WO2024093500A1 - 全矢量勘测集群系统及其控制方法 - Google Patents

全矢量勘测集群系统及其控制方法 Download PDF

Info

Publication number
WO2024093500A1
WO2024093500A1 PCT/CN2023/116774 CN2023116774W WO2024093500A1 WO 2024093500 A1 WO2024093500 A1 WO 2024093500A1 CN 2023116774 W CN2023116774 W CN 2023116774W WO 2024093500 A1 WO2024093500 A1 WO 2024093500A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
cable
working surface
survey
support body
Prior art date
Application number
PCT/CN2023/116774
Other languages
English (en)
French (fr)
Inventor
吴启民
陈通权
陈乔
林忠华
刘德明
郭睿
李高年
叶谦
Original Assignee
杭州国电大坝安全工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州国电大坝安全工程有限公司 filed Critical 杭州国电大坝安全工程有限公司
Publication of WO2024093500A1 publication Critical patent/WO2024093500A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight

Definitions

  • the present invention relates to the field of robotics technology, and in particular to a full vector survey cluster system and a control method thereof.
  • Flying drone technology continues to develop in the contemporary era and is widely used in aerial inspection, on-site reconnaissance, ground building detection, special operations, etc.
  • Conventional flying drones can detect defects on building surfaces.
  • the patent document with publication number CN114379777B discloses a tilt-rotor drone structure and its working method. This multi-rotor drone can enhance the adaptability of the drone and the flexibility of mobile control through the vector control of the tilt-rotor.
  • the power source carried by the drone cannot guarantee long-term flight time, and due to the limitation of payload capacity, its operation and communication capabilities are difficult to meet the needs.
  • the present invention provides a full-vector survey cluster system and a control method thereof, which can implement reconnaissance and survey in special scenarios.
  • the full vector survey cluster system of the present invention comprises a plurality of robots, wherein the plurality of robots comprises a survey robot and at least one negative cable robot, and the survey robot and the negative cable robot both comprise:
  • a vector rotor system wherein the vector rotor system comprises at least two sets of rotor assemblies, wherein the multiple sets of rotor assemblies are mounted on a support body and are used to provide vector power for the support body;
  • a walking wheel which is arranged below the support body and is used for walking on the working surface
  • An information collection device the information collection device is installed on the support body, and the information collection device is used to collect information data related to the working surface;
  • the cable-carrying robot further comprises a cable rack mechanism, which is arranged on a support body. In a working state, the survey robot and the cable-carrying robot are both powered and communicated via cables loaded on the cable rack mechanism.
  • the information acquisition device includes a laser mapping component, an image acquisition component, an ultrasonic detection component, or a combination thereof;
  • the laser mapping assembly comprises:
  • a pan/tilt platform wherein the pan/tilt platform is arranged on a supporting body;
  • a laser scanner is installed on a pan-tilt platform and is used to survey three-dimensional space and obtain three-dimensional morphological data of the working surface;
  • the image acquisition component comprises:
  • a camera which is arranged on the support body and located between two adjacent sets of rotor assemblies, and which captures images of the working surface.
  • the images captured by the camera are used to construct a two-dimensional map of the working surface;
  • a fill light which is arranged on the support and is used to project light onto the working surface
  • the ultrasonic detection assembly comprises:
  • Ultrasonic probes which are arranged on a support body, are arranged in pairs, and the distance between the ultrasonic probes in the same pair is adjustable;
  • a moving mechanism is connected to the ultrasonic probe, and the moving mechanism drives the ultrasonic probe to move between the two pairs of ultrasonic probes. relative motion;
  • a medium output head is installed on the support body, the medium output head is connected with a supply device installed on the support body through a medium pipeline, and the medium output head is used to provide working medium to the ultrasonic probe.
  • the cable rack mechanism includes:
  • a support wherein the support is fixed on the support body, a part of the structure in the support is configured as a tubular structure, the interior of the tubular structure serves as a guide groove, and the cable is movably inserted into the guide groove;
  • the clamping wheels are arranged in pairs and mounted on a support.
  • the clamping wheels are used to clamp and drive the cable to move along the guide groove.
  • a wire clamping motor is installed on a support, and the wire clamping motor is linked with a wire clamping wheel to change the length of the cable between the cable-carrying robot and an adjacent robot.
  • a connecting sleeve is provided at the end of the tubular structure, and a pressure sensor is configured on the connecting sleeve.
  • the side on which the cable passes into the connecting sleeve from the outside is the inlet side, and the inner wall of the connecting sleeve is provided with a plurality of mounting ears evenly spaced along the circumferential direction on the inlet side, and the pressure sensor is fixed correspondingly to the inner side of the mounting ear.
  • a swing frame is provided on the support, and in the same pair of clamping wheels, one is a driven wheel and is rotatably mounted on the support, and the other is a driving wheel and is rotatably mounted on the swing frame;
  • An elastic member is provided between the swing frame and the support to limit the swing frame to the first state or the second state;
  • the elastic member drives the driving wheel to approach the driven wheel and clamp the cable
  • the driving wheel is away from the driven wheel, and the swing frame and the support are in contact with each other.
  • the negative cable robot further comprises:
  • Two winding wheels are respectively mounted on the support body, and the cables extending through the tubular structure are wound on the corresponding winding wheels;
  • Two winding motors the two winding motors independently drive a corresponding winding wheel.
  • the present invention also provides a control method based on the full vector survey cluster system operation, characterized in that the control method adopts any of the full vector survey cluster systems described above, and the control method includes:
  • Multiple robots move in a queue. When they reach the predetermined working position in the working surface map, they collect image information of the current working position through information collection equipment and perform surface feature recognition. During the process of collecting information data, the robots maintain the current working position in climbing mode.
  • the constructing the working surface map comprises:
  • the robot reaches the specified origin position, moves to the reference point along the predetermined coordinate axis, obtains the line between the origin and the reference point, maps the line to the work surface map, calculates the direction of the other coordinate axis and the coordinate system formed by the two coordinate axes, and constructs the coordinate system of the work surface and the work surface map;
  • the robot queue is transferred between multiple working positions along the motion path, and when reaching the predetermined working position, the robot queue collects image information data and three-dimensional morphological data of the working surface using the information collection device;
  • three-dimensional modeling is performed using the obtained three-dimensional morphological data to obtain a three-dimensional model
  • the obtained image information is spliced to obtain a two-dimensional working surface map
  • the two-dimensional working surface map is fitted to the three-dimensional model to obtain the three-dimensional working surface map.
  • control method includes inspection of the working surface, and the inspection of the working surface includes: the robot confirms the current position; the robot identifies the building defects and marks them on the working surface map.
  • the cable-carrying robot collects pressure signals of the cables relative to the cable rack mechanism, and adjusts the cable rack mechanism's wire retraction and release operation and/or the vector power provided by the rotor assembly according to the pressure signals, thereby adjusting the robot's travel speed or direction.
  • the full vector survey cluster system of the present invention can perform ground building detection, special operations, and surface defect detection operations of natural buildings or artificial buildings. It has strong endurance and anti-interference capabilities and can cope with complex natural environments such as large areas, high magnetic fields, and no signals.
  • FIG1 is a schematic diagram of the structure of a full vector survey cluster system
  • FIG2 is a schematic diagram of the structure of the negative cable robot in FIG1 opening the first shell
  • Fig. 3 is an enlarged view of B in Fig. 2;
  • FIG4 is a schematic diagram of the structure of the swing frame when it is in the second state
  • FIG5 is a cross-sectional view of the cable-carrying robot in FIG1 ;
  • FIG6 is a schematic diagram of the structure of a survey robot using a quad-rotor vector drive provided by the present invention.
  • FIG7 is a schematic structural diagram of the support body in FIG6 ;
  • FIG8 is a schematic structural diagram of a survey robot using a dual-rotor vector drive provided by the present invention.
  • FIG9 is a schematic structural diagram of the support body in FIG8 ;
  • 10 to 11 are schematic diagrams of the structure of the rotor assembly
  • FIG14 is a schematic diagram of the structure of a laser mapping assembly
  • FIG15 is a schematic diagram of the structure of the medium output head in the ultrasonic detection assembly in the second position
  • FIG16 is a cross-sectional view of FIG15 ;
  • FIG17 is a schematic diagram of the structure of the medium output head in the ultrasonic detection assembly in the first position
  • FIG18 is an exploded view of the supply device
  • Figure 19 is a schematic diagram of the structure of the travel wheel
  • FIG20 is a cross-sectional view of the traveling wheel in FIG19;
  • FIG21 is a schematic diagram of the structure of a static adsorption assembly
  • FIG22 is a schematic diagram of the structure of the static adsorption assembly in FIG17 opening the first shell;
  • FIG23 is a cross-sectional view of a static adsorption assembly
  • FIG24 is a schematic diagram of the structure of the second shell and the support body
  • FIG25 is a schematic structural diagram of a lifting drive mechanism
  • FIG26 is a schematic structural diagram of the transfer mechanism in FIG25;
  • FIG27 is a cross-sectional view of the survey robot omitting the support body
  • Fig. 28 is an enlarged view of A in Fig. 27;
  • FIG29 is an exploded view of the pressure relief valve
  • Figure 30 is a schematic diagram of the structure of the suction cup
  • FIG31 is a schematic diagram of the structure of the cleaner in the third housing.
  • FIG34 is a cross-sectional view of the survey robot omitting the support body
  • Fig. 35 is an enlarged view of C in Fig. 34;
  • FIG36 is a flow chart of a method for controlling a cluster system operation based on full vector survey in the present invention.
  • FIG38 is a flowchart of a rescue control method based on a robot cluster system according to the present invention.
  • FIG39 is a second flowchart of the rescue control method based on the robot cluster system in the present invention.
  • 40 to 42 are schematic diagrams showing the implementation process of the robot cluster system rescue control method
  • FIG43 is a flow chart of a building structure spanning method based on a robot cluster system in the present invention.
  • 44 to 46 are schematic diagrams showing the implementation process of the building structure spanning method of the robot cluster system
  • FIG47 is a flow chart of a wellbore detection method according to the present invention.
  • Static adsorption assembly 51. Outer jacket; 52. Cylinder; 521. External thread; 53. Lifting drive mechanism; 531. Motor; 5311. Output shaft; 532. Transfer mechanism; 5321. Main bevel gear; 5322. Secondary bevel gear; 5323. Intermediate shaft; 5324. Universal joint; 5325. Output shaft; 533. Driving gear; 534. Gear ring; 535. Gear teeth; 54. Suction cup; 541. Vacuum port; 542. Pressure relief port; 543. Pressure relief valve; 5431. Sealing sleeve; 5432. Valve core; 5433. Valve stem; 5434.
  • a component when referred to as being “connected” to another component, it may be directly connected to the other component or there may be a central component.
  • a component When a component is referred to as being “disposed on” another component, it may be directly disposed on the other component or there may be a central component at the same time.
  • the present invention provides a full vector survey cluster system, including a survey robot 200 and at least one negative cable robot 81 , wherein the survey robot 200 and the negative cable robot 81 both include:
  • the support body 1 has a relative top side 100 and a bottom side 101;
  • the vector rotor system includes at least two sets of rotor assemblies 2, each rotor assembly 2 is installed on the support body 1 and provides vector power to the support body 1;
  • the walking wheel 3 is arranged on the bottom side 101 of the support body 1, and is used to cooperate with the working surface walking;
  • the surveying robot 200 also includes an information collection device 4, which is installed on the support body 1 and is used to collect information data related to the working surface;
  • the negative cable robot 81 also includes a cable rack mechanism 82, and the surveying robot 200 is powered and communicated via the cable 18 loaded on the cable rack mechanism 82 in the working state.
  • the survey robot 200 is installed with the information collection device 4 , and the cable-carrying robot 81 can choose whether to install the information collection device 4 according to demand.
  • Each cable-carrying robot 81 needs to carry the cable 18 , and therefore is equipped with a cable rack mechanism 82 .
  • the cable rack mechanism 82 includes: a support 821, which is fixed to the support body 1, at least a portion of the support 821 is a tubular structure 8214 and the interior serves as a guide groove 8211, and the cable 18 is movably guided in the guide groove 8211; a wire clamping wheel 822, which is installed on the support 821, clamps and drives the cable 18 to move along the guide groove 8211; and a wire clamping motor 823, which is installed on the support 821 and operates in conjunction with the wire clamping wheel 822.
  • a connecting sleeve 17 equipped with a pressure sensor is connected to the end of the tubular structure 8214, or the end of the tubular structure 8214 also serves as the connecting sleeve 17.
  • the number of connecting sleeves 17 of each cable-carrying robot 81 is 2.
  • the clamping wheels 822 are arranged in pairs, and at least one of them is a driving wheel 8221 linked to the clamping motor 823.
  • the side wall of the tubular structure is provided with a radially penetrating avoidance opening 8212, and the same pair of clamping wheels 822 clamp the cable 18 through the avoidance opening 8212 on the corresponding side.
  • a swing frame 8213 is provided on the support 821.
  • one is a driven wheel 8222 and is rotatably installed on the support 821;
  • the other is a driving wheel 8221 and is rotatably installed on the swing frame 8213;
  • an elastic member is provided between the swing frame 8213 and the support 821, driving the driving wheel 8221 to approach the driven wheel 8222 and clamp the cable 18, that is, the swing frame 8213 is in the first state (i.e., the F1 position); the swing frame 8213 also has a second state (i.e., the F2 position), the driving wheel 8221 is away from the driven wheel 8222, and the swing frame 8213 and the support 821 are against the limit position.
  • the elastic member is a tension spring 824, and the two ends of the tension spring 824 are respectively connected to the swing frame 8213 and the support 821, and the tension spring 824 restricts the swing frame 8213 to the second state by passing the dead point.
  • the swing frame 8213 can change its state according to actual needs.
  • the line clamping motor 823 and the driving wheel 8221 are driven by gear meshing.
  • the two ends of the tubular structure extend to the two opposite sides of the support body 1 respectively.
  • the two ends of the tubular structure are respectively provided with a line clamping wheel 822 and a line clamping motor 823.
  • an open area or a semi-open area is provided in the middle of the tubular structure 8214, and one section of the cable 18 extends from the guide groove 8211 from this part, and the extended part is a winding section 826.
  • the negative cable robot 81 also includes:
  • Two winding wheels 831 are respectively installed on the support body 1, and the cables 18 extending from both ends of the tubular structure 8214 are respectively wound on one of the winding wheels 831; two winding motors 834 independently drive a corresponding winding wheel 831, and can make adaptive adjustments to the cables 18 on both sides of the negative cable robot 81, making its cluster system more flexible and avoiding the limitation of only being able to adjust at the same time.
  • the winding motor 834 and the winding wheel 831 can be driven by conventional gear meshing.
  • the two winding wheels 831 can also be packaged in the first shell 56. Since the top of the outer shell 51 in the static adsorption component 5 is also in the first shell 56, the two winding wheels 831 can also be set as a cylindrical structure in this embodiment, and rotatably sleeved on the corresponding outer shell 51.
  • the outer edge of the cylindrical structure has an outer gear 825, which is driven by a gear meshing method with the winding motor 834.
  • the cable 18 extending into the end of the tubular structure 8214 passes around the corresponding winding wheel 831 and is connected to the electrical components in the negative cable robot 81 to form an electrical circuit.
  • the survey robot 200 can also be equipped with a cable rack mechanism 82, a winding wheel 831, and a winding motor 834. If it is at the head of the queue, it can be equipped with only one set of winding wheels 831 and winding motor 834.
  • the survey robot 200 and the negative cable robot 81 are both powered and communicated by wire in the working state.
  • the connecting sleeve 17 that can detect the slack or bending of the cable 18 is installed on the cable rack mechanism 82 of the negative cable robot 81, or as a part of the cable rack mechanism 82 (can be regarded as indirectly installed on the support body 1).
  • the cable 18 has a certain dead weight, and the survey robot 200 can only bear a limited weight of the cable 18.
  • the negative cable robot 81 can better share the dead weight of the cable 18 and improve the overall survey range.
  • the number of negative cable robots 81 can be set according to demand.
  • the survey robot 200 and the negative cable robot 81 can respectively adopt four-rotor vector drive or two-rotor vector drive.
  • the full vector survey cluster system 8 (also referred to as the cluster system) further includes a pay-out mechanism 84.
  • One end of the cable 18 is connected to the survey robot 200, and the other end is connected to the pay-out mechanism 84.
  • the cable-carrying robot 81 is sequentially connected in series between the survey robot 200 and the pay-out mechanism 84 through the cable 18.
  • the pay-out mechanism 84 can automatically retract and release the cable 18.
  • the existing technology can be used to realize the automatic retraction and release of the cable 18.
  • a queue adjustment method based on a robot cluster system includes multiple robots and cables operating on a work surface. All robots are powered and communicated through cables and are connected to the cables in sequence according to the extension direction of the cables. Each robot is fixed with a connecting sleeve. The cable is inserted into the connecting sleeve from the outside of the robot and is connected to the corresponding circuit components in the robot. In the connecting sleeve, the side where the cable is inserted from the outside is the entrance side, and the inner wall of the connecting sleeve is provided with a pressure sensor configured on the entrance side.
  • the queue adjustment method can be implemented in various scenarios to achieve collaborative work.
  • robots can also be equipped with searchlights.
  • the server coordinates the spatial position and orientation of each robot, and points the working robot to fill in the light to ensure the collection of relevant information data on the work surface.
  • some of the robots are cable robots and are equipped with a cable rack mechanism, which is used to collect or release cables.
  • the adjustment method includes collecting signals from pressure sensors and adjusting the pressure sensors according to the signals.
  • the signal of the sensor is adjusted accordingly to control the cable rack mechanism and/or the rotor assembly.
  • the arrangement and quantity of the rotor assembly, the cable rack mechanism, the connecting sleeve and the pressure sensor can refer to the relevant embodiments of the cable rack mechanism in this article. For example, when the cables of two adjacent robots become straight, loose or bent, the pressure sensor can provide a detection signal to appropriately adjust the travel speed or direction of the robot.
  • the adjustment method includes each robot collecting a signal from a pressure sensor and adjusting its own moving speed accordingly according to the signal from the sensor. Furthermore, along the extension direction of the cable, another robot at the entrance side of the current robot is an adjacent robot, and adjusting its own moving speed includes: when the signal from the pressure sensor is greater than a first set value, reducing the moving speed toward the adjacent robot; when the signal from the pressure sensor is less than a second set value, increasing the moving speed toward the adjacent robot.
  • the pressure sensor can detect the bending direction of the cable.
  • the bending direction of the cable can be sensed.
  • the detection signal is greater than the third set value, it is considered that the bending degree of the cable in a certain direction is too large and unnecessary pulling is generated.
  • the relative movement speed of the two robots can be reduced or the orientation of the two robots can be adjusted to balance the overall travel state of the queue and reduce the pulling of the cables on each other.
  • the inner wall of the connecting sleeve can also be equipped with a Hall sensor on the inlet side to achieve accurate control of the retractable and retractable line speed of the cable rack mechanism, so that the moving speed of the robot matches the retractable and retractable line speed of the cable rack mechanism.
  • the present invention provides a vector-driven survey robot 200, comprising: a support body 1 having a top side 100 and a bottom side 101 opposite to each other; a vector rotor system, comprising at least two sets of rotor assemblies 2, each rotor assembly 2 being mounted on the support body 1 and providing vector power to the support body 1;
  • the walking wheels 3 are arranged on the bottom side 101 of the support body 1 and are used to cooperate with the working surface when walking; the information collection device 4 is installed on the support body 1 and is used to collect information data related to the working surface.
  • the survey robot 200 of the present invention can also be used in combination to form a robot queue or cluster to perform collaborative work on a work surface extending for more than several kilometers.
  • the cluster at least one or even all robots are equipped with an information collection device 4.
  • the robot is also called a survey robot 200.
  • Some robots may not be equipped with an information collection device 4 and are only used for accompanying assistance. They can be collectively referred to as robots in this article.
  • the survey robot 200 of the present invention adopts wired power supply and communication.
  • Wired power supply not only reduces the load of the robot's own power supply, but also allows long-term endurance.
  • the return can ensure signal quality and speed, especially for complex environments such as high magnetic field, no signal, and high crosswind level, it can be unaffected by the environment.
  • the information data related to the working surface in the present invention may include a two-dimensional image of the working surface itself, and may also include three-dimensional terrain data, and collect information about the internal structure, as well as the on-site climate, lighting conditions, etc. through ultrasound.
  • the information collection method itself adopts the corresponding equipment in the prior art.
  • the specific mounting method and structure of the information collection device 4 are Improved methods are also provided in the following embodiments.
  • the survey robot 200 can form a survey system with a remote server.
  • the storage of a large amount of data and the data processing that consumes more computing power can be completed by the server, and the server sends corresponding instructions to the robot.
  • a field handheld terminal can also be configured to connect to the robot and send instructions in real time.
  • the top side 100 and the bottom side 101 of the support body 1 are relative concepts. For example, when the robot walks along the working surface, the side facing the working surface is the bottom side 101, and the other side is the top side 100.
  • the support body 1 is a frame structure, which is a flat structure as a whole, with the top side 100 and the bottom side 101 on both sides in the thickness direction.
  • the frame structure has a large number of hollow areas, which can better adapt to the application scenarios of the present invention, reduce weight as much as possible while ensuring structural strength, and the flat structure can improve wind resistance and anti-overturning performance.
  • the frame structure includes a top frame 11 and a bottom frame 12 which are stacked at intervals and are both in the form of sheets, and a plurality of reinforcement members fixed between the top frame 11 and the bottom frame 12.
  • the top frame 11 and the bottom frame 12 are matched in shape and each includes a plurality of annular portions 14 and a plurality of wheel seats 15, wherein each set of rotor assemblies 2 is located in a corresponding annular portion 14, the wheel seat 15 is convexly arranged relative to the adjacent annular portion 14, and a plurality of running wheels 3 are respectively installed on the corresponding wheel seats 15.
  • the top frame 11 and the bottom frame 12 are respectively an integral structure
  • the reinforcement members are a plurality of columns 13 arranged at intervals
