WO2024093455A1 - 管路集成模块、空调室外机及管路集成模块的制备方法 - Google Patents

管路集成模块、空调室外机及管路集成模块的制备方法 Download PDF

Info

Publication number
WO2024093455A1
WO2024093455A1 PCT/CN2023/114084 CN2023114084W WO2024093455A1 WO 2024093455 A1 WO2024093455 A1 WO 2024093455A1 CN 2023114084 W CN2023114084 W CN 2023114084W WO 2024093455 A1 WO2024093455 A1 WO 2024093455A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
layer
groove
plywood
component
Prior art date
Application number
PCT/CN2023/114084
Other languages
English (en)
French (fr)
Inventor
王心宝
吴彦东
苏瑞而
李东坡
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2024093455A1 publication Critical patent/WO2024093455A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements

Definitions

  • the present invention belongs to the technical field of refrigeration equipment, and in particular relates to a pipeline integrated module, an air-conditioning outdoor unit and a preparation method of the pipeline integrated module.
  • the pipelines of the outdoor unit of the air conditioner are complex and need to be integrated.
  • the pipeline integration module in the prior art includes two plates, grooves are punched out on the two plates, and a sealed cavity is formed by welding after being butted.
  • the grooves are made by a stamping process, which will cause the edges of the grooves to form a stamping chamfer, resulting in a gap between the cavities.
  • the brazing seam cannot effectively fill the gap, resulting in a decrease in the pressure-bearing performance of the cavity.
  • the purpose of the present disclosure is to at least solve the problem that the gaps between the cavities of the pipeline integration module in the prior art cannot be effectively filled. This purpose is achieved through the following technical solutions:
  • the first aspect of the present disclosure provides a pipeline integration module, comprising:
  • a first plate-shaped component is provided with a first groove, wherein the first groove is provided at the notch
  • the end portion has a first stamping chamfer
  • the second plate-shaped member being provided with a second groove, the second groove having a second stamping chamfer at an end of the notch;
  • the first plate-shaped member and the second plate-shaped member are overlapped, and the second groove is correspondingly arranged with the first groove and encloses and forms a cavity, and the cavity has a gap between the first stamping chamfer and the second stamping chamfer;
  • the plywood layer being disposed between the first plate-shaped member and the second plate-shaped member and connected to the first plate-shaped member and the second plate-shaped member;
  • the end of the plywood layer close to the cavity is located in the gap.
  • a plywood layer is added between the first plate-like component and the second plate-like component, wherein part of the plywood layer is located in the gap, thereby filling the gap; in addition, the connection between the plywood layer and the first plate-like component, as well as the connection between the plywood layer and the second plate-like component, can also fill the gap, thereby improving the filling of the gap between the first stamped chamfer and the second stamped chamfer.
  • pipeline integration module may also have the following additional technical features:
  • the protruding length of the plywood layer in the gap is L
  • the radius of the first convex arc of the first stamping chamfer is R, wherein L is 0.2 to 1.2 times of R.
  • the thickness of the plywood layer is 0.2 mm to 1 mm.
  • the sandwich layer is respectively connected to the first plate-shaped component and the second plate-shaped component through a solder layer.
  • a first solder layer is provided on a surface of the sandwich layer facing the first plate-shaped component, and a second solder layer is provided on a surface of the sandwich layer facing the second plate-shaped component.
  • the first solder layer is a foil-like solder or a paste-like solder; and/or the second solder layer is a foil-like solder or a paste-like solder.
  • the thickness of the solder layer is 0.03 mm to 0.15 mm.
  • the number of the cavities is at least two, the number of the plywood layers is consistent with the number of the cavities, and the plywood layers are arranged in a one-to-one correspondence with the cavities.
  • two adjacent plywood layers are arranged side by side, and the distance between the two adjacent plywood layers is greater than 2 mm.
  • the first plate-shaped component includes a first body portion, the first body portion is in a plate shape, the first body portion is connected to the first groove, and the first body portion is provided with a first through hole;
  • the second plate-shaped component includes a second main body portion, the second main body portion is in a plate shape, the second main body portion is connected to the second groove, and the second main body portion is provided with a second through hole.
  • a second aspect of the present disclosure provides an air-conditioning outdoor unit, comprising the pipeline integration module described in the above embodiment.
  • the structure of the pipeline integrated module is changed, and a plywood layer is added between the first plate-like component and the second plate-like component, wherein part of the plywood layer is located in the gap, which can form a filling for the gap; in addition, the connection between the plywood layer and the first plate-like component, and the connection between the plywood layer and the second plate-like component, can also form a filling for the gap, thereby improving the filling of the gap between the first stamped chamfer and the second stamped chamfer.
  • a third aspect of the present disclosure provides a method for preparing a pipeline integrated module, the method comprising:
  • the sandwich layer is disposed between the first plate-shaped member and the second plate-shaped member, and is connected to the first plate-shaped member and the second plate-shaped member.
  • the plywood layer is connected to the first plate-shaped component by brazing, and/or the plywood layer is connected to the second plate-shaped component by brazing.
  • FIG1 schematically shows a three-dimensional structural diagram of a pipeline integration module according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of the three-dimensional structure of the pipeline integration module shown in FIG1 at a second viewing angle
  • FIG3 schematically shows a schematic structural diagram of a plywood layer of a pipeline integration module according to an embodiment of the present disclosure
  • FIG4 is a schematic structural diagram of the first plate-shaped component shown in FIG1 ;
  • FIG5 is a schematic structural diagram of the second plate-shaped component shown in FIG1 ;
  • FIG6 is a schematic diagram of the cross-sectional structure of the pipeline integrated module after welding
  • FIG7 is a partial enlarged view of point A in FIG6;
  • FIG8 is a partial enlarged view of point B in FIG6 .
  • 100 is a pipeline integration module
  • 10 is a first plate-shaped component; 11 is a first groove; 12 is a first main body; 121 is a first through hole; 13 is a first stamping chamfer; 131 is a first convex arc; 14 is an air inlet; 15 is a first convex bump; 16 is an oil return port;
  • 20 is a second plate-shaped component; 21 is a second groove; 22 is a second main body; 221 is a second through hole; 23 is a second stamping chamfer; 231 is a second convex arc; 24 is a guide portion; 25 is a second convex bump; 251 is an air outlet;
  • 30 is a plywood layer; 31 is a avoidance opening; 311 is a punching opening;
  • 60 is the first brazing seam
  • 70 is the second brazing seam.
  • first, second, third, etc. can be used in the text to describe multiple elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms can only be used to distinguish an element, component, region, layer or section from another region, layer or section. Unless the context clearly indicates, terms such as “first”, “second” and other numerical terms do not imply order or sequence when used in the text. Therefore, the first element, component, region, layer or section discussed below can be referred to as the second element, component, region, layer or section without departing from the teaching of the example embodiments.
  • spatial relative terms may be used in the text to describe the relationship of one element or feature relative to another element or feature as shown in the figures. These relative terms are, for example, “inside”, “outside”, “inner side”, “outer side”, “below”, “below”, “above”, “over”, etc.
  • Such spatial relative terms are intended to include different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figure is flipped, then the elements described as “below other elements or features” or “below other elements or features” will subsequently be oriented as “above other elements or features" or “above other elements or features”. Therefore, the example term “below" can include both above and below orientations.
  • the device may be otherwise oriented (rotated 90 degrees or in other directions) direction) and the spatially relative descriptors used herein are to be interpreted accordingly.
