WO2024093604A1 - 两级开关电源中基于fb反馈信号的两级交互方法 - Google Patents

两级开关电源中基于fb反馈信号的两级交互方法 Download PDF

Info

Publication number
WO2024093604A1
WO2024093604A1 PCT/CN2023/123109 CN2023123109W WO2024093604A1 WO 2024093604 A1 WO2024093604 A1 WO 2024093604A1 CN 2023123109 W CN2023123109 W CN 2023123109W WO 2024093604 A1 WO2024093604 A1 WO 2024093604A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback signal
signal
stage
predetermined
pfc
Prior art date
Application number
PCT/CN2023/123109
Other languages
English (en)
French (fr)
Inventor
胡成煜
王乃龙
Original Assignee
北京芯格诺微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯格诺微电子有限公司 filed Critical 北京芯格诺微电子有限公司
Publication of WO2024093604A1 publication Critical patent/WO2024093604A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the technical field of integrated circuits, and in particular to a two-stage interaction method based on an FB feedback signal in a two-stage switching power supply.
  • the interaction between the front-stage PFC circuit and the rear-stage DC/DC circuit in a two-stage AC/DC switching power supply is generally carried out in two ways.
  • One is that the front-stage PFC circuit and the rear-stage DC/DC circuit use a control chip to interact.
  • the advantage of this solution is that it is relatively easy to coordinate the power-on and power-off timing, switch PFC and error protection.
  • its disadvantages are that the signal interference between the two stages is serious, and the binding of the front and rear stage topologies makes it difficult to expand the power.
  • it can only be one-to-one and cannot support one front-stage PFC to connect to multiple rear-stage DC/DC power supplies.
  • the technical purpose to be achieved by the present invention is to provide a two-stage interaction method based on an FB feedback signal in a two-stage switching power supply. Relying on the interaction method, the interaction mode between the PFC controller and the DC/DC controller is greatly simplified, and the energy consumption control of the power factor correction PFC circuit and the power factor correction PFC circuit are realized. The power factor correction PFC circuit promptly shuts down the subsequent DC/DC circuit in an error reporting and power-off state.
  • the present invention provides a two-stage interaction method based on an FB feedback signal in a two-stage switching power supply, wherein the two-stage switching power supply includes a front-stage power factor correction PFC circuit and a rear-stage DC/DC circuit; the front-stage power factor correction PFC circuit is controlled by a PFC controller; the rear-stage DC/DC circuit is controlled by a DC/DC controller; the method includes:
  • the PFC controller obtains the FB feedback signal transmitted by the DC/DC controller; the FB feedback signal is proportional to the output power of the DC/DC circuit;
  • the power of the power factor correction PFC circuit is obtained by the PFC controller
  • the short falling edge anti-shake module is used to monitor the FB feedback signal. If the FB feedback signal continues to be lower than the predetermined first FB feedback signal threshold within a first predetermined time period, the falling edge signal feature is converted into a falling edge pulse control signal, and a power factor correction PFC circuit shutdown control signal is generated;
  • the long falling edge anti-shake module is used to monitor the FB feedback signal. If the FB feedback signal continues to be lower than the predetermined first FB feedback signal threshold within a second predetermined time period, the falling edge signal feature is converted into a falling edge pulse control signal, and a power factor correction PFC circuit shutdown control signal is generated;
  • the first predetermined time period is shorter than the second predetermined time period
  • the rising edge anti-shake module monitors the FB feedback signal. If the FB feedback signal continues to remain higher than the predetermined second FB feedback signal threshold within a third predetermined time period, the rising edge anti-shake module The signal characteristics are converted into a rising edge pulse control signal, and a control signal for starting a power factor correction (PFC) circuit is generated.
  • PFC power factor correction
  • FB feedback signal if the FB feedback signal does not continuously remain below a predetermined first FB feedback signal threshold within a first predetermined period of time, no PFC control signal is generated.
  • the PFC controller forces the sending end of the DC/DC controller transmitting the FB feedback signal to be pulled down to a low level by sending an error or power-off signal, thereby controlling the DC/DC controller to shut down the subsequent DC/DC circuit.
  • Another aspect of the present invention is to provide a two-stage interactive system based on an FB feedback signal in a two-stage switching power supply, wherein the two-stage switching power supply comprises a front-stage power factor correction PFC circuit and a rear-stage DC/DC circuit; the front-stage power factor correction PFC circuit is controlled by a PFC controller; the rear-stage DC/DC circuit is controlled by a DC/DC controller; the interactive system comprises:
  • An FB feedback signal determination module wherein the DC/DC controller inputs the FB feedback signal into the FB feedback signal determination module to detect falling edge signal characteristics and rising edge signal characteristics in the FB feedback signal;
  • a PFC power determination module which is used to detect the power of a previous stage power factor correction (PFC) circuit;
  • a short falling edge anti-shake module wherein when a falling edge signal feature appears in the FB feedback signal and the FB feedback signal is lower than a predetermined first FB feedback signal threshold and a power value of a power factor correction PFC circuit is lower than a predetermined power threshold, the short falling edge anti-shake module monitors the FB feedback signal, and if the FB feedback signal continues to be lower than the predetermined first FB feedback signal threshold within a first predetermined time period, the falling edge signal feature is converted into a falling edge pulse control signal;
