate the frequency band range for sending the reference signal, for example, it may include the starting frequency domain unit and length of sending the reference signal. It should be understood that the frequency domain unit used to send the reference signal belongs to the frequency band range, such as the first time-frequency resource concentration used for sending The frequency domain unit that sends the reference signal belongs to the frequency band.
  • the first signaling can also be used to indicate the frequency density ⁇ of the reference signal, which is used to indicate the density of the reference signal in the frequency domain, and can also be called the frequency density.
  • can be, for example, 3, 1, or 0.5.
  • sparser reference signals can be used in the frequency domain to reduce overhead, that is, the value of ⁇ can be smaller, for example, ⁇ can also be 0.25, 0.125, 0.0625 or 0.03125, etc., and of course other values, which are not limited in this application.
  • within the frequency band range for sending reference signals, if a reference signal is configured for each RB, ⁇ is 1; within the frequency band range for sending reference signals, if a reference signal is configured every 1 RB, ⁇ is 0.5.
  • the first signaling can also be used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal; wherein, the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, a frequency domain offset of the reference signal is the offset of the position of a frequency domain unit used to send the reference signal relative to the reference position, the reference position is predefined, or the reference position is carried in the first signaling. It should be noted that when ⁇ is less than 1, the first signaling can also be used to indicate the frequency domain offset of the reference signal. When the number of frequency domain offsets of the reference signal indicated by the first signaling is multiple, the multiple frequency domain offsets are different from each other.
  • the first signaling is used to indicate at least one of the following: the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal, and the number of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal, this indicates that the OAM device can implicitly indicate the number of frequency domain units in the first time-frequency resource set through the frequency domain offset of the reference signal.
  • the reference position is the position of the first frequency domain unit indicated by the first signaling, and/or the reference position is determined according to the position of the first frequency domain unit and ⁇ , and the first frequency domain unit is a common frequency domain unit with an index of 0 (i.e., a common resource block (CRB) 0), a starting frequency domain unit of a BWP (bandwidth part, BWP) of a first access network device, or a starting frequency domain unit within the frequency band for sending a reference signal.
  • CRB common resource block
  • the first access network device can determine the frequency domain unit used to send the reference signal from the frequency band range of the reference signal according to the frequency density of the reference signal, the frequency domain offset of the reference signal and the reference position.
  • the frequency domain unit used to send the reference signal includes B frequency domain units in the first time-frequency resource set.
  • the B frequency domain units in the first time-frequency resource set are frequency domain units determined by the first access network device according to the same reference position and the frequency domain offset of the reference signal.
  • the frequency domain unit used to send the reference signal is also repeatedly sent in the frequency domain, and the repetition interval is Or 1/ ⁇ .
  • Figure 6 is a schematic diagram of determining an RB for sending a reference signal provided in an embodiment of the present application.
  • the frequency density of the reference signal is 0.25, and the offsets of the reference signal are 0 and 1, respectively.
  • the offset of the reference signal is 0, indicating that the first RB (from bottom to top) is the RB for sending the reference signal, and the offset of the reference signal is 1, indicating that the second RB (from bottom to top) is the RB for sending the reference signal. The rest is similar and will not be repeated here.
  • u is an integer greater than or equal to 0.
  • the index n of the frequency domain unit used to send the reference signal may be, for example, the index of the frequency domain unit used to send the reference signal in the first time-frequency resource set.
  • the first bitmap may be used to indicate multiple frequency domain offsets of the reference signal.
  • the multiple bits of the first bitmap correspond one-to-one to the multiple frequency domain offsets of the reference signal.
  • the first bitmap includes a first bit and a second bit.
  • the first bit When the first bit is a first value, the first bit enables the frequency domain offset of the reference signal corresponding to the first bit.
  • the second bit When the second bit is a first value, the second bit enables the frequency domain offset of the reference signal corresponding to the second bit.
  • the first value may be 1, for example.
  • the size of the first bitmap is bits or 1/ ⁇ bits.
  • the size of the first bitmap is 4 bits
  • the first bit in the first bitmap indicates that the frequency domain offset of the reference signal is 0
  • the second bit indicates that the frequency domain offset of the reference signal is 1
  • the third bit indicates that the frequency domain offset of the reference signal is 2
  • the fourth bit indicates that the frequency domain offset of the reference signal is 3.
  • the first signaling can also be used to indicate the position of a sub-frequency domain unit in a frequency domain unit in the first time-frequency resource set.
  • the number of sub-frequency domain units in the frequency domain unit can be multiple, and the multiple sub-frequency domain units can be, for example, sub-frequency domain units indexed from 0 to 11, and the multiple sub-frequency domain units are numbered consecutively in the frequency domain unit according to the index of the sub-frequency domain unit from low to high.
  • the position of multiple sub-frequency domain units in a frequency domain unit in the first time-frequency resource set can be indicated by a second bit map.
  • the multiple bits of the second bit map correspond one-to-one to the positions of multiple sub-frequency domain units in a frequency domain unit in the first time-frequency resource set, such as the second bit map includes a third bit and a fourth bit, when the third bit is a first value, the third bit enables the position of the sub-frequency domain unit corresponding to the third bit, and when the fourth bit is a first value, the fourth bit enables the position of the sub-frequency domain unit corresponding to the second bit.
  • the size of the second bit map can be, for example, 6 bits.
  • the first bit in the second bitmap indicates the position of the sub-frequency domain unit with an index of 0 in a frequency domain unit in the first time-frequency resource set, that is, k 0 ;
  • the second bit in the second bitmap indicates the position of the sub-frequency domain unit with an index of 2 in a frequency domain unit in the first time-frequency resource set, that is, k 1 ;
  • the third bit in the second bitmap indicates the position of the sub-frequency domain unit with an index of 4 in a frequency domain unit in the first time-frequency resource set, that is, k 2 ;
  • the fourth bit in the second bitmap indicates the position of the sub-frequency domain unit with an index of 6 in a frequency domain unit in the first time-frequency resource set, that is, k 3 ;
  • the fifth bit in the second bitmap indicates the position of the sub-frequency domain unit with an index of 8 in a frequency domain unit in the first time-frequency resource set, that is, k 4 ;
  • the sixth bit in the second bitmap indicates the position of
  • the second bitmap is ⁇ 1,1,0,0,0,0 ⁇ , it indicates that the first bit enables the position of the sub-frequency domain unit corresponding to the first bit, and the second bit enables the position of the sub-frequency domain unit corresponding to the second bit, that is, the positions of the sub-frequency domain units in a frequency domain unit in the first time-frequency resource set indicated by the second bitmap are k 0 and k 1 respectively.
  • the first signaling may also be used to indicate a code division multiplexing (CDM) type of a reference signal.
  • CDM code division multiplexing
  • the CDM type may be, for example, one or more of noCDM, fd-CDM2, cdm4-FD2-TD2, cdm8-FD2-TD4, cdm16-FD2-TD8, cdm16-FD4-TD4, etc.
  • the CDM type may be used to define an orthogonal cover code (OCC), which may be divided into a time domain OCC and a frequency domain OCC, for example.
  • OCC orthogonal cover code
  • the time domain OCC used by a CDM group on a time-frequency unit in the first time-frequency resource set may be indicated by l′ and w t (l′), and the frequency domain OCC used by the CDM group may be indicated by k′ and w f (k′).
  • l′, w t (l′), k′ and w f (k′) may refer to Tables 2 to 6, or Tables 7 to 9.
  • the index is the index of the orthogonal cover code included in the CDM group on a time-frequency unit in the first time-frequency resource set.
  • row is used to indicate the order between different rows in the table.
  • port (ports) X is used to indicate the number of reference signal ports in a time-frequency unit in the first time-frequency resource set.
  • the number of reference signal ports in a time-frequency unit is 1, 2, 4, 8, 12, 16, 24 or 32.
  • the number of reference signal ports in a time-frequency unit is 64.
  • Frequency density ⁇ is used to represent the frequency density of the reference signal.
  • may be, for example, one or more of 3, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, etc.
  • Table 2 or Table 7 only shows some values of the frequency density.
  • cdm-type is used to indicate the CDM type.
  • the CDM type may be, for example, noCDM, fd-CDM2, cdm4-fd2-td2, or cdm8-fd2-td4, etc.
  • the CDM type may be, for example, fd-CDM2, cdm4-fd2-td2, cdm8-fd2-td4, cdm16-fd2-td8, cdm16-fd4-td4, etc.
  • a time-frequency unit in the first time-frequency resource set includes 32 CDM groups, including 4 CDM groups in the frequency domain and 8 CDM groups in the time domain, each CDM group includes two consecutive adjacent subcarriers and is located in the same symbol, and its OCC can refer to Table 4.
  • a CDM group uses a code division multiplexing of length 2 in the frequency domain, and uses 4 frequency division multiplexing in the frequency domain and 8 time division multiplexing in the time domain between CDM groups, so a total of 64 reference signal ports are supported.
  • the CDM type of cdm4-fd2-td2 can be understood as follows: a time-frequency unit in the first time-frequency resource set includes 16 CDM groups, including 4 CDM groups in the frequency domain and 4 CDM groups in the time domain, each CDM group includes two consecutive adjacent subcarriers in the frequency domain and two consecutive adjacent symbols in the time domain, and its OCC can refer to Table 5.
  • a CDM group uses a code division multiplexing of length 2 in the frequency domain and a code division multiplexing of length 2 in the time domain, and uses 4 frequency division multiplexing in the frequency domain and 4 time division multiplexing in the time domain between CDM groups, so a total of 64 reference signal ports are supported.
  • the CDM type of cdm8-fd2-td4 can be understood as follows: a time-frequency unit in the first time-frequency resource set includes 8 CDM groups, including 4 CDM groups in the frequency domain and 2 CDM groups in the time domain. Each CDM group includes two consecutive adjacent subcarriers in the frequency domain and 4 consecutive adjacent symbols in the time domain. Its OCC can refer to Table 6.
  • a CDM group uses a code division multiplexing of length 2 in the frequency domain and a code division multiplexing of length 4 in the time domain.
  • Four frequency division multiplexings are used between CDM groups in the frequency domain and two time division multiplexings are used in the time domain, so a total of 64 reference signal ports are supported.
  • the CDM type of cdm16-FD2-TD8 can be understood as follows: a time-frequency unit in the first time-frequency resource set includes 4 CDM groups, including 4 CDM groups in the frequency domain and 1 CDM group in the time domain, each CDM group includes two consecutive adjacent subcarriers in the frequency domain and 1 CDM group in the time domain.
  • a CDM group uses a code division multiplexing of length 2 in the frequency domain and a code division multiplexing of length 8 in the time domain. Only 4 frequency division multiplexing is used between CDM groups in the frequency domain, so a total of 64 reference signal ports are supported.
  • the CDM type of cdm16-FD4-TD4 can be understood as: a time-frequency unit in the first time-frequency resource set includes 4 CDM groups, including 2 CDM groups in the frequency domain and 2 CDM groups in the time domain. Each CDM group includes 4 consecutive adjacent subcarriers in the frequency domain and 4 consecutive adjacent symbols in the time domain.
  • a CDM group uses a code division multiplexing of length 4 in the frequency domain and a code division multiplexing of length 4 in the time domain, and four frequency division multiplexing are used between CDM groups in the frequency domain and four time division multiplexing are used in the time domain, so a total of 64 reference signal ports are supported.
  • Table 2 involves l 0 , l 1 , k 0 , k 1 , k 2 and k 3
  • Table 7 involves l 0 , l 1 , l 2 , l 3 , k 0 , k 1 , k 2 and k 3 .
  • CDM group index (CDM group index) j is used to represent the index of the CDM group on a time-frequency unit in the first time-frequency resource set, and the details can be found in Table 2 or Table 7, which will not be described in detail here;
  • k′ is used to represent the frequency domain offset of a reference signal within a CDM group on a time-frequency unit in the first time-frequency resource set, and the details can be found in Table 2 or Table 7, which will not be described in detail here;
  • l′ is used to represent the time domain offset of a reference signal within a CDM group on a time-frequency unit in the first time-frequency resource set, and the details can be found in Table 2 or Table 7, which will not be described in detail here.
  • the position of a time-frequency unit of the reference signal in the first time-frequency resource set can refer to Table 7.
  • the position of a time-frequency unit of the reference signal in the first time-frequency resource set can refer to Table 2 or Table 7.
  • Table 2 Position of reference signals in a time-frequency unit in the first time-frequency resource set
  • Table 7 Position of reference signals in a time-frequency unit in the first time-frequency resource set
  • Table 8 OCC defined by cdm16-FD2-TD8
  • the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set, the position of multiple sub-time units carrying the reference signal in a time unit in the first time-frequency resource set, the frequency band range for sending the reference signal, the frequency density of the reference signal, the frequency domain offset of the reference signal, the position of the sub-frequency domain unit in a frequency domain unit in the first time-frequency resource set, and the CDM type of the reference signal IE can be, for example:
  • the frequencyDomainAllocation parameter is used to indicate the position of the sub-frequency domain unit in a frequency domain unit in the first time-frequency resource set.
  • other corresponds to BIT STRING (SIZE (6)), which is used to indicate the position of the sub-frequency domain unit in a frequency domain unit in the first time-frequency resource set indicated by a bitmap with a size of 6 bits. The rest is similar and will not be repeated here.
  • the nrofPorts parameter is used to indicate the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set.
  • p1 is used to indicate that the number of reference signal ports in a time-frequency unit in the first time-frequency resource set is 1
  • p2 is used to indicate that the number of reference signal ports in a time-frequency unit in the first time-frequency resource set is 2. The rest is similar and will not be repeated here.
  • firstOFDMSymbolInTimeDomain is used to indicate the position l 0 of the first sub-time unit carrying the reference signal in a time unit in the first time-frequency resource set, and INTEGER (0..13) is used to indicate that any sub-time unit with an index of 0 to 13 can be the first sub-time unit;
  • firstOFDMSymbolInTimeDomain2 is used to indicate the position l 1 of the second sub-time unit carrying the reference signal in a time unit in the first time-frequency resource set, and INTEGER (0..13) is used to indicate the index Any sub-time unit with an index of 2 to 12 can be the second sub-time unit;
  • firstOFDMSymbolInTimeDomain3 is used to indicate the position l 2 of the third sub-time unit carrying the reference signal in a time unit in the first time-frequency resource set, and INTEGER (4..12) is used to indicate that any sub-time unit with an index of 4 to 12 can be the third sub-time unit;
  • the cdm-Type parameter is used to indicate the CDM type of the reference signal, such as noCDM, fd-CDM2, cdm4-FD2-TD2, cdm8-FD2-TD4, cdm16-FD2-TD8, cdm16-FD4-TD4, etc.
  • the density parameter is used to indicate the frequency density of the reference signal, where dot25 indicates that the frequency density of the reference signal is 0.25, SEQUENCE(SIZE(1...4))OFPRB-Offset-dot25, for SIZE(1), it indicates that the reference signal has only one frequency domain offset, for SIZE(2), it indicates that the reference signal has two frequency domain offsets, and the rest are similar, PRB-Offset-dot25 indicates a candidate value set for the frequency offset.
  • freqBand is used to indicate the frequency band range for sending the reference signal, for example, it may include the starting frequency domain unit and length of sending the reference signal.
  • the first signaling may include the second sub-signaling
  • the second sub-signaling may carry the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set, the positions of multiple sub-time units carrying the reference signal in a time unit in the first time-frequency resource set, the frequency band range for sending the reference signal, the frequency density of the reference signal, the frequency domain offset of the reference signal, the position of the sub-frequency domain unit in a frequency domain unit in the first time-frequency resource set, and the CDM type of the reference signal.
  • the second sub-signaling may be, for example, CSI-RS-ResourceMapping signaling or signaling with similar definition or function, or signaling of an extended field, or signaling of an extended field of CSI-RS-ResourceMapping, which is not limited here.
  • the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set, the position of multiple sub-time units carrying the reference signal in a time unit in the first time-frequency resource set, the frequency band range for sending the reference signal, the frequency density of the reference signal, the frequency domain offset of the reference signal, the position of the sub-frequency domain unit in a frequency domain unit in the first time-frequency resource set, and the CDM type of the reference signal IE can be, for example:
  • the rest is similar to the case where the multiple frequency domain offsets of the reference signal are not indicated by the first bit map, and will not be elaborated here.
  • the first signaling may also be used to indicate an index of a reference signal port used by the first access network device to send a reference signal.
  • the first signaling is used to indicate that the index of the reference signal port used by the first access network device to send the reference signal is 0 to 31 and 64 to 95.
  • the first signaling is used to indicate the index of the reference signal port used by the first access network device to send the reference signal can be implemented in any of the following ways, which one can depend on the specific implementation, pre-agreed agreement or standard definition, etc.
  • the first signaling is used to indicate the third bitmap
  • the third bitmap is used to indicate the index of the reference signal port used by the first access network device to send the reference signal.
  • the third bitmap has a total of 128 bit values, the values of the first 64 bits are 1, and the values of the last 64 bits are 0, which indicates that the index of the reference signal port used by the first access network device to send the reference signal is 0 to 63. This can save overhead.
  • the first signaling is used to indicate the index of the starting reference signal port used by the first access network device to send a reference signal and the number of reference signal ports used by the first access network device to send a reference signal.
  • the first access network device determines the index of the reference signal port used by the first access network device to send a reference signal based on the index of the starting reference signal port and the number of reference signal ports used by the first access network device to send a reference signal.
  • the index of the starting reference signal port is 64
  • the number of reference signal ports used by the first access network device to send a reference signal is 63. Therefore, the index of the reference signal port used by the first access network device to send a reference signal is 64 to 127. This can save overhead.
  • the first signaling can also be used to indicate the index of a reference signal port used by the second access network device to send a reference signal, such as the first signaling is used to indicate the correspondence between an identifier of the second access network device and the index of the reference signal port used to send a reference signal, and the index of the reference signal port used by the first access network device to send a reference signal is different from the index of the reference signal port used by the second access network device to send a reference signal.
  • the first signaling may also indicate the index of the reference signal port used by other access network devices to send reference signals, such as the first signaling is used to indicate the correspondence between the identifier of other access network devices and the index of the reference signal port used to send reference signals, the other access network devices are access network devices other than the first access network device and the second access network device, and the index of the reference signal port used by the first access network device to send reference signals, the index of the reference signal port used by the second access network device to send reference signals, and the index of the reference signal port used by the other access network devices to send reference signals are different.
  • Figure 7A is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in an embodiment of the present application.
  • reference signal ports corresponding to different frequency domain offsets of reference signals are allocated to cells of different access network devices, that is, the reference signal ports corresponding to the antenna ports of each cell are distributed on one RB.
