WO2024093376A1 - 纸基微流控芯片、微流控检测系统、液体检测方法和应用 - Google Patents

纸基微流控芯片、微流控检测系统、液体检测方法和应用 Download PDF

Info

Publication number
WO2024093376A1
WO2024093376A1 PCT/CN2023/108659 CN2023108659W WO2024093376A1 WO 2024093376 A1 WO2024093376 A1 WO 2024093376A1 CN 2023108659 W CN2023108659 W CN 2023108659W WO 2024093376 A1 WO2024093376 A1 WO 2024093376A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact angle
paper
detection
detection pool
microfluidic chip
Prior art date
Application number
PCT/CN2023/108659
Other languages
English (en)
French (fr)
Inventor
姜慧芸
金艳
王世强
冯俊杰
朱亮
肖安山
孙冰
安飞
王浩志
Original Assignee
中国石油化工股份有限公司
中石化安全工程研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222939918.5U external-priority patent/CN219150166U/zh
Priority claimed from CN202222939919.XU external-priority patent/CN219072981U/zh
Priority claimed from CN202211379392.8A external-priority patent/CN117983329A/zh
Priority claimed from CN202211379390.9A external-priority patent/CN117990685A/zh
Application filed by 中国石油化工股份有限公司, 中石化安全工程研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024093376A1 publication Critical patent/WO2024093376A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to microfluidic detection technology, and specifically to a paper-based microfluidic chip.
  • the present invention also relates to a microfluidic detection system including the paper-based microfluidic chip and a liquid detection method using the paper-based microfluidic chip.
  • the present invention also relates to the application of the paper-based microfluidic chip, the microfluidic detection system and the liquid detection method.
  • Microfluidics has broad application prospects in the fields of water quality testing, environmental testing, food and medicine, etc., due to its advantages of fast mass and heat transfer, high analysis efficiency, low reagent consumption, low analysis cost, environmental friendliness, and easy integration, and easy to adapt to small portable detection and analysis instruments.
  • microfluidics provides a new development direction for detection and analysis instruments such as portable water quality detectors, the additional fluid control requirements and large size of the detection equipment in microfluidics bring new difficulties to the portability of the instrument.
  • Paper-based microfluidic chips can overcome this difficulty in fluid control.
  • Paper-based microfluidic chips referred to as "paper chips” are a microfluidic analysis technology platform that relies on capillary forces to achieve self-driving. Compared with microfluidic chips based on other substrates, paper chips have the characteristics of low cost and good portability, and have great potential in the fields of water quality testing, environmental testing, and food medicine.
  • smartphone camera technology and software functions by using a portable mobile phone to take a picture of the detection pool of the paper chip, colorimetric recognition and colorimetric analysis can be performed through the built-in software, avoiding the use of additional signal analysis equipment.
  • the combination of paper chips and mobile phone photo analysis can promote the further development of portable detection equipment.
  • the enrichment effect of the coffee ring effect can be used to take color on the coffee ring generated after the color development reaction, thereby reducing the detection limit of the target object.
  • the prior art also proposes to use the adsorption effect of precious metal nanoparticles and carbon quantum dots on the target object, load these adsorbed substances on the paper chip, and enrich the target object to improve the detection sensitivity.
  • the above method still has defects: improving the color uniformity can make the chromaticity uniformly distributed, but it cannot improve the detection sensitivity or reduce the detection limit; the point quantification by the coffee ring enrichment effect, due to the randomness and variability of the formation of the coffee ring, the color taking position cannot be fixed, and then due to the different color taking positions, the chromaticity difference is large, and the accuracy, repeatability and operability of the detection cannot be guaranteed.
  • the purpose of the present invention is to overcome the problems in the prior art of insufficient chroma of colorimetric quantitative paper chips, uneven chroma dispersion, which lead to the inability to meet the detection limit and detection sensitivity requirements, as well as low detection accuracy and repeatability, and to provide a paper-based microfluidic chip, a microfluidic detection system and a liquid detection method.
  • the paper-based microfluidic chip and the liquid detection method have high detection accuracy and detection sensitivity, can effectively reduce the detection limit during liquid detection, and have good operability and repeatability.
  • the present invention provides a paper-based microfluidic chip on one hand, wherein the paper-based microfluidic chip includes a paper base layer, and the paper base layer is provided with a detection pool, the detection pool has a first contact angle area and a second contact angle area, and is configured as follows: the contact angle of the liquid in the detection pool in the first contact angle area is greater than the contact angle in the second contact angle area.
  • the second aspect of the present invention provides a microfluidic detection system comprising the above-mentioned paper-based microfluidic chip, wherein the microfluidic detection system may include a control unit for controlling one or more of the ambient temperature, air flow rate, humidity and vacuum degree of the area where the detection pool is located.
  • the third aspect of the present invention provides a liquid detection method, which comprises: S1. passing the liquid to be detected through S2. placing the paper-based microfluidic chip in a detection pool; S3. placing the paper-based microfluidic chip in a stationary state for a predetermined time; S4. performing colorimetric identification and/or colorimetric analysis on a predetermined area in the detection pool.
  • the fourth aspect of the present invention provides the application of the above-mentioned paper-based microfluidic chip, microfluidic detection system or liquid detection method in water quality detection, environmental detection, and food medical treatment.