  • the annular portions 14 are directly connected or connected through a strip-shaped reinforcement rod 16.
  • the frame structure of the present invention is made of carbon fiber material, which has a light weight and relatively high strength, making the survey robot 200 more flexible when working.
  • the distance between the top frame 11 and the bottom frame 12 is 2 to 6 cm, and the single sheet thickness of the top frame 11 and the bottom frame 12 is 2 to 5 mm.
  • connection sleeve 17 is installed on one side of the support body 1, and the cable 18 is inserted into the connection sleeve 17 from the outside and connected to the corresponding circuit components in the survey robot 200.
  • the cable 18 and the connection sleeve 17 are relatively fixed, and conventional means such as tightening, clamping or bonding can be used.
  • connection sleeve 17 the side where the cable 18 enters from the outside is the inlet side 171, and the inner wall of the connection sleeve 17 is provided with a pressure sensor arranged on the inlet side 171 to detect the force between the cable 18 and the inner wall of the connection sleeve 17.
  • the force can indicate the relative looseness or tension of the cable 18, or the turning direction of the cable 18 at the connection sleeve 17, and such information can be used to participate in the control of the robot.
  • the inlet side 171 of the connecting sleeve 17 includes a plurality of (e.g., 4 to 8) mounting lugs 172 evenly spaced along the circumferential direction, and each pressure sensor is fixed on the inner side of each mounting lug 172.
  • each pressure sensor is fixed on the inner side of each mounting lug 172.
  • the relative values of each pressure sensor can identify whether the cable 18 is loose or not and the bending direction. For example, when the cable 18 tends to be stretched straight, the robot's travel speed is appropriately adjusted to prevent the cable 18 from being subjected to additional pulling force.
  • the number of rotor assemblies 2 can be configured according to their power and the load of the survey robot 200. Considering the rationality of the overall layout and taking into account the control, four sets are preferred. Accordingly, the frame structure has four annular parts 14, which are distributed at the four corners of the rectangular area (the area surrounded by the four annular parts 14).
  • the reinforcing rod 16 includes: an edge rod 161, which is distributed around the rectangular area; an inner rod 162, which connects the two annular parts 14 on the same side of the rectangular area.
  • the rotor assembly 2 can also be in two sets. There are two annular portions 14 that are adjacent to each other in an 8-shape, and there are two sets of rotor assemblies 2 accordingly, and there are four wheel seats 15 that are arranged in pairs on opposite sides of the corresponding annular portions 14.
  • the center line connecting the two annular portions 14 is the reference line, and each annular portion 14 is connected to two wheel seats 15, which are located on both sides of the reference line.
  • the cable 18 basically extends along the direction of the reference line. This arrangement can make the survey robot 200 more evenly stressed and run more smoothly.
  • the vector rotor system is used to provide the survey robot 200 with walking, flying, obstacle crossing and other movements.
  • the first axis and the second axis involved in the rotor assembly 2 in the following embodiment are specifically L1 direction and L2 direction.
  • the rotor assembly 2 includes: a first flip frame 21, which is rotatably mounted on the annular portion 14 around the first axis; a first servo 22, which acts between the annular portion 14 and the first flip frame 21; a second flip frame 23, which is rotatably mounted on the first flip frame 21 around the second axis, and the second axis and the first axis are perpendicular to each other; a second servo 24, which acts between the second flip frame 23 and the first flip frame 21; a main motor 25, which is mounted on the second flip frame 23; and a blade 26, which is mounted on the output shaft of the main motor 25.
  • the first steering gear 22 and the second steering gear 24 can respectively drive the first flip frame 21 and the second flip frame 23 to rotate 360°.
  • the output shaft of the main motor 25 can also be selected from a model with a fine-tuned angle. Therefore, the blades 26 can rotate in all directions, realize the full vector control conversion of the spherical vector, and modulate the survey robot into various forms suitable for walking, climbing, and flying.
  • the power of each rotor of the survey robot is kept constant to simplify mode control and form switching.
  • the main motor 25 is installed in the middle of the second flip frame 23, and the output shaft is substantially perpendicular to the second axis.
  • the first axes of the rotor assemblies 2 are parallel and coplanar.
  • the first axes of all the rotor assemblies 2 are located between the top frame 11 and the bottom frame 12 in the frame structure, so that the robot is more evenly stressed when the rotor assemblies 2 are working and not easy to tip over.
  • the first turning frame 21 is in the shape of a ring, and the two radial ends of the ring are respectively mounted on the ring portion 14 through the first pivot 28, and the first servo 22 is mounted on the ring portion 14 and is linked to at least one first pivot 28;
  • the second turning frame 23 is in the shape of a strip, and the two longitudinal ends of the strip are respectively mounted on the first turning frame 21 through the second pivot 29, and the second servo 24 is mounted on the second turning frame 23 and is linked to at least one second pivot 29.
  • the first pivots 28 and first servos 22 of all rotor assemblies 2 are mounted on the top frame 11 of the frame structure, or are mounted on the bottom frame 12 of the frame structure.
  • the first flip frames 21 of all rotor assemblies 2 are in the same plane, the second axes of all rotor assemblies 2 are parallel and in the same plane.
  • the survey robot 200 is internally provided with a sensing device (such as a gyroscope, a distance sensor, etc.) for sensing the current posture and relative position.
  • a sensing device such as a gyroscope, a distance sensor, etc.
  • the sensing device When encountering an obstacle surface that is obviously angled with the working surface (such as a right-angle surface, a reverse slope, etc.), it can be identified based on the collected real-time information or historical data.
  • the sensing device provides real-time feedback.
  • the first servo 22 and the second servo 24 start working, changing the rotation angle of the vector rotor system, so that the front end of the survey robot 200 is tilted and directly climbs onto the obstacle surface.
  • the obstacle When encountering an obstacle that cannot be climbed over, the obstacle can be jumped over by switching to the flight mode, and then switched to the climbing mode after jumping over the obstacle.
  • the survey robot When the robot provided by the present invention is used to implement the control method provided in this article, the survey robot has a climbing mode and a flight mode. In the climbing mode, the walking wheels cooperate with the working surface under the action of the vector rotor system. When the working surface is relatively inclined, the vector rotor system provides downward force between the walking wheels and the working surface. In the flight mode, the walking wheels are away from the working surface. If the work task is performed based on a robot cluster system (in addition to the survey robot, it also includes at least one negative cable robot), during the working process of the survey robot, the negative cable robot will follow accordingly.
  • a robot cluster system in addition to the survey robot, it also includes at least one negative cable robot
  • the flight mode there are two ways to switch the flight mode, one is manual operation, and the other is automatic operation by the system.
  • the system automatically adjusts the first steering gear 22 and the second steering gear 24, and adjusts the blades 26 to an angle that is convenient for flying, so that the survey robot 200 can smoothly fly over obstacles, and after flying over obstacles and landing, it switches to climbing mode.
  • the survey robot 200 of this embodiment can automatically adjust the angle of the blades 26 according to the angle of the position, so that it can smoothly move freely in the current environment.
  • the information acquisition device 4 is installed on the support 1 to collect information data related to the working surface.
  • the information acquisition device 4 includes at least one of an image acquisition component 41, a laser mapping component 42, and an ultrasonic detection component 43:
  • the image acquisition component 41 includes: a camera 411, which is arranged on the support body 1 and located between two adjacent sets of rotor assemblies 2, for taking and collecting images; a fill light 414, for projecting light onto the working surface; a mounting frame, which is connected to the support body 1 and is used to mount the camera 411 and the fill light 414;
  • the mounting frame includes a plurality of spokes 416, one end of each spoke 416 converges at the center, and the other end extends outward and bends downward until it is fixed to the support body 1; a ring member 415 is located below the center and connects all the spokes 416; the camera 411 is installed at the middle position of the mounting frame, and the fill light 414 is installed on the ring member 415 and arranged at intervals at the projection position of the camera 411.
  • the support body is also equipped with a lighting lamp 417 for providing lighting in the forward direction.
  • One or more cameras 411 can be used.
  • the resolution of a single camera 411 is 20 million pixels or higher, the shooting area is 0.12-0.24m2, the minimum resolution is 0.01mm, the seam measurement accuracy is 0.01mm, the minimum exposure time is 10ms, and it supports motion image acquisition at a maximum speed of 2m/s. Multiple cameras 411 can be combined.
  • the camera 411 includes a first camera 412 arranged above the center position and a second camera 413 arranged below the center position, wherein the first camera 412 is used to photograph the external overall working surface (in this embodiment, the first camera 412 is specifically a binocular camera, and a distance sensor for measuring obstacle distance, movement distance and auxiliary system positioning is arranged at this position), and the second camera 413 is used to photograph the real-time working surface of the surveying robot 200.
  • the binocular camera can be installed on the mounting frame through a rotating pan head, and can be rotated to a suitable shooting angle as needed.
  • the bottom surface of the ring 415 is provided with a ring-shaped fill light 414 for providing light to the second camera 413.
  • the fill light 414 is specifically a fluorescent lamp.
  • a plurality of spokes 416 surround to form a hemispherical space, the second camera 413 is at the top of the ball, and the fluorescent lamp is in the hemispherical space, and the hemispherical space is open to the working surface.
  • the mounting frame is covered with a blackout cloth (such as a photographic black cloth) to close the periphery of the hemispherical space, and a nearly closed shooting space can be formed in the working surface area photographed by the second camera 413.
  • a blackout cloth such as a photographic black cloth
  • a fill light 414 (such as an LED light) is also provided on the side of the ring member 45 at the projection position facing the first camera 412 .
  • the laser mapping component 42 includes: a pan-tilt platform 421, which is arranged on the support body 1 and connected to the support body 1; and a laser scanner 422, which is installed on the pan-tilt platform 421 and is used to map the three-dimensional space.
  • the information collected by the laser scanner 422 can be processed to obtain the three-dimensional shape data of the surrounding of the working surface, and three-dimensional modeling can be performed based on it. After modeling, the image obtained by the image acquisition component 41 is used for mapping and rendering, which can vividly express the working surface.
  • the bottom of the pan/tilt 421 is provided with a plurality of support arms 423.
  • the number of the support arms 423 is 4 and they are roughly X-shaped.
  • the bottom end of each support arm 423 is connected to the bottom frame 12 of the support body 1 through a shock absorbing component 424 (such as a shock absorbing pad).
  • a shock absorbing component 424 such as a shock absorbing pad.
  • a screw hole is provided at the bottom end of the support arm 423. During installation, the bolt passes through the screw hole, the shock absorbing component 424, and is fixedly connected to the bottom frame 12 of the support body 1 in sequence.
  • the shock absorbing component 424 can largely alleviate the vibration of the support arm 423, achieving a good shock absorbing effect, and the shock absorbing component 424 can also filter the vibration from the rotor.
  • the laser scanner 422 can adopt existing technology and can follow the pan-tilt head 421 to rotate to a suitable angle for three-dimensional space mapping according to actual shooting needs.
  • the ultrasonic detection assembly 43 can be used to measure the depth of cracks on the working surface. Regarding its installation position, the ultrasonic detection assembly 43 can be directly installed on the support body 1, and of course it can also be set in other components, that is, integrated with other components and indirectly installed on the support body 1.
  • the ultrasonic detection assembly 43 includes: ultrasonic probes 431 arranged in pairs and the spacing between the pairs is adjustable; a moving mechanism 432 drives the ultrasonic probes 431 in the same pair to move relative to each other; the medium output head 433 is used to provide the working medium to the ultrasonic probes 431.
  • the ultrasonic detection assembly 43 can automatically apply the working medium. Compared with the traditional manual application method, the present invention can apply and survey at any time according to the actual working surface conditions, thereby improving work efficiency.
  • the ultrasonic probe 431 can also be raised and lowered relative to the support body 1 to adjust the distance between the work surface.
  • the moving mechanism 432 can be driven in a variety of ways, such as a moving motor and a screw nut pair, and the moving motor drives the ultrasonic probe 431 through the screw nut pair.
  • each ultrasonic probe 431 is independently configured with a moving mechanism 432 and a corresponding medium output head 433.
  • the medium output head 433 has a first position (X1) adjacent to the ultrasonic probe 431, and a second position (X2) away from the ultrasonic probe 431.
  • the medium output head 433 can change its position to avoid the ultrasonic probe 431, for example, by being installed on the support body 1 through a flip mechanism 434, the flip mechanism 434 includes a flip motor 4341 and a movable frame 4342, the output shaft of the flip motor 4341 is linked to the movable frame 4342, and the medium output head 433 is fixed to the movable frame 4342 and connected to the supply device 435 through the medium pipeline 436.
  • the flip angle of the flip mechanism 434 is the rotation angle between the first position and the second position, which can be set according to the needs. In this embodiment, the flip angle is 180°.
  • the ultrasonic detection assembly 43 also includes a supply device 435 for providing working medium to the medium output head 433.
  • the supply device 435 outputs the working medium.
  • the medium output head 433 is disc-shaped, and has an output hole 4331 in the middle that is connected to the medium pipeline 436.
  • the supply device 435 outputs the working medium to the medium output head 433 through the output hole 4331.
  • the supply device 435 includes: a barrel 4351 for storing working medium, one end of the barrel 4351 is closed and has a discharge hole 4352, and the discharge hole 4352 is connected to the medium output head 433 through a medium pipeline 436; a pushing piston 4353, which is slidably fitted in the barrel 4351; and an electric push rod 4354, which extends to the other end of the barrel 4351 and is connected to the pushing piston 4353.
  • the ultrasonic detection component 43 uses the supply device 435 to push the working medium in the barrel 4351 to the medium output head 433 through the electric push rod 4354, and then uses the flipping mechanism to flip the medium output head 433 in the second position to the first position to apply the working medium to the ultrasonic probe 431. Then the flipping mechanism works again to flip the medium output head 433 in the first position to the starting position (i.e., the second position). At this time, the ultrasonic probe 431 officially starts working.
  • the ultrasonic detection assembly 43 also includes a microscopic camera 4343, which is arranged in the middle of the pair of ultrasonic probes 431 and can take microscopic pictures of cracks with a resolution accuracy of up to 0.005 mm.
  • the ultrasonic probe 431 has a spring 4311 inside, which can provide buffering protection when in contact with the working surface and can also adapt to the ruggedness of the working surface.
  • the walking wheels 3 are all universal wheels to ensure walking flexibility. Driven by the vector rotor system, they can move in any direction along the working surface, regardless of the turning radius, etc. This is more obvious in work route planning and work walking.
  • the traveling wheels 3 can be configured in 4 sets or more. In the same set, a single wheel or a double wheel structure can be adopted, and they are installed on the corresponding wheel seats 15 through the shock absorbing mechanism 31.
  • the shock absorbing mechanism 31 can adopt the damper in the prior art, and can also adopt a combination of multiple methods, such as air damping and mechanical springs. When the wheel moves on an uneven working surface, the shock absorbing mechanism 31 can combine multiple instantaneous bounces into a relatively gentle movement, thereby achieving a shock absorbing effect.
  • the survey robot 200 in order to firmly adhere to the working surface so that the survey robot 200 can remain stable and still when other equipment is working, the survey robot 200 also includes a static adsorption component 5, which can be fixed to the working surface by vacuum adsorption.
  • a static adsorption component 5 can be fixed to the working surface by vacuum adsorption.
  • the survey robot 200 adsorbed and fixed on the working surface can be used as a relatively stable anchor point to rescue or coordinate with other surrounding survey robots 200 through the cable 18.
  • the ultrasonic detection component 43 When the rotor is working, sound wave interference will be generated, and ultrasonic detection cannot be performed at the same time. Therefore, when the ultrasonic detection component 43 is needed, the static adsorption component 5 must be used to adsorb the survey robot 200 to the working surface, then the rotor is stopped, and finally the ultrasonic detection component 43 starts working.
  • the static adsorption assembly 5 includes: a cylinder 52, which is movably mounted on the support body 1; a lifting drive mechanism 53, which is mounted on the support body 1 and linked with the cylinder 52 to drive the cylinder 52 to rise and fall relative to the support body 1; a suction cup 54, which is fixed to the bottom of the cylinder 52; and a vacuum pump 55, which is connected to the suction cup 54 through a pipeline.
  • each rotor assembly 2 is arranged on the periphery of the static adsorption assembly 5 as a whole.
  • the cylinders 52 are two sets arranged side by side.
  • the two sets of cylinders 52 can be raised and lowered synchronously under the action of the lifting drive mechanism 53, maintaining the stability of the lifting and lowering and the necessary structural strength.
  • the vacuum pump 55 is located between the tops of the two cylinders 52.
  • a jacket 51 can be provided on the outer periphery of the top of each cylinder 52.
  • a first shell 56 is provided on the top of the jacket 51 and the outer periphery of the vacuum pump 55. The first shell 56 can protect the components inside and achieve the effect of noise reduction.
  • a second shell 58 is provided below the first shell 56, the lifting drive mechanism 53 is located in the second shell 58 and between the two cylinders 52, the cylinder 52 extends downward from the second shell 58, and the second shell 58 is connected to the support body 1 through a plurality of bridge arms 581. Specifically, there are four bridge arms 581, one end of which is connected to the second shell 58, and the other end is radiated outwardly to the annular portion 14 in the corresponding direction.
  • the second shell 58 is roughly the same height as the support body 1 or slightly higher than the support body 1, the lifting drive mechanism 53 and the control mainboard 57 of the survey robot 200 are provided in the second shell 58, and the vacuum pump 55 is fixed on the top surface of the second shell 58.
  • the lifting drive mechanism 53 is located between the top frame 11 and the bottom frame 12 and between the two cylinders 52, and the cylinders 52 extend downward from the bottom frame 12.
  • the control motherboard 57 of the survey robot 200 is located between the top frame 11 and the bottom frame 12.
  • the vacuum pump 55 is directly fixed on the top surface of the top frame 11.
  • the gyroscope, distance sensor, etc. carried by the survey robot 200 itself can be integrated and installed on the control motherboard 57.
  • the lifting drive mechanism 53 includes: a motor 531; a transfer mechanism 532, which is linked with the motor 531 and has two output shafts 5325, and a driving gear 533 is fixed on each output shaft;
  • the two gear rings 534 are rotatably sleeved on the outer circumference of the cylinder 52 and meshed with the corresponding driving gears 533 .
  • the inner circumference of each gear ring 534 is threadedly matched with the corresponding cylinder 52 .
  • the transfer mechanism 532 can realize the synchronous movement of the two sleeve bodies 52 driven by the same motor 531, and the transfer mechanism 532 includes: a main bevel gear 5321, fixed to the output shaft 5311 of the motor 531; two auxiliary bevel gears 5322, respectively meshing with the main bevel gear 5321, and located on both sides of the main bevel gear 5321, and each auxiliary bevel gear 5322 is fixed with an intermediate shaft 5323, and two output shafts 5325 are respectively connected to the corresponding intermediate shaft 5323 through universal joints 5324.
  • the motor 531 drives the main bevel gear 5321 to rotate, and accordingly, the two auxiliary bevel gears 5322 meshing with the main bevel gear 5321 also start to rotate, thereby driving the driving gear 533 to rotate, and the driving gear 533 drives the gear ring 534 located on the outer periphery of the cylinder 52.
  • the cylinder 52 has an external thread 521, and the gear ring 534 has an internal thread and cooperates with the external thread 521 to drive the cylinder.
  • the body 52 rises or falls relative to the support body 1, which realizes the lifting and lowering of the suction cup 54.
  • the suction cup 54 includes a base plate 545 fixedly mounted on the bottom end of the cylinder 52, and a vacuum port 541 and a pressure relief port 542 are arranged on the bottom surface of the base plate 545.
  • the vacuum pump 55 is connected to the vacuum port 541 through a vacuum pipeline 551, and a pressure relief valve 543 is installed at the pressure relief port 542; the vacuum pipeline 551 extends to the vacuum port 541 through one of the cylinders, and the pressure relief valve 543 is located at the other cylinder.
  • the vacuum pipeline 551 includes an internal pipeline 552 and an external pipeline 553, wherein the internal pipeline 552 includes two rigid tubes that are movably plugged in and sealed together, one rigid tube 5521a is connected to the vacuum port 541, and the other rigid tube 5521b extends in the cylinder 52 and then connects to the external pipeline 553 through the opening at the corresponding position of the outer sleeve 51 until it is connected to the vacuum pump 55.
  • the internal pipeline 552 is mainly used to adapt to the lifting of the cylinder 52 (i.e., the base plate 545) relative to the support body 1. Under the action of the lifting drive mechanism 53, the rigid tube 5521a connected to the vacuum port 541 moves downward relative to the other rigid tube 5521b and keeps each other sealed.
  • a hose can be used to adapt to the relative movement, the active plug-in method of the two rigid tubes in this embodiment can avoid the interference of pipeline winding and provide additional stable guidance.
  • the pressure relief valve 543 includes: a sealing sleeve 5431 fixed to the edge of the pressure relief port 542; a valve core 5432 matched with the sealing sleeve 5431; a valve stem 5433 passing through the sealing sleeve 5431 and connected to the valve core 5432, and the radial gap between the valve stem 5433 and the sealing sleeve 5431 is the pressure relief gap;
  • the elastic member 5434 acts on the valve stem 5433 to drive the valve core 5432 to seal with the sealing sleeve 5431; the electromagnetic drive assembly acts on the valve stem 5433 to drive the valve core 5432 to separate from the sealing sleeve 5431 to release pressure.
  • the end face of the sealing sleeve 5431 has an annular flange 5435. In the sealed state, the valve core 5432 and the end face of the sealing sleeve 5431 are matched and close to the flange 5435.
  • the electromagnetic drive assembly drives the valve stem 5433 to move downward. At this time, the valve core 5432 is separated from the end face of the sealing sleeve 5431, and the gas enters from the pressure relief gap. The pressure between the suction cup 54 and the working surface is restored to normal, and then the suction cup 54 can be raised to avoid interference between the suction cup 54 and the working surface when other equipment is operating.
  • a limit pad 544 is also provided on the bottom surface of the suction cup 54.
  • the position of the limit pad 544 is lower than the vacuum port 541 and the pressure relief port 542. That is, the limit pad 544 is the extreme position of the fit between the working surface and the suction cup 54, which can prevent the vacuum port 541 and the pressure relief port 542 from contacting the working surface and generating unnecessary interference and friction.
  • the suction cup 54 includes: a base plate 545, which is installed on the support body 1 in a liftable manner, and the vacuum port 541 and the pressure relief port 542 are both arranged on the bottom surface of the base plate 545; when the limit pad 544 is configured, the limit pad 544 is also arranged on the bottom surface of the base plate 545; a sealing component, including multiple sealing rings arranged inside and outside, which are used to fit and seal with the working surface, and the multiple sealing rings are located on the periphery of the vacuum port 541 and the pressure relief port 542 (when the limit pad 544 is set).
  • the multiple sealing rings and the base plate 545 surround to form a cover structure, and when it cooperates with the working surface, a vacuum cavity is formed in the cover structure.