  • a pipeline integrated module 100 is proposed, as shown in Figures 6, 7 and 8, wherein Figure 6 is a schematic diagram of the cross-sectional structure of the pipeline integrated module 100 after welding, Figure 7 is a partial enlarged view of A in Figure 6, and Figure 8 is a partial enlarged view of B in Figure 6.
  • the pipeline integrated module 100 includes a first plate-like component 10 and a second plate-like component 20, wherein the first plate-like component 10 is provided with a first groove 11 along its thickness direction, and the first groove 11 has a first stamping chamfer 13 at the end of the groove.
  • the first groove 11 is made by a stamping process, and therefore, a stamping chamfer will inevitably appear at the end of the groove of the first groove 11, and the stamping chamfer of the first groove 11 at the end of the groove is referred to as the first stamping chamfer 13.
  • the second plate-like part 20 is provided with a second groove 21 in its thickness direction, and the second groove 21 has a second stamping chamfer 23 at the end of the groove.
  • the second groove 21 is made by a stamping process. Therefore, a stamping chamfer will inevitably appear at the end of the groove of the second groove 21.
  • the stamping chamfer of the second groove 21 at the end of the groove is referred to as the second stamping chamfer 23.
  • the first plate-shaped component 10 and the second plate-shaped component 20 are overlapped, and the second groove 21 is correspondingly arranged with the first groove 11 and encloses and forms a cavity 40 .
  • the cavity 40 has a gap 50 between the first stamping chamfer 13 and the second stamping chamfer 23 .
  • the pipeline integrated module 100 is also connected by two plates covering each other to define a cavity 40 , and a gap 50 is provided in the cavity 40 .
  • the existence of the gap 50 reduces the high pressure resistance performance of the cavity 40 .
  • the cover connection here is usually achieved by welding to connect the two plates. Specifically, a brazing sheet is placed between the two plates and connected by brazing. After the two stamped plates are spliced, a gap 50 is formed between the first stamped chamfer 13 and the second stamped chamfer 23, resulting in a sudden change in shape of the formed cavity 40. When the furnace brazing process is used, the gap 50 cannot be completely filled. When the cavity 40 is subjected to a large static load or an alternating load, the brazing seam formed often forms in the gap. The gap 50 is torn in the thickness direction of the brazing seam. The greater the filling degree of the gap 50, the better the performance of the cavity 40 in bearing static load and alternating load.
  • the two plates in the prior art are made by stamping technology, it is easy to cause the plates to have poor flatness. If the two plates have defects such as wrinkles, bulges, poor flatness, etc. at the same position at the same time, when the two plates are covered, there will be a gap 50 overlapping, which is not conducive to the brazing seam formation and results in lower brazing seam strength.
  • the pipeline integrated module 100 also includes a plywood layer 30, which is arranged between the first plate-like component 10 and the second plate-like component 20, and the plywood layer 30 is connected to the first plate-like component 10 and the second plate-like component 20, and the end of the plywood layer 30 close to the cavity 40 is located in the gap 50, that is, part of the plywood layer 30 is located in the gap 50.
  • end of the plywood layer 30 close to the cavity 40 mentioned here refers to the inner end of the plywood layer 30, which is a concept opposite to the outer end of the plywood layer 30.
  • the outer end of the plywood layer 30 is the end away from the cavity 40, and the inner end of the plywood layer 30 is located in the cavity 40.
  • the pipeline integrated module 100 in the present disclosure improves the pipeline integrated module 100 in the prior art, and adds a plywood layer 30 between the first plate-like component 10 and the second plate-like component 20, wherein a portion of the plywood layer 30 is located in the gap 50, which can form a filling of the gap 50.
  • the connection between the plywood layer 30 and the first plate-like component 10, and the connection between the plywood layer 30 and the second plate-like component 20 can also form a filling of the gap 50, thereby improving the filling of the gap 50 between the first stamped chamfer 13 and the second stamped chamfer 23.
  • the filling amount of the gap 50 is increased by at least twice compared with the solution in the prior art, and the thickness of the brazing seam can be significantly increased, effectively reducing the stress concentration level of the cavity 40 after being loaded, and improving the pressure resistance and fatigue resistance of the cavity 40 formed by splicing two plates made of two stamped sheet metals.
  • the plywood layer 30 of the present disclosure can be machined or processed in other ways, the flatness is uniform and the surface roughness is low, the plywood layer 30 is placed on Between the first plate-shaped component 10 and the second plate-shaped component 20, the spacing between the first plate-shaped component 10 and the plywood layer 30 can be reduced, and the spacing between the second plate-shaped component 20 and the plywood layer 30 can be reduced. After welding, the overlap of the gap 50 caused by the deformation of the first plate-shaped component 10 and the deformation of the second plate-shaped component 20 is avoided, which is more conducive to the spreading and forming of the brazing seam.
  • Fig. 1 schematically shows a three-dimensional structural schematic diagram of a pipeline integrated module 100 according to an embodiment of the present disclosure
  • Fig. 2 is a three-dimensional structural schematic diagram of the pipeline integrated module 100 shown in Fig. 1 at a second viewing angle
  • Fig. 4 is a structural schematic diagram of the first plate-shaped component 10 shown in Fig. 1
  • Fig. 5 is a structural schematic diagram of the second plate-shaped component 20 shown in Fig. 1.
  • the first plate-shaped component 10 also includes a first body portion 12, the first body portion 12 is in a flat plate shape, and the first body portion 12 is connected to the first groove 11, and the first body portion 12 is provided with a first through hole 121, and in addition to the second groove 21, the second plate-shaped component 20 also includes a second body portion 22, the second body portion 22 is in a flat plate shape, and the second body portion 22 is connected to the second groove 21, and the second body portion 22 is provided with a second through hole 221.
  • the first groove 11 and the second groove 21 can be surrounded to form a cavity 40, and the cavity 40 becomes a tube body for liquid flow.
  • first through hole 121 and the second through hole 221 are arranged correspondingly, and there are multiple of them.
  • the brazing seam can be repaired through the first through hole 121 and/or the second through hole 221 to facilitate the subsequent repair and maintenance of the pipeline integrated module 100. For example, when fluid leakage occurs, repair welding is performed through the first through hole 121 and/or the second through hole 221 near the leakage location according to the location of the fluid leakage.
  • the protruding length L of the plywood layer 30 in the gap 50 is 0.2 to 1.2 times the radius R of the first convex arc 131 of the first stamped chamfer 13, that is, L is 0.2 to 1.2 times R, such as 0.4, 0.6, 0.7 or 0.8 times.
  • the extended length here is the length range corresponding to the mark L in Figure 8, which refers to the length of the plywood layer 30 exposed in the gap 50 in Figure 8.
  • the brazing seam after welding will cover the end of the plywood layer 30 in the gap 50, resulting in poor filling effect of the gap 50; however, if the extended length L of the plywood layer 30 in the gap 50 is too long, the extended length L will affect the application function of the cavity 40, such as reducing the oil separation effect.
  • the protruding length L of the sandwich layer 30 in the gap 50 is the same at different positions, so that the filling effect on the gap 50 is also uniform and consistent, and there will be no situation where the filling degree is high in some parts and low in some parts.
  • first convex arc 131 here refers to the surface of the first stamping chamfer 13 facing the inside of the cavity 40
  • second convex arc 231 refers to the surface of the second stamping chamfer 23 facing the inside of the cavity 40.
