WO2024093424A1 - 一种万向联轴器法兰叉头及其制作方法与万向联轴器 - Google Patents
一种万向联轴器法兰叉头及其制作方法与万向联轴器 Download PDFInfo
- Publication number
- WO2024093424A1 WO2024093424A1 PCT/CN2023/112457 CN2023112457W WO2024093424A1 WO 2024093424 A1 WO2024093424 A1 WO 2024093424A1 CN 2023112457 W CN2023112457 W CN 2023112457W WO 2024093424 A1 WO2024093424 A1 WO 2024093424A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flange
- fork
- alloy melt
- universal coupling
- alloy
- Prior art date
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 94
- 238000010168 coupling process Methods 0.000 title claims abstract description 94
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 239000004519 grease Substances 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 226
- 239000000956 alloy Substances 0.000 claims description 226
- 238000005266 casting Methods 0.000 claims description 84
- 239000000843 powder Substances 0.000 claims description 58
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 44
- 239000004677 Nylon Substances 0.000 claims description 41
- 229920001778 nylon Polymers 0.000 claims description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 229910002804 graphite Inorganic materials 0.000 claims description 28
- 239000010439 graphite Substances 0.000 claims description 28
- 238000002844 melting Methods 0.000 claims description 27
- 230000008018 melting Effects 0.000 claims description 27
- 238000004321 preservation Methods 0.000 claims description 22
- 230000009471 action Effects 0.000 claims description 21
- 229910052681 coesite Inorganic materials 0.000 claims description 20
- 229910052906 cristobalite Inorganic materials 0.000 claims description 20
- 229910052682 stishovite Inorganic materials 0.000 claims description 20
- 229910052905 tridymite Inorganic materials 0.000 claims description 20
- 230000001133 acceleration Effects 0.000 claims description 18
- 238000007711 solidification Methods 0.000 claims description 18
- 230000008023 solidification Effects 0.000 claims description 18
- 238000000465 moulding Methods 0.000 claims description 15
- 238000007872 degassing Methods 0.000 claims description 14
- 238000007670 refining Methods 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- 238000009750 centrifugal casting Methods 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 9
- 239000000155 melt Substances 0.000 claims description 9
- 238000003723 Smelting Methods 0.000 claims description 7
- 238000010306 acid treatment Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 4
- 235000020238 sunflower seed Nutrition 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 239000000463 material Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000007921 spray Substances 0.000 description 15
- 239000002253 acid Substances 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 238000005507 spraying Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 229920000571 Nylon 11 Polymers 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000004959 Rilsan Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 102000004315 Forkhead Transcription Factors Human genes 0.000 description 4
- 108090000852 Forkhead Transcription Factors Proteins 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- -1 amine compound Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000010114 lost-foam casting Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/10—Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/26—Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
Definitions
- the invention belongs to the technical field of couplings, and more specifically, relates to a universal coupling flange fork and a manufacturing method thereof and the universal coupling.
- the end face gear structure of the universal coupling is similar to the flange connection, but a tooth shape is added to the end face of the flange.
- the two components connected by the end face gear of the universal coupling transmit torque through the end face gear of the universal coupling, rather than through the tension bolts.
- the connecting bolts are not subject to shear force under normal working conditions, but only to axial tension.
- the transmitted torque is shared by multiple teeth, and the force is very uniform, avoiding stress concentration, so the bolts are not easy to fail.
- the end face gear of the universal coupling has automatic centering, high precision, can transmit large torque at high speed, and can divide the complex overall structure into several parts with simple structures, which is convenient for the design, manufacture, installation and maintenance of industrial products.
- Chinese patent CN201410134999.9 discloses a wear-resistant cast gear, which is composed of a gear body, teeth and shaft holes, and a wear-resistant layer is provided on the surface of the teeth;
- CN201711090668.X discloses a corrosion-resistant coating for the surface of gear parts, including the following materials by weight: 50 to 53 parts by weight of titanium carbonitride, 10 to 12 parts by weight of silicon dioxide, 4 to 6 parts by weight of cobalt oxide, 2 to 4 parts by weight of vanadium oxide, and 2 to 4 parts by weight of zinc oxide;
- CN201710010830.6 discloses a metal surface nylon powder spraying process, so that the nylon powder on the substrate is cooled and solidified to obtain a
- the present invention provides a universal coupling flange fork to ensure the lubrication of the flange fork end teeth, improve the performance of the flange fork end teeth, and extend the service life of the flange fork.
- Another object of the present invention is to provide a method for manufacturing the above-mentioned universal coupling flange yoke. Without reducing the wear resistance and high strength requirements of the flange yoke, by adopting centrifugal casting, the flange plate has higher wear resistance, the flange yoke body has higher strength, and the safety performance is improved.
- Another object of the present invention is to provide a method for manufacturing the end face teeth of the universal coupling flange fork.
- Another object of the present invention is to provide a universal coupling having the above flange yoke.
- the flange fork of the universal coupling of the present invention comprises a flange plate and a fork body, the end face of the flange plate is provided with end face teeth for transmitting torque, and the fork body is connected to an external rotating component;
- the end face gear comprises a plurality of teeth located in the same plane, and a wear-resistant layer is formed on the teeth and their roots;
- the wear-resistant layer has a concave surface texture or pattern formed by a flow passage, which allows the storage and delivery of grease through the end face tooth surface.
- the concave surface texture or pattern is separately made on the wear-resistant layer by external means.
- the present invention provides a method for manufacturing the above-mentioned universal coupling flange fork, wherein the flange and the fork body can be integrally cast by centrifugal casting, and a transition layer is formed at the junction of the flange and the fork body, and the flange and the fork body form an integral structure; the method comprises the following specific steps:
- a centrifugal rotating mold is manufactured for the flange fork of the universal coupling, wherein the centrifugal rotating mold comprises a left mold cavity and a right mold cavity, and the left mold cavity and the right mold cavity are buckled together to form a molding cavity, and the shape of the molding cavity is consistent with the outer contour of the flange fork of the universal coupling;
- a vertical centrifuge is used to place a centrifugal rotating mold on the vertical centrifuge.
- the flange alloy melt is first filled under the action of centrifugal force, and then closely connected to allow the fork body alloy melt to fill the mold under the action of centrifugal force.
- the solidification time is 15 to 25 minutes, and finally the mold is demolded and the casting is cleaned.
- the present invention also provides a method for manufacturing the above-mentioned face tooth, the face tooth comprising a plurality of teeth located in the same plane and a substrate carrying the above-mentioned teeth, the spacing between adjacent teeth is 3-5 mm, a wear-resistant layer is formed on the teeth and their roots, and the thickness of the wear-resistant layer is 0.01-0.02 mm, the method comprising the following steps:
- Step S101 subjecting the end face teeth to an acid treatment for 5-10 minutes, and then rinsing and drying;
- the acid is sulfuric acid, hydrochloric acid or nitric acid, and its mass fraction is 0.5-0.8%, which can not only remove the oil stains on the surface, but also improve the surface roughness;
- Step S102 performing activation and heat preservation pretreatment on the nylon ultrafine powder, wherein the treatment temperature is 50-70° C., and the above nylon ultrafine powder is added with silicon dioxide powder, and the addition amount is 0.015-0.05% by weight;
- Step S103 forming a concave surface texture or pattern on the outer surface of the end face tooth
- Method 1 Make a concave surface texture or pattern iron sheet sample, fix the concave surface texture or pattern iron sheet sample on the surface of the gear to be coated with adhesive, spray the nylon powder treated in step S102 onto the outer surface of the end face tooth in step S101, and the pressure of the spray gun is 0.5-0.7MPa; the plane where the end face tooth is located has a certain inclination angle with the horizontal plane, the inclination angle is 30-60°, and the preferred angle is 45°.
- Photoresist is used for laying, and an etchant is used to expose the teeth and tooth roots, and then a spray gun is used to spray perpendicularly to the plane of the end face tooth; the etchant is composed of an organic amine compound, an anti-corrosion agent and an organic solvent.
- Method 2 Make a sample tooth that meshes with the end face tooth, and form a convex surface texture or pattern on the sample tooth corresponding to the flow path, place the sprayed end face tooth in an environment with a temperature of 60-80°C, mesh the sample tooth with the end face tooth, and apply pressure from both sides to form a concave surface texture or pattern on the wear-resistant layer; make full use of the concave surface texture or pattern formed before the wear-resistant layer is solidified; the sample tooth is made of aluminum alloy; and a press is used for applying pressure.
- Step S104 performing curing and heat preservation treatment on the sprayed end face gear, the heat preservation temperature is 200-250°C.
- the invention also provides a universal coupling having the flange fork.
- the present invention has the following beneficial effects:
- the flange fork of the universal coupling of the present invention has a concave surface texture or pattern formed by a flow passage on the wear-resistant layer.
- the flow passage allows grease to be stored and transported through the surface of the end teeth.
- the concave surface texture or pattern is used to position part of the grease at the meshing position of the end teeth. Even under high speed conditions, this part of the grease overcomes the centrifugal force under the action of adhesion, friction, etc., and plays a local lubrication role as much as possible, thereby solving the problem of poor local lubrication of the fork end teeth, reducing fatigue cracks or fractures of the end teeth, and extending the service life of the end teeth.
- the impact resistance, wear resistance and corrosion resistance of the surface material of the end teeth are not reduced.
- the end face teeth of the flange fork of the universal coupling of the present invention form a wear-resistant layer at the root of the teeth, and the thickness of the wear-resistant layer is 0.01-0.02mm, and the material of the wear-resistant layer is nylon ultrafine powder; the impact resistance, wear resistance and corrosion resistance of the surface material of the end face teeth are improved, fatigue cracks or fractures of the end face teeth are reduced, and the service life of the end face teeth is extended.
- FIG. 1 is a schematic structural diagram of the face gear of the universal coupling of the present invention.
- FIG2 is an enlarged view of portion A of FIG1 ;
- FIG3 is a schematic structural diagram of the end face teeth of the flange fork of the universal coupling of the present invention.
- FIG4 is a schematic diagram of the concentric circular structure of the concave surface texture or pattern of FIG3 ;
- FIG5 is another schematic structural diagram of the end face teeth of the flange fork of the universal coupling of the present invention.
- FIG6 is a schematic diagram of a spiral structure of the concave surface texture or pattern of FIG5 ;
- FIG7 is a schematic structural diagram of the end face teeth of the flange fork of the integrated universal coupling of the present invention.
- FIG8 is a schematic structural diagram of a centrifugal rotating casting mold of the present invention.
- FIG. 9 is an integrated universal coupling flange fork obtained by the manufacturing method of the present invention.
- the flange fork of the universal coupling of the present invention includes a flange 11 and a fork body 12.
- the end face of the flange 11 is provided with an end face tooth 111 for transmitting torque.
- the fork body 12 is connected to an external rotating component (such as a reducer, etc.).
- the flange 11 can be connected to the fork body 12 by bolts.
- the end face tooth 111 includes a plurality of teeth 112 located in the same plane and a base 113 carrying the above-mentioned teeth 112.
- a wear-resistant layer 114 is formed on the teeth 112 and their roots; the above-mentioned wear-resistant layer 114 has a concave surface texture or pattern composed of a flow passage 115, and the flow passage 115 allows grease (universal lithium-based grease, such as the commercially available Kunlun brand) to be stored and transported through the surface of the end face tooth 111.
- the above-mentioned concave surface texture or pattern is separately made on the above-mentioned wear-resistant layer 114 by external means.
- the inventors were surprised to find that, compared with the existing smooth, continuous wear-resistant layer 114, the grease distribution of the fork end face teeth 111 of the present invention is more uniform, and at high speeds, the grease aggregation phenomenon is not obvious, the end face teeth 111 can be well lubricated, and fatigue cracks or fractures of the end face teeth 111 are reduced.
- the service life of the end face teeth 111 is extended by 10-20%, and the impact resistance, wear resistance and corrosion resistance of the surface material of the end face teeth 111 are not reduced.
- the flow passages 115 are not part of the material structure but are mechanically made on the surface of the wear layer 114.
- the concave surface texture of the wear layer 114 consists of a coarse texture 116 and a fine texture 117 made before use.
- the pattern of the coarse texture 116 and its width and depth can be any desired pattern and size as long as the above restrictions are observed.
- the depth of the coarse texture 116 can be equal to the thickness of the wear layer 114.
- the preferred coarse texture 116 can also have any desired depth not exceeding 90% of the thickness of the wear layer 114. A deeper coarse texture 116 will help prevent the movement of the grease at a given high speed. If the depth exceeds 90% of the thickness of the wear layer 114, the mechanical strength of the wear layer 114 (due to the erosion of water vapor, etc., causing the wear layer 114 to crack and fall off, etc.) will be severely reduced and should be avoided.
- any desired pattern in the prior art such as concentric circles, square grids, triangular grids, etc.
- everything can be combined into any desired pattern and combination of patterns with good results.
- the above-mentioned concave surface texture or pattern includes radial, grid, concentric, composite, spiral or sunflower seed shapes, and these textures are continuous in structure and are not separate individuals.
- the grease aggregation on surfaces with concentric circles and composite was compared.
- the research results showed that the grease distribution on surfaces with composite textures was more even than that on surfaces with concentric circles.
- the sunflower seed-shaped surface texture not only makes the grease distribution more even, but also the corresponding grease is not easily thrown to the edge by centrifugal force.
