WO2024093678A1 - 含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途 - Google Patents

含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途 Download PDF

Info

Publication number
WO2024093678A1
WO2024093678A1 PCT/CN2023/125229 CN2023125229W WO2024093678A1 WO 2024093678 A1 WO2024093678 A1 WO 2024093678A1 CN 2023125229 W CN2023125229 W CN 2023125229W WO 2024093678 A1 WO2024093678 A1 WO 2024093678A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
atom
room temperature
mmol
Prior art date
Application number
PCT/CN2023/125229
Other languages
English (en)
French (fr)
Inventor
赵桂龙
高召兵
吴青青
郑月明
孙利
田富云
何金燕
许海燕
陈玉婷
詹丽
金正盛
顾跃玲
程新强
张文博
张苑雯
Original Assignee
中科中山药物创新研究院
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科中山药物创新研究院, 中国科学院上海药物研究所 filed Critical 中科中山药物创新研究院
Publication of WO2024093678A1 publication Critical patent/WO2024093678A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/28Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/32Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings

Definitions

  • the present application belongs to the field of medicine. Specifically, the present application relates to a class of voltage-gated calcium ion channel ⁇ 2 ⁇ subunit ligands containing a polycyclic ⁇ -aminobutyric acid structure, a preparation method thereof, and a pharmaceutical composition containing the same and its use in medicine.
  • Chronic neuropathic pain is pain caused by nerve damage due to various reasons, such as long-term diabetes, certain viral infections, cancer, central nervous system damage, and the use of certain chemotherapy drugs.
  • Diabetic peripheral neuropathic pain (DPNP) and postherpetic neuralgia (PHN) are the two most common types of chronic neuropathic pain. If chronic neuropathic pain is not treated or is poorly treated, it will cause great pain to the patient's body, have a great negative impact on the patient's mood, and cause mental and psychological problems such as insomnia, anxiety, and depression, significantly reducing the patient's quality of life and placing a great burden on the family and society.
  • the main treatments for chronic neuropathic pain currently include three categories: antidepressants, anticonvulsants (anti-epileptic drugs) and analgesics.
  • Antidepressants used to treat chronic neuropathic pain can be roughly divided into tricyclic antidepressants and other antidepressants.
  • Tricyclic antidepressants include amitriptyline, maprotiline, clomipramine, doxepin, etc.
  • Tricyclic antidepressants have many side effects, such as anticholinergic effects (dry mouth, constipation, blurred vision, drowsiness, weight gain, etc.), central nervous system toxicity (inattention, epileptic seizures, abnormal social behavior, hallucinations, etc.) and cardiovascular system toxicity (hypotension, tachycardia, arrhythmia, etc.). There are many precautions for the combined use of this type of drug, and the drug interactions are relatively complex.
  • Other antidepressants are mostly selective serotonin and/or norepinephrine reuptake inhibitors, such as imipramine, paroxetine, fluoxetine, escitalopram, duloxetine, bupropion, venlafaxine, sertraline, etc.
  • Antiepileptic drugs used for the treatment of chronic neuropathic pain are mainly sodium ion channel and calcium ion channel drugs, such as gabapentin, pregabalin, lamotrigine, topiramate, carbamazepine, oxcarbazepine, sodium valproate, etc.
  • the dosage of gabapentin is very large, and it needs to be in the range of 1800-3600mg per day to have a good effect.
  • absorption saturation in the high-dose range and the onset is slow (it takes effect only after two weeks of oral administration).
  • Sodium ion channel blockers represented by lamotrigine and topiramate have many adverse reactions, such as rash, nausea and vomiting, dizziness and fatigue, blurred vision, and there are many precautions for combined use, and the drug interactions are also relatively complex.
  • Analgesics used for the treatment of chronic neuropathic pain include opioids, tramadol, tapentadol, etc. The mechanism of action of the latter two contains a considerable proportion of opioid mechanism. Opioids have a certain effect on neuropathy, but the effect is not strong, there are many side effects, and they are addictive.
  • pregabalin has a clinical efficacy of 26%-50% for postherpetic neuralgia at a dose of 150-600 mg per day (Dworkin, R.H.; et al. Neurology, 2003, 60(8), 1274-1283; Sabatowski, R.; et al. Pain, 2004, 109(1-2), 26-35.).
  • These very low clinical efficacy data reflect the dilemma of current marketed drugs in terms of therapeutic effect: there is currently no specific drug for this type of disease, and there is no simple treatment plan that can prevent or reverse neuropathic lesions or completely relieve pain.
  • the voltage-gated calcium channel ⁇ 2 ⁇ subunit is an important target for drugs to treat this disease.
  • Pregabalin one of the four drugs approved by the US FDA for diabetic peripheral neuropathy (pregabalin, duloxetine, fluoxetine and tapentadol), acts on this target (Field, M.J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17537-17542).
  • voltage-gated calcium channel ⁇ 2 ⁇ subunit ligand drugs such as gabapentin, pregabalin and mirogabalin
  • gabapentin an indication approved by the US FDA
  • anti-anxiety pregabalin, an indication approved by the European EMA
  • the present application discloses a ⁇ -aminobutyric acid derivative containing a multi-ring structure.
  • the compound has a strong inhibitory effect on the ⁇ 2 ⁇ subunit of human voltage-gated calcium ion channel when combined with [ 3 H] gabapentin, and can be used to prepare a therapeutic drug for chronic neuralgia, epilepsy and anxiety.
  • One object of the present application is to provide a voltage-gated calcium ion channel ⁇ 2 ⁇ subunit ligand having a general formula I, its chiral isomers and pharmaceutically acceptable salts thereof.
  • Another object of the present application is to provide a method for preparing the voltage-gated calcium ion channel ⁇ 2 ⁇ subunit ligand having the general formula I, its chiral isomers and pharmaceutically acceptable salts.
  • Another object of the present application is to provide the use of the compound of the above-mentioned general formula I, its chiral isomers and pharmaceutically acceptable salts thereof in the treatment of chronic neuropathic pain, epilepsy and anxiety.
  • Another object of the present application is to provide a pharmaceutical composition, which contains the compound of formula I, its chiral isomers and pharmaceutically acceptable salts thereof as active ingredients, and one or more pharmaceutically acceptable carriers, excipients, diluents or a combination thereof.
  • Another object of the present application is to provide the use of the above-mentioned pharmaceutical composition in the treatment of chronic neuropathic pain, epilepsy and anxiety.
  • the compound of the present invention having the general formula I has the following structural formula:
  • R1 and R2 are independently selected from H, halogen and C1 - C6 alkyl
  • Each of R 3 , R 4 , R 5 , and R 6 is independently selected from H, halogen, C 1 -C 6 alkyl, and C 1 -C 6 alkoxy; or R 3 , R 4 and the carbon atom to which they are attached together form a C 3 -C 6 cycloalkyl group, or R 5 , R 6 and the carbon atom to which they are attached together form a C 3 -C 6 cycloalkyl group;
  • R 7 , R 8 , R 9 and R 10 is independently selected from H, halogen and C 1 -C 6 alkyl;
  • the chemical bond between atoms can be a single bond or a double bond; when it represents a double bond, R 7 and R 9 are absent;
  • n are independently selected from 0, 1, 2, 3;
  • the C atom to which R 8 is connected and the adjacent C atom to which R 10 is connected can form a C 3 -C 6 cycloalkyl group together with R 8 and R 10 ;
  • the solid line and dotted line between the C atom connected to R8 and the adjacent C atom connected to R10 represent that the chemical bond between the C atom connected to R8 and the C atom connected to R10 can be a single bond or a double bond; when it represents a double bond, the corresponding R7 and R9 are absent.
  • R1 and R2 are independently selected from H and C1 - C3 alkyl
  • R 3 and R 4 are independently selected from H, halogen and C 1 -C 3 alkyl; or R 3 , R 4 and the C atom to which they are connected together form a cyclopropyl group;
  • R 7 , R 8 , R 9 , and R 10 are independently selected from H and C 1 -C 6 alkyl; or the C atom to which R 8 is connected and the C atom to which R 10 is connected together with R 8 and R 10 form a cyclopropyl group;
  • the solid line and the dotted line between the C atom to which R 8 is connected and the C atom to which R 10 is connected represent that the chemical bond between the C atom to which R 8 is connected and the C atom to which R 10 is connected may be a single bond or a double bond; when it represents a double bond, R 7 and R 9 represent absence;
  • R1 and R2 are independently selected from H or methyl
  • R 3 and R 4 are independently selected from H and methyl; or R 3 , R 4 and the C atom to which they are commonly connected form a cyclopropyl group;
  • R 7 , R 8 , R 9 , and R 10 are independently selected from H or methyl; or the C atom to which R 8 is connected and the C atom to which R 10 is connected, together with R 8 and R 10 , form a cyclopropyl group;
  • the solid line and the dotted line between the C atom to which R 8 is connected and the C atom to which R 10 is connected represent that the chemical bond between the C atom to which R 8 is connected and the C atom to which R 10 is connected may be a single bond or a double bond; when it represents a double bond, R 7 and R 9 represent absence;
  • R1 and R2 are independently selected from H or methyl
  • R 3 , R 4 and the C atom to which they are commonly connected form a cyclopropyl group
  • R 7 , R 8 , R 9 , and R 10 are independently selected from H or methyl;
  • R1 and R2 are independently selected from H or methyl
  • R 3 and R 4 are independently selected from H and methyl
  • R 7 and R 9 are independently selected from H or methyl; the C atom to which R 8 is connected and the C atom to which R 10 is connected together with R 8 and R 10 form a cyclopropyl group;
  • R1 and R2 are independently selected from H or methyl
  • R 3 and R 4 are independently selected from H and methyl
  • R 7 and R 9 are independently selected from H or methyl; the C atom to which R 8 is connected and the C atom to which R 10 is connected together with R 8 and R 10 form a cyclopropyl group;
  • ketone K reacts with phosphoacetate W1 in the presence of a base to undergo Wittig condensation to give ⁇ , ⁇ -unsaturated acetic acid Ester L-1
  • the base is selected from inorganic bases and organic bases, wherein R 11 and R 12 are selected from C 1 -C 6 alkyl groups; R 1 -R 10 , m and n are as defined above; L-1 is a mixture of two cis-trans geometric configurations.
  • L-1 is L-1-1
  • L-1-1 can be converted into L-1-2 using Simmons-Smith reaction or similar reaction
  • the C atom connected to R 8 and the C atom connected to R 10 in L-1-2 form a cyclopropyl group with R 8 and R 10
  • L-1-2 is a specific case of L-1.
  • L-1 undergoes Michael addition reaction with nitromethane in the presence of a base to obtain M-1.
  • the newly generated chiral center in M-1 is affected by the chiral center originated from K.
  • the configuration of the newly generated chiral center in M-1 is marked as R*.
  • the base is selected from various inorganic bases and organic bases.
  • M-1-1 The solid line and the dotted line between the C atom to which R 8 is connected and the C atom to which R 10 is connected represent that the chemical bond between the C atom to which R 8 is connected and the C atom to which R 10 is connected is a double bond;
  • M-1-2 The C atom to which R 8 is attached and the C atom to which R 10 is attached together with R 8 -R 10 form a cyclopropyl group;
  • M-1-3 The solid line and the dotted line between the C atom to which R 8 is connected and the C atom to which R 10 is connected represent that the chemical bond between the C atom to which R 8 is connected and the C atom to which R 10 is connected is a single bond.
  • M-1-1 is first reduced to the nitro group with iron powder to obtain P-1-1, and P-1-1 is hydrolyzed with an acid to obtain (R*)-I-1-1, (R*)-I-1-1 is a specific form of the compound having the general formula I described in the present application, and (R*)-I-1-1 reacts with an acid HA to obtain the corresponding salt (R*)-I-1-1 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-1-2 is hydrolyzed with an acid or base to obtain N-1-2, and N-1-2 is reduced to a nitro group by catalytic hydrogenation to obtain (R*)-I-1-2, (R*)-I-1-2 is a specific form of the compound having the general formula I described in the present application, (R*)-I-1-2 is reacted with an acid HA to obtain the corresponding salt (R*)-I-1-2 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-1-2 is first reduced to a nitro group by iron powder to obtain P-1-2, and P-1-2 is hydrolyzed to obtain (R*)-I-1-2 by acid hydrolysis of an ester bond, and (R*)-I-1-2 is a specific form of the compound having the general formula I described in the present application,
  • (R*)-I-1-2 reacts with an acid HA to obtain the corresponding salt (R*)-I-1-2 ⁇ HA, wherein the acid HA is selected from various inorganic acids and organic acids.
  • M-1-3 is hydrolyzed with an acid or base to obtain N-1-3, and N-1-3 is reduced to a nitro group by catalytic hydrogenation to obtain (R*)-I-1-3, (R*)-I-1-3 is a specific form of the compound having the general formula I described in the present application, (R*)-I-1-3 reacts with an acid HA to obtain the corresponding salt (R*)-I-1-3 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-1-3 is first reduced to a nitro group by iron powder to obtain P-1-3, and P-1-3 is also hydrolyzed with an acid to obtain (R*)-I-1-3, (R*)-I-1-3 is a specific form of the compound having the general formula I described in the present application, and (R*)-I-1-3 reacts with an acid HA to obtain the corresponding salt (R*)-I-1-3 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • ketone K undergoes Knoevenagel condensation reaction with nitromethane in the presence of a catalyst to obtain an ⁇ , ⁇ -unsaturated nitro compound L-2, wherein the catalyst is selected from various inorganic bases and organic bases.
  • L-2 is a mixture of two cis-trans geometric configurations.
  • L-2 undergoes a Michael-like addition reaction with acetate W2 in the presence of a strong base to obtain M-2.
  • the newly generated chiral center in M-2 is affected by the chiral center derived from K.
  • the configuration of the newly generated chiral center in M-2 is marked as S*.
  • the strong base is selected from tert-butyl lithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide and potassium bis(trimethylsilyl)amide.
  • R13 is selected from C1 to C6 alkyl, and S* and R* represent that the configurations of the marked chiral centers are opposite.
  • M-2-1 The solid line and the dotted line between the C atom to which R 8 is connected and the C atom to which R 10 is connected represent that the chemical bond between the C atom to which R 8 is connected and the C atom to which R 10 is connected is a double bond;
  • M-2-2 the C atom to which R 8 is attached and the C atom to which R 10 is attached, together with R 8 -R 10, form a cyclopropyl group;
  • M-2-3 The solid line and the dotted line between the C atom to which R8 is connected and the C atom to which R10 is connected represent that the chemical bond between the C atom to which R8 is connected and the C atom to which R10 is connected is a single bond.
  • (S*)-I-2-3 is a specific form of the compound having the general formula I described in the present application
  • (S*)-I-2-3 reacts with an acid HA to obtain the corresponding salt (S*)-I-2-3 ⁇ HA
  • the acid HA is selected from various inorganic acids and organic acids.
  • M-2-1 is first reduced to the nitro group with iron powder to obtain P-2-1, and P-2-1 is hydrolyzed with an acid to obtain (S*)-I-2-1, (S*)-I-2-1 is a specific form of the compound having the general formula I described in the present application, (S*)-I-2-1 reacts with an acid HA to obtain the corresponding salt (S*)-I-2-1 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-2-2 is hydrolyzed with an acid or base to obtain N-2-2, and N-2-2 is reduced to a nitro group by catalytic hydrogenation to obtain (S*)-I-2-2.
  • R*)-I-2-2 is a specific form of the compound having the general formula I described in the present application.
  • (S*)-I-2-2 reacts with an acid HA to obtain a corresponding salt (S*)-I-2-2 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-2-2 is first reduced to a nitro group by iron powder to obtain P-2-2, and P-2-2 is also hydrolyzed with an acid to obtain (S*)-I-2-2.
  • (S*)-I-2-2 is a specific form of the compound having the general formula I described in the present application.
  • (S*)-I-2-2 reacts with an acid HA to obtain a corresponding salt (S*)-I-2-2 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-2-3 is hydrolyzed with an acid or base to obtain N-2-3, and N-2-3 is simultaneously reduced to a nitro group by catalytic hydrogenation to obtain (S*)-I-2-3, (S*)-I-2-3 is a specific form of the compound having the general formula I described in the present application, (S*)-I-2-3 reacts with an acid HA to obtain a corresponding salt (S*)-I-2-3 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • M-2-3 is first reduced to a nitro group by iron powder to obtain P-2-3, and P-2-3 is also hydrolyzed to obtain (S*)-I-2-3 by acid hydrolysis of an ester bond,
  • (S*)-I-2-3 is a specific form of the compound having the general formula I described in the present application, (S*)-I-2-3 reacts with an acid HA to obtain a corresponding salt (S*)-I-2-3 ⁇ HA, and the acid HA is selected from various inorganic acids and organic acids.
  • a racemic intermediate ( ⁇ )-N-acid consisting of a pair of enantiomers with the same relative configuration in the above synthetic route is subjected to salt separation using suitable chiral base-A and chiral base-B in a suitable solvent to obtain precipitated salts (+)-N-acid ⁇ chiral base-A and (-)-N-acid ⁇ chiral base-B with sufficient optical purity, which are treated with dilute hydrochloric acid to remove chiral base-A and chiral base-B to obtain (+)-N-acid and (-)-N-acid, respectively.
  • (+)-N-acid and (-)-N-acid are respectively reduced to nitro groups by catalytic hydrogenation to obtain optically pure products (+)-IA and (+)-IA.
  • (+)-IA and (+)-IA are respectively a specific form of the compound having the general formula I described in the present application.
  • (+)-IA and (-)-IA are respectively reacted with acid HA to obtain the corresponding salts (+)-IA ⁇ HA and (-)-IA ⁇ HA, wherein the acid HA is selected from various inorganic acids and organic acids.
  • a racemic intermediate ( ⁇ )-P-NH2 consisting of a pair of enantiomers with the same relative configuration in the above synthetic route is subjected to salt separation using suitable chiral acid-A and chiral acid-B in a suitable solvent to obtain precipitated salts (+)-P-NH2 ⁇ chiral acid-A and (-)-P-NH2 ⁇ chiral acid-B with sufficient optical purity. Both are treated with aqueous sodium bicarbonate solution to remove chiral acid-A and chiral acid-B to obtain (+)-P-NH2 and (-)-P-NH2, respectively.
  • (+)-P-NH2 and (-)-P-NH2 are hydrolyzed with tert-butyl ester using acid to obtain optically pure products (+)-I-A1 and (-)-I-A1.
  • (+)-I-A1 and (+)-I-A1 are respectively a specific form of the compound having the general formula I described in the present application.
  • (+)-I-A1 and (-)-I-A1 react with acid HA to obtain corresponding salts (+)-I-A1 ⁇ HA and (-)-I-A1 ⁇ HA, respectively.
  • the acid HA is selected from various inorganic acids and organic acids.
  • K-1 can be synthesized according to the following method, K-1 is a specific form of the compound having the general formula K.
  • Compound R reacts with alcohol R 15 OH under acid catalysis to obtain compound S, wherein R 15 is selected from C 1 to C 6 alkyl.
  • Compound S reacts with metallic sodium and trimethylchlorosilane in a refluxing inert solvent (hydroxyketone condensation reaction), and the resulting product is hydrolyzed with acid to obtain compound T.
  • Compound T is treated with PPh 3 in refluxing CX 4 to obtain compound U-1, wherein X is selected from Cl, Br and I.
  • Compound U-1 is treated with Zn powder in an acidic medium to obtain compound K-1.
  • K-1 can be synthesized according to the following method: Compound CDE and compound Q-2 undergo Diels-Alder reaction to obtain compound K-1.
  • Compound ALE reacts with dichloroethylene ketone to obtain compound U-2, which can be prepared by reacting trichloroacetyl chloride with activated zinc powder or by reacting dichloroacetyl chloride with triethylamine.
  • U-2 is treated with Zn powder in an acidic medium to obtain compound K-2, which is a specific form of the compound having the general formula K.
  • K-1 is converted to K-4 using Simmons-Smith reaction.
  • K-3 and K-4 are respectively a specific form of the compound having the general formula K mentioned above.
  • halogen refers to a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • alkyl refers to a group derived from a branched or straight chain saturated aliphatic alkane with a specified number of carbon atoms by removing one hydrogen.
  • C 1-6 alkyl refers to C 1 , C 2 , C 3 , C 4 , C 5 , C 6 alkyl; specific examples include but are not limited to: methyl, ethyl, n-propyl, isopropyl, sec-butyl, 2-methylbutyl, 1,1-dimethylbutyl, etc.
  • alkoxy refers to an alkyl group defined herein connected to another group through an oxygen atom, i.e., "alkyl-O-". It includes “C 1-6 alkoxy” (structure is C 1-6 alkyl-O-), “C 1-4 alkoxy”, and specific examples include but are not limited to methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, etc.; preferably, the "alkoxy” described in the present application is C 1-4 alkoxy, more preferably C 1-3 alkoxy.
  • cycloalkyl refers to a saturated cyclic alkyl derived from a cycloalkane by removing a hydrogen atom.
  • the cycloalkyl includes "3-6 membered cycloalkyl” and "3-5 membered cycloalkyl".
  • the cycloalkyl is a monocyclic, saturated structure; specific examples include but are not limited to: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.
  • Pharmaceutically acceptable salts of the compounds of Formula I described herein include, but are not limited to, pharmaceutically acceptable salts formed by the compounds of Formula I and various inorganic bases, such as NaOH, KOH, Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Al(OH) 3 , etc., or inorganic carbonates, such as Na 2 CO 3 , K 2 CO 3 , MgCO 3 , CaCO 3 , SrCO 3 , etc., or organic bases, such as amino acids, etc., or inorganic acids, such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hydroiodic acid, etc., or organic acids, such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid, malic acid, citric acid, etc.
  • inorganic bases such as NaOH, K
  • the compound of formula I described in the present application can be prepared into a pharmaceutical composition together with one or more pharmaceutically acceptable excipients.
  • the pharmaceutical composition can be prepared into a solid oral preparation, a liquid oral preparation, an injection and other dosage forms.
  • the solid and liquid oral preparations include: tablets, dispersible tablets, sugar-coated tablets, granules, dry powders, capsules and solutions.
  • the injections include: small injections, large infusions, water injections for injection, freeze-dried powder injections for injection, etc.
  • the compounds of the present application exist in chiral isomers, such as enantiomers, diastereomers, racemic mixtures and other mixtures, all of which fall within the scope of the present application.
  • enantiomer refers to stereoisomers that are mirror images of one another.
  • diastereomer refers to stereoisomers that have two or more chiral centers and are not mirror images of each other.
  • (+) indicates that a compound is a racemic mixture, and the configuration in the chemical structure of the compound is a relative configuration.
  • (+) or (-) indicates that a compound is optically pure, and the optical rotation symbol indicates right-handed or left-handed, respectively, and the configuration in the chemical structure of the compound is an absolute configuration.
  • the chiral isomers of the compounds of the present application can be prepared by the chiral synthesis or chiral reagents according to the present application or other conventional techniques.
  • the separation of the optically pure compounds in the present application is usually completed by chiral resolution, using an optically pure chiral acid to form a salt with a racemic base and then crystallizing in a suitable solvent to obtain a salt of an optically pure base and a chiral acid, thereby achieving the purpose of separating the chiral compound.
  • optically pure means that the content of the isomer or enantiomer is greater than or equal to 90%, or greater than or equal to 95%, or greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • the absolute stereo configuration of the compound can be confirmed by conventional techniques in the art, such as single crystal X-ray diffraction, or by the chiral structure of the raw materials and the reaction mechanism of asymmetric synthesis.
  • the pharmaceutically or food-acceptable auxiliary materials are selected from: carriers, excipients, diluents, adhesives, fillers, disintegrants, lubricants, glidants, effervescent agents, flavoring agents, preservatives, and coating materials.
  • the excipient is a substance that is non-toxic, compatible with the active ingredient, and otherwise biologically suitable for use in an organism.
  • the choice of a specific excipient will depend on the mode of administration or the type and state of the disease used to treat a specific patient.
  • the excipient include, but are not limited to, conventional solvents, dispersants, suspending agents, surfactants, isotonic agents, thickeners, emulsifiers, stabilizers, hydrating agents, emulsification accelerators, buffers, absorbents, colorants, ion exchangers, release agents, coating agents, antioxidants, etc. in the pharmaceutical field.
  • the filler includes one or more combinations of lactose, dextrin, starch, pregelatinized starch, mannitol, sorbitol, calcium hydrogen phosphate, calcium sulfate, calcium carbonate, and microcrystalline cellulose;
  • the binder includes one or more combinations of sucrose, povidone, sodium carboxymethyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl cellulose, methylcellulose, polyethylene glycol, ethanol, and water;
  • the disintegrant includes one or more combinations of cross-linked povidone, cross-linked sodium carboxymethyl cellulose, low-substituted hydroxypropyl cellulose, sodium carboxymethyl cellulose, and effervescent disintegrants.
  • the compound of the general formula I described in the present application has a binding effect on the voltage-gated calcium ion channel ⁇ 2 ⁇ , and can be used as an effective ingredient for preparing a drug for treating chronic neuropathic pain, epilepsy and anxiety.
  • the activity of the compound of the general formula I described in the present application is verified at the in vitro level by inhibiting the human recombinant calcium ion channel Ca v 2.2/ ⁇ 3/ ⁇ 2 ⁇ -1 receptor expressed on CHO cells and [ 3 H] gabapentin in vitro, and at the in vivo level by the analgesic effect on the animal chronic pain model and the anti-epileptic effect on the animal epilepsy model.
  • the compound of the general formula I of the present application is effective within a fairly wide dosage range.
  • the daily dosage is about 1 mg-3000 mg/person, divided into one or several administrations.
  • the actual dosage of the compound of the general formula I of the present application can be determined by the doctor according to the actual situation of the patient.
  • FIG1 is a single crystal diffraction chemical structure (ORTEP diagram) of compound (+)-32-LAC;
  • FIG2 is a single crystal diffraction chemical structure (ORTEP diagram) of compound (+)-22-LAC;
  • Figure 3A is a mechanical pain threshold time course diagram of the efficacy evaluation results of compounds ( ⁇ )-I-7, ( ⁇ )-I-3 and ( ⁇ )-I-4 in a rat sciatic nerve branch injury model
  • Figure 3B is a graph of the area under the mechanical pain threshold-time curve of the efficacy evaluation results of compounds ( ⁇ )-I-7, ( ⁇ )-I-3 and ( ⁇ )-I-4 in a rat sciatic nerve branch injury model
  • Figure 4A is a mechanical pain threshold time course graph of the efficacy evaluation of compounds (-)-I-3, (+)-I-3, (-)-I-4 and (+)-I-4 in the rat sciatic nerve branch injury model
  • Figure 4B is a graph of the area under the mechanical pain threshold-time curve of the efficacy evaluation of compounds (-)-I-3, (+)-I-3, (-)-I-4 and (+)-I-4 in the rat sciatic nerve branch injury model;
  • FIG5 is a fitting curve diagram obtained by calculating the half effective dose ( ED50 ) of the compound for protecting animals in the maximum electric shock model of mice using the least square method (Graphpad Prism 5) of the administration dose-protection rate curve;
  • Figure 6 shows the anti-epileptic effects of compounds (+)-I-3 and (+)-I-4 in a mouse epilepsy model (maximal electroshock model (MES));
  • MES maximal electroshock model
  • Figure 7 is a graph showing the effects of compounds (+)-I-3 p-toluenesulfonate and (+)-I-4 p-toluenesulfonate on animal motor function as measured by the rotarod test.
  • High-resolution mass spectrometry was performed using electrospray ionization (ESI) technology on a Thermo Q Exactive Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Optical rotation was measured using an Anton Paar MCP4100 polarimeter.
  • ESI electrospray ionization
  • Drying solvents were prepared from the corresponding analytical grade solvents using standard drying methods.
  • the activated zinc powder was prepared as follows: dry CuSO 4 (40.00 g, 0.25 mol) was added to water (1 L) and stirred to dissolve. Zinc powder (600.00 g, 9.17 mol) was added, stirred at room temperature for 3-4 hours and filtered. The filter cake was washed with water (300 mL ⁇ 2) and acetone (750 mL ⁇ 2) in turn, and dried in a vacuum drying oven at 50°C (about 10 mmHg) for 24-48 hours.
  • Zinc powder (12.00 g, 0.18 mol) and glacial acetic acid (65 mL) were mixed and stirred, and a solution of freshly prepared compound ( ⁇ )-3 (6.00 g, 29 mmol) in glacial acetic acid (12 mL) was added dropwise under an ice-water bath. After the addition was complete, the reaction mixture was placed in an oil bath at 55°C and stirred for 2 h under N 2. TLC monitoring showed that the reaction was complete. The reaction mixture was cooled to room temperature and filtered.
  • Compound ( ⁇ )-I-1 is a specific form of the compound having the general formula I of the present application.
  • reaction solution was cooled to room temperature and filtered with diatomaceous earth.
  • Zinc powder (21.00 g, 0.32 mol) and glacial acetic acid (120 mL) were stirred and mixed, and then a solution of freshly prepared compound ( ⁇ )-9 (10.54 g, 52 mmol) in glacial acetic acid (25 mL) was added dropwise under ice-water cooling. After the addition was complete, the reaction mixture was placed in an oil bath at 55°C and stirred overnight under N2 . TLC monitoring showed that the reaction was complete. The reaction mixture was cooled to room temperature and filtered. The filtrate was diluted with water (400 mL) and extracted with CH2Cl2 (300 mL).
  • Step 5 Synthesis of compound ( ⁇ )-13 p-toluenesulfonate
  • Compound ( ⁇ )-I-2 is a specific form of the compound having the general formula I of the present application.
  • Zinc powder (8.00 g, 0.12 mol) and glacial acetic acid (40 mL) were stirred and mixed, and then a solution of freshly prepared compound ( ⁇ )-17 (4.40 g, 26 mmol) in glacial acetic acid (6 mL) was added dropwise at room temperature. After the addition was complete, the reaction mixture was stirred in an oil bath at 55°C for 1.5 h under N 2. TLC monitoring showed that the reaction was complete, and the reaction mixture was cooled to room temperature and filtered. The filtrate was diluted with ice water (150 mL) and extracted with CH 2 Cl 2 (70 mL ⁇ 2).
  • Compound ( ⁇ )-I-3 is a specific form of the compound having the general formula I of the present application.
  • Step 1 Synthesis of compound ( ⁇ )-22 p-toluenesulfonate
  • Step 2 Synthesis of compound ( ⁇ )-I-4 and its p-toluenesulfonate
  • the reaction solution was concentrated under reduced pressure on a rotary evaporator to obtain a brown oil, and CH 2 Cl 2 (20 mL) was added and concentrated again. The oil was dried with a vacuum oil pump until the solid was completely precipitated, which was ( ⁇ )-I-4. The solid was dissolved in CH 3 OH (2 mL), and EtOAc (4 mL) was added and stirred. Add p-TsOH ⁇ H 2 O (0.65 g, 3.4 mmol) to the reaction solution, stir and dissolve, a large amount of solid precipitates, continue stirring and slurrying at room temperature for 2 h.
  • Compound ( ⁇ )-I-4 is a specific form of the compound having the general formula I of the present application.
  • reaction solution was poured into ice water (100 mL) and extracted with CH 2 Cl 2 (50 mL ⁇ 2). The organic phases were combined, washed with 1 M HCl (100 mL) and saturated brine (100 mL) in sequence, dried (MgSO 4 ), filtered to remove the desiccant, and concentrated under reduced pressure on a rotary evaporator to obtain the crude product of compound ( ⁇ )-26. Yellow solid; 3.66 g; the product did not need to be characterized and was directly used in the next reaction.