  • the first convex arc 131 and the second convex arc 231 are symmetrical and correspondingly arranged. If there is no gap 50 between the first stamping chamfer 13 and the second stamping chamfer 23, the cross-section of the cavity 40 formed by the first groove 11 and the second groove 21 is a regular circle. However, due to the existence of the gap 50, the cross-section of the cavity 40 formed by the first groove 11 and the second groove 21 will be an irregular circle. Therefore, it is necessary to fill the gap 50 corresponding to the non-circular part so that the cross-section of the cavity 40 is closer to a circle, thereby improving the pressure resistance and fatigue resistance of the cavity 40.
  • the thickness of the plywood layer 30 is 0.2 mm to 1 mm. If the thickness is too small, the processing and assembly process of the plywood layer 30 will be difficult. However, if the thickness of the plywood layer 30 is too large, the cross-sectional area of the cavity 40 will be significantly increased, and the stress level of the cavity 40 will be increased, which is not conducive to improving the pressure bearing performance and fatigue resistance of the cavity 40. Therefore, the thickness of the plywood layer 30 here can be one of 0.3 mm, 0.4 mm or 0.5 mm, and of course other parameters within this range of 0.2 mm to 1 mm can also be selected.
  • FIG. 3 schematically shows a schematic diagram of the structure of the plywood layer 30 of the pipeline integrated module 100 according to an embodiment of the present disclosure.
  • the plywood layer 30 is a plate-like structure as a whole and is provided with an avoidance opening 31.
  • the cavity 40 is arranged accordingly so that the sandwich layer 30 does not affect the flow of the fluid inside the cavity 40.
  • the inner end of the sandwich layer 30 refers to the edge of the avoidance opening 31.
  • the outer end of the sandwich layer 30 is surrounded by a rectangular shape, and the shape formed by the inner end of the sandwich layer 30 is consistent with the shape of the cavity 40.
  • the plywood layer 30 is respectively connected to the first plate-like component 10 and the second plate-like component 20 through a solder layer. Specifically, the plywood layer 30 is connected to the first main body portion 12 through a solder layer, and the plywood layer 30 is connected to the second main body portion 22 through a solder layer, thereby filling the gap 50.
  • the solder layer here can be set on the surface of the first plate-like component 10 facing the plywood layer 30, or on the surface of the second plate-like component 20 facing the plywood layer 30. Of course, it can also be set on the surface of the plywood layer 30 facing the first plate-like component 10 and/or the surface facing the second plate-like component 20. There are many optional situations, and examples are not given one by one here.
  • a first solder layer (not shown) is provided on the surface of the plywood layer 30 facing the first plate-like component 10, and the surface of the plywood layer 30 facing the first plate-like component 10 is the upper surface
  • a second solder layer (not shown) is provided on the surface of the plywood layer 30 facing the second plate-like component 20, and the surface of the plywood layer 30 facing the second plate-like component 20 is the lower surface.
  • the first solder layer may be solid or paste-like, for example, the first solder layer may be foil solder or paste solder, and similarly, the second solder layer may also be foil solder or paste solder.
  • the first solder layer and/or the second solder layer can be fixed on the surface of the sandwich layer 30 by resistance spot welding. If the first solder layer and the second solder layer are both selected in the shape of paste solder, the paste solder can be set on both surfaces of the sandwich layer 30 by coating, where the surface is the surface of the sandwich layer 30 facing the first plate-like component 10 and the surface facing the second plate-like component 20.
  • the thickness of the foil solder is 0.03 mm to 0.15 mm, specifically 0.04 mm, 0.05 mm or 0.08 mm, etc., and can be pre-set on the upper surface and/or lower surface of the sandwich layer 30.
  • the upper and lower surfaces of the sandwich layer 30 can be provided with foil solder at the same time, or paste solder can be provided at the same time, or the upper surface of the sandwich layer 30 can be provided with foil solder and the lower surface can be provided with paste solder, or the opposite setting mode can be adopted, that is, the lower surface of the sandwich layer 30 can be provided with foil solder and the upper surface can be provided with paste solder, and the use can be selected according to the convenience.
  • a first brazing seam 60 is formed
  • a second brazing seam 70 is formed, wherein the first brazing layer forms the first brazing seam 60 under the capillary action, which can fill the gap 50, and the second brazing seam 70 formed by the second brazing layer under the capillary action can also fill the gap 50, plus the filling of the gap 50 by the plywood layer 30, these three, namely the first brazing seam 60, the second brazing seam 70 and the plywood layer 30 together form the filling of the gap 50, which significantly improves the filling effect of the gap 50, and the filling amount is more than doubled compared with the technical solution in the prior art.
  • the second through hole 221 is arranged to extend outward at equal distances along the edge of the cavity 40 at certain intervals.
  • the outward here refers to a direction pointing away from the cavity 40, and the plurality of second through holes 221 are arranged in a uniformly spaced structure.
  • first through holes 121 are also equidistantly spaced outward along the edge of the cavity 40. It is arranged after extending a certain interval, and the outward here refers to the direction pointing away from the cavity 40, and the multiple first through holes 121 are arranged in a structure with uniform intervals, and are arranged corresponding to the second through holes 221.
  • solder can be filled into the position of the first brazing seam 70 through the first through hole 121 near the leakage position to carry out repair welding on the leakage position.
  • the number of first grooves 11 is at least two, and at least two first grooves 11 are spaced apart;
  • the number of plywood layers 30 is at least two, and at least two plywood layers 30 are spaced apart, and the plywood layers 30 are arranged one-to-one with the first grooves 11 to form at least two cavities 40, which is also an important innovation of the present disclosure, and this embodiment will be described in detail below.
  • the number of the first groove 11 and the second groove 21 are both one, and the cavity 40 formed by the first groove 11 and the second groove 21 is one, while in this embodiment, the number of the first grooves 11 is at least two, and the number of the second grooves 21 is consistent with the number of the first grooves 11, that is, at least two cavities 40 are integrated on the pipeline integration module 100.
  • the plywood layer 30 is set as two independent ones instead of being set as an integrated plywood layer 30.
  • a single plywood layer 30 is conducive to brazing seam forming, and on the other hand, it is convenient to perform one-time leak detection on at least two cavities 40 without checking each cavity 40 separately, thereby improving the detection efficiency.
  • the spacing between two adjacent plywood layers 30 is greater than 2 mm. If the distance is too small, for example, the spacing between two adjacent plywood layers 30 is 1 mm, it will cause the brazing seam connection between the two adjacent plywood layers 30 during the brazing process. If internal leakage occurs between two adjacent cavities 40, the cavity 40 with the leakage cannot be detected through a single leak detection.
  • the distance between two adjacent plywood layers 30 needs to be less than a certain size, which can be determined according to the distance between the two cavities 40.
  • the distance here can be determined by the closest distance between the two first grooves 11.
  • the distance between the two plywood layers 30 needs to be less than 10 mm.
  • the plywood layers 30 are also set to three or four, and each plywood layer 30 is set corresponding to a cavity 40, so that the gaps 50 of each cavity 40 are filled separately.
  • an air inlet 14 is provided on the first groove 11, and the air inlet 14 is connected to an air inlet pipe, and the gas is transported to the interior of the cavity 40 through the air inlet 14.
  • a first convex bump 15 is formed at one end of the first groove 11, and the flow direction of the fluid is changed by the first convex bump 15.
  • An oil return port 16 is formed at the other end of the first groove 11, and the oil return pipe connected to the oil return port 16 is used to transport the waste oil after oil separation.
  • a second convex bump 25 is provided on the second groove 21, and the second convex bump 25 is provided corresponding to the first convex bump 15.
  • An air outlet 251 is provided on the second convex bump 25, and the air outlet 251 is connected to the air outlet pipe.
  • the first convex bump 15 and the second convex bump 25 here are both circular structures, and can also be set to a square structure or a structure of other shapes.
