WO2024093438A1 - 一种多重mimo窄波束、高增益基站天线 - Google Patents

一种多重mimo窄波束、高增益基站天线 Download PDF

Info

Publication number
WO2024093438A1
WO2024093438A1 PCT/CN2023/113264 CN2023113264W WO2024093438A1 WO 2024093438 A1 WO2024093438 A1 WO 2024093438A1 CN 2023113264 W CN2023113264 W CN 2023113264W WO 2024093438 A1 WO2024093438 A1 WO 2024093438A1
Authority
WO
WIPO (PCT)
Prior art keywords
mimo
base station
antenna
linear array
array feed
Prior art date
Application number
PCT/CN2023/113264
Other languages
English (en)
French (fr)
Inventor
胡关平
吴荣远
路飞
Original Assignee
胡关平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡关平 filed Critical 胡关平
Publication of WO2024093438A1 publication Critical patent/WO2024093438A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the utility model relates to the technical field of cellular mobile communication systems, in particular to a multiple MIMO narrow beam and high-gain base station antenna.
  • the wireless network coverage of cellular mobile communications and WLAN (Wireless Local Area Network) systems still needs to be continuously optimized and improved: many special application scenario coverage, such as narrow and long area coverage, remote target remote coverage and building penetration coverage, are increasingly valued by network operators.
  • MIMO Multiple Input Multiple Output
  • high-gain base station antennas is one of the key measures to optimize the above special application scenarios.
  • the base station antennas used in the prior art mainly have two structural forms, namely: multiple MIMO narrow beam, high-gain passive array antennas and multiple MIMO narrow beam, high-gain Luneburg lens antennas (cylindrical).
  • the structural characteristics of the multiple MIMO narrow beam, high gain passive array antenna in the prior art determine that when realizing the narrow beam, high gain radiation characteristics, more radiating units and complex feeding networks are required. For example, when realizing a horizontal beam width of about 15°/a gain of about 20dBi, the number of radiating units is about 20, so there are defects such as complex structure, large feeding loss, and low aperture efficiency.
  • the structural characteristics of the multiple MIMO narrow beam, high gain Luneburg lens antenna (cylindrical) in the prior art determine that when realizing the narrow beam, high gain radiation characteristics, the diameter of the dielectric lens required is relatively large. For example, when realizing a horizontal beam width of about 15°/a gain of about 20dBi, the diameter of the cylindrical dielectric lens is about 5 working wavelengths, so there are defects such as complex process, large volume, and high cost.
  • the purpose of the utility model is to overcome the deficiencies mentioned in the above-mentioned prior art and to provide a novel multiple MIMO narrow beam, high gain base station antenna for cellular mobile communications and WLAN systems.
  • a parabolic reflector is used to adapt multiple dual-polarized linear array feed sources to realize a 4 ⁇ 4 or 6 ⁇ 6 or 8 ⁇ 8 or more multiple MIMO narrow beam, high gain base station antenna.
  • the technical solution has the advantages of high gain level, high aperture efficiency, simple structure and process, low manufacturing cost, etc., and can achieve the effect of low-cost optimization of narrow and long area coverage and remote coverage of remote targets.
  • a multiple MIMO narrow beam, high gain base station antenna including more than one 2 ⁇ 2 MIMO antenna module, each of which The 2 ⁇ 2 MIMO antenna module is composed of a parabolic reflector and a 1-16-unit linear array feed source.
  • the parabolic reflector is formed along a vertical line motion trajectory with a parabola of a certain focal diameter ratio as the mother line, and has a focal line.
  • the phase center of each unit of the 1-16-unit linear array feed source is set on the focal line.
  • the focal diameter ratio of the parabolic reflective surface is in the range of 0.15 to 0.50
  • the aperture range is in the range of 1.5 to 10.0 working wavelengths
  • the material of the parabolic reflective surface is a solid plate-shaped, hollow plate-shaped, or mesh-shaped high-conductivity metal material.