  • a long falling edge anti-shake module wherein when a falling edge signal feature appears in the FB feedback signal and the FB feedback signal is lower than a predetermined first FB feedback signal threshold and a power value of a power factor correction PFC circuit is higher than a predetermined power threshold, the long falling edge anti-shake module monitors the FB feedback signal, and if the FB feedback signal continues to be lower than the predetermined first FB feedback signal threshold within a first predetermined time length, the falling edge signal feature is converted into a falling edge pulse control signal;
  • a rising edge anti-shake module wherein the rising edge anti-shake module is configured to: The FB feedback signal is monitored, and if the FB feedback signal continues to be higher than the predetermined second FB feedback signal threshold within a third predetermined time period, the rising edge signal feature is converted into a rising edge pulse control signal;
  • a PFC control signal generating module which generates a control signal for turning on or off the front-stage power factor correction PFC circuit according to the pulse control signal sent by the short falling edge anti-shake module, the long falling edge anti-shake module and the rising edge anti-shake module.
  • the interactive system further includes a PFC error or power-off feedback module, which forces the sending end of the DC/DC controller transmitting the FB feedback signal to be pulled down to a low level through the PFC error or power-off signal, thereby controlling the DC/DC controller to shut down the subsequent DC/DC circuit.
  • a PFC error or power-off feedback module which forces the sending end of the DC/DC controller transmitting the FB feedback signal to be pulled down to a low level through the PFC error or power-off signal, thereby controlling the DC/DC controller to shut down the subsequent DC/DC circuit.
  • one or more embodiments of the present invention may have the following inventive features and advantages:
  • the interaction between the PFC controller and the DC/DC controller is greatly simplified.
  • the FB feedback signal pin of the DC/DC controller is directly introduced into the PFC controller chip without any additional circuit or any special PFC controller control logic of the DC/DC controller. This greatly improves the wide adaptability of the two-stage AC/DC switching power supply system design.
  • the PFC controller chip can perfectly match any DC/DC controller chip with FB feedback signal.
  • FIG1 is a schematic diagram of the structure of a two-stage switching power supply system of the present invention.
  • FIG. 2 is a schematic diagram of the structure of a two-stage interactive system based on an FB feedback signal in a two-stage switching power supply according to a first embodiment of the present invention
  • FIG. 3 is a flow chart of a two-stage interaction method based on an FB feedback signal in a two-stage switching power supply according to a first embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of a two-stage interactive system based on an FB feedback signal in a two-stage switching power supply according to a second embodiment of the present invention
  • FIG. 5 is a schematic diagram of the structure of a two-stage interactive system based on an FB feedback signal in a two-stage switching power supply according to a third embodiment of the present invention.
  • Coupled refers to any direct or indirect communication or connection between two or more elements, regardless of whether those elements are in physical contact with each other.
  • transmission refers to direct and indirect communication.
  • rejection refers to including but not limited to.
  • communication refers to direct and indirect communication.
  • include and “comprising” and their derivatives refer to including but not limited to.
  • include and “comprising” and their derivatives refer to including but not limited to.
  • the term “or” is inclusive, meaning and/or.
  • controller refers to any device, system or part thereof that controls at least one operation. Such a controller can be implemented with hardware, or a combination of hardware and software and/or firmware. The functions associated with any particular controller can be centralized or distributed, whether local or remote.
  • at least one of when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one of the items in the list may be required. For example, "at least one of A, B, C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, A and B and C.
  • any end of the resistor, capacitor or inductor in an actual device can be defined as the first end, and when the first end is defined, the other end of the device is automatically defined as the second end.
  • the application combination of modules and the division level of sub-modules are only used for illustration, and the application combination of modules and the division level of sub-modules may have different modes without departing from the scope of the present disclosure.
  • the two-stage interaction method based on the FB feedback signal in the two-stage switching power supply of this embodiment includes:
  • the PFC controller obtains the FB feedback signal transmitted by the DC/DC controller; the FB feedback signal is proportional to the output power of the DC/DC circuit;
  • the power of the power factor correction PFC circuit is obtained by the PFC controller
  • the short falling edge anti-shake module is used to monitor the FB feedback signal. If the FB feedback signal does not have a signal jump within a first predetermined time period, that is, the FB feedback signal continues to remain in a state lower than a predetermined first FB feedback signal threshold within the first predetermined time period, the falling edge signal feature is converted into a falling edge pulse control signal, and a power factor correction PFC circuit shutdown control signal is generated; if the FB feedback signal does not continue to remain in a state lower than the predetermined first FB feedback signal threshold within the first predetermined time period, the PFC control signal is not generated;