  • the present invention adjusts the surface tension of the liquid according to the migration mechanism of chromaticity on the paper chip by setting a first contact angle region and a second contact angle region with different contact angles in the detection pool, so that it has a driving force pointing to the inside of the droplet, and thereby shrinks from the first contact angle region to the second contact angle region with a smaller contact angle, driving the chromaticity to migrate to the second contact angle region and enrich it, thereby improving the chromaticity and uniformity per unit area under the premise of the same concentration of the target to be measured, improving the detection sensitivity and reducing the detection limit, while increasing the point taking range, and improving the point taking operability and detection repeatability.
  • FIG1 is a schematic diagram of a paper-based microfluidic chip according to a preferred embodiment of the present invention.
  • FIG2 is a diagram showing the detection effect of a paper-based microfluidic chip according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the gradient distribution of different contact angle regions of a detection pool of a paper-based microfluidic chip according to a preferred embodiment of the present invention
  • FIG4 is an exploded schematic diagram of a paper-based microfluidic chip according to another preferred embodiment of the present invention.
  • FIG5 is a scatter plot showing the relationship between the chromaticity enrichment effect and the vent aperture
  • FIG6 is a schematic diagram of a paper-based microfluidic chip according to another preferred embodiment of the present invention.
  • FIG7 is a diagram showing the detection effect of the paper-based microfluidic chip in FIG6 ;
  • FIG8 is a comparison of the chromaticity enrichment effects of different paper-based microfluidic chips
  • FIG9 is a schematic diagram of a paper-based microfluidic chip according to another preferred embodiment of the present invention.
  • FIG10 is a distribution diagram of detection pools of a paper-based microfluidic chip according to another preferred embodiment of the present invention.
  • FIG11 is a scatter plot showing the relationship between the chromaticity enrichment effect and the detection time at different ambient temperatures
  • FIG12 is an exploded schematic diagram of a paper-based microfluidic chip according to Example 1 of the present invention.
  • FIG13 is a schematic diagram of the chromaticity enrichment effect of the paper-based microfluidic chip in FIG12 ;
  • FIG14 is a schematic diagram of the structure of a paper-based microfluidic chip according to Example 2 of the present invention.
  • FIG15 is a schematic diagram of the chromaticity enrichment effect of the paper-based microfluidic chip in FIG14 ;
  • FIG. 16 and FIG. 17 are respectively quantitative curves of the paper-based microfluidic chip of Example 3 of the present invention.
  • the endpoints and any values of the disclosed ranges are not limited to the precise ranges or values, and these ranges or values should be understood to include values close to these ranges or values.
  • the endpoint values of each range, the endpoint values of each range and the individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges, which should be regarded as specifically disclosed in this article.
  • the first aspect of the present invention provides a paper-based microfluidic chip, including a paper base layer 2, which can be made of paper/paper-like materials such as filter paper and cellulose filter membranes.
  • a paper base layer 2 which can be made of paper/paper-like materials such as filter paper and cellulose filter membranes.
  • the paper-based microfluidic chip can be provided with one or more layers of paper base layers 2, and the thickness of the paper base layer 2 is usually not particularly required.
  • the various embodiments shown in the drawings of the present invention in order to facilitate the clear display of the relevant structure, it only schematically shows the case of one layer of paper base layer 2 (as shown in FIG4 and FIG9 ).
  • the paper base layer 2 of the paper-based microfluidic chip is formed with a detection pool 21, and the liquid to be detected (such as sewage, food or drug solution) can be passed into the detection pool 21 to detect/analyze the composition, concentration and other information in the liquid by means of colorimetric recognition, colorimetric analysis and other means described later.
  • the detection pool 21 has a first contact angle region 211 and a second contact angle region 212, and the contact angle of the liquid to be detected passed into the detection pool 21 in the first contact angle region 211 is greater than the contact angle of the second contact angle region 212.
  • the different contact angle regions in the detection pool 21 can regulate the surface tension of the liquid to be detected, so that it has a driving force pointing to the inside of the droplet, and thus shrinks from the first contact angle region 211 to the second contact angle region 212 with a smaller contact angle, driving the chromaticity to migrate to the second contact angle region and enrich.
  • the paper-based microfluidic chip of the present invention can improve the chromaticity and uniformity per unit area under the premise of the same concentration of the target to be detected, and improve It improves the detection sensitivity and reduces the detection limit, while increasing the point selection range, improving the point selection operability and detection repeatability.
  • the contact angles of the liquid to be detected in different areas of the detection pool 21 mainly refer to the contact angles of these areas to water or hydrophilic liquids. Therefore, although the paper-based microfluidic chip of the present invention itself does not contain the liquid to be detected, the same liquid to be detected has different wettabilities to different contact angle areas of its detection pool 21, and thus has different contact angles.
  • the water contact angle of the first contact angle region 211 can be set to be greater than 90°, so that water or hydrophilic liquid is difficult to wet the region; and the water contact angle of the second contact angle region 212 can be set to be less than 30°, so that when the liquid to be detected is passed into the detection pool 21, the relatively large contact angle of the first contact angle region 211 causes the liquid to be detected in the detection pool 21 to generate a driving force pointing to the second contact angle region 212 during the evaporation process, prompting the droplet to shrink toward the second contact angle region 212, and as the water in the liquid to be detected evaporates, the shrinkage process can drive the chromaticity to migrate to the second contact angle region 212, thereby converging in the second contact angle region 212 in the detection pool 21 to form spots with higher chromaticity, which is convenient for colorimetric identification and colorimetric analysis using portable detection equipment (such as a smartphone with built-in software).