  • a guide portion 24 is further provided at a position of the second groove 21 corresponding to the air inlet 14.
  • the guide portion 24 is made by a stamping process and can guide the gas entering from the air inlet 14 so that the gas can smoothly enter the interior of the cavity 40. Accordingly, in order to prevent the sandwich layer 30 from affecting the gas, a stamping opening 311 is further provided on the sandwich layer 30, and the stamping opening 311 forms a part of the avoidance opening 31.
  • first plate-shaped member 10 and the second plate-shaped member 20 are both made of stainless steel, which is less expensive than copper alloy and has better stamping performance, thereby reducing the cost of the air conditioner outdoor unit.
  • the material selected is also stainless steel, which is the same as the material of the first plate-shaped member 10 and the second plate-shaped member 20, such as 308 stainless steel or 2209 stainless steel.
  • first plate-shaped member 10 and the second plate-shaped member 20 The outer dimensions of the three are the same, and the overall outer contour is a rectangle.
  • shape and size of the solder layer are consistent with the shape and size of the sandwich layer 30.
  • an air-conditioning outdoor unit in a second aspect of the embodiments of the present disclosure, includes the pipeline integrated module 100 mentioned in the above embodiments.
  • the air-conditioning outdoor unit here includes a connecting pipe and the pipeline integrated module 100 mentioned in the above embodiments, and the connecting pipe is connected to the pipeline integrated module 100.
  • the connecting pipe is connected to the pipeline integrated module 100 at the position of the connecting hole.
  • the connecting pipes here include an air inlet pipe, an exhaust pipe and an oil outlet pipe, etc.
  • the connecting holes here include an air inlet 14, an oil return port 16 and an air outlet 251, etc.
  • Corresponding interfaces can be set according to the functional parts set in the cavity 40 and connected to the corresponding connecting pipes. For example, when the functional part is a filter component, relevant connecting pipelines with the filter function are set. For other situations, no examples are given here.
  • the air conditioner outdoor unit also includes a compressor, a low-pressure tank, an electronic expansion valve, and an outdoor heat exchanger, etc. These are common components in the prior art and will not be elaborated here.
  • the third aspect of the present disclosure further discloses a method for preparing a pipeline integrated module 100.
  • the pipeline integrated module 100 is the pipeline integrated module 100 mentioned in the above embodiment.
  • the preparation method comprises:
  • a first plate-shaped component 10 having a first groove 11 is obtained by stamping, and a second plate-shaped component 20 having a second groove 21 is processed;
  • the first groove 11 can be formed by punching on a flat plate
  • the second groove 21 can be formed by punching on another flat plate, wherein the cross-sections of the first groove 11 and the second groove 21 are both semicircular, so that the first groove 11 and the second groove 21 can form a cross-section that is approximately circular.
  • a sandwich layer 30 having an escape opening 31 is processed, and the escape opening 31 is consistent in shape with a cavity 40 formed by the first groove 11 and the second groove 21 .
  • the plywood layer 30 can be made of a rectangular plate, and the avoidance opening 31 can be processed by wire cutting to prepare for the next step.
  • the sandwich layer 30 is disposed between the first plate-shaped member 10 and the second plate-shaped member 20 , and is connected to the first plate-shaped member 10 and the second plate-shaped member 20 .
  • first solder layer and/or the second solder layer can be a paste or a foil.