  • the specifications of the 2 ⁇ 2 MIMO antenna module are determined by the number of units of the linear array feed and the operating frequency band, including: a single-feed 2 ⁇ 2 MIMO antenna module, a 2-unit linear array feed 2 ⁇ 2 MIMO antenna module, a 3-unit linear array feed 2 ⁇ 2 MIMO antenna module, a 4-unit linear array feed 2 ⁇ 2 MIMO antenna module, and so on to a 16-unit linear array feed 2 ⁇ 2 MIMO antenna module.
  • the polarization mode of the 1 to 16-unit linear array feed source is ⁇ 45° dual-linear polarization, and its operating frequency band can be a single band or a multi-band.
  • the linear array feed source with a unit number ⁇ 3 presets and electrically adjusts the amplitude and phase weights of each unit through the feeding network to achieve the vertical plane radiation pattern shaping of the base station antenna and the electrical adjustment of the vertical plane beam downtilt angle.
  • the multiple MIMO of the base station antenna is composed of more than one 2 ⁇ 2 MIMO antenna modules of the same or different specifications, and its overall structure is modular, and each of the 2 ⁇ 2 MIMO antenna modules can be combined vertically or horizontally.
  • the appearance of the base station antenna can be a structure with an integral antenna cover; it can also be a structure with a reflective surface plus a linear array feed with a feed cover, and the material of the antenna cover and the feed cover is a low-loss dielectric material.
  • the beneficial effects of the utility model are: for the first time, a novel technical solution using a parabolic reflector to adapt multiple dual-polarized linear array feed sources in the field of cellular mobile communications is proposed to realize a 4 ⁇ 4 or 6 ⁇ 6 or 8 ⁇ 8 or more MIMO narrow beam, high-gain base station antenna.
  • Fig. 1 is a three-dimensional diagram of the principle model of the utility model
  • Fig. 2 is a front view of the principle model of the present utility model
  • Fig. 3 is a left view of the principle model of the utility model
  • FIG4 is a top view of the principle model of the present utility model
  • FIG5 is a front view of a single-feed 2 ⁇ 2 MIMO antenna module of the present invention.
  • FIG6 is a front view of a 2 ⁇ 2 MIMO antenna module with 2-element linear array feed according to the present invention.
  • FIG7 is a front view of a 3-element linear array feed 2 ⁇ 2 MIMO antenna module of the present invention.
  • FIG8 is a front view of a 4-element linear array feed 2 ⁇ 2 MIMO antenna module of the present invention.
  • FIG9 is a stereoscopic diagram of a horizontally combined 8 ⁇ 8 MIMO antenna model of the present invention.
  • FIG10 is a three-dimensional diagram of a vertically combined 8 ⁇ 8 MIMO antenna model of the present invention.
  • FIG11 is an E-plane radiation diagram of a single-feed 2 ⁇ 2 MIMO antenna module of the present invention.
  • FIG12 is an H-plane radiation diagram of a single-feed 2 ⁇ 2 MIMO antenna module of the present invention.
  • FIG13 is an E-plane radiation diagram of a 2 ⁇ 2 MIMO antenna module with 2-element linear array feed according to the present invention.
  • FIG14 is an H-plane radiation diagram of a 2 ⁇ 2 MIMO antenna module with 2-element linear array feed according to the present invention.
  • FIG15 is an E-plane radiation diagram of a 2 ⁇ 2 MIMO antenna module with 3-element linear array feed according to the present invention.
  • FIG16 is an H-plane radiation diagram of a 3-element linear array feed 2 ⁇ 2 MIMO antenna module of the present invention.
  • FIG17 is an E-plane radiation diagram of a 2 ⁇ 2 MIMO antenna module with 4 linear array feed units according to the present invention.
  • FIG18 is an H-plane radiation diagram of a 4-element linear array feed 2 ⁇ 2 MIMO antenna module of the utility model
  • FIG. 19-a is an appearance diagram of the utility model of a longitudinally combined 8 ⁇ 8 MIMO antenna with an integral radome structure
  • FIG19-b is an appearance diagram of the utility model's longitudinally combined 8 ⁇ 8 MIMO antenna reflector plus a linear array feed structure with a feed cover.
  • a 4 ⁇ 4 MIMO narrow beam, high gain base station antenna includes two 4-element linear array feed 2 ⁇ 2 MIMO antenna modules.
  • the parabolic reflector 1 is formed by a trajectory of a parabola M with a focal ratio of f/D moving in a straight line in a vertical direction.
  • the length of the trajectory is H, which is the height of the reflector 1.
