WO2024093706A1 - 耦合器、耦合方法、装置、电子设备及存储介质 - Google Patents

耦合器、耦合方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024093706A1
WO2024093706A1 PCT/CN2023/126004 CN2023126004W WO2024093706A1 WO 2024093706 A1 WO2024093706 A1 WO 2024093706A1 CN 2023126004 W CN2023126004 W CN 2023126004W WO 2024093706 A1 WO2024093706 A1 WO 2024093706A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
coupling
coupling structure
signal coupling
dielectric layer
Prior art date
Application number
PCT/CN2023/126004
Other languages
English (en)
French (fr)
Inventor
张昆明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024093706A1 publication Critical patent/WO2024093706A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers

Definitions

  • the present application belongs to the field of radio frequency circuits, and specifically relates to a coupler, a coupling method, a device, an electronic device and a storage medium.
  • Microstrip directional coupler is a microwave/millimeter wave component commonly used for RF power sampling. It can be applied to power monitoring, source output power stabilization, signal source isolation, transmission and reflection frequency sweep test and other scenarios.
  • the directional coupler used for power sampling often adopts patch-type independent devices or microstrip interdigital couplers. Microstrip directional couplers can provide the coupling power required for feedback signals in RF transceiver systems, which is of great significance for the construction of base station equipment.
  • 5G Fifth Generation Mobile Communication Technology
  • the embodiments of the present application provide a coupler, a coupling method, an apparatus, an electronic device and a storage medium, which can solve the problem that the coupling degree of the coupler is poor and it is difficult to meet the high coupling requirements of the signal transceiver system for the directional coupler. Asking question.
  • an embodiment of the present application provides a coupler, comprising: a first dielectric layer, a first surface of which is provided with a signal transmission structure and a first signal coupling structure; a second dielectric layer, a first surface of the second dielectric layer is connected to a second surface of the first dielectric layer, and a second surface of the second dielectric layer is grounded; and a second signal coupling structure, the second signal coupling structure is arranged between the first surface of the second dielectric layer and the second surface of the first dielectric layer, and is used to increase the coupling capacitance between the first signal coupling structure and the signal transmission structure.
  • an embodiment of the present application provides a coupling method, the method comprising: receiving a signal to be coupled through a signal transmission structure; enhancing the coupling strength and directionality of a first signal coupling structure through a second signal coupling structure, wherein the second signal coupling structure is located below the signal transmission structure and the first signal coupling structure; and coupling the signal to be coupled through the first signal coupling structure.
  • an embodiment of the present application provides a coupling device, comprising: a receiving module, used to receive a signal to be coupled through a signal transmission structure; an adjustment module, used to enhance the coupling strength and directionality of a first signal coupling structure through a second signal coupling structure, wherein the second signal coupling structure is located below the signal transmission structure and the first signal coupling structure; and a coupling module, coupling the signal to be coupled through the first signal coupling structure.
  • an embodiment of the present application provides an electronic device, which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, wherein the program or instruction, when executed by the processor, implements the steps of the method described in the first aspect.
  • an embodiment of the present application provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • FIG1 is a schematic side view of a coupler provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a top view of a coupler provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a signal coupling principle provided in an embodiment of the present application.
  • FIG4 is a side view schematic diagram of another coupler provided in an embodiment of the present application.
  • FIG5 is an example diagram of a coupler signal sampling provided by an embodiment of the present application.
  • FIG6 is a schematic flow chart of a coupling method provided in an embodiment of the present application.
  • FIG7 is a schematic structural diagram of a coupling device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first”, “second”, etc. are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents a preceding and following relationship.
  • FIG1 is a schematic diagram of a side view of a coupler provided in an embodiment of the present application.
  • the coupler comprises:
  • a first dielectric layer 110 wherein a signal transmission structure 120 and a first signal coupling structure 130 are arranged on a first surface of the first dielectric layer 110; a second dielectric layer 140, wherein a first surface of the second dielectric layer 140 is connected to a second surface of the first dielectric layer 110, and a second surface of the second dielectric layer 140 is grounded; and a second signal coupling structure 150, wherein the second signal coupling structure 150 is arranged between the first surface of the second dielectric layer 140 and the second surface of the first dielectric layer 110, and is used to increase the coupling capacitance between the first signal coupling structure 130 and the signal transmission structure 120.
  • the coupler provided in the embodiment of the present application can be a coupler for coupling signals in a radio frequency system, or a coupler for coupling signals or performing signal power sampling in other signal transceiver systems.
  • the coupler includes a first dielectric layer 110, which can be a dielectric plate.
  • a signal transmission structure 120 and a first signal coupling structure 130 are arranged on the first surface of the first dielectric layer 110, wherein the signal transmission structure 120 can be a signal transmission microstrip line, and the first signal coupling structure 130 can be a coupling microstrip line.
  • the signal transmission structure 120 and the first signal coupling structure 130 are both microstrip lines, the problems of high cost of independent devices of the coupler, surface mounting only, and poor impedance matching of circuits of multi-board systems can be overcome when a printed circuit board (PCB) multi-layer board or multi-board is shared.
  • PCB printed circuit board
  • the use of microstrip lines can meet miniaturization design.
  • the signal transmission structure 120 can also be other structures or lines for signal transmission
  • the first signal coupling structure 130 can also be other structures or lines for signal coupling.
  • the signal transmission structure 120 and the first signal coupling structure 130 are not specifically limited herein.
  • the second surface of the first dielectric layer 120 is connected to the first surface of the second dielectric layer 140, that is, the first dielectric layer 120 and the second dielectric layer 140 are bonded together, the second surface of the second dielectric layer 140 is used for grounding, the second dielectric layer 140 can be a dielectric plate, and a second signal coupling structure 150 is arranged between the second surface of the first dielectric layer 110 and the second dielectric layer 140, wherein the second signal coupling structure can be a coupled microstrip line, and of course can also be other coupling structures or lines for coupling signals, and the second signal coupling structure is not specifically limited here.
  • FIG2 is a schematic diagram of a top view of the structure of a coupler provided in an embodiment of the present application.
  • a signal transmission structure 120 includes an input end 121 and an output end 122.
  • the input end 121 is used to receive an input signal
  • the output end 122 is used to output a signal.