  • portable detection equipment such as a smartphone with built-in software
  • Figure 2 shows a detection effect diagram of a paper-based microfluidic chip of the present invention, wherein the first contact angle region 211 surrounds the second contact angle region 212 and has a water contact angle of 91°, and the second contact angle region 212 is circular and has a diameter of 2 mm. It can be seen that the setting of different contact angle areas enables a better chromatic enrichment effect in the detection pool, improves the detection sensitivity and reduces the detection limit, while increasing the point-taking range, improving the point-taking operability and detection repeatability, and facilitating colorimetric identification and colorimetric analysis.
  • the first contact angle region 211 and the second contact angle region 212 can be formed in the detection pool 21 in a variety of different ways.
  • a hydrophobic material can be laid, deposited or infiltrated in a portion near the outer edge of the detection pool 21 to form the first contact angle region 211
  • a hydrophilic material can be laid, deposited or infiltrated in a central portion of the detection pool 21 to form the second contact angle region 212.
  • a polytetrafluoroethylene film may be laid on the portion near the outer edge of the detection pool 21, or a hydrophobic material such as a silanization agent or a fluorine-containing material may be deposited or infiltrated on the surface of the portion, thereby isolating the solution to be detected from the substrate of the paper base or performing water transfer modification on the substrate of the paper base to obtain a first contact angle region 211 with a larger contact angle; the central portion of the detection pool 21 may not be treated, and the filter paper, cellulose filter membrane and other materials of the paper base itself may constitute a hydrophilic second contact angle region 212, or the surface of the portion may be plasma treated, coated with a bovine serum albumin (BSA) solution, etc., to reduce the contact angle through surface modification, thereby forming a second contact angle region 212 with a smaller contact angle.
  • BSA bovine serum albumin
  • a polytetrafluoroethylene film is laid in the detection pool 21, or a hydrophobic material such as a silanization agent or a fluorine-containing material is deposited or infiltrated to increase the contact angle of the entire detection pool 21, thereby forming a hydrophobic layer with a relatively large contact angle.
  • a second contact angle region 212 with a relatively small contact angle is formed in the middle part of the detection pool 21 by laying, depositing or infiltrating a hydrophilic material (such as laying filter paper, coating BSA, etc.) on the hydrophobic layer, while the rest of the detection pool 21 is the first contact angle region 211.
  • the first contact angle region 211 can be set to a water contact angle greater than 60°, preferably greater than 90°, and more preferably greater than 120°; the second contact angle region 212 can be set to a water contact angle less than 30°, or even close to 0.
  • the solution in the detection pool 21 will converge to the second contact angle region 212 during the evaporation process, so that the chromaticity is enriched in the second contact angle region 212 and spots are formed, which can effectively detect liquids with lower concentrations to be detected, improve the detection sensitivity and reduce the detection limit.
  • the present invention enriches the chromaticity in a specific area by arranging areas with different contact angles in the detection pool 21, so that the detection point position can be selected as needed, and the point position depends on the position of the second contact angle area 212 in the detection pool 21.
  • the detection pool 21 is formed into a circle with a diameter of 2mm-8mm, and the second contact angle area 212 is located at the center of the detection pool 21, so that the liquid to be detected entering the detection pool 21 can be evenly converged to the center of the circle from all directions, which is conducive to improving the detection accuracy and precision.
  • the second contact angle area 212 can also be located at other positions of the detection pool 21, such as other middle parts offset relative to the center of the circle, and the first contact angle area 211 surrounds the second contact angle area 212.
  • the detection pool 21 can be formed into a regular polygon, the diameter of the circumscribed circle of which is 2mm-8mm, and the second contact angle area 212 is arranged at the center of the regular polygon.
  • the size and degree of enrichment of spots formed by chromaticity enrichment depend to a large extent on the size of the second contact angle area 212. That is, when the second contact angle area 212 is smaller, the degree of chromaticity enrichment is higher, and the spots formed are smaller, which is more conducive to detecting solutions with lower concentrations.
  • the size of the second contact angle area 212 can be determined according to the size of the detection pool 21, so that the area of the second contact angle area 212 in the detection pool 21 does not exceed 50%, preferably does not exceed 30%.
  • the second contact angle area 212 can be set to a circle with a diameter of 0.5mm-5mm (preferably 1mm-3mm).
  • the area or the regular polygonal area with a circumscribed circle diameter of 0.5mm-5mm preferably 1mm-3mm.
  • the paper-based microfluidic chip of the present invention can also set a multi-level contact angle region in the detection pool 21, so that from the center to the periphery of the detection pool 21, its contact angle increases step by step, forming a variety of contact angle regions with gradient distribution.
  • the first contact angle region 211 may include a first gradient region 2111 near the outer edge of the detection pool 21 and a second gradient region 2112 near the second contact angle region 212, and the contact angle of the second gradient region 2112 is less than the contact angle of the first gradient region 2111, thereby, during the evaporation of the liquid, the driving force along the direction from the edge of the detection pool 21 to the second contact angle region 212 gradually decreases, which can gradually reduce the acceleration of the liquid moving toward the second contact angle region 212, which is conducive to the uniform distribution of chromaticity in the second contact angle region 212.