  • first solder layer and/or the second solder layer are both foil solders, they are fixed to the upper and lower surfaces of the sandwich layer 30 by resistance spot welding.
  • connection here is mainly welding, and the first plate-shaped component 10 and the second plate-shaped component 20 are connected to the sandwich layer 30 by brazing.
  • the plywood layer 30 is connected to the first plate-shaped component 10 by brazing, and/or the plywood layer 30 is connected to the second plate-shaped component 20 by brazing.
  • Brazing is achieved by furnace brazing, and multiple pipeline integrated modules 100 can be welded at one time to achieve small batch production.
  • the brazing process can be vacuum brazing to avoid the influence of air on the strength of brazing.
  • the protruding length L of the plywood layer 30 in the gap meets the specified requirements, that is, the protruding length L of the plywood layer 30 in the gap 50 is 0.2 to 1.2 times the radius R of the first convex arc 131 of the first stamped chamfer 13.
  • the protruding length L here can be 2 mm.
  • the thickness of the first plate-like component 10 and the second plate-like component 20 are the same, both of which are 1.2 mm, the thickness of the foil solder is 0.05 mm, and the protruding length L is 2 mm.
  • resistance spot welding is used for fixing during the installation process.
  • the assembled samples are placed in a vacuum brazing furnace, which can form an effect of almost completely filling the gap 50, thereby improving the pressure-bearing performance and fatigue resistance of the cavity 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种管路集成模块、空调室外机及管路集成模块的制备方法。管路集成模块包括第一板状部件、第二板状部件和夹板层,第一板状部件设置有第一凹槽,第一凹槽在槽口具有第一冲压倒角第二板状部件设置有第二凹槽,第二凹槽在槽口具有第二冲压倒角;第一板状部件和第二板状部件盖合设置,且第二凹槽与第一凹槽对应设置并合围形成腔体,腔体在第一冲压倒角和第二冲压倒角之间具有间隙;夹板层设置于第一板状部件和第二板状部件之间,并分别连接于第一板状部件和第二板状部件;夹板层面向腔体的端部位于间隙内。本公开中的管路集成模块可以提高对第一冲压倒角和第二冲压倒角之间的间隙的填充。

Description

管路集成模块、空调室外机及管路集成模块的制备方法
相关申请的交叉引用
本申请要求享有于2022年10月31日提交的名称为“管路集成模块、空调室外机及管路集成模块的制备方法”的中国专利申请202211348332.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本公开属于制冷设备技术领域,具体涉及一种管路集成模块、空调室外机及管路集成模块的制备方法。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
空调室外机管路复杂,需要对管路进行集成设置。现有技术中的管路集成模块包括两个板体,两个板体上分别冲压出凹槽,对接后通过焊接的方式形成密封的腔体,但是,凹槽是采用冲压工艺制成,会导致凹槽的槽口边缘形成冲压倒角,使得腔体之间形成间隙。在两个板体通过钎焊连接后,钎缝无法对间隙形成有效的填充,导致腔体的承压性能下降。
发明内容
本公开的目的是至少解决现有技术中的管路集成模块的腔体之间的间隙无法进行有效填充的问题。该目的是通过以下技术方案实现的:
本公开的第一方面提出了一种管路集成模块,包括:
第一板状部件,所述第一板状部件设置有第一凹槽,所述第一凹槽在槽口的 端部具有第一冲压倒角;
第二板状部件,所述第二板状部件设置有第二凹槽,所述第二凹槽在槽口的端部具有第二冲压倒角;
所述第一板状部件和所述第二板状部件盖合设置,且所述第二凹槽与所述第一凹槽对应设置并合围形成腔体,所述腔体在所述第一冲压倒角和所述第二冲压倒角之间具有间隙;以及
夹板层,所述夹板层设置于所述第一板状部件和所述第二板状部件之间,并连接于所述第一板状部件和所述第二板状部件;
所述夹板层靠近所述腔体的端部位于所述间隙内。
根据本公开的管路集成模块,在第一板状部件和第二板状部件之间增加了夹板层,其中,部分夹板层位于间隙内,可以形成对间隙的填充;另外,在夹板层和第一板状部件之间进行的连接,以及夹板层与第二板状部件之间进行的连接,也可以形成对间隙的填充,从而可以提高对第一冲压倒角和第二冲压倒角之间的间隙的填充。
另外,根据本公开的管路集成模块,还可具有如下附加的技术特征:
在本公开的一些实施例中,所述夹板层在所述间隙内的伸出长度为L,所述第一冲压倒角的第一凸弧的半径为R,其中,L为R的0.2至1.2倍。
在本公开的一些实施例中,所述夹板层的厚度为0.2毫米至1毫米。
在本公开的一些实施例中,所述夹板层通过钎料层分别与所述第一板状部件和所述第二板状部件连接。
在本公开的一些实施例中,所述夹板层朝向所述第一板状部件的表面设置有第一钎料层,并且所述夹板层朝向所述第二板状部件的表面设置有第二钎料层。
在本公开的一些实施例中,所述第一钎料层为箔状钎料或者膏状钎料;并且/或者所述第二钎料层为箔状钎料或者膏状钎料。
在本公开的一些实施例中,所述钎料层的厚度为0.03毫米至0.15毫米。
在本公开的一些实施例中,所述腔体的数量至少为两个,所述夹板层的数量与所述腔体的数量一致,并且所述夹板层与所述腔体一一对应设置。
在本公开的一些实施例中,相邻两个所述夹板层为并排设置,且所述相邻两个所述夹板层之间的间距大于2毫米。
在本公开的一些实施例中,所述第一板状部件包括第一本体部,所述第一本体部呈平板状,且所述第一本体部与所述第一凹槽连接,所述第一本体部设有第一通孔;
并且/或者所述第二板状部件包括第二本体部,所述第二本体部呈平板状,所述第二本体部与所述第二凹槽连接,所述第二本体部设有第二通孔。
本公开的第二方面提出了一种空调室外机,包括上面实施例中所述的管路集成模块。
根据本公开的空调室外机,对管路集成模块的结构进行变更,在第一板状部件和第二板状部件之间增加了夹板层,其中,部分夹板层位于间隙内,可以形成对间隙的填充;另外,在夹板层和第一板状部件之间进行的连接,以及夹板层与第二板状部件之间进行的连接,也可以形成对间隙的填充,从而可以提高对第一冲压倒角和第二冲压倒角之间的间隙的填充。
本公开的第三方面提出了一种管路集成模块的制备方法,所述制备方法包括:
制备具有第一凹槽的第一板状部件以及具有第二凹槽的第二板状部件;
加工出具有避让口的夹板层,所述避让口与所述第一凹槽和所述第二凹槽合围形成的腔体形状一致;
将所述夹板层设置于所述第一板状部件和所述第二板状部件之间,并和所述第一板状部件以及所述第二板状部件连接。
在本公开的一些实施例中,所述夹板层与所述第一板状部件通过钎焊连接,并且/或者所述夹板层与所述第二板状部件通过钎焊连接。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的附图标记表示相同的部件。在附图中:
图1示意性地示出了根据本公开实施方式的管路集成模块的立体结构示意图;
图2为图1中所示的管路集成模块处于第二视角的立体结构示意图;
图3示意性地示出了根据本公开实施方式的管路集成模块的夹板层的结构示意图;
图4为图1中所示的第一板状部件的结构示意图;
图5为图1中所示的第二板状部件的结构示意图;