  • a first signal coupling structure 130 includes a coupling end 131 and an isolation end 132.
  • the first signal coupling structure 130 can output the coupled signal from the coupling end 131, and the isolation end 132 is used to isolate the signal.
  • a signal to be coupled is input into the signal transmission structure 120 of the coupler through the input end 121.
  • the first signal coupling structure 130 can couple the signal in the signal transmission structure 120.
  • FIG3 is a schematic diagram of a signal coupling principle provided by an embodiment of the present application.
  • the principle of coupling the signal in the signal transmission structure 120 by the first signal coupling structure 130 is to couple through the inductive coupling capacitance (C i ) between the first signal coupling structure 130 and the signal transmission structure 120.
  • the second signal coupling structure 150 can increase the coupling capacitance between the first signal coupling structure 130 and the signal transmission structure 120.
  • the principle is that there is also an inductive coupling capacitance (C o ) between the second signal coupling structure 150 and the signal transmission structure 120, and there is also an inductive coupling capacitance (C m ) between the second signal coupling structure 150 and the first signal coupling structure 130. Then, the coupling inductive capacitance corresponding to the first signal coupling structure 130 is C i + C o + C m . In this way, the coupling inductive capacitance corresponding to the first signal coupling structure 130 and the ability of the first signal coupling structure 130 to distinguish signals are enhanced, thereby enhancing the coupling strength and directionality of the first signal coupling structure 130.
  • the coupler provided in the embodiment of the present application includes a first dielectric layer 110, wherein a signal transmission structure 120 and a first signal coupling structure 130 are arranged on the first surface of the first dielectric layer 110; a second dielectric layer 120, wherein the first surface of the second dielectric layer 120 is connected to the second surface of the first dielectric layer 110, and the second surface of the second dielectric layer 120 is grounded; and a second signal coupling structure 150, wherein the second signal coupling structure 150 is arranged between the first surface of the second dielectric layer 120 and the second surface of the first dielectric layer 110, and is used to increase the coupling capacitance between the first signal coupling structure 140 and the signal transmission structure 130, and can further improve the coupling strength and directivity of the first signal coupling structure 140 without changing the original coupling spacing, thereby solving the problem of low coupling strength of the coupler and meeting the requirement of the signal transceiver system for high coupling degree.
  • the second signal coupling structure 150 is used to improve the coupling degree and directivity of the first signal coupling structure 140, and no other additional structures are provided, so that the coupler can meet the requirements of miniaturization design and reduce costs.
  • the signal transmission structure 130 and the first signal coupling structure 140 are both distributed on the first surface of the first dielectric layer 110, and there is no additional structure on the first surface, which ensures that the impedance of the coupler is consistent with the impedance of the overall system circuit routing, so that the overall system circuit has good impedance matching capability.
  • the width of the second signal coupling structure 150 is determined by the operating frequency band corresponding to the signal to be coupled.
  • the width of the second signal coupling structure 150 can be flexibly adjusted according to different application environments. Specifically, the width of the second signal coupling structure 150 can be determined by the working frequency band corresponding to the signal to be coupled, so as to achieve the coupling strength and directivity requirements required by any working frequency band. For example, increasing the width of the second signal coupling structure 150 can improve the coupling strength and directivity, and its working frequency band can be extended to the low frequency band; reducing the width of the second signal coupling structure 150 can reduce the coupling degree and directivity, and its working frequency band can be extended to the high frequency band, etc. In this way, the amplitude of adjusting the coupling strength and directivity of the first signal coupling structure 130 can be determined according to the working frequency band corresponding to the signal to be coupled to meet the working requirements.
  • the second signal coupling structure 150 is located on the first surface of the second dielectric layer 140 and below the signal transmission structure 120 and the first signal coupling structure 130 .
  • the second signal coupling structure 150 may be disposed on the first surface of the second dielectric layer 140 , and the second signal coupling structure 150 may be disposed below the signal transmission structure 120 and the first signal coupling structure 130 , so that the capacitance coupled by the first signal coupling structure 130 may be enhanced to the greatest extent, thereby enhancing the coupling strength and directionality of the first signal coupling structure 130 .
  • the number of the second dielectric layers 140 can be multiple, and the second signal coupling structure 150 can be set on the first surface of the multiple second dielectric layers 140, wherein the second signal coupling structure 150 is set on each second dielectric layer 140 where the second signal coupling structure 150 is required.
  • the number of structures 150 can be one or more, and the shape of the second signal coupling structure 150 can be circular, elliptical, a plurality of short branch types, etc., that is, the number of second dielectric layers 140, the number and shape of the second signal coupling structures 150 can be set as required, and are not specifically limited here.
  • FIG4 shows a side view structural schematic diagram of another coupler provided in an embodiment of the present application. As shown in FIG4, the coupler may include a first dielectric layer 110 and three second dielectric layers 140, and three second signal coupling structures 150 are arranged on the first surface of each second dielectric layer 140.
  • the inductive capacitance between the first signal coupling structure coupling 130 and the signal transmission structure 120 can be further enhanced as required, thereby further improving the coupling strength and directivity of the first signal coupling structure.
  • the plurality of second dielectric layers 140 include a first layer and a second layer, and one or more second signal coupling structures 150 are disposed on the first surface of the plurality of second dielectric layers 140, including:
  • One or more second signal coupling structures 150 are disposed on the first surface of the first layer, and the second surface of the first layer is grounded; one or more second signal coupling structures 150 are disposed on the first surface of the second layer, and the second surface of the second layer is connected to the first surface of the first layer.
  • multiple second dielectric layers 140 can form a multi-level structure.
  • the hierarchical structure formed by multiple second dielectric layers 140 includes a first layer and a second layer, which means that the number of second dielectric layers 140 is two, and one or more second signal coupling structures 150 can be arranged on the first surface of the first layer.
  • the second surface of the first layer can be grounded.
  • At least one or more second signal coupling structures 150 can also be arranged on the first surface of the second layer.
  • the second surface of the second layer can be connected to the first surface of the second layer to form a hierarchical structure.
  • the number of second dielectric layers 140 can also be greater than two.
  • the number of second dielectric layers 140 is not specifically limited herein.