  • the trajectory of the focus of the parabola M is a straight line F, which is the focal line of the reflector 1.
  • the two 4-element linear array feeds 201 and 202 each illuminate the corresponding parabolic reflector to form a 2 ⁇ 2 MIMO beam in the same direction.
  • the phase center of each unit of the linear array feeds 201 and 202 is set on the focal line F.
  • the focal diameter ratio f/D of the parabolic reflector 1 depends on the irradiation angle of the 4-unit linear array feed 201 and 202, and the value range is 0.15 to 0.50.
  • the aperture D of the parabolic reflector 1 determines the wavelength and gain characteristics of the horizontal plane of the base station antenna, and the value range is 1.5 to 10.0 working wavelengths.
  • the material of the parabolic reflector 1 is preferably a solid or hollow aluminum alloy plate.
  • the specifications of the 2 ⁇ 2 MIMO antenna module are 5G cellular mobile communication system operating frequency band (3300 ⁇ 3800MHz)/4-unit linear array feed module, and the two 2 ⁇ 2 MIMO antenna modules composed of the 4-unit linear array feed 201 and 202 and the parabolic reflector 1 are vertically combined to realize a 4 ⁇ 4 MIMO narrow beam, high gain base station antenna.
  • the polarization mode of the 4-element linear array feed sources 201 and 202 is ⁇ 45° dual-line polarization, and they work in the 3300-3800 MHz frequency band of the 5G cellular mobile communication system.
  • the electrical network presets and electrically adjusts the amplitude and phase weights of each unit to achieve the shaping of the vertical plane radiation pattern of the base station antenna and the electrical adjustment of the vertical plane beam downtilt angle.
  • FIGS 5-8 are main views of four typical 2 ⁇ 2 MIMO antenna modules of the technical solution of the utility model, namely: a single-feed 2 ⁇ 2 MIMO antenna module, a 2-unit linear array feed 2 ⁇ 2 MIMO antenna module, a 3-unit linear array feed 2 ⁇ 2 MIMO antenna module, and a 4-unit linear array feed 2 ⁇ 2 MIMO antenna module.
  • Figures 11-18 are the vertical plane (ee) and horizontal plane (hh) radiation patterns corresponding to each module; the 2 ⁇ 2 MIMO antenna modules can be combined according to user needs, and the parabolic reflector 1 of the combined multiple MIMO narrow beam, high gain base station antenna is an integrated structure of the reflector surfaces of each 2 ⁇ 2 MIMO antenna module; as shown in Figures 9-10, they are case models of the horizontal combination and vertical combination of 8 ⁇ 8 MIMO narrow beam, high gain base station antennas of the technical solution of the utility model.
  • the appearance of the multiple MIMO narrow beam, high gain base station antenna may be a structure with an integral antenna cover, which is suitable for the medium frequency band (1690-2690 MHz) and 5G frequency band (3300-3800 MHz) in cellular mobile communication systems;
  • the appearance of the multiple MIMO narrow beam, high gain base station antenna may be a structure with the reflecting surface plus a linear array feed with a feed cover, which is suitable for the low frequency band (690-960 MHz) and medium frequency band (1690-2690 MHz) in cellular mobile communication systems, and the material of the antenna cover 301 and the feed cover 302 is preferably a low-loss epoxy glass fiber composite material.
  • the utility model provides a novel multiple MIMO narrow beam, high gain base station antenna with high aperture efficiency, and for the first time proposes a technical solution of using a parabolic reflector to adapt multiple dual-polarization linear array feed sources.
  • the linear array feed source can be any combination of 1 to 16 units; if a dual-frequency dual-polarization linear array feed source is used, a dual-frequency multiple MIMO narrow beam, high gain base station antenna can also be realized; the technical solution of the utility model integrates the advantages of a reflector antenna and an array antenna, and has a higher comprehensive cost performance than the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本实用新型公开了一种多重MIMO窄波束、高增益基站天线,包括一个以上的2×2MIMO天线模块,每一所述2×2MIMO天线模块由抛物柱面反射面和1~16单元线阵馈源构成,所述抛物柱面反射面是以一定焦径比的抛物线为母线沿一垂直线运动轨迹形成,具有一条焦直线,可适配多个双极化线阵馈源,实现4×4或6×6或8×8或更多重MIMO的窄波束、高增益基站天线,其总体结构呈积木化,各个所述2×2MIMO天线模块可以是纵向组合,也可以是横向组合。本实用新型适用于蜂窝移动通信及WLAN系统,尤其是5G网络的特殊场景。