图6为管路集成模块焊接后的截面结构示意图;
图7为图6中A处的局部放大图;
图8为图6中B处的局部放大图。
附图标记如下:
100为管路集成模块;
10为第一板状部件;11为第一凹槽;12为第一本体部;121为第一通孔;13为第一冲压倒角;131为第一凸弧;14为进气口;15为第一凸包;16为回油口;
20为第二板状部件;21为第二凹槽;22为第二本体部;221为第二通孔;23为第二冲压倒角;231为第二凸弧;24为导流部;25为第二凸包;251为出气孔;
30为夹板层;31为避让口;311为冲压口;
40为腔体;
50为间隙;
60为第一钎缝;
70为第二钎缝。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式 的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。因此,以下讨论的第一元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内部”、“外部”、“内侧”、“外侧”、“下面”、“下方”、“上面”、“上方”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方 向)并且文中使用的空间相对关系描述符相应地进行解释。
如图1至图8所示,根据本公开的实施方式的第一方面,提出了一种管路集成模块100,如图6、图7和图8所示,其中,图6为管路集成模块100焊接后的截面结构示意图,图7为图6中A处的局部放大图,图8为图6中B处的局部放大图。管路集成模块100包括第一板状部件10以及第二板状部件20,其中第一板状部件10沿着其厚度方向设置有第一凹槽11,第一凹槽11在槽口的端部具有第一冲压倒角13。这是由于第一凹槽11是采用冲压工艺制成的,因此,在第一凹槽11的槽口的端部无可避免地会出现冲压倒角,这里将第一凹槽11在槽口的端部的冲压倒角称为第一冲压倒角13。
与此类似,第二板状部件20在其厚度方向上设置有第二凹槽21,第二凹槽21在槽口的端部具有第二冲压倒角23,这是由于第二凹槽21是采用冲压工艺制成的,因此,在第二凹槽21的槽口的端部无可避免地会出现冲压倒角,这里将第二凹槽21在槽口的端部的冲压倒角称为第二冲压倒角23。
第一板状部件10和第二板状部件20盖合设置,且第二凹槽21与第一凹槽11对应设置并合围形成腔体40,腔体40在第一冲压倒角13和第二冲压倒角23之间具有间隙50。
在现有技术中,管路集成模块100也是通过两个板体盖合连接,限定出腔体40,腔体40内具有间隙50,间隙50的存在降低了腔体40的耐高压性能。
其中,这里的盖合连接通常是采用焊接的方式实现两个板体的连接,具体是采用钎料片放置在两个板体之间,通过钎焊实现连接,两片冲压形成的板体在拼接后会在第一冲压倒角13和第二冲压倒角23之间的位置形成间隙50,导致形成的腔体40出现形状突变,而使用炉中钎焊工艺时无法将该间隙50完全填充,当腔体40承受较大静载荷或者交变载荷时,形成的钎缝往往会在间隙 50处在钎缝厚度方向撕裂,对间隙50的填充程度越大,腔体40承受静载荷及交变载荷的性能越好。
另外,由于现有技术中的两块板体是采用冲压工艺制成,容易导致板体出现平面度不佳的情况,如果两个板体在相同位置同时出现起皱、鼓包、平面度差等缺陷,当两个板体盖合后,会出现间隙50叠加的情况,不利于钎缝成型,导致钎缝的强度较低。
在本公开中,管路集成模块100还包括夹板层30,夹板层30设置于第一板状部件10和第二板状部件20之间,并且夹板层30连接于第一板状部件10和第二板状部件20,夹板层30靠近腔体40的端部位于间隙50内,也就是说,夹板层30的部分位于间隙50中。
需要说明的是,这里提到的夹板层30靠近腔体40的端部是指夹板层30的内端部,这是与夹板层30的外端部相对的概念。夹板层30的外端部是背离腔体40的一端,夹板层30的内端部是位于腔体40内的。
本公开中的管路集成模块100对现有技术中的管路集成模块100进行了改进,在第一板状部件10和第二板状部件20之间增加了夹板层30,其中,部分夹板层30位于间隙50内,可以形成对间隙50的填充,另外,在夹板层30和第一板状部件10之间进行的连接,以及在夹板层30和第二板状部件20之间进行的连接,也可以形成对间隙50的填充,从而可以提高对第一冲压倒角13和第二冲压倒角23之间的间隙50的填充,对间隙50的填充量相比较于现有技术中的方案,提高了至少一倍以上,且可以明显提高钎缝的厚度,有效减小腔体40受到载荷后的应力集中水平,提升由两个冲压钣金制成的两块板体进行拼接后形成的腔体40的耐压及耐疲劳性能。
此外,由于本公开中的夹板层30可以采用机加工或者采用别的方式加工,平整度均匀,且表面粗糙度低,将夹板层30放置在 第一板状部件10和第二板状部件20之间,可以使得第一板状部件10和夹板层30之间的间距变小,且可以使得第二板状部件20和夹板层30之间的间距变小,在进行焊接后,避免第一板状部件10的形变和第二板状部件20的形变导致的间隙50叠加,更有利于钎缝的铺展和成型。
在一些可选的实施例中,如图1至图2所示,以及图4和图5所示,其中,图1示意性地示出了根据本公开实施方式的管路集成模块100的立体结构示意图,图2为图1中所示的管路集成模块100处于第二视角的立体结构示意图,图4为图1中所示的第一板状部件10的结构示意图,图5为图1中所示的第二板状部件20的结构示意图。第一板状部件10除了包括第一凹槽11外,还包括第一本体部12,第一本体部12呈平板状,且第一本体部12与第一凹槽11连接,第一本体部12设有第一通孔121,第二板状部件20除了包括第二凹槽21外,第二板状部件20还包括第二本体部22,第二本体部22呈平板状,第二本体部22与第二凹槽21连接,第二本体部22设有第二通孔221。
通过第一本体部12和第二本体部22对应并连接,可以使得第一凹槽11和第二凹槽21合围形成腔体40,腔体40成为液体流动的管体。
需要特别指出的是,这里的第一通孔121和第二通孔221是对应设置的,且数量均为多个,可以通过第一通孔121和/或者第二通孔221对钎缝进行补焊,方便后续对管路集成模块100进行维修和保养,例如,当出现流体泄漏时,根据流体泄漏的位置,通过泄漏位置附近的第一通孔121和/或者第二通孔221进行补焊。
在一些可选的实施例中,夹板层30在间隙50内的伸出长度L为第一冲压倒角13的第一凸弧131半径R的0.2至1.2倍,也就是说L为R的0.2至1.2倍,如0.4、0.6、0.7或者0.8倍等。 其中,这里的伸出长度为图8中标注L对应的长度范围,就是指的在图8中夹板层30在间隙50中露出的长度,如果夹板层30在间隙50内的伸出长度L太小,会导致焊接后的钎缝覆盖夹板层30在间隙50中的端部,导致对间隙50的填充效果太差;但是,如果夹板层30在间隙50内的伸出长度L太长,会导致由于伸出长度L太大会影响腔体40的应用功能,比如降低油分离的效果。
需要说明的是,夹板层30在间隙50中的伸出长度L在不同的位置是相同的,从而对间隙50的填充效果也是均匀和一致的,不会出现局部填充程度高,局部填充程度低的情况。
需要说明的是,这里的第一凸弧131是指的第一冲压倒角13朝向腔体40内部的表面,第二凸弧231是指的第二冲压倒角23朝向腔体40内部的表面,第一凸弧131和第二凸弧231是对称且对应设置的方式,如果第一冲压倒角13和第二冲压倒角23之间不存在间隙50,则第一凹槽11和第二凹槽21合围形成的腔体40的横截面是呈规则的圆形,然而由于间隙50的存在,会使得第一凹槽11和第二凹槽21合围形成的腔体40的横截面是呈不规则的圆形,因此,需要对非圆部分对应的间隙50进行填充,使得腔体40的横截面更加接近圆形,从而提高腔体40的耐压及耐疲劳性能。
在一些可选的实施例中,夹板层30的厚度为0.2毫米至1毫米,厚度过小会导致夹板层30的加工及装配过程比较困难,但是,夹板层30的厚度过大会使腔体40的截面积明显变大,提升腔体40的应力水平,不利于提高腔体40的承压性能及抗疲劳性能。因此,这里的夹板层30的厚度可以是0.3毫米、0.4毫米或者0.5毫米中的一个,当然也可以选择这个范围0.2毫米至1毫米内的其他参数。
在一些可选的实施例中,如图3所示,图3示意性地示出了根据本公开实施方式的管路集成模块100的夹板层30的结构示意图,夹板层30整体呈板状结构,且设有避让口31,避让口31与 腔体40对应设置,从而可以使得夹板层30不会对腔体40内部流体的流动产生影响。夹板层30的内端部是指避让口31的边缘部分。在图3中,夹板层30的外端部围成矩形的形状,夹板层30的内端部形成的形状与腔体40的形状一致。
在一些可选的实施例中,夹板层30通过钎料层分别与所述第一板状部件10和所述第二板状部件20连接,具体地,夹板层30通过钎料层与第一本体部12连接,并且夹板层30通过钎料层与第二本体部22连接,可以形成对间隙50的填充。
这里的钎料层可以设置在第一板状部件10朝向夹板层30的表面,也可以设置在第二板状部件20朝向夹板层30的表面,当然,也可以设置在夹板层30面向第一板状部件10的表面和/或者面向第二板状部件20的表面,具有多种可选的情况,这里不再进行一一举例。