  • connection method of multiple second dielectric layers 140 is the same as the connection method of the first layer and the second layer. In this way, by arranging the second dielectric layers 140 in multiple levels, the inductive capacitance between the first signal coupling structure coupling 130 and the signal transmission structure 120 can be further enhanced as required, thereby further improving the coupling strength and directionality of the first signal coupling structure.
  • the coupler further includes:
  • the first metal reference ground 160 is located on the second surface of the second dielectric layer 140 , and the second surface of the second dielectric layer 140 is connected to the second metal reference ground through the first metal reference ground 160 .
  • the second dielectric layer 160 can be grounded through the metal reference ground 160 , so that there is no potential difference at each grounding point of the second dielectric layer 160 , thereby ensuring the stability of the coupler.
  • FIG5 shows an example diagram of a coupler signal sampling provided by an embodiment of the present application.
  • the signal coupling process of the coupler provided by the example of the present application is described in detail below in conjunction with FIG5:
  • the input end 121 of the coupler signal transmission structure 120 is connected to the final-stage power amplifier 501 for receiving the signal output by the final-stage power amplifier 501.
  • the output end 122 of the signal transmission structure 120 is connected to the transmitting antenna system 502 for outputting the signal.
  • the coupling end 131 of the first signal coupling structure 130 is connected to the sampling system.
  • the signal transmission structure 120 receives the signal output by the final-stage power amplifier 501 and transmits the signal
  • the first signal coupling structure 130 couples the signal in the signal transmission structure 120
  • the second signal coupling structure 150 also couples the signal in the signal transmission structure 120.
  • the first signal coupling structure 130 additionally couples the signal in the second coupling structure 150. In this way, the coupling strength and directionality of the first signal coupling structure 130 are enhanced.
  • the first signal coupling structure 130 can transmit the coupled signal or signal power to the sampling system to complete the sampling.
  • FIG6 is a schematic flow chart of a coupling method provided in an embodiment of the present application. The method may be performed by a coupler, and the method includes the following steps:
  • Step 602 Receive a signal to be coupled via a signal transmission structure.
  • a signal transmission structure is provided in the coupler, through which the signal to be coupled can be transmitted.
  • the signal transmission structure can be a signal transmission microstrip line, or other structures or lines for signal transmission, wherein the signal transmission structure includes an input end and an output end, the input end is used to receive the signal to be coupled, and the output end is used to output the signal to be coupled.
  • Step 604 enhancing the coupling strength and directivity of the first signal coupling structure through the second signal coupling structure.
  • a second signal coupling structure may be pre-arranged below the signal transmission structure and the first signal coupling structure.
  • the second signal coupling structure may be located directly below the signal transmission structure and the first signal coupling structure.
  • the number of second signal coupling structures may be multiple, and multiple second signal coupling structures may be arranged in multiple layers below the signal transmission structure and the first signal coupling structure.
  • the shape of the second signal coupling structure may be circular, elliptical, or multiple short branch types, etc.
  • the second signal coupling structure may also couple the signal to be coupled in the signal transmission structure.
  • the first signal coupling structure may also couple the signal in the second signal coupling structure, thereby enhancing the coupling degree and directionality of the first signal coupling structure.
  • Step 606 coupling the signal to be coupled through the first signal coupling structure.
  • the first signal coupling structure may couple the signal to be coupled in the signal transmission structure, and after the second signal coupling structure couples the signal to be coupled in the signal transmission structure, the first signal coupling structure may also couple the signal to be coupled in the second signal coupling structure.
  • the coupling method provided in the embodiment of the present application receives the signal to be coupled through a signal transmission structure; enhances the coupling strength and directivity of the first signal coupling structure through a second signal coupling structure, wherein the second signal coupling structure is located below the signal transmission structure and the first signal coupling structure; couples the signal to be coupled through the first signal coupling structure, thereby improving the coupling strength and directivity of the first signal coupling structure, so that the signal coupled by the first signal coupling structure can meet the requirements of the signal transceiver system, solves the problem of low coupling strength of the coupler, and meets the requirements of the signal transceiver system for high coupling degree.
  • the coupling degree and directivity of the first signal coupling structure are improved, so that the coupler can meet the requirements of miniaturization design and reduce costs at the same time.
  • the step of enhancing the coupling strength and directivity of the first signal coupling structure by using the second signal coupling structure includes:
  • the coupling capacitance between the signal transmission structure and the first signal coupling structure is enhanced by the second signal coupling structure, so as to enhance the coupling strength and directivity of the first signal coupling structure.
  • the principle of the first signal coupling structure coupling the signal to be coupled in the signal transmission structure is to couple through the inductive coupling capacitance ( Ci ) between the first signal coupling structure and the signal transmission structure.
  • the coupling capacitance between the first signal coupling structure and the signal transmission structure can be increased through the second signal coupling structure.
  • the principle is that there is also an inductive coupling capacitance ( Co ) between the second signal coupling structure and the signal transmission structure, and there is also an inductive coupling capacitance ( Cm ) between the second signal coupling structure and the first signal coupling structure.
  • the coupling inductive capacitance corresponding to the first signal coupling structure is Ci + Co+ Cm .
  • the width of the second signal coupling structure is determined by the working frequency band corresponding to the signal to be coupled.
  • the width of the second signal coupling structure can be flexibly adjusted in advance according to different application environments. Specifically, the width of the second signal coupling structure can be determined by the working frequency band corresponding to the signal to be coupled, so as to achieve the coupling strength and directionality requirements required by any working frequency band. For example, increasing the width of the second signal coupling structure can improve the coupling strength and directionality, and its working frequency band can be extended to the low frequency band; reducing the width of the second signal coupling structure can reduce the coupling degree and directionality, and its working frequency band can be extended to the high frequency band, etc. In this way, the amplitude of adjusting the coupling strength and directionality of the first signal coupling structure can be determined according to the working frequency band corresponding to the signal to be coupled to meet the working requirements.
  • the circuit impedance of the signal transmission structure and the first signal coupling structure is the same as the circuit impedance of a system in which the signal transmission structure and the first signal coupling structure are located.