Description

一种多重MIMO窄波束、高增益基站天线 技术领域
本实用新型涉及蜂窝移动通信系统技术领域,具体涉及一种多重MIMO窄波束、高增益基站天线。
背景技术
现如今,蜂窝移动通信及WLAN(Wireless Local Area Network)系统的无线网络覆盖依然需要不断优化与完善:其中许多特殊应用场景覆盖,如狭长区域覆盖、偏远目标远程覆盖及楼宇渗透覆盖越来越受到网络运营商的重视。采用多重(端口数大于2)MIMO(Multiple Input Multiple Output)窄波束、高增益基站天线是优化上述特殊应用场景的关键措施之一。目前,现有技术采用的所述基站天线主要有两种结构形式即:多重MIMO窄波束、高增益无源阵列天线和多重MIMO窄波束、高增益龙伯透镜天线(圆柱形)。
现有技术的多重MIMO窄波束、高增益无源阵列天线之结构特征决定了其实现窄波束、高增益辐射特性时需要较多的辐射单元及复杂的馈电网络,例如:当实现水平波宽15°左右/增益20dBi左右时的辐射单元数量约为20个左右,因而存在结构复杂、馈电损耗大、口面效率低等方面缺陷;现有技术的多重MIMO窄波束、高增益龙伯透镜天线(圆柱形)之结构特征决定了其实现窄波束、高增益辐射特性时需要的介质透镜直径较大,例如:当实现水平波宽15°左右/增益20dBi左右时的圆柱形介质透镜直径约为5个工作波长左右,因而存在工艺复杂、体积大、成本高等方面缺陷。
为了克服、改善上述现有技术中存在的诸多缺陷,除了在已有天线结构形式基础上进行改进外,还可以采用其他天线结构形式来实现与已有天线结构形式相同的辐射特性。值得注意的是具有反射面天线结构形式的多重MIMO窄波束、高增益基站天线至今未见报道。本实用新型的目的是基于反射面天线结构形式具有结构简单、成本低、尤其适合窄波束、高增益辐射特性之特征,创造一种综合性价比更高的多重MIMO窄波束、高增益基站天线。
发明内容
本实用新型的目的在于克服上述现有技术提及的不足,为蜂窝移动通信及WLAN系统提供一种新颖的多重MIMO窄波束、高增益基站天线,使用一个抛物柱面反射面适配多个双极化线阵馈源,实现一种4×4或6×6或8×8或更多重MIMO的窄波束、高增益基站天线,该技术方案具有增益水平较高、口面效率较高、结构工艺简单、制造成本低等优势,可达到低成本优化狭长区域覆盖和偏远目标远程覆盖之效果。
为达到上述目的,本实用新型采取以下技术方案:一种多重MIMO窄波束、高增益基站天线,包括一个以上的2×2MIMO天线模块,每一所述 2×2MIMO天线模块由抛物柱面反射面和1~16单元线阵馈源构成,所述抛物柱面反射面是以一定焦径比的抛物线为母线沿一垂直线运动轨迹形成,具有一条焦直线,所述1~16单元线阵馈源之各单元的相位中心均设置在所述焦直线上。
进一步的,所述抛物柱面反射面的焦径比范围在0.15~0.50,其口径范围在1.5~10.0个工作波长,所述抛物柱面反射面的材质为实体板状或镂空板状或网状高导电率金属材料。
进一步的,所述2×2MIMO天线模块的规格由所述线阵馈源的单元数和工作频段决定,包括:单馈源2×2MIMO天线模块、2单元线阵馈源2×2MIMO天线模块、3单元线阵馈源2×2MIMO天线模块、4单元线阵馈源2×2MIMO天线模块,以此类推至16单元线阵馈源2×2MIMO天线模块。
进一步的,所述1~16单元线阵馈源的极化方式为±45°双线极化,其工作频段可以是单频段,也可以是多频段,单元数≥3的线阵馈源通过馈电网络预置和电调各单元的幅相权值,实现对所述基站天线的垂直面方向图赋形和垂直面波束下倾角的电调。
进一步的,所述基站天线的多重MIMO由一个以上相同或不同规格的所述2×2MIMO天线模块组合而成,其总体结构呈积木化,各个所述2×2MIMO天线模块可以是纵向组合,也可以是横向组合。
进一步的,所述基站天线的外观可以是带有整体天线罩的结构形式;也可以是反射面加带有馈源罩线阵馈源的结构形式,所述天线罩和馈源罩的材质为低耗介质材料。
对比现有技术,本实用新型的有益效果是:首次提出了可用于蜂窝移动通信领域一种新颖的使用一个抛物柱面反射面适配多个双极化线阵馈源技术方案,实现一种4×4或6×6或8×8或更多重MIMO的窄波束、高增益基站天线。相较于多重MIMO无源阵列天线,在同等增益水平前提下,本实用新型技术方案使用的辐射单元数明显减少,馈电网络大为简化,馈电损耗明显降低,进而有效提升了天线的口面效率;相较于多重MIMO龙伯透镜天线(圆柱形),在同等增益水平前提下,本实用新型技术方案的结构、工艺更加简单,具有更高综合性价比的优势。
附图说明
图1为本实用新型的原理模型立体图;
图2为本实用新型的原理模型主视图;
图3为本实用新型的原理模型左视图;
图4为本实用新型的原理模型俯视图;
图5为本实用新型单馈源2×2MIMO天线模块主视图;
图6为本实用新型2单元线阵馈源2×2MIMO天线模块主视图;