- the external means of forming the concave surface texture or pattern on the wear-resistant layer 114 may include but are not limited to spraying, pressing, embossing, molding, cutting or photolithography means, etc., if the wear-resistant layer 114 can be processed by these means; depending on the pattern used, the size of the concave surface texture or pattern and the nature of the wear-resistant layer 114 material, people also use cutting tools or other devices with appropriate size and space to form the concave surface texture or pattern before use.
- This technology is most effective for those concave surface textures or patterns with a lower range of sizes.
- This technology can also be effectively used as a means for regenerating the concave surface texture or pattern when the concave surface texture or pattern originally existing on the wear-resistant layer 114 has been worn to the extent that it no longer exists.
- the concave surface texture includes a coarse texture 116 and a fine texture 117, wherein the coarse texture
- the size of the texture 116 satisfies: the maximum lateral dimension is from 2 mm to 5 mm
- the size of the fine texture 117 satisfies: the maximum lateral dimension is from 0.6 mm to 1 mm.
- These fine textures 117 also serve as unobstructed grease passages, although the passages are smaller in scale, and the grease flows in this combination. It is such a unique combination of simultaneous flow passages 115 that enables complete, unobstructed and uniform grease distribution to every part of the surface of the wear-resistant layer 114.
- the wear-resistant layer 114 includes a covering area 1141 and a non-covering area 1142, wherein the covering area 1141 is coated with nylon superfine powder, and the non-covering area 1142 is not coated with nylon superfine powder, and a flow passage 115 is formed between the non-covering area 1142 and the covering area 1141.
- the nylon superfine powder is RILSAN fine powder or nylon 11 superfine powder
- RILSAN fine powder is a product of French ARKEMA (formerly ATOFINA) and is purchased from the market.
- the above-mentioned nylon ultrafine powder is added with nano silicon dioxide powder, and the addition amount is 0.015-0.05% of the total weight of the nylon ultrafine powder.
- the inventors have obtained through a large number of experimental analyses that, on the one hand, during spraying, the silicon dioxide powder can play a good role in supporting the skeleton; on the other hand, through the microstructure of the tooth end surface, it is found that the silicon dioxide powder is easy to fill in the network structure formed by the high molecular polymer in nylon (Si and H form hydrogen bonds), even if the teeth 112 are meshed and rotated at a high speed, the impact resistance and grinding resistance of the wear-resistant layer 114 are improved.
- the wear-resistant layer 114 obtained by the activation and heat preservation pretreatment of the above-mentioned nylon ultrafine powder at a temperature of 50-70°C, preferably 60°C, is flatter and has a smoother surface.
- the flange 11 and the fork body 12 are also centrifugally integrally cast (or integrally cast), and a transition layer is formed at the junction of the flange 11 and the fork body 12, the thickness of the transition layer h is 2mm to 3mm, and the flange 11 and the fork body 12 form an integral structure; wherein the material of the flange 11 is 45# steel; the material of the fork body 12 is ZG42Cr1Mo or ZG35CrMo.
- the inventor tried to use 45# molten steel and ZG42Cr1Mo alloy molten steel for centrifugal casting, and the inventor was surprised to find that after many attempts, an integral universal coupling flange fork was obtained, and the wear resistance of the flange 11 was higher than that of the fork body 12, and the strength of the fork body 12 was higher than that of the flange 11.
- the universal joint flange fork obtained by centrifugal integral casting of the above-mentioned materials was subjected to component analysis of each part, wherein the fork body 12 part complies with the composition of ZG42Cr1Mo or ZG35CrMo, the flange plate 11 part complies with the composition of 45# steel, and a mixed organizational structure of 2 to 3 mm appears at the junction of the fork body 12 and the flange plate 11.
- the crystal structure is a mixed crystal form of the above-mentioned materials. It is also found that the above-mentioned materials can be better connected through centrifugal action, which contributes to ensuring the overall strength.
- the above-mentioned flange 11 is approximately in the shape of a ring, so there is a small amount of solidified matter in the central part of the flange 11, but these solidified matter do not affect the overall structure (subsequent fine processing).
- the end face teeth 111 are distributed around the annular flange 11.
- the material of this part is 45# steel, which basically meets the requirements of use.
- the material of the fork body 12 is ZG42Cr1Mo or ZG35CrMo, which complies with the current national/industry standards.
- the alloy melt of the flange 11 and the alloy melt of the fork body 12 are highly mixed, especially the alloy melt of the fork body 12 invades the position where the flange 11 is located.
- the cast product is a failure due to poor wear resistance.
- the alloy melt of the flange 11 cannot excessively invade the position where the fork body 12 is located, which may cause the strength of the fork body 12 to fail to meet the design and use requirements. Therefore, it is very critical to control the centrifugal integral casting process.
- a stop boss 16 is formed in the inner layer of the centrifugal rotating mold 15 of the centrifugal integral casting.
- the stop boss 16 is used to minimize the amount of the alloy melt of the flange 11 being thrown upward.
- the transition layer is basically formed below the stop boss 16, which fully illustrates the necessity of the design of the stop boss 16.
- the thickness of the transition layer is not easy to accurately control during the centrifugal integral casting process, the thickness of the transition layer of the present invention can be basically controlled between 2 and 3 mm. Within this range, the cast product has a better overall strength requirement.
- a first pouring gate 13 and a second pouring gate 14 are formed from bottom to top inside the centrifugal rotating mold 15, wherein the diameter of the second pouring gate 14 is 3 to 5 times the diameter of the first pouring gate 13; preferably, the diameter of the second pouring gate 14 is 5 times the diameter of the first pouring gate 13; as shown in FIG8 , the second pouring gate 14 is located above the stop boss 16, and the first pouring gate 13 is located close to the bottom, which fully ensures that the alloy melt of the flange 11 and the alloy melt of the fork body 12 are distributed as much as possible in the designed position.
- the first pouring port 13 and the second pouring port 14 are both connected to the main casting channel, and the ends of the first pouring port 13 and the second pouring port 14 are both tapered, so as to increase the exposure speed of the alloy solution and avoid clogging the first pouring port 13 and the second pouring port 14.
- the centrifugal casting of the present invention can adopt the sand casting in the prior art, and can also adopt the lost foam casting.
- the centrifuge is a commercially available product. In order to improve the convenience of manufacturing, the lost foam casting is preferably selected. After the flange fork head casting blank is obtained, the end face teeth on the flange plate are subsequently processed to obtain the integrated universal coupling flange fork head as shown in Figure 9.
- This embodiment provides a method for manufacturing a flange fork of a universal coupling, comprising the following specific steps:
- a centrifugal rotating mold 15 for a universal coupling flange fork is manufactured.
- the centrifugal rotating mold 15 includes a left mold cavity and a right mold cavity.
- the left mold cavity and the right mold cavity are buckled to form a molding cavity.
- the shape of the molding cavity is consistent with the outer contour of the universal coupling flange fork.
- the reserved shrinkage amount is 3mm, the dimensional accuracy is ⁇ 0.02mm, and a layer of paint with a thickness of 0.1mm is coated on the inner wall to facilitate effective demoulding;
- a vertical centrifuge is used to place the centrifugal rotating mold 15 on the vertical centrifuge.
- the alloy melt of the flange 11 is first filled under the action of centrifugal force, and then tightly connected to allow the alloy melt of the fork body 12 to fill the mold under the action of centrifugal force.
- the solidification time is 25 minutes, and finally the mold is demolded and the casting is cleaned.
- step S103 from the start of casting to any time within 3 seconds, the rotation speed of the centrifugal rotating mold 15 is continuously and rapidly increased, and the acceleration of the centrifugal rotating mold 15 is 0.2m/s 2.
- the acceleration of the centrifugal rotating mold 15 is -0.1m/s 2.
- the stop boss 16 is used to reduce the flange 11 alloy melt from being thrown upward as much as possible. Since the flange alloy melt cannot move upward, the first pouring port 13 will be occupied, and the fork body 12 alloy melt will flow into the mold cavity from the second pouring port 14;
- step S103 when the alloy melt of the fork body 12 is cast, the rotation speed of the centrifugal rotating mold 15 is immediately and continuously reduced, and the acceleration of the centrifugal rotating mold 15 is -0.05m/ s2 . Under the action of gravity, the alloy melt of the fork body 12 will flow under the lower stop boss 16 and the vacant position, and the alloy melt of the fork body 12 and the alloy melt of the flange 11 will mix to form a transition layer until the casting is completely solidified.
- the casting speed of the above-mentioned flange 11 alloy melt is 12kg/min; the casting speed of the above-mentioned fork body 12 alloy melt is 18kg/min.
- step S103 the pressure value of the alloy melt of the flange 11 and the alloy melt of the fork body 12 during casting is 400Pa.
- the average surface temperature of the ingot is 0.98T to 0.99T, where T (°C) is the solidification start temperature of the flange 11 alloy.
- T (°C) is the solidification start temperature of the flange 11 alloy.
- the flange 11 alloy melt is cast at 1600°C, and the alloy casting equipment of the prior art is used.
- the fork body 12 alloy melt is immediately switched to be cast at 1560°C (the molten alloy solution is heated to 1560°C). It can be seen from the above-mentioned melting temperature that the melting temperature of the flange 11 and the melting temperature of the fork body 12 differ by at least 50°C.
- the fork body 12 alloy melt is cast at 1560°C (the molten alloy solution is heated to 1560°C).
- the average surface temperature of the ingot is 0.98T to 0.99T, that is, the average surface temperature of the ingot is 1558°C to 1574°C, and the temperature of the alloy solution of the fork body 12 is 1560°C, which is basically consistent with the surface temperature of the flange 11 ingot.
- the shrinkage rates of the flange 11 and the fork body 12 are equivalent, avoiding thermal stress at the joint between the flange 11 and the fork body 12, reducing the possibility of cracking, and improving the bonding strength between the two; finally, demolding and cleaning the casting.
- This embodiment provides a method for manufacturing a flange fork of a universal coupling, comprising the following specific steps:
- a centrifugal rotating mold 15 for the flange fork of the universal coupling is manufactured.
- the centrifugal rotating mold 15 includes a left mold cavity and a right mold cavity.
- the left mold cavity and the right mold cavity are buckled to form a molding cavity.
- the shape of the molding cavity is consistent with the outer contour of the flange fork of the universal coupling.
- the reserved shrinkage is 5 mm, the dimensional accuracy is ⁇ 0.02 mm, and a layer of paint with a thickness of 0.1 mm is coated on the inner wall;
- a vertical centrifuge is used to place the centrifugal rotating mold 15 on the vertical centrifuge.
- the alloy melt of the flange 11 is first filled under the action of centrifugal force, and then tightly connected to allow the alloy melt of the fork body 12 to fill the mold under the action of centrifugal force.
- the solidification time is 20 minutes, and finally the mold is demolded and the casting is cleaned.
- step S103 from the start of casting to any time within 3 seconds, the rotation speed of the centrifugal rotating mold 15 is continuously and rapidly increased, and the acceleration of the centrifugal rotating mold 15 is 0.1m/ s2 .
- the acceleration of the centrifugal rotating mold 15 is -0.05m/ s2 .
- the stop boss 16 is used to reduce the flange 11 alloy melt from being thrown upward as much as possible. Since the flange alloy melt cannot move upward, the first pouring port 13 will be occupied, and the fork body 12 alloy melt will flow into the mold cavity from the second pouring port 14;
- step S103 when the alloy melt of the fork body 12 is cast, the rotation speed of the centrifugal rotating mold 15 is immediately and continuously reduced, and the acceleration of the centrifugal rotating mold 15 is -0.03m/ s2 . Under the action of gravity, the alloy melt of the fork body 12 will flow under the lower stop boss 16 and the vacant position, and the alloy melt of the fork body 12 and the alloy melt of the flange 11 will mix to form a transition layer until the casting is completely solidified.
- the casting speed of the above-mentioned flange 11 alloy melt is 15kg/min; the casting speed of the above-mentioned fork body 12 alloy melt is 20kg/min.
- step S103 the pressure value of the alloy melt of the flange 11 and the alloy melt of the fork body 12 during casting is 200Pa.
- the average surface temperature of the ingot is 0.98T to 0.99T, where T (°C) is the solidification start temperature of the flange 11 alloy.
- T (°C) is the solidification start temperature of the flange 11 alloy.
- the flange 11 alloy melt is cast at 1580°C, and the alloy casting equipment of the prior art is used.
- the fork body 12 alloy melt is immediately switched to be cast at 1550°C (the molten alloy solution is heated to 1550°C). It can be seen from the above-mentioned melting temperature that the melting temperature of the flange 11 and the melting temperature of the fork body 12 differ by at least 50°C.
- the fork body 12 is heated to 1550°C.
- the average surface temperature of the ingot is 0.98T to 0.99T, that is, the average surface temperature of the ingot is 1548°C to 1564°C, and the temperature of the alloy solution of the fork body 12 is 1550°C, which is basically consistent with the surface temperature of the flange 11 ingot.
- the shrinkage rates of the flange 11 and the fork body 12 are equivalent, avoiding thermal stress at the joint between the flange 11 and the fork body 12, reducing the possibility of cracking, and improving the bonding strength between the two; finally, demolding and cleaning the casting.
- This embodiment provides a method for manufacturing a flange fork of a universal coupling, comprising the following specific steps:
- a centrifugal rotating mold 15 for the flange fork of the universal coupling is manufactured.
- the centrifugal rotating mold 15 includes a left mold cavity and a right mold cavity.