  • the dielectric layer where the signal transmission structure and the first signal coupling structure are located has no other structures attached, but a second signal coupling structure is arranged below the signal transmission structure and the first signal coupling structure, during signal coupling, it is ensured that the circuit impedance of the coupler is consistent with the circuit impedance of the overall system circuit routing, so that the entire system circuit has good impedance matching capability.
  • the coupling method provided in the embodiment of the present application can be performed by a coupling device.
  • the coupling device provided in the embodiment of the present application is described by taking the coupling device performing the coupling method as an example.
  • Fig. 7 is a schematic diagram of the structure of a coupling device according to an embodiment of the present application.
  • the coupling device 700 includes: a receiving module 710 , an adjusting module 720 and a coupling module 730 .
  • the receiving module 710 is used to receive the signal to be coupled through the signal transmission structure; the adjusting module 720 is used to enhance the coupling strength and directivity of the first signal coupling structure through the second signal coupling structure, wherein the second signal coupling structure is located below the signal transmission structure and the first signal coupling structure; the coupling module 730 couples the signal to be coupled through the first signal coupling structure.
  • the adjustment module 720 is used to enhance the coupling capacitance between the signal transmission structure and the first signal coupling structure through the second signal coupling structure, so as to enhance the coupling strength and directivity of the first signal coupling structure.
  • the width of the second signal coupling structure is determined by the working frequency band corresponding to the signal to be coupled.
  • the circuit impedance of the signal transmission structure and the first signal coupling structure is the same as the circuit impedance of a system in which the signal transmission structure and the first signal coupling structure are located.
  • the coupling device in the embodiment of the present application can be a device, or a component, integrated circuit, or chip in a terminal.
  • the device can be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device can be a mobile phone, a tablet computer, a laptop computer, a PDA, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook or a personal digital assistant (personal digital assistant, PDA), etc.
  • the non-mobile electronic device can be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television (television, TV), a teller machine or a self-service machine, etc., which is not specifically limited in the embodiment of the present application.
  • Network Attached Storage Network Attached Storage
  • the coupling device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android operating system, an iOS operating system, or other possible
  • the operating system is not specifically limited in the embodiments of the present application.
  • the coupling device provided in the embodiment of the present application can implement each process implemented in the method embodiment of Figure 6, and will not be described again here to avoid repetition.
  • an embodiment of the present application further provides an electronic device 800, including a processor 801 and a memory 802, and the memory 802 stores a program or instruction that can be run on the processor 801, and when the program or instruction is executed by the processor 801, it is implemented: receiving a signal to be coupled through a signal transmission structure; enhancing the coupling strength and directionality of the first signal coupling structure through a second signal coupling structure, wherein the second signal coupling structure is located below the signal transmission structure and the first signal coupling structure; and coupling the signal to be coupled through the first signal coupling structure.