作为经常选择的一种方式,夹板层30朝向第一板状部件10的表面设置有第一钎料层(未图示),夹板层30朝向第一板状部件10的表面为上表面,并且夹板层30朝向第二板状部件20的表面设置有第二钎料层(未图示),夹板层30朝向第二板状部件20的表面为下表面,通过在夹板层30的上表面和下表面分别设置第一钎料层和第二钎料层,可以通过第一钎料层实现与第一板状部件10的连接,从夹板层30的上侧通过第一钎料层形成的钎缝实现对间隙50的填充,也可以通过第二钎料层实现与第二板状部件20的连接,从夹板层30的下侧通过第二钎料层形成的钎缝实现对间隙50的填充。
下面将对第一钎料层和第二钎料层的具体设置方式将在下面进行展开阐述。
可选地,第一钎料层可以是固体的,也可以是膏状的,例如第一钎料层为箔状钎料或者膏状钎料,同样地,第二钎料层也可以为箔状钎料或者膏状钎料,当第一钎料层和/或第二钎料层选择 箔状钎料时,可通过电阻点焊的方式将第一钎料层和/或第二钎料层固定在夹板层30的表面上。如果第一钎料层和第二钎料层均选择为膏状钎料的形状,则可以通过涂覆的方式将膏状钎料设置在夹板层30的两个表面上,这里的表面是夹板层30朝向第一板状部件10和朝向第二板状部件20的表面。
在一些可选的实施例中,箔状钎料的厚度为0.03毫米至0.15毫米,具体可以是0.04毫米、0.05或者0.08毫米等,可以预先设置在夹板层30的上表面和/或者下表面。这里需要指出的是,夹板层30的上表面和下表面可以同时设置箔状钎料,也可以同时设置膏状钎料,或者夹板层30的上表面设置箔状钎料,下表面设置膏状钎料,也可以采用相反的设置方式,夹板层30的下表面设置箔状钎料,上表面设置膏状钎料,可以根据方便程度选择使用。
继续参照图7,第一钎焊层在完成焊接后,形成了第一钎缝60,第二钎焊层在完成焊接后,形成了第二钎缝70,其中,第一钎焊层在毛细作用下,形成的第一钎缝60可以对间隙50进行填充,第二钎焊层在毛细作用下,形成的第二钎缝70也可以对间隙50进行填充,再加上夹板层30对间隙50的填充,这三者,即第一钎缝60、第二钎缝70和夹板层30共同形成对间隙50的填充,明显提高了对间隙50的填充效果,填充量相比于现有技术中的技术方案提高了一倍以上。
另外,这里补充说明下第一通孔121和第二通孔221的设置位置以及产生的技术效果,从图5中可以看出,第二通孔221是沿着腔体40的边缘向外等距离延伸一定间隔后设置的,这里的向外,是指向与远离腔体40的方向,且多个第二通孔221是均匀间隔设置的结构,在需要进行补焊的时候,可以通过泄漏位置附近的第二通孔221向第二钎缝70所在的位置填充焊料,对泄漏的位置进行补焊。
与此类似,第一通孔121也是沿着腔体40的边缘向外等距离 延伸一定间隔后设置的,这里的向外,是指向与远离腔体40的方向,且多个第一通孔121是均匀间隔设置的结构,并与第二通孔221相对应设置,在需要进行补焊的时候,可以通过泄漏位置附近的第一通孔121向第一钎缝70所在的位置填充焊料,对泄漏的位置进行补焊。
在一些可选的实施例中,第一凹槽11的数量为至少两个,且至少两个第一凹槽11为间隔设置;夹板层30的数量为至少两个,且至少两个夹板层30间隔设置,夹板层30与第一凹槽11一一对应设置,形成了至少两个腔体40,这也是本公开的一个重要创新之处,下面将对该实施例进行详细描述。
在前面的实施例中,第一凹槽11和第二凹槽21的数量都是一个,第一凹槽11和第二凹槽21合围形成的腔体40为一个,而在该实施例中,第一凹槽11的数量为至少两个,第二凹槽21的数量与第一凹槽11的数量一致,也就是说,管路集成模块100上至少集成了两个腔体40,对于两个腔体40的情况,这里将夹板层30设置为两个独立的情况,而非设置为一体的夹板层30,一方面是由于单独的一个夹板层30有利于钎缝成型,另一方面是方便对至少两个腔体40进行一次性检漏,不需要逐个腔体40分别进行检查,提高了检测的效率。
相应地,为了避免两个腔体40之间出现连通的情况,相邻两个夹板层30之间的间距大于2毫米,如果距离过小,例如相邻两个夹板层30之间的间距为1毫米,将会导致钎焊过程中相邻两个夹板层30之间的钎缝连接,如果相邻的两个腔体40出现内部串漏,无法通过一次检漏检查到出现泄露情况的腔体40。
相邻两个夹板层30之间的间距需要小于一定的尺寸,可根据两个腔体40之间的间距来定,这里的间距,可以通过两个第一凹槽11之间的最近距离来确定。例如,当两个腔体40之间的间距为10毫米时,两个夹板层30之间的间距需要小于10毫米,可以 在2毫米和10毫米之间选出合适的间距,例如4毫米或者5毫米等。
上面提到了腔体40为两个的情况,对于更多个腔体40,例如三个或者四个的腔体40,相应地,夹板层30也设置为三个或者四个,每个夹板层30对应一个腔体40设置,从而实现对每个腔体40的间隙50均进行分别填充。
在一些可选的实施例中,参照图2所示,当腔体40用于油分离场景的情况时,第一凹槽11上设置有进气口14,进气口14连接有进气管,通过进气口14将气体输送到腔体40的内部。另外,在第一凹槽11的一端还形成有第一凸包15,通过第一凸包15对流体的流向进行改变,在第一凹槽11的另一端还形成有回油口16,通过回油口16连接的回油管,实现对油分离后的废油进行转运。相应地,如图5所示,在第二凹槽21上设置有第二凸包25,第二凸包25和第一凸包15对应设置,第二凸包25上设置有出气孔251,通过出气孔251与出气管进行连接。这里的第一凸包15和第二凸包25均呈圆形结构,也可以设置为方形结构或者其他形状的结构。
在一些可选的实施例中,第二凹槽21与进气口14对应的位置还设置有导流部24,导流部24采用冲压工艺制成,可以对从进气口14进入的气体进行导流,使得气体能够顺畅地进入腔体40的内部。相应地,为了避免夹板层30对气体产生影响,在夹板层30上还设置了冲压口311,冲压口311形成了避让口31的一部分。
另外,这里的第一板状部件10和第二板状部件20均采用不锈钢材质制成,采用不锈钢材质相比较于铜合金而言,成本较低,且冲压性能较好,可以降低空调室外机的成本。另外,对于夹板层30而言,选择的材质也为不锈钢,并与第一板状部件10和第二板状部件20的材质相同,如可以采用308不锈钢或者2209不锈钢等。
需要说明的是,这里的第一板状部件10和第二板状部件20、 以及夹板层30三者的外形尺寸是一样的,整体的外轮廓均为矩形。当然,钎料层的形状和尺寸是与夹板层30的形状和尺寸是一致的。
本公开实施例的第二方面,提供了一种空调室外机,空调室外机包括上面实施例中所提到的管路集成模块100。这里的空调室外机包括连接管和上面实施例中所提到的管路集成模块100,连接管与管路集成模块100连接。其中,连接管在连接孔的位置与管路集成模块100连接。
这里的连接管包括进气管、排气管和出油管等,这里的连接孔包括进气口14、回油口16和出气孔251等,可以根据腔体40内设置的功能件设置相应的接口,并与相应的连接管进行连接,例如功能件为过滤组件时,设置与过滤器功能的相关连接管路,对于其他的情况,这里不再进行举例说明。
空调室外机除了这些结构外,还包括压缩机、低压罐、电子膨胀阀以及室外换热器等,这些都是现有技术中的常见部件,这里不再进行展开阐述。
本公开的第三方面还公开了一种管路集成模块100的制备方法,管路集成模块100为上面实施例中所提到的管路集成模块100,制备方法包括:
通过冲压方式获得具有第一凹槽11的第一板状部件10,并加工出具有第二凹槽21的第二板状部件20;
具体地,可以通过在平板上冲压的方式形成第一凹槽11,并通过在另一个平板上冲压的方式形成第二凹槽21,其中,这里的第一凹槽11和第二凹槽21的截面均呈半圆形,从而可以使得第一凹槽11和第二凹槽21围成近似于圆形的截面。
加工出具有避让口31的夹板层30,避让口31与第一凹槽11和第二凹槽21合围形成的腔体40形状一致。
在这里,夹板层30可以采用矩形板,通过线切割的方式加工出避让口31,为下一步做好准备。
将夹板层30设置于第一板状部件10和第二板状部件20之间,并和第一板状部件10以及第二板状部件20连接。
在将夹板层30放置于第一板状部件10和第二板状部件20之间前,需要在夹板层30的上表面形成第一钎料层,在夹板层30的下表面形成第二钎料层,这里的第一钎料层和/或者第二钎料层可以是膏状,也可以是箔状,当第一钎料层和/或者第二钎料层均为箔状钎料时,采用电阻点焊的方式固定在夹板层30的上表面和下表面。
其中,这里的连接主要是焊接,通过钎焊的方式将第一板状部件10以及第二板状部件20均与夹板层30实现连接。
在一些可选的实施例中,夹板层30与第一板状部件10通过钎焊连接,并且/或者,夹板层30与第二板状部件20也是通过钎焊连接。
钎焊是采用炉中钎焊的方式来实现的,可以一次焊接多个管路集成模块100,实现小批量生产,钎焊的过程可以采用真空钎焊的方式,避免被空气影响钎焊的强度。
需要注意的是,在安装过程中需要保证夹板层30在间隙中的伸出长度L满足规定的要求,即夹板层30在间隙50内的伸出长度L为第一冲压倒角13的第一凸弧131半径R的0.2至1.2倍,例如这里的伸出长度L可以为2毫米。
在常见的尺寸中,第一板状部件10和第二板状部件20的厚度相同,均为1.2毫米,箔状钎料的厚度为0.05毫米,伸出长度L为2毫米,在试验完成后,在安装过程中的固定方式均采用电阻点焊的方式,装配完成后的样品放入真空钎焊炉中,可以形成对间隙50的近似完全填充的效果,提高了腔体40的承压性能和耐疲劳性能。