  • FIG. 3 shows a schematic diagram of the gradient distribution of different contact angle regions of the detection pool. It can be understood that the first contact angle region 211 including two-level gradient regions shown in the figure is only exemplary, and the paper-based microfluidic chip of the present invention can set more gradient regions in the detection pool 21.
  • the detection pool 21 can be set to be open to the outside, and the volatile components in the liquid to be detected can be directly evaporated through the upper opening of the detection pool 21 until the chromaticity is enriched in the second contact angle area 212.
  • the present invention can also control the migration direction and speed of the chromaticity by controlling the limited volatilization of the liquid to be detected, and further improve the chromaticity enrichment effect in the detection pool, which will be described in detail below.
  • a paper-based microfluidic chip according to another preferred embodiment of the present invention comprises the above-mentioned paper base layer 2 provided with a detection pool (not shown) and a cover layer 3 and a bottom layer 1 respectively arranged on the upper and lower sides of the paper base layer 2.
  • the bottom layer 1 can be covered on the lower side (first side) of the paper base layer 2 by bonding or the like, and the cover layer 3 can also be covered on the upper side (second side) of the paper base layer 2 by bonding or the like.
  • the cover layer 3 and the bottom layer 1 can be formed as a non-water-permeable and air-permeable part in whole or only in the part covering the detection pool, such as the cover layer 3 and the bottom layer 1 can be made of a non-water-permeable and air-permeable material as a whole, or made of a non-water-permeable and air-permeable material in the part covering the detection pool.
  • the non-water-permeable and air-permeable material described herein can be polyvinyl chloride, polyethylene, polypropylene, polystyrene, silica gel, polytetrafluoroethylene, etc.
  • the cover layer 3 and the bottom layer 1 made of a water-permeable material can also be hydrophobically treated, such as applying wax on the filter paper and heating it to make it infiltrate the inside of the filter paper, infiltrating the filter paper in a plastic solution dissolved in an organic solvent and drying it, etc.
  • the bottom layer 1 and the cover layer 3 may or may not contact each other, and their areas and shapes are not required to be the same, nor are they required to be larger than the paper base layer 2, but they must completely cover the detection pool.
  • the bottom layer 1 and the cover layer 3 can be made of transparent or opaque materials, preferably transparent materials.
  • the portion of the cover layer 3 covering the detection pool is formed with a vent 31, thereby allowing the liquid 4 in the detection pool to volatilize in a limited area through the vent 31. Therefore, the vent 31 can guide the liquid 4 in the detection pool to converge to the position of the vent 31 during the evaporation process, thereby carrying the chromaticity to be enriched at this position.
  • the cover layer 3 covers the edge portion of the detection pool, thereby preventing the liquid 4 from evaporating from the edge of the detection pool; at the same time, the vent 31 on the cover layer 3 connects the detection pool and the external space, so that the liquid in the detection pool can only evaporate outward through the vent 31.
  • the water in the detection pool near the vent 31 evaporates faster, and the water at the edge is replenished to the position near the vent 31, thereby carrying the chromaticity to migrate to this position, forming a spot enriched in chromaticity.
  • the position of the vent hole 31 relative to the detection cell can be set, such as making the position of the vent hole 31 correspond to the position of the aforementioned second contact angle region 212 in the detection cell (on the same vertical line), which can effectively enhance the enrichment of chromaticity in the detection cell, thereby reducing the detection limit and improving the detection sensitivity.
  • the vent hole 31 can be set to have the same shape and size as the second contact angle region 212, and the area and pore size are smaller than the second contact angle region 212.
  • the vent hole 31 can be a regular polygon or a circle, and its diameter or the diameter of the circumscribed circle can be 0.5mm-5mm, preferably 1mm-3mm.
  • the vent hole 31 can be set above the center of the detection cell so that the color is uniformly enriched during the volatilization of the liquid in the detection cell.
  • the aperture size of the vent 31 has an important influence on the chromaticity enrichment effect. As shown in Figure 5, within a certain range (before the chromaticity reaches saturation), the smaller the aperture of the vent, the higher the chromaticity of the final spot. For example, when the aperture of the vent is 3mm, the chromaticity (distance) after enrichment is only about 120; and when the aperture of the vent is 1.5mm, the chromaticity (distance) after enrichment can reach more than 200. Therefore, in order to achieve a better chromaticity enrichment effect, the diameter or circumscribed circle diameter of the vent 31 can be set to 1mm-3mm, but this may require a longer enrichment time. To this end, the volatilization of the liquid can be accelerated by regulating the ambient temperature, humidity and vacuum degree of the area where the detection pool is located, which will be explained later.
  • Fig. 6 shows an improved embodiment of the paper-based microfluidic chip of the present invention, which provides a chip structure with a gain effect.
  • the paper-based microfluidic chip is provided with a liquid reservoir 24 arranged around the detection pool 21 on the paper base layer 2, so that when the liquid in the detection pool 21 cannot completely migrate to the vicinity of the vent 31 due to excessive evaporation speed, colorless liquid can be added to the liquid reservoir 24 to replenish the liquid to be evaporated in the detection pool 21, thereby continuing to drive the chromaticity to migrate to the vicinity of the vent 31.
  • one or more openable and closable replenishment holes can be formed on the portion of the cover layer 3 covering the reservoir 204, and the replenishment holes can be opened when replenishment is required and closed after the replenishment is completed.