  • t-BuOK (0.90g, 8.0mmol) was added to dry THF (10mL), stirred in an ice-water bath to form a suspension, and then tert-butyl diethylphosphonoacetate (1.70g, 6.7mmol) was added dropwise. After the addition was completed, the reaction was carried out in an ice-water bath for 40min, and a newly prepared solution of compound ( ⁇ )-27 (0.60g, 4.0mmol) in dry THF (5mL) was added dropwise. After the addition was completed, the mixture was stirred at room temperature for 1.5h.
  • Compound ( ⁇ )-I-5 is a specific form of the compound having the general formula I of the present application.
  • Step 1 Synthesis of compound ( ⁇ )-31 p-toluenesulfonate
  • Step 2 Synthesis of compound ( ⁇ )-I-6 and its p-toluenesulfonate
  • Compound ( ⁇ )-I-6 is a specific form of the compound having the general formula I of the present application.
  • Step 1 Synthesis of compound ( ⁇ )-32 p-toluenesulfonate
  • compound ( ⁇ )-32 p-toluenesulfonate (1.00 g, 2.3 mmol) was added to a saturated NaHCO 3 solution (200 mL), stirred to form a suspension, and extracted with EtOAc (100 mL). The organic phase was washed again with a saturated NaHCO 3 solution (200 mL), the organic phase was extracted and separated, and the aqueous phase was extracted with EtOAc (50 mL). The organic phases were combined, dried (MgSO 4 ), filtered to remove the desiccant, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a light yellow oily compound ( ⁇ )-32.
  • the 3,5-dinitrobenzoylated derivative of ( ⁇ )-32 is used as a reference substance for testing the optical purity of (-)-32 and (+)-32 after chiral acid separation of ( ⁇ )-32 in steps 2 and 3 by chiral HPLC.
  • 3,5-Dinitrobenzoylation Derivatization Synthesis of 3,5-dinitrobenzoylation derivative of compound (-)-32. Take the above white solid (0.1 g, 0.22 mmol) and add it to saturated NaHCO 3 solution (50 mL ⁇ 2) and stir, then extract it with EtOAc (25 mL ⁇ 2). Combine the organic phases, dry (MgSO 4 ), filter to remove the desiccant, and concentrate the filtrate under reduced pressure on a rotary evaporator to obtain a light yellow oil.
  • Step 4 Synthesis of compound (-)-I-3 and its p-toluenesulfonate
  • Compound (-)-I-3 is a specific form of the compound of the general formula I of the present application, and is also an optically pure compound of ( ⁇ )-I-3 that has the same relative configuration as ( ⁇ )-I-3 and has left-handed optical rotation.
  • Step 5 Synthesis of compound (+)-I-3 and its p-toluenesulfonate
  • Compound (+)-I-3 is a specific form of the compound of the general formula I of the present application, and is also an optically pure compound of ( ⁇ )-I-3 that has the same relative configuration as ( ⁇ )-I-3 and has right-handed optical rotation.
  • the absolute configuration of compound (+)-I-3 is determined by converting (S)-(+)-O-acetylmandelate salt of (+)-32, which has the same absolute configuration, into its lactam (+)-32-LAC, and using X-ray single crystal diffraction to determine the absolute configuration of (+)-32-LAC, which is the same as the absolute configuration of (+)-32. This method can indirectly determine the absolute configuration of (+)-I-3.
  • (+)-32-LAC (S)-(+)-O-acetylmandelate (1.00 g, 2.2 mmol) of (+)-32 with an ee value of 99.17% was added to a saturated NaHCO 3 solution (100 mL), stirred for 10 min, and then extracted with EtOAc (30 mL ⁇ 3). The organic phases were combined, washed with brine, dried (MgSO 4 ), filtered to remove the desiccant, and the filtrate was evaporated to dryness on a rotary evaporator. The obtained residue was dissolved in toluene (7 mL), heated and refluxed overnight, and TLC showed that the reaction was complete.
  • (+)-32-LAC single crystal Weigh 10 mg of (+)-32-LAC sample and dissolve it in CH 2 Cl 2 (1 mL), then add n-hexane (2 mL), shake well, filter, and put the filtrate into a small glass conical flask. After slowly evaporating at room temperature for 2-3 days, a single crystal suitable for X-ray diffraction is obtained. Take a single crystal with a size of 0.12 ⁇ 0.1 ⁇ 0.08 mm and diffract with Cu K ⁇ rays at 100.00 (10) K on a Rigaku XtaLAB Pro single crystal diffractometer. Use CrysAlisPro 1.171.39.33c (Rigaku OD, 2017) to collect diffraction data and perform data reduction. Use SHELXL program for structure analysis and refinement.
  • ( ⁇ )-22 p-toluenesulfonate (60.00 g, 0.14 mol) was added to saturated NaHCO 3 solution (600 mL ⁇ 2), stirred, and extracted with EtOAc (400 mL ⁇ 2). After the organic phases were combined, they were dried (MgSO 4 ), filtered to remove the desiccant, and concentrated under reduced pressure using a rotary evaporator to obtain compound ( ⁇ )-22. Yellow oil; 36 mL; The product did not need to be characterized and was directly used in the next step.
  • Triethylamine (0.6 mL) was added dropwise, and after the addition was complete, the reaction was allowed to react at room temperature for 1 h. TLC monitoring showed that the reaction was complete.
  • n-hexane (10 mL) was added to the above oily substance, and slurry was performed at room temperature for 1 h. The solid was collected by filtration and dried in vacuo to obtain the target product ( ⁇ )-22, a 3,5-dinitrobenzoylated derivative.
  • White solid 0.60 g (57%); melting point 118.9°C-119.8°C;
  • the 3,5-dinitrobenzoylated derivative of ( ⁇ )-22 is used as a reference substance for testing the optical purity of (-)-22 and (+)-22 after chiral acid separation of ( ⁇ )-22 in steps 2 and 3 by chiral HPLC.
  • the (R)-(-)-mandelate salt of (-)-22 (8.40 g, 20 mmol) was stirred with a mixed solvent of THF (40 mL)/isopropyl ether (40 mL), then moved to a 65°C oil bath for stirring, and the mixed solvent of THF (10 mL)/isopropyl ether (10 mL) was added dropwise. The system was slightly soluble and continued to stir for 30 min. The system was then placed at room temperature and stirred overnight. The solid was collected by suction filtration and dried with a vacuum oil pump to obtain a white solid (6.60 g, 16 mmol).
  • Step 4 Synthesis of compound (-)-I-4 and its p-toluenesulfonate
  • reaction solution was concentrated under reduced pressure on a rotary evaporator to obtain a brown oil, which was then concentrated again with CH 2 Cl 2 (20 mL).
  • the obtained oil was dried with a vacuum oil pump to obtain (-)-I-4.
  • the above (-)-I-4 was dissolved in CH 3 OH (2.5 mL), and then EtOAc (12 mL) was added and stirred thoroughly.
  • p-TsOH ⁇ H 2 O (1.40 g, 7.4 mmol) was added to the solution. After stirring and dissolving, a large amount of solid precipitated. Stirring was continued at room temperature for 1 hour.
  • Compound (-)-I-4 is a specific form of the compound of the general formula I of the present application, and is also an optically pure compound of ( ⁇ )-I-4 that has the same relative configuration as ( ⁇ )-I-4 and has left-handed optical rotation.
  • Step 5 Synthesis of compound (+)-I-4 and its p-toluenesulfonate
  • Compound (+)-I-4 is a specific form of the compound of the general formula I of the present application, and is also an optically pure compound of ( ⁇ )-I-4 that has the same relative configuration as ( ⁇ )-I-4 and has right-handed optical rotation.
  • the absolute configuration of compound (+)-I-4 is determined by converting (S)-(+)-mandelate salt of (+)-22, which has the same absolute configuration, into its lactam (+)-22-LAC, and using X-ray single crystal diffraction to determine the absolute configuration of (+)-22-LAC, which is the same as the absolute configuration of (+)-32. This method can indirectly determine the absolute configuration of (+)-I-4.
  • (+)-22-LAC (S)-(+)-mandelate salt (1.00 g, 2.4 mmol) of (+)-22 with an ee value of 98.34% was added to a saturated NaHCO 3 solution (100 mL), stirred for 10 min, and then extracted with EtOAc (30 mL ⁇ 3). The organic phases were combined, washed with brine, dried (MgSO 4 ), filtered to remove the desiccant, and the filtrate was evaporated to dryness on a rotary evaporator. The obtained residue was dissolved in toluene (7 mL), heated and refluxed overnight, and TLC showed that the reaction was complete.
  • Compound ( ⁇ )-I-7 is a specific form of the compound having the general formula I of the present application.
  • Zinc powder (2.06 g, 32 mmol) and glacial acetic acid (10 mL) were stirred and mixed, and then a solution of freshly prepared compound ( ⁇ )-41 (2.20 g, 9.2 mmol) in glacial acetic acid (5 mL) was added dropwise at room temperature. After the addition was completed, the reaction mixture was stirred overnight in an oil bath at 55°C under N2 . TLC monitoring showed that the reaction was complete, and the reaction mixture was cooled to room temperature and filtered. The filtrate was diluted with ice water (50 mL) and extracted with CH2Cl2 (40 mL ⁇ 2).
  • Compound ( ⁇ )-I-8 is a specific form of the compound having the general formula I of the present application.
  • Tetrabutylammonium bromide (32.64 g, 0.10 mol) was added to 50% NaOH aqueous solution (1.2 L) and stirred. The air in the reaction vessel was replaced with nitrogen (balloon) according to standard operation. Under an ice-water bath, freshly distilled cyclopentadiene (167.13 g, 2.5 mol) and 1,2-dichloroethane (250.50 g, 2.5 mol) were mixed evenly and then added dropwise to the reaction system (the reaction was exothermic, and the dropping speed was controlled to maintain the internal temperature at 30°C-40°C. During the dropping process, the color of the system gradually changed from colorless and transparent to dark reddish brown, and the system became viscous).
  • the reaction device was moved to an oil bath to maintain the internal temperature of the system at 30°C-40°C and stirred for 2 hours.
  • the reaction was stopped, the reaction solution was cooled to room temperature, poured into ice water (1.0 L), and extracted with n-pentane (300 mL ⁇ 2).
  • the organic phases were combined, washed with water (500 mL x 2), 1 M HCl (300 mL) and saturated brine (500 mL) in sequence, dried (MgSO 4 ), and filtered to remove the desiccant.
  • the filtrate was subjected to atmospheric distillation, and the fractions at 108°C-109°C were collected to obtain the target compound 46 (containing a certain amount of n-pentane).
  • Colorless transparent liquid 46.24 g (20%); 1 H NMR (CDCl 3 , 500 MHz) ⁇ : 6.50-6.52 (m, 2H), 6.11-6.13 (m, 2H), 1.65 (s, 4H).
  • the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a residue.
  • a mixed solvent of EtOAc (15 mL)/n-hexane (90 mL) was added to the residue, and stirring and slurrying were continued at room temperature for 1 h.
  • the solid was collected by filtration and dried with a vacuum oil pump to obtain the target compound ( ⁇ )-50. Brown solid; 20.34 g (68%); The product did not need to be characterized and was directly used in the next step.
  • the filtrate was concentrated under reduced pressure by a rotary evaporator, and a mixed solvent of EtOAc (30 mL)/n-hexane (60 mL) was added to the concentrated residue, and stirring was continued at room temperature for 1 h.
  • Zinc powder (8.50 g, 0.13 mol) and glacial acetic acid (40 mL) were stirred and mixed, and a solution of freshly prepared compound ( ⁇ )-51 (7.36 g, 38 mmol) in glacial acetic acid (30 mL) was added dropwise at room temperature. After the addition was completed, the reaction mixture was placed in an oil bath at 55°C and stirred overnight under N2 . TLC monitoring showed that the reaction was complete. The reaction mixture was cooled to room temperature and poured into ice water (100 mL), stirred, and filtered to remove the solid. The filtrate was extracted with EtOAc (80 mL ⁇ 3).
  • Step 10 Synthesis of compound ( ⁇ )-55 p-toluenesulfonate
  • Step 11 Synthesis of p-toluenesulfonate of compound ( ⁇ )-I-9
  • reaction solution was concentrated under reduced pressure on a rotary evaporator to obtain a brown oil, and then CH 2 Cl 2 (20 mL ⁇ 3) was added to concentrate several times, and then dried with a vacuum oil pump (a small amount of solid precipitated during the drying process), and then EtOAc (3 mL) was added to dissolve, and a solution prepared by dissolving p-TsOH ⁇ H 2 O (0.25 g, 1.3 mmol) in EtOAc (3 mL) was added dropwise to the reaction solution. The system gradually precipitated an off-white solid. After the addition was completed, the mixture was stirred at room temperature overnight.
  • Compound ( ⁇ )-I-9 is a specific form of the compound having the general formula I of the present application.
  • Compound ( ⁇ )-I-10 is a specific form of the compound having the general formula I of the present application.
  • Step 3 Synthesis of compound ( ⁇ )-60 p-toluenesulfonate
  • Step 4 Synthesis of compound ( ⁇ )-I-11 and its p-toluenesulfonate
  • Compound ( ⁇ )-I-11 is a specific form of the compound having the general formula I of the present application.
  • Compound ( ⁇ )-I-12 is a specific form of the compound having the general formula I of the present application.
  • the organic phases were washed with 10% sodium sulfite solution (200 mL) and saturated brine (200 mL ⁇ 3) in sequence, dried (MgSO 4 ), and filtered to remove the desiccant.
  • the filtrate was first fractionated at normal pressure to remove n-pentane (top temperature 36°C-38°C), and then distilled under reduced pressure to collect the fractions at 58°C-60°C/30 mmHg (the receiving bottle needed to be placed in liquid nitrogen for low-temperature protection) to obtain the target compound 63.
  • the reactor was placed in a 35°C oil bath and stirred for 2h, and dry n-hexane (50 mL) was added to allow it to be fully stirred, and the reaction was allowed to react overnight at room temperature. TLC monitoring showed that the reaction was complete. After the reaction solution was cooled to room temperature, it was poured into ice water (200 mL).
  • Zinc powder (3.23 g, 49 mmol) and glacial acetic acid (20 mL) were stirred and mixed, and then a solution of freshly prepared compound ( ⁇ )-67 (1.89 g, 9.9 mmol) in glacial acetic acid (5 mL) was added dropwise at room temperature. After the addition was completed, the reaction mixture was placed in an oil bath at 55°C and stirred overnight under N 2. TLC monitoring showed that the reaction was complete, and the reaction mixture was cooled to room temperature and filtered with diatomaceous earth.
  • the filtrate was diluted with CH 2 Cl 2 (200 mL), and then washed with water (200 mL ⁇ 3), saturated NaHCO 3 solution (200 mL) and saturated brine (200 mL) in sequence, dried (MgSO 4 ), and filtered to remove the desiccant.
  • Compound ( ⁇ )-I-13 is a specific form of the compound having the general formula I of the present application.
  • Example 1 Referring to the methods of Example 1 to Example 15, the compounds shown in the following table were synthesized.
  • Preparation process Crush and sieve the ( ⁇ )-I-3 sample for later use. Add the ( ⁇ )-I-3 sample, lactose, and pregelatinized starch according to the above formula and premix for 15 minutes. Add disodium hydrogen phosphate and polyvinyl pyrrolidone according to the formula and mix for 10 minutes. Add talcum powder according to the formula and mix for 30 minutes. Fill the mixed material into ( ⁇ )-I-3 capsules according to the specifications.
  • Preparation process ( ⁇ )-I-4 sample and pregelatinized starch are sieved separately and mixed thoroughly. Polyvinyl pyrrolidone solution is added, mixed, soft material is prepared, sieved, wet granules are prepared, and dried at 80°C. Sodium carboxymethyl starch, microcrystalline cellulose and magnesium stearate are sieved separately in advance, then added to the above granules, mixed evenly, and tableted.
  • Preparation process first add water for injection and (+)-I-3 sample, stir and dissolve, adjust the pH value to 5.0-7.0 with NaOH and hydrochloric acid, add 0.3g activated carbon, stir at room temperature for 30 minutes, filter with a microporous filter membrane, filter the filtrate, determine the solution concentration through central control, package at 5mL per ampoule, sterilize at 100° ⁇ for 30 minutes, and obtain the injection solution.
  • sucrose laurate is prepared into a 25% concentrated solution with 60° ⁇ ethanol for use. Weigh according to the prescription amount and mix thoroughly in fluidized state. Then add 25% sucrose laurate to make a soft material, dry at 55°C, and granulate with 20 mesh. Sieve the whole granules with 12 meshes, add silicon dioxide, aspartame and apple essence, and pack them after measuring the bag weight.
  • Preparation process Take 80mL of water for injection, add (+)-I-4 sample, mannitol and lactose, stir to dissolve, add 1mol/L citric acid and 1mol/L sodium hydroxide to adjust the pH to 5.0-7.0, and add water to 100mL. Add 0.5g of activated carbon, stir at 30°C for 20 minutes, remove carbon, filter and sterilize with a microporous filter membrane, and package the filtrate into 1mL per tube. After pre-freezing at -40° ⁇ for 5 hours, dry under reduced pressure for 12 hours (pressure ⁇ 20Pa) in a freezer. After the freeze-drying is completed, dry the sample for another 5 hours after the temperature reaches room temperature to obtain a white loose block, which is sealed.
  • Preparation process Dissolve the above formula amount of malic acid in 25mL purified water, add the formula amount of chitosan, stir thoroughly to dissolve all, take an appropriate amount of 1mol/L sodium bicarbonate solution and add it to the above solution for rapid neutralization, adjust the pH value of the chitosan solution to 5.0-7.0, and set aside.
  • ⁇ 2 ⁇ -1 is the subtype that mediates chronic neuropathic pain
  • ⁇ 2 ⁇ -2 is the subtype that mediates chronic neuropathic pain
  • ⁇ 2 ⁇ -3 is the subtype that mediates chronic neuropathic pain
  • the binding strength of a compound to ⁇ 2 ⁇ -1 is a direct indicator of its analgesic effect on chronic neuropathic pain (Calandre, E.P.; et al. Expert Rev. Neurother. 2016, 16, 1263-1277).
  • the binding strength of the compounds of the present application to the human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1 in vitro was basically operated according to the reported method (Gee, NS; et al. J. Biol. Chem. 1996, 271, 5768-5776; Marais, E.; et al. Mol. Pharmacol. 2001, 59, 1243-1248.).
  • the test uses CHO cells expressing the human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1.
  • I is the radioactivity corresponding to the co-incubation of the test compound and [ 3 H]gabapentin with the human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1,
  • I 0 is the radioactivity corresponding to the co-incubation of [ 3 H] gabapentin with the human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1, without adding the test compound to the incubation system.
  • I U is the radioactivity corresponding to 10 ⁇ M gabapentin and [ 3 H]gabapentin incubated simultaneously with human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1.
  • IC 50 concentration of the test compound that inhibits 50% of [ 3 H] gabapentin and human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1 is defined as IC 50 , and IC 50 is calculated using the above inhibition rate using nonlinear least squares regression analysis (MathIQ TM , ID Business Solutions Ltd., UK). The test results are shown in the following table:
  • the compound of the general formula I of the present application has good activity in binding to the human recombinant calcium channel Cav2.2/ ⁇ 3/ ⁇ 2 ⁇ -1, and can be used to prepare drugs for treating chronic neuropathic pain, epilepsy and anxiety.
  • Gamma-aminobutyric acid drugs acting on voltage-gated calcium channel ⁇ 2 ⁇ -1 ligands such as gabapentin and pregabalin, in addition to the analgesic effect of chronic neuropathic pain, also have anti-epileptic (pregabalin, indications approved by the US FDA) and anti-anxiety (pregabalin, indications approved by the European EMA) effects, and these effects are related to the binding of drugs and voltage-gated calcium channel ⁇ 2 ⁇ -1 ligands. Therefore, the compound of the present application having the general formula I The compound can also be used to prepare drugs for treating epilepsy and anxiety.
  • Example 29 Analgesic effect of the compound in a rat model of chronic neuropathic pain
  • the pharmacological efficacy of the representative compounds of the present application 30 mg/kg ( ⁇ )-I-7, ( ⁇ )-I-3 and ( ⁇ )-I-4 p-toluenesulfonate, was evaluated by oral gavage in the sciatic nerve branch injury (SNI) model of Sprague Dawley (SD) rats.
  • SNI sciatic nerve branch injury
  • the tibial nerve and common peroneal nerve were ligated and cut, and the sural nerve was retained and kept intact. After the operation, the wound was sutured in layers, and 25% ampicillin (1 mL/kg) was injected intraperitoneally to prevent infection, and routine care was performed. In the sham group (sham), only the sciatic nerve and its branches were exposed, and the nerves were not ligated or cut. The rest of the operations were the same as the model group.
  • the mechanical pain threshold of the surgical side of each animal was detected by Von-frey test fiber on the 1st, 3rd and 7th day after surgery.
  • the mechanical pain threshold detection method adopted the "up-and-down" method, and the stimulation intensity included 0.4, 0.6, 1, 2, 4, 6, 8, and 15g.
  • the test fiber vertically stimulated the center of the left hind foot of the rat, 6-8s each time, and 5s interval.
  • the pain response was manifested by the obvious withdrawal, licking or lifting of the foot by the animal during each test. Starting from the 11th day after surgery, the animals were placed in the experimental environment for adaptation, 15min per day, and 3 consecutive days.
  • the animals with successful modeling were randomly divided into 5 groups, with 8 animals in each group, and 7 animals in the sham operation group. After the animals were marked and weighed, each test drug and solvent (vehicle; 0.9% sodium chloride) were given by oral gavage, and the administration volume was 10 mL/kg. The mechanical allodynia reaction of the left hind foot was detected at 1h, 2h, 4h, 6h, 8h, 10h, and 24h after administration. Blind evaluation was adopted, and the detection method was the same as above. The area under the curve (AUC) of mechanical pain threshold-time was calculated using GraphPad Prism Version 8.0.1 software.
  • the maximum possible analgesic effects (%MPE) of the four positive drugs pregabalin, ( ⁇ )-I-7, ( ⁇ )-I-3 and ( ⁇ )-I-4 p-toluenesulfonate were 110.90%, 73.63%, 44.80% and 95.95%, respectively.
  • the results showed that the representative compounds of the present application ( ⁇ )-I-7, ( ⁇ )-I-3 and ( ⁇ )-I-4 p-toluenesulfonate at a dose of 30 mg/kg (as free base) all had certain analgesic effects in the SNI model and could be used to prepare drugs for the treatment of chronic neuropathic pain.
  • Example 30 Analgesic effect of the compound in a rat model of chronic neuropathic pain
  • the model construction method and mechanical pain threshold detection method are the same as Example 29.
  • Efficacy evaluation The specific detection method is the same as that in Example 29. On the 14th day after the animal surgery, each test compound was freshly prepared. Pregabalin 10 mg/kg dose was directly dissolved in 0.9% sodium chloride to form a solution of the required concentration.
  • the animals with successful modeling were randomly divided into 5 groups, with 6 animals in each group, and 5 animals in the sham operation group. After the animals were marked and weighed, they were given the drugs to be tested and the vehicle (5% PEG 400 + 95% (0.9% sodium chloride) by oral gavage, with a dosing volume of 10 mL/kg.
  • the mechanical hypersensitivity of the left hind foot was detected at 1 h, 2 h, 4 h, 6 h, 8 h, 10 h, and 24 h after administration. A blind test was adopted, and the detection method was the same as above.
  • the area under the curve (AUC) of the mechanical pain threshold-time and the maximum possible analgesic effect (MPE) were calculated in the same way as in Example 29.
  • the representative compounds of the present application (-)-I-3 p-toluenesulfonate, (+)-I-3 p-toluenesulfonate, (-)-I-4 p-toluenesulfonate and (+)-I-4 p-toluenesulfonate were administered orally at a dose of 10 mg/kg (as free base) to the mechanical allodynia of rats with sciatic nerve branch injury model, and the area under the mechanical pain threshold-time curve of the (+)-I-4 p-toluenesulfonate group was significantly higher than that of the vehicle control group, and its effect was significantly stronger than that of the 10 mg/kg positive drug pregabalin.
  • MPE maximum possible analgesic effect
  • Example 31 Antiepileptic effect of the compound in a mouse epilepsy model (maximal electroshock model (MES))
  • test groups such as solvent negative control, positive drug control group (pregabalin and gabapentin) and compounds of the present application.
  • mice were first fasted for 12 hours, and then given the compounds of the present application or control drugs according to their body weight, and then electrically stimulated to induce systemic tonic-clonic seizure behavior after a certain time interval (pregabalin for 2 hours, gabapentin for 1 hour, and compounds of the present application for 3 hours).
  • the YLS-9A electrophysiological stimulator (Shanghai Xinruan Information Technology Co., Ltd.) was used in the induced model, and the parameters were set to: configuration 8, stimulation voltage of 160V, and 90 waves.
  • When performing electrical stimulation wipe the ears of the mice with saline first, then use ear clip electrodes to give electrical stimulation once.
  • the hind limb tonic extension is used as the standard for epileptic seizure.
  • the animal has hind limb tonicity, it is considered to be unprotected by the drug, and if the animal does not have hind limb tonicity, it is considered to be protected by the drug. Observe and record the animal's response, and statistically calculate the obtained data to calculate the compound protection rate.
  • the half effective dose (ED 50 ) of the test compound for protecting animals was calculated by the least square method (Graphpad Prism 5) using the administration dose-protection rate curve. The fitting curve is shown in FIG5 .
  • the ED 50 of (+)-I-3 6.52 mg/kg
  • the ED 50 of (+)-I-4 21.51 mg/kg
  • the ED 50 of pregabalin 11.99 mg/kg.
  • Example 32 Antiepileptic effect of the compound in a mouse epilepsy model (6-Hz psychomotor seizure model)
  • test groups such as solvent negative control, positive drug control group (pregabalin and gabapentin) and the compound of the present application.
  • mice were first fasted for 12 hours, then given the compound of the present application or the control drug, and then after a certain time interval (2 hours for pregabalin, 1 hour for gabapentin, 1 hour for levetiracetam, and 3 hours for the compound of the present application), 6-Hz electrical stimulation was performed to induce epileptic seizure behavior.
  • 6-Hz electrical stimulation was performed to induce epileptic seizure behavior.
  • the mouse's neck was fixed by hand on the cage, the corneal electrode was moistened with saline, and gently touched to the bilateral cornea of the mouse, and the mouse was electrically stimulated with a foot-operated electric stimulator.
  • the stimulation parameters were 6-Hz, unidirectional square wave 32mA, wave width 0.2ms, and stimulation duration 3s.
  • a stopwatch was used to time the stimulation. If the seizure-like behavior of the mouse lasts for no more than 7 seconds after the end of the electrical stimulation, it is considered to be protected by the drug. If it lasts for more than 7 seconds, it is considered to be not protected by the drug.
  • the reaction of the animals is observed and recorded, and the data obtained are statistically analyzed to calculate the protection rate of the compound.
  • Example 33 Anti-epileptic effect of the compound in a mouse epilepsy model (subcutaneous injection of pentylenetetrazol model (sc-PTZ))
  • test groups such as solvent negative control, positive drug control group (pregabalin and gabapentin) and the compound of the present application.
  • the test drug and the control drug are dissolved in DMSO (5% v/v) + 10% 1,2-propylene glycol saline solution (95% v/v), and the administration method is intraperitoneal injection with a volume of 10mL/kg.
  • mice are first fasted for 12 hours, and then given the compound of the present application or the control drug, and then after a certain time interval (2 hours for pregabalin, 1 hour for gabapentin, and 3 hours for the compound of the present application), subcutaneous injection of pentylenetetrazol (PTZ) induces epileptic seizure behavior.
  • pentylenetetrazol (PTZ) was dissolved in saline and administered to mice by subcutaneous injection (10 mL/kg, dosage was 100 mg/kg). The mice were observed behaviorally for 1 hour after PTZ injection, and the number and latency of convulsions, clonic seizures, tonic seizures and death after PTZ injection were recorded.
  • mice Subcutaneous injection of pentylenetetrazol (PTZ) induces strong convulsive behavior in mice: in the solvent control group, 8/8 (100%) had generalized clonus, 6/8 (75%) had generalized tonic-clonic seizures, and 6/8 (75%) died.
  • the positive control pregabalin (PGB) had a tendency to reduce generalized clonus (100% ⁇ 62.5%), and significantly reduced the incidence of tonicity (75% ⁇ 12.5%) and mortality (75% ⁇ 12.5%).
  • (+)-I-3 p-toluenesulfonate had a tendency to reduce generalized clonus (100% ⁇ 60%), and significantly reduced the incidence of tonicity (75% ⁇ 0%) and mortality (75% ⁇ 0%).
  • (+)-I-4 p-toluenesulfonate had a tendency to reduce generalized clonus (100% ⁇ 60%), and also had a tendency to reduce the incidence of tonicity (75% ⁇ 20%) and mortality (75% ⁇ 30%).
  • Gabapentin (GBP) at this dose had no significant improvement on the incidence of convulsions and mortality.
  • the time from subcutaneous injection of pentylenetetrazol to the occurrence of different epilepsy-related phenomena for the representative compounds (+)-I-3 p-toluenesulfonate, (+)-I-4 p-toluenesulfonate and control drugs of the present application is defined as the latency of a certain stage.
  • the blood was placed in an EDTA-K 2 test tube and centrifuged at 11000rpm for 5min to separate the plasma and freeze it in a -20°C refrigerator.
  • concentration of the drug prototype was determined using a validated HPLC-ESI-MS method, and the pharmacokinetic parameters were calculated using WinNonLin. The results are shown in the table below:
  • test drugs were dissolved in DMSO (5% v/v) + 10% 1,2-propylene glycol saline solution (95% v/v) and administered by oral gavage with a dosing volume of 10 mL/kg.
  • a negative solvent control and a positive drug control group pregabalin (PGB), 10 mg/kg, 30 mg/kg were set up.
  • the experimental groups included (+)-I-3 p-toluenesulfonate 10 mg/kg (as free base), (+)-I-4 p-toluenesulfonate 10 mg/kg (as free base), (+)-I-3 p-toluenesulfonate 30 mg/kg (as free base) and (+)-I-4 p-toluenesulfonate 30 mg/kg (as free base).
  • Male SD rats weighing 200-250 g were selected, with 10 animals in each dosing group.
  • the rotarod detection equipment was the YLS-31A fatigue rotarod instrument (Shanghai Xinruan Information Technology Co., Ltd.), and the speed was set to Set to a uniform speed of 6rpm.
  • a screening test was first performed. The rat was placed on the rotating rod by pinching the tip of its tail. After it maintained balance on the rotating rod and walked with it, it was released. The number of times the rat fell in the next 1 minute was recorded and counted. Rats that fell 3 times in 1 minute were eliminated and not used for subsequent drug evaluation.
  • a drug evaluation experiment was performed. The rats were fasted for 8 hours before the experiment, and then a rotating rod test was performed as the pre-drug time point (BL).
  • the rotarod test is a classic experiment to measure the damage of compounds to animal motor function.
  • SD rats were used for preliminary acute toxicity testing after acclimation for one week.
  • the compounds were freshly prepared on the day of the test.
  • Pregabalin and ( ⁇ )-I-7 were directly dissolved in 0.9% sodium chloride to form a solution of the required concentration.
  • the solvent used for (+)-I-3 p-toluenesulfonate and (+)-I-4 p-toluenesulfonate was 5% PEG 400 + 95% (0.9% sodium chloride), that is, first dissolve in 5% PEG 400, then add 95% 0.9% sodium chloride solution, and vortex to fully dissolve. After marking and weighing, the animals were randomly divided into groups, with 2-4 animals in each group.
  • the animals were given each test compound and solvent (5% PEG 400 + 95% (0.9% sodium chloride)) by oral gavage, with a dosing volume of 10 mL/kg.
  • the clinical symptoms of each animal were observed and recorded at 0.5h, 1h, 2h, 4h, 6h, and 24h after administration.
  • the clinical symptom codes are as follows: 0 no abnormality, 1 mild tremor, 2 unsteady gait, 3 proneness, 4 startle reflex, 5 dyspnea, 6 loss of righting reflex, 7 closed eyelids, 8 tachypnea, and ⁇ animal death.
  • Another compound ( ⁇ )-I-7 was given by oral gavage at a dose of 300 mg/kg (based on free base), and it was found that each animal fell prone at 1h and 2h after administration, and two of the animals also had mild tremors. 24h after administration, the animals given ( ⁇ )-I-7, (+)-I-3 p-toluenesulfonate, and (+)-I-4 p-toluenesulfonate showed no obvious abnormalities, consistent with the animals in the vehicle control group.
  • test results show that the representative compound (+)-I-3 p-toluenesulfonate of the present application at a dose of 164.5 mg/kg (in terms of free base) and (+)-I-4 p-toluenesulfonate at a dose of 163.8 mg/kg (in terms of free base) in male rats did not show neurotoxicity when taken orally.
  • the representative compounds (+)-I-3 p-toluenesulfonate and (+)-I-4 p-toluenesulfonate of the present application have a wide safety window.
  • the representative compounds ( ⁇ )-I-7, (+)-I-3 p-toluenesulfonate and (+)-I-4 p-toluenesulfonate of the present application can cause animals to have obvious acute toxic reactions at a high dose of 300 mg/kg (in terms of free base), but no animal deaths occur.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及药物领域。具体地讲,本申请涉及一类通式I的含多环γ-氨基丁酸结构的电压门控钙离子通道α2δ亚基配体、其制备方法,以及其在治疗慢性神经疼痛、癫痫和焦虑方面的用途。