  • the frequency domain offset of the reference signal is 0, it indicates that the reference signal port corresponding to the first RB (from bottom to top) is assigned to cell1, and the index of the reference signal port is 0 to 63; the frequency domain offset of the reference signal is 1, indicating that the reference signal port corresponding to the second RB (from bottom to top) is assigned to cell2, and the index of the reference signal port is 64 to 127; the frequency domain offset of the reference signal is 2, indicating that the reference signal port corresponding to the third RB (from bottom to top) is assigned to cell3, and the index of the reference signal port is 128 to 191; the frequency domain offset of the reference signal is 3, indicating that the reference signal port corresponding to the fourth RB (from bottom to top) is assigned to cell4, and the index of the reference signal port is 192 to 255.
  • the CDM type is fd-CDM2
  • the number of reference signal ports in one slot and one RB is 64
  • k 0 to k 3 are the positions of subcarriers in one slot and one RB, respectively
  • l 0 to l 3 are the positions of symbols in one slot and one RB, respectively.
  • the indexes of the reference signal ports in (k 0 ,l 0 ) to (k 3 +1,l 0 ) are 0 to 7, respectively, and the indexes of the reference signal ports in (k 0 ,l 0 +1) to (k 3 +1,l 0 +1) are 8 to 15, respectively, and the rest are similar, which indicates that the reference signal ports in one slot and one RB are first numbered in the order of subcarrier index from low to high, and then in the order of symbol index from low to high.
  • the reference signal ports included in a CDM group in a slot and an RB occupy two REs at the same time, such as the reference signal port with an index of 0 occupies the two REs (k 0 , l 0 ) and (k 0 +1, l 0 ) at the same time, the reference signal port with an index of 1 occupies the two REs (k 0 , l 0 ) and (k 0 +1, l 0 ) at the same time, the reference signal port with an index of 2 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time, and the reference signal port with an index of 3 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time.
  • the reference signal port with an index of 3 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 )
  • FIG. 7B is a schematic diagram of different reference signal ports being assigned to cells of different access network devices provided in an embodiment of the present application.
  • reference signal ports corresponding to different time domain offsets of the reference signal are assigned to cells of different access network devices, that is, the reference signal port of each cell is located on an RB in a different slot.
  • the reference signal ports of cell1 with indexes of 0 to 63 are located in the first RB (from bottom to top) of the second slot (from left to right); the reference signal ports of cell2 with indexes of 64 to 127 are located in the first RB (from bottom to top) of the third slot (from left to right); the reference signal ports of cell3 with indexes of 128 to 191 are located in the first RB (from bottom to top) of the fourth slot (from left to right); the reference signal ports of cell4 with indexes of 192 to 255 are located in the first RB (from bottom to top) of the seventh slot (from left to right), and the rest are similar.
  • FIG. 7C is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in an embodiment of the present application.
  • different reference signal ports are allocated to cells of different access network devices based on time division multiplexing between slots and frequency division multiplexing between RBs. Different reference signal ports are allocated to each cell.
  • the indexes of the reference signal ports allocated to cell1 are 0 to 63, and the reference signal ports from 0 to 63 are located on the fifth RB in the second slot (from bottom to top), and the indexes of the reference signal ports allocated to cell2 are 64 to 127, and the reference signal ports from 64 to 127 are located on the sixth RB in the second slot (from bottom to top).
  • the indexes of the reference signal ports allocated to cell3 are 128 to 191, and the reference signal ports from 128 to 191 are located on the fifth RB in the third slot (from bottom to top), and the indexes of the reference signal ports allocated to cell4 are 192 to 255, and the reference signal ports from 192 to 255 are located on the sixth RB in the third slot (from bottom to top).
  • Figure 7D is a schematic diagram of different reference signal ports being allocated to cells of different access network devices provided in an embodiment of the present application.
  • a reference signal port corresponding to a frequency domain offset of a reference signal is allocated to cells of different access network devices, that is, the reference signal port corresponding to the antenna port of each cell is distributed on different RBs in a time slot.
  • the reference signal ports corresponding to the antenna ports with indexes of 0 to 15 of cell1 are located in the first RB (from bottom to top), and the indexes of the reference signal ports corresponding to the antenna ports with indexes of 0 to 15 of cell1 are 0 to 15;
  • the reference signal ports corresponding to the antenna ports with indexes of 16 to 31 of cell1 are located in the second RB (from bottom to top), and the indexes of the reference signal ports corresponding to the antenna ports with indexes of 16 to 31 of cell1 are 64 to 79;
  • the reference signal ports corresponding to the antenna ports with indexes of 32 to 47 of cell1 are located in the third RB (from bottom to top), and the indexes of the reference signal ports corresponding to the antenna ports with indexes of 32 to 47 of cell1 are 128 to 143;
  • the reference signal ports corresponding to the antenna ports with indexes of 48 to 63 of cell1 are located in the third RB (from bottom to top), and the indexes of the reference signal
  • Figure 7E is a schematic diagram of different reference signal ports assigned to cells of another access network device provided in an embodiment of the present application.
  • the reference signal ports corresponding to the antenna ports of each cell are distributed on an RB in different time slots.
  • the reference signal ports corresponding to the antenna ports of cell1 with indices of 0 to 15 are located on the first RB (from bottom to top) of the second slot (from left to right), and the indexes of the reference signal ports corresponding to the antenna ports of cell1 with indices of 0 to 15 are 0 to 15; the reference signal ports corresponding to the antenna ports of cell1 with indices of 16 to 31 are located on the first RB (from bottom to top) of the third slot (from left to right), and the indexes of the reference signal ports corresponding to the antenna ports of cell1 with indices of 16 to 31 are 64 to 76.
  • the reference signal ports corresponding to the antenna ports with indices 32 to 47 of cell1 are located in the first RB (from bottom to top) of the fourth slot (from left to right), and the indices of the reference signal ports corresponding to the antenna ports with indices 32 to 47 of cell1 are 128 to 143;
  • the reference signal ports corresponding to the antenna ports with indices 48 to 63 of cell1 are located in the first RB (from bottom to top) of the seventh slot (from left to right), and the indices of the reference signal ports corresponding to the antenna ports with indices 48 to 63 of cell1 are 192 to 207, and the rest are similar.
  • Figure 7F is a schematic diagram of different reference signal ports assigned to cells of different access network devices provided in an embodiment of the present application.
  • the reference signal ports corresponding to the antenna ports of each cell are distributed on different RBs in different time slots.
  • the reference signal ports corresponding to the antenna ports of cell1 with indices of 0 to 15 are located on the first RB (from bottom to top) of the second slot (from left to right), and the indexes of the reference signal ports corresponding to the antenna ports of cell1 with indices of 0 to 15 are 0 to 15;
  • the reference signal ports corresponding to the antenna ports of cell1 with indices of 16 to 31 are located on the second RB (from bottom to top) of the second slot (from left to right), and the indexes of the reference signal ports corresponding to the antenna ports of cell1 with indices of 16 to 31 are 64 to 79;
  • the reference signal ports corresponding to the antenna ports with indices from 32 to 47 of ell1 are located in the first RB (from bottom to top) of the third slot (from left to right), and the indices of the reference signal ports corresponding to the antenna ports with indices from 32 to 47 of cell1 are 128 to 143;
  • the index of the reference signal port used by the first access network device to send a reference signal has a one-to-one correspondence with the index of the antenna port of the first access network device.
  • the index of the reference signal port used by the first access network device to send a reference signal corresponds one-to-one to the index of the antenna port of the first access network device in the order of the index of the reference signal port from small to large.
  • the correspondence between the index of the reference signal port used by the first access network device to send a reference signal and the index of the antenna port of the first access network device can be, for example, predefined or indicated by the first signaling, which is not limited here.
  • the index of the reference signal port used by the first access network device to send a reference signal is 64 to 127
  • the index of the antenna port of the first access network device is 0 to 63
  • the correspondence between the index of the reference signal port used by the first access network device to send a reference signal and the index of the antenna port of the first access network device can include, for example, (64,0), (65,1),..., (127,63).
  • the index of the reference signal port for sending the reference signal of the second access network device also corresponds to the index of the antenna port of the second access network device in the order of the index of the reference signal port from small to large.
  • the corresponding relationship between the index of the reference signal port for sending the reference signal of the second access network device and the index of the antenna port of the second access network device can be predefined or indicated by the first signaling, which is not limited here.
  • the index of the reference signal port for sending the reference signal of other access network devices also corresponds to the index of the reference signal port from small to large.
  • the indexes of the ports correspond one-to-one with the indexes of the antenna ports of other access network devices in ascending order.
  • the correspondence between the indexes of the reference signal ports for sending reference signals of other access network devices and the indexes of the antenna ports of other access network devices can be, for example, predefined or indicated by the first signaling.
  • the other access network devices are access network devices other than the first access network device and the second access network device.
  • the first access network device when the first access network device receives the reference signal sent by the second access network device, the first access network device can measure the channel on the reference signal port of the second access network device for sending the reference signal according to the reference signal, and feed back the channel on the reference signal port of the second access network device for sending the reference signal to the second access network device. It should be understood that the first access network device is similar when feeding back the corresponding channel to other access network devices.
  • the channels measured by access network device 1 are H (0:63) ⁇ (64:127) , H (0:63) ⁇ (128:191) and H (0:63) ⁇ (192:255) , respectively, where the subscript 0:63 is the index of the reference signal port of access network device 1, 64:127 is the index of the reference signal port of access network device 2, 128:191 is the index of the reference signal port of access network device 3, and 192:255 is the index of the reference signal port of access network device 4.
  • Access network device 1 feeds back H (0:63) ⁇ (64:127) to access network device 2, feeds back H (0:63) ⁇ (128:191) to access network device 3, and feeds back H (0:63) ⁇ (192:255) to access network device 4.
  • the first access network device may perform coordinated beamforming (CBF) according to the channel and the channels measured by the first access network device on the other access network devices.
  • CBF coordinated beamforming
  • the first access network device may perform CBF according to the channels measured by the first access network device on the other access network devices.
  • the first signaling may carry a first index
  • the first index is an index in the first correspondence
  • the first correspondence includes a correspondence between multiple indexes and multiple A, multiple B, and multiple P
  • the first correspondence is carried in the second signaling
  • the second signaling is sent by the OAM device to the first access network device.
  • the first correspondence may include a correspondence between index 0, A 1, B 2, and P 32, a correspondence between index 1, A 2, B 1, and P 32, and a correspondence between index 2, A 2, B 2, and P 16.
  • the OAM device can provide the first access network device with a first correspondence including multiple indexes and multiple A, multiple B, and multiple P, and notify the first access network device to use the A, B, and P corresponding to the first index in the first correspondence to determine the total number Q of the reference signal ports of the first access network device, so that the first access network device only uses the A, B, and P corresponding to the first index at a time to determine the total number Q of the reference signal ports of the first access network device.
  • the first correspondence may also include a correspondence between one or more of multiple indexes, multiple pseudo-random sequence parameters, multiple periods of reference signals, multiple time domain offset sets of reference signals, the position of at least one sub-time unit carrying the reference signal within a time unit of each first time-frequency resource set in multiple first time-frequency resource sets, multiple frequency band ranges for sending reference signals, multiple frequency densities of reference signals, multiple frequency domain offset sets of reference signals, the position of sub-frequency domain units within a frequency domain unit of each first time-frequency resource set in multiple first time-frequency resource sets, multiple CDM types of reference signals, and the like.
  • the first correspondence may also include an index of 0, a pseudo-random sequence parameter of n ID 1 , a reference signal period of 16 slots, a time domain offset set 1 of the reference signal (including time domain offsets of 0-15 slots), a position of the sub-time unit being the position of at least one sub-time unit carrying the reference signal in a time unit in the time-frequency resource set 1, a frequency band range for sending the reference signal being frequency band range 1, a frequency density of the reference signal being 0.25, a frequency domain offset set of the reference signal being a frequency domain offset set 1 (including frequency domain offsets of 0-3), a position of the sub-frequency domain unit being the position of the sub-frequency domain unit in a frequency domain unit in the time-frequency resource set 1, a CDM type of the reference signal being fd-CDM2, and the rest in Table 11 are similar.
  • the first time-frequency resource set is used for the first access network device to send and receive reference signals, for example, it can be understood that: the first time-frequency resource set is used for the first access network device to send reference signals to the terminal device and the second access network device, and the first time-frequency resource set is also used to receive the reference signal sent by the second access network device.
  • the first time-frequency resource set can also be used for the first access network device to send reference signals to other access network devices except the second access network device and to receive reference signals sent by other access network devices.
  • the method may further include step 402 .
  • the first access network device receives a first signaling sent by an OAM device.
  • the OAM device sends the first signaling to the first access network device. It is understandable that the OAM device can also send the first signaling to the second access network device. Of course, the OAM device can also send the first signaling to other access network devices except the second access network device.
  • the method can be implemented through any one of the following two implementations: implementation method one, including step 403A, that is, when the first signaling is used to indicate the number A of time units, the number B of frequency domain units and the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set, step 403A is executed; implementation method two, including step 403B, that is, when the first signaling is used to indicate the number A of time units, the number B of frequency domain units and the total number Q of reference signal ports of the first access network device in the first time-frequency resource set, step 403B is executed.
  • the first access network device determines a total number Q of reference signal ports of the first access network device according to A, B and P, where the Q reference signal ports include reference signal ports used for the first access network device to send and receive reference signals.
  • Q A ⁇ B ⁇ P.
  • the Q reference signal ports belong to the first reference signal port set
  • the reference signal port used for the first access network device to receive the reference signal belongs to the second reference signal port set
  • the reference signal port used for the first access network device to send the reference signal belongs to the third reference signal port set.
  • the relationship between the port set, the first reference signal port set, the second reference signal port set, the third reference signal port set, etc. can be, for example, any of the following methods, which one may depend on the specific implementation, pre-agreement or standard definition, etc.
  • the third reference signal port set is a subset of the first reference signal port set, and the second reference signal port set is the first reference signal port set.
  • the first reference signal port set may include reference signal ports indexed from 0 to 255
  • the second reference signal port set may also include reference signal ports indexed from 0 to 255
  • the third reference signal port set may include reference signal ports indexed from 0 to 63. This provides the first access network device with more reference signal ports for receiving reference signals, thereby better meeting the need for the first access network device to simultaneously measure the channel on each reference signal port of each access network device in multiple access network devices.
  • the third reference signal port set is a subset of the first reference signal port set
  • the second reference signal port set is a difference set between the first reference signal port set and the third reference signal port set.
  • the first reference signal port set may include reference signal ports indexed from 0 to 255
  • the third reference signal port set may include reference signal ports indexed from 0 to 63
  • the second reference signal port set may include reference signal ports indexed from 64 to 255.
  • the Q reference signal ports are numbered consecutively by the first access network device in the first time-frequency resource set, first in the order of the frequency domain unit index from low to high, and then in the order of the time unit index from low to high.
  • the first access network device can associate the reference signal ports with time-frequency resources, code domain resources, etc., and send and receive reference signals based on the time-frequency resources, code domain resources, etc., which does not require re-notification of the time-frequency resources, code domain resources, etc., thereby reducing signaling complexity and overhead.
  • FIG8A is a schematic diagram of a continuous numbering of 64 reference signal ports in one slot and one RB provided in an embodiment of the present application.
  • k 0 to k 3 are the positions of subcarriers in one slot and one RB, respectively
  • l 0 to l 3 are the positions of symbols in one slot and one RB, respectively.
  • the indexes of the reference signal ports in (k 0 , l 0 ) to (k 3 +1, l 0 ) are 0 to 7, respectively, and the indexes of the reference signal ports in (k 0 , l 0 +1) to (k 3 +1, l 0 +1) are 8 to 15, respectively, and the rest are similar.
  • the reference signal ports included in the CDM group in one slot and one RB occupy two REs at the same time, such as the reference signal port with index 0 occupies the two REs (k 0 , l 0 ) and (k 0 +1, l 0 ) at the same time, the reference signal port with index 1 occupies the two REs (k 0 , l 0 ) and (k 0 +1, l 0 ) at the same time, the reference signal port with index 2 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time, and the reference signal port with index 3 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time.
  • the reference signal port with index 3 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time.
  • FIG8B is a schematic diagram of another embodiment of the present application providing a continuous numbering of 64 reference signal ports in one slot and one RB.
  • k 0 to k 3 are the positions of subcarriers in one slot and one RB, respectively
  • l 0 to l3 are the positions of symbols in one slot and one RB, respectively.
  • the indexes of the reference signal ports in (k 0 , l 0 ) to (k 0 +1, l 0 +1) are 0, 1, 2 and 3, respectively, and the rest are similar. It should be noted that in Figure 8B, the reference signal ports included in the CDM group in one slot and one RB occupy four REs at the same time.
  • the reference signal port with index 0 occupies four REs ( k0 , l0 ), ( k0 +1, l0 ), ( k0 , l0 +1) and ( k0 +1, l0 +1) at the same time
  • the reference signal port with index 1 occupies four REs ( k0 , l0 ), ( k0 +1, l0 ), ( k0 , l0 +1) and ( k0 +1, l0 +1) at the same time. The rest are similar and will not be repeated here.
  • FIG8C is a schematic diagram of another embodiment of the present application providing a continuous numbering of 64 reference signal ports in one slot and one RB.
  • k 0 to k 3 are the positions of subcarriers in one slot and one RB, respectively
  • l 0 to l 1 are the positions of symbols in one slot and one RB, respectively.
  • the indexes of the reference signal ports in (k 0 , l 0 ) to (k 0 +1, l 0 +3) are 0, 2, 4 and 6, respectively, and the indexes of the reference signal ports in (k 0 , l 0 ) to (k 0 +1, l 0 +3) are 0, 1, 2, 3, 4, 5, 6 and 7, respectively, and the rest are similar.
  • the reference signal ports included in a CDM group in one slot and one RB simultaneously occupy 8 REs.
  • the reference signal port with index 0 simultaneously occupies 8 REs including (k 0 , l 0 ), (k 0 +1, l 0 ), (k 0 , l 0 +1), (k 0 +1, l 0 +1), (k 0 , l 0 +2), (k 0 +1, l 0 +2), (k 0 , l 0 +3) and (k 0 +1, l 0 +3) and the reference signal port with index 1 simultaneously occupies (k 0 , l 0 ), (k 0 +1, l 0 ), (k 0 +1 , l 0 +1), (k 0 , l 0 +2), (k 0 +1, l 0 +2), (k 0 , l 0 +3) and (k 0 +1, l 0 +3) . +3)
  • These 8 REs are similar to the others and will not be elaborated here.
  • FIG8D is a schematic diagram of another embodiment of the present application provided by consecutively numbering 64 reference signal ports in a slot and an RB.