  • the colorless liquid added to the reservoir 24 can be water or a mixture of different solvents, but the added liquid needs to be able to dissolve/carry chromaticity and will not interact with other parts of the chip.
  • the detection effect of the paper-based microfluidic chip with the reservoir 24 is shown in Figure 7; Figure 8 shows a comparison of the chromaticity enrichment effect of the paper-based microfluidic chip with and without the reservoir 24.
  • the enrichment degree of chromaticity near the vent can be significantly improved.
  • the chip without a reservoir (chip 2) enriches the chromaticity from 48.2 to 190.3, while the chip with a reservoir (chip 1) can enrich the chromaticity from 49.4 to 257.4.
  • the liquid to be detected can be directly added to the detection pool 21 from above the detection pool 21, for example, the above-mentioned vent hole 31 can be used as a sample addition hole.
  • a sample addition area 22 can be set at other positions of the paper base layer 2 separated from the detection pool 21, and the sample addition area 22 and the detection pool 21 are connected through a diffusion channel 23.
  • a sample addition hole 32 can be set at a position corresponding to the sample addition area 22 on the cover layer 3, as shown in Figure 9.
  • the liquid to be detected can be injected into the sample addition area 22 through the sample addition hole 32, and enter the detection pool 21 through the diffusion channel 23 under the action of self-driving, and then carry out subsequent chromatic enrichment and detection processes.
  • the detection pool 21 can be set to multiple, and the number of settings can be determined according to the number of samples to be detected and/or the number of parameters to be detected.
  • Each detection pool 21 is preferably equidistant from the sample loading area 22, that is, the length of each diffusion channel 23 is equal.
  • the detection pool 21 is provided with 7 sample loading areas 22 around the center, so that when multiple samples need to be detected in parallel or multiple repeated tests are required, one chip detection can be used to complete the task, thereby improving the detection throughput and further reducing the error between parallel experiments.
  • a colorimetric reagent may be pre-installed in the detection pool 21 or the diffusion channel 23.
  • the colorimetric reagent may cause the liquid in the detection pool 21 to exhibit a distinct color through chemical reactions, etc., so as to facilitate colorimetric identification and colorimetric analysis.
  • the second aspect of the present invention provides a microfluidic detection system including the above-mentioned paper-based microfluidic chip.
  • the microfluidic detection system may have related equipment used in conjunction with the above-mentioned paper-based microfluidic chip, such as a chip carrier, a camera, etc.
  • the microfluidic detection system can be configured with a control system for regulating the ambient temperature, air flow rate, humidity and vacuum degree in the area where the detection pool 21 is located.
  • One or more control units control the evaporation rate of the liquid in the detection pool 21 by adjusting these environmental factors to improve the chromaticity enrichment effect.
  • a heating plate can be provided for heating the ambient temperature of the area where the detection pool 21 is located, and the heating plate maintains the ambient temperature of the area where the detection pool 21 is located in a predetermined temperature range between 35°C and 45°C.
  • Figure 11 shows a relationship diagram between the chromaticity distance and the detection time at ambient temperatures of 25°C, 35°C and 45°C, where it can be seen that the chromaticity enrichment rate at ambient temperatures of 35°C and 45°C is significantly higher than that at 25°C, and the final degree of enrichment is basically the same. Therefore, by setting appropriate control units, the detection efficiency can be effectively improved.
  • the control unit may be configured to control other environmental factors besides the ambient temperature, such as a ventilation device configured to release pressure gas above the detection pool 21 or replace the air above the detection pool 21 to accelerate the air flow rate around the vent 31 or reduce the humidity near the vent 31.
  • the control unit may include a vacuum drying oven, and during the detection process, the paper-based microfluidic chip is placed in the vacuum drying oven and left to stand for a predetermined time to accelerate chromatic enrichment.
  • the third aspect of the present invention provides a liquid detection method based on the above-mentioned paper-based microfluidic chip, comprising the following steps: S1. passing the liquid to be tested into the detection pool 21 of the paper-based microfluidic chip; S2. leaving the paper-based microfluidic chip to stand for a predetermined time; and S3. performing colorimetric identification and/or colorimetric analysis on a predetermined area in the detection pool 21.
  • the predetermined area is a colorimetric enrichment area in the detection pool 21.
  • one or more of the ambient temperature, humidity and vacuum degree of the area where the detection pool 21 is located can be regulated in the above step S2.
  • the ambient temperature of the area where the detection pool 21 is located can be regulated to remain within a predetermined temperature range between 25°C and 60°C.
  • the fourth aspect of the present invention provides the application of the above-mentioned paper-based microfluidic chip, microfluidic detection system or the above-mentioned liquid detection method in water quality detection, environmental detection, and food medical treatment.
  • the above-mentioned paper-based microfluidic chip, microfluidic detection system and liquid detection method can be used for the detection of the content of nickel, chromium, phosphate, etc. in water, or the determination of various indicators in biomedicine and the compliance determination of various substances in food, etc.
  • the paper-based microfluidic chip, microfluidic detection system and liquid detection method of the present invention can improve the quantitative accuracy and reduce the detection limit.