  • the long falling edge anti-shake module is used to monitor the FB feedback signal. If the FB feedback signal does not have a signal jump within the second predetermined time period, that is, the FB feedback signal continues to remain in a state lower than the predetermined first FB feedback signal threshold within the second predetermined time period, then the falling edge signal feature is converted into a falling edge pulse control signal, and a power factor correction PFC circuit shutdown control signal is generated; if the FB feedback signal does not continue to remain in a state lower than the predetermined first FB feedback signal threshold within the first predetermined time period, then the PFC control signal is not generated. Number.
  • the first predetermined time length is less than the second predetermined time length; in a two-stage switching power supply, the response of the FB feedback signal sent by the rear-stage DC/DC control is very fast. If the DC/DC circuit makes repeated and fast dynamic responses, the FB feedback signal will also fluctuate rapidly. If it is not a reasonable way to repeatedly switch the PFC circuit on and off at this time, it is necessary to introduce a long falling edge anti-shake module, that is, the PFC circuit is allowed to be turned off only after the FB feedback signal is continuously lower than the threshold for a long time.
  • the FB feedback signal When the subsequent DC/DC circuit enters the light load excitation mode (burst mode), the FB feedback signal will also fluctuate repeatedly accordingly, and the peak value of the FB feedback signal is often high. Because the power of the previous power factor correction PFC circuit is consistent with the power of the subsequent DC/DC circuit, if the power of the previous power factor correction PFC circuit is continuously lower than the predetermined power threshold, it can be considered that the power of the subsequent DC/DC circuit is also stable in a low power state, so it can be determined that the fluctuation of the FB feedback signal comes from the light load excitation mode or the no-load state. At this time, the short falling edge anti-shake module can be selected to quickly shut down the previous power factor correction PFC circuit after FB is lower than the threshold.
  • the rising edge anti-shake module monitors the FB feedback signal.
  • the rising edge signal feature is converted into a rising edge pulse control signal, and a power factor correction PFC circuit control signal is generated; if the FB feedback signal does not continue to remain in a state higher than the predetermined second FB feedback signal threshold within the third predetermined time period, no PFC control signal is generated.
  • the power factor correction PFC circuit For starting the power factor correction PFC circuit, it is necessary to filter out the glitches of the subsequent DC/DC circuit that exceed the second FB feedback signal threshold in the light load excitation mode or the no-load mode. Therefore, it is necessary to rely on the rising edge anti-shake module to monitor the FB feedback signal. When the FB feedback signal continues to exceed the second FB feedback signal threshold for a certain period of time, the power factor correction PFC circuit is allowed to be restarted.
  • the first FB feedback signal threshold is set to the FB feedback signal corresponding to 30% of the rated power value of the DC/DC circuit.
  • the second FB feedback signal threshold is set to the FB feedback signal corresponding to 80% of the rated power value of the DC/DC circuit.
  • the first predetermined time length is set to 500 ⁇ s; the second predetermined time length is set to 500ms.
  • this embodiment adds that when the front-stage power factor correction PFC circuit has an error or power failure, the error or power failure signal output by the PFC controller forces the FB feedback signal to be pulled down to a low level, and the DC/DC controller controls the rear-stage DC/DC circuit to enter silence.
  • the rear-stage DC/DC circuit will wait for the front-stage power factor correction PFC circuit to return to normal before continuing to work. During this period, it is possible that the Vcc of the PFC controller and the DC/DC controller loses power and restarts with a hiccup to achieve system safety protection.
  • this embodiment provides the simplest connection method of the chip pins between the PFC controller and the DC/DC controller.
  • the PFC controller is provided with a Vcc drive pin and an ENF enable pin
  • the DC/DC controller is provided with a Vcc drive pin and an FB feedback signal pin
  • the Vcc drive pin of the PFC controller is connected to the Vcc drive pin of the DC/DC controller
  • the ENF enable pin of the PFC controller is connected to the FB feedback signal pin of the DC/DC controller.
  • the above-mentioned pin connection method between chips greatly simplifies the interaction between the PFC controller and the DC/DC controller. Since the FB feedback signal pin of the DC/DC controller is directly introduced into the PFC controller chip, no additional circuit is required, and the DC/DC controller is not required to be configured with any special PFC controller control logic. This greatly improves the wide adaptability of the two-stage AC/DC switching power supply system design, and the PFC controller chip can perfectly cooperate with any DC/DC controller chip with an FB feedback signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种两级开关电源中基于FB反馈信号的两级交互方法,由PFC控制器获取DC/DC控制器传输的FB反馈信号;由PFC控制器获取功率因数校正PFC电路的功率;所述FB反馈信号中出现下降沿信号特征低于预定值时,根据功率因数校正PFC电路的功率值短下降沿防抖模块或长下降沿防抖模块对FB反馈信号进行监测,并生成关闭功率因数校正PFC电路控制信号;当所述FB反馈信号中出现上升沿信号特征时,检测所述FB反馈信号是否高于预定的第二FB反馈信号阈值,并生成开启功率因数校正PFC电路控制信号。