Description

含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途 技术领域
本申请属于药物领域。具体地讲,本申请涉及对一类含有多环γ-氨基丁酸结构的电压门控钙离子通道α2δ亚基配体、其制备方法,以及含有它们的药物组合物及其在医药上的用途。
背景技术
慢性神经疼痛(chronic neuropathic pain,CNP)是由各种原因引起的神经损伤导致的疼痛,如长期的糖尿病、某些病毒感染、癌症、中枢神经损伤、某些化疗药物使用等。糖尿病周围神经痛(diabetic peripheral neuropathic pain,DPNP)和带状疱疹后神经痛(postherpetic neuralgia,PHN)是两种最常见的慢性神经疼痛。慢性神经疼痛不治疗或者治疗不佳会给患者身体带来极大的痛苦,对患者情绪产生很大的负面影响,并引起失眠、焦虑、抑郁等精神心理问题,显著降低患者的生活质量并给家庭和社会造成很大的负担。
慢性神经疼痛目前的主要治疗药物有抗抑郁药、抗惊厥药(抗癫痫药)和镇痛药三类。用于慢性神经疼痛治疗的抗抑郁药大致可以分为三环类抗抑郁药和其他抗抑郁药物。三环类抗抑郁药包括阿米替林、马普替林、氯米帕明、多塞平等,三环类抗抑郁药副作用较多,如抗胆碱能作用(口干、便秘、视力模糊、嗜睡、体重增加等)、中枢神经系统毒性(注意力不集中、癫痫发作、社会行为异常、幻觉等)和心血管系统毒性(低血压、心动过速、心律失常等)。该类药物合并用药的注意事项很多,药物相互作用比较复杂。其他抗抑郁药物多为选择性5-羟色胺和/或去甲肾上腺素重摄取抑制剂,如丙咪嗪、帕罗西汀、氟西汀、艾司西酞普兰、度洛西汀、安非他酮、文拉法辛、舍曲林等。抗抑郁药物合并用药的注意事项也很多,药物相互作用也复杂,给临床用药和病人顺应性带来了很多挑战。用于慢性神经疼痛治疗的抗癫痫药物主要是钠离子通道和钙离子通道类药物,如加巴喷丁、普瑞巴林、拉莫三嗪、托吡酯、卡马西平、奥卡西平、丙戊酸钠等。加巴喷丁的使用剂量非常大,每日需要到1800-3600mg区间内才有较好的效果,高剂量区间存在吸收饱和现象,起效较慢(口服两周后才起效)。以拉莫三嗪和托吡酯等为代表的钠离子通道阻断剂不良反应较多,如皮疹、恶心呕吐、头晕乏力、视力模糊,且合并用药的注意事项很多,药物相互作用也比较复杂。用于慢性神经疼痛治疗的镇痛药物,包括阿片类和曲马多、他喷他多等,后两者的作用机制中包含相当大比例的阿片类作用机制。阿片类药物对神经疼痛有一定的效果,但是效果不强且副作用很多,并有成瘾性。有研究表明,度洛西汀60mg/天和120mg/天用于治疗糖尿病周围神经疼痛时,临床有效率分别只有49%和52%(Goldstein,D.J.;et al.Pain,2005,116(1-2),109-118.);加巴喷丁在每天使用量高达1800mg/天、2400mg/天和3600mg/天时,对带状疱疹后神经疼痛的临床有效率分别为32%、34%和43%(Rice,A.S.C.;et al.Pain,2001,94(2),215-224;Rowbotham,M.;et al.JAMA,1998,280(21),1837-1842.);普瑞巴林在每天150-600mg时,对带状疱疹后神经疼痛的临床有效率为26%-50%(Dworkin,R.H.;et al.Neurology,2003,60(8),1274-1283;Sabatowski,R.;et al.Pain,2004,109(1-2),26-35.),这些很低的临床有效率数据都反映出目前上市药物在治疗效果上的困境:该类疾病目前没有特效药物,尚无单纯的治疗方案可防止或逆转神经性病变或使疼痛完全缓解。
电压门控钙离子通道α2δ亚基是该疾病治疗药物的重要靶标,美国FDA批准用于糖尿病周围神经痛的四个药物中(普瑞巴林、度洛西汀、氟西汀和他喷他多)中的普瑞巴林即作用于该靶标(Field,M.J.;et al.Proc.Natl.Acad.Sci.U.S.A.2006,103,17537-17542)。电压门控钙离子通道α2δ亚基配体类药物,如加巴喷丁、普瑞巴林和米洛巴林(mirogabalin)除了用于慢性神经疼痛治疗外,还可以用于抗癫痫(普瑞巴林,美国FDA批准的适应症)和抗焦虑(普瑞巴林,欧洲EMA批准的适应症)。
本申请公开了一种含有多环结构的γ-氨基丁酸衍生物,该类化合物与[3H]加巴喷丁的结合对人电压门控钙离子通道α2δ亚基具有很强的抑制作用,可用于制备慢性神经疼痛、癫痫和焦虑的治疗药物。
发明内容
本申请的一个目的是提供一种具有通式I的电压门控钙离子通道α2δ亚基配体、其手性异构体以及它们药学上可接受的盐。
本申请的另一个目的是提供制备上述具有通式I的电压门控钙离子通道α2δ亚基配体、其手性异构体以及药学上可接受的盐的方法。
本申请的再一个目的是提供上述通式I的化合物、其手性异构体及其药学上可接受的盐在治疗慢性神经疼痛、癫痫和焦虑方面的应用。
本申请的再一个目的是提供一种药用组合物,其含有通式I的化合物、其手性异构体及其药学上可接受的盐作为有效成分,以及一种或多种药学上可接受的载体、赋形剂、稀释剂或其组合。
本申请的再一个目的是提供上述药用组合物在治疗慢性神经疼痛、癫痫和焦虑方面的应用。
现结合本申请的目的对本申请内容进行具体描述。
本申请具有通式I的化合物具有下述结构式:
其中,
R1和R2独立选自H、卤素和C1~C6的烷基;
每个R3、R4、R5、R6独立选自H、卤素、C1~C6的烷基和C1~C6的烷氧基;或者R3、R4和与它们共同连接的C原子组成C3~C6的环烷基,或者R5、R6和与它们共同连接的C原子组成C3~C6的环烷基;
每个R7、R8、R9、R10独立选自H、卤素和C1~C6的烷基;
原子之间的化学键可以是单键或双键;当其表示双键时,R7和R9表示不存在;
m和n独立选自0、1、2、3;
或者,当n>=1时,R8所连接的C原子和R10所连接的与其相邻的C原子可以与R8、R10一起组成C3~C6的环烷基;
当n>=1时,R8连接的C原子和R10连接的与其相邻的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键可以是单键或双键;当其表示双键时,对应的R7和R9表示不存在。
根据本申请,优选以下具有通式I的化合物,其手性异构体或其药学上可接受的盐,其中:
R1和R2独立选自H和C1~C3的烷基;
R3、R4独立选自H、卤素和C1~C3的烷基;或者R3、R4和与它们共同连接的C原子组成环丙基;
R7、R8、R9、R10独立选自H和C1~C6的烷基;或者R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基;
R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键可以是单键或双键;当其表示双键时,R7和R9表示不存在;
m=0;n=1。
根据本申请,更优选以下具有通式I的化合物,其手性异构体或其药学上可接受的盐,其中,
R1和R2独立选自H或甲基;
R3、R4独立选自H和甲基;或者R3、R4和与它们共同连接的C原子组成环丙基;
R7、R8、R9、R10独立选自H或甲基;或者R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基;
R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键可以是单键或双键;当其表示双键时,R7和R9表示不存在;
m=0;n=1。
根据本申请,更优选以下具有通式I的化合物,其手性异构体或其药学上可接受的盐,其中,
R1和R2独立选自H或甲基;
R3、R4和与它们共同连接的C原子组成环丙基;
R7、R8、R9、R10独立选自H或甲基;
m=0;n=1。
根据本申请,更优选以下具有通式I的化合物,其手性异构体或其药学上可接受的盐,其中,
R1和R2独立选自H或甲基;
R3、R4独立选自H和甲基;
R7、R9独立选自H或甲基;R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基;
m=0;n=1。
根据本申请,更优选以下具有通式I的化合物,其手性异构体或其药学上可接受的盐,其中,
R1和R2独立选自H或甲基;
R3、R4独立选自H和甲基;
R7、R9独立选自H或甲基;R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基;
m=0;n=1。
根据本申请,更优选以下化合物,
本申请所述具有通式I的化合物可以通过以下方法合成:
在一种典型的情况下,酮K与磷酰基乙酸酯W1在碱存在下发生Wittig缩合反应,得到α,β-不饱和乙酸 酯L-1,所述碱选自无机碱和有机碱,其中R11和R12选自C1~C6的烷基;R1~R10、m和n具有如上所述的定义;L-1是两种顺反几何构型的混合物。
当L-1中的R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键为双键时,L-1为L-1-1,此时L-1-1可以使用Simmons-Smith反应或者类似的反应转变为L-1-2,此时L-1-2中R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基,L-1-2为L-1的一种具体的情况。Simmons-Smith反应或者类似的反应包括含C=C双键的底物用CH2I2/Et2Zn、CH2I2/Et2Zn/三氟乙酸或者CH2I2/Cu-Zn处理得到环丙基的产物。
L-1与硝基甲烷在碱存在下发生Michael加成反应得到M-1,M-1中新生成的手性中心受到源自K中的手型中心的影响,为了与下述其他方法生成的对应位置手性中心的构型进行区分,此处M-1中新生成的手性中心的构型标记为R*,所述碱选自各种无机碱和有机碱。
对于M-1,可以分下列三种情况:
M-1-1:R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键为双键;
M-1-2:R8所连接的C原子和R10所连接的C原子与R8-R10组成环丙基;
M-1-3:R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键为单键。
对于M-1-1:M-1-1使用酸或者碱等水解其中的酯键,得到N-1-1,N-1-1使用催化加氢的方式同时还原硝基和C=C双键,得到(R*)-I-1-3,(R*)-I-1-3是本申请所述具有通式I的化合物的一种具体形式,(R*)-I-1-3与酸HA反应得到对应的盐(R*)-I-1-3·HA,所述的酸HA选自各种无机酸和有机酸。M-1-1先用铁粉还原硝基得到P-1-1,P-1-1用酸水解酯键得到(R*)-I-1-1,(R*)-I-1-1是本申请所述具有通式I的化合物的一种具体形式,(R*)-I-1-1与酸HA反应得到对应的盐(R*)-I-1-1·HA,所述的酸HA选自各种无机酸和有机酸。
对于M-1-2:M-1-2使用酸或者碱等水解其中的酯键,得到N-1-2,N-1-2使用催化加氢的方式还原硝基,得到(R*)-I-1-2,(R*)-I-1-2是本申请所述具有通式I的化合物的一种具体形式,(R*)-I-1-2与酸HA反应得到对应的盐(R*)-I-1-2·HA,所述的酸HA选自各种无机酸和有机酸。M-1-2先用铁粉还原硝基得到P-1-2,P-1-2用酸水解酯键也可以得到(R*)-I-1-2,(R*)-I-1-2是本申请所述具有通式I的化合物的一种具体形式,
(R*)-I-1-2与酸HA反应得到对应的盐(R*)-I-1-2·HA,所述的酸HA选自各种无机酸和有机酸。
对于M-1-3:M-1-3使用酸或者碱等水解其中的酯键,得到N-1-3,N-1-3使用催化加氢的方式还原硝基,得到(R*)-I-1-3,(R*)-I-1-3是本申请所述具有通式I的化合物的一种具体形式,(R*)-I-1-3与酸HA反应得到对应的盐(R*)-I-1-3·HA,所述的酸HA选自各种无机酸和有机酸。M-1-3先用铁粉还原硝基得到P-1-3,P-1-3用酸水解酯键也可以得到(R*)-I-1-3,(R*)-I-1-3是本申请所述具有通式I的化合物的一种具体形式,(R*)-I-1-3与酸HA反应得到对应的盐(R*)-I-1-3·HA,所述的酸HA选自各种无机酸和有机酸。
在另一种典型的情况下,酮K与硝基甲烷在催化剂存在下发生Knoevenagel缩合反应,得到α,β-不饱和硝基化合物L-2,所述催化剂选自各种无机碱和有机碱。L-2是两种顺反几何构型的混合物。
L-2与乙酸酯W2在强碱存在下发生类Michael加成反应得到M-2,M-2中新生成的手性中心受到源自K中的手型中心的影响,为了与上述L-1生成M-1的反应中生成的对应位置手性中心的构型进行区分,此处M-2中新生成的手性中心的构型标记为S*;所述强碱选自叔丁基锂、二异丙基氨基锂、双(三甲基硅烷基)氨基锂、双(三甲基硅烷基)氨基钠和双(三甲基硅烷基)氨基钾;所述R13选自C1~C6的烷基,所述S*和R*代表了所标记的手性中心的构型是相反的。
对于M-2,可以分下列三种情况:
M-2-1:R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键为双键;
M-2-2:R8所连接的C原子和R10所连接的C原子与R8-R10组成环丙基;
M-2-3:R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键为单键。
对于M-2-1:M-2-1使用酸或者碱等水解其中的酯键,得到N-2-1,N-2-1使用催化加氢的方式同时还原硝基和C=C双键,得到(S*)-I-2-3,(S*)-I-2-3是本申请所述具有通式I的化合物的一种具体形式,(S*)-I-2-3与酸HA反应得到对应的盐(S*)-I-2-3·HA,所述的酸HA选自各种无机酸和有机酸。M-2-1先用铁粉还原硝基得到P-2-1,P-2-1用酸水解酯键得到(S*)-I-2-1,(S*)-I-2-1是本申请所述具有通式I的化合物的一种具体形式,(S*)-I-2-1与酸HA反应得到对应的盐(S*)-I-2-1·HA,所述的酸HA选自各种无机酸和有机酸。
对于M-2-2:M-2-2使用酸或者碱等水解其中的酯键,得到N-2-2,N-2-2使用催化加氢的方式还原硝基,得到(S*)-I-2-2,(R*)-I-2-2是本申请所述具有通式I的化合物的一种具体形式,(S*)-I-2-2与酸HA反应得到对应的盐(S*)-I-2-2·HA,所述的酸HA选自各种无机酸和有机酸。M-2-2先用铁粉还原硝基得到P-2-2,P-2-2用酸水解酯键也可以得到(S*)-I-2-2,(S*)-I-2-2是本申请所述具有通式I的化合物的一种具体形式,(S*)-I-2-2与酸HA反应得到对应的盐(S*)-I-2-2·HA,所述的酸HA选自各种无机酸和有机酸。
对于M-2-3:M-2-3使用酸或者碱等水解其中的酯键,得到N-2-3,N-2-3使用催化加氢的方式同时还原硝基,得到(S*)-I-2-3,(S*)-I-2-3是本申请所述具有通式I的化合物的一种具体形式,(S*)-I-2-3与酸HA反应得到对应的盐(S*)-I-2-3·HA,所述的酸HA选自各种无机酸和有机酸。M-2-3先用铁粉还原硝基得到P-2-3,P-2-3用酸水解酯键也可以得到(S*)-I-2-3,(S*)-I-2-3是本申请所述具有通式I的化合物的一种具体形式,(S*)-I-2-3与酸HA反应得到对应的盐(S*)-I-2-3·HA,所述的酸HA选自各种无机酸和有机酸。
为了制备光学纯的最终产物I,可以使用具有相同相对构型的一对对映体构成的消旋的中间体来拆分。
在一种典型的实例中,上述合成路线中的一种具有相同相对构型的一对对映体构成的消旋的中间体(±)-N-酸在合适的溶剂中分别使用合适的手性碱-A和手性碱-B进行成盐拆分,得到沉淀性的具有足够光学纯度的盐(+)-N-酸·手性碱-A和(-)-N-酸·手性碱-B,两者分别经过稀盐酸处理除去手性碱-A和手性碱-B后,分别得到(+)-N-酸和(-)-N-酸。(+)-N-酸和(-)-N-酸分别使用催化加氢的方式还原硝基,得到光学纯的产物(+)-I-A和(+)-I-A。(+)-I-A和(+)-I-A分别是本申请所述具有通式I的化合物的一种具体形式。(+)-I-A和(-)-I-A分别与酸HA反应得到对应的盐(+)-I-A·HA和(-)-I-A·HA,所述的酸HA选自各种无机酸和有机酸。
在另一种典型的实例中,上述合成路线中的一种具有相同相对构型的一对对映体构成的消旋的中间体(±)-P-NH2在合适的溶剂中分别使用合适的手性酸-A和手性酸-B进行成盐拆分,得到沉淀性的具有足够光学纯度的盐(+)-P-NH2·手性酸-A和(-)-P-NH2·手性酸-B,两者分别经过碳酸氢钠水溶液处理除去手性酸-A和手性酸-B后,分别得到(+)-P-NH2和(-)-P-NH2。(+)-P-NH2和(-)-P-NH2分别使用酸水解叔丁酯,得到光学纯的产物(+)-I-A1和(-)-I-A1。(+)-I-A1和(+)-I-A1分别是本申请所述具有通式I的化合物的一种具体形式。(+)-I-A1和(-)-I-A1分别与酸HA反应得到对应的盐(+)-I-A1·HA和(-)-I-A1·HA,所述的酸HA选自各种无机酸和有机酸。
在一种典型的实例中,可以按照下列方法合成K-1,K-1是前述具有通式K的化合物的一种具体形式。化合物CDE与化合物Q-1发生Diels-Alder反应,得到化合物R,其中Z选自NH、O和S,R14选自H和C1~C6的烷基,或者-ZR14-R14Z-=O,此时化合物Q-1为顺丁烯二酸酐。化合物R在酸催化下与醇R15OH反应得到化合物S,R15选自C1~C6的烷基。化合物S在回流的惰性溶剂中与金属钠和三甲基氯硅烷反应(羟酮缩合反应),所得产物用酸水解得到化合物T。化合物T用PPh3在回流的CX4中处理,得到化合物U-1,其中X选自Cl、Br和I。化合物U-1在酸性介质中用Zn粉处理,得到化合物K-1。
在另一种典型的实例中,可以按照下列方法合成K-1。化合物CDE与化合物Q-2发生Diels-Alder反应,得到化合物K-1。
化合物ALE与二氯乙烯酮反应,得到化合物U-2,二氯乙烯酮可以由三氯乙酰氯与活化锌粉反应或者二氯乙酰氯与三乙胺反应制得。U-2在酸性介质中用Zn粉处理,得到化合物K-2,K-2是前述具有通式K的化合物的一种具体形式。
化合物K-1使用催化加氢将其中的C=C双键还原,得到化合物K-3。K-1使用Simmons-Smith反应转变为K-4,Simmons-Smith反应及其类似的反应包括含C=C双键底物用CH2I2/Et2Zn、CH2I2/Et2Zn/三氟乙酸或者CH2I2/Cu-Zn处理得到环丙基的产物。其中,K-3和K-4分别是前述具有通式K的化合物的一种具体形式。
本申请所述的“卤素”是指氟原子、氯原子、溴原子或碘原子。
本申请所述的“烷基”是指具有指定碳原子数的支链或直链饱和脂肪族烷烃去掉一个氢衍生的基团。例如“C1-6烷基”是指包括C1、C2、C3、C4、C5、C6烷基;具体实例包括但不限于:甲基、乙基、正丙基、异丙基、仲丁基、2-甲基丁基、1,1-二甲基丁基等。
本申请所述的“烷氧基”是指本文所定义的烷基通过氧原子与其他基团相连,即“烷基-O-”。包括“C1-6烷氧基”(结构为C1-6烷基-O-)、“C1-4烷氧基”,具体实例包括但不限于甲氧基、乙氧基、丙氧基、1-甲基乙氧基、丁氧基、2-甲基丁氧基、3-甲基丁氧基、1,1-二甲基丙氧基、1,2-二甲基丙氧基等;优选地,本申请所述的“烷氧基”为C1-4烷氧基,更优选为C1-3烷氧基。
本申请所述的“环烷基”是指环烷烃去除一个氢原子衍生的饱和环状烷基。所述环烷基包括“3-6元环烷基”、“3-5元环烷基”。优选地,所述环烷基为单环的、饱和结构;具体实例包括但不限于:环丙基、环丁基、环戊基、环己基。
本申请所述具有通式I的化合物的药学上可接受的盐包括,但不限于通式I的化合物与各种无机碱,例如NaOH、KOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、Al(OH)3等,或无机碳酸盐,例如Na2CO3、K2CO3、MgCO3、CaCO3、SrCO3等,或有机碱,例如氨基酸等,或无机酸,例如盐酸、硫酸、硝酸、氢溴酸、氢碘酸等,或有机酸,例如甲磺酸、三氟甲磺酸、苯磺酸、对甲苯磺酸、三氟乙酸、苹果酸、柠檬酸等,所生成的药学上可接受的盐。
本申请所述具有通式I的化合物,可以与一种或多种药学上可接受的辅料共同制成药物组合物。该药物组合物可以制成固体口服制剂、液体口服制剂、注射剂等剂型。所述固体及液体口服制剂包括:片剂、分散片、糖衣剂、颗粒剂、干粉剂、胶囊剂和溶液剂。所述的注射剂包括:小针、大输液、注射用水针、注射用冻干粉针等。
本申请的化合物存在手性异构体,例如对映异构体、非对映异构体、外消旋混合物和其他混合物,所有这些混合物都属于本申请的范围之内。
术语“对映异构体”是指互为镜像关系的立体异构体。
术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
(±)表示某个化合物是外消旋混合物,此时该化合物化学结构中的构型是相对构型。(+)或者(-)表示某个化合物是光学纯的,旋光符号分别表示右旋或者左旋,此时该化合物化学结构中的构型是绝对构型。
本申请化合物的手性异构体可以通过上述根据本申请的手性合成或手性试剂或者其他常规技术制备。本申请中的光学纯化合物的分离通常是使用手性拆分完成的,采用光学纯的手性酸来与消旋的碱成盐后在合适溶剂中结晶得到光学纯的碱与手性酸的盐,达到分离手性化合物的目的。
术语“光学纯”是指该异构体或对映体的含量大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
化合物的绝对立体构型通过可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法,也可以通过原料的手性结构以及不对称合成的反应机理来确证化合物的绝对构型。
根据本申请的组合物,所述的药学或食品学上可接受辅料选自:载体、赋形剂、稀释剂、粘合剂、填充剂、崩解剂、润滑剂、助流剂、泡腾剂、矫味剂、防腐剂、包衣材料。
根据本申请的组合物,所述赋形剂是无毒性、与活性成分相容且其他方面生物学性质上适用于生物体的物质。特定赋形剂的选择将取决于用于治疗特定患者的给药方式或疾病类型和状态。所述赋形剂其实例包括但不限于:药学领域常规的溶剂、分散剂、助悬剂、表面活性剂、等渗剂、增稠剂、乳化剂、稳定剂、水合剂、乳化加速剂、缓冲剂、吸收剂、着色剂、离子交换剂、脱模剂、涂布剂、抗氧化剂等。所述填充剂包括乳糖、糊精、淀粉、预胶化淀粉、甘露醇、山梨醇、磷酸氢钙、硫酸钙、碳酸钙、微晶纤维素的一种或几种的组合物;所述的粘合剂包括蔗糖、聚维酮、羧甲基纤维素钠、羟丙甲纤维素、羟丙纤维素、甲基纤维素、聚乙二醇、乙醇、水的一种或几种的组合物;所述的崩解剂包括交联聚维酮、交联羧甲基纤维素钠、低取代羟丙基纤维素、羧甲纤维素钠、泡腾崩解剂的一种或几种的组合物。
本申请所述具有通式I的化合物具有电压门控钙离子通道α2δ的结合作用,可作为有效成分用于制备治疗慢性神经疼痛、癫痫和焦虑的药物。本申请所述具有通式I的化合物的活性在体外水平上是通过体外抑制表达在CHO细胞上的人重组钙离子通道Cav2.2/β3/α2δ-1受体与[3H]加巴喷丁来验证的,在体内水平上是通过在动物慢性疼痛模型上的镇痛作用和在动物癫痫模型上的抗癫痫作用来验证的。
本申请的具有通式I的化合物在相当宽的剂量范围内是有效的。例如每天服用的剂量约在1mg-3000mg/人范围内,分为一次或数次给药。实际服用本申请具有通式I的化合物的剂量可由医生根据患者的实际情况来决定。
附图说明
下面结合附图对本申请做进一步的说明,其中:
图1是化合物(+)-32-LAC的单晶衍射的化学结构(ORTEP图);
图2是化合物(+)-22-LAC的单晶衍射的化学结构(ORTEP图);
图3A是化合物(±)-I-7、(±)-I-3和(±)-I-4在大鼠坐骨神经分支损伤模型中的药效评价结果的机械痛阈时程图;图3B是化合物(±)-I-7、(±)-I-3和(±)-I-4在大鼠坐骨神经分支损伤模型中的药效评价结果的机械痛阈值-时间曲线下面积图;
图4A是化合物(-)-I-3、(+)-I-3、(-)-I-4和(+)-I-4在大鼠坐骨神经分支损伤模型中的药效评价的机械痛阈时程图;图4B是化合物(-)-I-3、(+)-I-3、(-)-I-4和(+)-I-4在大鼠坐骨神经分支损伤模型中的药效评价的机械痛阈值-时间曲线下面积图;
图5为化合物在小鼠最大电休克模型中对动物保护的半数有效剂量(ED50)采用给药剂量-保护率曲线以最小二乘法计算(Graphpad Prism 5)得到的拟合曲线图;
图6是化合物(+)-I-3、(+)-I-4在小鼠癫痫模型中的抗癫痫作用(最大电休克模型(MES));
图7是化合物(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐通过转棒试验(rotarod test)测量的化合物对动物运动机能的影响的曲线图。
具体实施方式
以下通过具体的实施例对本申请的内容作进一步详细的说明。需要说明的是,下述实施例仅是用于说明,而并非用于限制本申请。本领域技术人员根据本申请的教导所做出的各种变化均应在本申请权利要求所要求的保护范围之内。
熔点测量采用SGW X-4A显微熔点仪(上海仪电物理光学仪器有限公司,中国上海),温度计未校正。1H NMR和13C NMR由Bruker Ascend 500NMR谱仪(Bruker Swiss AG,瑞士)检测,使用CDCl3,DMSO-d6、CD3OD或D2O为溶剂,TMS(用于1H NMR)或氘代溶剂(用于13C NMR)碳信号的已知化学位移作为内标。高分辨质谱采用电喷雾电离(ESI)技术,用Thermo Q Exactive Plus质谱仪(Thermo Fisher Scientific,Bremen,德国)测试。旋光度使用Anton Paar MCP4100型旋光仪测定。
对映体过量(%ee)测定法(手性HPLC法):Daicel Chiralpak AS-RH 4.6mm×250mm色谱柱(5μm)在Agilent1260infinity II型液相色谱仪测定,检测器波长220nm,流动相为乙腈/0.1%KH2PO4-KOH缓冲溶液(pH=7.0)=70/30,流速1mL/min,进样样品浓度0.5mg/mL,进样量3μL。
单晶衍射测定法:Rigaku XtaLAB Pro单晶衍射仪,在100.00(10)K温度下以Cu Kα射线衍射,使用CrysAlisPro 1.171.39.33c(Rigaku OD,2017)收集衍射数据并进行数据还原,使用SHELXL程序进行结构的解析和精修。
干燥溶剂由对应的分析纯溶剂使用标准干燥方法制备。
实施例1化合物(±)-I-1的合成
步骤1:化合物(±)-3的合成
活化锌粉的制备,步骤如下:将干燥CuSO4(40.00g,0.25mol)加入水(1L)中搅拌,溶清。加入锌粉(600.00g,9.17mol),在室温下搅拌3-4小时并过滤。滤饼依次用水(300mL×2)和丙酮(750mL×2)洗涤,并在温度50℃的真空干燥箱中(约10mmHg)干燥24-48小时。
在N2的环境和冰水浴的条件下,依次将化合物2(14.00g,0.15mol)和活化锌粉(14.00g,0.21mol)加入干燥的四氢呋喃(140mL)中,搅拌。滴加三氯乙酰氯(12.00g,66mmol)的干燥四氢呋喃(20mL)溶液。滴加过程中体系放热,通过控制滴加速度使反应体系内温保持在35℃-40℃。滴加完毕后,保持反应体系维持内温35℃搅拌过夜。TLC监测显示反应完成,将反应液冷却至室温。用硅藻土助滤,取滤液在旋转蒸发仪上减压浓缩得到棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→9/91]纯化得到目标产物(±)-3。淡黄色油状物;6.00g;该产物不需要表征,直接用于下一步反应。
步骤2:化合物(±)-4的合成
将锌粉(12.00g,0.18mol)和冰醋酸(65mL)混合后,搅拌,冰水浴下滴加新配制的化合物(±)-3(6.00g,29mmol)的冰醋酸(12mL)溶液。滴加完毕后,在N2的环境下,将反应混合物置于55℃的油浴中搅拌2h。TLC监测显示反应完成。将反应混合物冷却至室温,过滤。滤液倒入冰水(350mL)中,用CH2Cl2(200mL×2)萃取,合并有机相后,用水(300mL×3)洗涤,干燥(MgSO4),过滤除去干燥剂,取滤液在旋转蒸发仪上减压浓缩得到棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-4。淡黄色油状物;3.00g(2→(±)-4合并收率15%);
1H NMR(CDCl3,500MHz)δ:3.08-3.10(m,1H),3.03(ddd,1H,J=3.8Hz,8.8Hz and 18.5Hz),2.53(dt,1H,J=3.5Hz and 18.5Hz),2.43-2.45(m,1H),2.39-2.41(m,1H),2.25-2.28(m,1H),1.58-1.65(m,1H),1.53-1.56(m,1H),1.46-1.53(m,1H),1.24-1.27(m,1H),1.18-1.24(m,1H),1.10-1.13(m,1H)。
13C NMR(CDCl3,126MHz)δ:213.08,68.21,50.44,39.70,37.41,32.62,31.38,28.46,26.87。
步骤3:化合物(±)-5的合成
在N2的环境下,将叔丁醇钾(t-BuOK)(3.8g,34mmol)加入干燥THF(25mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(7.00g,28mmol)。滴加完毕后,在冰水浴下反应40min,滴加新配制的化合物(±)-4(3.00g,22mmol)的干燥THF(10mL)溶液。滴加完毕后,室温反应2h,TLC监测显示反应完成。将反应液倒入水(200mL)中,用EtOAc(120mL×2)萃取,合并有机相后,干燥(MgSO4),过滤除去干燥剂,在旋转蒸发仪上减压浓缩得到深黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-5。淡黄色油状物;3.70g;该产物不需要表征,直接用于下一步反应。
步骤4:化合物(±)-6的合成
室温下,将(±)-5(3.70g,16mmol)溶于CH3NO2(22mL),搅拌,滴加1,8-二氮杂二环十一碳-7-烯(DBU)(4.80g,32mmol)。滴加完毕后,在N2的环境下,将反应混合物在65℃的油浴中搅拌过夜。TLC监测显示反应完成。反应液冷却至室温后倒入水(200mL)中,用CH2Cl2(150mL×2)萃取。合并有机相后,干燥(MgSO4), 过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-6。淡黄色油状物;3.80g((±)-4→(±)-6的合并收率58%);
1H NMR(CDCl3,500MHz)δ:4.74(dd,1H,J=1.0Hz and 11.5Hz),4.68(d,1H,J=11.5Hz),2.57(d,1H,J=17.0Hz),2.52(d,1H,J=17.0Hz),2.31-2.35(m,1H),2.12-2.13(m,1H),2.03-2.05(m,2H),1.99(ddd,1H,J=2.0Hz,9.0Hz and 14.0Hz),1.87-1.90(m,1H),1.57-1.61(m,1H),1.45-1.50(m,11H),1.29-1.32(m,1H),1.02-1.06(m,2H)。
13C NMR(CDCl3,126MHz)δ:170.83,82.52,81.10,48.40,39.78,37.97,37.43,36.35,35.03,34.25,32.03,28.88,28.23,27.52。
ESI-HRMS:(m/z)calcd.for C16H26NO4([M+H]+)296.1856,found:296.1852。
步骤5:化合物(±)-7的合成
将化合物(±)-6(1.70g,5.8mmol)溶于CH2Cl2(18mL)中,冰水浴下滴加三氟乙酸(TFA)(10mL),滴加完毕后,在室温下搅拌直到TLC监测显示反应完成(通常在2-4小时)。将反应液用旋转蒸发仪减压浓缩得到棕色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→17/33]纯化得到淡黄色油状物。在油状物中加入正己烷(1mL),超声波粉碎,析出固体,室温下搅拌1h后过滤,收集固体,干燥得到目标产物(±)-7。白色固体;1.00g(72%);熔点为93.7℃-95.5℃;
1H NMR(CDCl3,500MHz)δ:4.76(d,1H,J=12.0Hz),4.71(d,1H,J=12.0Hz),2.77(d,1H,J=18.0Hz),2.72(d,1H,J=18.0Hz),2.34-2.38(m,1H),2.15-2.16(m,1H),2.03-2.07(m,2H),1.99(ddd,1H,J=2.0Hz,8.5Hz and14.0Hz),1.86-1.88(m,1H),1.62(dd,1H,J=6.0Hz and 14.0Hz),1.48-1.52(m,2H),1.32-1.34(m,1H),1.02-1.08(m,2H)。
13C NMR(DMSO-d6,126MHz)δ:172.30,82.18,47.56,38.90,37.26,36.77,35.60,33.76,33.59,31.27,28.38,27.06。
ESI-HRMS:(m/z)calcd.for C12H18NO4([M+H]+)240.1230,found:240.1227。
步骤6:化合物(±)-I-1的合成
将(±)-7(1.00g,4.2mmol)溶于CH3OH(10mL)中,加入10%Pd(OH)2/C(0.27g),按照标准操作将反应容器中空气置换成氢气(气球),室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),反应混合物通过硅藻土助滤,滤液用旋转蒸发仪上减压浓缩,得到油状物残渣,加入EtOAc(10mL)搅拌,析出固体,室温下搅拌1h。过滤收集固体,干燥得目标产物(±)-I-1。白色固体;0.30g(34%);熔点为180.2℃-184.0℃;
1H NMR(CD3OD,500MHz)δ:3.04(s,2H),2.63(d,1H,J=16.0Hz),2.45(d,1H,J=16.0Hz),2.29-2.34(m,1H),2.21-2.22(m,2H),2.01-2.06(m,2H),1.86-1.87(m,1H),1.79(ddd,1H,J=2.0Hz,8.5Hz and 13.0Hz),1.49-1.55(m,3H),1.30-1.32(m,1H),1.03-1.07(m,2H)。
13C NMR(CD3OD+D2O(1drop),126MHz)δ:180.68,51.20,49.46,42.56,39.00,38.90,37.88,37.29,34.69,32.76,29.48,28.39。
ESI-HRMS:(m/z)calcd.for C12H20NO2([M+H]+)210.1489,found:210.1483。
化合物(±)-I-1是本申请具有通式I的化合物的一种具体形式。
实施例2化合物(±)-I-2的合成
步骤1:化合物(±)-9的合成
在N2的环境和冰水浴的条件下,依次将化合物8(42.00g,0.46mol)和活化锌粉(42.00g,0.64mol)加入干燥四氢呋喃(350mL)中,搅拌。滴加三氯乙酰氯(36.00g,0.20mol)的干燥四氢呋喃(150mL)溶液。滴加过程中反应体系放热,反应体系内温保持在32℃-38℃。滴加完毕后,维持反应体系内温34.5℃搅拌过夜。TLC监测显示反应完成。将反应液冷却至室温,用硅藻土助滤,滤液在旋转蒸发仪上减压浓缩得到的残余物,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/23]纯化得到目标产物(±)-9。淡黄色油状物;10.54g;该产物不需要表征,直接用于下一步反应。
步骤2:化合物(±)-10的合成
将锌粉(21.00g,0.32mol)和冰醋酸(120mL)搅拌混合后,冰水浴冷却下滴加新配制的化合物(±)-9(10.54g,52mmol)的冰醋酸(25mL)溶液。滴加完毕后,在N2的环境下,将反应混合物置于55℃的油浴中搅拌过夜。TLC监测显示反应完成。将反应混合物冷却至室温,过滤。滤液用水(400mL)稀释,CH2Cl2(300mL)萃取。依次用水(400mL×3)和饱和NaHCO3溶液(400mL)洗涤有机相,直到水相的pH>7,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/23]纯化得到目标产物(±)-10。淡黄色油状物;2.73g(8→(±)-10的合并收率4%);
1H NMR(CDCl3,500MHz)δ:6.29-6.31(m,1H),6.12-6.14(m,1H),3.05-3.08(m,2H),3.00-3.01(m,1H),2.84(ddd,1H,J=3.3Hz,9.0Hz and 19.3Hz),2.28-2.33(m,2H),1.54-1.56(m,1H),1.40-1.43(m,1H)。
13C NMR(CDCl3,126MHz)δ:211.83,139.86,136.19,66.31,45.70,44.17,43.18,41.06,30.28。
ESI-HRMS:(m/z)calcd.for C9H11O([M+H]+)135.0804,found:135.0803。
步骤3:化合物(±)-11的合成
在N2的环境下,将t-BuOK(4.52g,40mmol)加入干燥THF(90mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(10.16g,40mmol)。滴加完毕后,在冰水浴下反应1h,滴加新配制的化合物(±)-10(2.70g,20mmol)的干燥THF(30mL)溶液。滴加完毕后,室温搅拌过夜。TLC监测显示反应完成,将反应液倒入水(400mL)中,用EtOAc(300mL×3)萃取,合并有机相,用饱和盐水(300mL)洗涤,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到深黄色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/23]纯化得到目标产物(±)-11。淡黄色油状物;3.91g;该产物不需要表征,直接用于下一步反应。
步骤4:化合物(±)-12的合成
室温下,将(±)-11(3.91g,17mmol)溶于CH3NO2(40mL)中,搅拌,滴加DBU(7.76g,51mmol)。滴加完毕后,在N2的环境下,将反应混合物在50℃的油浴中搅拌过夜。TLC监测显示反应完成,将反应液冷却至室温后倒入水(250mL)中,用CH2Cl2(200mL×2)萃取。合并有机相后,干燥(MgSO4),过滤,滤液在旋转蒸发仪减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/23]纯化得到目标产物(±)-12。淡黄色油状物;3.06g((±)-10→(±)-12的合并收率52%)。
1H NMR(CDCl3,500MHz)δ:6.02-6.04(m,1H),5.99-5.01(m,1H),4.74(d,1H,J=11.5Hz),4.70(d,1H,J=11.5Hz),2.72-2.74(m,2H),2.55(s,2H),2.09-2.14(m,1H),2.04(ddd,1H,J=2.0Hz,8.5Hz and 13.5Hz),1.87-1.88(m,1H),1.71-1.73(m,1H),1.36-1.48(m,11H)。
13C NMR(CDCl3,126MHz)δ:170.87,136.29,136.18,82.78,81.22,44.44,43.34,41.94,41.90,36.16,34.70,32.56,30.46,28.24。
ESI-HRMS:(m/z)calcd.for C16H24NO4([M+H]+)294.1700,found:294.1693。
步骤5:化合物(±)-13对甲苯磺酸盐的合成
室温下,将化合物(±)-12(0.70g,2.4mmol)溶于EtOH(10mL)中,加入水(5mL)搅拌后,依次加入铁粉(0.67g,12mmol)和NH4Cl(0.26g,4.9mmol),按照标准操作将反应容器中空气置换成氮气(气球),置于85℃油浴搅拌6-7小时。TLC监测显示反应完成。将反应液冷却至室温,过滤。滤液用饱和NaHCO3溶液(100mL)洗涤,加入EtOAc(30mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到棕色油状残余物。室温下,加入EtOAc(8mL)稀释残余物,再加入p-TsOH·H2O(0.49g,2.6mmol)搅拌溶解后,将体系转移至冰水浴中搅拌,析出白色固体后,冰水浴下继续搅拌1h。过滤收集滤饼,用真空油泵干燥得到(±)-13的对甲苯磺酸盐。白色固体;0.66g(64%)。
1H NMR(DMSO-d6,500MHz)δ:7.75(brs,3H),7.48(d,2H,J=8.0Hz),7.11(d,2H,J=8.0Hz),6.03-6.05(m,1H),6.00-6.02(m,1H),3.04-3.08(m,2H),2.65-2.67(m,2H),2.43-2.44(m,2H),2.29(s,3H),1.98-2.02(m,1H),1.82(ddd,1H,J=1.8Hz,8.5Hz and 13.3Hz),1.41(s,9H),1.22-1.27(m,2H)。
13C NMR(DMSO-d6,126MHz)δ:170.40,145.70,137.63,135.92,135.89,128.06,125.50,80.33,47.12,43.51,42.79,41.55,41.32,34.16,33.97,31.69,29.31,27.78,20.79。
ESI-HRMS:(m/z)calcd.for C16H26NO2([M(游离碱)+H]+)264.1958,found:264.1953。
步骤6:化合物(±)-I-2的合成
室温下,将(±)-13对甲苯磺酸盐(0.66g,1.5mmol)与饱和NaHCO3溶液(100mL)搅拌20min(为混悬状态),加入EtOAc(30mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕色油状物后,将油状物溶于CH2Cl2(5mL)中。在冰水浴下,缓慢滴加TFA(2.5mL)。滴加完毕后,室温反应2h。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到黄色油状物。油状物用真空油泵干燥后固化,加入甲基叔丁基醚(5mL)室温碾碎和打浆30min,过滤收集固体,用真空油泵干燥,得到化合物(±)-I-2。白色固体;0.20g(64%);熔点为141.8℃-146.6℃;
1H NMR(CD3OD,500MHz)δ:6.02-6.05(m,2H),3.24(d,1H,J=13.0Hz),3.21(d,1H,J=13.0Hz),2.76-2.77(m,1H),2.70-2.71(m,1H),2.64(d,1H,J=17.0Hz),2.55(d,1H,J=16.5Hz),2.09-2.14(m,1H),1.89(ddd,1H,J=2.0Hz,8.5Hz and 13.5Hz),1.78-1.80(m,1H),1.73-1.75(m,1H),1.41(dd,1H,J=5.5Hz and 13.5Hz),1.35-1.38(m,1H)。
13C NMR(CD3OD,126MHz)δ:175.47,137.19,137.05,49.86,45.37,44.46,42.88,42.60,35.34,35.19,33.43,30.99。
ESI-HRMS:(m/z)calcd.for C12H18NO2([M+H]+)208.1332,found:208.1327。
化合物(±)-I-2是本申请具有通式I的化合物的一种具体形式。
实施例3化合物(±)-I-3的合成
步骤1:化合物15的合成
将化合物14(30.00g,0.18mol)溶于干燥CH3OH(300mL)中,再加入浓H2SO4(3mL),升温回流24h。TLC监测显示反应完成。将反应液冷却至室温,直接将反应液用旋转蒸发仪减压浓缩至其原体积的1/3后倒入冰水(400mL)中。所得混合物用CH2Cl2(300mL×2)萃取,合并有机相,用饱和NaHCO3溶液(400mL)洗涤,干燥(MgSO4),过滤除去干燥剂,用旋转蒸发仪减压浓缩得到目标化合物15。黄色油状物;37.00g(96%);1H NMR(CDCl3,500MHz)δ:6.26-6.27(m,2H),3.61(s,6H),3.29-3.30(m,2H),3.16-3.17(m,2H),1.47-1.49(m,2H),1.32-1.35(m,2H)。
步骤2:化合物(±)-16的合成