  • k 0 to k 3 are the positions of subcarriers in a slot and an RB, respectively, and l 0 is the position of a symbol in a slot and an RB.
  • the indexes of the reference signal ports in (k 0 ,l 0 ) to (k 0 +1,l 0 +7) are 0 to 15, respectively, and the rest are similar. It should be noted that in FIG8C In the figure, the reference signal ports included in a slot and a CDM group in an RB simultaneously occupy 16 REs.
  • the reference signal port with index 0 simultaneously occupies 16 REs from (k 0 , l 0 ) to (k 0 , l 0 +7) and (k 0 +1, l 0 ) to (k 0 +1, l 0 +7)
  • the reference signal port with index 1 simultaneously occupies 16 REs from (k 0 , l 0 ) to (k 0 , l 0 +7) and (k 0 +1, l 0 ) to (k 0 +1, l 0 +7).
  • the rest are similar and will not be elaborated here.
  • FIG8E is a schematic diagram of another embodiment of the present application providing a continuous numbering of 64 reference signal ports in one slot and one RB.
  • k 0 to k 1 are the positions of subcarriers in one slot and one RB, respectively, and l 0 to l 1 are the positions of symbols in one slot and one RB, respectively.
  • the indexes of the reference signal ports in (k 0 ,l 0 ) to (k 1 +3,l 0 +3) are 0 to 15, respectively, and the rest are similar. It should be noted that in FIG8C , the reference signal ports included in a CDM group in one slot and one RB simultaneously occupy 16 REs.
  • the reference signal port with index 0 simultaneously occupies 16 REs from (k 0 , l 0 ) to (k 0 , l 0 +3), (k 0 +1, l 0 ) to (k 0 +1, l 0 +3), (k 0 +2, l 0 ) to (k 0 +2, l 0 +3) and (k 0 +3, l 0 ) to (k 0 +3, l 0 +3) and the reference signal port with index 1 simultaneously occupies 16 REs from (k 0 , l 0 ) to (k 0 , l 0 +3), (k 0 +1, l 0 ) to (k 0 +1, l 0 +3), (k 0 +2, l 0 ) to (k 0 +2, l 0 +3) and (k 0 +3, l 0 ) to (k 0 +3, l 0 +3 ). ) to (k 0 +3, l
  • FIG8F is a schematic diagram of consecutive numbering of 64 reference signal ports in multiple slots and multiple RBs provided in an embodiment of the present application.
  • the CDM type in one slot and one RB is fd-CDM2
  • k0 to k3 are the positions of subcarriers in one slot and one RB, respectively
  • l0 is the position of a symbol in one slot and one RB.
  • the indexes of the reference signal ports in (k 0 ,l 0 ) to (k 3 +1,l 0 ) are 0 to 7 respectively, and the indexes of the reference signal ports in (k 0 ,l 0 +1) to (k 3 +1,l 0 +1) are 8 to 15 respectively, that is, the indexes of the reference signal ports in an RB on the first period slot0 of the reference signal are 0 to 15 respectively; in another RB on the first period slot0 of the reference signal, the indexes of the reference signal ports in (k 0 ,l 0 ) to (k 3 +1,l 0 ) are 16 to 23 respectively, and the indexes of the reference signal ports in (k 0 ,l 0 +1) to (k 3 +1,l 0 +1) are 24 to 31 respectively, that is, the indexes of the reference signal ports in another RB on the first period slot0 of the reference signal (the second slot from the left to the right), the indexes of the
  • the indexes of the reference signal ports in (k 0 , l 0 ) to (k 3 +1, l 0 ) are 32 to 39, and the indexes of the reference signal ports in (k 0 , l 0 +1) to (k 3 +1, l 0 +1) are 40 to 47, that is, the indexes of the reference signal ports in one RB on the first period slot1 of the reference signal are 32 to 47; in another RB on the first period slot1 of the reference signal, the indexes of the reference signal ports in (k 0 , l 0 ) to (k 3 +1, l 0 ) are 48 to 55, and the indexes of the reference signal ports in (k 0 , l 0 +1) to (k 3 +1, l 0 +1) are 56 to 63, that is, the indexes of the reference signal ports in another RB on
  • the reference signal ports included in the CDM group in one slot and one RB occupy two REs at the same time, such as the reference signal port with index 0 occupies the two REs (k 0 , l 0 ) and (k 0 +1, l 0 ) at the same time, the reference signal port with index 1 occupies the two REs (k 0 , l 0 ) and (k 0 +1, l 0 ) at the same time, the reference signal port with index 2 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time, and the reference signal port with index 3 occupies the two REs (k 1 , l 0 ) and (k 1 +1, l 0 ) at the same time.
  • the rest are similar and will not be repeated here.
  • the index p of any reference signal port among the Q reference signal ports may be determined in any of the following ways, which one may depend on a specific implementation, a pre-agreed agreement or a standard definition, etc.
  • the time-frequency units in the first time-frequency resource set are numbered continuously by the first access network device first in the order of the index of the frequency domain unit from low to high, and then in the order of the index of the time unit from low to high.
  • an example is given below. Specifically, refer to Figure 9, which is a schematic diagram of the continuous numbering of time-frequency units provided in an embodiment of the present application.
  • the time-frequency unit with index 0 includes the RB with index 0 on the slot with index
  • the time-frequency unit with index 1 includes the RB with index 1 on the slot with index
  • the time-frequency unit with index 2 includes the RB with index 0 on the slot with index 1
  • the time-frequency unit with index 3 includes the RB with index 1 on the slot with index 1.
  • the index of the time-frequency unit can be used to uniquely identify the time-frequency unit.
  • the index of the time-frequency unit can also have other names, such as the identifier of the time-frequency unit, the number of the time-frequency unit, etc., which are not limited in this application.
  • the first access network device determines, based on A, B, and Q, the number P of reference signal ports in a time-frequency unit in the first time-frequency resource set.
  • P Q/(A ⁇ B).
  • the method may further include step 404.
  • the first access network device sends a third signaling to the terminal device, where the third signaling is used to indicate the number A of time units and the number B of frequency domain units in the first time-frequency resource set used by the first access network device to send and receive reference signals.
  • the terminal device receives the third signaling sent by the first access network device.
  • the first access network device is an access network device serving the terminal device.
  • the third signaling can also be used to indicate one or more of the period of the reference signal, the number of time domain offsets of the reference signal, the time domain offset of the reference signal, the frequency band range for sending the reference signal, the frequency density of the reference signal, the number of frequency domain offsets of the reference signal, the frequency domain offset of the reference signal, etc.
  • the specific indication method is similar to that of the first signaling and will not be repeated here.
  • the method may further include step 405 .
  • the terminal device determines a first time-frequency resource set based on A and B, where the first time-frequency resource set is used when the terminal device does not receive downlink data sent by the first access network device.
  • the number A of time units in the first time-frequency resource set is the number of time domain offsets of the reference signal
  • the number B of frequency domain units in the first time-frequency resource set is the number of frequency domain offsets of the reference signal.
  • the terminal device can determine the time unit used to send the reference signal in the first time-frequency resource set based on the period of the reference signal, the starting position of the period of the reference signal and the time domain offset of the reference signal.
  • the terminal device can determine the frequency domain unit used to send the reference signal in the first time-frequency resource set from the frequency band range for sending the reference signal based on the frequency density of the reference signal and the frequency domain offset of the reference signal. Therefore, it can be understood that: the terminal device determines the first time-frequency resource set based on A and B.
  • the downlink data in step 405 can be understood as one or more of the physical downlink shared channel (PDSCH), DMRS, etc.
  • the first time-frequency resource set in step 405 can be understood as the ZP-CSI-RS resource set.
  • the terminal device can receive one or more PDSCH, DMRS, etc. sent by the first access network device outside the first time-frequency resource set.
  • the first access network device can send one or more PDSCH, DMRS, etc. to the terminal device outside the first time-frequency resource set.
  • more reference signal ports for sending and receiving reference signals are provided for the first access network device, so that the first access network device can send and receive reference signals through more reference signal ports on the first time-frequency resource set, thereby meeting the needs of channel measurement between access network devices, such as meeting the need for an access network device to accurately measure the channel on each reference signal port of another access network device, and meeting the need for an access network device to simultaneously measure the channel on each reference signal port of each access network device in multiple access network devices.
  • the problem of excessive overhead caused by indicating multiple ZP-CSI-RS resources at the same time to determine the first time-frequency resource set is also avoided.
  • the terminal device will not decode the signal received on the first time-frequency resource set as downlink data, thereby avoiding the problem of decoding errors.
  • the above-mentioned implementation devices include hardware structures and/or software modules corresponding to the execution of various functions. It should be easily appreciated by those skilled in the art that, in combination with the units and algorithm steps of each example described in the embodiments disclosed herein, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiments of the present application can divide the functional modules of the OAM equipment, access network equipment or terminal equipment according to the above method examples.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is schematic and is only a logical functional division. There may be other division methods in actual implementation.
  • the communication device 1000 can be applied to the method shown in Figure 4 above.
  • the communication device 1000 includes: a processing module 1001 and a transceiver module 1002.
  • the processing module 1001 can be one or more processors, and the transceiver module 1002 can be a transceiver or a communication interface.
  • the communication device can be used to implement the OAM device, terminal device or access network device involved in any of the above method embodiments, or to implement the functions of the network element involved in any of the above method embodiments.
  • the network element or network function can be a network element in a hardware device, or a software function running on dedicated hardware, or It is a virtualization function instantiated on a platform (eg, a cloud platform).
  • the communication device 1000 may also include a storage module 1003 for storing program codes and data of the communication device 1000.
  • the communication device when used as an OAM device or a chip used in an OAM device, and performs the steps performed by the OAM device in the above method embodiment.
  • the transceiver module 1002 is used to support communication with access network devices, etc.
  • the transceiver module specifically performs the sending and/or receiving actions performed by the OAM device in Figure 4, such as supporting the OAM device to perform other processes of the technology described in this article.
  • the processing module 1001 can be used to support the communication device 1000 to perform the processing actions in the above method embodiment, for example, supporting the OAM device to perform step 401, and/or other processes of the technology described in this article.
  • the processing module 1001 is used to generate a first signaling, where the first signaling is used to indicate the number A of time units, the number B of frequency domain units, and the number P of reference signal ports in a time-frequency unit in a first time-frequency resource set; the first time-frequency resource set is used for a first access network device to send and receive reference signals, a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1; the transceiver module 1002 is used to send a first signaling to the first access network device.
  • the steps performed by the access network device in the above method embodiment are executed.
  • the transceiver module 1002 is used to support communication with OAM devices, etc.
  • the transceiver module specifically performs the sending and/or receiving actions performed by the access network device in Figure 4, such as supporting the access network device to perform other processes of the technology described in this article.
  • the processing module 1001 can be used to support the communication device 1000 to perform the processing actions in the above method embodiment, for example, supporting the access network device to perform other processes of the technology described in this article.
  • the transceiver module 1002 is used to receive a first signaling sent by an OAM device, the first signaling is used to indicate the number A of time units, the number B of frequency domain units and the number P of reference signal ports in a time-frequency unit in a first time-frequency resource set; the first time-frequency resource set is used for the first access network device to send and receive reference signals, a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1; the processing module 1001 is used to determine the total number Q of reference signal ports of the first access network device based on A, B and P, the Q reference signal ports including the reference signal port used for the first access network device to send and receive reference signals.
  • the steps performed by the terminal device in the above method embodiment are executed.
  • the transceiver module 1002 is used to support communication with access network equipment, etc.
  • the transceiver module specifically performs the sending and/or receiving actions performed by the terminal device in Figure 4, for example, supports the terminal device to perform other processes of the technology described in this article.
  • the processing module 1001 can be used to support the communication device 1000 to perform the processing actions in the above method embodiment, for example, supports the terminal device to perform other processes of the technology described in this article.
  • the transceiver module 1002 is used to receive a third signaling sent by the first access network device, the third signaling is used to indicate the number A of time units and the number B of frequency domain units in the first time-frequency resource set used by the first access network device to send and receive reference signals;
  • a time-frequency unit is a frequency domain unit on a time unit, A is an integer greater than or equal to 1, and B is an integer greater than 1; or, A is an integer greater than 1, and B is an integer greater than or equal to 1;
  • the processing module 1001 is used to determine the first time-frequency resource set based on A and B, and the first time-frequency resource set is used for the terminal device to not receive downlink data sent by the first access network device.
  • the transceiver module 1002 may be a communication interface, a pin or a circuit, etc.
  • the communication interface may be used to input data to be processed to the processor, and may output the processing result of the processor to the outside.
  • the communication interface may be a general purpose input output (GPIO) interface, which may be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, an antenna, etc.).
  • GPIO general purpose input output
  • peripheral devices such as a display (LCD), a camera (camara), a radio frequency (RF) module, an antenna, etc.
  • the communication interface is connected to the processor via a bus.
  • the processing module 1001 may be a processor, which may execute computer-executable instructions stored in the storage module, so that the chip executes the method involved in the embodiment of FIG. 4 .
  • the processor may include a controller, an arithmetic unit and a register.
  • the controller is mainly responsible for decoding instructions and issuing control signals for operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logical operations, etc., and may also perform address operations and conversions.
  • the register is mainly responsible for storing register operands and intermediate operation results temporarily stored during the execution of instructions.
  • the hardware architecture of the processor may be an ASIC architecture, a microprocessor without interlocked piped stages architecture (MIPS) architecture, an advanced RISC machines (ARM) architecture, or a network processor (NP) architecture, etc.
  • the processor may be single-core or multi-core.
  • the storage module may be a storage module within the chip, such as a register, a cache, etc.
  • the storage module may also be a storage module located outside the chip, such as a ROM or other types of static storage devices that can store static information and instructions, a RAM, etc.
  • processors and the interface can be implemented through hardware design, software design, or a combination of hardware and software, and there is no limitation here.
  • FIG11 is a schematic diagram of the structure of a simplified terminal device provided in an embodiment of the present application.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes at least one processor, and may also include a radio frequency circuit, an antenna, and an input-output device.
  • the processor can be used to process the communication protocol and communication data, and can also be used to control the terminal device, execute software programs, process the data of software programs, etc.
  • the terminal device may also include a memory, which is mainly used to store software programs and data. These programs involved can be loaded into the memory when the communication device leaves the factory, or loaded into the memory when needed later.
  • the radio frequency circuit is mainly used for conversion between baseband signals and radio frequency signals and processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves, and the antenna is the antenna provided in the embodiment of the present application.
  • Input-output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input-output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in Figure 11. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device, etc.
  • the memory may be set independently of the processor or integrated with the processor, and the embodiments of the present application do not limit this.
  • the antenna and the radio frequency circuit with transceiver functions can be regarded as the receiving unit and the sending unit (also collectively referred to as the transceiver unit) of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a receiving module 31, a processing module 32 and a sending module 33.
  • the receiving module 31 can also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending module 33 can also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the processing module 32 can also be called a processor, a processing board, a processing device, etc.
  • the processing module 32 is used to execute the functions of the terminal device in the embodiment shown in FIG. 4 .
  • FIG12 is a schematic diagram of the structure of a simplified access network device provided in an embodiment of the present application.
  • the access network device includes a radio frequency signal transceiving and conversion part and a baseband part 42, and the radio frequency signal transceiving and conversion part includes a receiving module 41 part and a sending module 43 part (also collectively referred to as a transceiver module).
  • the radio frequency signal transceiving and conversion part is mainly used for the transceiving of radio frequency signals and the conversion of radio frequency signals and baseband signals; the baseband part 42 is mainly used for baseband processing, controlling the access network device, etc.
  • the receiving module 41 can also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending module 43 can also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the baseband part 42 is usually the control center of the access network device, and can also be called a processing module, which is used to execute the steps executed by the access network device in FIG4 above. For details, please refer to the description of the above-mentioned relevant parts.
  • the baseband part 42 may include one or more boards, each of which may include one or more processors and one or more memories, and the processor is used to read and execute the program in the memory to realize the baseband processing function and the control of the access network device. If there are multiple boards, each board can be interconnected to increase the processing capacity. As an optional implementation, multiple boards may share one or more processors, or multiple boards may share one or more memories, or multiple boards may share one or more processors at the same time.
  • the sending module 43 is used to execute the function of the access network device in the embodiment shown in FIG. 4 .
  • An embodiment of the present application also provides a communication device, including a processor, the processor and a memory are coupled, and a computer program is stored in the memory; the processor is used to call the computer program in the memory so that the communication device executes the embodiment shown in Figure 4.
  • An embodiment of the present application also provides a communication device, including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the embodiment shown in Figure 4 through logic circuits or execution code instructions.
  • An embodiment of the present application further provides a computer-readable storage medium, in which a computer program or instruction is stored.
  • a computer program or instruction is stored.
  • the embodiment shown in FIG. 4 is implemented.
  • the embodiment of the present application also provides a computer program product.
  • a computer reads and executes the computer program product, the computer executes the embodiment shown in FIG. 4 .
  • the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • the network element units in each embodiment of the present application may be physically separated or may be physically separated. It can be integrated into one processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of software network element unit.
  • the integrated unit is implemented in the form of a software network element unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the part that essentially contributes to the technical solution of the present application, or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, a terminal device, a cloud server, or an access network device, etc.) to perform all or part of the steps of the above-mentioned methods in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,该方法包括:第一接入网设备可以根据来自OAM设备的第一时频资源集中至少一个时间单元的数目、多个频域单元的数目以及一个时频单元内参考信号端口的个数确定第一接入网设备的参考信号端口的总个数Q,或,第一接入网设备是根据来自OAM设备的第一时频资源集中多个时域单元的数目、至少一个频域单元的数目以及一个时频单元内参考信号端口的个数确定第一接入网设备的参考信号端口的总个数Q,这为第一接入网设备提供了更多用于发送以及接收参考信号的参考信号端口,使得第一接入网设备在第一时频资源集上可以通过更多的参考信号端口发送以及接收参考信号,进而可以满足接入网设备间信道测量的需求。