- the left mold cavity and the right mold cavity are buckled to form a molding cavity.
- the shape of the molding cavity is consistent with the outer contour of the flange fork of the universal coupling.
- the reserved shrinkage is 4 mm, the dimensional accuracy is ⁇ 0.02 mm, and a layer of paint with a thickness of 0.1 mm is coated on the inner wall;
- a vertical centrifuge is used to place the centrifugal rotating mold 15 on the vertical centrifuge.
- the alloy melt of the flange 11 is first filled under the action of centrifugal force, and then tightly connected to allow the alloy melt of the fork body 12 to fill the mold under the action of centrifugal force.
- the solidification time is 15 minutes, and finally the mold is demolded and the casting is cleaned.
- step S103 from the start of casting to any time within 3 seconds, the rotation speed of the centrifugal rotating mold 15 is continuously and rapidly increased, and the acceleration of the centrifugal rotating mold 15 is 0.15m/s 2.
- the acceleration of the centrifugal rotating mold 15 is -0.06m/s 2.
- the stop boss 16 is used to reduce the flange 11 alloy melt from being thrown upward as much as possible.
- the alloy melt cannot move upward, the first pouring port 13 will be occupied, and the alloy melt of the fork body 12 will flow into the mold cavity from the second pouring port 14;
- step S103 when the alloy melt of the fork body 12 is cast, the rotation speed of the centrifugal rotating mold 15 is immediately and continuously reduced, and the acceleration of the centrifugal rotating mold 15 is -0.04m/ s2 . Under the action of gravity, the alloy melt of the fork body 12 will flow under the lower stop boss 16 and the vacant position, and the alloy melt of the fork body 12 and the alloy melt of the flange 11 will mix to form a transition layer until the casting is completely solidified.
- the casting speed of the above-mentioned flange 11 alloy melt is 14kg/min; the casting speed of the above-mentioned fork body 12 alloy melt is 19kg/min.
- step S103 the pressure value of the alloy melt of the flange 11 and the alloy melt of the fork body 12 during casting is 300Pa.
- the average surface temperature of the ingot is 0.98T to 0.99T, wherein T (°C) is the solidification start temperature of the flange 11 alloy.
- T (°C) is the solidification start temperature of the flange 11 alloy.
- the flange 11 alloy melt is cast at 1600°C, and the alloy casting equipment of the prior art is used.
- the fork body 12 alloy melt is immediately switched to be cast at 1550°C (the molten alloy solution is heated to 1550°C). It can be seen from the above-mentioned melting temperature that the melting temperature of the flange 11 and the melting temperature of the fork body 12 differ by at least 50°C.
- the fork body 12 alloy melt is cast at 1550°C.
- the average surface temperature of the ingot is 0.98T to 0.99T, that is, the average surface temperature of the ingot is 1558°C to 1574°C
- the temperature of the alloy solution of the fork body 12 is 1560°C, which is basically consistent with the surface temperature of the flange 11 ingot.
- the shrinkage rates of the flange 11 and the fork body 12 are equivalent, avoiding thermal stress at the joint between the flange 11 and the fork body 12, reducing the possibility of cracking, and improving the bonding strength between the two; finally, demolding and cleaning the casting.
- This embodiment provides a method for manufacturing a flange fork of a universal coupling, comprising the following specific steps:
- a centrifugal rotating mold 15 for the flange fork of the universal coupling is manufactured.
- the centrifugal rotating mold 15 includes a left mold cavity and a right mold cavity.
- the left mold cavity and the right mold cavity are buckled to form a molding cavity.
- the shape of the molding cavity is consistent with the outer contour of the flange fork of the universal coupling.
- the reserved shrinkage is 4 mm, the dimensional accuracy is ⁇ 0.02 mm, and a layer of paint with a thickness of 0.1 mm is coated on the inner wall;
- a vertical centrifuge is used to place the centrifugal rotating mold 15 on the vertical centrifuge.
- the alloy melt of the flange 11 is first filled under the action of centrifugal force, and then tightly connected to allow the alloy melt of the fork body 12 to fill the mold under the action of centrifugal force.
- the solidification time is 15 minutes, and finally the mold is demolded and the casting is cleaned.
- step S103 from the start of casting to any time within 3 seconds, the rotation speed of the centrifugal rotating mold 15 is continuously and rapidly increased, and the acceleration of the centrifugal rotating mold 15 is 0.2m/s 2.
- the acceleration of the centrifugal rotating mold 15 is -0.1m/s 2.
- the stop boss 16 is used to reduce the flange 11 alloy melt from being thrown upward as much as possible. Since the flange alloy melt cannot move upward, the first pouring port 13 will be occupied, and the fork body 12 alloy melt will flow into the mold cavity from the second pouring port 14;
- step S103 when the alloy melt of the fork body 12 is cast, the rotation speed of the centrifugal rotating mold 15 is immediately and continuously reduced, and the acceleration of the centrifugal rotating mold 15 is -0.03m/ s2 . Under the action of gravity, the alloy melt of the fork body 12 will flow under the lower stop boss 16 and the vacant position, and the alloy melt of the fork body 12 and the alloy melt of the flange 11 will mix to form a transition layer until the casting is completely solidified.
- the casting speed of the above-mentioned flange 11 alloy melt is 15kg/min; the casting speed of the above-mentioned fork body 12 alloy melt is 20kg/min.
- step S103 the pressure value of the alloy melt of the flange 11 and the alloy melt of the fork body 12 during casting is 300Pa.
- the average surface temperature of the ingot is 0.98T to 0.99T, where T (°C) is the solidification start temperature of the flange 11 alloy.
- T (°C) is the solidification start temperature of the flange 11 alloy.
- the flange 11 alloy melt is cast at 1600°C, and the alloy casting equipment of the prior art is used.
- the fork body 12 alloy melt is immediately switched to be cast at 1560°C (the molten alloy solution is heated to 1560°C). From the above melting temperature, it can be seen that the melting temperature of the flange 11 and the melting temperature of the fork body 12 differ by at least 50°C.
- the average surface temperature of the ingot is 0.98T to 0.99T, that is, the average surface temperature of the ingot is 1558°C to 1574°C, and the temperature of the alloy solution of the fork body 12 is 1560°C, which is basically consistent with the surface temperature of the flange 11 ingot.
- the shrinkage rates of the flange 11 and the fork body 12 are equivalent, avoiding thermal stress at the joint between the flange 11 and the fork body 12, reducing the possibility of cracking, and improving the bonding strength between the two; finally, demolding and cleaning the casting.
- This embodiment provides a method for manufacturing a flange fork of a universal coupling, comprising the following specific steps:
- a centrifugal rotating mold 15 for the flange fork of the universal coupling is manufactured.
- the centrifugal rotating mold 15 includes a left mold cavity and a right mold cavity.
- the left mold cavity and the right mold cavity are buckled to form a molding cavity.
- the shape of the molding cavity is consistent with the outer contour of the flange fork of the universal coupling.
- the reserved shrinkage is 5 mm, the dimensional accuracy is ⁇ 0.02 mm, and a layer of paint with a thickness of 0.1 mm is coated on the inner wall;
- a vertical centrifuge is used to place the centrifugal rotating mold 15 on the vertical centrifuge.
- the alloy melt of the flange 11 is first filled under the action of centrifugal force, and then tightly connected to allow the alloy melt of the fork body 12 to fill the mold under the action of centrifugal force.
- the solidification time is 25 minutes, and finally the mold is demolded and the casting is cleaned.
- step S103 from the start of casting to any time within 3 seconds, the rotation speed of the centrifugal rotating mold 15 is continuously and rapidly increased, and the acceleration of the centrifugal rotating mold 15 is 0.1m/ s2 .
- the acceleration of the centrifugal rotating mold 15 is -0.1m/ s2 .
- the stop boss 16 is used to reduce the flange 11 alloy melt from being thrown upward as much as possible. Since the flange alloy melt cannot move upward, the first pouring port 13 will be occupied, and the fork body 12 alloy melt will flow into the mold cavity from the second pouring port 14;
- step S103 when the alloy melt of the fork body 12 is cast, the rotation speed of the centrifugal rotating mold 15 is immediately and continuously reduced, and the acceleration of the centrifugal rotating mold 15 is -0.05m/ s2 . Under the action of gravity, the alloy melt of the fork body 12 will flow under the lower stop boss 16 and the vacant position, and the alloy melt of the fork body 12 and the alloy melt of the flange 11 will mix to form a transition layer until the casting is completely solidified.
- the casting speed of the above-mentioned flange 11 alloy melt is 13kg/min; the casting speed of the above-mentioned fork body 12 alloy melt is 19kg/min.
- step S103 the pressure value of the alloy melt of the flange 11 and the alloy melt of the fork body 12 during casting is 400Pa.
- the average surface temperature of the ingot is 0.98T to 0.99T, wherein T (°C) is the solidification start temperature of the flange 11 alloy.
- T (°C) is the solidification start temperature of the flange 11 alloy.
- the flange 11 alloy melt is cast at 1600°C, and the alloy casting equipment of the prior art is used.
- the fork body 12 alloy melt is immediately switched to be cast at 1550°C (the molten alloy solution is heated to 1550°C). It can be seen from the above-mentioned melting temperature that the melting temperature of the flange 11 and the melting temperature of the fork body 12 differ by at least 50°C.
- the fork body 12 alloy melt is cast at 1550°C.
- the average surface temperature of the ingot is 0.98T to 0.99T, that is, the average surface temperature of the ingot is 1558°C to 1574°C
- the temperature of the alloy solution of the fork body 12 is 1560°C, which is basically consistent with the surface temperature of the flange 11 ingot.
- the shrinkage rates of the flange 11 and the fork body 12 are equivalent, avoiding thermal stress at the joint between the flange 11 and the fork body 12, reducing the possibility of cracking, and improving the bonding strength between the two; finally, demolding and cleaning the casting.
- the present invention also provides a method for manufacturing the end face teeth 111.
- the method for manufacturing the flange fork of the universal coupling is described below in combination with multiple embodiments:
- the method for manufacturing the end face teeth 111 of the flange fork of the universal coupling of this embodiment comprises the following steps:
- Step S101 subjecting the end face teeth 111 of the flange fork of the universal coupling to an acid treatment for 5 minutes, and then rinsing and drying;
- the acid is sulfuric acid with a mass fraction of 0.5%, which can not only remove oil stains on the surface, but also improve the surface roughness;
- Step S102 performing activation and heat preservation pretreatment on the nylon ultrafine powder, wherein the treatment temperature is 70° C.
- the nylon ultrafine powder is added with silica powder, and the addition amount is 0.015% by weight.
- the silica powder can play a good role in skeleton support; in addition, through the microstructure of the tooth end surface, it is found that the silica powder and the high molecular polymer in the nylon form a network structure, even if the teeth 112 are meshed and rotated at a high speed, the impact resistance and grinding resistance of the wear-resistant layer 114 are improved;
- Step S103 make a concave surface texture or pattern iron sheet sample, fix the concave surface texture or pattern iron sheet sample on the surface of the gear to be coated with adhesive, spray RILSAN fine powder onto the outer surface of the end face tooth 111, the pressure of the spray gun is 0.5MPa, the spray gun is a commercial product, and no repetitive description is made here.
- the plane where the universal coupling end face tooth 111 is located has a certain inclination angle with the horizontal plane, and the inclination angle is 30°.
- Photoresist is used for laying, and an etchant (composed of an organic amine compound, an anti-corrosion agent and an organic solvent, such as CN103513523A) is used to expose the teeth 112 and the tooth roots, and then a spray gun is used to spray perpendicularly to the plane of the universal coupling end face tooth 111.
- Step S104 performing a curing and heat preservation treatment on the sprayed end face teeth 111 of the universal coupling flange fork, the heat preservation temperature being 220°C.
- the method for manufacturing the end face teeth 111 of the flange fork of the universal coupling of this embodiment comprises the following steps:
- Step S101 subjecting the end face teeth 111 of the flange fork of the universal coupling to an acid treatment for 10 minutes, and then rinsing and drying;
- the acid is hydrochloric acid with a mass fraction of 0.8%, which can not only remove oil stains on the surface, but also improve the surface roughness;
- Step S102 performing activation and heat preservation pretreatment on the nylon ultrafine powder, wherein the treatment temperature is 50° C., wherein the nylon ultrafine powder is added with silica powder, and the addition amount is 0.05% by weight; the silica powder can play a good role in skeleton support; in addition, through the microstructure of the tooth end surface, it is found that the silica powder and the high molecular polymer in the nylon form a network structure, even if the teeth 112 are meshed and rotated at a high speed, the impact resistance and grinding resistance of the wear-resistant layer 114 are improved;
- Step S103 making a concave surface texture or pattern iron sheet sample, fixing the concave surface texture or pattern iron sheet sample on the surface of the gear to be coated with adhesive, spraying nylon 11 ultrafine powder onto the outer surface of the end face gear 111, the pressure of the spray gun is 0.7MPa, and the specific operation method is the currently known method;
- Step S104 performing a curing and heat preservation treatment on the sprayed end face teeth 111 of the universal coupling flange fork, the heat preservation temperature being 250°C.