  • the coupling capacitance between the signal transmission structure and the first signal coupling structure is enhanced by the second signal coupling structure, so as to enhance the coupling strength and directivity of the first signal coupling structure.
  • the width of the second signal coupling structure is determined by the working frequency band corresponding to the signal to be coupled.
  • the circuit impedance of the signal transmission structure and the first signal coupling structure is the same as the circuit impedance of a system in which the signal transmission structure and the first signal coupling structure are located.
  • the specific execution steps can refer to the various steps of the above coupling method embodiment, and can achieve the same technical effect. To avoid repetition, they will not be repeated here.
  • the electronic devices in the embodiments of the present application include: servers, terminals or other devices except terminals.
  • the above electronic device structure does not constitute a limitation on the electronic device.
  • the electronic device may include more or fewer components than shown in the figure, or combine certain components, or arrange the components differently.
  • the input unit may include a graphics processing unit (GPU) and a microphone
  • the display unit may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit includes at least one of a touch panel and other input devices.
  • the touch panel is also called Other input devices may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which will not be described in detail here.
  • the memory can be used to store software programs and various data.
  • the memory may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory may include a volatile memory or a non-volatile memory, or the memory may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory a flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • the processor may include one or more processing units; optionally, the processor integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned coupling method embodiment are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as ROM, RAM, magnetic disk or optical disk.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a disk, or an optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, or a network device, etc.

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

本申请公开了一种耦合器、耦合方法、装置、电子设备及存储介质,属于射频电路领域,所述耦合器包括:第一介质层,所述第一介质层的第一面上设置有信号传输结构和第一信号耦合结构;第二介质层,所述第二介质层的第一面连接所述第一介质层的第二面,所述第二介质层的第二面接地;第二信号耦合结构,所述第二信号耦合结构设置在所述第二介质层的第一面与所述第一介质层的第二面之间,用于增大所述第一信号耦合结构与所述信号传输结构之间的耦合电容。

Description

耦合器、耦合方法、装置、电子设备及存储介质
交叉引用
本发明要求在2022年11月04日提交中国专利局、申请号为202211375997.X、发明名称为“耦合器、耦合方法、装置、电子设备及存储介质”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于射频电路领域,具体涉及一种耦合器、耦合方法、装置、电子设备及存储介质。
背景技术
微带定向耦合器是一种常用于射频功率采样的微波/毫米波部件,可应用于功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等场景,目前,用于功率采样的定向耦合器常采用的是贴片式独立器件或微带交指耦合器,微带定向耦合器在射频收发系统中能够提供反馈信号所需的耦合功率,对于建设基站设备具有重要意义。目前在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)通信系统中,针对末级功率放大器(Power Amplifier,PA)与耦合器共腔体使用的场景等,要求耦合器需要具有高耦合度。
而现有的传统耦合器,在有限的面积和体积内,现有的传统耦合器具有耦合度差的问题,难以满足信号收发系统对定向耦合器高耦合的需求。
发明内容
本申请实施例提供一种耦合器、耦合方法、装置、电子设备及存储介质,能够解决耦合器耦合度差,难以满足信号收发系统对定向耦合器高耦合的需 求的问题。
第一方面,本申请实施例提供了一种耦合器,该耦合器包括:第一介质层,所述第一介质层的第一面上设置有信号传输结构和第一信号耦合结构;第二介质层,所述第二介质层的第一面连接所述第一介质层的第二面,所述第二介质层的第二面接地;第二信号耦合结构,所述第二信号耦合结构设置在所述第二介质层的第一面与所述第一介质层的第二面之间,用于增大所述第一信号耦合结构与所述信号传输结构之间的耦合电容。
第二方面,本申请实施例提供了一种耦合方法,该方法包括:用于通过信号传输结构接收待耦合信号;用于通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,所述第二信号耦合结构位于所述信号传输结构和第一信号耦合结构的下方;通过所述第一信号耦合结构对所述待耦合信号进行耦合。
第三方面,本申请实施例提供了一种耦合装置,该装置包括:接收模块,用于通过信号传输结构接收待耦合信号;调整模块,用于通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,所述第二信号耦合结构位于所述信号传输结构和第一信号耦合结构的下方;耦合模块,通过所述第一信号耦合结构对所述待耦合信号进行耦合。
第四方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
附图说明
图1是本申请实施例提供的一种耦合器的侧视结构示意图;