图7为本实用新型3单元线阵馈源2×2MIMO天线模块主视图;
图8为本实用新型4单元线阵馈源2×2MIMO天线模块主视图;
图9为本实用新型横向组合8×8MIMO天线模型立体图;
图10为本实用新型纵向组合8×8MIMO天线模型立体图;
图11为本实用新型单馈源2×2MIMO天线模块E面方向图;
图12为本实用新型单馈源2×2MIMO天线模块H面方向图;
图13为本实用新型2单元线阵馈源2×2MIMO天线模块E面方向图;
图14为本实用新型2单元线阵馈源2×2MIMO天线模块H面方向图;
图15为本实用新型3单元线阵馈源2×2MIMO天线模块E面方向图;
图16为本实用新型3单元线阵馈源2×2MIMO天线模块H面方向图;
图17为本实用新型4单元线阵馈源2×2MIMO天线模块E面方向图;
图18为本实用新型4单元线阵馈源2×2MIMO天线模块H面方向图;
图19-a为本实用新型纵向组合8×8MIMO天线带有整体天线罩结构形式的外形图;
图19-b为本实用新型纵向组合8×8MIMO天线反射面加带有馈源罩线阵馈源结构形式的外形图。
具体实施方式
结合附图给出的实施方式对本实用新型做进一步的说明。具体实施例仅为本实用新型代表性之具体实施例,其中所举例之特定方法、装置、条件、材质等并非用以限定本实用新型或对应之具体实施例。此为,图中各装置仅用于表达其相对位置且未按其实际比例绘述,合先叙明。
如图1-4所示,一种4×4MIMO窄波束、高增益基站天线,包括两个4单元线阵馈源2×2MIMO天线模块构成,抛物柱面反射面1由焦径比为f/D的抛物线M沿垂直方向做直线运动的轨迹形成,该轨迹长度为H即为所述反射面1的高度,同理,抛物线M之焦点的轨迹为一条直线F即为所述反射面1的焦直线,两个4单元线阵馈源201和202各自照射对应的抛物柱面反射面,各自形成相同指向的2×2MIMO波束,所述线阵馈源201和202之每个单元的相位中心均设置在所述焦直线F上。
进一步的,所述抛物柱面反射面1的焦径比f/D取决于所述4单元线阵馈源201和202的照射角,取值范围在0.15~0.50,所述抛物柱面反射面1的口径D决定了所述基站天线水平面的波宽和增益特性,取值范围在1.5~10.0个工作波长,所述抛物柱面反射面1的材质优选为实体的或镂空的铝合金板材。
进一步的,所述2×2MIMO天线模块的规格为5G蜂窝移动通信系统工作频段(3300~3800MHz)/4单元线阵馈源模块,两个由所述4单元线阵馈源201和202与所述抛物柱面反射面1构成的2×2MIMO天线模块为纵向组合,实现一种4×4MIMO窄波束、高增益基站天线。
进一步的,所述4单元线阵馈源201和202的极化方式为±45°双线极化,工作于5G蜂窝移动通信系统3300~3800MHz频段,所述馈源通过馈 电网络预置和电调各单元的幅相权值,实现对所述基站天线的垂直面方向图赋形和垂直面波束下倾角的电调。
进一步的,如图5-8所示,分别为本实用新型技术方案四种典型的2×2MIMO天线模块的主视图,即:单馈源2×2MIMO天线模块、2单元线阵馈源2×2MIMO天线模块、3单元线阵馈源2×2MIMO天线模块、4单元线阵馈源2×2MIMO天线模块,图11-18为所述各模块对应的垂直面(ee)和水平面(hh)辐射方向图;所述2×2MIMO天线模块可以根据用户需求组合,组合后的多重MIMO窄波束、高增益基站天线之抛物柱面反射面1为各2×2MIMO天线模块反射面的一体化结构;如图9-10所示,分别为本实用新型技术方案8×8MIMO窄波束、高增益基站天线横向组合及纵向组合的案例模型。
进一步的,如图19-a所示,所述多重MIMO窄波束、高增益基站天线的外观可以是带有整体天线罩的结构形式,适合蜂窝移动通信系统中频段(1690~2690MHz)和5G频段(3300~3800MHz);如图19-b所示,所述多重MIMO窄波束、高增益基站天线的外观也可以是所述反射面加带有馈源罩线阵馈源的结构形式,适合蜂窝移动通信系统低频段(690~960MHz)和中频段(1690~2690MHz),所述天线罩301和馈源罩302的材质优选为低耗环氧玻璃纤维复合材料。
本实用新型提供了一种新颖的具有较高口面效率的多重MIMO窄波束、高增益基站天线,首次提出了使用一个抛物柱面反射面适配多个双极化线阵馈源技术方案,根据对所述基站天线垂直面波宽和增益的要求,所述线阵馈源可以是1~16单元任意组合;若采用双频双极化线阵馈源,还可实现双频多重MIMO窄波束、高增益基站天线;本实用新型技术方案集反射面天线和阵列天线的优点于一身,相较现有技术具有更高的综合性价比。
以上对具体实施方式的说明,仅为帮助理解本实用新型技术方案的构思而已,当不能以此限定本实用新型实施的范围,即大凡依本实用新型申请专利范围及实用新型说明内容所作的简单等效变化与修饰,皆仍属本实用新型专利涵盖的范围内。