Description

两级开关电源中基于FB反馈信号的两级交互方法 技术领域
本发明涉及集成电路技术领域,尤其涉及一种两级开关电源中基于FB反馈信号的两级交互方法。
背景技术
伴随着电力电子技术的蓬勃发展,高效率、高功率密度、宽电压范围输入输出的AC/DC开关电源已成为产业中广泛使用的装置,特别是两级式开关电源更是得到了大量的应用。根据国家电视行业安规要求,LED显示装置的功率大于75W时,必须使用功率因数校正PFC(Power Factor Correction)电路,以使LED显示装置的功率因数及谐波满足国家安规标准。
现有技术中,在两级式的AC/DC开关电源中前级的PFC电路与后级的DC/DC电路之间的交互一般采用两种方式进行。一种是前级的PFC电路与后级的DC/DC电路之间使用一个控制芯片进行交互,该方案的优点在于比较容易统筹规划上下电时序,开关PFC以及报错保护。但是其缺点在于两级之间信号干扰严重,并且前后级拓扑绑定导致功率很难扩展,同时只能一对一而不能支持一个前级PFC连接多个后级DC/DC供电。另一中方式是前级的PFC电路与后级的DC/DC电路各使用一个控制芯片进行交互,这种方式的缺陷在于需要两级的控制芯片之间配合上下电时序,开关PFC,报错等情况,因此需要非常复杂的应用电路甚至独立MCU来实现控制。即使使用成套芯片做专门的PFC控制,其芯片型号绑定以及系统的拓展性也较差。
由此可见现有技术中需要一种更为简单有效的两级开关电源中功率因数校正PFC电路的控制方法,从而实现在两级式的AC/DC开关电源中前级的PFC电路与后级的DC/DC电路之间的交互,达到前级PFC电路的能耗降低。
发明内容
本发明所要实现的技术目的在于提供一种两级开关电源中基于FB反馈信号的两级交互方法,依靠所述交互方法大幅度简化了PFC控制器与DC/DC控制器之间的交互方式,实现功率因数校正PFC电路的能耗控制以及功率因数校正PFC电路在报错及掉电状态下及时关闭后级DC/DC电路。
基于上述技术目的,本发明提供一种两级开关电源中基于FB反馈信号的两级交互方法,所述两级开关电源包括前级功率因数校正PFC电路和后级DC/DC电路;所述前级功率因数校正PFC电路使用PFC控制器进行控制;所述后级DC/DC电路使用DC/DC控制器进行控制;所述方法包括:
由PFC控制器获取DC/DC控制器传输的FB反馈信号;所述FB反馈信号与DC/DC电路的输出功率成正比;
由PFC控制器获取功率因数校正PFC电路的功率;
所述FB反馈信号中出现下降沿信号特征时,检测所述FB反馈信号是否低于预定的第一FB反馈信号阈值,当所述所述FB反馈信号低于第一FB反馈信号阈值时,则进一步判断此时的功率因数校正PFC电路的功率值是否低于预定的功率阈值;
当功率因数校正PFC电路的功率值低于预定的功率阈值时,使用短下降沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号,并生成关闭功率因数校正PFC电路控制信号;
当功率因数校正PFC电路的功率值高于预定的功率阈值时,使用长下降沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第二预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号,并生成关闭功率因数校正PFC电路控制信号;
所述第一预定时长小于所述第二预定时长;
当所述FB反馈信号中出现上升沿信号特征时,检测所述FB反馈信号是否高于预定的第二FB反馈信号阈值,当所述所述FB反馈信号高于第二FB反馈信号阈值时,则上升沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第三预定时长内持续保持在高于预定的第二FB反馈信号阈值的状态,则所述上升沿 信号特征转化为上升沿脉冲控制信号,并生成开启功率因数校正PFC电路控制信号。
在一个实施例中,若所述FB反馈信号在第一预定时长内并未持续保持在低于预定的第一FB反馈信号阈值的状态,则不生成PFC控制信号。
在一个实施例中,若所述FB反馈信号在第三预定时长内未持续保持在高于预定的第二FB反馈信号阈值的状态,则不生成PFC控制信号。
在一个实施例中,所述PFC控制器通过发送报错或掉电信号将DC/DC控制器传输FB反馈信号的发送端强制拉低至低电平,从而控制DC/DC控制器关闭后级DC/DC电路。
本发明的另一方面还在于提供一种两级开关电源中基于FB反馈信号的两级交互系统,所述两级开关电源包括前级功率因数校正PFC电路和后级DC/DC电路;所述前级功率因数校正PFC电路使用PFC控制器进行控制;所述后级DC/DC电路使用DC/DC控制器进行控制;所述交互系统包括:
FB反馈信号判断模块,所述DC/DC控制器将FB反馈信号输入FB反馈信号判断模块以检测FB反馈信号中的下降沿信号特征和上升沿信号特征;
PFC功率判断模块,所述PFC功率判断模块用于检测前级功率因数校正PFC电路的功率;