将金属钠(19.00g,0.83mol)加入到干燥甲苯(370mL)中,在N2的环境下,加热至钠完全熔融,维持内温103℃-106℃搅拌20min。搅拌下滴加化合物15(37.00g,0.18mol)和三甲基氯硅烷(TMSCl)(85.00g,0.78mol)的干燥甲苯(100mL)溶液。滴加过程体系放热,反应体系内温保持在103℃-106℃。滴加完毕后,保持反应体系维持内温103℃-106℃搅拌过夜。TLC监测显示反应完成,将反应液冷却至室温。用硅藻土助滤,滤液在旋转蒸发仪上减压浓缩得到棕色油状物。将油状物溶于THF(200mL)中,冰水浴下滴加1M HCl(20mL)。滴加完毕后,室温下反应0.5h。TLC监测显示反应完成,将反应液倒入水中(400mL),加入EtOAc(300mL×2)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/3]纯化得到目标产物(±)-16。白色固体;14.3g(54%);熔点为74.7℃-77.5℃;该产物不需要表征,直接用于下一步反应。
步骤3:化合物(±)-17的合成
将化合物(±)-16(5.00g,33mmol)溶于CCl4(60mL)中,搅拌状态下依次加入三苯基膦(10.00g,38mmol)和NaHCO3(0.40g,4.8mmol)。按照标准操作将反应器中空气置换成氮气(气球),置于75℃油浴中搅拌过夜。TLC监测显示反应完成,将反应液冷却至室温,过滤。滤液用旋转蒸发仪减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→9/91]纯化得到目标产物(±)-17。淡黄色油状物;4.40g;该产物不需要表征,直接用于下一步反应。
步骤4:化合物(±)-18的合成
将锌粉(8.00g,0.12mol)和冰醋酸(40mL)搅拌混合后,室温下滴加新配制的化合物(±)-17(4.40g,26mmol)的冰醋酸(6mL)溶液。滴加完毕后,在N2的环境下,将反应混合物在55℃的油浴中搅拌1.5h。TLC监测显示反应完成,将反应混合物冷却至室温,过滤。滤液用冰水(150mL)稀释,CH2Cl2(70mL×2)萃取。合并有机相后,用水(100mL×3)洗涤,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-18。淡黄色半固体;1.30g((±)-16→ (±)-18的合并收率29%);
1H NMR(CDCl3,500MHz)δ:6.16-6.17(m,2H),3.71-3.75(m,1H),3.12-3.14(m,1H),3.04-3.06(m,1H),2.79-2.84(m,1H),2.72(dddd,1H,J=1.0Hz,3.0Hz,8.5Hz and 18.0Hz),2.15(dt,1H,J=3.8Hz and 18.5Hz),1.75-1.77(m,1H),1.45-1.47(m,1H)。
13C NMR(CDCl3,126MHz)δ:211.48,135.81,132.74,66.65,54.50,46.42,46.21,44.13,26.93。
步骤5:化合物(±)-19的合成
在N2的环境下,将t-BuOK(1.90g,17mmol)加入干燥THF(15mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(3.50g,14mmol)。滴加完毕后,在冰水浴下反应40min,滴加新配制的化合物(±)-18(1.40g,10mmol)的干燥THF(5mL)溶液。滴加完毕后,室温搅拌1.5h。TLC监测显示反应完成,将反应液倒入水(100mL)中,用EtOAc(70mL×2)萃取,合并有机相,干燥(MgSO4),过滤,滤液在旋转蒸发仪上减压浓缩得到深黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/23]纯化得到目标产物(±)-19。淡黄色油状物;2.42g;该产物不需要表征,直接用于下一步反应。
步骤6:化合物(±)-20的合成
室温下,将上述粗品(±)-19(2.42g,按照10mmol计)溶于CH3NO2(15mL)中,搅拌,滴加DBU(3.00g,20mmol)。滴加完毕后,在N2的环境下,将反应混合物在80℃的油浴中搅拌过夜。TLC监测显示原料未反应完全,将反应液冷却至室温后倒入水(150mL)中,用CH2Cl2(70mL×2)萃取。合并有机相后,干燥(MgSO4),过滤,滤液在旋转蒸发仪上减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-20。淡黄色油状物;1.00g((±)-18→(±)-20的合并收率33%);
1H NMR(CDCl3,500MHz)δ:6.40-6.41(m,1H),6.28-6.29(m,1H),4.82(dd,1H,J=1.0Hz and 11.5Hz),4.60(dd,1H,J=1.0Hz and 11.5Hz),2.94-2.96(m,1H),2.81-2.87(m,2H),2.52-2.56(m,1H),2.47(dd,1H,J=0.8Hz and17.8H),2.38(d,1H,J=17.5Hz),2.04(ddd,1H,J=1.5Hz,8.0Hz and 13.0Hz),1.56-1.60(m,1H),1.47(s,9H),1.32-1.36(m,1H),1.11-1.13(m,1H)。
13C NMR(CDCl3,126MHz)δ:170.92,137.50,136.91,83.36,80.92,53.22,47.71,45.82,44.83,38.78,36.17,34.10,32.83,28.24。
ESI-HRMS:(m/z)calcd.for C16H24NO4([M+H]+)294.1700,found:294.1777。
步骤7:化合物(±)-21的合成
将化合物(±)-20(1.00g,3.4mmol)溶于CH2Cl2(10mL)中,冰水浴下缓慢滴加TFA(6mL)。滴加完毕后,室温反应2h。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/3]纯化得到浅黄色油状物。向油状物中加入正己烷(1mL),超声波超声,油状物固化,而后室温打浆30min。过滤收集固体,用真空油泵干燥滤饼,得到化合物(±)-21。白色固体;0.80g(99%);熔点为84.6℃-87.7℃;
1H NMR(CDCl3,500MHz)δ:6.43-6.44(m,1H),6.31-6.32(m,1H),4.79(dd,1H,J=1.0Hz and 11.5Hz),4.65(d,1H,J=11.5Hz),2.97-2.99(m,1H),2.86-2.89(m,2H),2.67(d,1H,J=18.5Hz),2.57(d,1H,J=18.5Hz),2.54-5.56(m,1H),2.03-2.07(m,1H),1.61-1.63(m,1H),1.38(dd,1H,J=6.0Hz and 13.5Hz),1.13-1.15(m,1H)。13C NMR(CDCl3,126MHz)δ:177.12,137.88,136.78,83.09,53.34,47.56,45.68,44.84,38.34,34.58,34.17,32.70。ESI-HRMS:(m/z)calcd.for C12H16NO4([M+H]+)238.1074,found:238.1071。
步骤8:化合物(±)-I-3的合成
将化合物(±)-21(0.23g,0.97mmol)溶于CH3OH(9mL)中,加入10%Pd(OH)2/C(0.15g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),过滤,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入CH3OH(1mL)/EtOAc(2mL)室温搅拌打浆5min。过滤收集固体,干燥得目标产物(±)-I-3。白色固体;0.12g(60%);熔点为186.2℃-190.5℃;
1H NMR(CD3OD,500MHz)δ:3.07(d,1H,J=12.5Hz),2.98(d,1H,J=12.5Hz),2.71(d,1H,J=16.0Hz),2.65 (d,1H,J=16.0Hz),2.50-2.55(m,1H),2.44-2.46(m,1H),2.22-2.26(m,2H),1.99-2.05(m,1H),1.91(dd,1H,J=7.5Hz and 13.0Hz),1.75-1.81(m,2H),1.54-1.61(m,1H),1.46-1.53(m,1H),1.40-1.43(m,1H),1.24-1.27(m,1H)。13C NMR(CD3OD,126MHz)δ:180.05,52.82,49.93,47.58,42.78,41.02,40.22,37.39,34.81,33.73,26.23,25.26。ESI-HRMS:(m/z)calcd.for C12H20NO2([M+H]+)210.1489,found:210.1484。
化合物(±)-I-3是本申请具有通式I的化合物的一种具体形式。
实施例4化合物(±)-I-4及其对甲苯磺酸盐的合成
步骤1:化合物(±)-22对甲苯磺酸盐的合成
室温下,将化合物(±)-20(1.50g,5.1mmol)溶于EtOH(15mL)中,加入水(7mL)搅拌后,依次加入铁粉(1.50g,27mmol)和NH4Cl(0.50g,9.3mmol),按照标准操作将反应器中空气置换成氮气(气球),置于85℃油浴搅拌4h。TLC监测显示反应完成。将反应液冷却至室温,过滤。滤液加入饱和NaHCO3溶液(100mL)中,用EtOAc(40mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到黄色油状物。室温下,加入EtOAc(15mL)稀释油状物,再加入p-TsOH·H2O(0.97g,5.1mmol)搅拌溶解后,有大量固体析出,将体系转移至冰水浴中继续搅拌打浆1h。过滤收集固体,用真空油泵干燥得到(±)-22对甲苯磺酸盐。白色固体;1.60g(72%);熔点为184.4℃-187.1℃;
1H NMR(DMSO-d6,500MHz)δ:7.71(brs,3H),7.48(d,2H,J=8.0Hz),7.12(d,2H,J=8.0Hz),6.35-6.37(m,1H),6.28-6.30(m,1H),3.05-3.11(m,1H),2.94-3.00(m,1H),2.79-2.82(m,2H),2.71-2.77(m,1H),2.40-2.43(m,1H),2.26-2.33(m,5H),1.79(ddd,1H,J=1.5Hz,8.5Hz and 13.0Hz),1.45-1.48(m,1H),1.43(s,9H),1.11(dd,1H,J=6.0Hz and 13.0Hz),1.04-1.06(m,1H)。
13C NMR(DMSO-d6,126MHz)δ:170.51,145.64,137.69,137.19,136.49,128.08,125.50,80.09,52.46,47.71,46.62,45.25,44.08,36.54,36.07,33.20,32.20,27.74,20.79。
ESI-HRMS:(m/z)calcd.for C16H26NO2([M(游离碱)+H]+)264.1958,found:264.1954。
步骤2:化合物(±)-I-4及其对甲苯磺酸盐的合成
室温下,将(±)-22对甲苯磺酸盐(1.60g,3.7mmol)与饱和NaHCO3溶液(100mL)搅拌20min(为混悬状态),加入EtOAc(60mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到淡黄色油状物后,将油状物溶于CH2Cl2(10mL)中。在冰水浴下,缓慢滴加TFA(7mL)。滴加完毕后,室温反应4-6小时。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(20mL)再次浓缩。油状物用真空油泵干燥至固体完全析出,即为(±)-I-4。将固体用CH3OH(2mL)溶解,再加入EtOAc(4mL)搅拌。向反应溶液中加入p-TsOH·H2O(0.65g,3.4mmol),搅拌溶解后,有大量固体析出,室温下继续搅拌打浆2h。过滤收集固体,用真空油泵干燥滤饼,得到化合物(±)-I-4对甲苯磺酸盐。白色固体;0.50g(36%);熔点为197.0℃-198.7℃;
1H NMR(CD3OD,500MHz)δ:7.70(d,2H,J=8.5Hz),7.23(d,2H,J=8.0Hz),6.43-6.44(m,1H),6.30-6.31(m,1H),3.25(d,1H,J=13.0Hz),3.12(d,1H,J=12.5Hz),2.84-2.93(m,3H),2.58(d,1H,J=17.5Hz),2.51-2.53(m,1H),2.34-2.38(m,4H),1.75-1.80(m,1H),1.57-1.59(m,1H),1.32-1.35(m,1H),1.14-1.16(m,1H)。
13C NMR(CD3OD,126MHz)δ:175.74,143.53,141.72,138.51,137.90,129.83,126.97,53.83,50.47,48.15,46.90,45.86,37.93,37.16,35.08,34.08,21.31。
ESI-HRMS:(m/z)calcd.for C12H18NO2([M(游离碱)+H]+)208.1332,found:208.1328。
化合物(±)-I-4是本申请具有通式I的化合物的一种具体形式。
实施例5化合物(±)-I-5的合成
步骤1:化合物23的合成
将顺丁烯二酸酐(68.00g,0.69mol)溶于CHCl3(400mL)中,冰水浴下滴加1,4-环己二烯(78.00g,0.97mol)的CHCl3(50mL)溶液。滴加完毕后,室温下搅拌过夜。TLC监测显示反应完成。将反应液在旋转蒸发仪上减压浓缩得到油状物,加入EtOAc/正己烷混合物(100mL/400mL)室温下打浆,抽滤收集固体,干燥即为化合物23;54.50g(44%);1H NMR(CDCl3,500MHz)δ:6.31-6.33(m,2H),3.22-3.24(m,2H),3.127-3.134(m,2H),1.59-1.62(m,2H),1.40-1.43(m,2H)。
步骤2:化合物24的合成
将化合物23(17.00g,95mmol)溶于CH3OH(170mL)中,搅拌,加入浓硫酸(1.7mL)。加热回流过夜。TLC监测显示反应完成。将反应液在旋转蒸发仪上减压浓缩至其原体积的1/3后倒入冰水中(200mL)。所得混合物用CH2Cl2(100mL×3)萃取,合并有机相,依次用饱和NaHCO3溶液(200mL)和饱和盐水(200mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到固体化合物24。白色固体;20.00g(93%);1H NMR(CDCl3,500MHz)δ:6.31-6.35(m,2H),3.60(s,6H),3.02-3.03(m,2H),2.89-2.91(m,2H),1.53-1.57(m,2H),1.30-1.33(m,2H)。
步骤3:化合物(±)-25的合成
将金属钠(10.00g,0.43mol)加入到干燥甲苯(200mL)中,在N2的环境下,加热至钠完全熔融,启动搅拌,维持内温103℃-106℃继续搅拌20min。滴加化合物24(20.00g,89mmol)和TMSCl(48.00g,0.44mol)的干燥甲苯(30mL)制成的溶液。滴加过程放热,通过滴加速度控制反应体系内温保持在103℃-106℃。滴加完毕后,保持反应体系维持内温103℃-106℃搅拌过夜。TLC监测显示反应完成,将反应液冷却至室温。用硅藻土助滤,滤液在旋转蒸发仪上减压浓缩得到棕色油状物。将油状物溶于THF(100mL)中,冰水浴下滴加1M HCl(16mL)。滴加完毕后,室温下反应3h。TLC监测显示反应完成。将反应液倒入水中(100mL),加入EtOAc(100mL×2)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕色油状物,油状物室温放置后固化。向上述固化体系中加入正己烷(15mL),加热至回流,滴加EtOAc至固体全部溶解。冷却至室温下搅拌,析出晶体,继续搅拌5h。过滤,滤饼用真空油泵干燥得到目标化合物(±)-25。白色固体;7.60g(52%);熔点为106.1℃-110.4℃;该产物不需要表征,直接用于下一步反应。
步骤4:化合物(±)-26的合成
将化合物(±)-25(2.00g,12mmol)溶于CH2Cl2(20mL)中,依次向体系加入吡啶(1.93g,24mmol)和4-二甲氨基吡啶(DMAP)(0.74g,6.1mmol),按照标准操作将反应容器中空气置换成氮气(气球)。在冰水浴下,缓慢向体系滴加硫代氯甲酸苯酯(3.15g,18mmol)。滴加完毕,室温反应1h。TLC监测显示反应完成。将反应液倒入冰水(100mL)中,用CH2Cl2(50mL×2)萃取。合并有机相,依次用1M HCl(100mL)和饱和盐水(100mL)洗涤,干燥(MgSO4),过滤除去干燥剂,在旋转蒸发仪上减压浓缩得到化合物(±)-26的粗品。黄色固体;3.66g;该产物不需要表征,直接用于下一步反应。
步骤5:化合物(±)-27的合成
将化合物(±)-26(3.66g,12mmol)加入到苯(40mL)中,按标准操作将反应器中空气置换成氮气(气球)。升温至90℃回流,缓慢滴加n-Bu3SnH(5.30g,18mmol)和偶氮二异丁腈(AIBN)(0.20g,1.2mmol)的苯(15mL)溶液。滴加完毕,油浴维持90℃反应过夜。TLC监测显示反应完成。将反应液冷却至室温,用旋转蒸发仪减压浓缩得到油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-27。淡黄色油状物;1.20g((±)-25→(±)-27的合并收率66%);
1H NMR(CDCl3,500MHz)δ:6.20-6.25(m,2H),3.31-3.34(m,1H),2.89-2.95(m,1H),2.85-2.89(m,1H),2.78-2.81(m,1H),2.40-2.47(m,1H),1.47-1.53(m,1H),1.37-1.44(m,2H),1.23-1.29(m,1H)。
13C NMR(CDCl3,126MHz)δ:212.49,133.54,131.54,64.18,50.49,32.04,31.01,26.48,24.54,22.54。
步骤6:化合物(±)-28的合成
在N2的环境下,将t-BuOK(0.90g,8.0mmol)加入干燥THF(10mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(1.70g,6.7mmol)。滴加完毕后,在冰水浴下反应40min,滴加新配制的化合物(±)-27(0.60g,4.0mmol)的干燥THF(5mL)溶液。滴加完毕后,室温搅拌1.5h。TLC监测显示反应完成,将反应液倒入冰水(100mL)中,用EtOAc(50mL×2)萃取,合并有机相,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到深黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-28。淡黄色油状物;0.90g;该产物不需要表征,直接用于下一步反应。
步骤7:化合物(±)-29的合成
室温下,将化合物(±)-28(0.90g,3.7mmol)溶于CH3NO2(9mL)中,滴加DBU(2.00g,13mmol)。滴加完毕后,在N2环境下,将反应混合物在80℃的油浴中搅拌过夜。TLC监测显示反应基本完成,将反应液冷却至室温后倒入水(100mL)中,用CH2Cl2(50mL×2)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-29。淡黄色油状物;0.50g((±)-27→(±)-29的合并收率40%);
1H NMR(CDCl3,500MHz)δ:6.45-6.49(m,1H),6.26-6.30(m,1H),4.78(dd,1H,J=0.5Hz and 11.5Hz),4.65(d,1H,J=11.5Hz),2.60(d,1H,J=17.5Hz),2.52-2.61(m,3H),2.54(d,1H,J=17.5Hz),2.27-2.30(m,1H),1.94(ddd,1H,J=2.0Hz,8.5Hz and 13.0Hz),1.64(dd,1H,J=7.3Hz and 13.3Hz),1.45(s,9H),1.35-1.40(m,2H),1.25-1.30(m,1H),1.18-1.23(m,1H)。
13C NMR(CDCl3,126MHz)δ:171.17,134.53,134.32,82.57,80.94,46.80,40.89,36.38,34.74,33.09,32.50,30.96,28.24,25.21,23.61。
ESI-HRMS:(m/z)calcd.for C17H26NO4([M+H]+)308.1856,found:308.1852。
步骤8:化合物(±)-30的合成
将化合物(±)-29(0.50g,1.6mmol)溶于CH2Cl2(5mL)中,冰水浴下缓慢滴加TFA(3mL)。滴加完毕后,室温反应4h。TLC监测显示反应完成。将反应液在旋转蒸发仪上减压浓缩得到黄色油状物后,向油状物中加入正己烷(3mL),超声波超声,油状物变为固体,室温继续搅拌打浆1h。抽滤收集固体,用真空油泵干燥,得到化合物(±)-30。白色固体;0.33g(80%);熔点为120.0℃-123.6℃;
1H NMR(CDCl3,500MHz)δ:6.47-6.50(m,1H),6.28-6.32(m,1H),4.78(dd,1H,J=0.8Hz and 5.9Hz), 4.68(d,1H,J=11.5Hz),2.80(d,1H,J=18.0Hz),2.73(d,1H,J=18.0Hz),2.53-2.65(m,3H),2.27-2.30(m,1H),1.95(ddd,1H,J=2.0Hz,8.5Hz and 13.5Hz),1.66(dd,1H,J=2.3Hz and 13.3Hz),1.32-1.42(m,2H),1.25-1.31(m,1H),1.17-1.24(m,1H)。
13C NMR(CDCl3,126MHz)δ:176.37,134.66,134.33,82.31,46.58,40.37,34.65,32.97,32.78,30.85,25.17,23.55。ESI-HRMS:(m/z)calcd.for C13H18NO4([M+H]+)252.1230,found:252.1229。
步骤9:化合物(±)-I-5的合成
将化合物(±)-30(0.30g,1.2mmol)溶于CH3OH(10mL)中,加入10%Pd(OH)2/C(0.20g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),过滤除去固体,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入CH3OH(2mL)/EtOAc(3mL),室温搅拌0.5h。抽滤收集固体,干燥得目标产物(±)-I-5。白色固体;0.13g(49%);熔点为176.6℃-178.2℃;
1H NMR(CD3OD,500MHz)δ:3.16(d,1H,J=13.0Hz),3.07(d,1H,J=13.0Hz),2.74(d,1H,J=16.5Hz),2.67(d,1H,J=16.0Hz),2.45-2.52(m,1H),2.20-2.27(m,2H),2.01-2.04(m,1H),1.90-1.96(m,1H),1.85(ddd,1H,J=3.0Hz,8.5Hz and 12.5Hz),1.74-1.76(m,1H),1.46-1.70(m,6H),1.36-1.43(m,1H)。
13C NMR(CD3OD,126MHz)δ:180.15,51.74,46.55,44.33,40.14,33.41,33.09,27.72,26.94,26.50,23.84,22.75。ESI-HRMS:(m/z)calcd.for C13H22NO2([M+H]+)224.1645,found:224.1641。
化合物(±)-I-5是本申请具有通式I的化合物的一种具体形式。
实施例6化合物(±)-I-6及其对甲苯磺酸盐的合成
步骤1:化合物(±)-31对甲苯磺酸盐的合成
室温下,将化合物(±)-29(1.10g,3.6mmol)溶于EtOH(10mL)中,加入水(5mL)搅拌后,依次加入铁粉(1.30g,23mmol)、NH4Cl(0.45g,8.4mmol),按照标准操作将反应器中空气置换成氮气(气球),搅拌下回流5h。TLC监测显示反应完成。将反应液冷却至室温,过滤除去固体。滤液用饱和NaHCO3溶液(120mL)洗涤,用EtOAc(50mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到黄色油状物。室温下,加入EtOAc(15mL)稀释油状物,再加入p-TsOH·H2O(0.70g,3.7mmol)搅拌溶解后,有大量固体析出,将体系转移至冰水浴中搅拌1h。过滤收集固体,真空油泵干燥得到(±)-31对甲苯磺酸盐。白色固体;1.30g(81%);熔点为190.1℃-192.5℃;
1H NMR(DMSO-d6,500MHz)δ:7.69(brs,3H),7.48(d,2H,J=6.5Hz),7.12(d,2H,J=8.0Hz),6.44-6.46(m,1H),6.25-6.28(m,1H),3.07-3.11(m,1H),2.96-3.00(m,1H),2.40-2.54(m,5H),2.29(s,3H),2.12-2.14(m,1H),1.74(ddd,1H,J=2.0Hz,8.5Hz and 13.0Hz),1.38-1.42(m,10H),1.31-1.33(m,2H),1.17-1.21(m,1H),1.09-1.14(m,1H)。
13C NMR(DMSO-d6,126MHz)δ:170.55,145.64,137.66,134.31,133.80,128.07,125.49,80.09,46.72,45.55,38.85,35.92,33.77,32.38,31.83,30.37,27.74,24.67,23.21,20.78。
ESI-HRMS:(m/z)calcd.for C17H28NO2([M(游离碱)+H]+)278.2115,found:278.2111。
步骤2:化合物(±)-I-6及其对甲苯磺酸盐的合成
室温下,将(±)-31对甲苯磺酸盐(1.30g,2.9mmol)与饱和NaHCO3溶液(100mL)搅拌20min(为混悬状态),加入EtOAc(60mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到淡黄色油状物后,将油状物溶于CH2Cl2(10mL)中。在冰水浴下,缓慢滴加TFA(7mL)。滴加完毕后, 室温反应4h。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(20mL)再次浓缩。油状物用真空油泵干燥至固体完全析出,即为(±)-I-6。将固体用CH3OH(3mL)溶解,再加入EtOAc(8mL)搅拌。向反应溶液中加入p-TsOH·H2O(0.60g,3.2mmol),搅拌溶解后,有大量固体析出,室温下继续搅拌0.5h。过滤收集固体,真空油泵干燥,得到化合物(±)-I-6对甲苯磺酸盐。白色固体;0.70g(62%);熔点为192.7℃-194.0℃;
1H NMR(CD3OD,500MHz)δ:7.71(d,2H,J=8.0Hz),7.23(d,2H,J=8.5Hz),6.48-6.52(m,1H),6.28-6.32(m,1H),3.26(d,1H,J=12.5Hz),3.14(d,1H,J=13.0Hz),2.66(d,1H,J=17.0Hz),2.56(d,1H,J=17.0Hz),2.56-2.67(m,2H),2.51-2.53(m,1H),2.19-2.22(m,1H),1.74-1.79(m,1H),1.58-1.64(m,1H),1.40-1.43(m,2H),1.27-1.32(m,1H),1.19-1.24(m,1H)。
13C NMR(CD3OD,126MHz)δ:175.74,143.57,141.67,135.55,135.31,129.80,126.97,49.41,47.40,40.12,36.92,35.65,33.98,33.67,32.16,25.98,24.39,21.30。
ESI-HRMS:(m/z)calcd.for C13H20NO2([M(游离碱)+H]+)222.1489,found:222.1485。
化合物(±)-I-6是本申请具有通式I的化合物的一种具体形式。
实施例7化合物(-)-I-3、(+)-I-3及它们的对甲苯磺酸盐的合成
步骤1:化合物(±)-32对甲苯磺酸盐的合成
将化合物(±)-20(140.00g,0.48mol)溶于CH3OH(800mL)中,加入10%Pd(OH)2/C(22.00g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌12h。TLC监测显示反应完成,过滤,滤液在旋转蒸发仪上减压浓缩得化合物(±)-32的粗品。用CH2Cl2(800mL)稀释化合物(±)-32,加入饱和NaHCO3溶液(2L)洗涤,分离有机相,水相用CH2Cl2(500mL×2)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到黄色油状物。室温下,加入EtOAc(800mL)稀释油状物,再加入p-TsOH·H2O(70.00g,0.37mol)搅拌溶解后,有大量固体析出,室温下搅拌3h。抽滤收集固体,真空油泵干燥得到(±)-32对甲苯磺酸盐。白色固体;75.20g(36%);熔点为170.1℃-174.4℃;
1H NMR(DMSO-d6,500MHz)δ:7.73(brs,3H),7.48(d,2H,J=8.0Hz),7.12(d,2H,J=7.5Hz),3.02-3.07(m,1H),2.91-2.95(m,1H),2.61(d,1H,J=17.0Hz),2.57(d,1H,J=17.0Hz),2.39-2.46(m,1H),2.27-2.29(m,4H),2.18-2.20(m,1H),2.10-2.13(m,1H),1.83-1.88(m,1H),1.68-1.79(m,3H),1.41-1.53(m,11H),1.31-1.33(m,1H),1.13-1.16(m,1H)。
13C NMR(DMSO-d6,126MHz)δ:170.59,145.54,137.76,128.11,125.51,80.17,48.51,48.43,48.23,41.52,38.50,35.42,35.39,33.04,30.92,27.74,24.64,23.74,20.80。
3,5-二硝基苯甲酰化衍生化:化合物(±)-32的3,5-二硝基苯甲酰化衍生物的合成
室温下,将化合物(±)-32对甲苯磺酸盐(1.00g,2.3mmol)加入饱和NaHCO3溶液(200mL)中搅拌成悬浮液,用EtOAc(100mL)萃取。将有机相再次用饱和NaHCO3溶液(200mL)洗涤,萃取分离有机相,水相用EtOAc(50mL)萃取。合并有机相,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到淡黄色油状化合物(±)-32。将上述油状物溶于CH2Cl2(7mL)中,搅拌,加入3,5-二硝基苯甲酰氯(0.6g,2.6mmol),再滴加三乙胺(0.6mL),滴加完毕后,室温下反应1h。TLC监测显示反应完成。直接将反应液经柱层析[V(EtOAc)/V(正己烷)=0/1→1/4]纯化得到淡黄色油状物。向上述油状物加入正己烷(10mL),析出固体,室温下打浆1h。抽滤收集固体,真空干燥,得到(±)-32的3,5-二硝基苯甲酰化衍生物。白色固体;0.70g(67%);熔点为113.9℃-115.4℃;1H NMR(CDCl3,500MHz)δ:9.40(brs,1H),9.20(d,2H,J=2.0Hz),9.15(t,1H,J=2.0Hz),3.70(dd,1H,J=4.5Hz and 13.5Hz),3.43(dd,1H,J=3.3Hz and 13.3Hz),2.84(dd,1H,J=1.0Hz and 12.0Hz),2.71(d,1H,J=17.0Hz),2.54-2.60(m,1H),2.36-2.38(m,1H),2.30-2.33(m,1H),2.26-2.28(m,1H),1.86-1.94(m,2H),1.75-1.82(m,2H),1.50-1.62(m,11H),1.38-1.40(m,1H),1.21-1.24(m,1H)。
ESI-HRMS:(m/z)calcd.for C23H28N3O7([M-H]-)458.1933,found:458.1939。
(±)-32的3,5-二硝基苯甲酰化衍生物用于手性HPLC法测试以下步骤2和步骤3中(±)-32经过手性酸拆分后的(-)-32和(+)-32的光学纯度的对照品。
步骤2:化合物(-)-32的(R)-(-)-O-乙酰基扁桃酸盐的合成
取(±)-32对甲苯磺酸盐(22.80g,52mmol)加入饱和NaHCO3溶液(200mL×2)搅拌,用EtOAc(200mL×2)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到淡黄色油状物。室温下,加入THF(100mL)稀释油状物,然后滴加(R)-(-)-O-乙酰基扁桃酸(5.00g,26mmol)的THF(50mL)溶液。滴加完毕,逐渐析出大量固体,补加THF(8mL),室温下搅拌过夜。抽滤收集固体(滤液回收),滤饼用真空油泵干燥得到白色固体(7.35g,16mmol),即为化合物(-)-32的(R)-(-)-O-乙酰基扁桃酸盐。
3,5-二硝基苯甲酰化衍生化:化合物(-)-32的3,5-二硝基苯甲酰化衍生物的合成。取上述白色固体(0.1g,0.22mmol)加入饱和NaHCO3溶液(50mL×2)中搅拌,用EtOAc(25mL×2)萃取。合并有机相,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到淡黄色油状物。室温下,向上述油状物中加入CH2Cl2(3mL)中,再加入3,5-二硝基苯甲酰氯(0.1g,0.43mmol)搅拌,滴加三乙胺(2-3滴),滴加完毕后,室温下反应10min。TLC监测显示反应完成,直接将反应液经柱层析[V(EtOAc)/V(正己烷)=0/1→1/4]纯化得到淡黄色油状物,真空干燥后得到(-)-32的3,5-二硝基苯甲酰衍生物的白色泡沫状固体,将衍生物用手性HPLC测得其ee值为80.54%。
对映体过量(%ee)测定法(手性HPLC法):Daicel Chiralpak AS-RH 4.6mm×250mm色谱柱(5μm)在Agilent  1260 infinity II型液相色谱仪测定,检测器波长220nm,流动相为乙腈/0.1%KH2PO4-KOH缓冲溶液(pH=7.0)=70/30,流速1mL/min,进样样品浓度0.5mg/mL,进样量3μL。
室温下,将上述第一次拆分得到的化合物(-)-32的(R)-(-)-O-乙酰基扁桃酸盐白色固体(6.35g,14mmol)与THF(65mL)充分搅拌后,移至40℃油浴搅拌10min(体系微溶),随即将体系置于室温,补加THF(30mL),搅拌过夜。抽滤收集固体,真空油泵干燥得到白色固体(4.90g,11mmol)。重复以上重结晶方法再次结晶,得到化合物(-)-32的(R)-(-)-O-乙酰基扁桃酸盐。按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值=99.34%。白色固体;4.40g(37%);该产物不需要表征,直接用于下一步反应。
步骤3:化合物(+)-32的(S)-(+)-O-乙酰基扁桃酸盐的合成
将步骤2拆分结晶过滤后的滤液浓缩,加入饱和NaHCO3溶液(100mL×2)搅拌,用EtOAc(100mL×2)萃取。合并有机相后,干燥(MgSO4),过滤,用旋转蒸发仪减压浓缩得到淡黄色油状物(12.85g,按照48mmol计)。室温下,加入THF(100mL)稀释油状物,然后滴加(S)-(+)-O-乙酰基扁桃酸(4.70g,24mmol)的THF(50mL)溶液(滴加到一半时,开始逐渐析出大量固体)。滴加完毕,补加THF(30mL),室温下搅拌2h。过滤,滤饼用真空油泵干燥得到(+)-32的(S)-(+)-O-乙酰基扁桃酸盐白色固体(6.00g,13mmol)。按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值为90.77%。
室温下,将上述白色固体与THF(60mL)充分搅拌后,移至40℃油浴搅拌10min(体系微溶),而后将体系置于室温,补加THF(30mL),搅拌过夜。抽滤收集固体,真空油泵干燥得到化合物(+)-32的(S)-(+)-O-乙酰基扁桃酸盐。按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值为99.17%)。白色固体;4.40g(40%);该产物不需要表征,直接用于下一步反应。
步骤4:化合物(-)-I-3及其对甲苯磺酸盐的合成
室温下,将化合物(-)-32的(R)-(-)-O-乙酰基扁桃酸盐(1.50g,3.3mmol)加入饱和NaHCO3溶液(100mL)中搅拌20min(为混悬状态),加入EtOAc(50mL×3)萃取。合并有机相后,干燥(MgSO4),过滤。滤液用旋转蒸发仪减压浓缩得到黄色油状物后,将油状物溶于CH2Cl2(10mL)中,在冰水浴下,缓慢滴加TFA(7mL)。滴加完毕后,室温反应4-6小时。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(10mL)再次浓缩,得到的油状物用真空油泵干燥后即为(-)-32。上述(-)-32样品溶于CH3OH(2.5mL)中,再加入EtOAc(12mL),搅拌,向溶液中加入p-TsOH·H2O(0.70g,3.7mmol),搅拌溶解后,有大量固体析出,室温下继续搅拌1h。抽滤收集固体,真空油泵干燥,得到化合物(-)-I-3对甲苯磺酸盐。白色固体;1.00g(80%);熔点为180.6℃-183.5℃;[α]D 20=-22.8(c=2.50,CH3OH);
1H NMR(CD3OD,500MHz)δ:7.70(d,2H,J=8.0Hz),7.23(d,2H,J=8.0Hz),3.20(d,1H,J=13.0Hz),3.10(d,1H,J=13.0Hz),2.79(d,1H,J=17.5Hz),2.70(d,1H,J=17.5Hz),2.49-2.57(m,1H),2.41-2.43(m,1H),2.37(s,3H),2.22-2.27(m,2H),1.92-1.97(m,1H),1.84-1.89(m,2H),1.76-1.81(m,1H),1.57-1.63(m,1H),1.49-1.55(m,1H),1.41-1.44(m,1H),1.25-1.28(m,1H)。
13C NMR(CD3OD,126MHz)δ:177.10,143.14,140.84,130.31,126.34,50.73,49.15,42.42,40.52,40.21,39.64,36.05,34.47,32.47,25.62,24.79,21.41。
化合物(-)-I-3是本申请具有通式I的化合物的一种具体形式,也是(±)-I-3的一种与(±)-I-3具有相同相对构型的、具有左旋光度的光学纯化合物。
步骤5:化合物(+)-I-3及其对甲苯磺酸盐的合成
室温下,将化合物(+)-32的(S)-(+)-O-乙酰基扁桃酸盐(1.40g,3.0mmol)加入饱和NaHCO3溶液(100mL)中,搅拌20min(为混悬状态),加入EtOAc(50mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到黄色油状物后,将油状物溶于CH2Cl2(10mL)中,在冰水浴下,缓慢滴加TFA(7mL)。滴加完毕后,室温反应4-6h。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(10mL)再次浓缩,得到的油状物用真空油泵干燥即为(+)-I-3。将上述(+)-I-3样品溶于 CH3OH(2mL)中,再加入EtOAc(6mL),搅拌。向溶液中加入p-TsOH·H2O(0.60g,3.2mmol),搅拌溶解后,有大量固体析出,室温下继续搅拌1h。抽滤收集固体,用真空油泵干燥,得到化合物(+)-I-3的对甲苯磺酸盐。白色固体;0.85g(73%);熔点为179.5℃-181.8℃;[α]D 20=+25.09(c=2.55,CH3OH);
1H NMR(CD3OD,500MHz)δ:7.71(d,2H,J=8.0Hz),7.23(d,2H,J=8.0Hz),3.20(d,1H,J=13.0Hz),3.10(d,1H,J=13.0Hz),2.78(d,1H,J=17.5Hz),2.70(d,1H,J=17.5Hz),2.48-2.55(m,1H),2.40-2.42(m,1H),2.37(s,3H),2.21-2.26(m,2H),1.90-1.95(m,1H),1.83-1.88(m,2H),1.76-1.80(m,1H),1.56-1.62(m,1H),1.49-1.54(m,1H),1.40-1.42(m,1H),1.24-1.27(m,1H)。
13C NMR(CD3OD+D2O(1drop),126MHz)δ:176.94,142.97,141.11,130.25,126.38,50.74,49.21,42.44,40.56,40.17,39.67,36.10,34.50,32.47,25.65,24.81,21.40。
化合物(+)-I-3是本申请具有通式I的化合物的一种具体形式,也是(±)-I-3的一种与(±)-I-3具有相同相对构型的、具有右旋光度的光学纯化合物。
化合物(+)-I-3的绝对构型测定方法如下:将与其具有相同绝对构型的(+)-32的(S)-(+)-O-乙酰基扁桃酸盐转化为其内酰胺(+)-32-LAC,使用X-射线单晶衍射法测定(+)-32-LAC的绝对构型,该绝对构型与(+)-32的绝对构型一样。这种方法可以间接测定(+)-I-3的绝对构型。
具体的实验方法如下:
(+)-32-LAC的合成:上述ee值为99.17%的(+)-32的(S)-(+)-O-乙酰基扁桃酸盐(1.00g,2.2mmol)加入饱和NaHCO3溶液(100mL)中,搅拌10min,再加入EtOAc(30mL×3)萃取。合并有机相,盐水洗涤,干燥(MgSO4),过滤除去干燥剂,滤液在旋蒸仪上蒸干,得到的残余物以甲苯(7mL)溶解,升温回流过夜,TLC显示反应完成。反应体系冷却至室温,旋转蒸发仪上蒸去溶剂,残余物中加入EtOAc/正己烷(1/10by v/v,总计3mL)打浆,抽滤收集晶体,干燥得到(+)-32-LAC。0.28g(67%);熔点189.3-191.5°С,[α]D 20=+62.6°(c=1.15,CH3OH)。1H NMR(CDCl3,500MHz)δ:6.05(brs,1H),3.45(d,1H,J=9.5Hz),3.36(d,1H,J=9.5Hz),2.47-2.52(m,1H),2.43(d,1H,J=17.0Hz),2.39-2.42(m,1H),2.34(d,1H,J=17.0Hz),2.23-2.27(m,2H),2.02(dd,1H,J=7.0Hz and 13.0Hz),1.93-1.98(m,1H),1.70-1.75(m,1H),1.60-1.66(m,1H),1.51-1.58(m,1H),1.42-1.49(m,1H),1.39-1.41(m,1H),1.20-1.23(m,1H)。
13C NMR(CDCl3,126MHz)δ:178.29,58.68,51.24,41.99,41.78,39.62,39.51,38.99,35.31,33.54,25.59,23.95。ESI-HRMS:(m/z)calcd.for C12H18NO([M+H]+)192.1383,found:192.1380。
(+)-32-LAC单晶的培养与X-射线衍射:称取10mg(+)-32-LAC样品溶于CH2Cl2(1mL)中,再加入正己烷(2mL),摇匀,过滤后,滤液装入一个小玻璃三角瓶中,在室温下缓慢挥发2-3天后得到适合X-射线衍射的单晶。取一块尺寸为0.12×0.1×0.08mm的单晶在Rigaku XtaLAB Pro单晶衍射仪上在100.00(10)K温度下以Cu Kα射线衍射,使用CrysAlisPro 1.171.39.33c(Rigaku OD,2017)收集衍射数据并进行数据还原,使用SHELXL程序进行结构的解析和精修。
化合物(+)-32-LAC的单晶衍射的化学结构(ORTEP图)如图1所示。
(+)-32-LAC的晶体测试和结构精修相关参数如表所示:

实施例8化合物(-)-I-4、(+)-I-4及它们的对甲苯磺酸盐的合成
步骤1:化合物(±)-22的合成
室温下,取(±)-22对甲苯磺酸盐(60.00g,0.14mol)加入饱和NaHCO3溶液(600mL×2),搅拌,用EtOAc(400mL×2)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂,用旋转蒸发仪减压浓缩得到化合物(±)-22。黄色油状物;36mL;该产物不需要表征,直接用于下一步反应。
3,5-二硝基苯甲酰化衍生化:化合物(±)-22的3,5-二硝基苯甲酰化衍生物的合成
室温下,将化合物(±)-22的对甲苯磺酸盐(1.00g,2.3mmol)加入饱和NaHCO3溶液(200mL)搅拌,用EtOAc(100mL×2)萃取。合并有机相,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到淡黄色油状化合物(±)-22。将上述油状物溶于CH2Cl2(7mL)中,搅拌,再加入3,5-二硝基苯甲酰氯(0.60g,2.6mmol)。滴加三乙胺(0.6mL),滴加完毕后,室温下反应1h。TLC监测显示反应完成。直接将反应液经柱层析[V(EtOAc)/V(正己烷)=0/1→1/4]纯化得到淡黄色油状物。向上述油状物加入正己烷(10mL),室温下打浆1h。抽滤收集固体,真空干燥,得到目标产物(±)-22的3,5-二硝基苯甲酰化衍生物。白色固体;0.60g(57%);熔点为118.9℃-119.8℃;
1H NMR(CDCl3,500MHz)δ:9.46(brs,1H),9.19(d,2H,J=2.0Hz),9.16(t,1H,J=2.0Hz),6.40-6.42(m,1H),6.31-6.33(m,1H),3.82(dd,1H,J=5.5Hz and 13.5Hz),3.36(dd,1H,J=3.3Hz and 13.8Hz),2.86-2.90(m,3H),2.69(dd,1H,J=1.0Hz and 17.0Hz),2.58-2.60(m,1H),2.37(d,1H,J=17.5Hz),1.77-1.81(m,1H),1.58-1.61(m,10H),1.30(dd,1H,J=5.8Hz and 12.3Hz),1.11-1.13(m,1H)。
13C NMR(CDCl3,126MHz)δ:175.42,162.99,148.82,138.26,138.12,136.52,127.59,120.86,82.84,54.11,53.02,46.82,45.87,44.76,42.21,37.02,35.75,34.57,28.14。
ESI-HRMS:(m/z)calcd.for C23H27N3NaO7([M+Na]+)458.1741,found:458.1735。
(±)-22的3,5-二硝基苯甲酰化衍生物用于手性HPLC法测试以下步骤2和步骤3中(±)-22经过手性酸拆分后的(-)-22和(+)-22的光学纯度的对照品。
步骤2:化合物(-)-22的(R)-(-)-扁桃酸盐的合成
室温下,将化合物(±)-22(18.14g,69mmol)溶于THF(90mL)中,然后滴加(R)-(-)-扁桃酸(4.50g,30 mmol)的THF(90mL)溶液。滴加完毕后继续搅拌30min,再滴加异丙醚(180mL),室温下搅拌过夜,有晶体析出;如无固体析出,可向体系中加入适量晶种,则逐渐有固体析出。然后再滴加R-(-)-扁桃酸(2.25g,15mmol)的THF(9mL)溶液,室温下搅拌1h,再滴加异丙醚(180mL)。滴加完毕,体系中固体量增加,室温搅拌1h。抽滤收集固体(滤液回收),用真空油泵干燥得到白色固体(8.60g,21mmol),为(-)-22的(R)-(-)-扁桃酸盐。取少量样品按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值=87.05%。室温下,将上述(-)-22的(R)-(-)-扁桃酸盐白色固体(8.40g,20mmol)与THF(40mL)/异丙醚(40mL)混合溶剂充分搅拌后,移至65℃油浴搅拌,补充滴加混合溶剂THF(10mL)/异丙醚(10mL),体系微溶,继续搅拌30min,随即将体系置于室温,搅拌过夜。抽滤收集固体,真空油泵干燥得到白色固体(6.60g,16mmol),该固体用THF/异丙醚=1/2(v/v)作溶剂,重复以上重结晶方法再次结晶,得到化合物(-)-22的R-(-)-扁桃酸盐纯品,取少量样品按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值=99.10%。白色固体;6.00g(43%);该产物不需要表征,直接用于下一步反应。
步骤3:化合物(+)-22的(S)-(+)-扁桃酸盐的合成
室温下,将化合物(±)-22(18.14g,69mmol)溶于异丙醇(45mL)中,然后滴加(S)-(+)-扁桃酸(9.00g,59mmol)的异丙醇(45mL)溶液。滴加完毕,无明显变化,继续搅拌30min,滴加异丙醚(270mL)。滴加完毕,搅拌直到有大量固体产生;如无晶体产生,则向体系中加入适量晶种。结晶体系在室温下搅拌过夜。抽滤收集晶体(滤液回收),真空油泵干燥得到(+)-22的(S)-(+)-扁桃酸盐白色固体(9.00g,22mmol)。取少量按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值为30.88%。室温下,将上述(+)-22的(S)-(+)-扁桃酸盐(9.00g,22mmol)与混合溶剂异丙醇/异丙醚=1/2(v/v,共50mL)充分搅拌后,移至60℃油浴上搅拌(体系微溶),继续搅拌10min,然后将体系置于室温,逐渐析出大量白色固体,滴加混合溶剂异丙醇/异丙醚=1/2(v/v,共15mL),继续搅拌1-2h。抽滤收集固体,真空油泵干燥得到白色固体(5.40g,13mmol)。重复以上重结晶操作两次,得到化合物(+)-22的(S)-(+)-扁桃酸盐,取少量按上述3,5-二硝基苯甲酰衍生化步骤并用手性HPLC测得其ee值为98.34%。白色固体;2.40g(17%);该产物不需要表征,直接用于下一步反应。
步骤4:化合物(-)-I-4及其对甲苯磺酸盐的合成
室温下,将化合物(-)-22的(R)-(-)-扁桃酸盐(3.00g,7.2mmol)加入饱和NaHCO3溶液(100mL)中,搅拌20min,加入EtOAc(80mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到黄色油状物后溶于CH2Cl2(20mL)中,在冰水浴下,缓慢滴加TFA(15mL)。滴加完毕后,室温反应4-6h。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(20mL)再次浓缩,得到的油状物用真空油泵干燥后得到(-)-I-4。上述(-)-I-4溶于CH3OH(2.5mL)中,再加入EtOAc(12mL)充分搅拌,向溶液中加入p-TsOH·H2O(1.40g,7.4mmol),搅拌溶解后,有大量固体析出,室温下继续搅拌1h。抽滤收集固体,用真空油泵干燥滤饼,得到化合物(-)-I-4对甲苯磺酸盐。白色固体;1.80g(66%);熔点为180.3℃-183.5℃;[α]D 20=-35.47(c=2.65,CH3OH);
1H NMR(CD3OD,500MHz)δ:7.70(d,2H,J=8.5Hz),7.23(d,2H,J=8.0Hz),6.42-6.44(m,1H),6.29-6.31(m,1H),3.24(d,1H,J=13.0Hz),3.12(d,1H,J=13.0Hz),2.92-2.94(m,1H),2.81-2.87(m,2H),2.57(d,1H,J=17.5Hz),2.49-2.53(m,1H),2.37(s,3H),2.36(d,1H,J=17.5Hz),1.75-1.80(m,1H),1.57-1.59(m,1H),1.34(dd,1H,J=4.5Hz and 13.5Hz),1.14-1.15(m,1H)。
13C NMR(CD3OD,126MHz)δ:175.72.143.52,141.71,138.50,137.88,129.82,126.96,53.81,50.45,48.14,46.89,45.84,37.91,37.15,35.07,34.06,21.31。
化合物(-)-I-4是本申请具有通式I的化合物的一种具体形式,也是(±)-I-4的一种与(±)-I-4具有相同相对构型的、具有左旋光度的光学纯化合物。
步骤5:化合物(+)-I-4及其对甲苯磺酸盐的合成
室温下,将化合物(+)-22(S)-(+)-扁桃酸盐(2.40g,5.8mmol)加入饱和NaHCO3溶液(100mL)中,搅拌20min, 加入EtOAc(60mL×3)萃取。合并有机相后,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到黄色油状物后溶于CH2Cl2(18mL)中,在冰水浴下,缓慢滴加TFA(14mL)。滴加完毕后,室温反应4-6h。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(20mL)再次浓缩,得到的油状物用真空油泵干燥得到(+)-I-4。将干燥后的油状物溶于CH3OH(2mL)中,再加入EtOAc(8mL)搅拌。向反应溶液中加入p-TsOH·H2O(1.10g,5.8mmol),搅拌溶解后,有大量固体析出,室温下继续搅拌1h。抽滤收集固体,用真空油泵干燥滤饼,得到化合物(+)-I-4对甲苯磺酸盐。白色固体;1.60g(73%);熔点为182.1℃-184.7℃;[α]D 20=+37.81(c=2.75,CH3OH);
1H NMR(CD3OD,500MHz)δ:7.70(d,2H,J=8.0Hz),7.23(d,2H,J=8.0Hz),6.42-6.44(m,1H),6.29-6.31(m,1H),3.24(d,1H,J=13.0Hz),3.12(d,1H,J=13.0Hz),2.92-2.94(m,1H),2.81-2.87(m,2H),2.57(d,1H,J=17.5Hz),2.50-2.53(m,1H),2.37(s,3H),2.36(d,1H,J=17.5Hz),1.75-1.80(m,1H),1.57-1.59(m,1H),1.34(dd,1H,J=6.0Hz and 13.5Hz),1.13-1.16(m,1H)。
13C NMR(CD3OD,126MHz)δ:175.73,143.53,141.70,138.50,137.89,129.82,126.96,53.81,50.45,48.14,46.89,45.85,37.92,37.15,35.07,34.07,21.30。
化合物(+)-I-4是本申请具有通式I的化合物的一种具体形式,也是(±)-I-4的一种与(±)-I-4具有相同相对构型的、具有右旋光度的光学纯化合物。
化合物(+)-I-4的绝对构型测定方法如下:将与其具有相同绝对构型的(+)-22的(S)-(+)-扁桃酸盐转化为其内酰胺(+)-22-LAC,使用X-射线单晶衍射法测定(+)-22-LAC的绝对构型,该绝对构型与(+)-32的绝对构型一样。这种方法可以间接测定(+)-I-4的绝对构型。
具体的实验方法如下:
(+)-22-LAC的合成:上述ee值为98.34%的(+)-22的(S)-(+)-扁桃酸盐(1.00g,2.4mmol)加入饱和NaHCO3溶液(100mL)中,搅拌10min,再加入EtOAc(30mL×3)萃取。合并有机相,盐水洗涤,干燥(MgSO4),过滤除去干燥剂,滤液在旋蒸仪上蒸干,得到的残余物以甲苯(7mL)溶解,升温回流过夜,TLC显示反应完成。反应体系冷却至室温,旋转蒸发仪上蒸去溶剂,残余物中加入EtOAc/正己烷(1/10by v/v,总计5mL)打浆,抽滤收集晶体,干燥得到(+)-32-LAC。0.40g(88%);熔点178.7-180.5°С;[α]D 20=+30.2°(c=1.03,CH3OH)。
1H NMR(CDCl3,500MHz)δ:6.27-6.29(m,1H),6.22-6.24(m,1H),5.89(brs,1H),3.40(dd,1H,J=1.0Hz and9.5Hz),3.36(d,1H,J=9.5Hz),2.97-2.99(m,1H),2.81-2.83(m,1H),2.69-2.74(m,1H),2.54-2.57(m,1H),2.13(d,1H,J=17.0Hz),2.05(d,1H,J=17.0Hz),1.91(ddd,1H,J=1.0Hz,8.5Hz and 12.5Hz),1.57-1.60(m,1H),1.42(dd,1H,J=0.8Hz and 12.8Hz),1.08-1.10(m,1H)。
13C NMR(CDCl3,126MHz)δ:178.22,136.71,136.25,58.19,52.34,48.58,45.59,44.50,40.90,40.74,37.63,33.04。ESI-HRMS:(m/z)calcd.for C12H16NO([M+H]+)190.1226,found:190.1224。
(+)-22-LAC单晶的培养与X-射线衍射:称取10mg(+)-22-LAC样品溶于CH2Cl2(1mL)中,再加入正己烷(2mL),摇匀,过滤后,滤液装入一个小玻璃三角瓶中,在室温下缓慢挥发2-3天后得到适合X-射线衍射的单晶。取一块尺寸为0.3×0.09×0.08mm的单晶在Rigaku XtaLAB Pro单晶衍射仪上在100.00(10)K温度下以Cu Kα射线衍射,使用CrysAlisPro 1.171.39.33c(Rigaku OD,2017)收集衍射数据并进行数据还原,使用SHELXL程序进行结构的解析和精修。
化合物(+)-22-LAC的单晶衍射的化学结构(ORTEP图)如图2所示。
(+)-22-LAC的晶体测试和结构精修相关参数如下表所示:

实施例9化合物(±)-I-7的合成
步骤1:化合物(±)-33的合成
将干燥CH2Cl2(200mL)加入干燥的烧瓶中,按照标准操作将反应容器中空气置换成氮气(气球)。冰水浴冷却下,依次向体系中缓慢滴加Et2Zn(1M在正己烷中,298mL)和TFA(33.99g,0.30mol)的干燥CH2Cl2(30mL)溶液,得到一白色浆状体系。滴加完毕后,冰水浴条件下继续搅拌0.5h,再滴加CH2I2(79.84g,0.30mol)的干燥CH2Cl2(80mL)溶液(滴加过程中白色粘稠固体逐渐溶解澄清后,又析出白色固体成为混悬液)。滴加完毕后,冰水浴条件下继续搅拌0.5h,然后滴加化合物(±)-18(10.00g,75mmol)的干燥CH2Cl2(20mL)溶液。滴加完毕,反应体系在室温下搅拌4-6h后升温回流过夜。TLC监测显示反应完成,停止反应,待反应体系降至室温后加入饱和NH4Cl水溶液(300mL×2)中,搅拌,CH2Cl2(200mL×2)萃取。合并有机相后,再用饱和盐水(400mL)洗涤,分离有机相。合并有机相,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪浓缩得到棕色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标化合物(±)-33。黄色油状物(略不纯);3.15g(29%);
1H NMR(CDCl3,500MHz)δ:3.48-3.52(m,1H),2.95(dt,1H,J=3.5Hz and 18.5Hz),2.65-2.77(m,2H),2.55-2.56(m,1H),2.51-2.53(m,1H),1.32-1.35(m,1H),1.01-1.05(m,1H),0.97-1.00(m,1H),0.87-0.90(m,1H),0.54-0.57(m,1H),0.03-0.08(m,1H)。
步骤2:化合物(±)-34的合成
在N2的气氛下,将t-BuOK(11.92g,0.11mol)加入干燥THF(30mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(26.81g,0.11mol)。滴加完毕后,在冰水浴下反应1h,滴加新配制的化合物(±)-33(3.15g,21mmol)的干燥THF(10mL)溶液。滴加完毕后,室温搅拌过夜。TLC监测显示反应完成,将反应液倒入冰水(80mL×2)中,加入CH2Cl2(60mL×2)萃取。合并有机相后,再用饱和盐水(150mL)洗涤一次,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪上减压浓缩得到深黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-34。淡黄色油状物;3.15g;该产物不需要表征,直接用于下一步反应。
步骤3:化合物(±)-35的合成
室温下,将化合物(±)-34(3.60g,15mmol)溶于CH3NO2(120mL)中,搅拌,滴加DBU(24.47g,0.16mol)。滴加完毕后,在N2的环境下,将反应混合物回流48h。TLC监测显示仍有大量原料未反应,停止反应,将反应液冷却至室温后倒入冰水中,CH2Cl2(50mL×2)萃取,合并有机相依次用冰水(100mL)和饱和盐水(150mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-35。淡黄色油状物;0.74g((±)-33→(±)-35的合并收率10%);
1H NMR(CDCl3,500MHz)δ:4.83(dd,1H,J=1.3Hz and 11.3Hz),4.55(d,1H,J=11.0Hz),2.73(s,2H),2.52-2.58(m,1H),2.48-2.49(m,1H),2.30-2.32(m,1H),2.15-2.19(m,2H),2.11(ddd,1H,J=2.3Hz,8.5Hz and13.3Hz),1.48(s,9H),1.23-1.27(m,1H),1.13-1.17(m,2H),0.58-0.60(m,1H),0.43-0.46(m,1H),0.06-0.10(m,1H)。
13C NMR(CDCl3,126MHz)δ:170.79,83.55,81.08,49.08,39.87,39.61,38.64,37.19,34.59,29.94,29.14,28.26,12.23,11.14,2.58。
ESI-HRMS:(m/z)calcd.for C17H26NO4([M+H]+)308.1856,found:308.1853。
步骤4:化合物(±)-36的合成
将化合物(±)-35(0.28g,0.91mmol)溶于CH2Cl2(5mL)中,冰水浴下依次滴加Et3SiH(0.16g,1.4mmol)和TFA(2mL)。滴加完毕后,室温反应4h。TLC监测显示反应完成。反应混合物倒入冰水(10mL)中,以CH2Cl2(10mL×2)萃取。合并有机相后,用饱和盐水(20mL×2)洗涤,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪低温浓缩(25℃)得到黄色油状物。向油状物中加入CH2Cl2(10mL×3)继续浓缩,真空油泵干燥10min,析出白色固体,将固体碾碎后加入正己烷(4mL),室温打浆1h。抽滤收集固体,真空油泵干燥,得到化合物(±)-36。白色固体;0.09g(39%);熔点为105.7℃-109.3℃;
1H NMR(DMSO-d6,500MHz)δ:12.31(brs,1H),4.78(d,1H,J=12.0Hz),4.71(d,1H,J=12.0Hz),2.74(d,1H,J=17.5Hz),2.56(d,1H,J=17.5Hz),2.52-2.55(m,1H),2.36-2.37(m,1H),2.21-2.23(m,1H),2.12-2.17(m,2H),2.00(ddd,1H,J=2.0Hz,8.5Hz and 13.0Hz),1.21-1.23(m,1H),1.17-1.20(m,1H),1.09-1.12(m,1H),0.54-0.56(m,1H),0.37-0.39(m,1H),-0.01-0.03(m,1H)。
13C NMR(CDCl3,126MHz)δ:176.63,83.22,48.89,39.71,38.20,37.95,37.13,34.63,29.81,29.14,12.42,11.33,2.66。
ESI-HRMS:(m/z)calcd.for C13H18NO4([M+H]+)252.1230,found:252.1228。
步骤5:化合物(±)-I-7的合成
将化合物(±)-36(0.18g,0.72mmol)溶于CH3OH(4mL)中,加入10%Pd(OH)2/C(0.06g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入CH3OH(1mL)/EtOAc(3mL),室温下搅拌打浆1-2h。过滤,干燥得到目标产物(±)-I-7。白色固体;0.04g(25%);熔点为184.5℃-190.0℃;
1H NMR(CD3OD,500MHz)δ:3.10(dd,1H,J=1.5Hz and 13.0Hz),2.96(d,1H,J=13.0Hz),2.78(dd,1H,J=1.3Hz and 16.8Hz),2.60(d,1H,J=16.5Hz),2.51-2.55(m,1H),2.48-2.49(m,1H),2.23-2.27(m,2H),2.18(dd,1H,J=6.8Hz and 12.8Hz),1.69(ddd,1H,J=2.0Hz,8.5Hz and 13.0Hz),1.50-1.53(m,1H),1.14-1.20(m,2H),0.56-0.58(m,1H),0.45-0.48(m,1H),0.03-0.07(m,1H)。
13C NMR(D2O,126MHz)δ:179.55,49.53,46.11,44.30,37.56,35.01,34.80,32.58,29.65,26.94,10.37,9.02,0.01。ESI-HRMS:(m/z)calcd.for C13H20NO2([M+H]+)222.1489,found:222.1487。
化合物(±)-I-7是本申请具有通式I的化合物的一种具体形式。
实施例10化合物(±)-I-8的合成
步骤1:化合物37的合成
将顺丁烯二酸酐(27.79g,0.28mol)溶于苯(50mL)/甲基叔丁基醚(150mL)混合溶剂中,按照标准操作将反 应器中空气置换成氮气(气球),冰水浴下滴加1,2,3,4,5-五甲基环戊二烯(20.00g,0.15mol)的苯/甲基叔丁基醚=1/3(v/v,共50mL)溶液。滴加完毕后,室温下搅拌过夜。停止反应,将反应液在旋转蒸发仪上减压浓缩得到紫红色油状物。将油状物置于冰水浴中低温结晶,待晶体析出后,加入正己烷(100mL),室温搅拌打浆1h。抽滤收集固体,滤饼用真空油泵干燥,得到化合物37的粗品。白色固体(含一定量杂质);40.00g(>100%,因为含有一定量未反应的顺丁烯二酸酐);该产物不再继续纯化,直接用于下一步反应。
1H NMR(CDCl3,500MHz)δ:3.18(s,2H),1.55-1.59(m,7H),1.35(s,6H),0.62(d,3H,J=6.5Hz)。
步骤2:化合物38的合成
将化合物37(40.00g,按照0.17mol计)溶于1,4-二氧六环(400mL),冰浴下,缓慢滴加50%NaOH水溶液(68mL),滴加过程中逐渐析出白色固体。滴加完毕后,向体系中加入1,4-二氧六环(300mL),室温搅拌1小时。TLC监测显示反应完成,冰浴冷却下,往反应体系中慢慢滴加1M HCl至pH<2,以氯化钠饱和,以EtOAc(300mL×3)萃取。合并有机相,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪浓缩得到残余物。向残余物中加入正己烷(100mL),室温下搅拌打浆1h。抽滤收集固体,真空油泵干燥,得到化合物38。白色固体;20.86g(1,2,3,4,5-五甲基环戊二烯→38的合并收率56%);该产物不进一步纯化,直接用于下一步反应。1H NMR(DMSO-d6,500MHz)δ:2.90(s,2H),1.54(s,6H),1.37(q,1H,J=6.3Hz),1.08(s,6H),0.52(d,3H,J=6.5Hz)。
步骤3:化合物39的合成
将化合物38(20.86g,83mmol)溶于N,N-二甲基甲酰胺(DMF)(210mL)中,按照标准操作将反应器中空气置换成氮气(气球)。冰水浴冷却下加入K2CO3(34.28g,0.25mol),然后缓慢滴加CH3I(46.94g,0.33mol)。滴加完毕后,室温下反应5-6小时。TLC监测显示反应完成,向反应液中加入EtOAc(200mL),过滤除去固体,滤液用水(300mL×5)洗涤。合并所有水相,以EtOAc(200mL×2)反向萃取。合并所有有机相,用饱和盐水(500mL)洗涤后,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪浓缩得到黄色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物39。无色透明油状物;22.10g(95%,含有一定的杂质);该产物不进一步提纯,直接用于下一步反应。
1H NMR(CDCl3,500MHz)δ:3.57(s,6H),3.00(s,2H),1.60(s,6H),1.37(q,1H,J=6.3Hz),1.15(s,6H),0.60(d,3H,J=6.5Hz)。
步骤4:化合物(±)-40的合成
将金属钠(9.97g,0.43mol)加入到干燥甲苯(220mL)中,在N2的环境下,加热至钠完全熔融,启动搅拌,维持反应体系内温103℃-106℃继续搅拌20min。滴加化合物39(22.10g,79mmol)和TMSCl(45.39g,0.42mol)的干燥甲苯(15mL)溶液。滴加过程放热,通过控制滴加速度来控制反应体系内温保持在103℃-106℃。滴加完毕后,维持反应体系内温103℃-106℃搅拌过夜。TLC监测显示反应完成,将反应液冷却至室温。用硅藻土助滤,滤液在旋转蒸发仪上减压浓缩得到棕色油状物。将油状物溶于THF(100mL)中,冰水浴下滴加1M HCl(15mL)。滴加完毕后,室温下反应30min。TLC监测显示反应完成,将反应液倒入水中(100mL),加入EtOAc(100mL×2)萃取。合并有机相后,用饱和盐水(300mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕色油状物,油状物在低温下固化。向上述固体中加入正己烷(10mL),室温下搅拌打浆1h。过滤收集固体,真空油泵干燥得到目标化合物(±)-40。白色固体;3.60g(21%);熔点为124.0℃-128.0℃;
1H NMR(CDCl3,500MHz)δ:4.44(dd,1H,J=3.5Hz and 9.0Hz),3.16(dd,1H,J=3.5Hz and 7.5Hz),2.91(dd,1H,J=7.5Hz and 9.0Hz),1.640-1.643(m,3H),1.58-1.62(m,2H),1.499-1.504(m,3H),1.22(s,3H),1.13(s,3H),0.57(d,3H,J=6.5Hz)。
步骤5:化合物(±)-41的合成
将化合物(±)-40(2.61g,12mmol)溶于CCl4(20mL)中,搅拌状态下依次加入三苯基膦(3.41g,13mmol)和 NaHCO3(0.04g,0.48mmol)。按照标准操作将反应器中空气置换成氮气(气球),搅拌下回流过夜。TLC监测显示反应完成,将反应液冷却至室温,过滤,滤液用旋转蒸发仪减压浓缩,向浓缩后的残余物中加入甲基叔丁基醚(12mL),常温搅拌1h。过滤除去固体,滤液用旋转蒸发仪减压浓缩得到棕黑色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→9/91]纯化得到目标产物(±)-41。淡黄色油状物(略不纯);2.20g;该产物不需要表征,直接用于下一步反应。
步骤6:化合物(±)-42的合成
将锌粉(2.06g,32mmol)和冰醋酸(10mL)搅拌混合后,室温下滴加新配制的化合物(±)-41(2.20g,9.2mmol)的冰醋酸(5mL)溶液。滴加完毕后,在N2的环境下,将反应混合物在55℃的油浴中搅拌过夜。TLC监测显示反应完成,将反应混合物冷却至室温,过滤。滤液用冰水(50mL)稀释,CH2Cl2(40mL×2)萃取。合并有机相后,依次用水(80mL×3)和饱和盐水(100mL)洗涤,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/20]纯化得到淡黄色油状物,油状物用真空油泵干燥后变成固体。向上述固体中加入正己烷(5mL),室温搅拌1h。过滤,滤饼用真空油泵干燥后得到目标化合物(±)-42。白色固体;1.08g((±)-40→(±)-42合并收率45%);熔点为101.0℃-103.0℃;
1H NMR(CDCl3,500MHz)δ:3.34-3.37(m,1H),2.62(ddd,1H,J=3.0Hz,8.5Hz and 18.5Hz),2.49-2.52(m,1H),2.14(dt,1H,J=3.5Hz and 18.5Hz),1.616-1.624(m,3H),1.51-1.52(m,3H),1.48(q,1H,J=6.5Hz),1.14(s,3H),1.13(s,3H),0.58(d,3H,J=6.5Hz)。
13C NMR(CDCl3,126MHz)δ:211.60,134.45,133.12,73.07,66.04,56.64,55.52,45.28,36.90,15.97,15.29,12.49,11.11,8.19。
ESI-HRMS:(m/z)calcd.for C14H21O([M+H]+)205.1587,found:205.1587。
步骤7:化合物(±)-43的合成
在N2的环境下,将t-BuOK(2.35g,21mmol)加入干燥THF(10mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(5.28g,21mmol)。滴加完毕后,在冰水浴下反应30min,滴加新配制的化合物(±)-42(0.86g,4.2mmol)的干燥THF(7mL)溶液。滴加完毕后,室温搅拌过夜。TLC监测显示反应完成,将反应液倒入冰水(80mL)中,用CH2Cl2(30mL×3)萃取。合并有机相,依次用1M HCl(20mL)和饱和盐水(100mL)洗涤,干燥(MgSO4),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到深黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/20]纯化得到目标产物(±)-43。淡黄色油状物;0.97g;该产物不需要表征,直接用于下一步反应。
步骤8:化合物(±)-44的合成
室温下,将化合物(±)-43(0.97g,3.2mmol)溶于CH3NO2(12mL)中,滴加DBU(4.40g,29mmol)。滴加完毕后,在N2的环境下,将反应混合物回流48h。TLC监测显示约60%原料未反应,停止反应,将反应液冷却至室温后倒入冰水(100mL)中,用CH2Cl2(50mL×2)萃取。合并有机相后,依次用1M HCl(50mL)和饱和盐水(100mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到淡黄色油状物。油状物低温下固化,加入正己烷(2mL)在-18℃下搅拌打浆30min,抽滤收集固体,真空油泵干燥得到目标产物(±)-44。白色固体;0.10g((±)-42→(±)-44合并收率7%);熔点为78.6℃-81.5℃;
1H NMR(CDCl3,500MHz)δ:4.82(d,1H,J=11.5Hz),4.66(d,1H,J=11.5Hz),2.47-2.52(m,1H),2.36(d,1H,J=17.5Hz),2.28(d,1H,J=17.5Hz),2.24-2.26(m,1H),1.91(ddd,1H,J=2.0Hz,8.5Hz and 13.0Hz),1.73-1.74(m,3H),1.605-1.612(m,3H),1.44(s,9H),1.17-1.24(m,2H),1.00(s,3H),0.97(s,3H),0.55(d,3H,J=6.0Hz)。
13C NMR(CDCl3,126MHz)δ:171.17,137.15,134.49,82.91,80.86,66.54,56.45,55.96,55.78,42.49,39.08,36.58,31.59,28.25,16.22,15.25,13.26,12.84,8.12。
ESI-HRMS:(m/z)calcd.for C21H32NO4([M-H]-)362.2337,found:362.2343。
步骤9:化合物(±)-45的合成
将化合物(±)-44(0.10g,0.28mmol)溶于CH2Cl2(5mL)中,冰水浴下缓慢滴加TFA(1mL)。滴加完毕后,室温反应2-3小时。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后经柱层析[V(EtOAc)/V(正己烷)=0/1→3/7]纯化得到淡黄色固体。向固体中加入正己烷(3mL),室温搅拌打浆1h。抽滤收集固体,真空油泵干燥,得到化合物(±)-45。白色固体;0.05g(63%);熔点为122.8℃-126.4℃;
1H NMR(CDCl3,500MHz)δ:4.78(d,1H,J=12.0Hz),4.74(d,1H,J=11.5Hz),2.55(d,1H,J=18.0Hz),2.50-2.54(m,1H),2.51(d,1H,J=18.0Hz),2.26-2.28(m,1H),1.91(ddd,1H,J=2.0Hz,8.5Hz and 13.5Hz),1.75-1.76(m,3H),1.61-1.62(m,3H),1.22-1.26(m,2H),0.99(s,3H),0.98(s,3H),0.56(d,3H,J=6.5Hz);
13C NMR(CDCl3,126MHz)δ:176.32,137.65,134.32,82.69,66.66,56.44,56.10,55.55,42.44,38.57,34.98,31.74,16.34,15.23,13.31,12.88,8.11;
ESI-HRMS:(m/z)calcd.for C17H26NO4([M+H]+)308.1856,found:308.1850。
步骤10:化合物(±)-I-8的合成
将化合物(±)-45(0.05g,0.16mmol)溶于CH3OH(3mL)中,加入10%Pd(OH)2/C(0.03g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),过滤,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入CH3OH(1mL)/EtOAc(3mL)室温搅拌0.5h。抽滤收集固体,真空油泵干燥得目标产物(±)-I-8。白色固体;0.02g(53%);熔点为180.0℃-184.0℃;
1H NMR(CD3OD,500MHz)δ:3.09(dd,1H,J=0.8Hz and 13.3Hz),2.97(d,1H,J=13.0Hz),2.48-2.53(m,1H),2.43(dd,1H,J=1.3Hz and 17.3Hz),2.27(d,1H,J=17.0Hz),2.20-2.22(m,1H),1.81-1.82(m,3H),1.61-1.62(m,3H),1.59(ddd,1H,J=2.0Hz,8.0Hz and 12.5Hz),1.24(q,1H,J=6.3Hz),1.14(dd,1H,J=6.5Hz and 12.5Hz),1.08(s,3H),0.99(s,3H),0.58(d,3H,J=6.5Hz);
13C NMR(CD3OD,126MHz)δ:180.23,137.15,136.15,67.72,57.44,56.85,55.52,51.85,45.39,43.50,38.85,34.01,16.90,15.51,13.16,12.83,8.44;
ESI-HRMS:(m/z)calcd.for C17H28NO2([M+H]+)278.2115,found:278.2111。
化合物(±)-I-8是本申请具有通式I的化合物的一种具体形式。
实施例11化合物(±)-I-9及其对甲苯磺酸盐的合成
步骤1:化合物46的合成
将四丁基溴化铵(TBAB)(32.64g,0.10mol)加入到50%NaOH水溶液(1.2L)中搅拌,按照标准操作将反应容器中空气置换成氮气(气球)。冰水浴下,将新蒸馏的环戊二烯(167.13g,2.5mol)与1,2-二氯乙烷(250.50g,2.5mol)混合均匀后滴加到反应体系中(反应放热,控制滴加速度以维持内温30℃-40℃,滴加过程中体系颜色从无色透明逐渐变成深红棕色,且体系变黏稠)。滴加完毕后,将反应装置移到油浴上维持体系内温30℃-40℃搅拌2h。停止反应,将反应液冷却至室温后倒入冰水(1.0L)中,以正戊烷(300mL×2)萃取。合并有机相,依次用水(500mL×2)、1M HCl(300mL)和饱和盐水(500mL)洗涤,干燥(MgSO4),过滤除去干燥剂。将滤液进行常压分馏,收集108℃-109℃的馏分,得到目标化合物46(含一定量正戊烷)。无色透明液体;46.24g(20%);1H NMR(CDCl3,500MHz)δ:6.50-6.52(m,2H),6.11-6.13(m,2H),1.65(s,4H)。
步骤2:化合物47的合成
将顺丁烯二酸酐(11.28g,0.12mol)溶于苯(30mL)/甲基叔丁基醚(90mL)混合溶剂中,按照标准操作将反应器中空气置换成氮气(气球),冰水浴下滴加化合物46(13.24g,0.14mol)的苯/甲基叔丁基醚=1/3(v/v,共50mL)的溶液。滴加完毕后,室温下搅拌过夜后,将体系置于45℃油浴回流反应2h。停止反应,将反应体系温度降至室温,而后在旋转蒸发仪上减压浓缩得到无色透明油状物。向其中加入正己烷(100mL×4),多次浓缩,得到白色固体。向上述白色固体中加入正己烷(120mL),室温下搅拌打浆1h。抽滤收集固体,真空油泵干燥,得到化合物47。白色固体;21.03g(77%);熔点为92.7℃-96.9℃;
1H NMR(CDCl3,500MHz)δ:6.386-6.394(m,2H),3.70-3.71(m,2H),2.88-2.90(m,2H),0.64-0.68(m,2H),0.51-0.54(m,2H);
13C NMR(CDCl3,126MHz)δ:171.25,135.62,51.11,49.12,47.54,8.26,7.12;
ESI-HRMS:(m/z)calcd.for C11H11O3([M+H]+)191.0703,found:191.0701。
步骤3:化合物48的合成
将化合物47(21.00g,0.11mol)溶于1,4-二氧六环(500mL),冰浴冷却下搅拌,缓慢滴加50%NaOH水溶液(44mL),滴加过程中逐渐析出白色固体。滴加完毕,室温继续搅拌0.5-1小时。TLC监测显示反应完成,冰浴下,滴加1M HCl调节反应液pH<2,用氯化钠饱和,以EtOAc(400mL×3)萃取。合并有机相,干燥(MgSO4),抽滤除去干燥剂,滤液用旋转蒸发仪浓缩得到残余物。向残余物中加入正己烷(120mL),室温下搅拌打浆1h。抽滤收集固体,真空油泵干燥,得到化合物48。白色固体;22.33g(97%);熔点为163.3℃-166.3℃;1H NMR(CDCl3,500MHz)δ:6.345-6.352(m,2H),3.50-3.51(m,2H),2.53-2.55(m,2H),0.56-0.59(m,2H),0.42-0.45(m,2H);
13C NMR(CDCl3,126MHz)δ:179.21,135.10,51.32,49.66,44.86,7.91,6.55;
ESI-HRMS:(m/z)calcd.for C11H13O4([M+H]+)209.0808,found:209.0805。
步骤4:化合物49的合成
将化合物48(42.34g,0.20mol)溶于DMF(500mL)中,按照标准操作将反应器中空气置换成氮气(气球)。冰水浴下加入干燥K2CO3(84.32g,0.61mol),然后缓慢滴加CH3I(115.44g,0.81mol)。滴加完毕后,将反应装置移至55℃油浴中搅拌过夜。TLC监测显示反应完成。反应体系降温至室温,向其中加入EtOAc(500mL),搅拌,抽滤除去固体,滤液用水(600mL×5)洗涤。合并所有水相,以EtOAc(300mL×2)反萃。而后合并所有有机相,用饱和盐水(1.0L)洗涤后,干燥(MgSO4),抽滤除去干燥剂,滤液用旋转蒸发仪浓缩得到棕黑色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/10]纯化得到白色固体。向上述固体中加入正己烷(150mL),室温搅拌打浆1h。抽滤收集固体,真空油泵干燥得到目标化合物49。白色固体;40.09g(83%);熔点为71.4℃-74.2℃;
1H NMR(CDCl3,500MHz)δ:6.34-6.35(m,2H),3.62(s,6H),3.45(m,2H),2.52-2.53(m,2H),0.54-0.57(m,2H),0.41-0.44(m,2H);
13C NMR(CDCl3,126MHz)δ:172.88,135.07,51.67,51.37,49.01,44.46,7.86,6.51;
ESI-HRMS:(m/z)calcd.for C13H17O4([M+H]+)237.1121,found:237.1118。
步骤5:化合物(±)-50的合成
将金属钠(21.41g,0.93mol)加入到干燥甲苯(300mL)中,在N2的环境下,加热至钠完全熔融,启动搅拌,维持内温103℃-106℃继续搅拌20min。滴加化合物49(40.00g,0.17mol)和TMSCl(97.48g,0.90mol)的干燥甲苯(200mL)溶液。滴加过程放热,控制滴加速度以使反应体系内温保持在103℃-106℃。滴加完毕后,保持反应体系内温103℃-106℃继续搅拌3-4小时。TLC监测显示反应完成,将反应液冷却至室温。用硅藻土助滤,滤液在旋转蒸发仪上减压浓缩得到深红棕色油状物。将油状物溶于THF(300mL)中,冰水浴下滴加1M HCl(20mL)。滴加完毕后,室温下反应1小时。TLC监测显示反应完成,将反应液倒入水中(300mL),加入EtOAc(300mL×2)萃取。合并有机相后,用饱和盐水(500mL)洗涤,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到残余物,向上述残余物中加入EtOAc(15mL)/正己烷(90mL)混合溶剂,室温下继续搅拌打浆1h。抽滤收集固体,真空油泵干燥得到目标化合物(±)-50。棕色固体;20.34g(68%);该产物不需要表征,直接用于下一步反应。
步骤6:化合物(±)-51的合成
将化合物(±)-50(20.34g,0.12mol)溶于CCl4(150mL)中,搅拌,依次加入三苯基膦(34.51g,0.13mol)和NaHCO3(1.36g,16mmol)。按照标准操作将反应器中空气置换成氮气(气球),而后回流过夜。TLC监测显示反应完成,将反应液冷却至室温,抽滤除去固体。滤液用旋转蒸发仪减压浓缩,向浓缩后的残余物中加入EtOAc(30mL)/正己烷(60mL)混合溶剂,室温下继续搅拌1h。抽滤除去固体,滤液用旋转蒸发仪减压浓缩得到棕黑色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→3/97]纯化得到目标产物(±)-51。淡黄色油状物(略不纯);7.36g;该产物不需要表征,直接用于下一步反应。
步骤7:化合物(±)-52的合成
将锌粉(8.50g,0.13mol)和冰醋酸(40mL)搅拌混合后,室温下滴加新配制的化合物(±)-51(7.36g,38mmol)的冰醋酸(30mL)溶液。滴加完毕后,在N2的环境下,将反应混合物置于55℃的油浴中搅拌过夜。TLC监测显示反应完成,将反应混合物冷却至室温后倒入冰水(100mL)中,搅拌,抽滤除去固体。滤液用EtOAc(80mL×3)萃取。合并有机相后,依次用水(200mL×3)、饱和NaHCO3溶液(200mL)和饱和盐水(200mL)洗涤,干燥(MgSO4),抽滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到黄色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→3/97]纯化得到目标产物(±)-52。淡黄色油状物;4.87g((±)-50→(±)-52合并收率26%);
1H NMR(CDCl3,500MHz)δ:6.23-6.28(m,2H),3.84-3.88(m,1H),2.92-2.97(m,1H),2.74(ddd,1H,J=3.0Hz,8.5Hz and 18.5Hz),2.50-2.52(m,1H),2.42-2.45(m,1H),2.22(dt,1H,J=3.8Hz and 18.5Hz),0.50-0.56(m,2H),0.42-0.46(m,1H),0.35-0.39(m,1H);
13C NMR(CDCl3,126MHz)δ:211.22,135.61,132.91,66.90,51.52,50.64,49.45,46.10,27.03,7.70,5.60;
ESI-HRMS:(m/z)calcd.for C11H13O([M+H]+)161.0961,found:161.0960。
步骤8:化合物(±)-53的合成
在N2的环境下,将t-BuOK(3.71g,33mmol)加入干燥THF(6mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(8.35g,33mmol)。滴加完毕后,在冰水浴下继续反应1h。滴加新配制的化合物(±)-52(1.06g,6.6mmol)的干燥THF(4mL)溶液。滴加完毕后,室温搅拌过夜。TLC监测显示反应完成。将反应液倒入冰水(50mL)中,用CH2Cl2(40mL×2)萃取。合并有机相,依次用冰水(80mL×2)和饱和盐水(150mL)洗涤,干燥(MgSO4),抽滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到深黄色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→3/97]纯化得到目标产物(±)-53。淡黄色油状物;1.62g;该产物不需要表征,直接用于下一步反应。
步骤9:化合物(±)-54的合成
室温下,将化合物(±)-53(1.62g,6.3mmol)溶于CH3NO2(20mL)中,滴加DBU(7.64g,50mmol)。滴加完毕后,在N2的环境下回流48h。TLC监测显示约60%原料未反应。停止反应,将反应液冷却至室温后倒入冰水(30mL)中,用CH2Cl2(30mL×2)萃取。合并有机相,用饱和盐水(100mL)洗涤,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕黑色油状物,经柱层析[V(EtOAc)/V(正己烷)=0/1→2/23]纯化得到目标化合物(±)-54。淡棕色油状物;0.59g((±)-52→(±)-54合并收率28%);
1H NMR(CDCl3,500MHz)δ:6.49-6.51(m,1H),6.38-6.40(m,1H),4.84(dd,1H,J=1.0Hz and 11.5Hz),4.63(dd,1H,J=1.0Hz and 11.5Hz),2.95-3.01(m,1H),2.66-2.70(m,1H),2.53(dd,1H,J=0.8Hz and 17.8Hz),2.42(d,1H,J=17.5Hz),2.28-2.30(m,1H),2.22-2.24(m,1H),2.06(ddd,1H,J=1.8Hz,8.5Hz and 13.3Hz),1.46(s,9H),1.41-1.44(m,1H),0.44-0.47(m,2H),0.25-0.33(m,2H)。
13C NMR(CDCl3,126MHz)δ:170.98,137.31,136.84,83.29,80.91,51.09,50.24,49.20,47.98,39.28,36.43,34.55,32.34,28.24,7.83,4.74。
ESI-HRMS:(m/z)calcd.for C18H26NO4([M+H]+)320.1856,found:320.1854。
步骤10:化合物(±)-55对甲苯磺酸盐的合成
室温下,将化合物(±)-54(0.59g,1.8mmol)溶于EtOH(10mL)中,加入水(5mL),搅拌,依次加入铁粉(0.52g,9.3mmol)和NH4Cl(0.20g,3.7mmol),按照标准操作将反应器中空气置换成氮气(气球),回流过夜。TLC监测显示反应完成,将反应液冷却至室温,抽滤除去固体。滤液加入饱和NaHCO3溶液(50mL)中,用EtOAc(40mL×3)萃取。合并有机相后,用饱和盐水(100mL)洗涤,干燥(MgSO4),抽滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到浅棕色油状物。室温下,加入EtOAc(5mL)稀释油状物,再加入p-TsOH·H2O(0.38g,2.0mmol),搅拌溶解,将体系转移至冰水浴中搅拌,逐渐析出白色絮状固体。向体系中加入EtOAc(7.5mL)使其能充分搅拌,室温下继续搅拌过夜。抽滤收集固体,真空油泵干燥得到目标化合物(±)-55对甲苯磺酸盐。白色固体。0.60g(70%)。熔点为171.6℃-175.8℃。
1H NMR(DMSO-d6,500MHz)δ:7.69(brs,3H),7.47(d,2H,J=8.0Hz),7.11(d,2H,J=8.0Hz),6.43-6.45(m,1H),6.36-6.38(m,1H),3.08-3.13(m,1H),2.97-3.02(m,1H),2.84-2.90(m,1H),2.55(dd,1H,J=4.5Hz and 9.0Hz),2.37(d,1H,J=17.5Hz),2.31(d,1H,J=17.0Hz),2.29(s,3H),2.17-2.21(m,2H),1.79(ddd,1H,J=1.8Hz,8.5Hz and 12.8Hz),1.41(s,9H),1.19-1.23(m,1H),0.36-0.42(m,2H),0.27-0.31(m,1H),0.21-0.25(m,1H);
13C NMR(DMSO-d6,126MHz)δ:170.55,145.60,137.71,137.00,136.45,128.09,125.51,80.05,50.56,49.42,48.59,47.70,46.97,37.08,36.34,33.71,31.86,27.75,20.80,7.48,4.45;
ESI-HRMS:(m/z)calcd.for C18H28NO2([M(游离碱)+H]+)290.2115,found:290.2112。
步骤11:化合物(±)-I-9对甲苯磺酸盐的合成
室温下,将化合物(±)-55对甲苯磺酸盐(0.56g,1.2mmol)加入饱和NaHCO3溶液(100mL)中,搅拌20min(为混悬状态),加入EtOAc(60mL×3)萃取。合并有机相后,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到黄色油状物,加入CH2Cl2(20mL×3)多次浓缩后将油状物溶于CH2Cl2(5mL)中。在冰水浴下,缓慢滴加TFA(3mL)。滴加完毕后,室温反应6h。TLC监测显示反应完成。将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,加入CH2Cl2(20mL×3)多次浓缩,而后用真空油泵干燥(干燥过程中析出少量固体),然后加入EtOAc(3mL)溶解,向反应溶液中滴加p-TsOH·H2O(0.25g,1.3mmol)溶于EtOAc(3mL)制成的溶液,体系逐渐析出米白色固体,滴加完毕后,室温下搅拌过夜。抽滤收集固体,用EtOAc(1mL)洗涤滤饼,真空油泵干燥,得到化合物(±)-I-9对甲苯磺酸盐。白色固体;0.38g(77%);熔点为187.5℃-188.5℃;
1H NMR(CD3OD,500MHz)δ:7.71(d,2H,J=8.0Hz),7.23(d,2H,J=8.0Hz),6.50-6.52(m,1H),6.38-6.40(m,1H),3.27(d,1H,J=13.0Hz),3.13(d,1H,J=13.0Hz),2.95-3.01(m,1H),2.66-2.69(m,1H),2.63(d,1H,J=17.5Hz),2.40(d,1H,J=17.5Hz),2.37(s,3H),2.26-2.28(m,1H),2.20-2.22(m,1H),1.78(ddd,1H,J=1.5Hz,8.5Hz and 13.0Hz),1.44(dd,1H,J=6.5Hz and 13.0Hz),0.40-0.46(m,2H),0.30-0.34(m,1H),0.25-0.29(m,1H);
13C NMR(CD3OD,126MHz)δ:175.76,143.51,141.71,138.32,137.84,129.82,126.96,52.26,51.30,50.45,49.93,48.37,38.43,37.52,35.51,33.66,21.31,8.27,5.20;
ESI-HRMS:(m/z)calcd.for C14H20NO2([M(游离碱)+H]+)234.1489,found:234.1486。
化合物(±)-I-9是本申请具有通式I的化合物的一种具体形式。
实施例12化合物(±)-I-10的合成
步骤1:化合物(±)-56的合成
将化合物(±)-54(0.21g,0.66mmol)溶于CH2Cl2(2mL)中,冰水浴下缓慢滴加TFA(1.5mL)。滴加完毕后,室温反应2-3小时。TLC监测显示反应完成。将反应液在旋转蒸发仪上减压浓缩,再加入CH2Cl2(20mL×4)多次浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→3/7]纯化得到黄色固体。向上述固体中加入正己烷(1mL),室温下搅拌打浆过夜。抽滤收集固体,真空油泵干燥,得到化合物(±)-56。白色固体;0.11g(64%);熔点为141.3℃-144.5℃;
1H NMR(DMSO-d6,500MHz)δ:12.23(s,1H),6.47-6.49(m,1H),6.36-6.38(m,1H),4.79(s,2H),2.91-2.97(m,1H),2.63-2.66(m,1H),2.45(d,1H,J=17.5Hz),2.27(d,1H,J=17.5Hz),2.24-2.25(m,1H),2.20-2.21(m,1H),1.96(ddd,1H,J=1.8Hz,8.5Hz and 13.0Hz),1.36(dd,1H,J=6.5Hz and 13.0Hz),0.36-0.41(m,2H),0.22-0.30(m,2H);
13C NMR(DMSO-d6,126MHz)δ:172.26,136.94,136.57,82.95,50.35,49.40,48.77,47.08,38.50,35.06,33.94, 31.69,7.44,4.43;
ESI-HRMS:(m/z)calcd.for C14H18NO4([M+H]+)264.1230,found:264.1225。
步骤2:化合物(±)-I-10的合成
将化合物(±)-56(0.11g,0.42mmol)溶于CH3OH(3mL)中,加入10%Pd(OH)2/C(0.04g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),抽滤除去固体,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入EtOAc(2mL)室温搅拌打浆1h。抽滤收集固体,真空干燥得到目标产物(±)-I-10。白色固体;0.03g(31%);熔点为197.3℃-201.1℃;
1H NMR(CD3OD,500MHz)δ:3.14(d,1H,J=13.0Hz),3.01(d,1H,J=12.5Hz),2.75(dd,1H,J=1.0Hz and16.5Hz),2.63-2.78(m,1H),2.66(d,1H,J=16.0Hz),2.53-2.57(m,1H),2.10-2.17(m,1H),2.01(dd,1H,J=7.5Hz and 13.0Hz),1.79-1.90(m,4H),1.60-1.62(m,1H),1.42-1.44(m,1H),0.42-0.51(m,4H);
13C NMR(CD3OD,126MHz)δ:180.04,52.77,49.79,47.72,46.30,45.63,39.39,38.20,35.05,33.87,26.24,25.76,6.33,5.15;
ESI-HRMS:(m/z)calcd.for C14H22NO2([M+H]+)236.1645,found:236.1642。
化合物(±)-I-10是本申请具有通式I的化合物的一种具体形式。
实施例13化合物(±)-I-11及其对甲苯磺酸盐的合成
步骤1:化合物(±)-58的合成
将化合物(±)-18(3.00g,22mmol)溶于苯(40mL)中,搅拌状态下依次加入CH3NO2(20mL)和哌啶(0.95g,11mmol),升温回流,使用Dean-Stark分水器分水2h。TLC监测显示反应完成,停止反应。将反应液温度降至室温后倒入冰水(100mL)中,加入CH2Cl2(50mL×2)萃取。合并有机相,依次用1M HCl(20mL)、饱和NaHCO3溶液(100mL)和饱和盐水(100mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到深棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→3/97]纯化得到目标化合物(±)-58。黄色油状物;0.78g;该产物由Z/E混合物组成,直接用于下一步反应。
步骤2:化合物(±)-59的合成
向反应器中加入干燥THF(5mL),按照标准操作将反应容器中空气置换成氮气(气球)。搅拌下,加入二异丙胺(0.86g,8.5mmol),降温至-78℃(液氮-醇体系)。滴加正丁基锂(1.6M的己烷溶液,5.3mL,8.5mmol),滴加完毕后,-78℃下反应0.5h。而后滴加乙酸叔丁酯(0.99g,8.5mmol)的干燥THF(1mL)溶液,滴加完毕后,-78℃下继续反应0.5h。再滴加化合物(±)-58(0.50g,2.8mmol)的干燥THF(1mL)溶液,滴加完毕后,-78℃下再反应1-2小时。TLC监测显示反应完成。反应液温度恢复至室温后倒入冰水(15mL)中,CH2Cl2(20mL)萃取。有机相依次用1M HCl(40mL)、饱和NaHCO3溶液(40mL)和饱和盐水(40mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到深棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→3/97]纯化得到目标化合物(±)-59。浅黄色油状物;0.51g((±)-18→(±)-59合并收率12%);
1H NMR(CDCl3,500MHz)δ:6.41-6.43(m,1H),6.32-6.34(m,1H),4.59(d,1H,J=13.0Hz),4.54(d,1H,J=13.0Hz),3.02-3.05(m,1H),2.84-2.90(m,2H),2.69(dd,1H,J=1.0Hz and 16.5Hz),2.59(dd,1H,J=0.5Hz and 16.5Hz),2.50-2.53(m,1H),1.82-1.88(m,1H),1.60-1.62(m,1H),1.45-1.49(m,10H),1.11-1.14(m,1H);
13C NMR(CDCl3,126MHz)δ:170.65,138.31,136.61,81.21,76.29,53.54,49.17,45.75,44.86,44.48,37.98,34.36,32.85,28.27;
ESI-HRMS:(m/z)calcd.for C16H24NO4([M+H]+)294.1700,found:294.1698。
步骤3:化合物(±)-60对甲苯磺酸盐的合成
室温下,将化合物(±)-59(0.51g,1.7mmol)溶于EtOH(10mL)中,加入水(5mL)搅拌后,依次加入铁粉(0.47g,8.4mmol)和NH4Cl(0.18g,3.4mmol),按照标准操作将反应器中空气置换成氮气(气球),搅拌回流过夜。TLC监测显示反应完成。将反应液冷却至室温,抽滤除去固体。滤液加入饱和NaHCO3溶液(50mL)中,用EtOAc(40mL×3)萃取。合并有机相,依次用饱和NaHCO3溶液(80mL)和饱和盐水(100mL)洗涤,干燥(MgSO4),抽滤除去干燥剂,用旋转蒸发仪减压浓缩得到棕色油状物。上述棕色油状物以EtOAc(5mL)溶解,再加入p-TsOH·H2O(0.35g,1.8mmol),搅拌溶解后,逐渐析出白色固体。向体系中再加入EtOAc(3mL)使其能充分搅拌,室温下继续搅拌打浆1-2小时。抽滤收集固体,真空油泵干燥得到目标化合物(±)-60对甲苯磺酸盐。白色固体;0.39g(52%);熔点为194.9℃-196.7℃;
1H NMR(DMSO-d6,500MHz)δ:7.52(brs,3H),7.48(d,2H,J=8.5Hz),7.12(d,2H,J=8.0Hz),6.40-6.42(m,1H),6.26-6.28(m,1H),2.99-3.00(m,1H),2.83-2.89(m,1H),2.76-2.82(m,3H),2.58(d,1H,J=16.0Hz),2.53(d,1H,J=16.0Hz),2.33-2.35(m,1H),2.29(s,3H),1.63-1.68(m,1H),1.47-1.49(m,1H),1.42(s,9H),1.27-1.31(m,1H),1.05-1.07(m,1H);
13C NMR(DMSO-d6,126MHz)δ:170.22,145.63,137.66,137.30,136.31,128.06,125.48,80.39,53.06,47.38,44.67,43.98,43.20,40.12,36.87,32.62,31.58,27.82,20.78;
ESI-HRMS:(m/z)calcd.for C16H26NO2([M(游离碱)+H]+)264.1958,found:264.1956。
步骤4:化合物(±)-I-11及其对甲苯磺酸盐的合成
室温下,将化合物(±)-60对甲苯磺酸盐(0.39g,0.90mmol)加入饱和NaHCO3溶液(50mL)中,搅拌20min(为混悬状态),再加入EtOAc(40mL×3)萃取。合并有机相后,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到黄色油状物,加入CH2Cl2(20mL×3)多次浓缩后将油状物溶于CH2Cl2(4mL)中。在冰水浴下,缓慢滴加TFA(3mL)。滴加完毕后,室温反应5-6小时。TLC监测显示反应完成。将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,依次加入CH2Cl2(20mL×3)和EtOAc(20mL×3)多次浓缩。油状物用真空油泵干燥得到(±)-I-11。上述(±)-I-11样品以EtOAc(2mL)溶解,滴加p-TsOH·H2O(0.19g在2.5mL EtOAc中,1.0mmol)溶液(逐渐析出米白色固体),滴加完毕,再加入EtOAc(2.5mL)使搅拌顺畅,室温下继续搅拌1h。抽滤收集固体,真空油泵干燥,得到化合物(±)-I-11对甲苯磺酸盐。白色固体;0.26g(77%);熔点为193.0℃-188.5℃;
1H NMR(CD3OD,500MHz)δ:7.70(d,2H,J=8.5Hz),7.23(d,2H,J=8.0Hz),6.43-6.44(m,1H),6.31-6.33(m,1H),3.07(d,1H,J=13.0Hz),3.02-3.03(m,1H),2.99(d,1H,J=13.0Hz),2.89-2.95(m,1H),2.84-2.86(m,1H),2.74(d,1H,J=17.0Hz),2.70(d,1H,J=17.0Hz),2.46(ddd,1H,J=1.5Hz,4.5Hz and 9.0Hz),2.37(s,3H),1.75(ddd,1H,J=1.8Hz,8.5Hz and 12.8Hz),1.61-1.63(m,1H),1.44(dd,1H,J=6.5Hz and 12.5Hz),1.16-1.18(m,1H);
13C NMR(CD3OD,126MHz)δ:175.29,143.52,141.69,139.13,137.18,129.81,126.96,54.43,49.46,46.36,45.74,44.77,42.50,37.95,34.42,33.32,21.30;
ESI-HRMS:(m/z)calcd.for C12H18NO2([M(游离碱)+H]+)208.1332,found:208.1331。
化合物(±)-I-11是本申请具有通式I的化合物的一种具体形式。
实施例14化合物(±)-I-12的合成
步骤1:化合物(±)-61的合成
将化合物(±)-59(0.50g,1.7mmol)溶于CH2Cl2(3mL)中,冰水浴下缓慢滴加TFA(3mL)。滴加完毕后,室温反应3-4小时。TLC监测显示反应完成,将反应液在旋转蒸发仪上减压浓缩得到棕色油状物后,再加入CH2Cl2(20mL×5)多次浓缩,得到的油状物经柱层析[V(EtOAc)/V(正己烷)=0/1→3/7]纯化得到米白色固体。向固体中加入正己烷(3mL),室温打浆1h。抽滤收集固体,用真空油泵干燥,得到化合物(±)-61。白色固体;0.32g(79%);熔点为91.4℃-93.8℃;
1H NMR(DMSO-d6,500MHz)δ:12.33(brs,1H),6.47-6.49(m,1H),6.32-6.34(m,1H),4.58(d,1H,J=13.0Hz),4.52(d,1H,J=13.0Hz),2.91-2.93(m,1H),2.84-2.88(m,1H),2.80-2.82(m,1H),2.59(d,1H,J=16.5Hz),2.55(d,1H,J=17.0Hz),2.44-2.47(m,1H),1.76(ddd,1H,J=1.8Hz,8.3Hz and 12.8Hz),1.47-1.49(m,1H),1.40(dd,1H,J=6.5Hz and 13.0Hz),1.06-1.09(m,1H);
13C NMR(DMSO-d6,126MHz)δ:172.14,137.79,136.27,76.46,52.74,48.32,45.10,44.08,42.66,37.14,33.58,32.16;
ESI-HRMS:(m/z)calcd.for C12H16NO4([M+H]+)238.1074,found:238.1072。
步骤2:化合物(±)-I-12的合成
将化合物(±)-61(0.30g,1.3mmol)溶于CH3OH(5mL)中,加入10%Pd(OH)2/C(0.08g),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),抽滤除去固体,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入CH3OH/EtOAc=1/3(v/v)的混合溶剂(3mL),室温搅拌1h。抽滤收集固体,干燥得目标产物(±)-I-12。白色固体;0.05g(19%);熔点为153.2℃-157.3℃;
1H NMR(CD3OD,500MHz)δ:3.17(d,1H,J=13.5Hz),3.14(d,1H,J=13.5Hz),2.68(s,2H),2.57-2.64(m,1H),2.49-2.51(m,1H),2.25-2.27(m,1H),2.13-2.16(m,1H),2.01(dd,1H,J=7.5Hz and 12.5Hz),1.73-1.82(m,3H),1.61-1.67(m,1H),1.50-1.55(m,1H),1.43-1.45(m,1H),1.27-1.30(m,1H);
13C NMR(CD3OD,126MHz)δ:180.18,53.17,53.31,47.14,43.23,40.81,40.06,36.72,34.78,32.43,26.51,25.22;ESI-HRMS:(m/z)calcd.for C12H20NO2([M+H]+)210.1489,found:210.1485。
化合物(±)-I-12是本申请具有通式I的化合物的一种具体形式。
实施例15化合物(±)-I-13的合成
步骤1:化合物62的合成
在冰水浴冷却下并搅拌下,依次将SnCl2·2H2O(1299.93g,5.76mol)、KI(956.29g,5.76mol)和溴丙烯(696.94g,5.76mol)加入去离子水(8.25L)中搅拌(溶液呈橙红色)。待体系内温稳定在10℃后,再缓慢滴加丙烯醛缩二乙醇(500.00g,3.84mol)的THF(768mL)溶液(监测内温不超过20℃,体系颜色由橙红色变成淡黄色)。滴加完毕后,室温搅拌过夜。TLC监测显示反应完成。停止反应,将反应液倒入CH2Cl2(8L),搅拌,分出有机相,水相再用CH2Cl2(8L)萃取一次。合并有机相后,加入饱和盐水(5L)洗涤,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压(30℃低温)浓缩得到淡黄色油状物,该有状物使用减压蒸馏提纯,收集顶温为60℃/30mmHg左右的馏分得到目标产物62。无色透明油状物;183.50g(49%);1H NMR(CDCl3,500MHz)δ:5.78-5.93(m,2H),5.24-5.28(m,1H),5.13-5.18(m,3H),4.17-4.21(m,1H),2.33-2.39(m,1H),2.26-2.32(m,1H)。该产物不进一步提纯,直接用于下一步反应。
步骤2:化合物63的合成
Jones试剂的制备:将水(267mL)加入反应容器中,置于冰水浴冷却,搅拌状态下分批加入CrO3(122.83g,1.23mol)成橙红色悬浊液后,再缓慢滴加浓H2SO4(131mL),滴加完毕后备用。
将化合物62(120.56g,1.23mol)溶于丙酮(430mL)中,然后置于冰水浴中搅拌,缓慢滴加Jones试剂(滴加过程中产生绿色固体,溶液颜色由蓝绿色变为墨绿色)。滴加过程中TLC监测,TLC监测显示反应完成后即停止滴加。反应体系中加入正戊烷(400mL)稀释,以水(400mL)洗涤;水相用正戊烷(250mL×2)反萃。合并有机相后,依次用10%亚硫酸钠溶液(200mL)和饱和盐水(200mL×3)依次洗涤有机相,干燥(MgSO4),抽滤除去干燥剂。滤液先常压分馏除去正戊烷(顶温36℃-38℃),再减压蒸馏,收集58℃-60℃/30mmHg的馏分(接收瓶需置于液氮中低温保护),得到目标化合物63。淡黄色油状物;26.42g(22%);1H NMR(CDCl3,500MHz)δ:6.39(dd,1H,J=10.5Hz and 18.0Hz),6.26(dd,1H,J=1.3Hz and 17.8Hz),5.92-6.00(m,1H),5.87(dd,1H,J=1.0Hz and 10.5Hz),5.15-5.23(m,2H),3.37-3.39(m,2H)。该产物中含有一定量的正戊烷,不进一步纯化,直接用于下一步反应。
步骤3:化合物64的合成
将化合物63(26.42g,0.27mol)在石英容器中溶于正戊烷(1.5L)中,按照标准操作将反应容器中空气置换成氮气(气球)。将反应装置放在黑暗的环境中,搅拌,室温用紫外灯光灯(365nm;15W×6)照射7-14天(溶液颜色由无色透明变为紫红色后又褪成淡紫色)。反应过程中会产生少量粘稠的聚合物副产物粘在反应容器内 壁,每隔2-3天加入活性炭(10g)和硅藻土(10g)搅拌10分,抽滤除去聚合物,滤液按照上述操作重新投入反应。直至TLC监测含少量原料,停止反应。反应液用旋转蒸发仪减压浓缩(<30℃)至原体积的1/2后,向体系缓慢滴加Br2直至Br2不再褪色(溶液呈浅橘色)。接着加入10%硫代硫酸钠溶液(200mL),搅拌,破坏过量的Br2,此时溶液褪至无色。分出有机相,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压浓缩(<30℃浓缩)得到油状物后,再加入CH3OH(20mL)浓缩得到目标化合物64粗品。淡黄色油状物;6.61g;该产物不表征,直接用于下一步反应。
步骤4:化合物65的合成
将化合物64(16.00g,0.17mol)溶于CH3OH(320mL)中,加入4-甲基苯磺酰肼(31.00g,0.17mol),按照标准操作将反应容器中空气置换成氮气(气球),然后回流过夜。TLC监测显示反应完成。将反应液降至室温后用旋转蒸发仪减压浓缩得黄色油状物,用CH2Cl2(500mL)溶解,而后依次用1M HCl(400mL×6)和饱和盐水(200mL)洗涤,干燥(MgSO4),抽滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得黄色油状物后,加入正己烷(50mL×2)多次浓缩得到黄色固体。向固体中加入EtOAc(3mL)/正己烷(30mL),室温打浆1h。抽滤收集固体,真空油泵干燥,得到化合物65。淡黄色固体;17.09g(63→65合并收率10%);熔点为174.7℃-177.6℃;
1H NMR(CDCl3,500MHz)δ:7.86(d,2H,J=8.0Hz),7.32(d,2H,J=8.0Hz),7.21(brs,1H),2.98-3.00(m,1H),2.65-2.68(m,1H),2.43(s,3H),2.16-2.17(m,2H),1.98-2.04(m,2H),1.31-1.32(m,2H);
13C NMR(CDCl3,126MHz)δ:168.36,144.10,135.67,129.74,128.18,49.53,42.05,36.29,32.91,21.76。
步骤5:化合物66的合成
将化合物65(4.23g,19mmol)溶于干燥THF(50mL)中,按照标准操作将反应容器中空气置换成氮气(气球)。在冰水浴和搅拌状态下,向体系缓慢滴加CH3Li(1.6M的二乙氧基甲烷溶液,42mL,67.2mmol)。滴加完毕,室温反应过夜。TLC监测显示反应完成,在冰水浴下,向体系滴加水(10mL)淬灭反应,将反应液倒入冰水中(200mL)中,用正戊烷(100mL×3)萃取。合并有机相,依次用1M HCl(100mL×2)和饱和盐水(100mL)洗涤,干燥(MgSO4),抽滤除去干燥剂。滤液常压分馏,去除溶剂,得到目标化合物66粗品(1.52g),该产物不进一步提纯,直接用于下一步反应。
步骤6:化合物(±)-67的合成
室温下,依次将化合物66(1.52g,按照19mmol计)和二氯乙酰氯(3.72g,25mmol)溶于干燥正己烷(20mL)中,按照标准操作将反应容器中空气置换成氮气(气球)。在室温和搅拌状态下,缓慢滴加三乙胺(2.80g,28mmol)的干燥正己烷(10mL)溶液,滴加过程中体系放热,控制滴加速度维持内温30℃-35℃。滴加完毕后,然后将反应器置于35℃油浴中搅拌2h,补加干燥正己烷(50mL)使其能充分搅拌,室温反应过夜。TLC监测显示反应完成。反应液冷却至室温后,倒入冰水(200mL)中。分出有机相,依次用1M HCl(50mL)、水(200mL)、饱和NaHCO3溶液(100mL×2)和饱和盐水(100mL)洗涤,干燥(MgSO4),抽滤除去干燥剂,滤液用旋转蒸发仪减压浓缩得到化合物(±)-67粗品。深红色油状物;1.89g;该产物不进一步提纯,直接用于下一步反应。
步骤7:化合物(±)-68的合成
将锌粉(3.23g,49mmol)和冰醋酸(20mL)搅拌混合后,室温下滴加新配制的化合物(±)-67(1.89g,9.9mmol)的冰醋酸(5mL)溶液。滴加完毕后,在N2的环境下,将反应混合物放在55℃的油浴中搅拌过夜。TLC监测显示反应完成,将反应混合物冷却至室温,硅藻土助滤。滤液用CH2Cl2(200mL)稀释后,依次加入水(200mL×3)、饱和NaHCO3溶液(200mL)和饱和盐水(200mL)洗涤,干燥(MgSO4),抽滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到深棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/20]得到化合物(±)-68粗品。深棕色油状物;0.31g;该产物不进一步纯化,直接用于下一步反应。
步骤8:化合物(±)-69的合成
在N2的环境下,将t-BuOK(1.42g,13mmol)加入干燥THF(5mL)中,冰水浴下搅拌成悬浮液后,滴加二乙基膦酰基乙酸叔丁酯(3.20g,13mmol)。滴加完毕后,在冰水浴下反应1h,滴加新配制的化合物(±)-68(0.31 g,2.5mmol)的干燥THF(10mL)溶液。滴加完毕后,室温搅拌过夜。TLC监测反应完成。反应混合物倒入冰水(100mL)中,搅拌,CH2Cl2(30mL×3)萃取。合并萃取有机相,饱和食盐水洗涤,干燥(MgSO4),抽滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩得到深棕色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/12]得到化合物(±)-69粗品。深棕色油状物;0.40g;该产物不进一步纯化,直接用于下一步反应。
步骤9:化合物(±)-70的合成
室温下,将化合物(±)-69(0.40g)溶于CH3NO2(10mL)中,搅拌,滴加DBU(3.0g)。滴加完毕后,在N2的环境下,将反应混合物回流一周。TLC监测显示仍有大量原料未反应,停止反应,将反应液冷却至室温后倒入冰水(100mL)中,CH2Cl2(50mL×2)萃取,合并有机相依次用冰水(100mL)和饱和盐水(150mL)洗涤,干燥(MgSO4),过滤除去干燥剂。滤液用旋转蒸发仪减压浓缩得到棕黑色油状物后,经柱层析[V(EtOAc)/V(正己烷)=0/1→1/9]纯化得到目标产物(±)-70。淡黄色油状物;0.10g;
1H NMR(acetone-d6,500MHz)δ:4.77(d,1H,J=12.0Hz),4.65(d,1H,J=12.0Hz),2.65(d,1H,J=18.5Hz),2.57(d,1H,J=18.5Hz),2.33-2.36(m,1H),2.00-2.04(m,1H),1.98-1.99(m,2H),1.81-1.83(m,1H),1.41(s,9H),1.32-1.36(m,1H),1.23-1.28(m,2H),1.01-1.04(m,2H);
ESI-HRMS:(m/z)calcd.for C15H24NO4([M+H]+)282.1700,found:282.1702。
步骤10:化合物(±)-71的合成
将化合物(±)-70(78mg,0.28mmol)溶于CH2Cl2(1mL)中,冰水浴下滴加TFA(0.5mL)。滴加完毕后,室温反应4h。TLC监测显示反应完成。反应混合物倒入冰水(5mL)中,以CH2Cl2(2mL×3)萃取。合并有机相后,用饱和盐水(2mL×2)洗涤,干燥(MgSO4),过滤除去干燥剂,滤液用旋转蒸发仪浓缩得到黄色油状物。经柱层析[V(EtOAc)/V(正己烷)=1/5→1/0]纯化得到目标产物(±)-71。无色油状物,32mg(51%);
1H NMR(acetone-d6+D2O(1drop),500MHz)δ:4.70(d,1H,J=11.5Hz),4.53(d,1H,J=11.5Hz),2.61(d,1H,J=19.0Hz),2.55(d,1H,J=18.5Hz),2.42-2.46(m,1H),2.12-2.16(m,1H),1.99-2.03(m,2H),1.84-1.86(m,1H),1.51-1.56(m,1H),1.20-1.22(m,2H),1.13-1.15(m,2H);
ESI-HRMS:(m/z)calcd.for C11H16NO4([M+H]+)226.1074,found:226.1070。
步骤11:化合物(±)-I-13的合成
将化合物(±)-71(25mg,0.11mmol)溶于CH3OH(0.5mL)中,加入10%Pd(OH)2/C(5mg),按照标准操作将反应容器中空气置换成氢气(气球),置于室温下搅拌过夜。TLC监测显示反应完成(反应一般需要12h完成),过滤除去干燥剂,滤液在旋转蒸发仪上减压浓缩,得白色固体,加入EtOAc(0.5mL),室温下搅拌打浆2h。抽滤收集固体,干燥得到目标产物(±)-I-13。白色固体;11mg(51%);
1H NMR(CD3OD+D2O(1drop),500MHz)δ:3.06(s,2H),2.67(d,1H,J=18.0Hz),2.43(d,1H,J=18.0Hz),2.31-2.32(m,1H),2.20-2.22(m,1H),1.97-2.02(m,1H),1.88-1.89(m,2H),1.40-1.51(m,2H),1.16-1.21(m,1H),1.00-1.06(m,2H);
ESI-HRMS:(m/z)calcd.for C11H18NO2([M+H]+)196.1332,found:196.1341。
化合物(±)-I-13是本申请具有通式I的化合物的一种具体形式。
实施例16-21
参考实施例1至实施例15的方法,合成了下表的化合物。