  • the present invention 1) enhances the chromaticity intensity of the detection pool during colorimetric quantification, so that the color intensity of the original only weak color reaction or even invisible can be deepened, thereby reducing the detection limit of the analyte; 2) through the regulation of chromaticity, the chromaticity on the paper chip is improved while the distribution is improved, thereby increasing the point location, improving operability, and further improving the accuracy of detection 3) It is realized by a simple method of three-dimensional structure design supplemented by material surface modification, without adding additional complex equipment, thus ensuring the portability of paper chip detection; 4) It is suitable for most paper chips based on colorimetric quantification, with high feasibility and universality.
  • FIG12 shows the paper-based microfluidic chip of this embodiment, including a bottom layer 1, a paper bottom layer 2 and an enrichment layer 25.
  • the paper bottom layer 2 has six detection pools 21 arranged in a circular array and a blank control detection pool in the middle; the enrichment layer 25 is an enrichment carrier attached to each detection pool 21, and the enrichment carrier is located in the middle position of the detection pool 21 (including but not limited to the center).
  • the detection pool 21 is made of a material with a large contact angle (such as filter paper modified by a fluorine-containing silane reagent or a plastic sheet with a large contact angle itself), and the enrichment carrier is a material with a small contact angle (such as filter paper, cellulose filter membrane or other materials treated with plasma or surface modified).
  • the size of the enrichment carrier is smaller than the detection pool 21 and forms a second contact angle region with a small contact angle, which is generally preferably a circle or a regular polygon with a circumscribed circle diameter of 1mm-3mm; the other parts in the detection pool 21 form a first contact angle region with a large contact angle.
  • the enrichment carrier, the detection pool, and the bottom layer are adhered to each other by gluing or other means.
  • the colored solution after the reaction e.g., a dye solution with a concentration of 0.1%, a solution obtained by mixing the analyte solution with different concentrations and the specific reagent
  • a dye solution with a concentration of 0.1% a solution obtained by mixing the analyte solution with different concentrations and the specific reagent
  • the chromaticity enrichment effect is shown in FIG13. After chromaticity enrichment under specific conditions (e.g., 35°C, 10 min), the detection pool is photographed under natural light conditions, the RGB value of the photo is analyzed, and the chromaticity distance D is calculated.
  • the chromaticity of the 0.1% red dye solution after enrichment is shown in the following table:
  • This embodiment uses a three-layer paper chip as the base chip for color enhancement, with dye added
  • the aqueous solution is used as a sample to illustrate that the present invention can enhance the chromaticity of all color-based solutions, and also to illustrate that the chromaticity enrichment phenomenon occurs in any small area connected to the atmosphere without being coaxial with the sample injection hole.
  • the structure of the paper chip is shown in Figure 14.
  • a transparent non-breathable film is respectively covered on the upper and lower sides of the paper base layer made by the cutting method, wherein the upper film (cover layer) has ventilation holes at the positions corresponding to the detection cells.
  • the sample addition hole is set at the same distance from each detection cell.
  • the dye solution is injected from the sample addition hole, and the dye solution is distributed along the hydrophilic diffusion channel and reaches each detection cell 1-7.
  • the paper chip is placed naturally (ambient temperature 26°C, humidity 70%). After a period of time (10min to 60min), the chromaticity is enriched in the vent area of the detection cell. As time goes by, the chromaticity of the enriched area becomes more and more obvious compared with the chromaticity of other areas.
  • the RGB values of the chromaticity in different detection cells and multiple areas in the same detection cell are read, and the results are shown in the following table and Figure 15:
  • This example is used to illustrate the reduction in the detection limit of nickel in water brought about by the chromaticity enrichment structure.
  • the bottom layer of the paper-based microfluidic chip used in this embodiment is a transparent non-breathable membrane
  • the paper base is a filter paper that has been hydrophobically modified (the sample addition area, diffusion channel and detection pool remain hydrophilic, and the remaining areas are modified to be hydrophobic, wherein the detection pool is pre-set with a compound reagent with dimethylglyoxime as the main substance, which can react specifically with nickel
  • the cover layer is a transparent non-breathable film and is provided with a sample addition hole connected to the sample addition area and a vent hole connected to the detection pool.
  • the diameter of the detection pool is 4mm, and the aperture of the vent hole is 2mm.
  • a nickel-containing water sample is injected from the sample injection hole.
  • the sample flows along the diffusion channel to the detection pool and reacts with the compound reagent to generate a pink substance.
  • the water vapor evaporates along the vents on the cover layer.
  • the color-developing components diffuse and gather in the chromaticity-enriched area, and the color gradually deepens.
  • the reaction is completed, the chromaticity-enriched area of the paper chip is photographed, and the chromaticity information of this area is extracted using Matlab, and then quantitative calculations are performed.
  • This example is used to illustrate the reduction in the detection limit of chromium in water brought about by the chromaticity enrichment structure.
  • the bottom layer of the paper-based microfluidic chip used in this embodiment is a transparent non-breathable film
  • the middle layer is a hydrophobically modified filter paper (the sample addition area, diffusion channel and detection pool remain hydrophilic, and the remaining areas are modified to be hydrophobic, wherein the detection pool is pre-set with a composite reagent mainly composed of diphenylcarbazide, which can react specifically with chromium)
  • the cover layer is a transparent non-breathable film and is provided with a sample addition hole connected to the sample addition area and a vent connected to the detection pool.
  • the diameter of the detection pool is 4mm
  • the aperture of the vent is 2.5mm.
  • a chromium-containing water sample is injected from the sample addition area, and the sample flows along the diffusion channel to the detection pool and reacts with the compound reagent to generate a pink substance.