  • the sealing assembly includes three sealing rings arranged from the inside to the outside, namely sealing ring 546a, sealing ring 546b, and sealing ring 546c, and the height of the bottom surface of each sealing ring from the working surface decreases in sequence. The outermost one contacts the working surface first, and the other two are the same.
  • the height of the outermost sealing ring 546c is 2.5-3 cm
  • the height of the middle sealing ring 546b is 1.3-1.7 cm
  • the height of the inner sealing ring 546a is 0.75-1.25 cm.
  • the width of the three sealing rings increases from the inside to the outside, and the sealing rings 546c and 546b can be made of foaming materials.
  • the bottom surface of the substrate 545 has an extension area 5452 extending to the outside of the sealing component, and other components such as the ultrasonic probe 431 can be installed in the corresponding extension area 5452.
  • the substrate 545 has a length direction, and the two cylinders 52 are arranged in sequence along the length direction; the extension area 5452 includes at least a first extension area 5453 and a second extension area 5454, and the two extension areas 5452 are respectively located on both sides of the sealing component along the length direction.
  • the ultrasonic probe 431 of the present invention can be installed on the static adsorption component 5. Specifically, the ultrasonic detection component 43 is installed In the expansion area 5452 (first expansion area 5453), the same pair of ultrasound probes 431 are slidably installed relative to the substrate 545, and a first avoidance opening 5455 is opened in the expansion area 5452. The position of the ultrasound probe 431 corresponds to the first avoidance opening 5455, and the first avoidance opening 5455 extends downward.
  • the top cover of the substrate 545 is provided with a third shell 5451.
  • the moving mechanism 432 is located in the third shell 5451 and drives the ultrasonic probe 431 to slide.
  • the spacing adjustment direction of the two ultrasonic probes 431 is the width direction of the substrate 545.
  • the supply device 435 is installed in the first shell 56 and is mounted on the top surfaces of the two outer sleeves 51.
  • the survey robot 200 also includes a cleaner 7 for cleaning calcium deposits and stains on the working surface. It is preferably installed relative to the support 1.
  • the cleaner 7 can be installed on a component that is lifted and lowered relative to the support body 1.
  • the component can be independently matched or integrated with the base plate 545 in the static adsorption assembly 5, that is, installed in the extension area 5452 (specifically the second extension area 5454) of the base plate 545.
  • the cleaner 7 includes: a cleaning motor 71, which is located in the third housing 5451 and is slidably installed relative to the base plate 545;
  • the brush head 712 is connected to the output shaft of the cleaning motor 71.
  • the extension area 5452 is provided with a second avoidance opening 5456.
  • the brush head extends downward out of the second avoidance opening 5456.
  • the sliding mechanism 72 is located in the third housing 5451 and drives the cleaning motor 71 to slide.
  • the cleaning device 7 is arranged in the third housing 5451 to make the structure of the surveying robot 200 more compact.
  • the sliding mechanism 72 includes a sliding motor 721 and a screw nut pair, and the sliding motor 721 drives the cleaning motor 71 through the screw nut pair.
  • a guide component 73 is further provided in the third housing 5451, and the cleaning motor 71 slides in cooperation with the guide component 73.
  • the guide member 73 is a cover structure, and two opposite side walls of the cover structure are provided with slide grooves 731.
  • the housing of the cleaning motor 71 is provided with a guide member 711 that matches the slide grooves 731.
  • the sliding mechanism 72 drives the cleaning motor 71 to slide back and forth along the slide grooves 731, thereby preventing the brush head 712 from shaking in other directions when working.
  • the sliding direction of the cleaning motor 71 is the width direction of the substrate 545.
  • the survey robot 200 aligns the cleaner 7 with the part to be cleaned, and then the suction cup 54 is vacuum-fitted and anchored with the working surface through the lifting drive mechanism 53, and then the cleaning motor 71 is driven to slide along the width direction of the substrate 545 through the sliding mechanism 72.
  • the brush head 712 is driven by the cleaning motor 71 and not only rotates but also reciprocates synchronously with the cleaning motor 71, for example, using a left-right movement algorithm.
  • the cleaned part achieves a better cleaning effect under the repeated brushing of the brush head 712.
  • a spring 713 is provided inside the cleaner 7, which can reduce the vibration of the brush head 712 connected to the cleaning motor 71.
  • the robot provided by the present invention When the robot provided by the present invention is used to implement the control method provided herein, if a building crack is identified, the building crack can also be cleaned and measured. Before cleaning, the vacuum adsorption component is used to anchor the work surface, and after cleaning, the anchor is released, the robot position is adjusted, and then the robot is anchored again and measured.
  • Cleaning building cracks includes: making the brush head of the cleaner close to the working surface; driving the cleaner to reciprocate; and making the brush head of the cleaner away from the working surface.
  • Measuring building cracks includes: controlling the vector rotor system to stop running, so as to prevent the vector rotor system from interfering with the operation of the ultrasonic detection component.
  • the ultrasonic detection component is used to measure building cracks at least twice, and when crack surveys are performed at different times, the spacing between the same pair of ultrasonic probes is different, and one of the times specifically includes: providing working medium to the ultrasonic probe; and controlling the ultrasonic probe to perform crack surveys.
  • the cable-carrying robot 81 can be configured to work together. On the one hand, it can carry and share the weight of the cable 18, and on the other hand, the cable-carrying robot 81 can also Equipped with information collection equipment 4.
  • a control method is also provided in one embodiment of the present invention, which is implemented in the process of operating a full-vector survey cluster system, including: constructing a work surface map; multiple robots travel in a queue, and when they reach a predetermined work position in the work surface map, they collect image information of the current work position and perform surface feature recognition, and maintain the current work position in a climbing mode during the process of collecting information data; and perform corresponding processing based on the recognition result.
  • the control method is mainly divided into the establishment of the work surface map and the inspection of the work surface.
  • the establishment of the work surface map includes: establishing a coordinate system and dividing sub-areas; obtaining a two-dimensional work surface map; obtaining a three-dimensional work surface map.
  • the inspection of the work surface includes: confirming the current position of the robot; identifying building defects and marking them on the work surface map.
  • control method for a working surface of a larger area, the control method further includes:
  • Establishing a coordinate system specifically including: the survey robot reaches the origin position P, moves to the reference point along the predetermined coordinate axis, obtains a line between the origin and the reference point, corresponds the line to the work surface map, calculates and obtains the direction of another coordinate axis, and the coordinate system formed by the two coordinate axes;
  • the sub-areas are divided, specifically comprising: dividing the working surface into a plurality of rectangular sub-areas in the coordinate system according to predetermined side lengths.
  • the position feedback between the survey robot and the server is completed through the coordinate system.
  • the X and Y coordinate systems in the working surface 210 are real physical coordinate systems
  • the coordinate systems X' and Y' in the working surface map 211 are coordinate systems mapped based on the working surface 210.
  • the origin position P is mapped to P' in the working surface map.
  • the divided sub-areas can be, for example, A1, A2, and A3 sub-areas.
  • the coordinate system needs to be established at the beginning of the survey robot's work.
  • the establishment of the coordinate system relies on the collected and spliced image information.
  • the origin is the position of the survey robot at the beginning of the work.
  • the reference point and the origin are both on the spliced image, so the coordinate system can be established to facilitate the command interaction between the survey robot and the server.
  • the division of the working sub-areas can be, for example, based on the maximum length of the cables of adjacent robots, or based on the working limit path of the robots. When multiple robots are used, each robot moves synchronously while maintaining a constant relative distance, thereby improving work efficiency.
  • the sub-areas can be, for example, squares, and the side length can be, for example, 10 meters to 200 meters, for example, 50 meters.
  • the user can retrieve the data units of the sub-areas one by one to improve work efficiency.
  • the survey robot performs path planning before work, and the path planning is performed for each sub-area. By dividing the sub-areas separately, the path planning process is optimized.
  • the division of sub-areas can be based on physical identification, or the server can divide the work surface that has obtained the coordinate system.
  • the clarity (or the size of the data) can be used for display from low to high:
  • the overall working surface map which has the lowest definition, can also be obtained by taking pictures by the robot in flight mode; the working surface map of a certain sub-area; the working surface map near the specific coordinates after the specific coordinates are specified.
  • the work surface map is obtained by stitching together the image information collected from multiple work positions during the historical work process, specifically including: traversing all areas of the work surface, stitching the obtained image information, and obtaining a two-dimensional work surface map. Traversing all areas of the work surface includes traversing one or all of the divided sub-areas.
  • the image information is, for example, picture 212 shown in FIG37c, where the dotted line represents the robot's travel path.
  • the image information is acquired by using an image acquisition component.
  • the survey robot transfers between multiple working positions, and when it reaches a predetermined working position, it uses an information acquisition device to collect information data of the working surface.
  • the obtained image information is stitched together to obtain a two-dimensional work surface map, specifically including: using an image texture algorithm to locate surface features in the image information; when local areas of the images to be stitched have the same surface features, based on the The images to be stitched are registered and stitched based on the same surface features.
  • the texture of building defects is distinctive and significant, just like human fingerprints, no two building defects have the same texture.
  • the server can recognize and mark building defects (cracks, potholes, roughness, protrusions, etc.) through image information, and instruct the robot to measure and provide feedback.
  • High-precision image stitching can also be performed by overlapping the same texture of the image.
  • the overlap of image information at adjacent positions can be set according to the information collection equipment and the step size of the survey robot. For example, the overlap used for image stitching can be more than 20%.
  • the detection process also includes using the autonomous judgment algorithm in the server to identify defects on the work surface, using fill lights to reduce image noise, and performing surface feature analysis based on the position of the fill lights to improve detection accuracy.
  • control method further includes obtaining a three-dimensional working surface map:
  • the laser scanner included in the information acquisition equipment is used to collect and obtain three-dimensional morphological data and perform three-dimensional modeling to obtain a three-dimensional model;
  • the two-dimensional working surface map is fitted to the three-dimensional model to obtain the three-dimensional working surface map.
  • the work surface map includes two-dimensional or three-dimensional work surface maps, both of which can be used to confirm the current position.
  • the three-dimensional work surface map is the three-dimensional terrain data, which has better visualization effect and can reflect the height change, providing data guarantee for the survey robot to cross obstacles, and also assisting in the adjustment of obstacle crossing and flight status mode.
  • the surface features in the image information can be obtained with high detection accuracy and fast calculation speed; image stitching can correct and dedistort the deformed image by means of correction, brightness unification, etc.; the two-dimensional work surface map is fitted to the three-dimensional model, and adaptive rendering can be performed.
  • the server can also generate data reports based on the captured surface feature information.
  • control method further includes determining the current position of the robot:
  • Transfer between multiple work positions according to the planned path compare the image information collected from the current work position with the work surface map to obtain a comparison result.
  • the work surface map is obtained by splicing the image information collected from multiple work positions during the historical work process;
  • the current working position is confirmed based on the comparison results.
  • the surface features are matched with the working surface map to obtain the position coordinates of the surface features relative to the working surface map, and the position coordinates correspond to the current position of the survey robot.
  • the work surface map is not limited to a specific plane, but refers to a spatial map composed of all the work positions of the survey robot.
  • the image information of the current work position and the work surface map (including the image information that has been spliced) at least partially overlap, that is, the image information of the current work position can be used to locate relative to the work surface map, which facilitates the archiving and splicing of the image information acquisition data.
  • the surface features of the image information include building defects, which can be used for feature matching.
  • physical markers can be set on the work surface in advance. When the survey robot reaches the location of the physical marker or detects a building defect, the robot's current location is confirmed by matching the corresponding pre-stored images in the server library. That is, the robot completes its own positioning.
  • the physical identifier can be, for example, a QR code, and the server image library stores the relevant information of the QR code.
  • the physical identifier can also be pre-marked according to the work area, and the work area can be divided after identification.
  • a wireless field of view monitoring station can also be set up on the work surface to monitor the trajectory and position of the robot, and transmit data to the robot in real time to correct the direction of movement.
  • control method further includes:
  • the building crack is marked on the work surface map.
  • coordinate identification and simulation display can be included.
  • the recognition of surface features can be carried out using an autonomous learning algorithm, such as a neural network model.
  • the autonomous learning algorithm can be continuously optimized in the subsequent process to improve the recognition accuracy.
  • the image information with building cracks can be used as a new sample to participate in the update of the autonomous learning algorithm; and the constructed building crack feature database can be updated.
  • control method also includes a rescue control method, a building structure crossing method, a queue adjustment method, and a well detection method.
  • the robot includes a survey robot at the far end of the cable and a negative cable robot connected to the survey robot by a cable. Both the survey robot and the negative cable robot can adopt the corresponding robots provided in the above embodiments.
  • the present invention also provides a rescue control method based on a robot cluster system.
  • the robot cluster system includes multiple robots and cables operating on a work surface. All robots are powered and communicated through the cables and are connected to the cables in sequence according to the extension direction of the cables.
  • the rescue control method includes:
  • Step S911 the active robot is anchored on the working surface by vacuum adsorption
  • Step S912 changing the length of the cable between the active robot and the passive robot so that the two robots are close to each other;
  • Step S913 controlling the active robot to drag the passive robot.
  • the present invention further provides a rescue control method based on a robot cluster system, which is implemented using the robot cluster system of this invention.
  • a rescue control method includes:
  • Step S921 the first active robot is anchored on the working surface by vacuum adsorption
  • Step S922 changing the length of the cable between the second active robot and the passive robot so that the second active robot and the passive robot are close to each other;
  • Step S923 the second active robot is anchored on the working surface by vacuum adsorption
  • Step S924 the first active robot releases the anchoring between the first active robot and the working surface
  • Step S925 changing the length of the cable between the first active robot and the passive robot so that the first active robot and the passive robot are close to each other, and then the passive robot is close to the first active robot and the second active robot at the same time;
  • Step S926, controlling the first active robot and the second active robot to drag the passive robot.
  • step S922 and step S925 it can be understood that the first active robot and the second active robot move closer to the passive robot.
  • each robot communicates with the server through cables to achieve interactive control.
  • the working status of the robot is comprehensively judged.
  • the judgment result is abnormal, it is determined that the robot may have a fault, that is, it is used as a passive robot to be rescued.
  • Adjacent robots refer to being adjacent through cable connection rather than spatial distance. After a robot fails, it can also perform a self-test of its own software and hardware. If the self-test is qualified, the rescue control method will be cancelled.
  • step S912 step S922, and step S925, changing the cable length between the passive robot and its adjacent robots may be achieved through a cable rack mechanism.
  • a cable rack mechanism for specific implementation methods, please refer to the relevant embodiments of the cable rack mechanism in this article.
  • the passive robot and the active robot are not limited to the type of robot, as long as they can be connected to each other by cables.
  • the passive robot is connected to the two adjacent robots by cables, and the passive robot is a cable-backed robot, but the types of the first active robot and the second active robot are not limited.
  • the passive robot is dragged away from the current scene and reaches a designated area without the risk of falling (for example, returning to the origin), which can be considered as a rescue.
  • an embodiment of the present invention also provides a method for crossing a building structure based on a robot cluster system.
  • the robot cluster system includes at least three robots operating on a working surface and cables. All robots are powered and communicated through the cables and are connected to the cables in sequence according to the extension direction of the cables. According to the extension direction of the cables, the three consecutive robots are the head robot, the middle robot and the end robot in sequence.
  • the method Before implementing the building structure crossing method, the method also includes: splicing image information collected from multiple working positions during historical work to obtain a working surface map and obtain the position coordinates of the building structure relative to the working surface.
  • splicing image information collected from multiple working positions during historical work to obtain a working surface map and obtain the position coordinates of the building structure relative to the working surface.
  • the building structure crossing method includes:
  • Step S1 the head end robot 204 crosses to the opposite side of the building structure
  • Step S2 the head end robot 204 and the end end robot 206 are anchored on the work surface by vacuum adsorption, and the cable extending between the two is tightened;
  • Step S3 synchronously changing the cable lengths between the three robots, so that the middle robot 205 gradually approaches the head robot and correspondingly gradually moves away from the end robot until it moves to the opposite side of the building structure in a suspended manner.
  • the head robot can fly, avoid walking, or other methods to cross to the opposite side of the building structure. "Moving in a suspended manner" means that the robot does not rely on the vector power provided by the robot itself, but relies on the cable retraction and release control to achieve position adjustment relative to the head robot and the end robot.
  • the robot cluster system used in this embodiment can share the cable pressure of each other, coordinate work with each other, and improve the safety of use.
  • the interference caused by the cable to it is relatively small, that is, part of the weight of the cable is shared, which will not affect the flight of the robot at the head end.
  • the robot cluster system is used to fly simultaneously and fly synchronously across the building structure, there will be too much interference, the control algorithm is complex, and damage caused by environmental risks cannot be ruled out. Multiple robots are damaged at the same time, and rescue is difficult.
  • the building structure crossing method can safely solve the problem of building structure crossing.
  • the building structure crossing method also includes step S4: looping steps S1 to S3 until all robots in the robot cluster system to cross the building structure move to the opposite side of the building structure, wherein the middle robot of this cycle serves as the head robot of the next cycle.
  • the three consecutive robots can select the survey robot or the cable robot according to the needs, for example
  • the middle robot should be selected as a negative cable robot.
  • step S3 the cable lengths between the three robots are changed synchronously, specifically including: driving the middle robot toward the winding wheel of the first-end robot to shorten the cable length between the middle robot and the first-end robot; driving the middle robot toward the winding wheel of the last-end robot to extend the cable length between the middle robot and the last-end robot.
  • step S3 when the intermediate robot passes through the building structure, it also includes: controlling the winding motor to stop driving the two winding wheels, controlling the intermediate robot to stop moving, and using the image acquisition component and/or the ultrasonic detection component to collect relevant information data.
  • the building structure can be, for example, a building ditch, or between two buildings with a certain span, or a building crack, etc.
  • the intermediate robot staying in the middle may facilitate the collection of scene information.
  • the position setting, function realization, and specific driving method of the winding wheel can be referred to the relevant embodiments of the cable rack mechanism in this article.
  • a well detection method is also provided, wherein the robot cluster system includes multiple robots and cables operating on a working surface, all robots are powered and communicated through the cables, and are sequentially connected to the cables in the direction in which the cables extend; in the direction in which the cables extend, three consecutive robots are sequentially the head robot, the middle robot, and the end robot.
  • the detection method includes:
  • Step S931 the head end robot and the end end robot arrive in sequence and are anchored to the well wall by vacuum adsorption;
  • Step S932 the intermediate robot moves into the well hole, is suspended in the well hole by the action of the cable, and collects well hole related information data;
  • Step S933 utilizing the cable rack mechanism of the head-end robot and the end-end robot to retract and release the cables, and adjust the depth of the middle robot in the wellbore.
  • the robot As the shaft is a signal shielding scene, the robot must be controlled by wire. However, the situation inside the shaft is unclear, which poses a great risk to high-value electromechanical items such as robots.
  • the operation of the vector rotor system can be stopped during the movement of the intermediate robot.
  • the shaft is detected by the intermediate robot in the robot cluster system, and the detection can be completed by retracting and releasing the cable to extend and shorten the depth of the intermediate robot in the shaft.
  • the collection of shaft-related information data can be completed by the information collection equipment provided in the relevant embodiments of this article.
  • steps in the various embodiments of the present invention are described in sequence, these steps are not necessarily performed in sequence in the order described. Unless there is a clear explanation in this article, the execution of these steps does not have a strict order restriction, and these steps can be performed in other orders. Moreover, at least a portion of the steps may include a plurality of sub-steps or a plurality of stages, and these sub-steps or stages are not necessarily performed at the same time, but can be performed at different times, and the execution order of these sub-steps or stages is not necessarily performed in sequence, but can be performed in turn or alternately with at least a portion of other steps or sub-steps or stages of other steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种全矢量勘测集群系统及其作业的控制方法。全矢量勘测集群系统(8)包括多台机器人,多台机器人中包括勘测机器人(200)和至少一个负缆机器人(81),勘测机器人(200)和负缆机器人(81)均包括:支撑体(1),具有相对的顶侧(100)和底侧(101);矢量旋翼系统,包括至少两套旋翼组件(2),各旋翼组件(2)安装于支撑体(1)并向支撑体(1)提供矢量动力;行走轮(3),布置在支撑体(1)的底侧(101),用于与工作面行走配合;勘测机器人(200)还包括安装于支撑体(1)的信息采集设备(4),用于采集工作面相关的信息数据;负缆机器人(81)还包括支座(821),勘测机器人(200)和负缆机器人(81)在工作状态下均经由负载于支座(821)的线缆(18)供能以及通信。该全矢量勘测集群系统(8)能够执行地面自然建筑或人工建筑的表面缺陷检测作业。