- the method for manufacturing the end face teeth 111 of the flange fork of the universal coupling of this embodiment comprises the following steps:
- Step S101 subjecting the end face teeth 111 of the flange fork of the universal coupling to an acid treatment for 8 minutes, and then rinsing and drying;
- the acid is nitric acid with a mass fraction of 0.7%, which can not only remove oil stains on the surface, but also improve the surface roughness;
- Step S102 performing activation and heat preservation pretreatment on the nylon ultrafine powder, wherein the treatment temperature is 60° C., wherein the nylon ultrafine powder is added with silica powder, and the addition amount is 0.03% by weight; the silica powder can play a good role in skeleton support; in addition, through the microstructure of the tooth end surface, it is found that the silica powder and the high molecular polymer in the nylon form a network structure, even if the teeth 112 are meshed and rotated at a high speed, the impact resistance and grinding resistance of the wear-resistant layer 114 are improved;
- Step S103 making a concave surface texture or pattern iron sheet sample, fixing the concave surface texture or pattern iron sheet sample on the surface of the gear to be coated with adhesive, spraying nylon 11 ultrafine powder onto the outer surface of the end face gear 111, the pressure of the spray gun is 0.6MPa, and the specific operation method is the currently known method;
- Step S104 performing a curing and heat preservation treatment on the sprayed end face teeth 111 of the universal coupling flange fork, the heat preservation temperature being 230°C.
- the method for manufacturing the end face teeth 111 of the flange fork of the universal coupling of this embodiment comprises the following steps:
- Step S101 subjecting the end face teeth 111 of the flange fork of the universal coupling to an acid treatment for 8 minutes, and then rinsing and drying;
- the acid is sulfuric acid with a mass fraction of 0.55%, which can not only remove oil stains on the surface, but also improve the surface roughness;
- Step S102 making a concave surface texture or pattern iron sheet sample, fixing the concave surface texture or pattern iron sheet sample on the surface of the gear to be coated with adhesive, spraying nylon 11 ultrafine powder onto the outer surface of the end face gear 111, the pressure of the spray gun is 0.7MPa, and the specific operation method is the currently known method;
- Step S103 performing a curing and heat preservation treatment on the sprayed end face teeth 111 of the universal joint flange fork, the heat preservation temperature being 240°C.
- the method for manufacturing the above-mentioned universal coupling flange fork end face teeth 111 comprises the following steps:
- Step S101 subjecting the end face teeth 111 of the flange fork of the universal coupling to an acid treatment for 6 minutes, and then rinsing and drying;
- the acid in step S101 is hydrochloric acid with a mass fraction of 0.8%, which can not only remove oil stains on the surface, but also improve the surface roughness.
- Step S102 spraying nylon ultrafine powder onto the outer surface of the end face teeth 111 of the universal coupling flange fork, the pressure of the spray gun is 0.7MPa; the nylon ultrafine powder in step S102 is RILSAN fine powder or nylon 11 ultrafine powder; the nylon ultrafine powder is added with nano-silicon dioxide powder, and the added amount is 0.03% of the total weight of the nylon ultrafine powder.
- Step S103 make a template tooth that meshes with the end face tooth 111 of the universal coupling flange fork, and form a convex surface texture or pattern on the template tooth corresponding to the flow passage 115, place the sprayed end face tooth 111 of the universal coupling flange fork in an environment with a temperature of 80°C, mesh the template tooth with the end face tooth 111 of the universal coupling flange fork, and apply pressure from both sides to form a concave surface texture or pattern on the wear-resistant layer 114; the material of the template tooth is aluminum alloy; and a press (such as a 30T press, etc.) is used for pressure application.
- a press such as a 30T press, etc.
- Step S104 subjecting the universal joint flange fork end face teeth 111 obtained in step S103 to curing and heat preservation treatment at a temperature of 240° C. to form a wear-resistant layer 114 .
- the method for manufacturing the above-mentioned universal coupling flange fork end face teeth 111 comprises the following steps:
- Step S101 the end face teeth 111 of the universal coupling flange fork are treated with acid for 7 minutes, and then rinsed and dried; the acid in step S101 is hydrochloric acid with a mass fraction of 0.7%, which can not only remove surface oil stains but also improve the surface roughness.
- Step S102 spraying nylon ultrafine powder onto the outer surface of the end face teeth 111 of the universal coupling flange fork, the pressure of the spray gun is 0.6MPa; the nylon ultrafine powder in step S102 is RILSAN fine powder or nylon 11 ultrafine powder; the nylon ultrafine powder is added with nano-silicon dioxide powder, and the added amount is 0.015% of the total weight of the nylon ultrafine powder.
- Step S103 make a template tooth that meshes with the end face tooth 111 of the universal coupling flange fork, and form a convex surface texture or pattern on the template tooth corresponding to the flow passage 115, place the sprayed end face tooth 111 of the universal coupling flange fork in an environment with a temperature of 70°C, mesh the template tooth with the end face tooth 111 of the universal coupling flange fork, and apply pressure from both sides to form a concave surface texture or pattern on the wear-resistant layer 114; the material of the template tooth is aluminum alloy; and a press (such as a 30T press, etc.) is used for pressure application.
- a press such as a 30T press, etc.
- Step S104 subjecting the universal joint flange fork end face teeth 111 obtained in step S103 to curing and heat preservation treatment at a temperature of 250° C. to form a wear-resistant layer 114 .
- the method for manufacturing the above-mentioned universal coupling flange fork end face teeth 111 comprises the following steps:
- Step S101 the end face teeth 111 of the universal coupling flange fork are treated with acid for 8 minutes, and then rinsed and dried; the acid in step S101 is nitric acid with a mass fraction of 0.5%, which can not only remove oil stains on the surface, but also improve the surface roughness.