以上所述,仅为本公开的一些具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开 揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种管路集成模块,其中,包括:
    第一板状部件,所述第一板状部件设置有第一凹槽,所述第一凹槽的槽口具有第一冲压倒角;
    第二板状部件,所述第二板状部件设置有第二凹槽,所述第二凹槽的槽口具有第二冲压倒角;
    所述第一板状部件和所述第二板状部件盖合设置,且所述第二凹槽与所述第一凹槽对应设置并合围形成腔体,所述腔体在所述第一冲压倒角和所述第二冲压倒角之间具有间隙;以及
    夹板层,所述夹板层设置于所述第一板状部件和所述第二板状部件之间,并分别连接于所述第一板状部件和所述第二板状部件;
    所述夹板层面向所述腔体的端部位于所述间隙内。
  2. 根据权利要求1所述的管路集成模块,其中,所述夹板层在所述间隙内的伸出长度为L,所述第一冲压倒角的第一凸弧的半径为R,其中,L为R的0.2至1.2倍。
  3. 根据权利要求1所述的管路集成模块,其中,所述夹板层的厚度为0.2毫米至1毫米。
  4. 根据权利要求1所述的管路集成模块,其中,所述夹板层通过钎料层分别与所述第一板状部件和所述第二板状部件连接。
  5. 根据权利要求1所述的管路集成模块,其中,所述夹板层朝向所述第一板状部件的表面设置有第一钎料层,并且所述夹板层朝向所述第二板状部件的表面设置有第二钎料层。
  6. 根据权利要求5所述的管路集成模块,其中,所述第一钎料层为箔状钎料或者膏状钎料;并且/或者所述第二钎料层为箔状钎料或者膏状钎料。
  7. 根据权利要求4所述的管路集成模块,其中,所述钎料层的厚度为0.03毫米至0.15毫米。
  8. 根据权利要求1所述的管路集成模块,其中,所述腔体的数量至少为两个,所述夹板层的数量与所述腔体的数量一致,并且所述夹板层与所述腔体一一对应 设置。
  9. 根据权利要求8所述的管路集成模块,其中,相邻两个所述夹板层为并排设置,且所述相邻两个所述夹板层之间的间距大于2毫米。
  10. 根据权利要求1所述的管路集成模块,其中,所述第一板状部件包括第一本体部,所述第一本体部呈平板状,且所述第一本体部与所述第一凹槽连接,所述第一本体部设有第一通孔;
    并且/或者所述第二板状部件包括第二本体部,所述第二本体部呈平板状,所述第二本体部与所述第二凹槽连接,所述第二本体部设有第二通孔。
  11. 一种空调室外机,其中,包括权利要求1至10中任一项所述的管路集成模块。
  12. 一种如权利要求1至10中任一项所述的管路集成模块的制备方法,其中,所述制备方法包括:
    制备具有第一凹槽的第一板状部件以及具有第二凹槽的第二板状部件;
    加工出具有避让口的夹板层,所述避让口与所述第一凹槽和所述第二凹槽合围形成的腔体形状一致;
    将所述夹板层设置于所述第一板状部件和所述第二板状部件之间,并和所述第一板状部件以及所述第二板状部件连接。
  13. 根据权利要求12所述的管路集成模块的制备方法,其中,所述夹板层与所述第一板状部件通过钎焊连接;
    并且/或者所述夹板层与所述第二板状部件通过钎焊连接。
PCT/CN2023/114084 2022-10-31 2023-08-21 管路集成模块、空调室外机及管路集成模块的制备方法 WO2024093455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211348332.XA CN116026021A (zh) 2022-10-31 2022-10-31 管路集成模块、空调室外机及管路集成模块的制备方法
CN202211348332.X 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093455A1 true WO2024093455A1 (zh) 2024-05-10

Family

ID=86090178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114084 WO2024093455A1 (zh) 2022-10-31 2023-08-21 管路集成模块、空调室外机及管路集成模块的制备方法

Country Status (2)

Country Link
CN (1) CN116026021A (zh)
WO (1) WO2024093455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026021A (zh) * 2022-10-31 2023-04-28 广东美的暖通设备有限公司 管路集成模块、空调室外机及管路集成模块的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110123823A1 (en) * 2009-11-23 2011-05-26 Hamilton Sundstrand Corporation Method of joining graphite fibers to a substrate
CN217004700U (zh) * 2021-12-28 2022-07-19 广东美的暖通设备有限公司 管路集成模块、空调室外机和空调系统
CN217109806U (zh) * 2022-04-01 2022-08-02 宁波市哈雷换热设备有限公司 一种焊接可靠且成品率高的模块机构
CN116026021A (zh) * 2022-10-31 2023-04-28 广东美的暖通设备有限公司 管路集成模块、空调室外机及管路集成模块的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110123823A1 (en) * 2009-11-23 2011-05-26 Hamilton Sundstrand Corporation Method of joining graphite fibers to a substrate
CN217004700U (zh) * 2021-12-28 2022-07-19 广东美的暖通设备有限公司 管路集成模块、空调室外机和空调系统
CN217109806U (zh) * 2022-04-01 2022-08-02 宁波市哈雷换热设备有限公司 一种焊接可靠且成品率高的模块机构
CN116026021A (zh) * 2022-10-31 2023-04-28 广东美的暖通设备有限公司 管路集成模块、空调室外机及管路集成模块的制备方法

Also Published As

Publication number Publication date
CN116026021A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2024093455A1 (zh) 管路集成模块、空调室外机及管路集成模块的制备方法
US10317143B2 (en) Heat exchanger and method of making the same
US20080116246A1 (en) Method for Making a Component Including Fluid Flow Channels
US10060687B2 (en) Connecting member and micro-channel heat exchanger
CN110553533A (zh) 一种铝制式空冷器多孔扁管与管板的连接结构
WO2018146975A1 (ja) 熱交換器
US20150144309A1 (en) Flattened Envelope Heat Exchanger
JP2005233576A (ja) 熱交換器
JP2006026721A (ja) 流路内蔵型台座及びその製造方法
US20070131400A1 (en) Heat exchanger for gases, especially for engine exhaust gases
CN206369028U (zh) 不锈钢汽车排气管法兰
CN218936610U (zh) 管路集成模块、空调室外机及空调系统
JP6326753B2 (ja) 熱交換器
JPH08100963A (ja) 流体分岐ブロックおよびその製造方法
CN113865163A (zh) 不锈钢分液器、空调及不锈钢分液器的制造方法
JP3417264B2 (ja) ヒートシンクの製造方法
JP2009198132A (ja) 熱交換器用チューブ
JP6432753B2 (ja) 熱交換器および熱交換器の製造方法
KR20180015503A (ko) 열교환기 및 이를 구비하는 원전
JP2004138521A (ja) 波形形状冷却パネルおよびその製作方法
JPH05157486A (ja) 熱交換器
CN101832726B (zh) 一种用于热交换器的散热管及其制造方法
WO2024079808A1 (ja) 冷却床部材及び冷却床部材の製造方法
US20210262422A1 (en) Heat exchanger housing and method of manufacturing a heat exchanger
CN220134868U (zh) 矩形管衬管连接结构及制冷组件