Description

全矢量勘测集群系统及其控制方法 技术领域
本发明涉及机器人技术领域,特别是涉及一种全矢量勘测集群系统及其控制方法。
背景技术
飞行无人机技术在当代持续发展,并广泛应用于空中检测、现场侦查、地面建筑探测、特种作业等。常规的飞行无人机能够对建筑表面进行缺陷检测,如公开号为CN114379777B的专利文献公开了一种倾转旋翼无人机结构及其工作方法,这种多旋翼无人机通过倾转旋翼的矢量控制,能够增强无人机适应能力和移动控制的灵活性。
但是,当面临工作区域较大的情形时,无人机携带的电源无法保证长时间续航,而且受载荷能力的限制,其作业和通信能力都难以满足需求。
不仅如此,飞行无人机采用单机方式作业效率很低,在初期测绘或后续的巡检过程中,单机出动架次过多增加了后勤保障的难度。进一步的,即使多架无人机同时工作,一般也是各自规划后独立作业,多架无人机作业的同步性和协调性都不高。
发明内容
本发明提供了一种全矢量勘测集群系统及其控制方法,能够在特殊场景下实施侦查和勘测。
本发明全矢量勘测集群系统,包括多台机器人,其特征在于,所述多台机器人中包括勘测机器人和至少一个负缆机器人,所述勘测机器人和负缆机器人均包括:
支撑体;
矢量旋翼系统,所述矢量旋翼系统包括至少两套旋翼组件,多套旋翼组件均安装于支撑体上,并用于为支撑体提供矢量动力;
行走轮,所述行走轮设置在支撑体的下方,所述行走轮用于在工作面上行走;
信息采集设备,所述信息采集设备安装于支撑体上,所述信息采集设备用于与采集工作面相关的信息数据;
所述负缆机器人还包括缆架机构,所述缆架机构设置在支撑体上,所述勘测机器人和负缆机器人在工作状态下均经由负载于缆架机构的线缆供能以及通信。
可选的,所述信息采集设备包括激光测绘组件、图像采集组件、超声探测组件或它们的组合;
所述激光测绘组件包括:
云台,所述云台设置于支撑体上;
激光扫描仪,所述激光扫描仪安装于云台上,所述激光扫描仪用于测绘三维空间,获取工作面的三维形态数据;
所述图像采集组件包括:
摄像头,所述摄像头设置于支撑体上,并位于相邻的两套旋翼组件之间,所述摄像头拍摄采集工作面的图像,所述摄像头拍摄采集的图像用于构建二维形式的工作面地图;
补光灯,所述补光灯设置于支撑体上,所述补光灯用以向工作面投射光线;
所述超声探测组件包括:
超声探头,所述超声探头设置在支撑体上,所述超声探头成对布置,同对超声探头之间的间距可调;
移动机构,所述移动机构与超声探头连接,所述移动机构带动同对超声探头之间进行 相对运动;
介质输出头,所述介质输出头安装于支撑体上,所述介质输出头通过介质管路与安装在支撑体上的供应装置连通,所述介质输出头用于向超声探头提供工作介质。
可选的,所述缆架机构包括:
支座,所述支座固定于支撑体上,所述支座中的部分结构设置为管状结构,所述管状结构内部作为导向槽,所述导向槽内活动穿设所述线缆;
夹线轮,所述夹线轮成对布置,所述夹线轮安装于支座上,所述夹线轮用于夹持并驱动线缆沿导向槽运动;
夹线电机,所述夹线电机安装于支座上,所述夹线电机与夹线轮联动以改变负缆机器人与相邻机器人之间的线缆长度。
可选的,所述管状结构的端部设有连接套,连接套上配置有压力传感器,所述线缆由外部穿入连接套的一侧为入口侧,连接套上的内壁在入口侧沿周向均匀间隔布置有多个安装耳片,所述压力传感器对应固定于安装耳片的内侧。
可选的,所述支座上设有摆动架,同对夹线轮中,一个为从动轮且转动安装于支座上,另一个为主动轮且转动安装于摆动架上;
所述摆动架与支座之间设有弹性件以限制摆动架在第一状态或者第二状态;
所述第一状态:弹性件驱使主动轮向从动轮靠近并夹持线缆;
所述第二状态:主动轮远离从动轮,摆动架与支座抵靠限位。
可选的,所述负缆机器人还包括:
两个卷线轮,所述两个卷线轮分别安装于支撑体上,经由管状结构伸入的线缆绕置于对应的卷线轮中;
两个绕线电机,所述两个绕线电机独立驱动对应的一个卷线轮。
本发明还提供一种.基于全矢量勘测集群系统作业的控制方法,其特征在于,所述控制方法采用上述中任一所述的全矢量勘测集群系统,所述控制方法包括:
构建工作面地图;
多台机器人以队列方式行进,在到达工作面地图中预定的工作位置时,通过信息采集设备采集当前工作位置的图像信息并进行表面特征识别,且在采集信息数据过程中机器人以攀爬模式保持于当前的工作位置;
依据识别结果进行相应处理。
可选的,其特征在于,所述构建工作面地图包括:
机器人到达指定的原点位置,沿预定坐标轴指向移动至参照点,获得原点和参照点之间的连线,将连线对应至工作面地图,运算获得另一个坐标轴的指向以及两坐标轴构成的坐标系,构建工作面以及工作面地图的坐标系;
按预定边长在坐标系内将工作面划分为若干个矩形的子区域,并规划在子区域内的运动路径;
机器人队列沿所述运动路径在多个工作位置之间转移,在到达预定的工作位置时利用信息采集设备采集工作面的图像信息数据和三维形态数据;
在遍历工作面时,通过获得的三维形态数据进行三维建模,获得三维模型;
遍历工作面后,将获得的图像信息进行拼接,获得二维形式的工作面地图;
最后将二维形式的工作面地图拟合至三维模型,获得三维形式的工作面地图。
可选的,所述控制方法包括工作面的巡检,工作面的巡检包括:机器人对当前位置的确认;机器人将建筑缺陷识别并标注于工作面地图。
可选的,多台机器人以队列方式行进时,负缆机器人采集线缆相对缆架机构的压力信号,并根据压力信号相应的调整控制缆架机构收放线工作和/或旋翼组件提供的矢量动力,从而调整机器人行进速度或朝向。
本发明全矢量勘测集群系统及其作业的控制方法至少具有以下技术效果:
本发明全矢量勘测集群系统能够执行地面建筑探测、特种作业、自然建筑或人工建筑的表面缺陷检测作业,续航和抗干扰能力强,能够胜任大面积、高磁场、无信号等复杂的自然环境。
附图说明
图1为全矢量勘测集群系统的结构示意图;
图2为图1中负缆机器人打开第一壳体的结构示意图;
图3为图2中B的放大图;
图4为摆动架处于第二状态时的结构示意图;
图5为图1中负缆机器人的剖视图;
图6为本发明提供的采用四旋翼矢量驱动的勘测机器人的结构示意图;
图7为图6中支撑体的结构示意图;
图8为本发明提供的采用双旋翼矢量驱动的勘测机器人的结构示意图;
图9为图8中支撑体的结构示意图;
图10~图11为旋翼组件的结构示意图;
图12~图13为图像采集组件的结构示意图;
图14为激光测绘组件的结构示意图;
图15为超声探测组件中介质输出头处于第二位置的结构示意图;
图16为图15的剖视图;
图17为超声探测组件中介质输出头处于第一位置的结构示意图;
图18为供应装置的爆炸图;
图19为行走轮的结构示意图;
图20为图19中行走轮的剖视图;
图21为静态吸附组件的结构示意图;
图22为图17中静态吸附组件打开第一壳体的结构示意图;
图23为静态吸附组件的剖视图;
图24为第二壳体与支撑体配合的结构示意图;
图25为升降驱动机构的结构示意图;
图26为图25中分动机构的结构示意图;
图27为勘测机器人省略支撑体的剖视图;
图28为图27中A的放大图;
图29为泄压阀的爆炸图;
图30为吸盘的结构示意图;
图31为清洁器处于第三壳体内的结构示意图;
图32~图33为清洁器的结构示意图;
图34为勘测机器人省略支撑体的剖视图;
图35为图34中C的放大图;
图36为本发明中基于全矢量勘测集群系统作业控制方法的流程示意图;
图37a~37c为本发明中控制方法的实施过程示意图;
图38为本发明中基于机器人集群系统的救援控制方法的流程图一;
图39为本发明中基于机器人集群系统的救援控制方法的流程图二;
图40~图42为实施机器人集群系统救援控制方法的实施过程示意图;
图43为本发明中基于机器人集群系统的建筑结构跨越方法的流程图;
图44~图46为实施机器人集群系统建筑结构跨越方法的实施过程示意图;
图47为本发明中井洞探测方法的流程图;
图中附图标记说明如下:
100、顶侧;101、底侧;200、勘测机器人;201、第一主动机器人;202、第二主动机器人;203、被动机器人;204、首端机器人;205、中间机器人;206、末端机器人;210、工作面;211、工作面地图;212、图片;1、支撑体;11、顶框;12、底框;13、立柱;14、环形部;15、轮座;16、加强杆;161、边缘杆;162、内侧杆;17、连接套;171、入口侧;172、安装耳片;18、线缆;
2、旋翼组件;21、第一翻转架;22、第一舵机;23、第二翻转架;24、第二舵机;25、主电机;26、桨叶;28、第一枢轴;29、第二枢轴;
3、行走轮;31、减震机构;
4、信息采集设备;41、图像采集组件;411、摄像头;412、第一摄像头;413、第二摄像头;414、补光灯;415、环形件;416、辐条;417、照明灯;42、激光测绘组件;421、云台;422、激光扫描仪;423、支撑臂;424、减震部件;43、超声探测组件;431、超声探头;4311、弹簧;432、移动机构;433、介质输出头;4331、输出孔;434、翻转机构;4341、翻转电机;4342、活动架;4343、显微摄像头;435、供应装置;4351、料筒;4352、出料孔;4353、推料活塞;4354、电动推杆;436、介质管路;
5、静态吸附组件;51、外套;52、筒体;521、外螺纹;53、升降驱动机构;531、电机;5311、输出轴;532、分动机构;5321、主伞齿轮;5322、副伞齿轮;5323、中间轴;5324、万向节;5325、输出轴;533、主动齿轮;534、齿圈;535、轮齿;54、吸盘;541、真空口;542、泄压口;543、泄压阀;5431、密封套;5432、阀芯;5433、阀杆;5434、弹性件;5435、凸缘;544、限位垫;545、基板;5451、第三壳体;5452、扩展区;5453、第一扩展区;5454、第二扩展区;5455、第一避让口;5456、第二避让口;546a、密封圈;546b、密封圈;546c、密封圈;55、真空泵;551、真空管路;552、内部管路;5521a、刚性管;5521b、刚性管;553、外部管路;56、第一壳体;57、控制主板;58、第二壳体;581、桥臂;
7、清洁器;71、清洁电机;711、导向件;712、刷头;713、弹簧;72、滑动机构;721、滑动电机;73、导向部件;731、滑槽;
8、全矢量勘测集群系统;81、负缆机器人;82、缆架机构;821、支座;8211、导向槽;8212、避让口;8213、摆动架;8214、管状结构;822、夹线轮;8221、主动轮;8222、从动轮;823、夹线电机;824、拉簧;825、外轮齿;826、盘绕段;831、卷线轮;834、绕线电机;84、放线机构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为与另一个组件“连接”时,它可以直接与另一个组件连接或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参考图1~图5,本发明提供一种全矢量勘测集群系统,包括勘测机器人200和至少一个负缆机器人81,勘测机器人200和负缆机器人81均包括:
支撑体1,具有相对的顶侧100和底侧101;矢量旋翼系统,包括至少两套旋翼组件2,各旋翼组件2安装于支撑体1并向支撑体1提供矢量动力;行走轮3,布置在支撑体1的底侧101,用于与工作面行走配合;勘测机器人200还包括信息采集设备4,信息采集设备4安装于支撑体1,用于采集工作面相关的信息数据;负缆机器人81还包括缆架机构82,勘测机器人200在工作状态下经由负载于缆架机构82的线缆18供能以及通信。
勘测机器人200安装有信息采集设备4,而负缆机器人81可根据需求选择是否安装信息采集设备4,各负缆机器人81需要背负线缆18,因此均配置有缆架机构82。
缆架机构82包括:支座821,固定于支撑体1,支座821的至少一部分为管状结构8214且内部作为导向槽8211,线缆18活动的穿引于导向槽8211内;夹线轮822,安装于支座821、夹持并驱动线缆18沿导向槽8211运动;夹线电机823,安装于支座821、与夹线轮822联动。
夹线电机823工作时,驱动夹线轮822运转,此时线缆18在夹线轮822的作用下沿导向槽8211运动,本文中,配置有压力传感的连接套17对接于所述管状结构8214的端头,或所述管状结构8214的端部兼做所述连接套17,在本实施例中,每个负缆机器人81的连接套17的数量为2个。
在本实施例中,夹线轮822成对布置,且至少一者为与所述夹线电机823联动的主动轮8221。为了便于夹持线缆18,管状结构的侧壁开设有径向贯通的避让口8212,同对夹线轮822通过对应侧的避让口8212夹持线缆18。
具体的,支座821上设有摆动架8213,同对夹线轮822中,一者为从动轮8222且转动安装于支座821;另一者为主动轮8221且转动安装于摆动架8213;摆动架8213与支座821之间设有弹性件,驱使主动轮8221向从动轮8222靠近并夹持线缆18,即摆动架8213处在第一状态(即F1位置);摆动架8213还具有第二状态(即F2位置),主动轮8221远离从动轮8222,摆动架8213与支座821抵靠限位。
弹性件为拉簧824,拉簧824的两端分别连接至摆动架8213和支座821,拉簧824采用过死点的方式将摆动架8213限制在第二状态。摆动架8213可根据实际需求进行状态变化。
在本实施例中,夹线电机823与主动轮8221之间采用齿轮啮合方式传动。管状结构的两端分别延伸至支撑体1的两相对侧,为了能够单独地控制机器人每侧的线缆18长度,管状结构的两端分别配置有夹线轮822和夹线电机823。更进一步的,管状结构8214的中部设有开放区或半开放区,线缆18的其中一段由该部位延伸出导向槽8211,且延伸出的部分为盘绕段826,为了能更好将线缆18进行盘绕,负缆机器人81还包括:
两个卷线轮831,分别安装于支撑体1,由管状结构8214两端伸入的线缆18分别绕置于其中一个卷线轮831;两个绕线电机834,独立驱动对应的一个卷线轮831,能够将负缆机器人81的两侧线缆18分别作适应性调整,使其集群系统更加灵活,避免了只能同时调节的局限性。其中,绕线电机834与卷线轮831之间可采用常规的齿轮啮合方式传动。
为了提高集成度,两个卷线轮831也可以封装至第一壳体56内,由于静态吸附组件5中的外套51顶部也处在第一壳体56内,本实施例还可以将两个卷线轮831设置为筒状结构,且转动的套设于对应的外套51上,筒状结构的顶缘外有外轮齿825,与绕线电机834之间采用齿轮啮合方式传动。管状结构8214端部伸入的线缆18绕过对应的卷线轮831后与负缆机器人81中的用电部件相连,形成用电回路。
在一实施例中,串联的三个负缆机器人,穿越较大跨度的建筑结构时,两端的负缆机器人锚定至工作面,居中负缆机器人的两个卷线轮831同步运动,一者相对于所在负缆机器人收线,另一者相对于所在负缆机器人放线,可使得居中负缆机器人沿着线缆跨越建筑结构。相应的,勘测机器人200也可以配置缆架机构82以及卷线轮831和绕线电机834,若其居于队列头端,可仅配置一套卷线轮831和绕线电机834。
勘测机器人200和负缆机器人81在工作状态下均经采用有线方式供能以及通信。结合本文,可检测线缆18松弛或弯折的连接套17安装在负缆机器人81的缆架机构82上,或作为缆架机构82的一部分(可视为间接的安装于支撑体1)。线缆18具有一定的自重,而勘测机器人200只能负载有限的线缆18重量,当工作面较远时,负缆机器人81能够较好地分担线缆18自重,提高整体的勘测范围,当然,负缆机器人81的数量可根据需求自行设定。在本实施例中,勘测机器人200和负缆机器人81可分别采用四旋翼矢量驱动或两旋翼矢量驱动。
全矢量勘测集群系统8(也简称集群系统)还包括放线机构84,线缆18一端与勘测机器人200连接,另一端与放线机构84连接,负缆机器人81通过线缆18依次串联于勘测机器人200与放线机构84之间。放线机构84可自动收放线缆18,就放线机构84本身而言可采用现有技术实现线缆18的自动收放。
本发明一实施例中还提供一种基于机器人集群系统的队列调整方法,机器人集群系统包括作业于工作面的多台机器人以及线缆,所有的机器人均通过线缆供能和通信、并按照线缆的延伸方向依次连接于线缆;各机器人均固定有连接套,线缆由机器人外部穿入连接套后与所在机器人内相应的电路部件相连,连接套中,线缆由外部穿入的一侧为入口侧,连接套的内壁设有配置在入口侧的压力传感器。