- Step S102 spraying nylon ultrafine powder onto the outer surface of the end face teeth 111 of the universal coupling flange fork, the pressure of the spray gun is 0.5MPa; the nylon ultrafine powder in step S102 is RILSAN fine powder or nylon 11 ultrafine powder; the nylon ultrafine powder is added with nano-silicon dioxide powder, and the added amount is 0.05% of the total weight of the nylon ultrafine powder.
- Step S103 make a template tooth that meshes with the end face tooth 111 of the universal coupling flange fork, and form a convex surface texture or pattern on the template tooth corresponding to the flow passage 115, place the sprayed end face tooth 111 of the universal coupling flange fork in an environment with a temperature of 80°C, mesh the template tooth with the end face tooth 111 of the universal coupling flange fork, and apply pressure from both sides to form a concave surface texture or pattern on the wear-resistant layer 114; the material of the template tooth is aluminum alloy; and a press (such as a 30T press, etc.) is used for pressure application.
- a press such as a 30T press, etc.
- Step S104 subjecting the universal joint flange fork end face teeth 111 obtained in step S103 to curing and heat preservation treatment at a temperature of 200° C. to form a wear-resistant layer 114 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
本发明公开了一种万向联轴器法兰叉头及其制作方法与万向联轴器,属于联轴器技术领域。万向联轴器法兰叉头包括法兰盘和叉头本体,法兰盘的端面上设有用于传递转矩的端面齿,叉头本体连接外部转动部件;该端面齿包括若干位于同一平面内的齿牙,在位于齿牙及其根部形成耐磨层;所述耐磨层上具有由流通通路构成的凹表面纹理或图形,该流通通路允许穿过端面齿表面储存输送润滑脂,所述凹表面纹理或图形是由外部手段在所述耐磨层上单独制作的。
Description
本发明属于联轴器技术领域,更具体地说,涉及一种万向联轴器法兰叉头及其制作方法与万向联轴器。
万向联轴器端面齿结构类似于法兰盘连接,但在法兰盘的端面上增加了齿形,在转矩传递过程中,受力部件与法兰盘完全不同,万向联轴器端面齿连接的两个部件是靠万向联轴器端面齿形传递转矩,而不是通过拉紧螺栓传递。万向联轴器端面齿连接时正常工况下连接螺栓不受剪切力,只受轴向拉紧力,传递的转矩由多个齿牙来分担,受力非常均匀,避免了应力集中,因此螺栓不易失效,此外万向联轴器端面齿具有自动定心,精度高,可在高转速下传递大转矩,并能将复杂的整体结构分成几个部分简单的结构,便于工业产品的设计、制造、安装和维修。
然而由于冶金钢厂轧线环境温度高、水汽大且万向联轴器承载较大扭矩,造成端面齿连接处容易出现疲劳裂纹及断裂的问题。为了解决上述的问题,目前公开的技术为在齿外表面设有一层耐磨层:例如中国专利CN201410134999.9公开了一种耐磨损铸造齿轮,它是由齿轮本体、齿牙和轴孔构成,齿牙表面设置有耐磨层;CN201711090668.X公开了一种用于齿轮零件表面的耐腐蚀涂层,包括以下重量份的材料:50~53质量份碳氮化钛、10~12质量份二氧化硅、4~6质量份氧化钴、2~4质量份氧化钒、2~4质量份氧化锌;CN201710010830.6公开了一种金属表面尼龙喷粉工艺,使得基体上的尼龙粉体进行冷却固化,得到尼龙粉体层。
上述专利公开的技术形成耐磨层可以较好的解决齿轮疲劳产生裂纹的问题,但对于万向联轴器叉头端面齿而言,在高转速且密封的情况下(实际生产中采用通用锂基润滑脂,例如市售的昆仑牌),由于离心力的作用,导致润滑脂易出现边缘聚集的情况,导致叉头端面齿出现局部润滑不畅的问题。
发明内容
1.要解决的问题
针对现有技术中存在的法兰叉头存在安全隐患以及润滑不畅的问题,本发明提供一种万向联轴器法兰叉头,保证法兰叉头端面齿的润滑,提高法兰叉头端面齿的性能,延长法兰叉头的使用寿命。
本发明的另一目的是提供一种上述万向联轴器法兰叉头的制作方法,在不降低法兰叉头的耐磨性和高强度要求的前提下,通过采用离心铸造的方式,使得法兰盘具有较高的耐磨性,法兰叉头本体具有较高的强度,提高安全使用性能。
本发明的另一目的是提供一种具有上述万向联轴器法兰叉头的端面齿的制作方法。
本发明的另一目的是提供一种具有上述法兰叉头的万向联轴器。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明的万向联轴器法兰叉头包括法兰盘和叉头本体,法兰盘的端面上设有用于传递转矩的端面齿,叉头本体连接外部转动部件;
该端面齿包括若干位于同一平面内的齿牙,在位于齿牙及其根部形成耐磨层;
上述耐磨层上具有由流通通路构成的凹表面纹理或图形,该流通通路允许穿过端面齿表面储存输送润滑脂,上述凹表面纹理或图形是由外部手段在上述耐磨层上单独制作的。
本发明提供了一种上述万向联轴器法兰叉头的制作方法,法兰盘与叉头本体能够采用离心整体铸造,且在法兰盘与叉头本体衔接处形成有一个过渡层,法兰盘与叉头本体构成一体结构;该方法包括以下具体步骤:
S101、制作铸型
制作万向联轴器法兰叉头离心旋转铸型,离心旋转铸型包括左模腔和右模腔,将左模腔与右模腔扣合形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致;
S102、合金熔炼
1)选用第一石墨坩埚,在1550~1600℃温度下熔炼法兰盘合金,将第一石墨坩埚内的熔液搅拌1~3分钟后进行除气精炼,形成法兰盘合金熔液;
2)选用第二石墨坩埚,在1550~1650℃温度下熔炼叉头本体合金,将第二石墨坩埚内的熔液搅拌2~
5分钟后进行除气精炼,形成叉头本体合金熔液;
S103、离心浇铸
采用立式离心机,将离心旋转铸型置于立式离心机上,先使上述法兰盘合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体合金熔液在离心力的作用下充型,凝固时间为15~25分钟,最后脱模、清理铸件。
本发明还提供了一种上述端面齿的制作方法,该端面齿包括若干位于同一平面内的齿牙以及承载上述齿牙的基体,相邻齿牙的间距为3-5mm,在位于齿牙及其根部形成耐磨层,且该耐磨层的厚度为0.01-0.02mm,该方法包括以下步骤:
步骤S101、对端面齿进行酸处理,处理时间为5-10min,然后冲洗烘干;上述酸为硫酸、盐酸或者硝酸,其质量分数为0.5-0.8%,不仅可以去除表面的油渍,且可以提高表面的粗糙度;
步骤S102、对尼龙超细粉进行活化保温预处理,其处理温度为50-70℃,上述尼龙超细粉添加有二氧化硅粉末,添加量为重量的0.015-0.05%;
步骤S103、在上述端面齿外表面上形成凹表面纹理或图形;
方式一:制作凹表面纹理或图形铁皮样板,将凹表面纹理或图形铁皮样板用粘胶固定在待涂覆齿轮表面,将步骤S102处理过的尼龙粉体喷涂到步骤S101中上述端面齿外表面上,喷枪的压力为0.5-0.7MPa;上述端面齿所在平面与水平面呈一定的倾斜角,上述倾斜角为30-60°,优选的角度为45°,采用光刻胶进行铺设,使用腐蚀剂将齿牙和齿根露出,然后采用喷枪与端面齿平面垂直进行喷涂;上述腐蚀剂由有机胺化合物、防腐蚀剂和有机溶剂组成。
方式二:制作与端面齿啮合的样板齿,且在样板齿上形成与流通通路相对应的凸表面纹理或图形,将喷涂后的端面齿置于温度为60-80℃环境中,将样板齿与端面齿啮合,并由两侧施压,在耐磨层上凹表面纹理或图形;充分利用耐磨层未固化前形成凹表面纹理或图形;样板齿材质为铝合金;采用压力机进行施压。
步骤S104、对喷涂后的端面齿进行固化保温处理,保温温度为200-250℃。
本发明还提供了一种具有上述法兰叉头的万向联轴器。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的万向联轴器法兰叉头,耐磨层上具有由流通通路构成的凹表面纹理或图形,该流通通路允许穿过端面齿表面储存输送润滑脂,利用凹表面纹理或图形将部分的润滑脂定位在端面齿啮合位置,即使在高转速情况下,这部分润滑脂在粘附力、摩擦力等作用下,克服离心力,尽可能的起到局部润滑作用,解决了叉头端面齿的局部润滑不畅的问题,减少端面齿的减少端面齿产生疲劳裂纹或断裂情况,延长端面齿使用寿命,且端面齿表面材料的耐冲击性、耐磨耗和耐腐蚀性不降低。
(2)本发明的万向联轴器法兰叉头端面齿在位于齿牙的根部形成耐磨层,且该耐磨层的厚度为0.01-0.02mm,所述耐磨层的材质为尼龙超细粉;提高端面齿表面材料的耐冲击性、耐磨耗和耐腐蚀性,减少端面齿产生疲劳裂纹或断裂情况,延长端面齿使用寿命。
以下将结合附图和实施例来对本发明的技术方案作进一步的详细描述,但是应当知道,这些附图仅是为解释目的而设计的,因此不作为本发明范围的限定。此外,除非特别指出,这些附图仅意在概念性地说明此处描述的结构构造,而不必要依比例进行绘制。
图1为本发明万向联轴器端面齿的结构示意图。
图2为图1的A部放大图;
图3为本发明万向联轴器法兰叉头端面齿的一种结构示意图;
图4为图3的凹表面纹理或图形的同心圆状结构示意图;
图5为本发明万向联轴器法兰叉头端面齿的另一种结构示意图;
图6为图5的凹表面纹理或图形的螺旋状结构示意图;
图7为本发明一体式万向联轴器法兰叉头端面齿的一种结构示意图;
图8为本发明的一种离心旋转铸型的结构示意图;
图9为本发明的制作方法得到的一体式万向联轴器法兰叉头。
附图标记说明:
11、法兰盘;111、端面齿;112、齿牙;113、基体;114、耐磨层;1141、覆盖区;1142、非覆盖区;115、流通通路;116、粗纹理;117、细纹理;12、叉头本体;13、第一浇注口;14、第二浇注口;15、离心旋转铸型;16、止挡凸台。
下文对本发明的示例性实施例的详细描述参考了附图,该附图形成描述的一部分,在该附图中作为示例示出了本发明可实施的示例性实施例。尽管这些示例性实施例被充分详细地描述以使得本领域技术人员能够实施本发明,但应当理解可实现其他实施例且可在不脱离本发明的精神和范围的情况下对本发明作各种改变。下文对本发明的实施例的更详细的描述并不用于限制所要求的本发明的范围,而仅仅为了进行举例说明且不限制对本发明的特点和特征的描述,以提出执行本发明的最佳方式,并足以使得本领域技术人员能够实施本发明。因此,本发明的范围仅由所附权利要求来限定。
下文对本发明的详细描述和示例实施例可结合附图来更好地理解,其中本发明的元件和特征由附图标记标识。
如图1和图2所示,本发明的万向联轴器法兰叉头包括法兰盘11和叉头本体12,法兰盘11的端面上设有用于传递转矩的端面齿111,叉头本体12连接外部转动部件(例如减速机等),法兰盘11可以采用螺栓与叉头本体12连接,此时该端面齿111包括若干位于同一平面内的齿牙112以及承载上述齿牙112的基体113,在位于齿牙112及其根部形成耐磨层114;上述耐磨层114上具有由流通通路115构成的凹表面纹理或图形,该流通通路115允许穿过端面齿111表面储存输送润滑脂(通用锂基润滑脂,例如市售的昆仑牌),上述凹表面纹理或图形是由外部手段在上述耐磨层114上单独制作的。
令发明人惊奇的发现,相比现有的光滑、连续型耐磨层114,本发明的叉头端面齿111润滑脂的分布更加均匀,且在高转速情况下,润滑脂聚集现象不明显,端面齿111可以得到很好的润滑,减少端面齿111产生疲劳裂纹或断裂情况,端面齿111使用寿命延长10-20%,且端面齿111表面材料的耐冲击性、耐磨耗和耐腐蚀性不降低。
在耐磨层114上,上述流通通路115并不是材料构造的一部分而是用机械性的方法制作在耐磨层114的表面上的。在本发明的一种推荐的形式下,耐磨层114的凹表面纹理由在使用之前制作的粗纹理116和细纹理117组成。
粗纹理116的图形及其宽度和深度,只要遵守以上限制,实际上可以是任何所希望的图形和尺寸。粗纹理116的深度可以与耐磨层114的厚度相等,优选的粗纹理116也可以具有不超过耐磨层114厚度的90%任一所希望的深度,在给定的高转速下较深的粗纹理116将有利于阻止润滑脂的运动。如果深度超过了耐磨层114厚度的90%,则耐磨层114的机械强度(由于水汽等的侵蚀,造成耐磨层114开裂脱落等)将会严重地降低因此应予避免。在现有技术中的任一所希望的图形,例如同心圆、正方格子、三角格子等等都可用于有助于给出凹陷的表面,此外,在上述提到过的尺寸限制范围之内,一切都可被组合成具有良好效果的所希望的任何一种图形和图形的组合。具体的如图3、图4、图5、图6和图7所示,在一些实施例中,上述凹表面纹理或图形包括放射状、栅格状、同心圆状、复合状、螺旋状或葵花籽状,这些纹理在结构上是连续的,并非单独的个体。
对比了表面为同心圆状、复合状(同心圆和放射状)的润滑脂聚集情况,研究结果显示,相较于表面纹理为同心圆状,表面纹理为复合状润滑脂分布得更加均匀;此外,葵花籽状的表面纹理,不仅润滑脂分布较为均匀,且相应的润滑脂不易被离心力甩至边缘。
在耐磨层114上边形成凹表面纹理或图形的外部手段可以包括但并受限于喷涂、加压、压印浮雕、铸模、切削或者光刻手段等等,如果耐磨层114可以用这些手段加工的话;取决于所用的图形,凹表面纹理或图形的尺寸和耐磨层114材料的性质,人们还利用切削工具或者其他的具有适当的尺寸和空间的装置在使用之前形成凹表面纹理或图形,这种技术对那些具有较低范围的尺寸的凹表面纹理或图形来说是最有效的。在原本存在于耐磨层114上的凹表面纹理或图形已被磨损到不复存在的程度时,这种技术也可有效地用作用于使凹表面纹理或图形再生的手段。
在一些实施例中,如图4和图6所示,上述凹表面纹理包括粗纹理116和细纹理117,其中上述粗纹