图2是本申请实施例提供的一种耦合器的俯视结构示意图;
图3是本申请实施例提供的一种信号耦合原理示意图;
图4是本申请实施例提供的另一种耦合器的侧视结构示意图;
图5是本申请实施例提供的一种耦合器信号采样示例图;
图6是本申请实施例提供的一种耦合方法的流程示意图;
图7是本申请实施例提供的一种耦合装置的结构示意图;
图8是本申请实施例提供的一种电子设备的结构示意图。
附图标记说明:
110-第一介质层、120-信号传输结构、130-第一信号耦合结构、140-第二
介质层、150-第二信号耦合结构、160-第一金属参考地。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的耦合器、耦合方法、装置、电子设备及存储介质进行详细地说明。
图1为本申请实施例提供的一种耦合器的侧视结构示意图。所述耦合器包括:
第一介质层110,所述第一介质层110的第一面上设置有信号传输结构120和第一信号耦合结构130;第二介质层140,所述第二介质层140的第一面连接所述第一介质层110的第二面,所述第二介质层140的第二面接地;第二信号耦合结构150,所述第二信号耦合结构150设置在所述第二介质层140的第一面与所述第一介质层110的第二面之间,用于增大所述第一信号耦合结构130与所述信号传输结构120之间的耦合电容。
具体的,本申请实施例提供的耦合器可以是用于射频系统中对信号进行耦合的耦合器,也可以是其他信号收发系统中对信号进行耦合或者进行信号功率采样的耦合器,如图1所示,耦合器包括第一介质层110,第一介质层110可以为介质板,第一介质层110的第一面上设置有信号传输结构120和第一信号耦合结构130,其中,信号传输结构120可以是信号传输微带线,第一信号耦合结构130可以是耦合微带线,信号传输结构120和第一信号耦合结构130均为微带线时能够克服印制电路板(Printed Circuit Board,PCB)多层板及多板材共用情况下,耦合器的独立器件成本高、只能表贴和多板材系统电路阻抗匹配较差的问题,并且,使用微带线能够满足小型化设计,当然信号传输结构120也可以是其他用于信号传输的结构或者线路,第一信号耦合结构130也可以是其他用于信号耦合的结构或者线路,在此不对信号传输结构120和第一信号耦合结构130进行具体限定。
第一介质层120的第二面与第二介质层140的第一面连接,即第一介质层120和第二介质层140贴合在一起,第二介质层140的第二面用于接地,第二介质层140可以为介质板,在第一介质层110的第二面与第二介质层140之间设置有第二信号耦合结构150,其中,第二信号耦合结构可以是耦合微带线,当然也可是其他用于耦合信号耦合结构或者线路,在此不对第二信号耦合结构作具体限定。
图2示出的是本申请实施例提供一种耦合器的俯视结构示意图,如图2所示,信号传输结构120包括输入端121和输出端122,输入端121用于接收输入的信号,输出端122用于输出信号,第一信号耦合结构130包括耦合端131和隔离端132,第一信号耦合结构130可以将耦合的信号从耦合度131进行输出,隔离端132用于隔离信号,如图2所示,待耦合信号通过输入端121输入到耦合器的信号传输结构120中,信号在信号传输结构120传输的过程中,第一信号耦合结构130可以对信号传输结构120中的信号进行耦合。
图3示出的是本申请实施例提供的一种信号耦合原理示意图,如图3所示,第一信号耦合结构130对信号传输结构120中的信号进行耦合的原理为通过第一信号耦合结构130和信号传输结构120之间的感应耦合电容(Ci)进行耦合,而本申请实施例中,在第二介质层140的第一面上设置第二信号耦合结构150之后,第二信号耦合结构150可以增大第一信号耦合结构130与信号传输结构120之间的耦合电容,其原理为第二信号耦合结构150和信号传输结构120之间也存在感应耦合电容(Co),第二信号耦合结构150和第一信号耦合结构130之间也存在感应耦合电容(Cm),那么第一信号耦合结构130对应的耦合感应电容的即为Ci+Co+Cm,这样,增强了第一信号耦合结构130对应的耦合感应电容和第一信号耦合结构130辨别信号的能力,进而增强了第一信号耦合结构130的耦合强度和方向性。
本申请实施例提供的耦合器,包括第一介质层110,第一介质层110的第一面上设置有信号传输结构120和第一信号耦合结构130;第二介质层120,第二介质层120的第一面连接第一介质层110的第二面,第二介质层120的第二面接地;第二信号耦合结构150,第二信号耦合结构150设置在第二介质层120的第一面与第一介质层110的第二面之间,用于增大第一信号耦合结构140与信号传输结构130之间的耦合电容,可以在不改变原有耦合间距的情况下,进而提高第一信号耦合结构140的耦合强度和方向性,解决了耦合器耦合强度低的问题,满足了信号收发系统对高耦合度的要求,通过设置 第二信号耦合结构150以实现提高第一信号耦合结构140的耦合度和方向性,不设置其他附加结构,使得耦合器能够满足小型化设计需求,同时能够降低成本,并且,信号传输结构130和第一信号耦合结构140均分布在第一介质层110的第一面上,在第一面上无附加结构,保证了耦合器的阻抗与整体系统电路走线阻抗保持一致,使的整体系统电路具有良好的阻抗匹配能力。
在一种实现方式中,所述第二信号耦合结构150的宽度由待耦合信号对应的工作频段决定。
第二信号耦合结构150的宽度可以根据不同的应用环境进行灵活地调整,具体的,第二信号耦合结构150的宽度可以由待耦合信号对应的工作频段决定,即可实现任意工作频段所需的耦合强度和方向性要求,例如增大第二信号耦合结构150的宽度可提高耦合强度和方向性,其工作频段可向低频段扩展;减小第二信号耦合结构150的宽度可降低耦合度和方向性,其工作频段可向高频段扩展等,这样,能够根据待耦合信号对应的工作频段确定调整第一信号耦合结构130耦合强度和方向性的幅度,满足工作需求。
在一种实现方式中,所述第二信号耦合结构150位于所述第二介质层140的第一面且位于所述信号传输结构120和所述第一信号耦合结构130的下方。
具体的,如图1所示,可以将第二信号耦合结构150设置在第二介质层140的第一面上,同时可以将第二信号耦合结构150设置在信号传输结构120和第一信号耦合结构130的下方,这样,可以最大程度地增强第一信号耦合结构130所耦合的电容,进而能够增强第一信号耦合结构130的耦合强度和方向性。
在一种实现方式中,所述第二介质层140的数量为多个,多个所述第二介质层140的第一面上设置有一个或多个所述第二信号耦合结构150。
具体的,在耦合器中,第二介质层140的数量可以为多个,在多个第二介质层140的第一面上,均可以设置第二信号耦合结构150,其中,每个需要设置第二信号耦合结构150的第二介质层140上,设置的第二信号耦合结 构150的数量可以为一个,也可以为个,并且,第二信号耦合结构150的形状可以为圆形、椭圆形、多个短枝节型等,即第二介质层140的数量、第二信号耦合结构150的数量和形状均可以按照需求进行设定,在此不作具体限定,作为一个示例,图4示出的是本申请实施例提供的另一种耦合器的侧视结构示意图,如图4所示,耦合器可以包括第一介质层110和三个第二介质层140,每个第二介质层140的第一面上均设置三个第二信号耦合结构150。
这样,通过设置多个第二介质层140和多个第二信号耦合结构150,可以根据需求进一步增强第一信号耦合结构耦合130与信号传输结构120之间的感应电容,从而进一步提升第一信号耦合结构的耦合强度和方向性。
在一种实现方式中,多个所述第二介质层140包括第一层和第二层,多个所述第二介质层140的第一面上设置有一个或多个所述第二信号耦合结构150,包括:
所述第一层的第一面上设置有一个或多个所述第二信号耦合结构150,所述第一层的第二面接地;所述第二层的第一面上设置有一个或多个所述第二信号耦合结构150,所述第二层的第二面与所述第一层的第一面连接。
具体的,多个第二介质层140可以形成多层级结构,例如多个第二介质层140形成的层级结构包括第一层和第二层,即表示第二介质层140的数量为两个,在第一层的第一面上可以设置一个或多个第二信号耦合结构150,第一层的第二面可以接地,在第二层的第一面上也可以至少一个或多个第二信号耦合结构150,第二层的第二面可以与第二层的第一面连接形成层级结构,当然,第二介质层140的数量也可以大于两个,在此不对第二介质层140的数量做具体限定,多个第二介质层140的连接方式与第一层和第二层的连接方式相同,这样,通过多层级设置第二介质层140,可以根据需求进一步增强第一信号耦合结构耦合130与信号传输结构120之间的感应电容,从而进一步提升第一信号耦合结构的耦合强度和方向性。
在一种实现方式中,所述耦合器还包括:
第一金属参考地160,所述第一金属参考地160位于所述第二介质层140的第二面,所述第二介质层140的第二面通过所述第一金属参考地160接第二金属参考地。
通过在第二介质层140的第二面设置金属参考地160,使得第二介质层160可以通过该金属参考地160进行接地,使得第二介质层160各个接地点均不存在电势差,保障了耦合器的稳定性。
图5示出是本申请实施例提供的一种耦合器信号采样示例图,下面结合图5,对本申请示例提供的耦合器的信号耦合过程进行详细说明:
如图5所示,耦合器信号传输结构120的输入端121与末级功率放大器501连接,用于接收末级功率放大器501输出的信号,信号传输结构120的输出端122与发射天线系统502连接,用于输出信号,第一信号耦合结构130的耦合端131与采样系统连接,在信号传输结构120接收到末级功率放大器501输出的信号并传输信号时,第一信号耦合结构130耦合信号传输结构120中的信号,第二信号耦合结构150也会耦合信号传输结构120中的信号,而第一信号耦合结构130会额外耦合第二耦合结构150中的信号,这样,增强了第一信号耦合结构130的耦合强度和方向性,同时,第一信号耦合结构130可以将耦合的信号或者信号功率输送至采样系统完成采样。
图6示出的是本申请实施例提供的一种耦合方法的流程示意图,该方法可以由耦合器执行,该方法包括如下步骤:
步骤602:通过信号传输结构接收待耦合信号。
具体的,在耦合器中设置有信号传输结构,通过该信号传输结构可以街道待耦合信号,该信号传输结构可以是信号传输微带线,也可以其他用于信号传输的结构或者线路,其中,该信号传输结构包括输入端和输出端,输入端用于接收待耦合信号,输出端用于输出待耦合信号。
步骤604:通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性。
具体的,在信号传输结构和第一信号耦合结构的下方可以预先设置第二信号耦合结构,第二信号耦合结构可以位于信号传输结构和第一信号耦合结构的正下方,第二信号耦合结构的数量可以为多个,多个第二信号耦合结构可以分多层设置在信号传输结构和第一信号耦合结构的下方,第二信号耦合结构的形状可以为圆形、椭圆形或者多个短枝节型等,在此,不对第二信号耦合结构的数量、形状和位于信号传输结构和第一信号耦合结构下方的位置作具体限定,在进行信号耦合时,第二信号耦合结构也可以耦合信号传输结构中的待耦合信号,这样,第一信号耦合结构除耦合信号传输结构中的信号之外,还可以耦合第二信号耦合结构中的信号,增强了第一信号耦合结构的耦合度和方向性。
步骤606:通过所述第一信号耦合结构对所述待耦合信号进行耦合。
具体的,第一信号耦合结构可以对信号传输结构中的待耦合信号进行耦合,在第二信号耦合结构耦合信号传输结构中的待耦合信号之后,第一信号耦合结构也可以耦合第二信号耦合结构中的待耦合信号。
本申请实施例提供的耦合方法,通过信号传输结构接收待耦合信号;通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,第二信号耦合结构位于信号传输结构和第一信号耦合结构的下方;通过第一信号耦合结构对待耦合信号进行耦合,能够提升第一信号耦合结构的耦合强度和方向性,使得第一信号耦合结构耦合的信号能够满足信号收发系统的要求,解决了耦合器耦合强度低的问题,满足了信号收发系统对高耦合度的要求,通过设置的第二信号耦合结构提高第一信号耦合结构的耦合度和方向性,使得耦合器能够满足小型化设计需求,同时能够降低成本。
在一种实现方式中,所述通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,包括:
通过所述第二信号耦合结构增强所述信号传输结构和所述第一信号耦合结构之间的耦合电容,以增强所述第一信号耦合结构的耦合强度和方向性。
具体的,第一信号耦合结构对信号传输结构中的待耦合信号进行耦合的原理为通过第一信号耦合结构和信号传输结构之间的感应耦合电容(Ci)进行耦合,而本申请实施例中,通过第二信号耦合结构可以增大第一信号耦合结构与信号传输结构之间的耦合电容,其原理为第二信号耦合结构和信号传输结构之间也存在感应耦合电容(Co),第二信号耦合结构和第一信号耦合结构之间也存在感应耦合电容(Cm),那么第一信号耦合结构对应的耦合感应电容的即为Ci+Co+Cm,这样,实际增强了第一信号耦合结构和信号传输结构之间的耦合感应电容和第一信号耦合结构辨别信号的能力,进而增强了第一信号耦合结构的耦合强度和方向性。
在一种实现方式中,所述第二信号耦合结构的宽度由所述待耦合信号对应的工作频段决定。
第二信号耦合结构的宽度可以预先根据不同的应用环境进行灵活地调整,具体的,第二信号耦合结构的宽度可以由待耦合信号对应的工作频段决定,即可实现任意工作频段所需的耦合强度和方向性要求,例如增大第二信号耦合结构的宽度可提高耦合强度和方向性,其工作频段可向低频段扩展;减小第二信号耦合结构的宽度可降低耦合度和方向性,其工作频段可向高频段扩展等,这样,能够根据待耦合信号对应的工作频段确定调整第一信号耦合结构耦合强度和方向性的幅度,满足工作需求。
在一种实现方式中,所述信号传输结构和所述第一信号耦合结构的电路阻抗与所述信号传输结构和所述第一信号耦合结构所在的系统的电路阻抗相同。
具体的,由于信号传输结构和第一信号耦合结构所在的介质层并未附加其他结构,而是在信号传输结构和第一信号耦合结构的下方设置第二信号耦合结构,因此,在信号耦合时,保证了耦合器的电路阻抗与整体系统电路走线的电路阻抗保持一致,使的整个系统电路具有良好的阻抗匹配能力。
需要说明的是,本申请实施例提供的耦合方法,执行主体可以为耦合装 置,或者该耦合装置中的用于执行耦合方法的控制模块。本申请实施例中以耦合装置执行耦合方法为例,说明本申请实施例提供的耦合装置。
图7是根据本申请实施例的耦合装置的结构示意图。如图7所示,耦合装置700包括:接收模块710、调整模块720和耦合模块730。
接收模块710,用于通过信号传输结构接收待耦合信号;调整模块720,用于通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,所述第二信号耦合结构位于所述信号传输结构和第一信号耦合结构的下方;耦合模块730,通过所述第一信号耦合结构对所述待耦合信号进行耦合。
在一种实现方式中,调整模块720,用于通过所述第二信号耦合结构增强所述信号传输结构和所述第一信号耦合结构之间的耦合电容,以增强所述第一信号耦合结构的耦合强度和方向性。
在一种实现方式中,所述第二信号耦合结构的宽度由所述待耦合信号对应的工作频段决定。
在一种实现方式中,所述信号传输结构和所述第一信号耦合结构的电路阻抗与所述信号传输结构和所述第一信号耦合结构所在的系统的电路阻抗相同。
本申请实施例中的耦合装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的耦合装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的 操作系统,本申请实施例不作具体限定。
本申请实施例提供的耦合装置能够实现图6的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例另提供一种电子设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,该程序或指令被处理器801执行时实现:通过信号传输结构接收待耦合信号;通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,所述第二信号耦合结构位于所述信号传输结构和第一信号耦合结构的下方;通过所述第一信号耦合结构对所述待耦合信号进行耦合。
在一种实现方式中,通过所述第二信号耦合结构增强所述信号传输结构和所述第一信号耦合结构之间的耦合电容,以增强所述第一信号耦合结构的耦合强度和方向性。
在一种实现方式中,所述第二信号耦合结构的宽度由所述待耦合信号对应的工作频段决定。
在一种实现方式中,所述信号传输结构和所述第一信号耦合结构的电路阻抗与所述信号传输结构和所述第一信号耦合结构所在的系统的电路阻抗相同。
具体执行步骤可以参见上述耦合方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括:服务器、终端或除终端之外的其他设备。
以上电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,例如,输入单元,可以包括图形处理器(Graphics Processing Unit,GPU)和麦克风,显示单元可以采用液晶显示器、有机发光二极管等形式来配置显示面板。用户输入单元包括触控面板以及其他输入设备中的至少一种。触控面板也称为 触摸屏。其他输入设备可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器可用于存储软件程序以及各种数据。存储器可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器可以包括易失性存储器或非易失性存储器,或者,存储器可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。
处理器可包括一个或多个处理单元;可选的,处理器集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述耦合方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如ROM、RAM、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种耦合器,其中,包括:
    第一介质层,所述第一介质层的第一面上设置有信号传输结构和第一信号耦合结构;
    第二介质层,所述第二介质层的第一面连接所述第一介质层的第二面,所述第二介质层的第二面接地;
    第二信号耦合结构,所述第二信号耦合结构设置在所述第二介质层的第一面与所述第一介质层的第二面之间,用于增大所述第一信号耦合结构与所述信号传输结构之间的耦合电容。