Description

一种通信方法及装置
本申请要求在2022年11月4日提交中国国家知识产权局、申请号为202211379234.2的中国专利申请的优先权,发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,信道状态信息参考信号(channel state information reference signal,CSI-RS)最大正交端口数为32,CSI-RS端口可以用于收发CSI-RS。例如,接入网设备1一般都是通过CSI-RS端口发送CSI-RS,接入网设备2可以根据该CSI-RS进行信道测量,以获得接入网设备2上各个CSI-RS端口上的信道。但是,接入网设备实际上可以使用的天线端口数量远远大于CSI-RS最大正交端口数,也就是说,接入网设备间无法精准测量出每一天线端口上的信道。因此,如何获得更多数量的CSI-RS端口以满足接入网设备间信道测量的需求成为当前亟待解决的技术问题。
发明内容
本申请提供了一种通信方法及装置,可以获得更多数量的参考信号端口以满足接入网设备间信道测量的需求。
第一方面,提供一种通信方法,包括:第一接入网设备接收操作管理维护(operation administration maintenance,OAM)发送的第一信令,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;第一接入网设备根据A、B和P,确定第一接入网设备的参考信号端口的总个数Q,Q个参考信号端口包括用于第一接入网设备发送以及接收参考信号的参考信号端口。可以看出,第一接入网设备可以根据来自OAM设备的第一时频资源集中至少一个时间单元的数目、多个频域单元的数目以及一个时频单元内参考信号端口的个数确定第一接入网设备的参考信号端口的总个数Q,或,第一接入网设备是根据来自OAM设备的第一时频资源集中多个时域单元的数目、至少一个频域单元的数目以及一个时频单元内参考信号端口的个数确定第一接入网设备的参考信号端口的总个数Q,这为第一接入网设备提供了更多用于发送以及接收参考信号的参考信号端口,使得第一接入网设备在第一时频资源集上可以通过更多的参考信号端口发送以及接收参考信号,进而可以满足接入网设备间信道测量的需求,如满足一个接入网设备可以精准测量另一接入网设备的每一参考信号端口上的信道的需求,又如满足一个接入网设备同时测量多个接入网设备中每个接入网设备的每一参考信号端口上的信道的需求。
可选的,结合第一方面,Q=A×B×P。
可选的,结合第一方面,Q个参考信号端口属于第一参考信号端口集,用于第一接入网设备接收参考信号的参考信号端口属于第二参考信号端口集,用于第一接入网设备发送参考信号的参考信号端口属于第三参考信号端口集,第三参考信号端口集是第一参考信号端口集的子集;第二参考信号端口集是第一参考信号端口集;或,第二参考信号端口集是第一参考信号端口集与第三参考信号端口集的差集。可以看出,在第二参考信号端口集是第一参考信号端口集的情况下,这为第一接入网设备提供了更多用于接收参考信号的参考信号端口,进而可以更好的满足第一接入网设备同时测量多个接入网设备中每个接入网设备的每一参考信号端口上的信道的需求。在第二参考信号端口集是第一参考信号端口集与第三参考信号端口集的差集的情况下,可以为第一接入网设备提供用于发送以及接收参考信号的参考信号端口,既满足了第一接入网设备可以精准测量另一接入网设备的每一参考信号端口上的信道的需求,又满足了第一接入网设备向其他接入网设备发送参考信号以使得其他接入网设备根据该参考信号进行信道测量的需求。
可选的,结合第一方面,Q个参考信号端口是第一接入网设备在第一时频资源集内,先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。通过为Q个参考信号端口进行编号,使得第一接入网设备可以将参考信号端口与时频资源、码域资源等关联,并根据时频资源、码域 资源等发送参考信号以及接收参考信号,这不需要重新通知时频资源、码域资源等,降低信令复杂度和开销。
可选的,结合第一方面,Q个参考信号端口中任意一个参考信号端口的索引p满足以下公式:p=s+jL+kP+lR;其中,s为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引,s=0,1,…,L-1,L为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的个数;j为第一时频资源集中一个时频单元上CDM组的索引,j=0,1,…,P/L-1;k为B个频域单元的索引,B个频域单元的索引是在B个频域单元内按照频域单元的索引从低到高的顺序连续编号的,k=0,1,…,B-1;l为A个时间单元的索引,A个时间单元的索引是在A个时间单元内按照时间单元的索引从低到高的顺序连续编号的,l=0,1,…,A-1;R为第一时频资源集中一个时间单元上B个频域单元内参考信号端口的总个数,R=B×P。
可选的,结合第一方面,第一时频资源集中的时频单元是第一接入网设备先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
可选的,结合第一方面,Q个参考信号端口中任意一个参考信号端口的索引p满足以下公式:p=s+jL+hP;其中,s为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引,s=0,1,…,L-1,L为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的个数;j为第一时频资源集中一个时频单元上CDM组的索引,j=0,1,…,P/L-1;h为第一时频资源集中时频单元的索引,h=0,1,…,AB-1。
可选的,结合第一方面,第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。可以看出,因为第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置,且第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,这表明OAM设备可以通过参考信号的时域偏置隐式地指示出第一时频资源集中时间单元的个数。
可选的,结合第一方面,第一信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第一信令中。可以看出,因为第一信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置,且第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,这表明OAM设备可以通过参考信号的频域偏置隐式地指示出第一时频资源集中频域单元的个数。
可选的,结合第一方面,第一信令还用于指示第一接入网设备用于发送参考信号的参考信号端口的索引,第一接入网设备用于发送参考信号的参考信号端口的索引与第一接入网设备的天线端口的索引一一对应关系。其中,第一接入网设备用于发送参考信号的参考信号端口的索引是按照参考信号端口的索引从小到大的顺序与第一接入网设备的天线端口的索引一一对应的。
可选的,结合第一方面,第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,第一接入网设备用于发送参考信号的参考信号端口的索引和第二接入网设备用于发送参考信号的参考信号端口的索引不同。这表明接入网设备间用于发送参考信号的参考信号端口是不同的,进而使得接入网设备间发送的参考信号是正交的,避免了接入网间的参考信号的干扰问题。
可选的,结合第一方面,第一信令携带第一索引,第一索引为第一对应关系中的一个索引,第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,第一对应关系携带在第二信令中,第二信令由OAM设备发送给第一接入网设备。这表明OAM设备可以向第一接入网设备提供包括多个索引与多个A、多个B、多个P之间的第一对应关系,并通知第一接入网设备使用第一对应关系中第一索引对应的A、B、P确定第一接入网设备的参考信号端口的总个数Q,使得第一接入网设备在一个时刻仅使用第一索引对应的A、B、P来确定第一接入网设备的参考信号端口的总个数Q。
可选的,结合第一方面,该方法还包括:第一接入网设备向终端设备发送第三信令,第三信令用于指示第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B,第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据。这使得终端设备可以通过时间单元的个数A以及频域单元的个数B来确定第一时频资源集,这避免了同时指示多个ZP-CSI-RS资源来确定第一时频资源集时导致的开销过大的问题。同时,因为第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据,所以可以使得终端设备不会将第一时频资源集上接收到的信号当做下行数据来译码, 进而避免了译码错误的问题。
第二方面,提供一种通信方法,包括:OAM设备生成第一信令,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;OAM设备向第一接入网设备发送第一信令。
可选的,结合第二方面,第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。
可选的,结合第二方面,第一信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第一信令中。
可选的,结合第二方面,第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,第一接入网设备用于发送参考信号的参考信号端口的索引和第二接入网设备用于发送参考信号的参考信号端口的索引不同。
可选的,结合第二方面,第一信令携带第一索引,第一索引为第一对应关系中的一个索引,第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,第一对应关系携带在第二信令中,第二信令由OAM设备发送给第一接入网设备。
第三方面,提供一种通信方法,包括:终端设备接收第一接入网设备发送的第三信令,第三信令用于指示第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B;一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;终端设备根据A和B,确定第一时频资源集,第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据。可以看出,终端设备可以通过时间单元的个数A以及频域单元的个数B来确定第一时频资源集,这避免了同时指示多个ZP-CSI-RS资源来确定第一时频资源集时导致的开销过大的问题。同时,因为第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据,所以可以使得终端设备不会将第一时频资源集上接收到的信号当做下行数据来译码,进而避免了译码错误的问题。
可选的,结合第三方面,第三信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。可以看出,因为第三信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置,且第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,这表明第一接入网设备可以通过参考信号的频域偏置隐式地指示出第一时频资源集中频域单元的个数。
可选的,结合第三方面,第三信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第三信令中。可以看出,因为第三信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置,且第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,这表明第一接入网设备可以通过参考信号的频域偏置隐式地指示出第一时频资源集中频域单元的个数。
第四方面,提供一种通信装置,通信装置为第一接入网设备,第一接入网设备包括收发模块和处理模块,收发模块,用于接收OAM设备发送的第一信令,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为 大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;处理模块,用于根据A、B和P,确定第一接入网设备的参考信号端口的总个数Q,Q个参考信号端口包括用于第一接入网设备发送以及接收参考信号的参考信号端口。
可选的,结合第四方面,Q=A×B×P。
可选的,结合第四方面,Q个参考信号端口属于第一参考信号端口集,用于第一接入网设备接收参考信号的参考信号端口属于第二参考信号端口集,用于第一接入网设备发送参考信号的参考信号端口属于第三参考信号端口集,第三参考信号端口集是第一参考信号端口集的子集;第二参考信号端口集是第一参考信号端口集;或,第二参考信号端口集是第一参考信号端口集与第三参考信号端口集的差集。
可选的,结合第四方面,Q个参考信号端口是第一接入网设备在第一时频资源集内,先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
可选的,结合第四方面,Q个参考信号端口中任意一个参考信号端口的索引p满足以下公式:p=s+jL+kP+lR;其中,s为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引,s=0,1,…,L-1,L为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的个数;j为第一时频资源集中一个时频单元上CDM组的索引,j=0,1,…,P/L-1;k为B个频域单元的索引,B个频域单元的索引是在B个频域单元内按照频域单元的索引从低到高的顺序连续编号的,k=0,1,…,B-1;l为A个时间单元的索引,A个时间单元的索引是在A个时间单元内按照时间单元的索引从低到高的顺序连续编号的,l=0,1,…,A-1;R为第一时频资源集中一个时间单元上B个频域单元内参考信号端口的总个数,R=B×P。
可选的,结合第四方面,第一时频资源集中的时频单元是第一接入网设备先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
可选的,结合第四方面,Q个参考信号端口中任意一个参考信号端口的索引p满足以下公式:p=s+jL+hP;其中,s为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引,s=0,1,…,L-1,L为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的个数;j为第一时频资源集中一个时频单元上CDM组的索引,j=0,1,…,P/L-1;h为第一时频资源集中时频单元的索引,h=0,1,…,AB-1。
可选的,结合第四方面,第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。
可选的,结合第四方面,第一信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第一信令中。
其中,参考位置为第一信令指示的第一频域单元的位置,或,参考位置根据第一频域单元的位置和第一信令指示的参考信号的频率密度确定,第一频域单元为索引为0的公共频域单元、第一接入网设备的部分带宽的起始频域单元或参考信号的频带范围的起始频域单元。
可选的,结合第四方面,第一信令还用于指示用于第一接入网设备发送参考信号的参考信号端口的索引,用于第一接入网设备发送参考信号的参考信号端口的索引与第一接入网设备的天线端口的索引一一对应关系。其中,用于第一接入网设备发送参考信号的参考信号端口的索引是按照参考信号端口的索引从小到大的顺序与第一接入网设备的天线端口的索引一一对应的。
可选的,结合第四方面,第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,第一接入网设备用于发送参考信号的参考信号端口的索引和第二接入网设备用于发送参考信号的参考信号端口的索引不同。
可选的,结合第四方面,第一信令携带第一索引,第一索引为第一对应关系中的一个索引,第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,第一对应关系携带在第二信令中,第二信令由OAM设备发送给第一接入网设备。
可选的,结合第四方面,收发模块,还用于向终端设备发送第三信令,第三信令用于指示第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B,第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据。
第五方面,提供一种通信装置,通信装置为OAM设备,OAM设备包括处理模块和收发模块,处理模块,用于生成第一信令,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;收发模块,用于向第一接入网设备发送第一信令。
可选的,结合第五方面,第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。
可选的,结合第五方面,第一信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第一信令中。
可选的,结合第五方面,第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,第一接入网设备用于发送参考信号的参考信号端口的索引和第二接入网设备用于发送参考信号的参考信号端口的索引不同。
可选的,结合第五方面,第一信令携带第一索引,第一索引为第一对应关系中的一个索引,第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,第一对应关系携带在第二信令中,第二信令由OAM设备发送给第一接入网设备。
第六方面,提供一种通信装置,通信装置为终端设备,终端设备包括收发模块和处理模块,收发模块,用于接收第一接入网设备发送的第三信令,第三信令用于指示第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B;一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;处理模块,用于根据A和B,确定第一时频资源集,第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据。
可选的,结合第六方面,第三信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。
可选的,结合第六方面,第三信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第三信令中。
第七方面,提供一种通信系统,包括用于执行如第一方面任一项所述方法的第一接入网设备、用于执行如第二方面任一项所述方法的OAM设备、以及用于执行如第三方面任一项所述方法的终端设备。
第八方面,提供一种通信装置,包括处理器,处理器和存储器耦合,存储器中存储有计算机程序;处理器用于调用存储器中的计算机程序,使得通信装置执行如第一方面、第二方面或第三方面中任一所述的方法。
在一种可能的设计中,该通信装置可以是实现第一方面、第二方面或第三方面中方法的芯片或者包含芯片的设备。
第九方面,提供一种通信装置,包括处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第一方面、第二方面或第三方面中任一项所述的方法。
第十方面,提供一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指 令被计算机执行时,实现如第一方面、第二方面或第三方面中任一项所述方法。
第十一方面,提供一种计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机执行第一方面、第二方面或第三方面中任一项所述的方法。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为SBFD的资源配置;
图2为本申请实施例提供的一种通信系统的示意图;
图3所示为可适用于本申请实施例提供的一种通信装置的硬件结构示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的一种确定发送参考信号的slot的示意图;
图6为本申请实施例提供的一种确定发送参考信号的RB的示意图;
图7A为本申请实施例提供的一种不同接入网设备的小区(cell)被分配不同参考信号端口的示意图;
图7B为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图;
图7C为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图;
图7D为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图;
图7E为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图;
图7F为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图;
图8A为本申请实施例提供的一种一个slot、一个RB内64个参考信号端口连续编号的示意图;
图8B为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图;
图8C为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图;
图8D为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图;
图8E为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图;
图8F为本申请实施例提供的一种多个slot、多个RB内64个参考信号端口连续编号的示意图;
图9为本申请实施例提供的一种时频单元连续编号的示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种简化的终端设备的结构示意图;
图12为本申请实施例提供的一种简化的接入网设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,本申请实施例中的术语“系统”和“网络”可被互换使用。除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是一个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对网元和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以下的具体实施方式,对本申请的目标、技术方案和有益效果进行了进一步详细说明,所应理解的是,以下仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有 一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
下面对本申请所涉及到的一些部分名词进行解释说明。
1、天线端口
在本申请中,天线端口可以理解为,可以被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。一个天线端口例如可以是发射端设备上的一根物理天线,也可以是发射端设备上多根物理天线的加权组合。需要说明的,一个天线端口可以与一个参考信号对应,也就是说,用于发送和/或接收参考信号的天线端口可以称为参考信号端口,如CSI-RS端口等。
在本申请中,可以采用天线端口的索引唯一标识天线端口。天线端口的索引还可以有其他名称,例如天线端口的标识、天线端口的编号、天线端口的端口号等,本申请不做限定。同理,可以采用参考信号端口的索引唯一标识参考信号端口。参考信号端口的索引还可以有其他名称,例如参考信号端口的标识、参考信号端口的编号、参考信号端口的端口号等,本申请不做限定。
在本申请中,参考信号例如可以是CSI-RS等。长期演进(long term evolution,LTE)系统从第三代合作伙伴计划(3rd generation partnership project,3GPP)Rel-10版本开始引入了CSI-RS用于信道测量。区别于全向发送的信道状态信息(channel state information,CSI)和只有数据信道才发送的解调参考信(demodulation reference sgnal,DMRS),CSI-RS提供更为有效的获取CSI的可能性,同时支撑更多的天线端口。新无线(new radio,NR)中的CSI-RS可以用于以下一项或多项:获取信道状态信息,用于调度、链路自适应以及和MIMO相关的传输设置;波束管理,通过获取终端设备和接入网设备的波束赋形权值,来支持波束管理;精确的时频跟踪,通过设置TRS实现时频跟踪;移动性管理,通过对本小区和邻小区的CSI-RS获取跟踪,来完成终端设备的移动性管理相关的测量需求;速率匹配,通过零功率的CSI-RS的设置完成数据信道的资源单元(resource element,RE)级别的速率匹配功能。其中,RE为频域上的一个子载波和时域上的一个符号组成的时频资源。符号也可以称为正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号,本申请对名称不做限定。
2、时间单元
在本申请中,时间单元例如可以为时隙(slot),子时间单元例如可以符号。在NR中,帧的时长为10ms,每个帧被分割为10个子帧,每个子帧长1ms。每个子帧被划分为若干个时隙(slot):当循环前缀(cyclic prefix,CP)为普通循环前缀(normal CP,NCP)时,每个slot由14个符号构成;当循环前缀为扩展循环前缀(extended CP,ECP)时,每个slot由12个符号构成。每个slot的时间长度由参数集(numerology)确定。一个参数集可以包括子载波间隔和CP。CP例如可以为NCP或ECP。具体的,可以参见表1,如表1所示,μ为参数集的索引,Δf表示子载波间隔(subcarrier spacing,SCS),normal表示NCP,extended表示ECP。其中,μ的值可以代入公式计算,用于确定相关参数。比如μ为0时,Δf为15kHz,一个slot长1ms,μ为1时,Δf为30kHz,一个slot长0.5ms等。当然,随着通信技术的演进,一个时隙包括的符号的数量也可以是其他值,本申请不做限定。
表1:参数集
在本申请中,可以采用时间单元的索引唯一标识时间单元。时间单元的索引还可以有其他名称,例如时间单元的标识、时间单元的编号等,本申请不做限定。
3、频域单元
在本申请中,频域单元例如可以为资源块(resource block,RB),子频域单元例如可以为子载波。其中,频域上连续的多个子载波可称为一个RB。例如,LTE系统中的一个RB包括12个子载波,5G中NR系统的一个RB也包括12子载波。随着通信系统的演进,一个RB包括的子载波个数也可以是其他值,本申请不做限定。
在本申请中,可以采用频域单元的索引唯一标识频域单元。频域单元的索引还可以有其他名称,例如频域单元的标识、频域单元的编号等,本申请不做限定。
4、系统帧的帧号
其中,系统帧的帧号可以简称为系统帧号(system frame number,SFN)。系统帧号是系统无线帧的编号。SFN的编号范围可以是0~1023,即SFN有1024个取值。
5、子带非重叠全双工(subband non-overlapping full duplex,SBFD)
SBFD可以将下行符号上的频带划分为一个或多个上行子带和一个或多个下行子带,并允许在下行符号的上行子带上发送下行。为了方便,本申请将频带上同时划分有上行子带和下行子带的符号所在的时隙称作SBFD时隙,记作X(用于区分D、U、S,D表示下行时隙,下行时隙中的每个符号都是下行符号,U表示上行时隙,上行时隙中的每个符号都是上行符号,S为特殊时隙,特殊时隙至少包括灵活符号,灵活符号可以动态调整为上行符号或下行符号),则SBFD的资源配置例如可以参见图1,在图1的1-1中,SBFD的资源配置为XXXXX,在图1的1-2中,SBFD的资源配置为XXXXU,在图1的1-3中,SBFD的资源配置为DXXXU。
需要说明的,接入网设备支持全双工(full duplex,FD)SBFD,即在一个时隙上可以同时在上行子带上发送、在下行子带上接收;终端设备仅支持半双工(half duplex,HF)SBFD,即在一个时隙上只能在上行子带发送,或者只能在下行子带接收。
上述内容简要阐述了本申请实施例所涉及的部分名词的含义,为更好地理解本申请实施例的提供的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
应理解,本申请实施例的技术方案可以应用于长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线局域网(wireless local area networks,WLAN)系统、V2X通信系统等等。本申请实施例的技术方案还可以应用于例如6G通信系统等5G之后演进的通信系统中,可能保持功能相同,但名称可能会改变。
下面介绍本申请实施例提供的通信系统的基础架构。
参见图2,图2为本申请实施例提供的一种通信系统的示意图。如图2所示,该通信系统可以包括接入网设备20、接入网设备21、OAM设备22。其中,接入网设备20可以与接入网设备21通信,接入网设备20和接入网设备21还可以与OAM设备22通信。另外,该通信系统还可以接入网设备20的小区下的一个或多个终端设备,如终端设备23,终端设备20可以与接入网设备20通信。同理,该通信系统还可以接入网设备21的小区下的一个或多个终端设备,如终端设备24,终端设备24可以与接入网设备21通信。图2仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
图2所示的接入网设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。接入网设备可以为部署在无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,例如可以为传输接收点(transmission reception point,TRP)、基站、各种形式的控制节点。例如,网络控制器、无线控制器、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等。具体的,接入网设备可以为各种形式的宏基站、微基站(也称为小站)、中继站、接入点(access point,AP)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,也可以为基站的天线面板。控制节点可以连接多个基站,并为多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,可以是5G中的gNB,或者5G之后的网络中的网络侧设备或未来演进的公共陆地移动(通信)网络(public land mobile network,PLMN)网络中的接入网设备,或者设备对设备(device-to-device,D2D)通信、机器对机器(machine-to-machine,M2M)通信、车联网通信中承担基站功能的设备等,本申请对接入网设备的具体名称不作限定。另外,接入网设备还可以包括分布式单元(distributed unit,DU)和集中式单元(centralized unit,CU)。接入网设备还可以是人造地球卫星和高空飞行器等用于无线通信的基站,例如非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earthorbit,MEO)卫星、低轨道(low earth orbit,LEO)卫星、高空通信平台(high altitude platform station,HAPS)等。
图2所示的终端设备是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备可以用于向用户提供语音服务和数据连通性服务中的一种或多种。终端设备可以为包含无线收发功能、且可以与接入网设备配合为用户提供通讯服务的设备。具体地,终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、终端、 无线通信设备、用户代理、用户装置或路边单元(road side unit,RSU)。终端设备也可以是无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备也可以是设备到设备(device to device,D2D)设备,例如,电表、水表等。终端设备还可以为5G系统中的终端,也可以为下一代通信系统中的终端,本申请实施例对此不作限定。
图2所示的OAM设备可以用于提供网络管理功能,包括故障监测、故障申告、故障定位、故障修复等中的一项或多项。
可选的,图3中的各设备可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图3中的各设备均可以通过图3中的通信装置300来实现。图3所示为可适用于本申请实施例提供的一种通信装置的硬件结构示意图。该通信装置300包括至少一个处理器301、通信线路302以及至少一个通信接口303。可选的,该通信装置300还包括存储器304。
处理器301可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC)、或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路302可包括一通路,在上述组件之间传送信息。
通信接口303,是任何收发器一类的装置(如天线等),用于与其他设备或通信网络通信。通信网络例如可以是以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器304可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路302与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。
其中,存储器304用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器304中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在一种可能的实施方式中,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在一种可能的实施方式中,通信装置300可以包括多个处理器,例如图3中的处理器301和处理器307。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在一种可能的实施方式中,通信装置300还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。例如,输出设备305可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备、或投影仪(projector)等。输入设备306和处理器301通信,可以以多种方式接收用户的输入。例如,输入设备306可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置300可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置300可以是上述任一种终端设备或接入网设备或OAM设备。本申请实施例不限定通信装置300的类型。
以下结合附图说明本方案。
参见图4,图4为本申请实施例提供的一种通信方法的流程示意图。其中,图4所涉及的接入网设备、OAM设备、终端设备例如分别可以是图2中的接入网设备、OAM设备、终端设备。该方法包括但不限于以下步骤:
401、OAM设备生成第一信令;第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;或,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及第一接入网设备的参考信号端口的总个数Q;第一时频资源集用于第一接入网设备发送以及接收参考信号。
在本申请中,A和B的取值例如可以采用以下任意一种方式,具体是哪一种可以取决于具体的实现、预先的约定或者标准的定义等。
方式1.1、A为1,且B为1。可选的,P例如可以为64,当然还可以是其他数值,本申请不做限定。
方式1.2、A为大于或等于1的整数,且B为大于1的整数。
方式1.3、A为大于1的整数,且B为大于或等于1的整数。
需要说明的,对于方式1.2或方式1.3,P例如可以为1、2、4、8、12、16、24、32或64等,当然还可以是其他数值,本申请不做限定。
可选的,第一信令还用于指示伪随机序列参数nID,nID用于第一接入网设备确定伪随机序列的初始值cinit,cinit用于第一接入网设备生成参考信号。示例性的,当参考信号是CSI-RS时,伪随机序列的初始值cinit例如可以满足以下公式(1):
其中,l为一个slot内符号的索引,若一个slot包括14个符号,那么l=0,1,…13,为一个系统帧内的时隙数,为一个slot内的符号数。
可选的,第一信令还用于指示参考信号的周期。参考信号的周期的长度例如可以为4个时间单元、5个时间单元、8个时间单元、10个时间单元、16个时间单元、20个时间单元、32个时间单元、40个时间单元、64个时间单元、80个时间单元、160个时间单元、320个时间单元或640个时间单元等。应理解的,由于接入网设备的位置是固定的,基站间信道慢变,故可以使用更长的参考信号的周期。例如,参考信号的周期的长度可以为1280个时间单元、2560个时间单元、5120个时间单元或10240个时间单元等,在此不做限定。
在本申请中,参考信号的周期的起始位置例如可以采用以下任意一种方式,具体是哪一种可以取决于具体的实现、预先的约定或者标准的定义等。
方式2.1、参考信号的周期的起始位置为预定义的。这无需通过信令指示参考信号的周期的起始位置,节省了信令的开销。示例性的,参考信号的周期的起始位置为系统帧号为0的系统帧中索引为0的时隙。
方式2.2、第一信令还用于第一时频资源集中第一时间单元的索引、第一时间单元所在系统帧的帧号、第一时间单元占用的时间、参数集、第一时长;参数集用于确定第一时间单元的长度,该方法还可以包括:第一接入网设备根据第一时间单元的索引和第一时间单元所在系统帧的帧号,确定参考信号的周期的起始位置;或,第一接入网设备根据第一时间单元占用的时间和参数集,确定参考信号的周期的起始位置;或,第一接入网设备根据第一接入网设备接收到第一信令的时刻和第一时长,确定参考信号的周期的起始位置。其中,第一时间单元的索引例如可以为即第一时间单元的索引是在第一时间单元所在系统帧按照时间单元的索引从低到高的顺序连续编号的,μ为参数集的索引。第一时间单元占用的时间单位为秒。第一时长也可以称为延时。这表明OAM设备可以通过第一信令隐式地指示出用于确定参考信号的周期的起始位置参数。
可选的,第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置;其中,第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,参考信号的一个时域偏置为用于发送参考信号的一个时间单元的位置相对于参考信号在时域上的周期的起始位置的偏置,参考信号在时域上的周期包括用于发送参考信号的至少一个时间单元。需要说明的,当第一信令指示的参考信号的时域偏置的个数为多个时,多个时域偏置互不相同。可以看出,因为第一信令用于指示以下至少一项:参考信号的时域偏置的个数、参考信号的时域偏置,且第一时频资源集中时间单元的个数为参考信号的时域偏置的个数,这表明OAM设备可以通过参考信号的时域偏置隐式地指示出第一时频资源集中时间单元的个数。
可选的,参考信号的时域偏置Toffset可以满足以下公式(2):
Toffset=0,1,…,T-1  (2)
其中,T为参考信号的周期,单位为时间单元。
示例性的,参考信号的周期和参考信号的时域偏置的信息元素(information element,IE)(具体可以参考技术规范(technical specification,TS)38.211(v17.2.0))例如可以为:
其中,在CSI-RS-ResourcePeriodicityAndOffset信令中,slots4表示参考信号的周期为4个slot,INTEGER(0..3)用于表示参考信号的偏置分别为0、1、2和3,其他的类似,在此不加赘述。进一步的,可以理解为第一信令例如可以包括第一子信令,第一子信令可以携带参考信号的周期和参考信号的时域偏置,第一子信令可以为CSI-RS-ResourcePeriodicityAndOffset信令或相似定义或功能的信令,或扩展字段的信令,或CSI-RS-ResourcePeriodicityAndOffset的扩展字段的信令,在此不做限制。
需要说明的,在本申请中,第一接入网设备可以根据参考信号的周期、参考信号的周期的起始位置和参考信号的时域偏置,确定用于发送参考信号的时间单元,用于发送参考信号的时间单元可以包括第一时频资源集中的A个时间单元,第一时频资源集中的A个时间单元是第一接入网设备基于参考信号的一个周期、该周期的起始位置和参考信号的时域偏置确定的时间单元。应理解的,在每个周期内用于发送参考信号的时间单元的个数是第一时频资源集中时间单元的个数,也就是说,参考信号时域上是周期性发送的。示例性的,参见图5,图5为本申请实施例提供的一种确定发送参考信号的slot的示意图。在图5中,参考信号的偏置分别为0和1。参考信号的两个周期都是10个slot。第一个周期的起始位置位于第二个slot(从左往右)的开始位置,参考信号的偏置为0,这表明第二个slot为第一接入网设备用于发送参考信号的slot,参考信号的偏置为1,这表明第三个slot(从左往右)为第一接入网设备用于发送参考信号的slot。第二个周期类似,在此不加赘述。
可选的,第一信令还可以用于指示第一时频资源集中一个时间单元内承载参考信号的至少一个子时间单元的位置,至少一个子时间单元的位置可以包括第一子时间单元的位置l0,第一子时间单元是该时间单元中索引为0~13的任意一个子时间单元。可选的,至少一个子时间单元的位置还可以包括第二子时间单元的位置l1、第三子时间单元的位置l2和第四子时间单元的位置l3,第二子时间单元是该时间单元中索引为2~12的任意一个子时间单元,第三子时间单元是该时间单元中索引为4~12的任意一个子时间单元,第四子时间单元是该时间单元中索引为6~12的任意一个子时间单元。通过指示一个时间单元的更多的子时间单元的位置,增加了用于发送以及接收参考信号的子时间单元的数量,进而可以增加一个时频单元内参考信号端口的数量。
可选的,第一信令还可以用于指示发送参考信号的频带范围,例如可以包括发送参考信号的起始频域单元和长度等。应理解的,用于发送参考信号的频域单元属于该频带范围内,如第一时频资源集中用于发 送参考信号的频域单元属于该频带范围内。
可选的,第一信令还可以用于指示参考信号的频率密度ρ,用于表示参考信号在频域上的密度,也可以称为频率密度,本申请对名称不做限定。在本申请中,ρ例如可以为3、1或0.5等。由于接入网设备间的信道主要以视线传输(line ofsight,LOS)径为主,故在频域上可以使用更稀疏的参考信号,以降低开销,也就是说ρ的值还可以更小,例如ρ还可以为0.25、0.125、0.0625或0.03125等,当然还可以是其他数值,本申请不做限定。示例性的,在发送参考信号的频带范围内,若为每个RB都配置一个参考信号,ρ为1;在发送参考信号的频带范围内,若每间隔1个RB配置一个参考信号,ρ为0.5。
可选的,第一信令还可以用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置;其中,第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,参考信号的一个频域偏置为用于发送参考信号的一个频域单元的位置相对于参考位置的偏置,参考位置为预定义的,或,参考位置携带在第一信令中。需要说明的,在ρ小于1时,第一信令还可以用于指示参考信号的频域偏置。当第一信令指示的参考信号的频域偏置的个数为多个时,多个频域偏置互不相同。可以看出,因为第一信令用于指示以下至少一项:参考信号的频域偏置的个数、参考信号的频域偏置,且第一时频资源集中频域单元的个数为参考信号的频域偏置的个数,这表明OAM设备可以通过参考信号的频域偏置隐式地指示出第一时频资源集中频域单元的个数。
其中,参考位置为第一信令指示的第一频域单元的位置,和/或,参考位置根据第一频域单元的位置和ρ确定,第一频域单元为索引为0的公共频域单元(即公共资源块(common resource block,CRB)0)、第一接入网设备的BWP(bandwidth part,BWP)的起始频域单元或发送参考信号的频带范围内的起始频域单元。
可选的,参考信号的频域偏置RBoffset可以满足以下公式(3)或公式(4):