  • the chip is placed for a period of time, the water vapor evaporates along the vents on the cover layer, and the color-developing components diffuse and gather to the chromaticity-enriched area under the drive of evaporation, and the color gradually deepens.
  • This example is used to illustrate the reduction in the detection limit of nitrite in water brought about by the chromaticity enrichment structure.
  • the bottom layer of the paper-based microfluidic chip used in this embodiment is a transparent non-breathable membrane
  • the paper base is a filter paper that has been hydrophobically modified (the sample addition area, diffusion channel and detection pool remain hydrophilic, and the remaining areas are modified to be hydrophobic).
  • the detection pool is pre-filled with Gries reagent, which can react specifically with nitrite.
  • the cover layer is a transparent non-breathable film and is provided with a sample addition hole connected to the sample addition area and a vent hole connected to the detection pool.
  • the diameter of the detection pool is 5 mm, and the aperture of the vent hole is 2 mm.
  • chromium-containing water samples are added from the sample addition area, and the samples flow along the diffusion channel to the detection pool and react with the compound reagent to generate pink substances.
  • water vapor evaporates along the vents on the cover layer, and the color-developing components diffuse and gather to the chromaticity-enriched area under the drive of evaporation, and the color gradually deepens.
  • the detection limit of chromium by ordinary paper chips was 0.1 mg/L. After enhanced color development by the paper chip of this embodiment, the detection limit dropped to 0.05 mg/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种纸基微流控芯片、微流控检测系统、液体检测方法和应用,芯片包括纸基层(2),纸基层(2)设置检测池(21),检测池(21)内具有第一接触角区域(211)和第二接触角区域(212),检测池(21)内的液体在第一接触角区域(211)的接触角大于在第二接触角区域(212)的接触角。根据色度在纸芯片上的迁移机理,调控液体表面张力,使其具有指向液滴内部的驱动力,并由此从第一接触角区域(211)向具有较小接触角的第二接触角区域(212)收缩,带动色度向第二接触角区域(212)迁移而富集,从而在待测目标物浓度相同的前提下提高单位面积上的色度和均匀性,提高了检测灵敏度并降低检出限,同时增大取点范围,改善了取点可操作性和检测重复性。

Description

纸基微流控芯片、微流控检测系统、液体检测方法和应用
相关申请的交叉引用
本申请要求2022年11月04日提交的中国专利申请202211379392.8、202222939918.5、202222939919.X、202211379390.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及微流控检测技术,具体地涉及一种纸基微流控芯片。在此基础上,本发明还涉及一种包括该纸基微流控芯片的微流控检测系统和利用该纸基微流控芯片的液体检测方法。此外,本发明还涉及所述纸基微流控芯片、微流控检测系统和液体检测方法的应用。
背景技术
由于具有传质传热快、分析效率高、试剂消耗少、分析成本低、环境友好和便于集成化等优点,并便于与小型便携化检测分析仪器适配使用,微流控技术在水质检测、环境检测和食品医疗等领域具有广泛的应用前景。尽管微流控技术为诸如便携式水质检测仪的检测分析仪器提供了新的发展方向,但同时微流控技术中附加的流体控制要求和检测设备体积较大等问题对仪器的便携化要求带来新的困难。
纸基微流控芯片能够在流体控制方面很好地克服这种困难。纸基微流控芯片简称“纸芯片”,是一种依靠毛细作用力实现自驱动的微流控分析技术平台。相比于其他基材的微流控芯片,纸芯片具有成本低、便携性好的特点,在水质检测、环境检测和食品医疗等领域中潜力巨大。随着智能手机的照相技术和软件功能的不断发展进步,利用随身携带的手机拍摄纸芯片的检测池图像,即可通过内置软件进行色度识别和比色分析,避免了额外信号分析设备的使用,纸芯片与手机拍照分析的结合能够推动检测设备便携化的进一步发展。