队列调整方法可实施于各类场景实现协同工作。在廊道、空间洞、地下溶洞等场景中,机器人也可以设置有探照灯,通过服务器协调各机器人的空间位置和朝向,对正在工作的机器人指向补光,以保证工作面相关信息数据的采集。
在一个实施例中,其中一部分机器人为负缆机器人且配置有缆架机构,缆架机构针对线缆实施收线或放线,调整方法包括各负缆机器人采集来自压力传感器的信号,并根据传 感器的信号相应的调整控制缆架机构和/或旋翼组件。旋翼组件、缆架机构、连接套和压力传感器的设置方式和数量均可参见本文关于缆架机构的相关实施例。例如在相邻两个机器人的线缆变绷直、放松或弯曲时,压力传感器可提供检测信号,适当调整机器人行进速度或朝向。
在一个实施例中,调整方法包括各机器人采集来自压力传感器的信号,并根据传感器的信号相应的调整自身的移动速度。进一步地,沿线缆的延伸方向,处在当前机器人入口侧的另一机器人为相邻机器人,调整自身的移动速度时包括:压力传感器的信号大于第一设定值时,降低向相邻机器人的移动速度;压力传感器的信号小于第二设定值时,提高向相邻机器人的移动速度。
可以理解,如本文实施例中所提及,压力传感器能够检测线缆的弯折方向。在线缆周向排布多个压力传感器时,可感知线缆的弯折方向,当检测信号大于第三设定值时,即认为线缆在某个方向的弯折程度太大并产生不必要的牵拉,此时可以降低两机器人的相对移动速度或调整两机器人的朝向,使队列整体行进状态均衡,减少线缆对彼此的牵拉。
连接套的内壁还可以在入口侧配置霍尔传感器,实现对缆架机构收放线速度的准确控制,使机器人的移动速度和缆架机构的收放线速度相匹配。
针对构成全矢量勘测集群系统的机器人类型,本发明提供一种矢量驱动的勘测机器人200,包括:支撑体1,具有相对的顶侧100和底侧101;矢量旋翼系统,包括至少两套旋翼组件2,各旋翼组件2安装于所述支撑体1并向支撑体1提供矢量动力;
行走轮3,布置在所述支撑体1的底侧101,用于与工作面行走配合;信息采集设备4,安装于所述支撑体1,用于采集工作面相关的信息数据。
针对涵洞、水库大坝等野外作业场所,尤其是涉及立面作业、且工作面可能存在较大建筑缺陷的情况,传统的无人机无论是续航还是采集信息时空间姿态的稳定性都无法满足要求,尽管一些现有技术披露了飞行机构结合行走机构的技术,但其沿工作面移动的动力主要来自行走机构,不仅装置复杂且行走机构的灵活性受限,本发明中勘测机器人200沿工作面移动的动力来自于矢量旋翼系统,反而简化了控制方式以及行走机构的硬件需求,就提供矢量动力本身而言,可以通过旋翼组件2自身的姿态以及多套之间的相互配合实现,在控制上也可以应用常规技术。
本发明中的勘测机器人200,还可以多台结合使用,组成机器人队列或集群,针对延伸几公里以上的作业面实施协同作业,在集群中,至少一台甚至所有的机器人配置信息采集设备4,该机器人亦称为勘测机器人200,一些机器人也可能并不搭载信息采集设备4,仅用于随行辅助等,本文中可统称为机器人。为了保护重要的建筑设置,有可能存在主动的电磁防护,或存在大型设备的电磁干扰,因此传统的基于无线方式的机器人在信号传输过程中会收到较大干扰、并不适用。
作为优选,本发明的勘测机器人200采用有线方式供能以及通信。有线方式供能既减少机器人自带电源的载荷,又可以长时间续航,通信时,无论是控制指令或信息数据的回传都可以保证信号质量和速度,特别是对于高磁场、无信号、侧风等级高等复杂环境能够不受环境影响。
本发明中关于工作面相关的信息数据,即可以包括工作面本身的二维图像,也可以包括三维地形数据,通过超声采集内部构造的信息,以及现场气候、光照条件等等,就信息采集方式本身采用现有技术中相应的设备,当然信息采集设备4具体的搭载方式和结构, 在下文的实施例也提供了改进的方式。
本发明中,勘测机器人200可与远程的服务器构成勘测系统,大量数据的存储、比较消耗算力的数据处理都可以由服务器完成,以及并由服务器向机器人发送相应指令,在一些场景中,还可以配置现场手持终端与机器人相连,并实时发送指令。本发明中支撑体1的顶侧100和底侧101为相对概念,例如在机器人沿工作面行走时,朝向工作面的一侧为底侧101,另一侧为顶侧100。
参考图6~图9,支撑体1为框架结构,框架结构整体上为扁平构型,厚度方向的两侧分别为顶侧100和底侧101。框架结构存在大量的镂空区可更好的适应本发明的应用场景,在保证结构强度的前提下尽可能的减重,扁平构型可提高抗风以及抗倾覆性能。
框架结构包括间隔叠置的且均为片状的顶框11和底框12,以及固定在顶框11和底框12之间的多个加强件,顶框11和底框12两者形状相互匹配,且均包括多个环形部14以及多个轮座15,其中各套旋翼组件2位于对应的环形部14内,轮座15相对于邻近的环形部14外凸设置,行走轮3为多个分别安装于对应的轮座15上。考虑到简化整体结构的问题,顶框11和底框12分别为一体结构,加强件为间隔布置的多根立柱13,各环形部14直接相连或通过呈条状加强杆16相连。
本发明的框架结构采用碳纤维材质,具有较轻的重量和相对较高的强度,使得勘测机器人200工作时更加灵活。在本实施例中,顶框11和底框12之间的距离为2~6cm,顶框11和底框12的单片厚度为2~5mm。
为了配合有线方式,支撑体1的一侧安装有连接套17,线缆18由外部穿入连接套17后与所在勘测机器人200内相应的电路部件相连。线缆18与连接套17之间相对固定,可采用常规的箍紧、夹持或粘合等手段。
作为优选,连接套17中,线缆18由外部穿入的一侧为入口侧171,连接套17的内壁设有配置在入口侧171的压力传感器,检测线缆18与连接套17内壁之间的作用力。该作用力可以指示线缆18相对的松弛、绷紧状态,或线缆18在连接套17位置的转折朝向等信息,这些信息可以用来参与对机器人的控制。
为了识别线缆18相对于连接套17的弯折方向,连接套17的入口侧171沿周向包括均匀的间隔布置有多个(例如4个~8个)安装耳片172,各压力传感器固定在各安装耳片172的内侧。这样各个压力传感器的相对数值可以识别线缆18的松弛与否以及弯折方向。例如线缆18倾向于被绷直时,适当调整机器人行进速度,以避免线缆18受到额外的牵拉力。
关于旋翼组件2的数量可以按照其功率以及勘测机器人200的负载相应配置,考虑到整体布局的合理性并且兼顾操控,优选四套,相应的,框架结构中具有四个环形部14,分布于矩形区域(四个环形部14连接围成的区域)的四角,加强杆16包括:边缘杆161,环布于矩形区域的四周;内侧杆162,将处在矩形区域同侧的两环形部14彼此相连。轮座15为四个,外凸于矩形区域的四角并与所在部位的环形部14相连。
作为优选的简化并兼顾搭载设备的总量部分,旋翼组件2还可以采用两套。环形部14为两个且相互邻近呈8字形,旋翼组件2相应的为两套,轮座15为四个,成对的布置于相应环形部14的相对侧。具体的,两环形部14中心连线为参照线,每一环形部14连接有两个轮座15,且位于参照线的两侧。尤其针对负缆状态下,线缆18基本沿参照线方向延伸,该布置方式能使勘测机器人200受力更加均匀,运行更为平稳。
参考图10~图11,矢量旋翼系统用于提供勘测机器人200的行走、飞行、越障等运动 的动力,为了便于理解,以下实施例旋翼组件2中涉及的第一轴线和第二轴线具体为L1方向和L2方向。旋翼组件2包括:第一翻转架21,绕第一轴线转动安装于环形部14;第一舵机22,作用在环形部14和第一翻转架21之间;第二翻转架23,绕第二轴线转动安装于第一翻转架21,第二轴线和第一轴线相互垂直;第二舵机24,作用在第二翻转架23和第一翻转架21之间;主电机25,安装于第二翻转架23;桨叶26,安装于主电机25的输出轴。
第一舵机22和第二舵机24能够分别驱动第一翻转架21和第二翻转架23进行360°旋转,此外主电机25的输出轴还可以选用角度能够微调的机型。因此,桨叶26可以进行全方位旋转,实现球形矢量的全矢量控制转换,将勘测机器人调制成各种适合行走、攀爬、飞行形态。此外在可选的控制方式中,优选勘测机器人各旋翼的功率保持恒定,以简化模式控制和形态切换。
在本实施例中,主电机25安装于第二翻转架23的中间位置,输出轴大致与第二轴线相互垂直。为了减少旋翼系统工作时各旋翼组件2之间力的干涉,各个旋翼组件2的第一轴线相互平行且共面。另外所有旋翼组件2的第一轴线位于框架结构中的顶框11和底框12之间,使得机器人在旋翼组件2工作时受力更加均匀,不易侧翻。
第一翻转架21为圆环形,该圆环形径向的两端分别通过第一枢轴28安装于环形部14,第一舵机22安装于环形部14且与至少一第一枢轴28联动;第二翻转架23为条形,该条形长度方向的两端分别通过第二枢轴29安装于第一翻转架21,第二舵机24安装于第二翻转架23且与至少一第二枢轴29联动。
所有旋翼组件2的第一枢轴28以及第一舵机22均安装于框架结构中的顶框11,或均安装于框架结构中的底框12。所有旋翼组件2的第一翻转架21在共面状态下,所有旋翼组件2的第二轴线相互平行且共面。
勘测机器人200内部设置有感应装置(例如陀螺仪、距离传感器等),用于感应当前姿态以及相对位置,当遇到与工作面明显带角度的障碍面(例如直角面、反斜面等)时,可根据采集的实时信息或历史数据进行识别,在进行旋翼的全矢量控制时,感应装置进行实时反馈。越障时第一舵机22和第二舵机24开始工作,改变矢量旋翼系统的旋转角度,使其勘测机器人200前端翘起直接爬上该障碍面。当遇到无法爬过的障碍时可以通过切换成飞行模式飞跃障碍,飞跃过障碍后再切换成攀爬模式。
利用本发明提供的机器人实施本文提供的控制方法时,勘测机器人具有攀爬模式和飞行模式。攀爬模式下,行走轮在矢量旋翼系统的作用下与工作面行走配合,在工作面较倾斜时,通过矢量旋翼系统提供行走轮与工作面的下压力。飞行模式下,行走轮远离工作面。若基于机器人集群系统(除勘测机器人之外,还包括至少一台负缆机器人)执行工作任务,在勘测机器人工作过程中,负缆机器人相应随行。
在本实施例中,切换飞行模式有两种方法,一种是手动操作,一种为系统自动操作,当切换成飞行模式时,系统自动调整第一舵机22和第二舵机24,将桨叶26调整到便于飞行的角度,勘测机器人200便能够顺利地飞起越过障碍物,在飞跃障碍物落地后,切换成攀爬模式。本实施例的勘测机器人200能够根据所处位置的角度自动调节桨叶26角度,使其能够顺利的在当前环境下自由运动。
参考图12~图18,信息采集设备4安装于支撑体1,用于采集工作面相关的信息数据,信息采集设备4包括图像采集组件41、激光测绘组件42以及超声探测组件43中的至少一者:
其中图像采集组件41包括:摄像头411,设置于支撑体1并位于相邻两套旋翼组件2之间,用以拍摄采集图像;补光灯414,用以向工作面投射光线;安装架,与支撑体1相连,用于安装摄像头411和补光灯414;
安装架包括多根辐条416,各辐条416一端汇聚于中心位置,另一端在向外延伸的同时还向下弯曲直至与支撑体1固定;环形件415,处在中心位置的下方且连接所有辐条416;摄像头411安装于安装架的中间位置,补光灯414安装于环形件415,并间隔布置于摄像头411的投影位置。支撑体上还安装有照明灯417,用于提供前进方向的照明。
摄像头411可采用一个或多个,单个摄像头411分辨率为2000万像素或更高,拍摄面积为0.12-0.24m2,最小分辨率为0.01mm,测缝精度为0.01mm,最小曝光时间10ms,支持最高2m/s的运动图像采集,可以多个摄像头411组合。
在本实施例中,摄像头411包括高于中心位置设置的第一摄像头412和低于中心位置设置的第二摄像头413,其中,第一摄像头412用于拍摄外部整体工作面(在本实施例中,第一摄像头412具体为双目摄像头,且在该位置设置有用于测量障碍物距离、运动距离以及辅助系统定位的距离传感器),第二摄像头413用于拍摄勘测机器人200的实时工作面。
其中,双目摄像头可通过旋转云台安装至安装架,能够根据需要旋转至合适的拍摄角度。当然,为了避免光照不足引起图像噪声的问题,环形件415的底面设置有环形布置用于给第二摄像头413提供光照的补光灯414,该补光灯414具体为荧光灯,为了进一步增强拍摄的效果,多根辐条416围拢形成半球空间,第二摄像头413处在球顶部位,荧光灯处在半球空间内,该半球空间朝向工作面开放。安装架上加盖遮光布(例如摄影黑布)封闭半球空间的外周,可在第二摄像头413拍摄的工作面区域形成接近封闭的拍摄空间,配合荧光灯的补光效果,其图像采集效果可大幅提升,保障后期的图像拼接以及图像中建筑缺陷的特征识别效果。
同样的,为了保证第一摄像头412的光照强度,环形件45侧面朝向第一摄像头412的投影位置也设置有补光灯414(例如LED灯)。
激光测绘组件42包括:云台421,设置于支撑体1,并与支撑体1连接;激光扫描仪422,安装于云台421,用于测绘三维空间。激光扫描仪422所采集的信息通过处理后可以获得工作面周边的三维形态数据,并可据此进行三维建模,建模后通过图像采集组件41获得的图像进行贴图渲染,可生动的表达工作面。
云台421的底部带有多条支撑臂423,在本实施例中,支撑臂423的数量为4条,且大致呈X形,为了使激光扫描仪422测绘时更加平稳,各支撑臂423的底端通过减震部件424(例如减震垫)连接至支撑体1的底框12。具体的,支撑臂423的底端开设有螺孔,安装时,螺栓依次穿过螺孔、减震部件424、与支撑体1的底框12固定连接。
当勘测机器人200遇到障碍时,减震部件424能够较大程度地缓解支撑臂423的震动,达到较好的减震效果,减震部件424还可以过滤来自旋翼的震动。其中,激光扫描仪422可采用现有技术,能够根据实际拍摄需求跟随云台421旋转至合适的角度进行三维空间测绘。
为了便于理解,以下实施例的第一位置为X1,第二位置为X2。超声探测组件43可用于测量工作面上裂缝的深度,关于其安装位置,超声探测组件43可直接安装于支撑体1,当然也可设置于其他部件,即与其他组件进行集成,间接的安装于支撑体1。
超声探测组件43,包括:超声探头431,成对布置且同对之间的间距可调;移动机构 432,带动同对之间的超声探头431相对运动;介质输出头433,用于向超声探头431提供工作介质。超声探测组件43能够自动涂抹工作介质,相比于传统人工涂抹的方式,本发明可以根据实际工作面的情况进行随时涂抹勘测,提高了工作效率。
同对超声探头431中,一者发射探测信号,另一者接收返回的信号,两超声探头431的相对位置能够调整,便于在不同的相对位置下进行探测,以获得更精准的数据,依据超声探测组件43与支撑体1的不同连接方式,在优选的方式中,超声探头431还可以相对支撑体1升降配合,以调整与工作面之间的距离。
其中,移动机构432可采用多种方式驱动,例如包括移动电机以及丝杆螺母副,移动电机通过丝杆螺母副带动超声探头431。为了便于操作,每个超声探头431独立配置移动机构432以及相应的介质输出头433。
介质输出头433具有与超声探头431相邻近的第一位置(X1),以及远离超声探头431的第二位置(X2)。介质输出头433向超声探头431供应工作介质后,可改变位置避开超声探头431,例如通过翻转机构434安装于支撑体1,翻转机构434包括翻转电机4341以及活动架4342,翻转电机4341的输出轴与活动架4342联动,介质输出头433固定于活动架4342并通过介质管路436连通于供应装置435。其中,翻转机构434的翻转角度即为第一位置和第二位置之间的旋转角度,可根据需求自行设置,在本实施例中,翻转角度为180°。
超声探测组件43还包括向介质输出头433提供工作介质的供应装置435,供应装置435输出工作介质。介质输出头433为盘状,中部带有与介质管路436连通的输出孔4331,供应装置435通过该输出孔4331将工作介质输出于该介质输出头433。
供应装置435包括:料筒4351,用以存储工作介质,料筒4351一端封闭且带有出料孔4352,该出料孔4352通过介质管路436连通于介质输出头433;推料活塞4353,滑动配合在料筒4351内;电动推杆4354,延伸至料筒4351的另一端并与推料活塞4353相连。