短下降沿防抖模块,所述短下降沿防抖模块在所述FB反馈信号中出现下降沿信号特征,且同时满足所述FB反馈信号低于预定的第一FB反馈信号阈值,和功率因数校正PFC电路的功率值低于预定的功率阈值时,对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号;
长下降沿防抖模块,所述长下降沿防抖模块在所述FB反馈信号中出现下降沿信号特征,且同时满足所述FB反馈信号低于预定的第一FB反馈信号阈值,和功率因数校正PFC电路的功率值高于预定的功率阈值时,,对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号;
上升沿防抖模块,所述上升沿防抖模块在,所述FB反馈信号中出现上升沿信号特征且同时满足所述FB反馈信号高于预定的第二FB反馈信号阈值时,对 FB反馈信号进行监测,如所述FB反馈信号在第三预定时长内持续保持在高于预定的第二FB反馈信号阈值的状态,则所述上升沿信号特征转化为上升沿脉冲控制信号;
以及,PFC控制信号生成模块,所述PFC控制信号生成模块根据由所述短下降沿防抖模块、长下降沿防抖模块和上升沿防抖模块发送的脉冲控制信号生成开启或关闭前级功率因数校正PFC电路的控制信号。
在一个实施例中,所述交互系统还包括PFC报错或掉电反馈模块,所述PFC报错或掉电反馈模块通过PFC报错或掉电信号将DC/DC控制器传输FB反馈信号的发送端强制拉低至低电平,从而控制DC/DC控制器关闭后级DC/DC电路。
与现有技术相比,本发明的一个或多个实施例可以具有如下发明点及优势:
大幅度简化了PFC控制器与DC/DC控制器之间的交互方式,由于直接将DC/DC控制器的FB反馈信号管脚引入PFC控制器芯片,而不需要任何附加电路,也不要求DC/DC控制器配置任何专门的PFC控制器控制逻辑;由此大幅度提高了两级AC/DC开关电源系统设计的广泛适配性,PFC控制器芯片可以完美配合任何带有FB反馈信号的DC/DC控制器芯片
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明的两级开关电源系统结构示意图;
图2是本发明的第一实施例的两级开关电源中基于FB反馈信号的两级交互系统结构示意图;
图3是本发明的第一实施例的两级开关电源中基于FB反馈信号的两级交互方法流程图;
图4是本发明的第二实施例的两级开关电源中基于FB反馈信号的两级交互系统结构示意图;
图5是本发明的第三实施例的两级开关电源中基于FB反馈信号的两级交互系统结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合附图对本发明作进一步地详细说明。
在进行下面的详细描述之前,阐述贯穿本发明使用的某些单词和短语的定义可能是必要的。术语“耦接”“连接”及其派生词指两个或多个元件之间的任何直接或间接通信或者连接,而无论那些元件是否彼此物理接触。术语“传输”、“接收”和“通信”及其派生词涵盖直接和间接通信。术语“包括”和“包含”及其派生词是指包括但不限于。术语“或”是包含性的,意思是和/或。短语“与……相关联”及其派生词是指包括、包括在……内、互连、包含、包含在……内、连接或与……连接、耦接或与……耦接、与……通信、配合、交织、并列、接近、绑定或与……绑定、具有、具有属性、具有关系或与……有关系等。术语“控制器”是指控制至少一个操作的任何设备、系统或其一部分。这种控制器可以用硬件、或者硬件和软件和/或固件的组合来实施。与任何特定控制器相关联的功能可以是集中式的或分布式的,无论是本地的还是远程的。短语“至少一个”,当与项目列表一起使用时,意指可以使用所列项目中的一个或多个的不同组合,并且可能只需要列表中的一个项目。例如,“A、B、C中的至少一个”包括以下组合中的任意一个:A、B、C、A和B、A和C、B和C、A和B和C。
本发明中对于电阻、电容或电感的第一端和第二端的描述仅为了区分该器件的两个连接端,以便于描述该器件与其他器件的连接关系,其并不特定地指定电阻、电容或电感在实际情况下的某一端。本领域技术人员应当知晓在实际电路构建时,电阻、电容或电感在实际器件中的任何一端均可定义为第一端,同时当第一端被定义时,器件的另一端自动被定为第二端。
本发明中对各种部件或元素进行描述时,所使用的“第一”、“第二”、“第三”……的描述方式仅为了区分各个部件,仅为了表达各个部件之间互不相同的关系。上述所使用的描述方式本身不包含任何对部件之间关联的隐含意义。例如,当仅出现“第一”和“第三”的描述时,不意味着二者之间还存在“第二”,这 里对“第一”和“第三”的描述仅意味着存在两个不同的独立部件。
贯穿本发明中提供的其他特定单词和短语的定义。本领域普通技术人员应该理解,在许多情况下,即使不是大多数情况下,这种定义也适用于这样定义的单词和短语的先前和将来使用。
在本发明中,模块的应用组合以及子模块的划分层级仅用于说明,在不脱离本公开的范围内,模块的应用组合以及子模块的划分层级可以具有不同的方式。
实施例1
如图1-3所示,本实施例的两级开关电源中基于FB反馈信号的两级交互方法,其包括:
由PFC控制器获取DC/DC控制器传输的FB反馈信号;所述FB反馈信号与DC/DC电路的输出功率成正比;
由PFC控制器获取功率因数校正PFC电路的功率;