Claims (6)

  1. 一种多重MIMO窄波束、高增益基站天线,其特征在于:包括一个以上的2×2MIMO天线模块,每一所述2×2MIMO天线模块由抛物柱面反射面和1~16单元线阵馈源构成,所述抛物柱面反射面是以一定焦径比的抛物线为母线沿一垂直线运动轨迹形成,具有一条焦直线,所述1~16单元线阵馈源之各单元的相位中心均设置在所述焦直线上。
  2. 根据权利要求1所述的一种多重MIMO窄波束、高增益基站天线,其特征在于:所述抛物柱面反射面的焦径比范围在0.15~0.50,其口径范围在1.5~10.0个工作波长,所述抛物柱面反射面的材质为实体板状或镂空板状或网状高导电率金属材料。
  3. 根据权利要求1所述的一种多重MIMO窄波束、高增益基站天线,其特征在于:所述2×2MIMO天线模块的规格由所述线阵馈源的单元数和工作频段决定,包括:单馈源2×2MIMO天线模块、2单元线阵馈源2×2MIMO天线模块、3单元线阵馈源2×2MIMO天线模块、4单元线阵馈源2×2MIMO天线模块,以此类推至16单元线阵馈源2×2MIMO天线模块。
  4. 根据权利要求3所述的一种多重MIMO窄波束、高增益基站天线,其特征在于:所述1~16单元线阵馈源的极化方式为±45°双线极化,其工作频段可以是单频段,也可以是多频段,单元数≥3的线阵馈源通过馈电网络预置和电调各单元的幅相权值,实现对所述基站天线的垂直面方向图赋形和垂直面波束下倾角的电调。
  5. 根据权利要求1或3所述的一种多重MIMO窄波束、高增益基站天线,其特征在于:所述基站天线的多重MIMO由一个以上相同或不同规格的所述2×2MIMO天线模块组合而成,其总体结构呈积木化,各个所述2×2MIMO天线模块可以是纵向组合,也可以是横向组合。
  6. 根据权利要求1所述的一种多重MIMO窄波束、高增益基站天线,其特征在于:所述基站天线的外观可以是带有整体天线罩的结构形式;也可以是所述反射面加带有馈源罩线阵馈源的结构形式,所述天线罩和馈源罩的材质为低耗介质材料。
PCT/CN2023/113264 2022-10-31 2023-08-16 一种多重mimo窄波束、高增益基站天线 WO2024093438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222891136.9 2022-10-31
CN202222891136.9U CN219874052U (zh) 2022-10-31 2022-10-31 一种多重mimo窄波束、高增益基站天线