具体的,超声探测组件43利用供应装置435,将料筒4351里面的工作介质通过电动推杆4354推送至介质输出头433,再利用翻转机构,将处于第二位置的介质输出头433翻转至第一位置给超声探头431涂抹工作介质,接着翻转机构再次工作,将处于第一位置的介质输出头433翻转至起始位置(即第二位置),此时超声探头431正式工作。
超声探测组件43还包括显微摄像头4343,该显微摄像头4343设置于同对超声探头431的中间位置,能够对裂缝进行显微拍照,其分辨率精度可达0.005mm。超声探头431内部有弹簧4311,与工作面接触时弹簧4311可以缓冲保护,还可以适应工作面的崎岖。
参考图19~图20,行走轮3均为万向轮,以保证行走的灵活性,在矢量旋翼系统的驱动下,可沿工作面向任意方向移动,无论考虑转向半径等,这一点在作业路线规划以及作业行走中优势更加明显。
按照轮座15的分布,行走轮3可以配置4套或更多,同一套中,可采用单轮或双轮结构,并通过减震机构31安装于对应的轮座15。其中,减震机构31可采用现有技术中的阻尼器,还可以采用多种方式的结合,例如空气阻尼以及机械弹簧,当车轮在不平整的工作面上运动时,减震机构31可将瞬间的多次弹跳合并为一次比较平缓的运动,从而起到减震的效果。
参考图21~图30,为了能与工作面牢固贴合使其他设备作业时勘测机器人200保持稳定静止,勘测机器人200还包括静态吸附组件5,静态吸附组件5可通过真空吸附固定于工作面。勘测机器人200吸附固定于工作面时,获得的数据更加精确,长时间作业时甚至可 以停止旋翼工作以节能、滤噪,在特定场景下,吸附固定于工作面的勘测机器人200可作为相对稳固的锚点,通过线缆18对周边的其他勘测机器人200实施救援或协同。
旋翼工作时会产生声波干扰,无法同时进行超声波探测,因此,当需要使用超声探测组件43时,必须先使用静态吸附组件5将勘测机器人200吸附于工作面,接着停止旋翼工作,最后超声探测组件43才开始工作。
静态吸附组件5包括:筒体52,活动安装于支撑体1;升降驱动机构53,安装于支撑体1且与筒体52联动,驱使筒体52相对于支撑体1升降;吸盘54,固定于筒体52的底部;真空泵55,通过管路连通于吸盘54。
具体工作时,吸盘54下降贴靠至工作面,真空泵55通过管路将吸盘54与工作面之间的气体抽出直至到达预设的真空度,当然,为了能够将吸盘54长时间稳定地吸附于工作面,真空泵55还具有自动补压的功能,通过检测传感器检测真空度变化、使其能够时刻保持真空状态。考虑到勘测机器人200整体负载的均匀以及解除吸附后机器人状态的平稳切换,各旋翼组件2整体上布置在静态吸附组件5的外周。
筒体52为两套且并排布置,两套筒体52能够在升降驱动机构53的作用下同步升降,保持了升降的稳定以及必要的结构强度。真空泵55处在两筒体52的顶部之间,为了起到防尘等保护作用,在各筒体52顶部的外周可以罩设外套51,外套51的顶部以及真空泵55的外围设置有第一壳体56,第一壳体56既能保护里面的部件,还能实现降噪的效果。
当旋翼组件2为四套时,第一壳体56的下方设置有第二壳体58,升降驱动机构53处在第二壳体58内且位于两筒体52之间,筒体52向下延伸出第二壳体58,第二壳体58通过多根桥臂581连接于支撑体1。具体的,桥臂581的数量为四根,一端连接于第二壳体58,另一端向外辐射连接至对应方向的环形部14。第二壳体58与支撑体1大致等高或略高于支撑体1,升降驱动机构53以及勘测机器人200的控制主板57设置于第二壳体58中,真空泵55固定于第二壳体58的顶面上。
当旋翼组件2为两套时,升降驱动机构53处在顶框11和底框12之间且位于两筒体52之间,筒体52向下延伸出底框12。在本实施例中,勘测机器人200的控制主板57处在顶框11和底框12之间,为了便于固定,真空泵55直接固定于顶框11的顶面上。勘测机器人200自身携带的陀螺仪、距离传感器等,可以集成安装至该控制主板57上。
升降驱动机构53包括:电机531;分动机构532,与电机531联动且具有两根输出轴5325,各输出轴上固定有主动齿轮533;
两个齿圈534,分别转动套设于筒体52的外周,且分别与对应的主动齿轮533啮合,各齿圈534的内周分别与相应的筒体52之间螺纹配合。
齿圈534轴向的端面带有轮齿535,并通过该轮齿535与相应的主动齿轮533啮合。分动机构532可实现由同一电机531驱动两套筒体52同步运动,分动机构532包括:主伞齿轮5321,固定于电机531的输出轴5311;两个副伞齿轮5322,分别与主伞齿轮5321啮合,且处在主伞齿轮5321的两侧,各副伞齿轮5322上固定有中间轴5323,两根输出轴5325,分别通过万向节5324与对应的中间轴5323相连。
具体工作时,电机531带动主伞齿轮5321旋转,相应的,与主伞齿轮5321啮合的两个副伞齿轮5322也开始旋转,从而带动主动齿轮533转动,主动齿轮533带动位于筒体52外周的齿圈534。
筒体52带有外螺纹521,齿圈534带有内螺纹并与外螺纹521之间相互配合,驱使筒 体52相对于支撑体1上升或下降,即实现了吸盘54的升降。吸盘54包括固定安装于筒体52底端的基板545,基板545的底面设置有真空口541、泄压口542,真空泵55通过真空管路551连通至真空口541,泄压口542处安装有泄压阀543;真空管路551经由其中一筒体延伸至真空口541,泄压阀543处在另一筒体处。
真空管路551包括内部管路552和外部管路553,其中内部管路552包括活动插接、且密封配合的两根刚性管,其中一刚性管5521a对接至真空口541,另一刚性管5521b在筒体52中延伸再经由外套51相应部位的开口连通外部管路553直至连通到真空泵55。
内部管路552主要为了适应筒体52(即基板545)相对于支撑体1的升降,在升降驱动机构53的作用下,与真空口541相对接的刚性管5521a相对于另一根刚性管5521b向下运动并彼此保持密封。虽然可采用软管方式来适应该相对运动,但本实施例两根刚性管活动插接的方式可避免管线盘绕干涉,并可提供额外的稳定导向。
作业完成后,在解除真空时,可开启泄压阀543,泄压阀543包括:密封套5431,固定于泄压口542的边缘;阀芯5432,与密封套5431相匹配;阀杆5433,穿过密封套5431与阀芯5432相连,阀杆5433与密封套5431的径向间隙为泄压间隙;
弹性件5434,作用于阀杆5433,驱使阀芯5432与密封套5431密封配合;电磁驱动组件,作用于阀杆5433,驱使阀芯5432与密封套5431分离泄压。密封套5431的端面具有环形的凸缘5435,密封状态下、阀芯5432与密封套5431的端面配合并贴紧凸缘5435,需要泄压时,电磁驱动组件驱动阀杆5433向下移动,此时,阀芯5432与密封套5431的端面脱离,气体从泄压间隙进入,吸盘54与工作面之间恢复常压,随后可上升吸盘54,避免其他设备作业时吸盘54与工作面的干涉。
吸盘54的底面还设有限位垫544,限位垫544的位置低于真空口541以及泄压口542,即限位垫544为工作面与吸盘54两者贴合的极限位置,能够防止真空口541与泄压口542与工作面接触、产生不必要的干涉和摩擦。
吸盘54包括:基板545,可升降的安装于支撑体1,真空口541、泄压口542均设置在基板545的底面;在配置限位垫544时,限位垫544也设置在基板545的底面;密封组件,包括内外布置的多道密封圈,用于与工作面贴合密封,多道密封圈位于真空口541、泄压口542(设置限位垫544时)的外围。多道密封圈与基板545围拢形成罩体结构,与工作面配合时,罩体结构内形成真空腔。
为了保证密封效果,尤其是适应存在建筑缺陷(表面存在凸凹结构或裂缝等,即并不光滑平整)的工作面,密封组件包括由内而外依次布置的三道密封圈,分别为密封圈546a、密封圈546b、密封圈546c,各密封圈底面距离工作面的高度依次降低。最外围的一道,最先接触工作面,其余两者同理。
其中,最外层密封圈546c的高度为2.5~3cm,中间层密封圈546b的高度为1.3~1.7cm,内层密封圈546a的高度为0.75~1.25cm。作为优选,三道密封圈由内而外宽度依次变宽,其中密封圈546c、密封圈546b可采用发泡材料。
为了便于集成其他组件,提供硬件利用率,基板545的底面带有延伸至密封组件外侧的扩展区5452,超声探头431等其他组件可安装至对应的扩展区5452。基板545具有长度方向,两筒体52沿该长度方向依次布置;扩展区5452至少包括第一扩展区5453和第二扩展区5454,沿该长度方向两者扩展区5452分别处在密封组件的两侧。
本发明的超声探头431可安装于上述静态吸附组件5,具体的,超声探测组件43安装 于扩展区5452(第一扩展区5453),其中,同对的超声探头431相对基板545滑动安装,扩展区5452开设有第一避让口5455,超声探头431位置与第一避让口5455对应,并向下延伸出第一避让口5455。
基板545的顶面罩设有第三壳体5451,移动机构432处在第三壳体5451内、带动超声探头431滑动,两个超声探头431的间距调节方向为基板545的宽度方向,供应装置435安装在第一壳体56内,并架设于两外套51顶面上。
参考图31~图35,超声探测组件43工作时,附着于裂缝表面上的析钙、污渍等会影响最后的探测结果,因此考虑到尽量减少测量误差的问题,勘测机器人200还包括用以清洁工作面上的析钙和污渍的清洁器7。优选相对于支撑体1升降安装。
在本实施例中,清洁器7可安装于相对支撑体1升降的部件,该部件可以独立配合,还可以与静态吸附组件5中的基板545集成,即安装于基板545的扩展区5452(具体为第二扩展区5454),清洁器7包括:清洁电机71,处在第三壳体5451内,相对基板545滑动安装;
刷头712,与清洁电机71输出轴相连,扩展区5452开设有第二避让口5456,刷头向下延伸出第二避让口5456;滑动机构72,处在第三壳体5451内、带动清洁电机71滑动。清洁器7设置于第三壳体5451内能够使勘测机器人200的结构更加紧凑。
滑动机构72包括滑动电机721以及丝杆螺母副,滑动电机721通过丝杆螺母副带动清洁电机71。为了使清洁器7在一定的范围内运动,第三壳体5451内还设有导向部件73,清洁电机71与导向部件73配合滑动。
导向部件73为罩体结构,罩体结构的两相对侧壁上开设有滑槽731,清洁电机71的外壳上带有与滑槽731相配合的导向件711。滑动机构72驱动清洁电机71沿滑槽731来回滑动,避免了刷头712工作时朝其他方向晃动的问题。在本实施例中,清洁电机71的滑动方向为基板545的宽度方向。
工作时,为了更为稳定地清理裂缝表面,勘测机器人200将清洁器7对准需要清理的部位,接着吸盘54通过升降驱动机构53与工作面真空贴合锚定,再通过滑动机构72带动清洁电机71沿基板545的宽度方向滑动,此时刷头712在清洁电机71的带动下不仅转动还同步跟随清洁电机71往复运动,例如采用左右移动算法。清理的部位在刷头712的反复刷动下达到更好的清洁效果。另外,清洁器7内部设置有弹簧713,能够将连接清洁电机71的刷头712进行减震。
利用本发明提供的机器人实施本文提供的控制方法时,若识别获建筑裂缝,还可以对建筑裂缝实施清洁和测量。在清洁之前利用真空吸附组件锚点于工作面,完成清洁后解除锚定,调整机器人位置,而后再次锚定并进行测量。
清洁建筑裂缝包括:使清洁器的刷头贴近于工作面;驱动清洁器往复运动;使清洁器的刷头远离工作面。
其中测量建筑裂缝包括:控制矢量旋翼系统停止运行,能够防止矢量旋翼系统对超声探测组件的工作造成干扰。利用超声探测组件测量建筑裂缝至少两次、且不同次实施裂缝勘测时,同对超声探头的间距不同,其中一次具体包括:向超声探头提供工作介质;控制超声探头实施裂缝勘测。
由于勘测机器人200采用有线方式供能和通信,因此在作业距离较远时,可以配置负缆机器人81协同作业,一方面可以背负和分担线缆18的重量,另外负缆机器人81也可以 搭载信息采集设备4。
参见图39~图40,本发明一实施例中还提供一种控制方法,实施于基于全矢量勘测集群系统作业的过程,包括:构建工作面地图;多台机器人以队列方式行进,在到达工作面地图中预定的工作位置时,采集当前工作位置的图像信息并进行表面特征识别,且在采集信息数据过程中以攀爬模式保持于当前的工作位置;依据识别结果进行相应处理。
控制方法主要分为工作面地图的建立、以及工作面的巡检。其中,工作面地图的建立,包括:建立坐标系和划分子区域;获得二维形式的工作面地图;获得三维形式的工作面地图。工作面的巡检,包括:机器人当前位置的确认;将建筑缺陷识别并标注于工作面地图。
在一个实施例中,针对较大区域的工作面,所述控制方法还包括:
建立坐标系,具体包括:勘测机器人到达原点位置P,沿预定坐标轴指向移动至参照点,获得原点和参照点之间的连线,将连线对应至工作面地图,运算获得另一个坐标轴的指向、以及两坐标轴构成的坐标系;
划分子区域,具体包括:按预定边长在坐标系内将工作面划分为若干个矩形的子区域。
可以理解,在勘测机器人工作过程中,勘测机器人与服务器的位置反馈通过坐标系完成。如图中所示,工作面210中的X、Y坐标系为真实物理坐标系,工作面地图211中的坐标系为X’和Y’为基于工作面210映射的坐标系。同样原点位置P在工作面地图中映射为P’。划分的若干子区域例如可以是A1、A2、A3子区域。
因此在勘测机器人工作之初需进行坐标系的建立。坐标系的建立依托于采集和拼接的图像信息。原点即勘测机器人在工作之初的位置,参照点和原点均处于拼接后的图像上,因此能够实现坐标系的建立,以便于勘测机器人和服务器的指令交互。
工作子区域的划分例如可以按照相邻机器人线缆的最大长度划分,或者是按照机器人的工作极限路径划分。在采用多个机器人时,各个机器人在保持相对距离恒定同步行走,提高工作效率。子区域例如可以是正方形,边长例如可以是十米到二百米,例如可以是五十米。
在进行当前位置确认、表面特征匹配、用户查看工作面地图时,均可以通过逐个调取子区域的数据单元,提高工作效率。勘测机器人在工作之前进行路径规划,路径规划针对每个子区域进行。通过划分单独的子区域,优化路径规划的过程。子区域的划分可以依托于物理标识,也可以通过服务器对已经获得坐标系的工作面进行划分。
在构建、修改工作面地图时的数据存储、以及利用工作面地图进行数据调用时,可涉及三个清晰度级别,清晰度(或按照数据量的大小)由低至高可分别用于显示:
整体工作面地图,该清晰度最低的整体工作面地图还可以是机器人在飞行模式下拍照获得;某一子区域的工作面地图;指定具体坐标后、该坐标位置附近的工作面地图。
工作面地图基于历史工作过程中采集自多个工作位置的图像信息进行拼接获得,具体包括:遍历工作面的所有区域,将获得的图像信息进行拼接,获得二维形式的工作面地图。遍历工作面的所有区域,包括遍历划分的其中一个子区域或所有子区域。图像信息例如图37c中所示的图片212,图中虚线表示机器人行进路径。
本实施例中图像信息利用图像采集组件采集获得。勘测机器人工作过程中在多个工作位置之间转移,在到达预定的工作位置时利用信息采集设备采集工作面的信息数据。
将获得的图像信息进行拼接,获得二维形式的工作面地图,具体包括:利用图像纹理算法定位图像信息中的表面特征;当待拼接图片的局部区域具有相同表面特征时,依据该 相同表面特征对待拼接图片进行配准拼接。
建筑缺陷纹理是有特点而且是显著的,如同人的指纹,没有两个建筑缺陷的纹理是完全一样的。通过对建筑缺陷的纹理进行采集、入库、对比、拼接,可以让服务器通过图像信息实现对建筑缺陷(裂缝、坑洞、粗糙度、凸起等)的识别和标注,以指令机器人进行测量和反馈标注。通过重合图像的相同纹理还可以进行高精度图像拼接,相邻位置图像信息的重合度可以根据信息采集设备以及勘测机器人的步长相应设置,例如可以是用于进行图像拼接的重合度为20%以上。
在检测过程中,还包括利用服务器中的自主判定算法识别出工作面表面的缺陷,并使用补光灯减少图像噪点,结合补光灯的位置进行表面特征分析,提高检测精度。
可以理解,在表面特征对比时,可以对不同的建筑缺陷进行分级或分类,例如裂缝属于明显的建筑缺陷,可以进行位置记录。本实施例通过数据拼接,代替人工和常规的无人机对工作面进行检测,本实施例控制机器人检测的效率更高,安全性更高,数据更准确,成本更低。
在一个实施例中,控制方法还包括获得三维形式的工作面地图:
在遍历工作面所有区域时,通过信息采集设备中包括的激光扫描仪,采集获得三维形态数据并进行三维建模,获得三维模型;
将二维形式的工作面地图拟合至三维模型,获得三维形式的工作面地图。
工作面地图包括二维形式或三维形式的工作面地图,二者均可以用于当前位置确认。三维形式的工作面地图即三维地形数据,三维形式可视化效果更佳,能够体现出高度变化,为勘测机器人越障提供数据保障,对于越障和飞行状态的模式调整也有辅助作用。
本实施例中,能够获得图像信息中的表面特征,检测精度高、运算速度快;图像拼接通过矫正、明暗度统一等方式,能够对变形的图像进行矫正去畸变;将二维形式的工作面地图拟合至三维模型,能够自适应渲染。此外,服务器还可以通过捕捉到的表面特征信息生成数据报告。
在一个实施例中,控制方法还包括确认机器人的当前位置:
按规划路径在多个工作位置之间转移,将采集自当前工作位置的图像信息与工作面地图进行对比,获得对比结果,工作面地图基于历史工作过程中采集自多个工作位置的图像信息进行拼接获得;
根据对比结果对当前工作位置进行确认。
基于采集自当前工作位置的图像信息与工作面地图进行对比,具体包括:
对图像信息进行特征提取,获得表面特征;
将表面特征与工作面地图进行特征匹配,获得表面特征相对于工作面地图的位置坐标,位置坐标对应勘测机器人的当前位置。
工作面地图并不限于某一具体的平面,而是指勘测机器人所有工作位置组成的空间图。在图像信息采集过程中,当前工作位置的图像信息与工作面地图(包括已经完成拼接的图像信息)至少部分存在重叠,即能够通过当前工作位置的图像信息相对于工作面地图进行定位,便于图像信息采集的数据归档与拼接。在具体进行表面特征对比时,图像信息的表面特征包括建筑缺陷,建筑缺陷可用于进行特征匹配。
进一步地,还可以预先在工作面设置物理标识。勘测机器人到达物理标识的位置、或检测到建筑缺陷时,通过匹配服务器图库内相应预存图像,确认机器人当前所在的位置, 即完成自身定位。物理标识例如可以是二维码,服务器图库内相应存储有该二维码相关信息。物理标识也可以依据工作区域预先标记,在识别后进行工作区域的划分。在工作面也可以架设无线视场监督站,对机器人进行轨迹监测和位置监测,并实时传输数据给机器人纠正运动方向。
在一个实施例中,控制方法还包括:
将采集自工作面的图像信息进行表面特征识别;
识别结果为建筑裂缝后,将该建筑裂缝标注至工作面地图。
标注至工作面地图时可以包括坐标标识以及模拟显示等方式,对表面特征进行识别可以利用自主学习算法进行,例如可以神经网络模型实现,该自主学习算法在后续过程中可不断进行优化,提高识别的准确率。例如将识别带有建筑裂缝的图像信息作为新样本,参与自主学习算法的更新;以及更新已构建的建筑裂缝特征数据库。
若基于机器人集群系统执行工作任务,控制方法还包括救援控制方法、建筑结构跨越方法、以及队列调整方法、井洞探测方法。
参考图41,在以下两个实施例中,分别针对基于机器人集群系统提出两种救援控制方法。机器人包括处于线缆远端的勘测机器人、以及与其通过线缆连接的负缆机器人,勘测机器人和负缆机器人均可以采用以上各实施例中提供的相应的机器人。
在一个实施例中,本发明还提供一种基于机器人集群系统的救援控制方法,机器人集群系统包括作业于工作面的多台机器人以及线缆,所有的机器人均通过线缆供能和通信、并按照线缆的延伸方向依次连接于线缆。
按照线缆的延伸方向,相邻两机器人中,一者为待救援的被动机器人,另一者为实施救援的主动机器人,救援控制方法包括:
步骤S911,主动机器人以真空吸附的方式锚定于工作面;
步骤S912,改变主动机器人与被动机器人之间的线缆长度,使两机器人彼此靠近;
步骤S913,控制主动机器人拖行被动机器人。
参考图42~图45,在在一个实施例中,本发明还提供一种基于机器人集群系统的救援控制方法,利用本文的机器人集群系统实施。按照线缆的延伸方向,被动机器人203的两侧均具有主动机器人,分别为第一主动机器人201和第二主动机器人202,救援控制方法包括:
步骤S921,第一主动机器人以真空吸附的方式锚定于工作面;
步骤S922,改变第二主动机器人与被动机器人之间的线缆长度,使第二主动机器人与被动机器人彼此靠近;
步骤S923,第二主动机器人以真空吸附的方式锚定于工作面;
步骤S924,第一主动机器人解除与工作面之间的锚定;
步骤S925,改变第一主动机器人与被动机器人之间的线缆长度,使第一主动机器人与被动机器人彼此靠近,进而使被动机器人同时与第一主动机器人和第二主动机器人邻近;
步骤S926,控制第一主动机器人和第二主动机器人拖行被动机器人。
步骤S922、步骤S925中,可理解为第一主动机器人、第二主动机器人朝向被动机器人移动靠近。可以理解,正常状态下各个机器人均通过线缆与服务器进行通信实现交互控制。通过各机器人的信息采集设备、以及通信信号的传输,综合判断机器人的工作情况。判定结果为异常时,认定机器人可能出现故障,即作为待救援的被动机器人。例如,信息采集 设备回传的图像中断、吸盘运行报错等。相邻两机器人是指通过线缆连接方式相邻而并非指空间距离邻近。在机器人故障后还可以对自身进行软硬件自检,自检合格则取消实施救援控制方法。
在步骤S912、步骤S922、步骤S925中,改变被动机器人以及与其相邻机器人与之间的线缆长度可以通过缆架机构实现,具体实现方式可参见关于本文关于缆架机构的相关实施例。
在步骤S911~S913中,被动机器人和主动机器人并不限制机器人的类型,只要能够实现彼此的线缆连接即可。在步骤S921~步骤S926中,被动机器人与相邻的两个机器人均通过线缆连接,被动机器人为背缆机器人,但并不限制第一主动机器人和第二主动机器人的类型。步骤S913中和步骤S926中,拖行被动机器人脱离当前现场,到达无摔落风险的指定区域(例如回到原点)即可认定为实现救援。
参考图46,本发明一实施例中还提供一种基于机器人集群系统的建筑结构跨越方法,机器人集群系统包括作业于工作面的至少三台机器人以及线缆,所有的机器人均通过线缆供能和通信、且并按照线缆的延伸方向依次连接于线缆;按照线缆的延伸方向,连续三台机器人中依次为首端机器人、中间机器人和末端机器人。
在实施建筑结构跨越方法前还包括:基于历史工作过程中采集自多个工作位置的图像信息进行拼接,获得工作面地图,获得建筑结构相对于工作面的位置坐标。获得工作面地图和位置坐标的具体内容可参见本文相关实施例。本实施例中建筑结构跨越方法包括:
步骤S1,首端机器人204跨越至建筑结构对侧;
步骤S2,首端机器人204和末端机器人206两者分别以真空吸附的方式锚定于工作面,并收紧延伸在两者之间的线缆;
步骤S3,同步地改变三台机器人彼此之间的线缆长度,使中间机器人205逐渐向首端机器人靠近,相应的逐渐远离末端机器人,直至以悬吊的方式移动至建筑结构对侧。
获得工作面地图以及获得建筑裂缝相对于工作面的位置坐标后,首端机器人可以采用飞行、避让行走等其他先跨越至建筑结构对侧。“以悬吊的方式移动”是指不依靠机器人本身提供的矢量动力行进,而依靠对线缆收放控制实现相对于首端机器人以及末端机器人的位置调整。
本文已经说明,在自然环境中,无线机器人无法胜任工作要求。而本实施例中采用机器人集群系统能够分担彼此的线缆压力,以及彼此协调工作,提高使用安全性。在这种情况下,位于首端的机器人在跨越至建筑结构对侧时,线缆对其造成的干涉是相对较小的,即线缆的一部分重量被分担,不会影响首端机器人的飞行。若采用机器人集群系统同时飞行的方式进行,同步平移飞越建筑结构,此时干扰过多,控制算法复杂且不能排除环境风险造成的损伤。多台机器人同时受损,救援困难。若中间机器人采用飞行方式跨越结构,则会发生线缆前后的同时干涉,造成飞行困难。若中间机器人避让跨越结构,则对无法跨越较大(超过线缆长度)的建筑结构。综上所述,采用本实施例中提供的建筑结构跨越方法能够稳妥地实现建筑结构跨越的问题。
进一步地,建筑裂结构越方法还包括步骤S4:循环步骤S1~步骤S3,直至机器人集群系统中待跨越建筑结构的所有机器人移动至建筑结构对侧,其中本轮循环的中间机器人作为下一轮循环的首端机器人。
本实施例中,连续三台机器人可以根据需求相应选择勘测机器人或负缆机器人,例如 中间机器人应当选择为负缆机器人。
在步骤S3中,同步地改变三台机器人彼此之间的线缆长度,具体包括:驱动中间机器人朝向首端机器人的卷线轮,缩短中间机器人和首端机器人的线缆长度;驱动中间机器人朝向接末端机器人的卷线轮,延长中间机器人和末端机器人的线缆长度。
在步骤S3中,中间机器人途径建筑结构时,还包括:控制绕线电机停止驱动两个卷线轮,控制中间机器人停止运动,利用图像采集组件和/或超声探测组件采集相关的信息数据。建筑结构例如可以建筑沟渠、或者具有一定跨度的两建筑体之间,或建筑裂缝等,中间机器人停留在中间可能便于采集场景信息。卷线轮的位置设置、功能实现、以及驱动的具体方式可参见关于本文关于缆架机构的相关实施例。
本发明一实施例中还提供一种井洞探测方法,机器人集群系统包括作业于工作面的多台机器人以及线缆,所有的机器人均通过线缆供能和通信、并按照线缆的延伸方向依次连接于线缆;按照线缆的延伸方向,连续三台机器人中依次为首端机器人、中间机器人和末端机器人。探测方法包括:
步骤S931,首端机器人和末端机器人依次到达并真空吸附的方式锚定于井壁;
步骤S932,中间机器人移动至井洞内,在线缆的作用下吊挂于井洞,并进行井洞相关信息数据的采集;
步骤S933,利用首端机器人和末端机器人具备的缆架机构收放线缆,调节所述中间机器人在井洞的深度。
井洞作为信号屏蔽的场景,必须采用有线的方式对机器人进行控制。而井洞内的情况不明确,对机器人这类高价值的机电物品存在较大的风险。考虑到井洞探测和建筑裂缝跨越的实施场景,在中间机器人移动的过程中,可以停止矢量旋翼系统的运转。本实施例通过机器人集群系统中的中间机器人对井洞实施探测,通过收放线缆延长和缩短中间机器人在井下的深度可完成探测。井洞相关信息数据的采集,可通过本文相关实施例提供的信息采集设备完成。
应该理解的是,虽然本发明各实施例中的步骤依次表述,但是这些步骤并不是必然按照表述的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。不同实施例中的技术特征体现在同一附图中时,可视为该附图也同时披露了所涉及的各个实施例的组合例。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 全矢量勘测集群系统,包括多台机器人,其特征在于,所述多台机器人中包括勘测机器人和至少一个负缆机器人,所述勘测机器人和负缆机器人均包括:
    支撑体;
    矢量旋翼系统,所述矢量旋翼系统包括至少两套旋翼组件,多套旋翼组件均安装于支撑体上,并用于为支撑体提供矢量动力;
    行走轮,所述行走轮设置在支撑体的下方,所述行走轮用于在工作面上行走;
    信息采集设备,所述信息采集设备安装于支撑体上,所述信息采集设备用于与采集工作面相关的信息数据;
    所述负缆机器人还包括缆架机构,所述缆架机构设置在支撑体上,所述勘测机器人和负缆机器人在工作状态下均经由负载于缆架机构的线缆供能以及通信。
  2. 根据权利要求1所述的全矢量勘测集群系统,其特征在于,所述信息采集设备包括激光测绘组件、图像采集组件、超声探测组件或它们的组合;
    所述激光测绘组件包括:
    云台,所述云台设置于支撑体上;
    激光扫描仪,所述激光扫描仪安装于云台上,所述激光扫描仪用于测绘三维空间,获取工作面的三维形态数据;
    所述图像采集组件包括:
    摄像头,所述摄像头设置于支撑体上,并位于相邻的两套旋翼组件之间,所述摄像头拍摄采集工作面的图像,所述摄像头拍摄采集的图像用于构建二维形式的工作面地图;
    补光灯,所述补光灯设置于支撑体上,所述补光灯用以向工作面投射光线;
    所述超声探测组件包括:
    超声探头,所述超声探头设置在支撑体上,所述超声探头成对布置,同对超声探头之间的间距可调;
    移动机构,所述移动机构与超声探头连接,所述移动机构带动同对超声探头之间进行相对运动;
    介质输出头,所述介质输出头安装于支撑体上,所述介质输出头通过介质管路与安装 在支撑体上的供应装置连通,所述介质输出头用于向超声探头提供工作介质。
  3. 根据权利要求1所述的全矢量勘测集群系统,其特征在于,所述缆架机构包括:
    支座,所述支座固定于支撑体上,所述支座中的部分结构设置为管状结构,所述管状结构内部作为导向槽,所述导向槽内活动穿设所述线缆;
    夹线轮,所述夹线轮成对布置,所述夹线轮安装于支座上,所述夹线轮用于夹持并驱动线缆沿导向槽运动;
    夹线电机,所述夹线电机安装于支座上,所述夹线电机与夹线轮联动以改变负缆机器人与相邻机器人之间的线缆长度。
  4. 根据权利要求3所述的全矢量勘测集群系统,其特征在于,所述管状结构的端部设有连接套,连接套上配置有压力传感器,所述线缆由外部穿入连接套的一侧为入口侧,连接套上的内壁在入口侧沿周向均匀间隔布置有多个安装耳片,所述压力传感器对应固定于安装耳片的内侧。
  5. 根据权利要求3所述的全矢量勘测集群系统,其特征在于,所述支座上设有摆动架,同对夹线轮中,一个为从动轮且转动安装于支座上,另一个为主动轮且转动安装于摆动架上;
    所述摆动架与支座之间设有弹性件以限制摆动架在第一状态或者第二状态;
    所述第一状态:弹性件驱使主动轮向从动轮靠近并夹持线缆;
    所述第二状态:主动轮远离从动轮,摆动架与支座抵靠限位。
  6. 根据权利要求3所述的全矢量勘测集群系统,其特征在于,所述负缆机器人还包括:
    两个卷线轮,所述两个卷线轮分别安装于支撑体上,经由管状结构伸入的线缆绕置于对应的卷线轮中;
    两个绕线电机,所述两个绕线电机独立驱动对应的一个卷线轮。
  7. 基于全矢量勘测集群系统作业的控制方法,其特征在于,所述控制方法采用权利要求1-6中任一所述的全矢量勘测集群系统,所述控制方法包括:
    构建工作面地图;
    多台机器人以队列方式行进,在到达工作面地图中预定的工作位置时,通过信息采集 设备采集当前工作位置的图像信息并进行表面特征识别,且在采集信息数据过程中机器人以攀爬模式保持于当前的工作位置;
    依据识别结果进行相应处理。
  8. 根据权利要求7所述的控制方法,其特征在于,所述构建工作面地图包括:
    机器人到达指定的原点位置,沿预定坐标轴指向移动至参照点,获得原点和参照点之间的连线,将连线对应至工作面地图,运算获得另一个坐标轴的指向以及两坐标轴构成的坐标系,构建工作面以及工作面地图的坐标系;
    按预定边长在坐标系内将工作面划分为若干个矩形的子区域,并规划在子区域内的运动路径;
    机器人队列沿所述运动路径在多个工作位置之间转移,在到达预定的工作位置时利用信息采集设备采集工作面的图像信息数据和三维形态数据;
    在遍历工作面时,通过获得的三维形态数据进行三维建模,获得三维模型;
    遍历工作面后,将获得的图像信息进行拼接,获得二维形式的工作面地图;
    最后将二维形式的工作面地图拟合至三维模型,获得三维形式的工作面地图。
  9. 根据权利要求7所述的控制方法,其特征在于,所述控制方法包括工作面的巡检,工作面的巡检包括:机器人对当前位置的确认;机器人将建筑缺陷识别并标注于工作面地图。
  10. 根据权利要求8所述的控制方法,其特征在于,多台机器人以队列方式行进时,负缆机器人采集线缆相对缆架机构的压力信号,并根据压力信号相应的调整控制缆架机构收放线工作和/或旋翼组件提供的矢量动力,从而调整机器人行进速度或朝向。
PCT/CN2023/116774 2022-10-31 2023-09-04 全矢量勘测集群系统及其控制方法 WO2024093500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211348783.3A CN116619960A (zh) 2022-10-31 2022-10-31 全矢量勘测集群系统及其控制方法
CN202211348783.3 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093500A1 true WO2024093500A1 (zh) 2024-05-10