RBoffset=0,1,…,1/ρ-1  (4)
其中,在本申请中,用于表示向上取整。
需要说明的,在本申请中,第一接入网设备可以根据参考信号的频率密度、参考信号的频域偏置和参考位置,从发送参考信号的频带范围内确定用于发送参考信号的频域单元,用于发送参考信号的频域单元包括第一时频资源集中的B个频域单元,第一时频资源集中的B个频域单元是第一接入网设备根据同一参考位置和参考信号的频域偏置确定的频域单元。应理解的,用于发送参考信号的频域单元在频域上也是重复发送的,重复间隔为或1/ρ。示例性的,参见图6,图6为本申请实施例提供的一种确定发送参考信号的RB的示意图。在图6中,参考信号的频率密度为0.25,参考信号的偏置分别为0和1。在发送参考信号的频带范围内,共有6个RB用于发送参考信号。其中,相对于参考位置1来说,参考信号的偏置为0,表明第一个RB(从下往上)为用于发送参考信号的RB,参考信号的偏置为1,表明第二个RB(从下往上)为用于发送参考信号的RB。其余类似,在此不加赘述。
可选的,在第一频域单元为索引为0的公共频域单元的情况下,用于发送参考信号的频域单元的索引n满足以下公式(5)、公式(6)、公式(7)或公式(8):

nmod(1/ρ)=RBoffset  (6)

n=u/ρ+RBoffset  (8)
其中,在公式(7)或公式(8)中,u为大于或等于0的整数。可选的,用于发送参考信号的频域单元的索引n例如可以是第一时频资源集中用于发送参考信号的频域单元的索引。
可选的,为了降低开销,在参考信号的频域偏置的个数为多个时,可以通过第一比特图指示参考信号的多个频域偏置。具体的,第一比特图的多个比特与参考信号的多个频域偏置一一对应,如第一比特图包括第一比特和第二比特,第一比特为第一数值时,第一比特使能第一比特对应的参考信号的频域偏置,第二比特为第一数值时,第二比特使能第二比特对应的参考信号的频域偏置,第一数值例如可以为1。第一比特图的大小为个比特或1/ρ个比特。示例性的,ρ=0.25,第一比特图的大小为4个比特,第一比特图中的第一个比特指示参考信号的频域偏置为0,第二个比特指示参考信号的频域偏置为1,第三个比特指示参考信号的频域偏置为2,第四个比特指示参考信号的频域偏置为3。若第一比特图为{1,1,0,0},则表明第一个比特使能第一个比特对应的参考信号的频域偏置,第二个比特使能第二个比特对应的参考信号 的频域偏置,即第一比特图指示的参考信号的频域偏置分别为0和1。
可选的,第一信令还可以用于指示第一时频资源集中一个频域单元内子频域单元的位置。该频域单元内子频域单元的数量可以为多个,多个子频域单元例如分别可以为索引为0至11的子频域单元,多个子频域单元是在该频域单元内按照子频域单元的索引从低到高的顺序连续编号的。为了节省开销,可以通过第二比特图指示第一时频资源集中一个频域单元内多个子频域单元的位置。具体的,第二比特图的多个比特与第一时频资源集中一个频域单元内多个子频域单元的位置一一对应,如第二比特图包括第三比特和第四比特,第三比特为第一数值时,第三比特使能第三比特对应的子频域单元的位置,第四比特为第一数值时,第四比特使能第二比特对应的子频域单元的位置。第二比特图的大小例如可以是6个比特。如第二比特图中的第一个比特指示第一时频资源集中一个频域单元内索引为0的子频域单元的位置,即k0,第二比特图中的第二个比特指示第一时频资源集中一个频域单元内索引为2的子频域单元的位置,即k1,第二比特图中的第三个比特指示第一时频资源集中一个频域单元内索引为4的子频域单元的位置,即k2,第二比特图中的第四个比特指示第一时频资源集中一个频域单元内索引为6的子频域单元的位置,即k3,第二比特图中的第五个比特指示第一时频资源集中一个频域单元内索引为8的子频域单元的位置,即k4,第二比特图中的第六个比特指示第一时频资源集中一个频域单元内索引为10的子频域单元的位置,即k5。若第二比特图为{1,1,0,0,0,0},则表明第一个比特使能第一个比特对应的子频域单元的位置,第二个比特使能第二个比特对应的子频域单元的位置,即第二比特图指示的第一时频资源集中一个频域单元内子频域单元的位置分别为k0和k1
可选的,第一信令还可以用于指示参考信号的码分复用(code division multiplexing,CDM)类型。在本申请中,CDM类型例如可以为noCDM、fd-CDM2、cdm4-FD2-TD2、cdm8-FD2-TD4、cdm16-FD2-TD8、cdm16-FD4-TD4等中的一项或多项。CDM类型可以用于定义正交覆盖码(orthogonal cover code,OCC),OCC例如可以分为时域OCC和频域OCC。示例性的,第一时频资源集中一个时频单元上CDM组使用的时域OCC可以通过l′和wt(l′)指示,该CDM组使用的频域OCC可以通过k′和wf(k′)指示。其中,l′、wt(l′)、k′和wf(k′)可以参考表2至表6,或,表7至表9。在表3至表6、表8或表9中,索引(index)为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引。
具体的,在表2或表7中,行(row)用于表示表格中不同行之间的顺序。
在表2或表7中,端口(ports)X用于表示第一时频资源集中一个时频单元内参考信号端口的个数,在表2中,一个时频单元内参考信号端口的个数为1、2、4、8、12、16、24或32,在表7中,一个时频单元内参考信号端口的个数为64。
频率密度(density)ρ用于表示参考信号的频率密度,在表2或表7中,ρ例如可以为3、1、0.5、0.25、0.125、0.0625、0.03125等中的一个或多个。表2或表7仅示出了频率密度的部分数值。
cdm-type用于表示CDM类型,在表2中,CDM类型例如可以为noCDM、fd-CDM2、cdm4-fd2-td2或cdm8-fd2-td4等,在表7中,CDM类型例如可以为fd-CDM2、cdm4-fd2-td2、cdm8-fd2-td4、cdm16-fd2-td8、cdm16-fd4-td4等。在表7中,第一时频资源集中一个时频单元内参考信号端口的个数为64,CDM类型为fd-CDM2可以理解为:在第一时频资源集中的一个时频单元包括32个CDM组,在频域上包括4个CDM组,在时域上包括8个CDM组,每个CDM组包括连续两个相邻的子载波,且位于同一个符号,其OCC可以参考表4。进一步的,在第一时频资源集中的一个时频单元上CDM组在频域使用了长度为2的码分复用,CDM组间在频域上使用了4次频分复用、在时域上使用了8次时分复用,故总共支持64个参考信号端口。CDM类型为cdm4-fd2-td2可以理解为:在第一时频资源集中的一个时频单元包括16个CDM组,其中在频域上包括4个CDM组,在时域上包括4个CDM组,每个CDM组在频域上包括连续两个相邻的子载波、在时域上包括连续两个相邻的符号,其OCC可以参考表5。进一步的,在第一时频资源集中的一个时频单元上一个CDM组内在频域使用了长度为2的码分复用、在时域上使用了长度为2的码分复用,CDM组间在频域上使用了4次频分复用、在时域上使用了4次时分复用,故总共支持64个参考信号端口。CDM类型为cdm8-fd2-td4可以理解为:在第一时频资源集中的一个时频单元包括8个CDM组,其中在频域上包括4个CDM组,在时域上包括2个CDM组,每个CDM组在频域上包括连续两个相邻的子载波、在时域上包括连续4个相邻的符号,其OCC可以参考表6。进一步的,在第一时频资源集中的一个时频单元上一个CDM组内在频域使用了长度为2的码分复用、在时域上使用了长度为4的码分复用,CDM组间在频域上使用了4次频分复用、在时域上使用了2次时分复用,故总共支持64个参考信号端口。CDM类型为cdm16-FD2-TD8可以理解为:在第一时频资源集中的一个时频单元包括4个CDM组,其中在频域上包括4个CDM组,在时域上包括1个CDM组,每个CDM组在频域上包括连续两个相邻的子载波、在时 域上包括连续8个相邻的符号,其OCC可以参考表8。进一步的,在第一时频资源集中的一个时频单元上一个CDM组内在频域使用了长度为2的码分复用、在时域上使用了长度为8的码分复用,CDM组间仅在频域上使用了4次频分复用,故总共支持64个参考信号端口。CDM类型为cdm16-FD4-TD4可以理解为:在第一时频资源集中的一个时频单元包括4个CDM组,其中在频域上包括2个CDM组,在时域上包括2个CDM组,每个CDM组在频域上包括连续4个相邻的子载波、在时域上包括连续4个相邻的符号,其OCC可以参考表9。进一步的,在第一时频资源集中的一个时频单元上一个CDM组内在频域使用了长度为4的码分复用、在时域上使用了长度为4的码分复用,CDM组间在频域上使用了4次频分复用、在时域上使用了4次时分复用,故总共支持64个参考信号端口。
中的为第一时频资源集中一个频域单元内一个子频域单元的索引,为第一时频资源集中一个时间单元内一个子时间单元的索引,应理解的,表2涉及到l0、l1、k0、k1、k2和k3,表7涉及到l0、l1、l2、l3、k0、k1、k2和k3
CDM组索引(CDM group index)j用于表示第一时频资源集中一个时频单元上CDM组的索引,具体可以参见表2或表7,在此不加赘述;k′用于表示第一时频资源集中一个时频单元上一个CDM组内参考信号的频域偏置,具体可以参见表2或表7,在此不加赘述;l′用于表示第一时频资源集中一个时频单元上一个CDM组内参考信号的时域偏置,具体可以参见表2或表7,在此不加赘述。
可选的,在本申请中,在A为1,且B为1的情况下,参考信号在第一时频资源集中一个时频单元的位置可以参考表7。在A为大于或等于1的整数,且B为大于1的整数,或,A为大于1的整数,且B为大于或等于1的整数的情况下,参考信号在第一时频资源集中一个时频单元的位置可以参考表2或表7。
表2:参考信号在第一时频资源集中一个时频单元的位置