理116的尺寸满足:最大横向尺寸为从2mm到5mm,上述细纹理117的尺寸满足:最大横向尺寸为从0.6mm到1mm。这些细纹理117也用作不受阻润滑脂的通路,尽管通路规模更小,润滑脂在这种组合中流动。正是这样一种同时存在的流通通路115的独特的组合,才得以使完全的,未受阻的和均匀的润滑脂分布到耐磨层114表面的每一部分。
上述耐磨层114包括覆盖区1141和非覆盖区1142,其中覆盖区1141涂覆有尼龙超细粉,非覆盖区1142未涂覆尼龙超细粉,上述非覆盖区1142与覆盖区1141之间形成有流通通路115。上述尼龙超细粉为RILSAN细粉或尼龙11超细粉,RILSAN细粉是法国ARKEMA(原ATOFINA阿托菲纳)的产品,由市场购买得到。
上述尼龙超细粉添加有纳米二氧化硅粉末,添加量为尼龙超细粉总重量的0.015-0.05%。在此过程中,发明人通过大量的试验分析得到,一方面在喷涂时,二氧化硅粉末可以起到很好的骨架支撑作用;另一方面,通过齿端面的微观结构,发现二氧化硅粉末易填充于尼龙中高分子聚合体形成的网状结构中(Si与H形成氢键),即使齿牙112啮合且处于高速的转动,提高了耐磨层114的抗冲击能力,以及抗磨削能力。
对此,在实际的生产使用过程中,发明人对不添加二氧化硅粉末的耐磨层114进行同等条件的测试,相应的使用寿命缩短10%左右。
此外,发明人惊奇的发现,对上述的尼龙超细粉经过活化保温预处理,其处理温度为50-70℃,优选的温度为60℃,最终得到的耐磨层114更加平坦且表面光。分析发现,活化的二氧化硅粉末的活性更强,其更容易填充于尼龙中高分子聚合体形成的网络中,使得耐磨层114更致密,有利于提高耐磨层114的抗冲击、抗冲刷性能,且提高抗腐蚀性能(水汽的腐蚀)。
上述法兰盘11与叉头本体12还采用离心整体铸造(或者一体式铸造),且在法兰盘11与叉头本体12衔接处形成有一个过渡层,过渡层的厚度h为2mm~3mm,法兰盘11与叉头本体12构成一体结构;其中上述法兰盘11的材质为45#钢;上述叉头本体12的材质为ZG42Cr1Mo或ZG35CrMo。发明人尝试使用45#钢水与ZG42Cr1Mo合金钢水进行离心铸造,另发明人惊奇的发现,经过多次尝试,获得了一体式万向联轴器法兰叉头,且法兰盘11的耐磨性要高于叉头本体12,同时叉头本体12的强度高于法兰盘11。
例如利用上述的材质离心整体铸造得到的万向联轴器法兰叉头进行各部分的组分分析,其中叉头本体12部分符合ZG42Cr1Mo或ZG35CrMo的组分,法兰盘11部分符合45#钢的组分,在叉头本体12与法兰盘11的衔接处出现了2~3mm的混合组织结构,通过金相组织分析,晶体结构为上述材质的混合晶型,同时也发现,上述的材质通过离心作用,能够较好的衔接,对保证整体强度做出了贡献。
由于离心力的作用,上述法兰盘11呈近似圆环状,因此在法兰盘11的中心部分存在少量的凝固体,但这些凝固体不影响整体的结构(后续精加工处理),结合万向联轴器法兰叉头结构要求,端面齿111围绕在环形法兰盘11分布,该部分的材质为45#钢,基本满足使用的要求。
需要说明的是,在离心整体铸造过程中,叉头本体12的材质选用ZG42Cr1Mo或ZG35CrMo,符合目前的国家/行业标准规定,但是不可避免由于离心力过大等因素,造成法兰盘11合金熔液与叉头本体12合金熔液高度混合,尤其是叉头本体12合金熔液侵入到法兰盘11所在的位置,那么浇铸得到的产品是失败的,原因是耐磨性较差;法兰盘11合金熔液也不能过分侵入到叉头本体12所在的位置,可能导致叉头本体12的强度无法满足设计使用要求,因此控制离心整体铸造过程非常关键。
如图8所示,在离心整体铸造的离心旋转铸型15的内层形成有止挡凸台16,利用止挡凸台16的作用,尽可能减少法兰盘11合金熔液被甩到上方,通过产品结构的分析,过渡层基本形成位置在止挡凸台16的下方,充分说明了止挡凸台16设计的必要性。此外,虽然在离心整体铸造过程中过渡层的厚度不易精确控制,但本发明过渡层的厚度基本可以控制在2~3mm之间,在该范围值内,使得浇铸产品具有较好的整体强度需求。
此外,在离心旋转铸型15内部由下至上形成第一浇注口13和第二浇注口14,其中第二浇注口14直径为第一浇注口13直径的3~5倍;优选的,上述第二浇注口14直径为第一浇注口13直径的5倍;结合图8所示,第二浇注口14位于止挡凸台16上方,第一浇注口13位于接近底部位置,充分保证了法兰盘11合金熔液和叉头本体12合金熔液尽可能的分布在设计的位置。
上述的第一浇注口13和第二浇注口14均与主浇铸道连接连通,上述的第一浇注口13和第二浇注口14的端部均为缩小锥形,从而提高合金溶液的露出速度,避免堵塞第一浇注口13和第二浇注口14。
本发明的离心铸造可以采用现有技术中的砂型铸造,也可以采用消失模铸造,离心机为市售产品,为了提高制造的便捷性,优选的选用消失模铸造,得到法兰叉头铸坯后进行后续加工法兰盘上的端面齿,得到如图9所示的一体式万向联轴器法兰叉头。
下面结合多个实施例来叙述万向联轴器法兰叉头的制作方法:
实施例1a
本实施例提供了万向联轴器法兰叉头的制作方法,包括以下具体步骤:
S101、制作铸型
制作万向联轴器法兰叉头离心旋转铸型15,离心旋转铸型15包括左模腔和右模腔,将左模腔与右模腔扣合,形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致,预留收缩量为3mm,尺寸精度为±0.02mm,并在内壁上涂覆一层厚度为0.1mm的涂料,可以便于有效脱模;
S102、合金熔炼
3)选用第一石墨坩埚,在1600℃温度下熔炼法兰盘11合金,将第一石墨坩埚内的熔液搅拌3分钟后进行除气精炼,形成法兰盘11合金熔液;
4)选用第二石墨坩埚,在1560℃温度下熔炼叉头本体12合金,将第二石墨坩埚内的熔液搅拌5分钟后进行除气精炼,形成叉头本体12合金熔液;
S103、离心浇铸
采用立式离心机,将离心旋转铸型15置于立式离心机上,先使上述法兰盘11合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体12合金熔液在离心力的作用下充型,凝固时间为25分钟,最后脱模、清理铸件。
在步骤S103中,从开始浇铸至3秒钟内任一时刻起,实施连续迅速地增加离心旋转铸型15转速,离心旋转铸型15旋转的加速度为0.2m/s2,待法兰盘11合金熔液浇铸到为需要浇铸的法兰盘11合金熔液金属液总重的75%,离心旋转铸型15旋转的加速度为-0.1m/s2。考虑到法兰盘11整体的金属液重量相比叉头本体12的金属液重量少很多,因此,在浇铸75%后,需要尽可能降低离心旋转速度,以使得法兰盘11合金熔液能够下沉,同时利用止挡凸台16的作用,尽可能减少法兰盘11合金熔液被甩到上方,由于兰盘合金熔液无法上移,第一浇注口13会被占用,叉头本体12合金熔液会从第二浇注口14流入型腔内;
在步骤S103中,上述叉头本体12合金熔液浇铸时,立即连续地降低离心旋转铸型15转速,离心旋转铸型15旋转的加速度为-0.05m/s2,在重力作用下,叉头本体12合金熔液会下止挡凸台16下方以及空缺位置流动,且叉头本体12合金熔液与法兰盘11合金熔液会形成混合,形成过渡层,从而直至铸件完全凝固。
结合前述的内容,为了减少法兰盘11合金熔液与叉头本体12合金熔液高度混合,在步骤S103中,上述法兰盘11合金熔液浇铸速度为12kg/min;上述叉头本体12合金熔液浇铸速度为18kg/min,在浇铸完法兰盘11合金熔液后,较短时间内,可以浇铸更多的叉头本体12合金熔液置于法兰盘11合金熔液上方,进一步保障本发明实施的可能性。
为了减少浇铸过程中的合金溶液氧化,尽可能的降低浇铸环境的压力值,同时避免浇筑时合金溶液喷溅现象,在步骤S103中,上述法兰盘11合金熔液和叉头本体12合金熔液浇铸时的压力值为400Pa。
当使法兰盘11合金熔液沉积并凝固在离心旋转铸型15的内壁上时,铸坯的平均表面温度为0.98T至0.99T,其中T(℃)是法兰盘11合金的凝固开始温度。具体的,法兰盘11合金熔液在1600℃时浇铸,采用现有技术的合金浇铸设备,当法兰盘11合金熔液浇铸结束,立即切换浇铸叉头本体12合金熔液,在1560℃时浇铸(对熔融的合金溶液进行加热至1560℃),由上述的熔炼温度可知,法兰盘11的熔炼温度和叉头本体12的熔炼温度相差至少50℃,在离心机工作状态下,在本实施例中,法兰盘11合金的凝固温度T=1590℃,当使法兰盘11合金熔液沉积并凝固在离心旋转模具的内壁上时,铸坯的平均表面温度为0.98T至0.99T,即铸坯的平均表面温度为1558℃至1574℃,叉头本体12合金溶液的温度在1560℃,与法兰盘11铸坯的表面温度基本一致,在相同条件下,使得法兰盘11与叉头本体12的收缩率相当,避免法兰盘11与叉头本体12的衔接处产生热应力,减少开裂的可能性,同时提高两者的结合强度;最后脱模、清理铸件。
实施例1b
本实施例提供了万向联轴器法兰叉头的制作方法,包括以下具体步骤:
S101、制作铸型
制作万向联轴器法兰叉头离心旋转铸型15,离心旋转铸型15包括左模腔和右模腔,将左模腔与右模腔扣合,形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致,预留收缩量为5mm,尺寸精度为±0.02mm,并在内壁上涂覆一层厚度为0.1mm的涂料;
S102、合金熔炼
5)选用第一石墨坩埚,在1580℃温度下熔炼法兰盘11合金,将第一石墨坩埚内的熔液搅拌1~3分
钟后进行除气精炼,形成法兰盘11合金熔液;
6)选用第二石墨坩埚,在1550℃温度下熔炼叉头本体12合金,将第二石墨坩埚内的熔液搅拌3分钟后进行除气精炼,形成叉头本体12合金熔液;
S103、离心浇铸
采用立式离心机,将离心旋转铸型15置于立式离心机上,先使上述法兰盘11合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体12合金熔液在离心力的作用下充型,凝固时间为20分钟,最后脱模、清理铸件。
在步骤S103中,从开始浇铸至3秒钟内任一时刻起,实施连续迅速地增加离心旋转铸型15转速,离心旋转铸型15旋转的加速度为0.1m/s2,待法兰盘11合金熔液浇铸到为需要浇铸的法兰盘11合金熔液金属液总重的60%,离心旋转铸型15旋转的加速度为-0.05m/s2。考虑到法兰盘11整体的金属液重量相比叉头本体12的金属液重量少很多,因此,在浇铸60%后,需要尽可能降低离心旋转速度,以使得法兰盘11合金熔液能够下沉,同时利用止挡凸台16的作用,尽可能减少法兰盘11合金熔液被甩到上方,由于兰盘合金熔液无法上移,第一浇注口13会被占用,叉头本体12合金熔液会从第二浇注口14流入型腔内;
在步骤S103中,上述叉头本体12合金熔液浇铸时,立即连续地降低离心旋转铸型15转速,离心旋转铸型15旋转的加速度为-0.03m/s2,在重力作用下,叉头本体12合金熔液会下止挡凸台16下方以及空缺位置流动,且叉头本体12合金熔液与法兰盘11合金熔液会形成混合,形成过渡层,从而直至铸件完全凝固。
结合前述的内容,为了减少法兰盘11合金熔液与叉头本体12合金熔液高度混合,在步骤S103中,上述法兰盘11合金熔液浇铸速度为15kg/min;上述叉头本体12合金熔液浇铸速度为20kg/min,在浇铸完法兰盘11合金熔液后,较短时间内,可以浇铸更多的叉头本体12合金熔液置于法兰盘11合金熔液上方,进一步保障本发明实施的可能性。
为了减少浇铸过程中的合金溶液氧化,尽可能的降低浇铸环境的压力值,同时避免浇筑时合金溶液喷溅现象,在步骤S103中,上述法兰盘11合金熔液和叉头本体12合金熔液浇铸时的压力值为200Pa。
当使法兰盘11合金熔液沉积并凝固在离心旋转铸型15的内壁上时,铸坯的平均表面温度为0.98T至0.99T,其中T(℃)是法兰盘11合金的凝固开始温度。具体的,法兰盘11合金熔液在1580℃时浇铸,采用现有技术的合金浇铸设备,当法兰盘11合金熔液浇铸结束,立即切换浇铸叉头本体12合金熔液,在1550℃时浇铸(对熔融的合金溶液进行加热至1550℃),由上述的熔炼温度可知,法兰盘11的熔炼温度和叉头本体12的熔炼温度相差至少50℃,在离心机工作状态下,在本实施例中,法兰盘11合金的凝固温度T=1590℃,当使法兰盘11合金熔液沉积并凝固在离心旋转模具的内壁上时,铸坯的平均表面温度为0.98T至0.99T,即铸坯的平均表面温度为1548℃至1564℃,叉头本体12合金溶液的温度在1550℃,与法兰盘11铸坯的表面温度基本一致,在相同条件下,使得法兰盘11与叉头本体12的收缩率相当,避免法兰盘11与叉头本体12的衔接处产生热应力,减少开裂的可能性,同时提高两者的结合强度;最后脱模、清理铸件。
实施例1c
本实施例提供了万向联轴器法兰叉头的制作方法,包括以下具体步骤:
S101、制作铸型
制作万向联轴器法兰叉头离心旋转铸型15,离心旋转铸型15包括左模腔和右模腔,将左模腔与右模腔扣合,形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致,预留收缩量为4mm,尺寸精度为±0.02mm,并在内壁上涂覆一层厚度为0.1mm的涂料;
S102、合金熔炼
7)选用第一石墨坩埚,在1550~1600℃温度下熔炼法兰盘11合金,将第一石墨坩埚内的熔液搅拌2分钟后进行除气精炼,形成法兰盘11合金熔液;
8)选用第二石墨坩埚,在1550~1650℃温度下熔炼叉头本体12合金,将第二石墨坩埚内的熔液搅拌4分钟后进行除气精炼,形成叉头本体12合金熔液;
S103、离心浇铸
采用立式离心机,将离心旋转铸型15置于立式离心机上,先使上述法兰盘11合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体12合金熔液在离心力的作用下充型,凝固时间为15分钟,最后脱模、清理铸件。
在步骤S103中,从开始浇铸至3秒钟内任一时刻起,实施连续迅速地增加离心旋转铸型15转速,离心旋转铸型15旋转的加速度为0.15m/s2,待法兰盘11合金熔液浇铸到为需要浇铸的法兰盘11合金熔液金属液总重的65%,离心旋转铸型15旋转的加速度为-0.06m/s2。考虑到法兰盘11整体的金属液重量相比叉头本体12的金属液重量少很多,因此,在浇铸65%后,需要尽可能降低离心旋转速度,以使得法兰盘11合金熔液能够下沉,同时利用止挡凸台16的作用,尽可能减少法兰盘11合金熔液被甩到上方,由于兰盘
合金熔液无法上移,第一浇注口13会被占用,叉头本体12合金熔液会从第二浇注口14流入型腔内;
在步骤S103中,上述叉头本体12合金熔液浇铸时,立即连续地降低离心旋转铸型15转速,离心旋转铸型15旋转的加速度为-0.04m/s2,在重力作用下,叉头本体12合金熔液会下止挡凸台16下方以及空缺位置流动,且叉头本体12合金熔液与法兰盘11合金熔液会形成混合,形成过渡层,从而直至铸件完全凝固。
结合前述的内容,为了减少法兰盘11合金熔液与叉头本体12合金熔液高度混合,在步骤S103中,上述法兰盘11合金熔液浇铸速度为14kg/min;上述叉头本体12合金熔液浇铸速度为19kg/min,在浇铸完法兰盘11合金熔液后,较短时间内,可以浇铸更多的叉头本体12合金熔液置于法兰盘11合金熔液上方,进一步保障本发明实施的可能性。
为了减少浇铸过程中的合金溶液氧化,尽可能的降低浇铸环境的压力值,同时避免浇筑时合金溶液喷溅现象,在步骤S103中,上述法兰盘11合金熔液和叉头本体12合金熔液浇铸时的压力值为300Pa。