Family

ID=87608604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116774 WO2024093500A1 (zh) 2022-10-31 2023-09-04 全矢量勘测集群系统及其控制方法

Country Status (2)

Country Link
CN (1) CN116619960A (zh)
WO (1) WO2024093500A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116619960A (zh) * 2022-10-31 2023-08-22 杭州国电大坝安全工程有限公司 全矢量勘测集群系统及其控制方法
CN117682120B (zh) * 2024-02-01 2024-04-16 国网吉林省电力有限公司白山供电公司 一种电力巡检用无人机夜间照明挂载装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532572A (zh) * 2017-01-03 2017-03-22 上海量明科技发展有限公司 飞行式线缆及布线系统、布线方法
WO2017094842A1 (ja) * 2015-12-04 2017-06-08 株式会社ナイルワークス 無人飛行体による薬剤散布装置
JP2019083829A (ja) * 2017-11-01 2019-06-06 株式会社菊池製作所 消火システム及び消火方法
CN113442670A (zh) * 2021-06-28 2021-09-28 中铁十二局集团有限公司 一种新型隧道工程空陆两栖攀爬检测机器人
US20220023685A1 (en) * 2019-02-20 2022-01-27 Ebara Corporation Drone system
CN115626017A (zh) * 2022-10-31 2023-01-20 杭州国电大坝安全工程有限公司 基于机器人集群系统的建筑结构跨越方法
CN115903583A (zh) * 2022-10-31 2023-04-04 杭州国电大坝安全工程有限公司 基于机器人集群系统的救援控制方法
CN115991067A (zh) * 2022-10-31 2023-04-21 杭州国电大坝安全工程有限公司 采用双旋翼方式实施矢量驱动的勘测机器人及控制方法
CN116619960A (zh) * 2022-10-31 2023-08-22 杭州国电大坝安全工程有限公司 全矢量勘测集群系统及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094842A1 (ja) * 2015-12-04 2017-06-08 株式会社ナイルワークス 無人飛行体による薬剤散布装置
CN106532572A (zh) * 2017-01-03 2017-03-22 上海量明科技发展有限公司 飞行式线缆及布线系统、布线方法
JP2019083829A (ja) * 2017-11-01 2019-06-06 株式会社菊池製作所 消火システム及び消火方法
US20220023685A1 (en) * 2019-02-20 2022-01-27 Ebara Corporation Drone system
CN113442670A (zh) * 2021-06-28 2021-09-28 中铁十二局集团有限公司 一种新型隧道工程空陆两栖攀爬检测机器人
CN115626017A (zh) * 2022-10-31 2023-01-20 杭州国电大坝安全工程有限公司 基于机器人集群系统的建筑结构跨越方法
CN115903583A (zh) * 2022-10-31 2023-04-04 杭州国电大坝安全工程有限公司 基于机器人集群系统的救援控制方法
CN115991067A (zh) * 2022-10-31 2023-04-21 杭州国电大坝安全工程有限公司 采用双旋翼方式实施矢量驱动的勘测机器人及控制方法
CN116619960A (zh) * 2022-10-31 2023-08-22 杭州国电大坝安全工程有限公司 全矢量勘测集群系统及其控制方法

Also Published As

Publication number Publication date
CN116619960A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2024093500A1 (zh) 全矢量勘测集群系统及其控制方法
CN111958591B (zh) 一种语义智能变电站巡检机器人自主巡检方法及系统
JP7134801B2 (ja) ケーブル懸架式プラットフォームを用いた構造体を測定及び検査するための方法
CN109118585B (zh) 一种满足时空一致性的建筑物三维场景采集的虚拟复眼相机系统及其工作方法
CN112414457B (zh) 一种基于变电站工作的自动智能巡检方法
US20170291704A1 (en) Aerial vehicle system
JP2022554248A (ja) 無人飛行体を使用する構造体スキャン
CN109571403B (zh) 一种磁轨迹线导航智能巡检机器人及其导航方法
CN109746910A (zh) 移动式机械手、移动式机械手的控制方法及记录介质
CN109571404B (zh) 一种越障机构、越障智能巡检机器人及其变电站越障方法
WO2017176324A1 (en) Autonomous aerial cable inspection system
CN109571402B (zh) 一种爬坡机构、爬坡智能巡检机器人及其变电站爬坡方法
WO2021042668A1 (zh) Tbm搭载式隧道围岩结构虚拟再现系统与方法
CN104322048A (zh) 便携式移动照明台架
CN207696519U (zh) 移动机器人及其配置的摄像设备和摄像头驱动装置
CN104067111A (zh) 用于跟踪和监测目标对象上的差异的自动化系统和方法
CN105090698A (zh) 360度全景采集机器人装置
US9048779B2 (en) Multi-dimensional positioning of an object
CN109572842B (zh) 一种爬杆机构、爬杆智能巡检机器人及其变电站爬杆方法
WO2017215324A1 (zh) 自动清扫机器人装置
US11660750B1 (en) Autonomous and semi-autonomous control of aerial robotic systems
CN115626017A (zh) 基于机器人集群系统的建筑结构跨越方法
CN111656138A (zh) 构建地图及定位方法、客户端、移动机器人及存储介质
CN114274152A (zh) 一种全方位巡检机器人
CN115903583A (zh) 基于机器人集群系统的救援控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884437

Country of ref document: EP

Kind code of ref document: A1