所述FB反馈信号中出现下降沿信号特征时,检测所述FB反馈信号是否低于预定的第一FB反馈信号阈值,当所述所述FB反馈信号低于第一FB反馈信号阈值时,则进一步判断此时的功率因数校正PFC电路的功率值是否低于预定的功率阈值;
当功率因数校正PFC电路的功率值低于预定的功率阈值时,使用短下降沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内没有出现信号跳变,即所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号,并生成关闭功率因数校正PFC电路控制信号;若所述FB反馈信号在第一预定时长内并未持续保持在低于预定的第一FB反馈信号阈值的状态,则不生成PFC控制信号;
当功率因数校正PFC电路的功率值高于预定的功率阈值时,使用长下降沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第二预定时长内没有出现信号跳变,即所述FB反馈信号在第二预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号,并生成关闭功率因数校正PFC电路控制信号;若所述FB反馈信号在第一预定时长内并未持续保持在低于预定的第一FB反馈信号阈值的状态,则不生成PFC控制信 号。
本实施例中,所述第一预定时长小于所述第二预定时长;在两级式开关电源中由后级DC/DC控制发送的所述FB反馈信号的响应是非常快的,如果DC/DC电路做反复快速的动态响应,则所述FB反馈信号也会快速上下波动。如果此时反复开关PFC电路并不是合理的处理方式,因此需要引入长下降沿防抖模块,既所述FB反馈信号持续低于阈值较长时间后,才允许关PFC电路。
当后级DC/DC电路进入轻载激发模式(burst mode)后,所述FB反馈信号也会相应的反复波动,且所述FB反馈信号的峰值往往较高。因为前级功率因数校正PFC电路的功率和后级DC/DC电路的功率一致,如果前级功率因数校正PFC电路的功率持续低于预定的功率阈值则可以认为后级DC/DC电路的功率也稳定在低功率状态下,由此可以认定所述FB反馈信号的波动时来自于轻载激发模式或空载状态。则此时就可以选择短下降沿防抖模块,使得FB低于阈值后快速关闭前级功率因数校正PFC电路。
当所述FB反馈信号中出现上升沿信号特征时,检测所述FB反馈信号是否高于预定的第二FB反馈信号阈值,当所述所述FB反馈信号高于第二FB反馈信号阈值时,则上升沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第三预定时长内没有出现信号跳变,即所述FB反馈信号在第三预定时长内持续保持在高于预定的第二FB反馈信号阈值的状态,则所述上升沿信号特征转化为上升沿脉冲控制信号,并生成开启功率因数校正PFC电路控制信号;若所述FB反馈信号在第三预定时长内未持续保持在高于预定的第二FB反馈信号阈值的状态,则不生成PFC控制信号。
对于启动功率因数校正PFC电路而言,需要过滤掉后级DC/DC电路在轻载激发模式下或空载模式超过第二FB反馈信号阈值的毛刺,因此需要依靠上升沿防抖模块对FB反馈信号进行监测,当所述FB反馈信号满足于持续超过第二FB反馈信号阈值后一定时间,才允许重启功率因数校正PFC电路。
本实施例中,所述第一FB反馈信号阈值设定为DC/DC电路额定功率值的30%状态下所对应的FB反馈信号。所述第二FB反馈信号阈值设定为DC/DC电路额定功率值的80%状态下所对应的FB反馈信号。
本实施例中,所述第一预定时长设定为500μs;所述第二预定时长设定为 500ms。
实施例2
如图4所示,在前述实施例1的基础上,本实施例中增加了当所述前级功率因数校正PFC电路出现报错或掉电情况时,所述PFC控制器输出的报错或掉电信号将所述FB反馈信号强制拉低为低电平,DC/DC控制器会控制所述后级DC/DC电路进入静默。所述后级DC/DC电路会等待前级功率因数校正PFC电路状态恢复正常后继续工作。这个期间有可能PFC控制器和DC/DC控制器的Vcc出现掉电,并且打嗝重启,实现系统安全保护。
实施例3
如图5所示,本实施例给出了PFC控制器与DC/DC控制器之间芯片引脚的最简单的连接方式。所述PFC控制器上设置有Vcc驱动管脚及ENF使能管脚,所述DC/DC控制器上设置有Vcc驱动管脚及FB反馈信号管脚;所述PFC控制器的Vcc驱动管脚与所述DC/DC控制器的Vcc驱动管脚相连;所述PFC控制器的ENF使能管脚与所述DC/DC控制器的FB反馈信号管脚相连。
上述芯片间引脚连接方式大幅度简化了PFC控制器与DC/DC控制器之间的交互方式,由于直接将DC/DC控制器的FB反馈信号管脚引入PFC控制器芯片,而不需要任何附加电路,也不要求DC/DC控制器配置任何专门的PFC控制器控制逻辑;由此大幅度提高了两级AC/DC开关电源系统设计的广泛适配性,PFC控制器芯片可以完美配合任何带有FB反馈信号的DC/DC控制器芯片。
以上所述,仅为本发明的具体实施案例,本发明的保护范围并不局限于此,任何熟悉本技术的技术人员在本发明所述的技术规范内,对本发明的修改或替换,都应在本发明的保护范围之内。