当使法兰盘11合金熔液沉积并凝固在离心旋转铸型15的内壁上时,铸坯的平均表面温度为0.98T至0.99T,其中T(℃)是法兰盘11合金的凝固开始温度。具体的,法兰盘11合金熔液在1600℃时浇铸,采用现有技术的合金浇铸设备,当法兰盘11合金熔液浇铸结束,立即切换浇铸叉头本体12合金熔液,在1550℃时浇铸(对熔融的合金溶液进行加热至1550℃),由上述的熔炼温度可知,法兰盘11的熔炼温度和叉头本体12的熔炼温度相差至少50℃,在离心机工作状态下,在本实施例中,法兰盘11合金的凝固温度T=1590℃,当使法兰盘11合金熔液沉积并凝固在离心旋转模具的内壁上时,铸坯的平均表面温度为0.98T至0.99T,即铸坯的平均表面温度为1558℃至1574℃,叉头本体12合金溶液的温度在1560℃,与法兰盘11铸坯的表面温度基本一致,在相同条件下,使得法兰盘11与叉头本体12的收缩率相当,避免法兰盘11与叉头本体12的衔接处产生热应力,减少开裂的可能性,同时提高两者的结合强度;最后脱模、清理铸件。
实施例1d
本实施例提供了万向联轴器法兰叉头的制作方法,包括以下具体步骤:
S101、制作铸型
制作万向联轴器法兰叉头离心旋转铸型15,离心旋转铸型15包括左模腔和右模腔,将左模腔与右模腔扣合,形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致,预留收缩量为4mm,尺寸精度为±0.02mm,并在内壁上涂覆一层厚度为0.1mm的涂料;
S102、合金熔炼
9)选用第一石墨坩埚,在1600℃温度下熔炼法兰盘11合金,将第一石墨坩埚内的熔液搅拌1分钟后进行除气精炼,形成法兰盘11合金熔液;
10)选用第二石墨坩埚,在1560℃温度下熔炼叉头本体12合金,将第二石墨坩埚内的熔液搅拌3分钟后进行除气精炼,形成叉头本体12合金熔液;
S103、离心浇铸
采用立式离心机,将离心旋转铸型15置于立式离心机上,先使上述法兰盘11合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体12合金熔液在离心力的作用下充型,凝固时间为15分钟,最后脱模、清理铸件。
在步骤S103中,从开始浇铸至3秒钟内任一时刻起,实施连续迅速地增加离心旋转铸型15转速,离心旋转铸型15旋转的加速度为0.2m/s2,待法兰盘11合金熔液浇铸到为需要浇铸的法兰盘11合金熔液金属液总重的60%,离心旋转铸型15旋转的加速度为-0.1m/s2。考虑到法兰盘11整体的金属液重量相比叉头本体12的金属液重量少很多,因此,在浇铸60%后,需要尽可能降低离心旋转速度,以使得法兰盘11合金熔液能够下沉,同时利用止挡凸台16的作用,尽可能减少法兰盘11合金熔液被甩到上方,由于兰盘合金熔液无法上移,第一浇注口13会被占用,叉头本体12合金熔液会从第二浇注口14流入型腔内;
在步骤S103中,上述叉头本体12合金熔液浇铸时,立即连续地降低离心旋转铸型15转速,离心旋转铸型15旋转的加速度为-0.03m/s2,在重力作用下,叉头本体12合金熔液会下止挡凸台16下方以及空缺位置流动,且叉头本体12合金熔液与法兰盘11合金熔液会形成混合,形成过渡层,从而直至铸件完全凝固。
结合前述的内容,为了减少法兰盘11合金熔液与叉头本体12合金熔液高度混合,在步骤S103中,上述法兰盘11合金熔液浇铸速度为15kg/min;上述叉头本体12合金熔液浇铸速度为20kg/min,在浇铸完法兰盘11合金熔液后,较短时间内,可以浇铸更多的叉头本体12合金熔液置于法兰盘11合金熔液上方,进一步保障本发明实施的可能性。
为了减少浇铸过程中的合金溶液氧化,尽可能的降低浇铸环境的压力值,同时避免浇筑时合金溶液喷溅现象,在步骤S103中,上述法兰盘11合金熔液和叉头本体12合金熔液浇铸时的压力值为300Pa。
当使法兰盘11合金熔液沉积并凝固在离心旋转铸型15的内壁上时,铸坯的平均表面温度为0.98T至
0.99T,其中T(℃)是法兰盘11合金的凝固开始温度。具体的,法兰盘11合金熔液在1600℃时浇铸,采用现有技术的合金浇铸设备,当法兰盘11合金熔液浇铸结束,立即切换浇铸叉头本体12合金熔液,在1560℃时浇铸(对熔融的合金溶液进行加热至1560℃),由上述的熔炼温度可知,法兰盘11的熔炼温度和叉头本体12的熔炼温度相差至少50℃,在离心机工作状态下,在本实施例中,法兰盘11合金的凝固温度T=1590℃,当使法兰盘11合金熔液沉积并凝固在离心旋转模具的内壁上时,铸坯的平均表面温度为0.98T至0.99T,即铸坯的平均表面温度为1558℃至1574℃,叉头本体12合金溶液的温度在1560℃,与法兰盘11铸坯的表面温度基本一致,在相同条件下,使得法兰盘11与叉头本体12的收缩率相当,避免法兰盘11与叉头本体12的衔接处产生热应力,减少开裂的可能性,同时提高两者的结合强度;最后脱模、清理铸件。
实施例1e
本实施例提供了万向联轴器法兰叉头的制作方法,包括以下具体步骤:
S101、制作铸型
制作万向联轴器法兰叉头离心旋转铸型15,离心旋转铸型15包括左模腔和右模腔,将左模腔与右模腔扣合,形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致,预留收缩量为5mm,尺寸精度为±0.02mm,并在内壁上涂覆一层厚度为0.1mm的涂料;
S102、合金熔炼
11)选用第一石墨坩埚,在1600℃温度下熔炼法兰盘11合金,将第一石墨坩埚内的熔液搅拌3分钟后进行除气精炼,形成法兰盘11合金熔液;
12)选用第二石墨坩埚,在1560℃温度下熔炼叉头本体12合金,将第二石墨坩埚内的熔液搅拌5分钟后进行除气精炼,形成叉头本体12合金熔液;
S103、离心浇铸
采用立式离心机,将离心旋转铸型15置于立式离心机上,先使上述法兰盘11合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体12合金熔液在离心力的作用下充型,凝固时间为25分钟,最后脱模、清理铸件。
在步骤S103中,从开始浇铸至3秒钟内任一时刻起,实施连续迅速地增加离心旋转铸型15转速,离心旋转铸型15旋转的加速度为0.1m/s2,待法兰盘11合金熔液浇铸到为需要浇铸的法兰盘11合金熔液金属液总重的75%,离心旋转铸型15旋转的加速度为--0.1m/s2。考虑到法兰盘11整体的金属液重量相比叉头本体12的金属液重量少很多,因此,在浇铸75%后,需要尽可能降低离心旋转速度,以使得法兰盘11合金熔液能够下沉,同时利用止挡凸台16的作用,尽可能减少法兰盘11合金熔液被甩到上方,由于兰盘合金熔液无法上移,第一浇注口13会被占用,叉头本体12合金熔液会从第二浇注口14流入型腔内;
在步骤S103中,上述叉头本体12合金熔液浇铸时,立即连续地降低离心旋转铸型15转速,离心旋转铸型15旋转的加速度为-0.05m/s2,在重力作用下,叉头本体12合金熔液会下止挡凸台16下方以及空缺位置流动,且叉头本体12合金熔液与法兰盘11合金熔液会形成混合,形成过渡层,从而直至铸件完全凝固。
结合前述的内容,为了减少法兰盘11合金熔液与叉头本体12合金熔液高度混合,在步骤S103中,上述法兰盘11合金熔液浇铸速度为13kg/min;上述叉头本体12合金熔液浇铸速度为19kg/min,在浇铸完法兰盘11合金熔液后,较短时间内,可以浇铸更多的叉头本体12合金熔液置于法兰盘11合金熔液上方,进一步保障本发明实施的可能性。
为了减少浇铸过程中的合金溶液氧化,尽可能的降低浇铸环境的压力值,同时避免浇筑时合金溶液喷溅现象,在步骤S103中,上述法兰盘11合金熔液和叉头本体12合金熔液浇铸时的压力值为400Pa。
当使法兰盘11合金熔液沉积并凝固在离心旋转铸型15的内壁上时,铸坯的平均表面温度为0.98T至0.99T,其中T(℃)是法兰盘11合金的凝固开始温度。具体的,法兰盘11合金熔液在1600℃时浇铸,采用现有技术的合金浇铸设备,当法兰盘11合金熔液浇铸结束,立即切换浇铸叉头本体12合金熔液,在1550℃时浇铸(对熔融的合金溶液进行加热至1550℃),由上述的熔炼温度可知,法兰盘11的熔炼温度和叉头本体12的熔炼温度相差至少50℃,在离心机工作状态下,在本实施例中,法兰盘11合金的凝固温度T=1590℃,当使法兰盘11合金熔液沉积并凝固在离心旋转模具的内壁上时,铸坯的平均表面温度为0.98T至0.99T,即铸坯的平均表面温度为1558℃至1574℃,叉头本体12合金溶液的温度在1560℃,与法兰盘11铸坯的表面温度基本一致,在相同条件下,使得法兰盘11与叉头本体12的收缩率相当,避免法兰盘11与叉头本体12的衔接处产生热应力,减少开裂的可能性,同时提高两者的结合强度;最后脱模、清理铸件。
本发明还提供了一种上述端面齿111的制作方法,下面结合多个实施例来叙述万向联轴器法兰叉头的制作方法:
实施例2a
本实施例的万向联轴器法兰叉头端面齿111的制作方法,包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为5min,然后冲洗烘干;所述酸为硫酸,其质量分数为0.5%,不仅可以去除表面的油渍,且可以提高表面的粗糙度;
步骤S102、对尼龙超细粉进行活化保温预处理,其处理温度为70℃,所述尼龙超细粉添加有二氧化硅粉末,添加量为重量的0.015%,二氧化硅粉末可以起到很好的骨架支撑作用;此外,通过齿端面的微观结构,发现二氧化硅粉末与尼龙中高分子聚合体形成网状结构,即使齿牙112啮合且处于高速的转动,提高了耐磨层114的抗冲击能力,以及抗磨削能力;
步骤S103、制作凹表面纹理或图形铁皮样板,将凹表面纹理或图形铁皮样板用粘胶固定在待涂覆齿轮表面,将RILSAN细粉喷涂到端面齿111外表面上,喷枪的压力为0.5MPa,喷枪为市售产品,在此不做重复叙述。
在本实施中,所述万向联轴器端面齿111所在平面与水平面呈一定的倾斜角,所述倾斜角为30°,采用光刻胶进行铺设,使用腐蚀剂(由有机胺化合物、防腐蚀剂和有机溶剂组成,例如CN103513523A)将齿牙112和齿根露出,然后采用喷枪与万向联轴器端面齿111平面垂直进行喷涂。
步骤S104、对喷涂后的万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为220℃。
实施例2b
本实施例的万向联轴器法兰叉头端面齿111的制作方法,包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为10min,然后冲洗烘干;所述酸为盐酸,其质量分数为0.8%,不仅可以去除表面的油渍,且可以提高表面的粗糙度;
步骤S102、对尼龙超细粉进行活化保温预处理,其处理温度为50℃,所述尼龙超细粉添加有二氧化硅粉末,添加量为重量的0.05%;二氧化硅粉末可以起到很好的骨架支撑作用;此外,通过齿端面的微观结构,发现二氧化硅粉末与尼龙中高分子聚合体形成网状结构,即使齿牙112啮合且处于高速的转动,提高了耐磨层114的抗冲击能力,以及抗磨削能力;
步骤S103、制作凹表面纹理或图形铁皮样板,将凹表面纹理或图形铁皮样板用粘胶固定在待涂覆齿轮表面,将尼龙11超细粉喷涂到端面齿111外表面上,喷枪的压力为0.7MPa,具体的操作方法为目前已知的方法;
步骤S104、对喷涂后的万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为250℃。
实施例2c
本实施例的万向联轴器法兰叉头端面齿111的制作方法,包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为8min,然后冲洗烘干;所述酸为硝酸,其质量分数为0.7%,不仅可以去除表面的油渍,且可以提高表面的粗糙度;
步骤S102、对尼龙超细粉进行活化保温预处理,其处理温度为60℃,所述尼龙超细粉添加有二氧化硅粉末,添加量为重量的0.03%;二氧化硅粉末可以起到很好的骨架支撑作用;此外,通过齿端面的微观结构,发现二氧化硅粉末与尼龙中高分子聚合体形成网状结构,即使齿牙112啮合且处于高速的转动,提高了耐磨层114的抗冲击能力,以及抗磨削能力;
步骤S103、制作凹表面纹理或图形铁皮样板,将凹表面纹理或图形铁皮样板用粘胶固定在待涂覆齿轮表面,将尼龙11超细粉喷涂到端面齿111外表面上,喷枪的压力为0.6MPa,具体的操作方法为目前已知的方法;
步骤S104、对喷涂后的万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为230℃。
实施例2d
本实施例的万向联轴器法兰叉头端面齿111的制作方法,包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为8min,然后冲洗烘干;所述酸为硫酸,其质量分数为0.55%,不仅可以去除表面的油渍,且可以提高表面的粗糙度;
步骤S102、制作凹表面纹理或图形铁皮样板,将凹表面纹理或图形铁皮样板用粘胶固定在待涂覆齿轮表面,将尼龙11超细粉喷涂到端面齿111外表面上,喷枪的压力为0.7MPa,具体的操作方法为目前已知的方法;
步骤S103、对喷涂后的万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为240℃。
实施例2e
针对上述的万向联轴器法兰叉头端面齿111的制作方法包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为6min,然后冲洗烘干;步骤S101中所述酸为盐酸,其质量分数为0.8%,不仅可以去除表面的油渍,且可以提高表面的粗糙度。
步骤S102、将尼龙超细粉喷涂到万向联轴器法兰叉头端面齿111外表面上,喷枪的压力为0.7MPa;步骤S102中所述尼龙超细粉为RILSAN细粉或尼龙11超细粉;所述尼龙超细粉添加有纳米二氧化硅粉末,添加量为尼龙超细粉总重量的0.03%。
步骤S103、制作与万向联轴器法兰叉头端面齿111啮合的样板齿,且在样板齿上形成与流通通路115相对应的凸表面纹理或图形,将喷涂后的万向联轴器法兰叉头端面齿111置于温度为80℃环境中,将样板齿与万向联轴器法兰叉头端面齿111啮合,并由两侧施压,在耐磨层114上凹表面纹理或图形;所述样板齿材质为铝合金;采用压力机(例如30T压机等)进行施压。
步骤S104、将步骤S103得到万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为240℃,形成耐磨层114。
实施例2f
针对上述的万向联轴器法兰叉头端面齿111的制作方法包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为7min,然后冲洗烘干;步骤S101中所述酸为盐酸,其质量分数为0.7%,不仅可以去除表面的油渍,且可以提高表面的粗糙度。
步骤S102、将尼龙超细粉喷涂到万向联轴器法兰叉头端面齿111外表面上,喷枪的压力为0.6MPa;步骤S102中所述尼龙超细粉为RILSAN细粉或尼龙11超细粉;所述尼龙超细粉添加有纳米二氧化硅粉末,添加量为尼龙超细粉总重量的0.015%。
步骤S103、制作与万向联轴器法兰叉头端面齿111啮合的样板齿,且在样板齿上形成与流通通路115相对应的凸表面纹理或图形,将喷涂后的万向联轴器法兰叉头端面齿111置于温度为70℃环境中,将样板齿与万向联轴器法兰叉头端面齿111啮合,并由两侧施压,在耐磨层114上凹表面纹理或图形;所述样板齿材质为铝合金;采用压力机(例如30T压机等)进行施压。