表3:noCDM定义的OCC
表4:fd-CDM2定义的OCC
表5:cdm4-FD2-TD2定义的OCC
表6:cdm8-FD2-TD4定义的OCC

表7:参考信号在第一时频资源集中一个时频单元的位置

表8:cdm16-FD2-TD8定义的OCC
表9:cdm16-FD4-TD4定义的OCC

需要说明的,在未通过第一比特图指示参考信号的多个频域偏置的情况下,第一时频资源集中一个时频单元内参考信号端口的个数P、第一时频资源集中一个时间单元内承载参考信号的多个子时间单元的位置、发送参考信号的频带范围、参考信号的频率密度、参考信号的频域偏置、第一时频资源集中一个频域单元内子频域单元的位置和参考信号的CDM类型等的IE(具体可以参考TS38.211(v17.2.0))例如可以为:
其中,在上述CSI-RS-ResourceMapping信令中,frequencyDomainAllocation参数用于指示第一时频资源集中一个频域单元内子频域单元的位置,示例性的,other对应BIT STRING(SIZE(6)),用于表示比特图的大小为6比特的比特图所指示的第一时频资源集中一个频域单元内子频域单元的位置,其余类似,在此不加赘述。nrofPorts参数用于指示第一时频资源集中一个时频单元内参考信号端口的个数P,p1用于表示第一时频资源集中一个时频单元内参考信号端口的个数为1,p2用于表示第一时频资源集中一个时频单元内参考信号端口的个数为2,其余类似,在此不加赘述。firstOFDMSymbolInTimeDomain用于指示第一时频资源集中一个时间单元内承载参考信号的第一子时间单元的位置l0,INTEGER(0..13)用于表示索引为0~13的任意一个子时间单元可以是第一子时间单元;firstOFDMSymbolInTimeDomain2用于指示第一时频资源集中一个时间单元内承载参考信号的第二子时间单元的位置l1,INTEGER(0..13)用于表示索引 为2~12的任意一个子时间单元可以是第二子时间单元;firstOFDMSymbolInTimeDomain3用于指示第一时频资源集中一个时间单元内承载参考信号的第三子时间单元的位置l2,INTEGER(4..12)用于表示索引为4~12的任意一个子时间单元可以是第三子时间单元;firstOFDMSymbolInTimeDomain4用于指示第一时频资源集中一个时间单元内承载参考信号的第四子时间单元的位置l3,INTEGER(6..12)用于表示索引为6~12的任意一个子时间单元可以是第四子时间单元。cdm-Type参数用于指示参考信号的CDM类型,如noCDM、fd-CDM2、cdm4-FD2-TD2、cdm8-FD2-TD4、cdm16-FD2-TD8、cdm16-FD4-TD4等。density参数用于指示参考信号的频率密度,其中,dot25表示参考信号的频率密度为0.25,SEQUENCE(SIZE(1…4))OFPRB-Offset-dot25,对于SIZE(1),表示参考信号只有一个频域偏置,对于SIZE(2),表示参考信号有两个频域偏置,其余类似,PRB-Offset-dot25表示频率偏置的候选值集合。freqBand用于指示发送参考信号的频带范围,例如可以包括发送参考信号的起始频域单元和长度等。进一步的,可以理解为第一信令可以包括第二子信令,第二子信令可以携带第一时频资源集中一个时频单元内参考信号端口的个数P、第一时频资源集中一个时间单元内承载参考信号的多个子时间单元的位置、发送参考信号的频带范围、参考信号的频率密度、参考信号的频域偏置、第一时频资源集中一个频域单元内子频域单元的位置和参考信号的CDM类型。第二子信令例如可以为CSI-RS-ResourceMapping信令或相似定义或功能的信令,或扩展字段的信令,或CSI-RS-ResourceMapping的扩展字段的信令,在此不做限制。
需要说明的,在通过第一比特图指示参考信号的多个频域偏置的情况下,第一时频资源集中一个时频单元内参考信号端口的个数P、第一时频资源集中一个时间单元内承载参考信号的多个子时间单元的位置、发送参考信号的频带范围、参考信号的频率密度、参考信号的频域偏置、第一时频资源集中一个频域单元内子频域单元的位置和参考信号的CDM类型等的IE(具体可以参考TS38.211(v17.2.0))例如可以为:
可以看出,在通过第一比特图指示参考信号的多个频域偏置的情况下,除density参数中dot25对应的参考信号的频域偏置是通过第一比特图指示的,如下述IE中BIT STRING(SIZE(4)),其余内容与未通过第一比特图指示参考信号的多个频域偏置的情况类似,在此不加赘述。
可选的,第一信令还可以用于指示第一接入网设备用于发送参考信号的参考信号端口的索引。示例性 的,第一信令用于指示第一接入网设备发送参考信号的参考信号端口的索引为0~31和64~95。在一可能的实施方式中,第一信令用于指示第一接入网设备用于发送参考信号的参考信号端口的索引可以通过以下任意一种方式实现,具体是哪一种可以取决于具体的实现、预先的约定或者标准的定义等。
方式3.1、第一信令用于指示第三比特图,第三比特图用于指示第一接入网设备用于发送参考信号的参考信号端口的索引。示例性的,第三比特图一共有128个比特值,前64个比特的值为1,后64个比特的值为0,这表明用于第一接入网设备发送参考信号的参考信号端口的索引为0~63。这可以节省开销。
方式3.2、第一信令用于指示第一接入网设备用于发送参考信号的起始参考信号端口的索引和第一接入网设备用于发送参考信号的参考信号端口的个数,第一接入网设备根据起始参考信号端口的索引和第一接入网设备用于发送参考信号的参考信号端口的个数,确定第一接入网设备用于发送参考信号的参考信号端口的索引。示例性的,起始参考信号端口的索引为64,第一接入网设备用于发送参考信号的参考信号端口的个数为63,因此,第一接入网设备用于发送参考信号的参考信号端口的索引为64~127。这可以节省开销。
可选的,第一信令还可以用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,如第一信令用于指示第二接入网设备的标识和用于发送参考信号的参考信号端口的索引之间的对应关系,第一接入网设备用于发送参考信号的参考信号端口的索引和第二接入网设备用于发送参考信号的参考信号端口的索引不同。
可选的,第一信令还可以指示其他接入网设备用于发送参考信号的参考信号端口的索引,如第一信令用于指示其他接入网设备的标识和用于发送参考信号的参考信号端口的索引之间的对应关系,其他接入网设备为除第一接入网设备和第二接入网设备之外的接入网设备,第一接入网设备用于发送参考信号的参考信号端口的索引、第二接入网设备用于发送参考信号的参考信号端口的索引和其他接入网设备用于发送参考信号的参考信号端口的索引互不相同。这表明接入网设备间用于发送参考信号的参考信号端口是不同的,进而使得接入网设备间发送的参考信号是正交的,避免了接入网间的参考信号的干扰问题。
示例性的,参见图7A,图7A为本申请实施例提供的一种不同接入网设备的小区(cell)被分配不同参考信号端口的示意图。在图7A中,参考信号的不同频域偏置对应的参考信号端口被分配给不同接入网设备的小区,即每个cell的天线端口对应的参考信号端口分布在一个RB上。具体的,如参考信号的频域偏置为0,表明第一个RB(从下往上)对应的参考信号端口被分配给cell1,参考信号端口的索引为0至63;参考信号的频域偏置为1,表明第二个RB(从下往上)对应的参考信号端口被分配给cell2,参考信号端口的索引为64至127;参考信号的频域偏置为2,表明第三个RB(从下往上)对应的参考信号端口被分配给cell3,参考信号端口的索引为128至191;参考信号的频域偏置为3,表明第四个RB(从下往上)对应的参考信号端口被分配给cell4,参考信号端口的索引为192至255,可以看出,cell1至cell4中不同cell被分配的参考信号端口不同。进一步的,在图7A至图7F中,CDM类型为fd-CDM2,一个slot、一个RB中参考信号端口的个数为64,k0=0,k1=3,k2=6,k3=9,l0=0,l1=3,l2=6,l3=9。k0至k3分别为一个slot、一个RB中子载波的位置,l0至l3分别为一个slot、一个RB中符号的位置。其中,(k0,l0)至(k3+1,l0)内参考信号端口的索引分别为0至7,(k0,l0+1)至(k3+1,l0+1)内参考信号端口的索引分别为8至15,其余类似,这表明在一个slot、一个RB内参考信号端口是先按照子载波的索引从低到高的顺序,再按照符号的索引从低到高的顺序连续编号的。需要说明的,在图7A至图7F中,一个slot、一个RB内一个CDM组包括的参考信号端口同时占用两个RE,如索引为0的参考信号端口同时占用(k0,l0)和(k0+1,l0)这两个RE,索引为1的参考信号端口同时占用(k0,l0)和(k0+1,l0)这两个RE,索引为2的参考信号端口同时占用(k1,l0)和(k1+1,l0)这两个RE,索引为3的参考信号端口同时占用(k1,l0)和(k1+1,l0)这两个RE,其余类似,在此不加赘述。
又示例性的,参见图7B,图7B为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图。在图7B中,参考信号的不同时域偏置对应的参考信号端口被分配给不同接入网设备的cell,即每个cell的参考信号端口位于不同slot的一个RB上。具体的,在参考信号的第一个周期,cell1的索引为0至63的参考信号端口位于第二个slot(从左往右)的第一个RB(从下往上);cell2的索引为64至127的参考信号端口位于第三个slot(从左往右)的第一个RB(从下往上);cell3的索引为128至191的参考信号端口位于第四个slot(从左往右)的第一个RB(从下往上);cell4的索引为192至255的参考信号端口位于第七个slot(从左往右)的第一个RB(从下往上),其余类似。
又示例性的,参见图7C,图7C为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图。在图7C中,是基于slot间时分复用以及RB间频分复用的方式为不同接入网设备的 cell分配不同的参考信号端口。对于被分配给cell1和cell2的参考信号端口位于第二个slot(从左往右)的不同RB上,分配给cell1的参考信号端口的索引为0至63,0至63的参考信号端口位于第二个slot的第五个RB(从下往上)上,分配给cell2的参考信号端口的索引为64至127,64至127的参考信号端口位于第二个slot的第六个RB(从下往上)上。同理,对于被分配给cell3和cell4的参考信号端口位于第三个slot(从左往右)的不同RB上,分配给cell3的参考信号端口的索引为128至191,128至191的参考信号端口位于第三个slot的第五个RB(从下往上)上,分配给cell4的参考信号端口的索引为192至255,192至255的参考信号端口位于第三个slot的第六个RB(从下往上)上。
又示例性的,参见图7D,图7D为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图。在图7D中,将参考信号的一个频域偏置对应的参考信号端口分配给不同接入网设备的cell,即每个cell的天线端口对应的参考信号端口分布在一个时隙的不同RB上。具体的,cell1的索引为0至15的天线端口对应的参考信号端口位于第一个RB(从下往上),cell1的索引为0至15的天线端口对应的参考信号端口的索引为0至15;cell1的索引为16至31的天线端口对应的参考信号端口位于第二个RB(从下往上),cell1的索引为16至31的天线端口对应的参考信号端口的索引为64至79;cell1的索引为32至47的天线端口对应的参考信号端口位于第三个RB(从下往上),cell1的索引为32至47的天线端口对应的参考信号端口的索引为128至143;cell1的索引为48至63的天线端口对应的参考信号端口位于第三个RB(从下往上),cell1的索引为48至63的天线端口对应的参考信号端口的索引为192至207,其余类似,在此不加赘述。
又示例性的,参见图7E,图7E为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图。在图7E中,每个cell的天线端口对应的参考信号端口分布在不同时隙的一个RB上。具体的,在参考信号的第一个周期中,cell1的索引为0至15的天线端口对应的参考信号端口位于第二个slot(从左往右)的第一个RB(从下往上)上,cell1的索引为0至15的天线端口对应的参考信号端口的索引为0至15;cell1的索引为16至31的天线端口对应的参考信号端口位于第三个slot(从左往右)的第一个RB(从下往上)上,cell1的索引为16至31的天线端口对应的参考信号端口的索引为64至79;cell1的索引为32至47的天线端口对应的参考信号端口位于第四个slot(从左往右)的第一个RB(从下往上)上,cell1的索引为32至47的天线端口对应的参考信号端口的索引为128至143;cell1的索引为48至63的天线端口对应的参考信号端口位于第七个slot(从左往右)的第一个RB(从下往上)上,cell1的索引为48至63的天线端口对应的参考信号端口的索引为192至207,其余类似。
又示例性的,参见图7F,图7F为本申请实施例提供的又一种不同接入网设备的cell被分配不同参考信号端口的示意图。在图7F中,每个cell的天线端口对应的参考信号端口分布在不同时隙的不同RB上。具体的,在参考信号的第一个周期中,cell1的索引为0至15的天线端口对应的参考信号端口位于第二个slot(从左往右)的第一个RB(从下往上)上,cell1的索引为0至15的天线端口对应的参考信号端口的索引为0至15;cell1的索引为16至31的天线端口对应的参考信号端口位于第二个slot(从左往右)的第二个RB(从下往上)上,cell1的索引为16至31的天线端口对应的参考信号端口的索引为64至79;cell1的索引为32至47的天线端口对应的参考信号端口位于第三个slot(从左往右)的第一个RB(从下往上)上,cell1的索引为32至47的天线端口对应的参考信号端口的索引为128至143;cell1的索引为48至63的天线端口对应的参考信号端口位于第三个slot(从左往右)的第二个RB(从下往上)上,cell1的索引为48至63的天线端口对应的参考信号端口的索引为192至207,其余类似,在此不加赘述。
可选的,第一接入网设备用于发送参考信号的参考信号端口的索引与第一接入网设备的天线端口的索引具有一一对应的关系。其中,第一接入网设备用于发送参考信号的参考信号端口的索引是按照参考信号端口的索引从小到大的顺序与第一接入网设备的天线端口的索引一一对应的。需要说明的,在本申请中,第一接入网设备用于发送参考信号的参考信号端口的索引与第一接入网设备的天线端口的索引之间的对应关系例如可以是预定义的,也可以是第一信令指示的,在此不做限定。示例性的,第一接入网设备用于发送参考信号的参考信号端口的索引为64~127,第一接入网设备的天线端口的索引为0~63,第一接入网设备用于发送参考信号的参考信号端口的索引与第一接入网设备的天线端口的索引之间的对应关系例如可以包括(64,0),(65,1),…,(127,63)。
需要说明的,第二接入网设备发送参考信号的参考信号端口的索引也是按照参考信号端口的索引从小到大的顺序与第二接入网设备的天线端口的索引一一对应的,第二接入网设备发送参考信号的参考信号端口的索引与第二接入网设备的天线端口的索引之间的对应关系,例如可以是预定义的,也可以是第一信令指示的,在此不做限定。当然,其他接入网设备发送参考信号的参考信号端口的索引也是按照参考信号端 口的索引从小到大的顺序与其他接入网设备的天线端口的索引一一对应的,其他接入网设备发送参考信号的参考信号端口的索引与其他接入网设备的天线端口的索引之间的对应关系例如可以是预定义的,也可以是第一信令指示的,其他接入网设备为除第一接入网设备和第二接入网设备之外的接入网设备。
需要说明的,当第一接入网设备接收到第二接入网设备发送的参考信号时,第一接入网设备可以根据该参考信号测量第二接入网设备用于发送参考信号的参考信号端口上的信道,并将第二接入网设备用于发送参考信号的参考信号端口上的信道反馈给第二接入网设备。应理解的,第一接入网设备向其他接入网设备反馈相应的信道时类似。举例来说,接入网设备1测得的信道分别为H(0:63)×(64:127)、H(0:63)×(128:191)和H(0:63)×(192:255),下标0:63为接入网设备1的参考信号端口的索引、64:127为接入网设备2的参考信号端口的索引、128:191为接入网设备3的参考信号端口的索引以及192:255为接入网设备4的参考信号端口的索引。接入网设备1将H(0:63)×(64:127)反馈给向接入网设备2,将H(0:63)×(128:191)反馈给接入网设备3,将H(0:63)×(192:255)反馈给接入网设备4。
可选的,当第一接入网设备接收到除第一接入网设备之外的其他接入网设备反馈的信道时,第一接入网设备可以根据该信道以及第一接入网设备对其他接入网设备测量的信道执行协作波束赋形(coordinated beamforming,CBF)。当第一接入网设备未接收到除第一接入网设备之外的其他接入网设备反馈的信道时,第一接入网设备可以根据第一接入网设备对其他接入网设备测量的信道执行CBF。
可选的,第一信令可以携带第一索引,第一索引为第一对应关系中的一个索引,第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,第一对应关系携带在第二信令中,第二信令由OAM设备发送给第一接入网设备。示例性的,参见表10,第一对应关系可以包括索引为0、A为1、B为2、P为32之间的对应关系,索引为1、A为2、B为1、P为32之间的对应关系以及索引为2、A为2、B为2、P为16之间的对应关系。这表明OAM设备可以向第一接入网设备提供包括多个索引与多个A、多个B、多个P之间的第一对应关系,并通知第一接入网设备使用第一对应关系中第一索引对应的A、B、P确定第一接入网设备的参考信号端口的总个数Q,使得第一接入网设备在一个时刻仅使用第一索引对应的A、B、P来确定第一接入网设备的参考信号端口的总个数Q。
表10
可选的,第一对应关系还可以包括多个索引、多个伪随机序列参数、参考信号的多个周期、参考信号的多个时域偏置集合、多个第一时频资源集中每个第一时频资源集的一个时间单元内承载参考信号的至少一个子时间单元的位置、发送参考信号的多个频带范围、参考信号的多个频率密度、参考信号的多个频域偏置集合、多个第一时频资源集中每个第一时频资源集的一个频域单元内子频域单元的位置、参考信号的多个CDM类型等一项或多项之间的对应关系。示例性的,参见表11,第一对应关系还可以包括索引为0、伪随机序列参数为nID 1、参考信号的周期为16个slot、参考信号的时域偏置集合1(包括时域偏置0-15个slot)、子时间单元的位置为时频资源集1中一个时间单元内承载参考信号的至少一个子时间单元的位置、发送参考信号的频带范围为频带范围1、参考信号的频率密度为0.25、参考信号的频域偏置集合为频域偏置集合1(包括频域偏置0-3)、子频域单元的位置为时频资源集1中一个频域单元内子频域单元的位置、参考信号的CDM类型为fd-CDM2等之间的对应关系,表11中其余类似。
表11