Claims (8)

  1. 一种两级开关电源中基于FB反馈信号的两级交互方法,所述两级开关电源包括前级功率因数校正PFC电路和后级DC/DC电路;所述前级功率因数校正PFC电路使用PFC控制器进行控制;所述后级DC/DC电路使用DC/DC控制器进行控制;其特征在于,所述交互方法包括:
    由PFC控制器获取DC/DC控制器传输的FB反馈信号;所述FB反馈信号与DC/DC电路的输出功率成正比;
    由PFC控制器获取功率因数校正PFC电路的功率;
    所述FB反馈信号中出现下降沿信号特征时,检测所述FB反馈信号是否低于预定的第一FB反馈信号阈值,当所述所述FB反馈信号低于第一FB反馈信号阈值时,则进一步判断此时的功率因数校正PFC电路的功率值是否低于预定的功率阈值;
    当功率因数校正PFC电路的功率值低于预定的功率阈值时,使用短下降沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号,并生成关闭功率因数校正PFC电路控制信号;
    当功率因数校正PFC电路的功率值高于预定的功率阈值时,使用长下降沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第二预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号,并生成关闭功率因数校正PFC电路控制信号;
    所述第一预定时长小于所述第二预定时长;
    当所述FB反馈信号中出现上升沿信号特征时,检测所述FB反馈信号是否高于预定的第二FB反馈信号阈值,当所述所述FB反馈信号高于第二FB反馈信号阈值时,则上升沿防抖模块对FB反馈信号进行监测,如所述FB反馈信号在第三预定时长内持续保持在高于预定的第二FB反馈信号阈值的状态,则所述上升沿信号特征转化为上升沿脉冲控制信号,并生成开启功率因数校正PFC电路控制信号。
  2. 根据权利要求1所述的两级开关电源中基于FB反馈信号的两级交互方法,其特征在于,若所述FB反馈信号在第一预定时长内并未持续保持在低于预定的第一FB反馈信号阈值的状态,则不生成PFC控制信号。
  3. 根据权利要求1所述的两级开关电源中基于FB反馈信号的两级交互方法,其特征在于,若所述FB反馈信号在第三预定时长内未持续保持在高于预定的第二FB反馈信号阈值的状态,则不生成PFC控制信号。
  4. 根据权利要求1所述的两级开关电源中基于FB反馈信号的两级交互方法,其特征在于,所述PFC控制器通过发送报错或掉电信号将DC/DC控制器传输FB反馈信号的发送端强制拉低至低电平,从而控制DC/DC控制器关闭后级DC/DC电路。
  5. 一种两级开关电源中基于FB反馈信号的两级交互系统,所述两级开关电源包括前级功率因数校正PFC电路和后级DC/DC电路;所述前级功率因数校正PFC电路使用PFC控制器进行控制;所述后级DC/DC电路使用DC/DC控制器进行控制;其特征在于,所述交互系统包括:
    FB反馈信号判断模块,所述DC/DC控制器将FB反馈信号输入FB反馈信号判断模块以检测FB反馈信号中的下降沿信号特征和上升沿信号特征;
    PFC功率判断模块,所述PFC功率判断模块用于检测前级功率因数校正PFC电路的功率;
    短下降沿防抖模块,所述短下降沿防抖模块在所述FB反馈信号中出现下降沿信号特征,且同时满足所述FB反馈信号低于预定的第一FB反馈信号阈值,和功率因数校正PFC电路的功率值低于预定的功率阈值时,对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号;
    长下降沿防抖模块,所述长下降沿防抖模块在所述FB反馈信号中出现下降沿信号特征,且同时满足所述FB反馈信号低于预定的第一FB反馈信号阈值,和功率因数校正PFC电路的功率值高于预定的功率阈值时,对FB反馈信号进行监测,如所述FB反馈信号在第一预定时长内持续保持在低于预定的第一FB反馈信号阈值的状态,则所述下降沿信号特征转化为下降沿脉冲控制信号;
    上升沿防抖模块,所述上升沿防抖模块在,所述FB反馈信号中出现上升沿 信号特征且同时满足所述FB反馈信号高于预定的第二FB反馈信号阈值时,对FB反馈信号进行监测,如所述FB反馈信号在第三预定时长内持续保持在高于预定的第二FB反馈信号阈值的状态,则所述上升沿信号特征转化为上升沿脉冲控制信号;
    以及,PFC控制信号生成模块,所述PFC控制信号生成模块根据由所述短下降沿防抖模块、长下降沿防抖模块和上升沿防抖模块发送的脉冲控制信号生成开启或关闭前级功率因数校正PFC电路的控制信号。
  6. 根据权利要求5所述的两级开关电源中基于FB反馈信号的两级交互系统,其特征在于,所述交互系统还包括PFC报错或掉电反馈模块,所述PFC报错或掉电反馈模块通过PFC报错或掉电信号将DC/DC控制器传输FB反馈信号的发送端强制拉低至低电平,从而控制DC/DC控制器关闭后级DC/DC电路。
  7. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行1-4中任一项所述的两级开关电源中基于FB反馈信号的两级交互方法。
  8. 一种集成电路结构,所述集成电路结构中包含权利要求5-6之一所述的两级开关电源中基于FB反馈信号的两级交互系统。
PCT/CN2023/123109 2022-11-04 2023-10-06 两级开关电源中基于fb反馈信号的两级交互方法 WO2024093604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211374103.5A CN115642797B (zh) 2022-11-04 2022-11-04 两级开关电源中基于fb反馈信号的两级交互方法
CN202211374103.5 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093604A1 true WO2024093604A1 (zh) 2024-05-10