实施例22
制备工艺:将(±)-I-3样品粉碎过筛备用。按上述配方量加入(±)-I-3样品、乳糖、预胶化淀粉预混15分钟。按配方量加入磷酸氢二钠、聚乙烯吡咯烷酮混合10分钟。按配方量加入滑石粉混合30分钟。将混合后物料采用胶囊剂按规格填充制成(±)-I-3胶囊,即得。
实施例23
制备工艺:将(±)-I-4样品和预胶化淀粉分别过筛,充分混合均匀。加入聚乙烯吡咯烷酮溶液,混合,制软材,过筛,制湿颗粒,于80℃干燥。将羧甲基淀粉钠盐、微晶纤维素和硬脂酸镁分别预先过筛,然后加入到上述的颗粒中,混合均匀,压片。
实施例24
制备工艺:先加入注射用水和(+)-I-3样品,搅拌溶解后,用NaOH和盐酸调pH值为5.0-7.0,加0.3g活性碳,室温下搅拌30分钟,微孔滤膜过滤,滤液,中控测定溶液浓度,按每安瓶5mL分装,100°С灭菌30分钟,即得注射液。
实施例25
制备工艺:将(-)-I-3样品、蔗糖、交联聚维酮、羧甲基纤维素分别过100目筛,蔗糖月桂酸酯用60°С乙醇配置为25%的浓溶液备用。按照处方量称取、充分流化混合。再加入25%的蔗糖月桂酸酯制软材,55℃干燥,20目制粒。12目筛整粒,加入二氧化硅、阿斯巴甜和苹果香精,测定袋重包装。
实施例26
制备工艺:取注射用水80mL,加(+)-I-4样品、甘露醇和乳糖搅拌使溶解后,加1mol/L的枸橼酸和1mol/L的氢氧化钠调节pH至5.0-7.0,补加水至100mL。加入0.5g活性炭,在30℃下搅拌20分钟,脱炭,采用微孔滤膜过滤除菌,滤液按每支1mL进行分装,-40°С预冻5小时后,冷冻下减压干燥12小时(压力<20Pa),冻干结束后,样品温度到室温后再干燥5小时,制得白色疏松块状物,封口即得。
实施例27
制备工艺:将上述配方量的苹果酸溶于25mL纯化水中,加入配方量的壳聚糖,充分搅拌使全部溶解,取适量1mol/L的碳酸氢钠溶液加入上述溶液中进行快速中和,调节壳聚糖溶液pH值至5.0~7.0,备用。然后将 配方量的安赛蜜、草莓香精加入40mL的纯化水中,搅拌溶解,然后加入处方量(+)-I-3样品,搅拌溶解,再加入上述备用的壳聚糖溶液,搅拌均匀,向混合药液中补足配方量剩余的纯化水,搅拌使混合均匀,得到pH 5.0~7.0的(+)-I-3口服溶液。
实施例28化合物体外与人重组钙离子通道Cav2.2/β3/α2δ-1的结合
电压门控钙离子通道α2δ亚基有四种亚型,α2δ-1、α2δ-2、α2δ-3和α2δ-4,其中α2δ-1是介导慢性神经疼痛的亚型(Field,M.J.;et al.Proc.Natl.Acad.Sci.U.S.A.2006,103,17537-17542),因此一个化合物与α2δ-1的结合强度是衡量其对慢性神经疼痛镇痛作用的直接指标(Calandre,E.P.;et al.Expert Rev.Neurother.2016,16,1263-1277)。
本申请的化合物体外与人重组钙离子通道Cav2.2/β3/α2δ-1的结合的强度基本是按照已经报导的方法来操作的(Gee,N.S.;et al.J.Biol.Chem.1996,271,5768-5776;Marais,E.;et al.Mol.Pharmacol.2001,59,1243-1248.)。该测试使用表达了人重组钙离子通道Cav2.2/β3/α2δ-1的CHO细胞,细胞膜按照常规分离后,每个孔中加入3μg细胞膜,以modified HEPES/KOH缓冲液(pH 7.4)作为测试体系的溶液,而后加入5nM的[3H]加巴喷丁和6个浓度的待测化合物(3、9、27、81、243和729nM),该测试体系在25°С下孵育120min。非专一性结合是将上述测试体系中的待测化合物更换为10μM加巴喷丁而获得的。孵育结束后,过滤收集细胞膜并用50mM Tris-HCl(pH7.4)洗涤,而后用液闪技术测试细胞膜上结合的[3H]加巴喷丁的放射性。本申请的化合物与[3H]加巴喷丁对人重组钙离子通道Cav2.2/β3/α2δ-1竞争性结合,本申请的化合物对[3H]加巴喷丁与人重组钙离子通道Cav2.2/β3/α2δ-1的结合的抑制率按照如下公式计算:
抑制率=[(I-IU)/(I0-IU)]×100%
其中,
I是待测化合物与[3H]加巴喷丁同时与人重组钙离子通道Cav2.2/β3/α2δ-1共孵育时对应的放射性,
I0是[3H]加巴喷丁与人重组钙离子通道Cav2.2/β3/α2δ-1共孵育时对应的放射性,孵育体系中不加待测化合物,
IU是10μM加巴喷丁与[3H]加巴喷丁同时与人重组钙离子通道Cav2.2/β3/α2δ-1共孵育时对应的放射性。
待测化合物抑制50%的[3H]加巴喷丁与人重组钙离子通道Cav2.2/β3/α2δ-1的浓度定义为IC50,IC50利用上述抑制率使用非线性最小二乘回归分析计算(MathIQTM,ID Business Solutions Ltd.,UK)。测试结果见下表:
从本实施例的活性数据可以看出,本申请的具有通式I的化合物具有较好的与人重组钙离子通道Cav2.2/β3/α2δ-1结合的活性,可以用于制备治疗慢性神经疼痛、癫痫和焦虑的药物。
作用于电压门控钙离子通道α2δ-1配体的γ-氨基丁酸类药物,如加巴喷丁、普瑞巴林等除了具有慢性神经疼痛的镇痛作用外,还具有抗癫痫(普瑞巴林,美国FDA批准的适应症)和抗焦虑(普瑞巴林,欧洲EMA批准的适应症)等作用,这些作用与药物和电压门控钙离子通道α2δ-1配体的结合有关,因此本申请的具有通式I的化 合物也可以用于制备治疗癫痫和焦虑的药物。
实施例29化合物在慢性神经疼痛大鼠模型中的镇痛作用
经口灌胃给予本申请代表性化合物30mg/kg(±)-I-7、(±)-I-3和(±)-I-4对甲苯磺酸盐在Sprague Dawley(SD)大鼠坐骨神经分支损伤(spared nerve injury,SNI)模型中的药效评价。
SNI模型的建立:按照无菌操作方法实施手术,术前对各种手术器械,包括手术刀、镊子、缝合针/线、手术棉等进行消毒。动物经腹膜内注射50mg/kg舒泰50溶液麻醉后侧卧位放置,剃去动物下半身手术区域毛发,使用碘伏和75%酒精交替消毒,于左后肢上缘切开皮肤,钝性分离肌肉,暴露坐骨神经主干及其3个分支:胫神经、腓总神经和腓肠神经,结扎并剪断胫神经、腓总神经,保留腓肠神经并保持其完整。术后分层缝合伤口,经腹膜内注射25%氨苄青霉素(1mL/kg)以防感染,常规护理。假手术组(sham)只暴露坐骨神经及其分支,不结扎和剪断神经,其余操作均同模型组。
机械痛阈值的检测:利用Von-frey测试纤维于术后第1、3、7天分别对每只动物的手术侧足底进行机械痛阈检测,机械痛阈值检测方法采用“up-and-down”法,刺激强度包括0.4、0.6、1、2、4、6、8、15g。测试时测试纤维垂直刺激大鼠左后足足底中心靠外侧部位,每次6-8s,间隔5s。疼痛反应表现为每次测试时动物出现明显的缩足、舔足或抬足行为。术后第11天开始,将动物放置实验环境中进行适应,每天适应15min,连续适应3天,第13天适应结束后进行机械痛觉超敏基础值检测。机械痛觉超敏用50%缩脚阈值(Paw-withdrawal threshold,PWT)表述,计算公式为50%PWT(g)=10xf+kδ,其中xf为纤维测试力log值,k为表值,δ为纤维测试力log值间距平均值。
药效评价:根据术后第13天的基础阈值检测结果,将模型组未表现机械痛觉超敏即缩脚阈值PWT大于4g的动物剔除,其余造模成功动物用于正式试验。术后第14天,新鲜配制各待测化合物。普瑞巴林30mg/kg剂量用0.9%氯化钠直接溶解成所需浓度的溶液,(±)-I-7、(±)-I-3和(±)-I-4对甲苯磺酸盐30mg/kg(以游离碱计)剂量也用0.9%氯化钠溶液完全溶解。将建模成功动物随机分为5组,每组动物数8只,另外假手术组动物数为7只。动物标记和称重后,分别经口灌胃给予各待测药物和溶媒(vehicle;0.9%氯化钠),给药体积为10mL/kg,于给药后的1h、2h、4h、6h、8h、10h、24h检测左后足的机械痛觉超敏反应。采取盲法评价,检测方法同上。机械痛阈值-时间的曲线下面积(Area Under the Curve,AUC)采用GraphPad Prism Version 8.0.1软件进行计算。大鼠在SNI模型中的镇痛强度以最大可能镇痛效应(Maximum Possible Effect,MPE)来表示,%MPE=[(给药组AUC-溶媒组AUC)/(假手术组AUC-溶媒组AUC)]×100。
结果与讨论:数据用平均值(mean)±标准误(SEM)表示,利用GraphPad Prism Version 8.0.1软件作图。组间数据比较利用单因素方差(One-way ANOVA)分析,事后多重比较采用Dunnett进行分析,*(p<0.05)表示具有显著性差异,**表示p<0.01,***表示p<0.001。统计结果详见机械痛阈时程图(图3A)和机械痛阈值-时间曲线下面积图(图3B)。由下图可知,与阳性药普瑞巴林一样,(±)-I-7、(±)-I-3和(±)-I-4对甲苯磺酸盐30mg/kg(以游离碱)剂量给药后对SNI大鼠的机械痛觉超敏均有不同程度的抑制作用,其中(±)-I-7和(±)-I-4对甲苯磺酸盐组机械痛阈值-时间曲线下面积较溶媒对照组显著提高。阳性药普瑞巴林、(±)-I-7、(±)-I-3和(±)-I-4对甲苯磺酸盐等4个化合物的最大可能镇痛效应(%MPE)分别为110.90%、73.63%、44.80%和95.95%。结果表明30mg/kg(以游离碱)剂量的本申请代表性化合物(±)-I-7、(±)-I-3和(±)-I-4对甲苯磺酸盐在SNI模型中均具有一定镇痛作用,可以用于制备治疗慢性神经疼痛的药物。
实施例30化合物在慢性神经疼痛大鼠模型中的镇痛作用
经口灌胃给予10mg/kg(以游离碱计)(-)-I-3对甲苯磺酸盐、(+)-I-3对甲苯磺酸盐、(-)-I-4对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐在SD大鼠坐骨神经分支损伤(SNI)模型中的药效评价。
模型构建方法和机械痛阈值检测方法同实施例29。
药效评价:具体检测方法同实施例29。动物术后第14天,新鲜配制各待测化合物。普瑞巴林10mg/kg剂量用0.9%氯化钠直接溶解成所需浓度的溶液,本申请的代表性化合物(-)-I-3对甲苯磺酸盐、(+)-I-3对甲苯磺酸盐、(-)-I-4对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐10mg/kg(以游离碱)剂量所用溶媒为5%PEG 400(聚乙二醇400)+95%(0.9%氯化钠),即先用终体积5%的PEG 400溶解,再加入终体积95%的0.9%氯化钠溶液,漩涡充分溶解。将建模成功动物随机分为5组,每组动物数6只,另外假手术组动物数为5只。动物标记和称重后,分别经口灌胃给予各待测药物和溶媒(5%PEG 400+95%(0.9%氯化钠),给药体积为10mL/kg。于给药后的1h、2h、4h、6h、8h、10h、24h检测左后足的机械痛觉超敏反应。采取盲法检测,检测方法同上。机械痛阈值-时间的曲线下面积(AUC)和最大可能镇痛效应(MPE)计算方法同实施例29。
结果与讨论:数据用平均值±标准误表示,利用GraphPad Prism Version 8.0.1软件作图。组间数据比较利用单因素方差(One-way ANOVA)分析,事后多重比较采用Dunnett进行分析,*(p<0.05)表示具有显著性差异,**表示p<0.01,***表示p<0.001。统计结果详见机械痛阈时程图(图4A)和机械痛阈值-时间曲线下面积图(4图4B)。由图4A和图4B可知,本申请的代表性化合物(-)-I-3对甲苯磺酸盐、(+)-I-3对甲苯磺酸盐、(-)-I-4对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐经口灌胃给予10mg/kg(以游离碱)剂量后对坐骨神经分支损伤模型大鼠的机械痛觉超敏也表现不同程度的抑制作用,其中(+)-I-4对甲苯磺酸盐组机械痛阈值-时间曲线下面积较溶媒对照组极显著提高,其效应显著强于10mg/kg阳性药普瑞巴林。计算普瑞巴林和(-)-I-3对甲苯磺酸盐、(+)-I-3对甲苯磺酸盐、(-)-I-4对甲苯磺酸盐以及(+)-I-4对甲苯磺酸盐的最大可能镇痛效应(MPE)分别为23.04%、30.22%、48.50%、18.53%和69.09%。以上结果表明:(1)本申请的代表性化合物(-)-I-3对甲苯磺酸盐、(+)-I-3对甲苯磺酸盐、(-)-I-4对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐在大鼠SNI模型中表现较好的镇痛作用,可以用于制备治疗慢性神经疼痛的药物;(2)化合物(+)-I-3对甲苯磺酸盐的镇痛活性强于(-)-I-3对甲苯磺酸盐,化合物(+)-I-4对甲苯磺酸盐的镇痛活性强于(-)-I-4对甲苯磺酸盐,说明本申请的化合物的镇痛活性具有立体化学依赖性。实施例28中(-)-I-3对甲苯磺酸盐、(+)-I-3对甲苯磺酸盐、(-)-I-4对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐的体外结合试验的结果也与该结论一致。
实施例31化合物在小鼠癫痫模型中的抗癫痫作用(最大电休克模型(MES))
设置溶媒阴性对照、阳性药物对照组(普瑞巴林和加巴喷丁)和本申请的化合物等试验组。选择雄性、体重为22±2g的ICR小鼠。受试药物和对照药物均溶解于DMSO(5%v/v)+10%的1,2-丙二醇生理盐水溶液(95%v/v)中,给药方式为灌胃,给药体积为10mL/kg。小鼠先禁食12小时,之后按照体重给予本申请的化合物或者对照药物,而后在一定的时间间隔后(普瑞巴林为2小时,加巴喷丁为1小时,本申请的化合物为3小时)进行电刺激诱发全身强直-阵挛发作行为。诱导模型中使用YLS-9A型电生理刺激仪(上海欣软信息科技有限公司),参数设置为:配置8,刺激电压为160V、波数90个。执行电刺激时,先以生理盐水擦拭小鼠两侧耳朵后,用耳夹电极给予电刺激1次,以后肢强直性伸直为癫痫发作的标准,若动物出现后肢强直视为未受到药物保护,若动物后肢未强直则视为受到药物保护。观察并记录动物的反应情况,并统计所得数据,计算化合物保护率。
试验结果见下表:

*注:以药物原型(游离碱)计。
待测化合物对动物保护的半数有效剂量(ED50)采用给药剂量-保护率曲线以最小二乘法计算(Graphpad Prism 5)得到。拟合曲线如图5所示。
经过计算,(+)-I-3的ED50=6.52mg/kg,(+)-I-4的ED50=21.51mg/kg,普瑞巴林的ED50=11.99mg/kg。上述结果显示本申请的代表性化合物(+)-I-3和(+)-I-4在小鼠最大电休克模型中表现出很强的抗癫痫发作的作用,可以用于制备抗癫痫药物。
实施例32化合物在小鼠癫痫模型中的抗癫痫作用(6-Hz精神运动性发作模型)
设置溶媒阴性对照、阳性药物对照组(普瑞巴林和加巴喷丁)和本申请的化合物等试验组。选择雄性、体重为20±2g的C57BL/6小鼠。受试药物和对照药物均溶解于DMSO(5%v/v)+10%的1,2-丙二醇生理盐水溶液(95%v/v)中,给药方式为灌胃,给药体积为10mL/kg。小鼠先禁食12小时,之后给予本申请的化合物或者对照药物,而后在一定的时间间隔后(普瑞巴林为2小时,加巴喷丁为1小时,左乙拉西坦1小时,本申请的化合物为3小时)进行6-Hz电刺激诱发癫痫发作行为。诱导模型中,在以Model 4100刺激器(美国A-M Systems公司)执行刺激时,在饲养笼上以手固定小鼠后颈,将角膜电极蘸取生理盐水润湿,轻轻接触于小鼠双侧角膜,用脚踏电刺激器予以小鼠电刺激,刺激参数为6-Hz、单向方波32mA、波宽0.2ms、刺激时长3s,刺激的同时以秒表进行计时, 如果电刺激结束后小鼠的发作样行为持续不超过7s则认定为受到药物保护,若持续时间超过7s则认定为药物无癫痫保护。观察并记录动物的反应情况,并统计所得数据,计算化合物保护率。
统计方法:不同给药组的保护比例分别与溶媒对照组的比较进行Fisher's exact检验。
试验结果如下表:
#注以药物原形(游离碱)计。
上述结果显示本申请的代表性化合物(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐在小鼠6-Hz电刺激诱导的癫痫发作模型中表现出很强的抗癫痫发作的作用,可以用于制备抗癫痫药物。
实施例33化合物在小鼠癫痫模型中的抗癫痫作用(皮下注射戊四唑模型(sc-PTZ))
设置溶媒阴性对照、阳性药物对照组(普瑞巴林和加巴喷丁)和本申请的化合物等试验组。选择雄性、体重为22±2g的ICR小鼠。受试药物和对照药物均溶解于DMSO(5%v/v)+10%的1,2-丙二醇生理盐水溶液(95%v/v)中,给药方式为经腹膜内注射,给药体积为10mL/kg。小鼠先禁食12小时,之后给予本申请的化合物或者对照药物,而后在一定的时间间隔后(普瑞巴林为2小时,加巴喷丁为1小时,本申请的化合物为3小时)皮下注射戊四氮(PTZ)诱发癫痫发作行为。诱导模型中,戊四氮(PTZ)以生理盐水溶解,皮下注射的方式对小鼠进行给药(10mL/kg、给药剂量为100mg/kg),PTZ注射后对小鼠进行1小时的行为学观察,记录在注射PTZ后内抽搐、阵挛发作、强直性发作和死亡的只数和潜伏期。
统计方法:不同给药组的保护比例、死亡率分别与溶媒对照组进行Fisher’s exact检验。发作时间及潜伏期以单因素方差分析(one-way ANOVA)进行分析。
试验结果:

注:Fisher's exact检验,与溶剂对照组相比,*p<0.05,**p<0.01表示有显著异。#所述剂量以药物原形(游离碱)计。
皮下注射戊四氮(PTZ)会诱导小鼠产生强烈惊厥行为:溶剂对照组中,8/8(100%)发生全身阵挛,6/8(75%)发生全身强直-阵挛发作,6/8(75%)发生死亡。阳性对照普瑞巴林(PGB)有降低全身阵挛趋势(100%→62.5%),显著降低了强直发生率(75%→12.5%)和死亡率(75%→12.5%)。(+)-I-3对甲苯磺酸盐有降低全身阵挛趋势(100%→60%),显著降低了强直发生率(75%→0%)和死亡率(75%→0%)。(+)-I-4对甲苯磺酸盐有降低全身阵挛趋势(100%→60%),也有降低强直发生率(75%→20%)和死亡率(75%→30%)趋势。加巴喷丁(GBP)在此剂量下对惊厥发生率和死亡率无明显改善。
本申请的代表性化合物(+)-I-3对甲苯磺酸盐、(+)-I-4对甲苯磺酸盐和对照药物在上述试验中从皮下注射戊四氮开始到发生不同的癫痫相关现象的时间定义为某个阶段的潜伏期,从图6可以看出普瑞巴林(PGB)、(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐在30mg/kg(以游离碱计)显著延长了全身阵挛、强直发作和死亡的潜伏期,但是加巴喷丁(GBP)在此剂量下则无效。
上述结果显示本申请的代表性化合物(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐在小鼠皮下注射戊四氮模型中对小鼠癫痫发作和癫痫导致死亡具有较强的抑制作用,可以用于制备抗癫痫药物。
实施例34化合物在大鼠上的药代动力学实验
雄性SD大鼠实验前禁食12小时,自由饮水。本申请的化合物(+)-I-3对甲苯磺酸盐或(+)-I-4对甲苯磺酸盐均以10%1,2-丙二醇蒸馏水溶液溶解后口服或者静脉给予雄性SD大鼠,每组3只。口服给药后15min、30min、1h、2h、3h、4h、6h、8h、24h,静脉给药后5min、15min、30min、1h、2h、3h、4h、6h、8h、24h从眼球后静脉丛取血0.2mL,置EDTA-K2试管中,11000rpm离心5min,分离血浆,于-20℃冰箱中冷冻。使用HPLC-ESI-MS经过验证过的方法测定药物原型的浓度,使用WinNonLin计算药代参数。结果见下表:
*两个化合物均是以对甲苯磺酸盐的形式给药,检测数据以药物原型(游离碱)为准。
从上述数据可以看出,本申请的代表性化合物(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐口服后吸收迅速、生物利用非常高,适合口服给药途径。
实施例35化合物对大鼠运动机能的影响实验
受试药物均溶解于DMSO(5%v/v)+10%的1,2-丙二醇生理盐水溶液(95%v/v)中,给药方式为灌胃给药,给药体积为10mL/kg。设置溶媒阴性对照、阳性药物对照组(普瑞巴林(PGB),10mg/kg、30mg/kg),实验组包括(+)-I-3对甲苯磺酸盐10mg/kg(以游离碱计)、(+)-I-4对甲苯磺酸盐10mg/kg(以游离碱计)、(+)-I-3对甲苯磺酸盐30mg/kg(以游离碱计)和(+)-I-4对甲苯磺酸盐30mg/kg(以游离碱计)。选择雄性、体重200-250g的SD品系大鼠,每个给药组10只动物。转棒检测设备为YLS-31A疲劳转棒仪(上海欣软信息科技有限公司),转速设 置为匀速6rpm。第一天首先进行筛选试验,捏持大鼠尾部尖端将其置于转棒上,待其在转棒上保持平衡并随之走动后松开,记录统计大鼠在随后1分钟内掉落的次数。在1分钟内掉落次数达到3次的大鼠即淘汰,不用于后续药物评价。第二天进行药物评价实验,实验前大鼠禁食8小时,而后进行一次转棒检测作为给药前时间点(BL),随即进行灌胃给药,在给药后第1h、2h、4h、6h、8h、10h、24小时分别进行一次转棒检测,记录统计大鼠在1分钟内的掉落次数,在一分钟内掉落达到3次即认为药物毒性导致大鼠的“运动机能受损”。每个给药组在某个特定时间点的“运动机能受损”程度(rotarod fall)以该组“运动机能受损”动物的只数占该组总只数的比例来计算。
试验结果如图7所示。
转棒试验(rotarod test)是测量化合物对动物运动机能损伤的一个经典实验。我们使用大鼠转棒试验评估了本申请的代表性的化合物(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐对大鼠运动机能的影响。由图7可以看出,在10mg/kg(以游离碱计)剂量下,(+)-I-3对甲苯磺酸盐、(+)-I-4对甲苯磺酸盐及普瑞巴林(PGB)对照均未显著影响大鼠的转棒表现;30mg/kg(以游离碱计)剂量下,PGB组出现明显的毒性反应,对大鼠转棒的影响在给药后4h达到最大,(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐组中大鼠的转棒表现受到影响的比例小于PGB组。
实施例36化合物的大鼠急性毒性实验
(±)-I-7、(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐对雄性SD大鼠的初步急性毒性评估。
SD大鼠适应环境一周后用于初步急性毒性检测。化合物于试验当天新鲜配制,普瑞巴林和(±)-I-7用0.9%氯化钠直接溶解成所需浓度的溶液,(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐所用溶媒为5%PEG 400+95%(0.9%氯化钠),即:先用终体积5%的PEG 400溶解,再加入终体积95%的0.9%氯化钠溶液,漩涡充分溶解。动物标记和称重后随机分组,每组动物数2-4只。动物分别经口灌胃给予各待测化合物和溶媒(5%PEG 400+95%(0.9%氯化钠)),给药体积为10mL/kg,在给药后的0.5h、1h、2h、4h、6h、24h分别观察并记录每只动物的临床症状。其临床症状代码分别表示为:0无异常、1轻度震颤、2步态不稳、3俯卧、4惊跳反射、5呼吸困难、6正位反射消失、7眼睑闭合、8呼吸急促、×动物死亡。
结果与讨论:结果如下表所示,当经口灌胃给予化合物(+)-I-3对甲苯磺酸盐164.5mg/kg(以游离碱计)剂量和(+)-I-4对甲苯磺酸盐163.8mg/kg(以游离碱计),在给药后的0-24h,两组所有动物均与溶媒对照组动物一致,未见明显异常表现;当经口灌胃给予300mg/kg(以游离碱计)剂量的(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐,(+)-I-3对甲苯磺酸盐组两只动物仅在给药1h时发生俯卧,其中一只还伴随轻度震颤和眼睑闭合症状,而(+)-I-4组一只动物仅在给药1h发生俯卧,另一只动物在给药1h和3h均发现有俯卧现象。另一化合物(±)-I-7经口灌胃给予300mg/kg(以游离碱计)剂量,发现每只动物均于给药1h和2h时发生俯卧,其中两只动物还伴随轻度震颤现象。给药24h后,与溶媒对照组动物一致,给予(±)-I-7、(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐的动物均未发现明显异常。试验结果显示:本申请的代表性化合物(+)-I-3对甲苯磺酸盐在164.5mg/kg(以游离碱计)剂量和(+)-I-4对甲苯磺酸盐在163.8mg/kg(以游离碱计)剂量下在雄性大鼠上口服时,未表现出神经毒性,结合本申请实施例29-实施例33中公开的镇痛和抗癫痫的药效剂量,可以推断本申请的代表性化合物(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐具有较宽的安全窗口。本申请的代表性化合物(±)-I-7、(+)-I-3对甲苯磺酸盐和(+)-I-4对甲苯磺酸盐在高剂量300mg/kg(以游离碱计)下可致动物出现较为明显的急性毒性反应,但是未出现动物死亡。

Claims (10)

  1. 具有通式I的化合物,其手性异构体或其药学上可接受的盐,
    其中,
    R1和R2独立选自H、卤素或C1~C6的烷基;
    每个R3、R4、R5、R6独立选自H、卤素、C1~C6的烷基和C1~C6的烷氧基;或者R3、R4和与它们共同连接的C原子组成C3~C6的环烷基,或者R5、R6和与它们共同连接的C原子组成C3~C6的环烷基;
    每个R7、R8、R9、R10独立选自H、卤素和C1~C6的烷基;
    m和n独立选自0、1、2、3;
    或者,当n>=1时,R8所连接的C原子和R10所连接的与其相邻的C原子可以与R8、R10一起组成C3~C6的环烷基;
    当n>=1时,R8连接的C原子和R10连接的与其相邻的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键可以是单键或双键;当其表示双键时,对应的R7和R9表示不存在。
  2. 如权利要求1所述的具有通式I的化合物,其手性异构体或其药学上可接受的盐,
    其中,
    R1和R2独立选自H和C1~C3的烷基;
    R3、R4独立选自H、卤素和C1~C3的烷基;或者R3、R4和与它们共同连接的C原子组成环丙基;
    R7、R8、R9、R10独立选自H和C1~C6的烷基;或者R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基;
    R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间的化学键可以是单键或双键;当其表示双键时,R7和R9表示不存在;
    m=0;n=1。
  3. 如权利要求1或2所述的具有通式I的化合物,其手性异构体或其药学上可接受的盐,
    其中,
    R1和R2独立选自H或甲基;
    R3、R4独立选自H和甲基;或者R3、R4和与它们共同连接的C原子组成环丙基;
    R7、R8、R9、R10独立选自H或甲基;或者R8所连接的C原子和R10所连接的C原子与R8、R10组成环丙基;
    R8连接的C原子和R10连接的C原子之间的实线和虚线代表R8连接的C原子和R10连接的C原子之间 的化学键可以是单键或双键;当其表示双键时,R7和R9表示不存在;
    m=0;n=1。
  4. 如权利要求1所述的具有通式I的化合物,其手性异构体或其药学上可接受的盐,
    其中,
    R1和R2独立选自H或甲基;
    R3、R4独立选自H和甲基;或者R3、R4和与它们共同连接的C原子组成环丙基;
    R7、R8、R9、R10独立选自H或甲基;
    m=0;n=1。
  5. 如权利要求1或2所述的具有通式I的化合物,其手性异构体或其药学上可接受的盐,选自下列化合物:
  6. 如权利要求1-5中任一项所述的具有通式I的化合物的制备方法,其特征在于,包括以下步骤:
    1)酮K与磷酰基乙酸酯W1在碱存在下发生Wittig缩合反应,得到α,β-不饱和乙酸酯L-1,
    L-1与硝基甲烷在碱存在下发生Michael加成反应得到M-1,
    或者
    2)酮K与硝基甲烷在催化剂存在下发生Knoevenagel缩合反应,得到α,β-不饱和硝基化合物L-2,
    L-2与乙酸酯W2在强碱存在下发生类Michael加成反应得到M-2,
    其中R11、R12和R13选自C1~C6的烷基;R1~R10、m和n具有权利要求1-5中任一项所述的定义。
  7. 如权利要求1-5中任一项所述的具有通式I的化合物,其手性异构体以及它们药学上可接受的盐在制备慢性神经疼痛、癫痫和焦虑治疗药物方面的应用。
  8. 一种药物组合物,其特征在于,包括权利要求1-5中任一项所述的具有通式I的化合物,其手性异构体以及它们药学上可接受的盐,以及药学上可接受的辅料;所述辅料选自载体、稀释剂和赋形剂中的一种或几种。
  9. 如权利要求8所述的药物组合物,其中,所述的组合物为固体口服制剂、液体口服制剂或注射剂。
  10. 如权利要求9所述的药物组合物,固体及液体口服制剂包括:分散片、肠溶片、咀嚼片、口崩片、胶囊、颗粒剂、口服溶液剂,所述注射剂制剂包括注射用水针、注射用冻干粉针、大输液、小针。
PCT/CN2023/125229 2022-11-03 2023-10-18 含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途 WO2024093678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211372369.6A CN117986143A (zh) 2022-11-03 2022-11-03 含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途
CN202211372369.6 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024093678A1 true WO2024093678A1 (zh) 2024-05-10

Family

ID=90892295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125229 WO2024093678A1 (zh) 2022-11-03 2023-10-18 含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN117986143A (zh)
WO (1) WO2024093678A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279673A (zh) * 1997-12-16 2001-01-10 沃尼尔·朗伯公司 (环)烷基取代的)-γ-氨基丁酸衍生物(=GABA类似物),其制备和在治疗神经病中的用途
WO2010084798A1 (ja) * 2009-01-21 2010-07-29 第一三共株式会社 3環性化合物
CN101878193A (zh) * 2007-09-28 2010-11-03 第一三共株式会社 双环γ-氨基酸衍生物
CN106928080A (zh) * 2015-12-31 2017-07-07 四川海思科制药有限公司 稠合环γ‑氨基酸衍生物及其制备方法和在医药上的应用
CN107848952A (zh) * 2015-12-31 2018-03-27 四川海思科制药有限公司 稠合三环γ‑氨基酸衍生物及其制备方法和在医药上的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279673A (zh) * 1997-12-16 2001-01-10 沃尼尔·朗伯公司 (环)烷基取代的)-γ-氨基丁酸衍生物(=GABA类似物),其制备和在治疗神经病中的用途
CN101878193A (zh) * 2007-09-28 2010-11-03 第一三共株式会社 双环γ-氨基酸衍生物
WO2010084798A1 (ja) * 2009-01-21 2010-07-29 第一三共株式会社 3環性化合物
CN106928080A (zh) * 2015-12-31 2017-07-07 四川海思科制药有限公司 稠合环γ‑氨基酸衍生物及其制备方法和在医药上的应用
CN107848952A (zh) * 2015-12-31 2018-03-27 四川海思科制药有限公司 稠合三环γ‑氨基酸衍生物及其制备方法和在医药上的应用

Also Published As

Publication number Publication date
CN117986143A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
EP3650439B1 (en) Salts or co-crystals of 3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol
EP2852573B1 (de) N-[3-(2-carboxyethyl)phenyl]-piperidin-1-ylacetamid- derivate und ihre verwendung als aktivatoren der löslichen guanylatcyclase
EA026367B1 (ru) Арилдигидропиридиноновые и пиперидиноновые ингибиторы mgat2
EA025438B1 (ru) КРИСТАЛЛИЧЕСКИЙ КОМПЛЕКС 1-ЦИАНО-2-(4-ЦИКЛОПРОПИЛБЕНЗИЛ)-4-(β-D-ГЛЮКОПИРАНОЗ-1-ИЛ)БЕНЗОЛА, СПОСОБЫ ЕГО ПОЛУЧЕНИЯ И ЕГО ПРИМЕНЕНИЕ ДЛЯ ПРИГОТОВЛЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ
AU2002347906A2 (en) Treatment of CNS disorders using CNS target modulators
CN1505614A (zh) 制备氨氯地平马来酸盐的工艺
WO2009101616A1 (en) Novel conjugates for treating neurodegenerative diseases and disorders
CA2097044C (en) Cyclopentane- and -pentene-.beta.-amino acids
JP2006515618A (ja) 置換アルキルアミドピペリジン類
WO2006073292A1 (en) Inorganic acid salts of sibutramine
WO2024093678A1 (zh) 含有多环结构的γ-氨基丁酸衍生物及其制备方法和用途
JP6275644B2 (ja) N−[2−({2−[(2S)−2−シアノピロリジン−1−イル]−2−オキソエチル}アミノ)−2−メチルプロピル]−2−メチルピラゾロ[1,5−a]ピリミジン−6−カルボキサミドの結晶
CA3180417A1 (en) Synthesis of (2s,5r)-5-(2-chlorophenyl)-1-(2&#39;-methoxy-[1,1&#39;-biphenyl]-4-carbonyl)pyrrolidine-2-carboxylic acid
US11584715B2 (en) Crystalline form of sofpironium bromide and preparation method thereof
CA2164296C (en) Heterocyclic chemistry
EP2691371B1 (en) Benzoic acid salt of otamixaban
EP4046638A1 (en) Use of phenylquinolinones and flavonoid derivatives for treating neuropathic pain
EP2647618A1 (en) Novel polymorphs and salts
CN111377849A (zh) 化合物、其可药用盐及其医药用途
JPH05105627A (ja) 腸機能性疾患の治療に用いられる新規な医薬組成物と、その調整方法と、治療用医薬の調製方法
JP2756740B2 (ja) 2−シクロヘキセノン化合物及び該化合物を有効成分とする脳機能改善薬
KR100906288B1 (ko) 결정질 acat 억제제
CN117396460A (zh) (r)-奥昔布宁d-苹果酸盐的固体形式
CA3215373A1 (en) Solid forms of (r)-oxybutynin d-malate
AU2009331252B2 (en) Cyclic amine compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884610

Country of ref document: EP

Kind code of ref document: A1