可选的,第一时频资源集用于第一接入网设备发送以及接收参考信号,例如可以理解为:第一时频资源集用于第一接入网设备向终端设备和第二接入网设备发送参考信号,第一时频资源集还用于接收第二接入网设备发送的参考信号。当然,第一时频资源集还可以用于第一接入网设备向除第二接入网设备之外的其他接入网设备发送参考信号以及接收其他接入网设备发送的参考信号。
可选的,该方法还可以包括步骤402。
402、第一接入网设备接收OAM设备发送的第一信令。
相应的,OAM设备向第一接入网设备发送第一信令。可以理解的,OAM设备还可以向第二接入网设备发送第一信令。当然,OAM设备还可以向除第二接入网设备之外的其他接入网设备发送第一信令。
可选的,在步骤402之后,该方法可以通过以下两种实施方式中的任一种实现:实施方式一、包括步骤403A,即在第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P的情况下,执行步骤403A;实施方式二、包括步骤403B,即在第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及第一接入网设备的参考信号端口的总个数Q的情况下,执行步骤403B。
实施方式一
403A、第一接入网设备根据A、B和P,确定第一接入网设备的参考信号端口的总个数Q,Q个参考信号端口包括用于第一接入网设备发送以及接收参考信号的参考信号端口。
可选的,Q=A×B×P。
在本申请中,Q个参考信号端口属于第一参考信号端口集,用于第一接入网设备接收参考信号的参考信号端口属于第二参考信号端口集,用于第一接入网设备发送参考信号的参考信号端口属于第三参考信号 端口集,第一参考信号端口集、第二参考信号端口集、第三参考信号端口集等之间的关系例如可以采用以下任意一种方式,具体是哪一种可以取决于具体的实现、预先的约定或者标准的定义等。
方式4.1、第三参考信号端口集是第一参考信号端口集的子集,第二参考信号端口集是第一参考信号端口集。示例性的,第一参考信号端口集例如可以包括索引为0-255的参考信号端口,那么第二参考信号端口集例如也可以包括索引为0-255的参考信号端口,第三参考信号端口集例如可以包括索引0-63的参考信号端口。这为第一接入网设备提供了更多用于接收参考信号的参考信号端口,进而可以更好的满足第一接入网设备同时测量多个接入网设备中每个接入网设备的每一参考信号端口上的信道的需求。
方式4.2、第三参考信号端口集是第一参考信号端口集的子集,第二参考信号端口集是第一参考信号端口集与第三参考信号端口集的差集。示例性的,第一参考信号端口集例如可以包括索引为0-255的参考信号端口,第三参考信号端口集例如可以包括索引0-63的参考信号端口,那么第二参考信号端口集例如可以包括索引64-255的参考信号端口。这可以为第一接入网设备提供用于发送以及接收参考信号的参考信号端口,既满足了第一接入网设备可以精准测量另一接入网设备的每一参考信号端口上的信道的需求,又满足了第一接入网设备向其他接入网设备发送参考信号以使得其他接入网设备根据该参考信号进行信道测量的需求。
可选的,Q个参考信号端口是第一接入网设备在第一时频资源集内,先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。通过为Q个参考信号端口进行编号,使得第一接入网设备可以将参考信号端口与时频资源、码域资源等关联,并根据时频资源、码域资源等发送参考信号以及接收参考信号,这不需要重新通知时频资源、码域资源等,降低信令复杂度和开销。
示例性的,参见图8A,图8A为本申请实施例提供的一种一个slot、一个RB内64个参考信号端口连续编号的示意图。在图8A中,一个slot、一个RB上CDM类型为fd-CDM2,k0=0,k1=3,k2=6,k3=9,l0=0,l1=3,l2=6,l3=9。k0至k3分别为一个slot、一个RB中子载波的位置,l0至l3分别为一个slot、一个RB中符号的位置。其中,(k0,l0)至(k3+1,l0)内参考信号端口的索引分别为0至7,(k0,l0+1)至(k3+1,l0+1)内参考信号端口的索引分别为8至15,其余类似。需要说明的,在图8A中,一个slot、一个RB内CDM组包括的参考信号端口同时占用两个RE,如索引为0的参考信号端口同时占用(k0,l0)和(k0+1,l0)这两个RE,索引为1的参考信号端口同时占用(k0,l0)和(k0+1,l0)这两个RE,索引为2的参考信号端口同时占用(k1,l0)和(k1+1,l0)这2个RE,索引为3的参考信号端口同时占用(k1,l0)和(k1+1,l0)这2个RE,其余类似,在此不加赘述。
又示例性的,参见图8B,图8B为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图。在图8B中,一个slot、一个RB上CDM类型为cdm4-FD2-TD2,k0=0,k1=3,k2=6,k3=9,l0=0,l1=3,l2=6,l3=9。k0至k3分别为一个slot、一个RB中子载波的位置,l0至l3分别为一个slot、一个RB中符号的位置。其中,(k0,l0)至(k0+1,l0+1)内参考信号端口的索引分别为0、1、2和3,其余类似。需要说明的,在图8B中,一个slot、一个RB内CDM组包括的参考信号端口同时占用四个RE,如索引为0的参考信号端口同时占用(k0,l0)、(k0+1,l0)、(k0,l0+1)和(k0+1,l0+1)这4个RE,索引为1的参考信号端口同时占用(k0,l0)、(k0+1,l0)、(k0,l0+1)和(k0+1,l0+1)这4个RE,其余类似,在此不加赘述。
又示例性的,参见图8C,图8C为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图。在图8C中,一个slot、一个RB上CDM类型为cdm8-FD2-TD4,k0=0,k1=3,k2=6,k3=9,l0=0,l1=6。k0至k3分别为一个slot、一个RB中子载波的位置,l0至l1分别为一个slot、一个RB中符号的位置。其中,(k0,l0)至(k0+1,l0+3)内参考信号端口的索引分别为0、2、4和6,(k0,l0)至(k0+1,l0+3)内参考信号端口的索引分别为0、1、2、3、4、5、6和7,其余类似。需要说明的,在图8C中,一个slot、一个RB内CDM组包括的参考信号端口同时占用8个RE,如索引为0的参考信号端口同时占用(k0,l0)、(k0+1,l0)、(k0,l0+1)、(k0+1,l0+1)、(k0,l0+2)、(k0+1,l0+2)、(k0,l0+3)和(k0+1,l0+3)这8个RE,索引为1的参考信号端口同时占用(k0,l0)、(k0+1,l0)、(k0,l0+1)、(k0+1,l0+1)、(k0,l0+2)、(k0+1,l0+2)、(k0,l0+3)和(k0+1,l0+3)这8个RE,其余类似,在此不加赘述。
又示例性的,参见图8D,图8D为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图。在图8D中,一个slot、一个RB上CDM类型为cdm16-FD2-TD8,k0=0,k1=3,k2=6,k3=9,l0=0。k0至k3分别为一个slot、一个RB中子载波的位置,l0为一个slot、一个RB中符号的位置。其中,(k0,l0)至(k0+1,l0+7)内参考信号端口的索引分别为0至15,其余类似。需要说明的,在图8C 中,一个slot、一个RB内CDM组包括的参考信号端口同时占用16个RE,如索引为0的参考信号端口同时占用(k0,l0)至(k0,l0+7)以及(k0+1,l0)至(k0+1,l0+7)这16个RE,索引为1的参考信号端口同时占用(k0,l0)至(k0,l0+7)以及(k0+1,l0)至(k0+1,l0+7)这16个RE,其余类似,在此不加赘述。
又示例性的,参见图8E,图8E为本申请实施例提供的又一种一个slot、一个RB内64个参考信号端口连续编号的示意图。在图8D中,一个slot、一个RB上CDM类型为cdm16-FD4-TD4,k0=0,k1=6,l0=0,l1=6。k0至k1分别为一个slot、一个RB中子载波的位置,l0至l1分别为一个slot、一个RB中符号的位置。其中,(k0,l0)至至(k1+3,l0+3)内参考信号端口的索引分别为0至15,其余类似。需要说明的,在图8C中,一个slot、一个RB内CDM组包括的参考信号端口同时占用16个RE,如索引为0的参考信号端口同时占用(k0,l0)至(k0,l0+3)、(k0+1,l0)至(k0+1,l0+3)、(k0+2,l0)至(k0+2,l0+3)以及(k0+3,l0)至(k0+3,l0+3)这16个RE,索引为1的参考信号端口同时占用(k0,l0)至(k0,l0+3)、(k0+1,l0)至(k0+1,l0+3)、(k0+2,l0)至(k0+2,l0+3)以及(k0+3,l0)至(k0+3,l0+3)这16个RE,其余类似,在此不加赘述。
又示例性的,参见图8F,图8F为本申请实施例提供的一种多个slot、多个RB内64个参考信号端口连续编号的示意图。在图8F中,一个slot、一个RB上CDM类型为fd-CDM2,k0=0,k1=3,k2=6,k3=9,l0=0。k0至k3分别为一个slot、一个RB中子载波的位置,l0为一个slot、一个RB中符号的位置。其中,在参考信号的第一个周期slot0(从左往右第二个slot)上的一个RB内,(k0,l0)至(k3+1,l0)内参考信号端口的索引分别为0至7,(k0,l0+1)至(k3+1,l0+1)内参考信号端口的索引分别为8至15,即在参考信号的第一个周期slot0上的一个RB内参考信号端口的索引分别为0至15;在参考信号的第一个周期slot0上的另一个RB内,(k0,l0)至(k3+1,l0)内参考信号端口的索引分别为16至23,(k0,l0+1)至(k3+1,l0+1)内参考信号端口的索引分别为24至31,即在参考信号的第一个周期slot0上的另一个RB内参考信号端口的索引分别为16-31。在参考信号的第一个周期slot1(从左往右第三个slot)上的一个RB内,(k0,l0)至(k3+1,l0)内参考信号端口的索引分别为32至39,(k0,l0+1)至(k3+1,l0+1)内参考信号端口的索引分别为40至47,即在参考信号的第一个周期slot1上的一个RB内参考信号端口的索引分别为32至47;在参考信号的第一个周期slot1上的另一个RB内,(k0,l0)至(k3+1,l0)内参考信号端口的索引分别为48至55,(k0,l0+1)至(k3+1,l0+1)内参考信号端口的索引分别为56至63,即在参考信号的第一个周期slot0上的另一个RB内参考信号端口的索引分别为48至63。对于参考信号的第二个周期类似,在此不加赘述。需要说明的,在图8F中,一个slot、一个RB内CDM组包括的参考信号端口同时占用两个RE,如索引为0的参考信号端口同时占用(k0,l0)和(k0+1,l0)这两个RE,索引为1的参考信号端口同时占用(k0,l0)和(k0+1,l0)这两个RE,索引为2的参考信号端口同时占用(k1,l0)和(k1+1,l0)这2个RE,索引为3的参考信号端口同时占用(k1,l0)和(k1+1,l0)这2个RE,其余类似,在此不加赘述。
可选的,在本申请中,Q个参考信号端口中任意一个参考信号端口的索引p可以通过以下任意一种方式确定,具体是哪一种可以取决于具体的实现、预先的约定或者标准的定义等。
方式4.1、Q个参考信号端口中任意一个参考信号端口的索引p满足以下公式:p=s+jL+kP+lR;其中,s为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引,s=0,1,…,L-1,L为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的个数;j为第一时频资源集中一个时频单元上CDM组的索引,j=0,1,…,P/L-1;k为B个频域单元的索引,B个频域单元的索引是在B个频域单元内按照频域单元的索引从低到高的顺序连续编号的,k=0,1,…,B-1;l为A个时间单元的索引,A个时间单元的索引是在A个时间单元内按照时间单元的索引从低到高的顺序连续编号的,l=0,1,…,A-1;R为第一时频资源集中一个时间单元上B个频域单元内参考信号端口的总个数,R=B×P。
方式4.2、Q个参考信号端口中任意一个参考信号端口的索引p满足以下公式:p=s+jL+hP;其中,s为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的索引,s=0,1,…,L-1,L为第一时频资源集中一个时频单元上CDM组包括的正交覆盖码的个数;j为第一时频资源集中一个时频单元上CDM组的索引,j=0,1,…,P/L-1;h为第一时频资源集中时频单元的索引,h=0,1,…,AB-1。
方式4.2中,第一时频资源集中的时频单元是第一接入网设备先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。为了更好的理解方式4.2中关于第一时频资源集中时频单元是如何编号的,下面给出一个示例。具体的,参见图9,图9为本申请实施例提供的一种时频单元连续编号的示意图。在图9中包括2个slot上的2个RB,索引为0的时频单元包括索引为0的slot上索引为0的RB,索引为1的时频单元包括索引为0的slot上索引为1的RB,索引为2的时频单元包括索引为1的slot上索引为0的RB,索引为3的时频单元包括索引为1的slot上索引为1的RB。
在本申请中,可以采用时频单元的索引唯一标识时频单元。时频单元的索引还可以有其他名称,例如时频单元的标识、时频单元的编号等,本申请不做限定。
实施方式二
403B、第一接入网设备根据A、B和Q,确定第一时频资源集中一个时频单元内参考信号端口的个数P。
可选的,P=Q/(A×B)。
可选的,在步骤403A或步骤403B之后,该方法还可以包括步骤404。
404、第一接入网设备向终端设备发送第三信令,第三信令用于指示第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B。
相应的,终端设备接收第一接入网设备发送的第三信令。应理解的,第一接入网设备为服务于该终端设备的接入网设备。
可选的,第三信令还可以用于指示参考信号的周期、参考信号的时域偏置的个数、参考信号的时域偏置、发送参考信号的频带范围、参考信号的频率密度、参考信号的频域偏置的个数、参考信号的频域偏置等中的一项或多项,具体的指示方式与第一信令的指示方式类似,在此不加赘述。
可选的,在步骤404之后,该方法还可以包括步骤405。
405、终端设备根据A和B,确定第一时频资源集,第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据。
应理解的,第一时频资源集中时间单元的个数A为参考信号的时域偏置的个数,第一时频资源集中频域单元的个数B为参考信号的频域偏置的个数,而终端设备可以根据参考信号的周期、参考信号的周期的起始位置和参考信号的时域偏置,确定第一时频资源集中用于发送参考信号的时间单元,终端设备可以根据参考信号的频率密度和参考信号的频域偏置,从发送参考信号的频带范围内确定第一时频资源集中用于发送参考信号的频域单元,因此,可以理解为:终端设备根据A和B,确定第一时频资源集。
需要说明的,步骤405中的下行数据可以理解为物理下行共享信道(physical downlink shared channel,PDSCH)、DMRS等中一项或多项,步骤405中的第一时频资源集可以理解为ZP-CSI-RS资源集。
可选的,终端设备可以在第一时频资源集之外接收第一接入网设备发送的PDSCH、DMRS等一项或多项,相应的,第一接入网设备可以在第一时频资源集之外向终端设备发送PDSCH、DMRS等一项或多项。
可以看出,上述方案中,为第一接入网设备提供了更多用于发送以及接收参考信号的参考信号端口,使得第一接入网设备在第一时频资源集上可以通过更多的参考信号端口发送以及接收参考信号,进而可以满足接入网设备间信道测量的需求,如满足一个接入网设备可以精准测量另一接入网设备的每一参考信号端口上的信道的需求,又如满足一个接入网设备同时测量多个接入网设备中每个接入网设备的每一参考信号端口上的信道的需求。另外,也避免了同时指示多个ZP-CSI-RS资源来确定第一时频资源集时导致的开销过大的问题。同时,因为第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据,所以可以使得终端设备不会将第一时频资源集上接收到的信号当做下行数据来译码,进而避免了译码错误的问题。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对OAM设备、接入网设备或终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
参见图10,图10为本申请实施例提供的一种通信装置的结构示意图。该通信装置1000可应用于上述图4所示的方法中,如图10所示,该通信装置1000包括:处理模块1001和收发模块1002。处理模块1001可以是一个或多个处理器,收发模块1002可以是收发器或者通信接口。该通信装置可用于实现上述任一方法实施例中涉及OAM设备、终端设备或接入网设备,或用于实现上述任一方法实施例中涉及网元的功能。该网元或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者 是平台(例如,云平台)上实例化的虚拟化功能。可选的,该通信装置1000还可以包括存储模块1003,用于存储通信装置1000的程序代码和数据。
一种实例,当该通信装置作为OAM设备或为应用于OAM设备中的芯片,并执行上述方法实施例中由OAM设备执行的步骤。收发模块1002用于支持与接入网设备等之间的通信,收发模块具体执行图4中由OAM设备执行的发送和/或接收的动作,例如支持OAM设备执行本文中所描述的技术的其他过程。处理模块1001可用于支持通信装置1000执行上述方法实施例中的处理动作,例如,支持OAM设备执行步骤401,和/或本文中所描述的技术的其他过程。
示例性的,处理模块1001,用于生成第一信令,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;收发模块1002,用于向第一接入网设备发送第一信令。
一种实例,当该通信装置作为接入网设备或为应用于接入网设备中的芯片,并执行上述方法实施例中由接入网设备执行的步骤。收发模块1002用于支持与OAM设备等之间的通信,收发模块具体执行图4中由接入网设备执行的发送和/或接收的动作,例如支持接入网设备执行本文中所描述的技术的其他过程。处理模块1001可用于支持通信装置1000执行上述方法实施例中的处理动作,例如,支持接入网设备执行本文中所描述的技术的其他过程。
示例性的,收发模块1002,用于接收OAM设备发送的第一信令,第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;处理模块1001,用于根据A、B和P,确定第一接入网设备的参考信号端口的总个数Q,Q个参考信号端口包括用于第一接入网设备发送以及接收参考信号的参考信号端口。
一种实例,当该通信装置作为终端设备或为应用于终端设备中的芯片,并执行上述方法实施例中由终端设备执行的步骤。收发模块1002用于支持与接入网设备等之间的通信,收发模块具体执行图4中由终端设备执行的发送和/或接收的动作,例如支持终端设备执行本文中所描述的技术的其他过程。处理模块1001可用于支持通信装置1000执行上述方法实施例中的处理动作,例如,支持终端设备执行本文中所描述的技术的其他过程。
示例性的,收发模块1002,用于接收第一接入网设备发送的第三信令,第三信令用于指示第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B;一个时频单元为一个时间单元上的一个频域单元,A为大于或等于1的整数,且B为大于1的整数;或,A为大于1的整数,且B为大于或等于1的整数;处理模块1001,用于根据A和B,确定第一时频资源集,第一时频资源集用于终端设备不接收第一接入网设备发送的下行数据。
在一种可能的实施方式中,当OAM设备、终端设备或接入网设备为芯片时,收发模块1002可以是通信接口、管脚或电路等。通信接口可用于输入待处理的数据至处理器,并可以向外输出处理器的处理结果。具体实现中,通信接口可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块、天线等等)连接。通信接口通过总线与处理器相连。
处理模块1001可以是处理器,该处理器可以执行存储模块存储的计算机执行指令,以使该芯片执行图4实施例涉及的方法。
进一步的,处理器可以包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器的硬件架构可以是ASIC架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者网络处理器(network processor,NP)架构等等。处理器可以是单核的,也可以是多核的。
该存储模块可以为该芯片内的存储模块,如寄存器、缓存等。存储模块也可以是位于芯片外部的存储模块,如ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM等。
需要说明的,处理器、接口各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
图11为本申请实施例提供的一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子,如图11所示,终端设备包括至少一个处理器,还可以包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对终端设备进行控制,执行软件程序,处理软件程序的数据等。该终端设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号,且天线为本申请实施例提供的天线。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括接收模块31、处理模块32和发送模块33。接收模块31也可以称为接收器、接收机、接收电路等,发送模块33也可以称为发送器、发射器、发射机、发射电路等。处理模块32也可以称为处理器、处理单板、处理装置等。
例如,处理模块32用于执行图4所示实施例中终端设备的功能。
图12为本申请实施例提供的一种简化的接入网设备的结构示意图。接入网设备包括射频信号收发及转换部分以及基带部分42,该射频信号收发及转换部分又包括接收模块41部分和发送模块43部分(也可以统称为收发模块)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;基带部分42主要用于基带处理,对接入网设备进行控制等。接收模块41也可以称为接收器、接收机、接收电路等,发送模块43也可以称为发送器、发射器、发射机、发射电路等。基带部分42通常是接入网设备的控制中心,也可以称为处理模块,用于执行上述图4中关于接入网设备所执行的步骤。具体可参见上述相关部分的描述。
基带部分42可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对接入网设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,发送模块43用于执行图4所示实施例中接入网设备的功能。
本申请实施例还提供一种通信装置,包括处理器,处理器和存储器耦合,存储器中存储有计算机程序;处理器用于调用存储器中的计算机程序,使得通信装置执行如图4所示实施例。
本申请实施例还提供一种通信装置,包括处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如图4所示实施例。
本申请实施例还提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被计算机执行时,实现如图4所示实施例。
本申请实施例还一种计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机执行图4所示实施例。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目标。另外,在本申请各个实施例中的各网元单元 可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件网元单元的形式实现。
上述集成的单元如果以软件网元单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,终端设备,云服务器,或者接入网设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (39)