Publications (1)

Publication Number Publication Date
WO2024093438A1 true WO2024093438A1 (zh) 2024-05-10

Family

ID=88323417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113264 WO2024093438A1 (zh) 2022-10-31 2023-08-16 一种多重mimo窄波束、高增益基站天线

Country Status (2)

Country Link
CN (1) CN219874052U (zh)
WO (1) WO2024093438A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131101A1 (en) * 2016-11-09 2018-05-10 Samsung Electronics Co., Ltd. Antenna device including parabolic-hyperbolic reflector
CN110571531A (zh) * 2019-09-27 2019-12-13 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
CN214336931U (zh) * 2021-02-22 2021-10-01 深圳市前海派速科技有限公司 一种介质透镜及透镜天线
CN115693173A (zh) * 2022-10-31 2023-02-03 胡关平 一种多重mimo窄波束、高增益基站天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131101A1 (en) * 2016-11-09 2018-05-10 Samsung Electronics Co., Ltd. Antenna device including parabolic-hyperbolic reflector
CN110571531A (zh) * 2019-09-27 2019-12-13 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
CN214336931U (zh) * 2021-02-22 2021-10-01 深圳市前海派速科技有限公司 一种介质透镜及透镜天线
CN115693173A (zh) * 2022-10-31 2023-02-03 胡关平 一种多重mimo窄波束、高增益基站天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAI YE: "Investigation on Parabolic Cylinder Reflector Based MIMO SAR", JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, ZHONGGUO KEXUEYUAN DIANZIXUE YANJIUSUO,CHINESE ACADEMY OF SCIENCES, INSTITUTE OF ELECTRONICS, CN, vol. 40, no. 8, 1 August 2018 (2018-08-01), CN , pages 1816 - 1822, XP093169131, ISSN: 1009-5896, DOI: 10.11999/JEIT171105 *

Also Published As

Publication number Publication date
CN219874052U (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2018058722A1 (zh) 双极化收发共用波导阵列天线
CN106450789B (zh) 一种基于反射阵馈电的低剖面透镜天线
CN104332714A (zh) 双极化斜波束波导缝隙阵列天线
CN111430935B (zh) 一种基于龙伯透镜天线的数模混合的3d波束赋形装置
CN204289717U (zh) 双极化斜波束波导缝隙阵列天线
MXPA05012472A (es) Antena de panel de estacion de base con elementos radiantes de doble polarizacion y reflector configurado.
CN105552573A (zh) 双极化波导缝隙馈源对称介质填充柱透镜天线
Singh et al. Isolation Enhancement of MIMO Antenna for Millimeter wave Applications
CN113258296A (zh) 双频双极化多功能透射和反射型超表面天线及通信设备
CN115036707B (zh) 一种具有双模态的反射型超表面涡旋波天线
CN215266686U (zh) 双频双极化多功能透射和反射型超表面天线及通信设备
CN106159435B (zh) 一种超宽带分形天线
CN112271444B (zh) 一种高增益双极化siw-cts天线阵
CN108232416B (zh) 一种双极化cts波束扫描天线阵
WO2024093438A1 (zh) 一种多重mimo窄波束、高增益基站天线
CN115693173A (zh) 一种多重mimo窄波束、高增益基站天线
CN111129761A (zh) 一种双频段透射型天线
CN204375976U (zh) 一种低剖面梳状网络阵列基站天线
CN206628602U (zh) 一种超宽频双波束电调天线
TWI587577B (zh) Reflective array antenna structure
CN212571339U (zh) 一种双频双极化多功能轨道角动量天线
CN210692768U (zh) 基站天线和多频带基站天线
CN208460992U (zh) 一种基于井回形的定向平面反射阵列天线
CN107069201A (zh) 基于磁单负材料的亚波长谐振腔天线
Wang et al. Design of Real-Time Tunable-Focus Active Metasurfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884377

Country of ref document: EP

Kind code of ref document: A1