步骤S104、将步骤S103得到万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为250℃,形成耐磨层114。
实施例2g
针对上述的万向联轴器法兰叉头端面齿111的制作方法包括以下步骤:
步骤S101、对万向联轴器法兰叉头端面齿111进行酸处理,处理时间为8min,然后冲洗烘干;步骤S101中所述酸为硝酸,其质量分数为0.5%,不仅可以去除表面的油渍,且可以提高表面的粗糙度。
步骤S102、将尼龙超细粉喷涂到万向联轴器法兰叉头端面齿111外表面上,喷枪的压力为0.5MPa;步骤S102中所述尼龙超细粉为RILSAN细粉或尼龙11超细粉;所述尼龙超细粉添加有纳米二氧化硅粉末,添加量为尼龙超细粉总重量的0.05%。
步骤S103、制作与万向联轴器法兰叉头端面齿111啮合的样板齿,且在样板齿上形成与流通通路115相对应的凸表面纹理或图形,将喷涂后的万向联轴器法兰叉头端面齿111置于温度为80℃环境中,将样板齿与万向联轴器法兰叉头端面齿111啮合,并由两侧施压,在耐磨层114上凹表面纹理或图形;所述样板齿材质为铝合金;采用压力机(例如30T压机等)进行施压。
步骤S104、将步骤S103得到万向联轴器法兰叉头端面齿111进行固化保温处理,保温温度为200℃,形成耐磨层114。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。
Claims (15)
- 一种万向联轴器法兰叉头,包括法兰盘(11)和叉头本体(12),法兰盘(11)的端面上设有用于传递转矩的端面齿(111),叉头本体(12)连接外部转动部件,其特征在于,该端面齿(111)包括若干位于同一平面内的齿牙(112),在位于齿牙(112)及其根部形成耐磨层(114);所述耐磨层(114)上具有由流通通路(115)构成的凹表面纹理或图形,该流通通路(115)允许穿过端面齿(111)表面储存输送润滑脂,所述凹表面纹理或图形是由外部手段在所述耐磨层(114)上单独制作的。
- 根据权利要求1所述的万向联轴器法兰叉头,其特征在于,所述凹表面纹理包括粗纹理(116)和细纹理(117),其中所述粗纹理(116)的尺寸满足:最大横向尺寸为从2mm到5mm,所述细纹理(117)的尺寸满足:最大横向尺寸为从0.6mm到1mm。
- 根据权利要求2所述的万向联轴器法兰叉头,其特征在于,所述凹表面纹理或图形包括放射状、栅格状、同心圆状、复合状、螺旋状或葵花籽状。
- 根据权利要求3所述的万向联轴器法兰叉头,其特征在于,所述耐磨层(114)包括覆盖区(1141)和非覆盖区(1142),其中覆盖区(1141)涂覆有尼龙超细粉,非覆盖区(1142)未涂覆尼龙超细粉,所述非覆盖区(1142)与覆盖区(1141)之间形成有流通通路(115)。
- 根据权利要求4所述的万向联轴器法兰叉头,其特征在于,所述尼龙超细粉经过活化保温预处理,其处理温度为50-70℃。
- 根据权利要求1-5任一项所述万向联轴器法兰叉头的制作方法,法兰盘(11)与叉头本体(12)采用离心整体铸造,且在法兰盘(11)与叉头本体(12)衔接处形成有一个过渡层,法兰盘(11)与叉头本体(12)构成一体结构,其特征在于,该方法包括以下具体步骤:S101、制作铸型制作万向联轴器法兰叉头离心旋转铸型(15),离心旋转铸型(15)包括左模腔和右模腔,将左模腔与右模腔扣合形成成型腔,成型腔的形状与万向联轴器法兰叉头外轮廓相一致;S102、合金熔炼1)选用第一石墨坩埚,在1550~1600℃温度下熔炼法兰盘(11)合金,将第一石墨坩埚内的熔液搅拌1~3分钟后进行除气精炼,形成法兰盘(11)合金熔液;2)选用第二石墨坩埚,在1550~1650℃温度下熔炼叉头本体(12)合金,将第二石墨坩埚内的熔液搅拌2~5分钟后进行除气精炼,形成叉头本体(12)合金熔液;S103、离心浇铸采用立式离心机,将离心旋转铸型(15)置于立式离心机上,先使上述法兰盘(11)合金熔液在离心力的作用下充型,然后紧密衔接,使上述叉头本体(12)合金熔液在离心力的作用下充型,凝固时间为15~25分钟,最后脱模、清理铸件。
- 根据权利要求6所述的万向联轴器法兰叉头的制作方法,其特征在于,在离心旋转铸型(15)内部由下至上形成第一浇注口(13)和第二浇注口(14),其中第二浇注口(14)直径为第一浇注口(13)直径的3~5倍。
- 根据权利要求7所述的万向联轴器法兰叉头的制作方法,其特征在于,在步骤S103中,从开始浇 铸至3秒钟内任一时刻起,实施连续迅速地增加离心旋转铸型(15)转速,离心旋转铸型(15)旋转的加速度为0.1~0.2m/s2,待法兰盘(11)合金熔液浇铸到为需要浇铸的法兰盘(11)合金熔液金属液总重的60%~75%,离心旋转铸型(15)旋转的加速度为-0.05~-0.1m/s2。
- 根据权利要求8所述的万向联轴器法兰叉头的制作方法,其特征在于,在步骤S103中,所述叉头本体(12)合金熔液浇铸时,立即连续地降低离心旋转铸型(15)转速,离心旋转铸型(15)旋转的加速度为-0.03~-0.05m/s2,直至铸件完全凝固。
- 根据权利要求9所述的万向联轴器法兰叉头的制作方法,其特征在于,在步骤S103中,所述法兰盘(11)合金熔液浇铸速度12kg/min≤v≤15kg/min;所述叉头本体(12)合金熔液浇铸速度18kg/min≤v≤20kg/min。
- 根据权利要求10所述的万向联轴器法兰叉头的制作方法,其特征在于,在步骤S103中,所述法兰盘(11)合金熔液和叉头本体(12)合金熔液浇铸时的压力值为200~400Pa。
- 根据权利要求11所述的万向联轴器法兰叉头的制作方法,其特征在于,在步骤S103中,所述叉头本体(12)合金熔液浇铸温度为1580℃。
- 根据权利要求12所述的万向联轴器法兰叉头的制作方法,其特征在于,当使法兰盘(11)合金熔液沉积并凝固在离心旋转铸型(15)的内壁上时,铸坯的平均表面温度为0.98T至0.99T,其中T(℃)是法兰盘(11)合金的凝固开始温度。
- 一种根据权利要求1-5任一项所述万向联轴器法兰叉头的端面齿(111)的制作方法,其特征在于,包括以下步骤:步骤S101、对端面齿(111)进行酸处理,处理时间为5-10min,然后冲洗烘干;步骤S102、对尼龙超细粉进行活化保温预处理,其处理温度为50-70℃,所述尼龙超细粉添加有二氧化硅粉末,添加量为重量的0.015-0.05%;步骤S103、在所述端面齿(111)外表面上形成凹表面纹理或图形;步骤S104、对喷涂后的端面齿(111)进行固化保温处理,保温温度为200-250℃。
- 一种具有根据权利要求1-5任一项所述万向联轴器法兰叉头的万向联轴器。
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211343347.7 | 2022-10-31 | ||
CN202211343347.7A CN115654029B (zh) | 2022-10-31 | 2022-10-31 | 一种万向联轴器端面齿及其制作方法与万向联轴器 |
CN202310081029.6 | 2023-01-16 | ||
CN202310074755.5 | 2023-01-16 | ||
CN202310074771.4A CN116037434A (zh) | 2023-01-16 | 2023-01-16 | 一种万向联轴器叉头端面齿的制作方法 |
CN202310074804.5A CN116044915B (zh) | 2023-01-16 | 2023-01-16 | 一种万向联轴器叉头端面齿及其制作方法与万向联轴器 |
CN202310074804.5 | 2023-01-16 | ||
CN202310074755.5A CN116213671A (zh) | 2023-01-16 | 2023-01-16 | 一种万向联轴器法兰叉头离心整体铸造装置 |
CN202310081029.6A CN115962231B (zh) | 2023-01-16 | 2023-01-16 | 一种一体式万向联轴器法兰叉头及其制作方法 |
CN202310074771.4 | 2023-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093424A1 true WO2024093424A1 (zh) | 2024-05-10 |
Family
ID=90929628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/112457 WO2024093424A1 (zh) | 2022-10-31 | 2023-08-11 | 一种万向联轴器法兰叉头及其制作方法与万向联轴器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024093424A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149850A (ja) * | 1999-09-13 | 2001-06-05 | Koyo Seiko Co Ltd | 塗装品およびその製造方法および塗装装置 |
CN101639099A (zh) * | 2009-07-01 | 2010-02-03 | 安徽泰尔重工股份有限公司 | 万向联轴器用叉头 |
CN103038386A (zh) * | 2010-05-17 | 2013-04-10 | 卡特彼勒公司 | 在部件表面上的纹理涂层 |
CN207103777U (zh) * | 2017-06-12 | 2018-03-16 | 浙江双飞无油轴承股份有限公司 | 一种自动化连续生产的钢铜双金属轴承离心浇铸机 |
CN109236982A (zh) * | 2018-10-25 | 2019-01-18 | 厦门理工学院 | 一种带织构化涂层的齿轮 |
CN113058694A (zh) * | 2021-03-19 | 2021-07-02 | 河北津西钢铁集团重工科技有限公司 | 一种半钢复合辊套及其制备方法 |
CN216895435U (zh) * | 2022-01-26 | 2022-07-05 | 江西五十铃汽车有限公司 | 一种新型传动轴 |
CN116037434A (zh) * | 2023-01-16 | 2023-05-02 | 泰尔重工股份有限公司 | 一种万向联轴器叉头端面齿的制作方法 |
CN116044915A (zh) * | 2023-01-16 | 2023-05-02 | 泰尔重工股份有限公司 | 一种万向联轴器叉头端面齿及其制作方法与万向联轴器 |
-
2023
- 2023-08-11 WO PCT/CN2023/112457 patent/WO2024093424A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149850A (ja) * | 1999-09-13 | 2001-06-05 | Koyo Seiko Co Ltd | 塗装品およびその製造方法および塗装装置 |
CN101639099A (zh) * | 2009-07-01 | 2010-02-03 | 安徽泰尔重工股份有限公司 | 万向联轴器用叉头 |
CN103038386A (zh) * | 2010-05-17 | 2013-04-10 | 卡特彼勒公司 | 在部件表面上的纹理涂层 |
CN207103777U (zh) * | 2017-06-12 | 2018-03-16 | 浙江双飞无油轴承股份有限公司 | 一种自动化连续生产的钢铜双金属轴承离心浇铸机 |
CN109236982A (zh) * | 2018-10-25 | 2019-01-18 | 厦门理工学院 | 一种带织构化涂层的齿轮 |
CN113058694A (zh) * | 2021-03-19 | 2021-07-02 | 河北津西钢铁集团重工科技有限公司 | 一种半钢复合辊套及其制备方法 |
CN216895435U (zh) * | 2022-01-26 | 2022-07-05 | 江西五十铃汽车有限公司 | 一种新型传动轴 |
CN116037434A (zh) * | 2023-01-16 | 2023-05-02 | 泰尔重工股份有限公司 | 一种万向联轴器叉头端面齿的制作方法 |
CN116044915A (zh) * | 2023-01-16 | 2023-05-02 | 泰尔重工股份有限公司 | 一种万向联轴器叉头端面齿及其制作方法与万向联轴器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102861873B (zh) | 一种齿轮的铸造方法 | |
CN102319934B (zh) | 金刚石锯片的钎焊工艺 | |
CN105414534A (zh) | 钢铜双金属铸造加工工艺 | |
CN105177568B (zh) | 热熔结碳化钨‑其它碳化物固溶体合金涂层及其制备方法 | |
WO2024093424A1 (zh) | 一种万向联轴器法兰叉头及其制作方法与万向联轴器 | |
CN110029344B (zh) | 一种激光熔注强化7075铝合金表面的方法 | |
CN101637806B (zh) | 一种金属陶瓷涂层结晶器铜板制作方法 | |
CN116044915B (zh) | 一种万向联轴器叉头端面齿及其制作方法与万向联轴器 | |
CN107034394A (zh) | 一种提升AlSi12Cu铝合金锭综合性能的生产方法 | |
CN209578135U (zh) | 镶铸在铝合金零件的钢套 | |
CN109014090B (zh) | 一种7系铝合金圆棒的热顶铸造工艺 | |
CN113414364B (zh) | 一种固态双金属内壁耐磨物料输送圆管及其制备方法 | |
JP2926228B1 (ja) | 鋳込法による2層チタンクラッド鋼板の製造方法 | |
CN205587619U (zh) | 一种激光表面强化的结晶器 | |
CN115962231B (zh) | 一种一体式万向联轴器法兰叉头及其制作方法 | |
CN106702185A (zh) | 一种改善AlSi9Cu2铝合金锭性能的方法 | |
CN101491832B (zh) | 普通钢球表面包复钴铬钨合金的方法 | |
CN1864892A (zh) | 铜及铜合金表面压力铸渗方法 | |
JP4143189B2 (ja) | 剥離性の高い2層チタン鋳込クラッド鋼板の製造方法 | |
CN110614353A (zh) | 一种减少离心铸管内腔加工余量的方法 | |
CN112091186B (zh) | 一种用于打印钢锭的增材制造方法 | |
CN104874752B (zh) | 金属型铸造涂料的喷涂方法 | |
JP6318612B2 (ja) | 鋳ぐるみ方法 | |
JPS63303652A (ja) | クラッド鋳造法 | |
CN103357819A (zh) | 一种斗齿的熔模铸造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884363 Country of ref document: EP Kind code of ref document: A1 |