  1. 一种通信方法,应用于第一接入网设备,其特征在于,包括:
    接收第一信令,所述第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;所述第一时频资源集用于所述第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,所述A为大于或等于1的整数,且所述B为大于1的整数;或,所述A为大于1的整数,且所述B为大于或等于1的整数;
    根据所述A、所述B和所述P,确定所述第一接入网设备的参考信号端口的总个数Q,所述Q个参考信号端口包括用于所述第一接入网设备发送以及接收参考信号的参考信号端口。
  2. 根据权利要求1所述的方法,其特征在于,所述Q个参考信号端口属于第一参考信号端口集,用于所述第一接入网设备接收所述参考信号的参考信号端口属于第二参考信号端口集,用于所述第一接入网设备发送所述参考信号的参考信号端口属于第三参考信号端口集,所述第三参考信号端口集是所述第一参考信号端口集的子集;
    所述第二参考信号端口集是所述第一参考信号端口集;或,
    所述第二参考信号端口集是所述第一参考信号端口集与所述第三参考信号端口集的差集。
  3. 根据权利要求1或2所述的方法,其特征在于,所述Q个参考信号端口是在所述第一时频资源集内,先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述第一时频资源集中的时频单元是先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的时域偏置的个数、所述参考信号的时域偏置;
    其中,所述第一时频资源集中时间单元的个数为所述参考信号的时域偏置的个数,所述参考信号的一个时域偏置为用于发送所述参考信号的一个时间单元的位置相对于所述参考信号在时域上的周期的起始位置的偏置,所述参考信号在时域上的周期包括用于发送所述参考信号的至少一个时间单元。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的频域偏置的个数、所述参考信号的频域偏置;
    其中,所述第一时频资源集中频域单元的个数为所述参考信号的频域偏置的个数,所述参考信号的一个频域偏置为用于发送所述参考信号的一个频域单元的位置相对于参考位置的偏置,所述参考位置为预定义的,或,所述参考位置携带在所述第一信令中。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于,所述第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,所述第一接入网设备用于发送参考信号的参考信号端口的索引和所述第二接入网设备用于发送参考信号的参考信号端口的索引不同。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信令携带第一索引,所述第一索引为第一对应关系中的一个索引,所述第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,所述第一对应关系携带在第二信令中,所述第二信令由所述OAM设备发送给所述第一接入网设备。
  9. 根据权利要求1-8任意一项所述的方法,其特征在于,所述方法还包括:
    所述第一接入网设备向终端设备发送第三信令,所述第三信令用于指示所述第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B,所述第一时频资源集用于所述终端设备不接收所述第一接入网设备发送的下行数据。
  10. 一种通信方法,其特征在于,包括:
    生成第一信令,所述第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;所述第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,所述A为大于或等于1的整数,且所述B为大于1的整数;或,所述A为大于1的整数,且所述B为大于或等于1的整数;
    向所述第一接入网设备发送所述第一信令。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的时域偏置的个数、所述参考信号的时域偏置;
    其中,所述第一时频资源集中时间单元的个数为所述参考信号的时域偏置的个数,所述参考信号的一个时域偏置为用于发送所述参考信号的一个时间单元的位置相对于所述参考信号在时域上的周期的起始位置的偏置,所述参考信号在时域上的周期包括用于发送所述参考信号的至少一个时间单元。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的频域偏置的个数、所述参考信号的频域偏置;
    其中,所述第一时频资源集中频域单元的个数为所述参考信号的频域偏置的个数,所述参考信号的一个频域偏置为用于发送所述参考信号的一个频域单元的位置相对于参考位置的偏置,所述参考位置为预定义的,或,所述参考位置携带在所述第一信令中。
  13. 根据权利要求10-12任意一项所述的方法,其特征在于,所述第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,所述第一接入网设备用于发送参考信号的参考信号端口的索引和所述第二接入网设备用于发送参考信号的参考信号端口的索引不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信令携带第一索引,所述第一索引为第一对应关系中的一个索引,所述第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,所述第一对应关系携带在第二信令中,所述第二信令由所述OAM设备发送给所述第一接入网设备。
  15. 一种通信方法,应用于终端设备,其特征在于,包括:
    接收第一接入网设备发送的第三信令,所述第三信令用于指示所述第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B;一个时频单元为一个时间单元上的一个频域单元,所述A为大于或等于1的整数,且所述B为大于1的整数;或,所述A为大于1的整数,且所述B为大于或等于1的整数;
    根据所述A和所述B,确定所述第一时频资源集,所述第一时频资源集用于所述终端设备不接收所述第一接入网设备发送的下行数据。
  16. 根据权利要求15所述的方法,其特征在于,所述第三信令用于指示以下至少一项:所述参考信号的时域偏置的个数、所述参考信号的时域偏置;
    其中,所述第一时频资源集中时间单元的个数为所述参考信号的时域偏置的个数,所述参考信号的一个时域偏置为用于发送所述参考信号的一个时间单元的位置相对于所述参考信号在时域上的周期的起始位置的偏置,所述参考信号在时域上的周期包括用于发送所述参考信号的至少一个时间单元。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第三信令用于指示以下至少一项:所述参考信号的频域偏置的个数、所述参考信号的频域偏置;
    其中,所述第一时频资源集中频域单元的个数为所述参考信号的频域偏置的个数,所述参考信号的一个频域偏置为用于发送所述参考信号的一个频域单元的位置相对于参考位置的偏置,所述参考位置为预定义的,或,所述参考位置携带在所述第三信令中。
  18. 一种通信装置,其特征在于,所述通信装置应用于第一接入网设备,所述通信装置包括收发模块和处理模块,
    所述收发模块,用于接收操作维护管理OAM设备发送的第一信令,所述第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;所述第一时频资源集用于所述第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,所述A为大于或等于1的整数,且所述B为大于1的整数;或,所述A为大于1的整数,且所述B为大于或等于1的整数;
    所述处理模块,用于根据所述A、所述B和所述P,确定所述第一接入网设备的参考信号端口的总个数Q,所述Q个参考信号端口包括用于所述第一接入网设备发送以及接收参考信号的参考信号端口。
  19. 根据权利要求18所述的装置,其特征在于,所述Q个参考信号端口属于第一参考信号端口集,用于所述第一接入网设备接收所述参考信号的参考信号端口属于第二参考信号端口集,用于所述第一接入网设备发送所述参考信号的参考信号端口属于第三参考信号端口集,所述第三参考信号端口集是所述第一参考信号端口集的子集;
    所述第二参考信号端口集是所述第一参考信号端口集;或,
    所述第二参考信号端口集是所述第一参考信号端口集与所述第三参考信号端口集的差集。
  20. 根据权利要求18或19所述的装置,其特征在于,所述Q个参考信号端口是在所述第一时频资源集内,先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
  21. 根据权利要求18-20任意一项所述的装置,其特征在于,所述第一时频资源集中的时频单元是先按照频域单元的索引从低到高的顺序,再按照时间单元的索引从低到高的顺序连续编号的。
  22. 根据权利要求18-21任意一项所述的装置,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的时域偏置的个数、所述参考信号的时域偏置;
    其中,所述第一时频资源集中时间单元的个数为所述参考信号的时域偏置的个数,所述参考信号的一个时域偏置为用于发送所述参考信号的一个时间单元的位置相对于所述参考信号在时域上的周期的起始位置的偏置,所述参考信号在时域上的周期包括用于发送所述参考信号的至少一个时间单元。
  23. 根据权利要求18-22任意一项所述的装置,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的频域偏置的个数、所述参考信号的频域偏置;
    其中,所述第一时频资源集中频域单元的个数为所述参考信号的频域偏置的个数,所述参考信号的一个频域偏置为用于发送所述参考信号的一个频域单元的位置相对于参考位置的偏置,所述参考位置为预定义的,或,所述参考位置携带在所述第一信令中。
  24. 根据权利要求18-23任意一项所述的装置,其特征在于,所述第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,所述第一接入网设备用于发送参考信号的参考信号端口的索引和所述第二接入网设备用于发送参考信号的参考信号端口的索引不同。
  25. 根据权利要求24所述的装置,其特征在于,所述第一信令携带第一索引,所述第一索引为第一对应关系中的一个索引,所述第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,所述第一对应关系携带在第二信令中,所述第二信令由所述OAM设备发送给所述第一接入网设备。
  26. 根据权利要求18-25任意一项所述的装置,其特征在于,所述收发模块,还用于向终端设备发送第三信令,所述第三信令用于指示所述第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B,所述第一时频资源集用于所述终端设备不接收所述第一接入网设备发送的下行数据。
  27. 一种通信装置,其特征在于,所述通信装置应用于操作维护管理OAM设备,所述通信装置包括处理模块和收发模块,
    所述处理模块,用于生成第一信令,所述第一信令用于指示第一时频资源集中时间单元的个数A、频域单元的个数B以及一个时频单元内参考信号端口的个数P;所述第一时频资源集用于第一接入网设备发送以及接收参考信号,一个时频单元为一个时间单元上的一个频域单元,所述A为大于或等于1的整数,且所述B为大于1的整数;或,所述A为大于1的整数,且所述B为大于或等于1的整数;
    所述收发模块,用于向所述第一接入网设备发送所述第一信令。
  28. 根据权利要求27所述的装置,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的时域偏置的个数、所述参考信号的时域偏置;
    其中,所述第一时频资源集中时间单元的个数为所述参考信号的时域偏置的个数,所述参考信号的一个时域偏置为用于发送所述参考信号的一个时间单元的位置相对于所述参考信号在时域上的周期的起始位置的偏置,所述参考信号在时域上的周期包括用于发送所述参考信号的至少一个时间单元。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一信令用于指示以下至少一项:所述参考信号的频域偏置的个数、所述参考信号的频域偏置;
    其中,所述第一时频资源集中频域单元的个数为所述参考信号的频域偏置的个数,所述参考信号的一个频域偏置为用于发送所述参考信号的一个频域单元的位置相对于参考位置的偏置,所述参考位置为预定义的,或,所述参考位置携带在所述第一信令中。
  30. 根据权利要求27-29任意一项所述的装置,其特征在于,所述第一信令还用于指示第二接入网设备用于发送参考信号的参考信号端口的索引,所述第一接入网设备用于发送参考信号的参考信号端口的索引和所述第二接入网设备用于发送参考信号的参考信号端口的索引不同。
  31. 根据权利要求27-30任意一项所述的装置,其特征在于,所述第一信令携带第一索引,所述第一索引为第一对应关系中的一个索引,所述第一对应关系包括多个索引与多个A、多个B、多个P之间的对应关系,所述第一对应关系携带在第二信令中,所述第二信令由所述OAM设备发送给所述第一接入网设备。
  32. 一种通信装置,其特征在于,所述通信装置应用于终端设备,所述通信装置包括收发模块和处理模块,
    所述收发模块,用于接收第一接入网设备发送的第三信令,所述第三信令用于指示所述第一接入网设备用于发送以及接收参考信号的第一时频资源集中时间单元的个数A以及频域单元的个数B;一个时频单元为一个时间单元上的一个频域单元,所述A为大于或等于1的整数,且所述B为大于1的整数;或,所述A为大于1的整数,且所述B为大于或等于1的整数;
    所述处理模块,用于根据所述A和所述B,确定所述第一时频资源集,所述第一时频资源集用于所述终端设备不接收所述第一接入网设备发送的下行数据。
  33. 根据权利要求32所述的装置,其特征在于,所述第三信令用于指示以下至少一项:所述参考信号的时域偏置的个数、所述参考信号的时域偏置;
    其中,所述第一时频资源集中时间单元的个数为所述参考信号的时域偏置的个数,所述参考信号的一个时域偏置为用于发送所述参考信号的一个时间单元的位置相对于所述参考信号在时域上的周期的起始位置的偏置,所述参考信号在时域上的周期包括用于发送所述参考信号的至少一个时间单元。
  34. 根据权利要求32或33所述的装置,其特征在于,所述第三信令用于指示以下至少一项:所述参考信号的频域偏置的个数、所述参考信号的频域偏置;
    其中,所述第一时频资源集中频域单元的个数为所述参考信号的频域偏置的个数,所述参考信号的一个频域偏置为用于发送所述参考信号的一个频域单元的位置相对于参考位置的偏置,所述参考位置为预定义的,或,所述参考位置携带在所述第三信令中。
  35. 一种通信系统,其特征在于,包括用于执行如权利要求1-9任一项所述方法的第一接入网设备、用于执行如权利要求10-14任一项所述方法的操作维护管理OAM设备、以及用于执行如权利要求15-17任一项所述方法的终端设备。
  36. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1-17中任一所述的方法。
  37. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-17中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1-17中任一项所述方法。
  39. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行权利要求1-17中任一项所述的方法。
PCT/CN2023/129491 2022-11-04 2023-11-03 一种通信方法及装置 WO2024094146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211379234.2 2022-11-04
CN202211379234.2A CN118041496A (zh) 2022-11-04 2022-11-04 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024094146A1 true WO2024094146A1 (zh) 2024-05-10

Family

ID=90929763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129491 WO2024094146A1 (zh) 2022-11-04 2023-11-03 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN118041496A (zh)
WO (1) WO2024094146A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567695A (zh) * 2015-03-27 2018-01-09 三星电子株式会社 大规模天线系统中的资源分配设备和方法
CN109462461A (zh) * 2017-09-06 2019-03-12 电信科学技术研究院 一种参考信号资源指示方法及装置
US20190394781A1 (en) * 2018-01-12 2019-12-26 Huawei Technologies Co., Ltd. Resource Indication Method, Terminal Device, And Network Device
CN112740570A (zh) * 2018-09-21 2021-04-30 阿里斯卡尔股份有限公司 信道状态信息参考信号
CN114223142A (zh) * 2019-08-23 2022-03-22 高通股份有限公司 在省电模式中的探测参考信号和下行链路参考信号关联
US20220240280A1 (en) * 2019-09-30 2022-07-28 Huawei Technologies Co., Ltd. Method For Determining Channel State Information Reference Signal Resource Mapping and Apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567695A (zh) * 2015-03-27 2018-01-09 三星电子株式会社 大规模天线系统中的资源分配设备和方法
CN109462461A (zh) * 2017-09-06 2019-03-12 电信科学技术研究院 一种参考信号资源指示方法及装置
US20190394781A1 (en) * 2018-01-12 2019-12-26 Huawei Technologies Co., Ltd. Resource Indication Method, Terminal Device, And Network Device
CN112740570A (zh) * 2018-09-21 2021-04-30 阿里斯卡尔股份有限公司 信道状态信息参考信号
CN114223142A (zh) * 2019-08-23 2022-03-22 高通股份有限公司 在省电模式中的探测参考信号和下行链路参考信号关联
US20220240280A1 (en) * 2019-09-30 2022-07-28 Huawei Technologies Co., Ltd. Method For Determining Channel State Information Reference Signal Resource Mapping and Apparatus

Also Published As

Publication number Publication date
CN118041496A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US12022483B2 (en) Dynamic and flexible configurations for configured grants
US10306589B2 (en) Hybrid reference signals for wireless communication
US11363499B2 (en) Resource configuration method, apparatus, and system
CN112134664B (zh) 资源确定方法及装置
CN108632179A (zh) 信号传输方法、装置及系统
CN111769918B (zh) Dmrs端口的指示方法及装置
US20230007524A1 (en) Methods for Enabling a Low Bandwidth Wireless Device to Access a New Radio Cell via a Wideband Control Resource Set
JP2022531427A (ja) 複数の送信/受信ポイント(trp)上でトランスポートブロック(tb)を繰り返す方法
CN111601382B (zh) 一种数据传输方法及通信装置
CN114424654A (zh) 测量方法、装置及系统
WO2020199815A1 (zh) 通信方法及装置
WO2018171783A1 (zh) 信号传输方法、装置及系统
EP4059174A1 (en) Demodulation reference signals for shared radio
CN108347323B (zh) 一种rs生成、接收方法及终端、基站
WO2024094146A1 (zh) 一种通信方法及装置
WO2024146471A1 (zh) 一种通信方法及装置
WO2024092792A1 (zh) 一种通信方法及装置
US20230362928A1 (en) Pucch transmission method and apparatus
WO2022165660A1 (zh) 数据的传输方法及装置
WO2022151214A1 (zh) 波束失败恢复方法、装置及系统
WO2024032351A1 (zh) Dmrs端口指示方法、装置及存储介质
WO2024114418A1 (zh) 参考信号的传输方法及装置
WO2022041081A1 (zh) 通信方法及装置
US20230379664A1 (en) Cooperation techniques for low-power devices
WO2024032417A1 (zh) 参考信号传输方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885071

Country of ref document: EP

Kind code of ref document: A1