Family

ID=84948194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123109 WO2024093604A1 (zh) 2022-11-04 2023-10-06 两级开关电源中基于fb反馈信号的两级交互方法

Country Status (2)

Country Link
CN (1) CN115642797B (zh)
WO (1) WO2024093604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642797B (zh) * 2022-11-04 2024-01-30 北京芯格诺微电子有限公司 两级开关电源中基于fb反馈信号的两级交互方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120014142A1 (en) * 2010-07-19 2012-01-19 Welland Industrial Co., Ltd. Power conversion apparatus for correcting power factor
CN102801329A (zh) * 2012-08-09 2012-11-28 矽力杰半导体技术(杭州)有限公司 一种高效率、低损耗的交直流电源电路及其控制方法
US20140241018A1 (en) * 2013-02-26 2014-08-28 Champion Microelectronic Corporation System and method for limiting output current in a switching power supply
CN105553292A (zh) * 2015-12-31 2016-05-04 广州金升阳科技有限公司 一种两级控制方法、两级控制器及ac/dc开关电源
CN115642797A (zh) * 2022-11-04 2023-01-24 北京芯格诺微电子有限公司 两级开关电源中基于fb反馈信号的两级交互方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774245B1 (en) * 2016-07-15 2017-09-26 Alitek Technology Corp. PFC switching power conversion circuit providing low total harmonic distortion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120014142A1 (en) * 2010-07-19 2012-01-19 Welland Industrial Co., Ltd. Power conversion apparatus for correcting power factor
CN102801329A (zh) * 2012-08-09 2012-11-28 矽力杰半导体技术(杭州)有限公司 一种高效率、低损耗的交直流电源电路及其控制方法
US20140241018A1 (en) * 2013-02-26 2014-08-28 Champion Microelectronic Corporation System and method for limiting output current in a switching power supply
CN105553292A (zh) * 2015-12-31 2016-05-04 广州金升阳科技有限公司 一种两级控制方法、两级控制器及ac/dc开关电源
CN115642797A (zh) * 2022-11-04 2023-01-24 北京芯格诺微电子有限公司 两级开关电源中基于fb反馈信号的两级交互方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGWEI ZHANG: "Research on Dimming Control Strategy of Two-stage LED Driver", ELECTRIC SWITCHGEAR, vol. 60, no. 2, 15 April 2022 (2022-04-15), XP093168601, ISSN: 1004-289X, DOI: 10.3969/j.issn.1004-289X.2022.02.017 *

Also Published As

Publication number Publication date
CN115642797B (zh) 2024-01-30
CN115642797A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN107667462B (zh) 降低功率转换器在待机模式中的功率
CN101151787B (zh) 开关式电源、用于开关式电源的控制器及其操作方法
WO2024093604A1 (zh) 两级开关电源中基于fb反馈信号的两级交互方法
JP4987370B2 (ja) スイッチング電源における障害条件に対する条件付き応答のための方法および装置
TWI497275B (zh) 具有低功率消耗突衝待命操作的電源供應器
TWI398764B (zh) 降低顯示器待機時之功率消耗的裝置及方法,以及低待機功率消耗之顯示器
CN103078478B (zh) 一种开关电源控制器及开关电源
TWI455087B (zh) 低耗電顯示控制方法與相關顯示控制器
JP2000156972A (ja) スイッチング電源装置
US8222867B2 (en) Battery charging and discharging apparatus and method
CN105610328A (zh) 开关模式电源的系统和方法
US8693218B2 (en) Power adapter and method of controlling power adapter operated in energy saving mode
TW201605151A (zh) 快速啟動備援的冗餘式電源供應系統
WO2011018089A1 (en) Low power switch mode power supply
CN110099234B (zh) 一种电源启动装置及电视机
US20140112033A1 (en) Power supply apparatus
TWI444821B (zh) 電源裝置
TW202122901A (zh) 動態多功能電源控制器
TWI553461B (zh) 電源供應系統及其電源控制電路
WO2021190063A1 (zh) 远程开机方法、相关电路、相关模块及设备
TWI492017B (zh) 喚醒電路、整合式功率二極體及使用其之電源供應器
TWI536708B (zh) A redundant power supply system with round robin standby
CN208571920U (zh) 一种补偿电路
CN111049384A (zh) 用于控制面板的低功耗电力转换电路
CN218041173U (zh) 一种双环路待机控制电路及开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884536

Country of ref document: EP

Kind code of ref document: A1