  2. 根据权利要求1所述的耦合器,其中,所述第二信号耦合结构的宽度由待耦合信号对应的工作频段决定。
  3. 根据权利要求1所述的耦合器,其中,所述第二信号耦合结构位于所述第二介质层的第一面且位于所述信号传输结构和所述第一信号耦合结构的下方。
  4. 根据权利要求1所述的耦合器,其中,所述第二介质层的数量为多个,多个所述第二介质层的第一面上设置有一个或多个所述第二信号耦合结构。
  5. 根据权利要求4所述的耦合器,其中,多个所述第二介质层包括第一层和第二层,所述多个所述第二介质层的第一面上设置有一个或多个所述第二信号耦合结构,包括:
    所述第一层的第一面上设置有一个或多个所述第二信号耦合结构,所述第一层的第二面接地;
    所述第二层的第一面上设置有一个或多个所述第二信号耦合结构,所述第二层的第二面与所述第一层的第一面连接。
  6. 根据权利要求1所述的耦合器,其中,所述耦合器还包括:
    第一金属参考地,所述第一金属参考地位于所述第二介质层的第二面,所述第二介质层的第二面通过所述第一金属参考地接第二金属参考地。
  7. 一种耦合方法,其中,包括:
    通过信号传输结构接收待耦合信号;
    通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,所述第二信号耦合结构位于所述信号传输结构和第一信号耦合结构的下方;
    通过所述第一信号耦合结构对所述待耦合信号进行耦合。
  8. 根据权利要求7所述的耦合方法,其中,所述通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,包括:
    通过所述第二信号耦合结构增强所述信号传输结构和所述第一信号耦合结构之间的耦合电容,以增强所述第一信号耦合结构的耦合强度和方向性。
  9. 根据权利要求7所述的耦合方法,其中,所述第二信号耦合结构的宽度由所述待耦合信号对应的工作频段决定。
  10. 根据权利要求7所述的耦合方法,其中,所述信号传输结构和所述第一信号耦合结构的电路阻抗与所述信号传输结构和所述第一信号耦合结构所在的系统的电路阻抗相同。
  11. 一种耦合装置,其中,包括:
    接收模块,用于通过信号传输结构接收待耦合信号;
    调整模块,用于通过第二信号耦合结构增强第一信号耦合结构的耦合强度和方向性,其中,所述第二信号耦合结构位于所述信号传输结构和第一信号耦合结构的下方;
    耦合模块,通过所述第一信号耦合结构对所述待耦合信号进行耦合。
  12. 一种电子设备,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求7-10任一项所述的耦合方法的步骤。
  13. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求7-10任一项所述的耦合方法的步骤。
PCT/CN2023/126004 2022-11-04 2023-10-23 耦合器、耦合方法、装置、电子设备及存储介质 WO2024093706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211375997.XA CN117996392A (zh) 2022-11-04 2022-11-04 耦合器、耦合方法、装置、电子设备及存储介质
CN202211375997.X 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093706A1 true WO2024093706A1 (zh) 2024-05-10

Family

ID=90889929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126004 WO2024093706A1 (zh) 2022-11-04 2023-10-23 耦合器、耦合方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN117996392A (zh)
WO (1) WO2024093706A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373533A (zh) * 2000-12-19 2002-10-09 三星电机株式会社 多层芯片定向耦合器
CN201556694U (zh) * 2009-11-20 2010-08-18 北京瑞夫艾电子有限公司 一种多层介质定向耦合器
US20150029159A1 (en) * 2013-07-25 2015-01-29 James D. Lyle System And Method For Using Signals Resulting From Signal Transmission In A Touch Sensor
CN216773484U (zh) * 2021-09-03 2022-06-17 深南电路股份有限公司 一种微带耦合器及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373533A (zh) * 2000-12-19 2002-10-09 三星电机株式会社 多层芯片定向耦合器
CN201556694U (zh) * 2009-11-20 2010-08-18 北京瑞夫艾电子有限公司 一种多层介质定向耦合器
US20150029159A1 (en) * 2013-07-25 2015-01-29 James D. Lyle System And Method For Using Signals Resulting From Signal Transmission In A Touch Sensor
CN216773484U (zh) * 2021-09-03 2022-06-17 深南电路股份有限公司 一种微带耦合器及电子装置

Also Published As

Publication number Publication date
CN117996392A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
DE102020210947A1 (de) Millimeterwellenantennen mit kontinuierlich gestapelten strahlungselementen
WO2020034712A1 (zh) 天线系统及移动终端
DE102019213594A1 (de) Elektronische Vorrichtungen mit Antennenmodulisolationsstrukturen
US10658764B2 (en) Feeding network of dual-beam antenna and dual-beam antenna
DE112018003622T5 (de) Mehrband-Millimeterwellen-Antennen-Arrays
US20190229403A1 (en) Antenna system and communication terminal
CN110854533B (zh) 天线模组和终端
WO2020034680A1 (zh) 天线系统及移动终端
CN105634627A (zh) 一种天线阵耦合校准网络装置及校准方法
WO2019187872A1 (ja) アンテナモジュール
CN212659663U (zh) 天线装置和电子设备
WO2020134467A1 (zh) 移动终端用天线系统、移动终端
CN112448129A (zh) 一种显示模组及电子设备
US10985468B2 (en) Half-patch launcher to provide a signal to a waveguide
DE102016109431A1 (de) Wellenleiterstruktur
WO2024093706A1 (zh) 耦合器、耦合方法、装置、电子设备及存储介质
KR102306512B1 (ko) 밀리미터파 신호를 위한 전송 라인 구조물
KR20200071426A (ko) 소형 버틀러 매트릭스 장치 및 이를 포함하는 빔포밍 안테나 장치
Ausordin et al. A compact 4× 4 butler matrix on double‐layer substrate
CN113659310A (zh) 天线装置和电子设备
US20230062082A1 (en) Antenna Apparatus and Electronic Device
US20230077615A1 (en) Antenna Apparatus, Electronic Device, and Decoupling Method for Antenna Apparatus
US11824249B2 (en) Transmission line structures for millimeter wave signals
CN214754162U (zh) 一种天线装置及终端
US11545752B1 (en) Vertical coupling structure for antenna feeds