然而,由于试剂承载量有限、纸质材料的不均匀性以及毛细作用(如咖啡 环效应)带来的显色色度不足、均匀性差、重复性不好的问题,导致纸芯片检测的灵敏度和检出限低,准确性和重复性不足,成为制约纸芯片检测技术发展的共性问题。
为了提高纸芯片检测灵敏度和准确性,研究者们进行了诸多努力,例如通过设计双向进液通道,将试剂预置在检测池的两侧,并采用两侧进样的方式,使得试剂在待测液体的带动下从两侧进入检测池,降低色度向检测池边缘的扩散,从而提高检测池的色度均匀性。再如,可以利用咖啡环效应的富集作用,在显色反应后生成的咖啡环上取色,降低了目标物的检出限。另外,现有技术还提出利用贵金属纳米粒子和碳量子点对目标物的吸附作用,将这些吸附物质负载在纸芯片上,进行目标物的富集,以提高检测灵敏度。然而,上述方法仍然存在缺陷:提高显色均匀性可以使得色度均匀分布,但无法提高检测灵敏度或降低检出限;通过咖啡环富集作用取点定量,则由于咖啡环形成的随机性和变化性,取色位置无法固定,进而由于取色位置不同而导致色度差异较大,无法保证检测的准确性、重复性和可操作性。
发明内容
本发明的目的是为了克服现有技术存在的比色定量纸芯片的色度不足、色度分散不均匀导致的检出限和检测灵敏度无法满足要求以及检测准确性、重复性低的问题,提供一种纸基微流控芯片、微流控检测系统和液体检测方法,该纸基微流控芯片和液体检测方法具有较高的检测准确性和检测灵敏度,能够有效降低液体检测时的检出下限,可操作性和重复性较好。
为了实现上述目的,本发明一方面提供一种纸基微流控芯片,其中,该纸基微流控芯片包括纸基层,所述纸基层设置有检测池,该检测池内具有第一接触角区域和第二接触角区域,并设置为:所述检测池内的液体在所述第一接触角区域的接触角大于在所述第二接触角区域的接触角。
本发明的第二方面提供一种包括上述纸基微流控芯片的微流控检测系统。其中,该微流控检测系统可以包括用于调控所述检测池所在区域的环境温度、空气流动速度、湿度和真空度中的一种或多种的调控单元。
本发明的第三方面提供一种液体检测方法,其中,包括:S1.将待测液体通 入上述纸基微流控芯片的检测池内;S2.将所述纸基微流控芯片静置预定时间;S3.对所述检测池内的预定区域进行色度识别和/或比色分析。
本发明的第四方面提供上述纸基微流控芯片、微流控检测系统或者液体检测方法在水质检测、环境检测、食品医疗中的应用。
通过上述技术方案,本发明根据色度在纸芯片上的迁移机理,通过在检测池内设置具有不同接触角的第一接触角区域和第二接触角区域,调控液体表面张力,使其具有指向液滴内部的驱动力,并由此从第一接触角区域向具有较小接触角的第二接触角区域收缩,带动色度向该第二接触角区域迁移而富集,从而在待测目标物浓度相同的前提下提高单位面积上的色度和均匀性,提高了检测灵敏度并降低检出限,同时增大取点范围,改善了取点可操作性和检测重复性。
附图说明
图1是根据本发明一种优选实施方式的纸基微流控芯片的示意图;
图2是根据本发明一种优选实施方式的纸基微流控芯片的检测效果图;
图3是根据本发明一种优选实施方式的纸基微流控芯片的检测池不同接触角区域的梯度分布示意图;
图4是根据本发明另一种优选实施方式的纸基微流控芯片的分解示意图;
图5是表示色度富集效果与通气孔孔径的关系的散点图;
图6是根据本发明另一种优选实施方式的纸基微流控芯片的示意图;
图7是显示图6中纸基微流控芯片的检测效果图;
图8是不同纸基微流控芯片的色度富集效果对比图;
图9是根据本发明另一种优选实施方式的纸基微流控芯片的示意图;
图10是根据本发明另一种优选实施方式的纸基微流控芯片的检测池分布图;
图11是表示在不同环境温度下的色度富集效果与检测时间的关系的散点图;
图12是根据本发明实施例1的纸基微流控芯片的分解示意图;
图13是图12中纸基微流控芯片的色度富集效果示意图;
图14是根据本发明实施例2的纸基微流控芯片的结构示意图;
图15是图14中纸基微流控芯片的色度富集效果示意图;
图16和图17分别为本发明实施例3的纸基微流控芯片的定量曲线。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
参照图1所示,本发明的第一方面提供一种纸基微流控芯片,包括纸基层2,该纸基层2可以使用滤纸、纤维素滤膜等纸质/纸类材料制成,作为例如液体检测的微流控分析的技术平台,相比于普通微流控芯片具有成本低、无需外置驱动、生物相容性好、便携性强等优点。其中,纸基微流控芯片中可以设有一层或多层纸基层2,且纸基层2的厚度通常没有特别要求。在本发明附图所示的各个实施方式中,为了便于清楚地显示相关结构,其仅示意性地示出一层纸基层2的情形(如图4和图9所示)。
纸基微流控芯片的纸基层2形成有检测池21,待检测的液体(如污水、食品或药品溶液)可被通入该检测池21内,以通过随后所述的色度识别、比色分析等手段检测/分析该液体中的成分、浓度等信息。在本发明中,如图1所示,检测池21内具有第一接触角区域211和第二接触角区域212,且上述通入检测池21内的待检测液体在第一接触角区域211的接触角大于第二接触角区域212的接触角。
由此,当待检测液体进入检测池21内后,该检测池21内的不同接触角区域可以调控待检测液体的表面张力,使其具有指向液滴内部的驱动力,并由此从第一接触角区域211向具有较小接触角的第二接触角区域212收缩,带动色度向该第二接触角区域迁移而富集。通过不同接触角区域的设置,本发明的纸基微流控芯片能够在待测目标物浓度相同的前提下提高单位面积上的色度和均匀性,提 高了检测灵敏度并降低检出限,同时增大取点范围,改善了取点可操作性和检测重复性。
应当理解的是,待检测液体在检测池21内不同区域的接触角主要指的是这些区域对水或亲水性液体的接触角,因此,尽管本发明的纸基微流控芯片本身并不含有待检测液体,但同一待检测液体对其检测池21的不同接触角区域具有不同的润湿性,从而具有不同的接触角。例如,第一接触角区域211的水接触角可以设置为大于90°,由此水或亲水性液体难以润湿该区域;而第二接触角区域212的水接触角则可以设置为小于30°,由此,当待检测液体通入检测池21内后,第一接触角区域211相对较大的接触角使得该检测池21的待检测液体在蒸发过程中产生指向第二接触角区域212的驱动力,促使液滴向该第二接触角区域212收缩,随着待检测液体中水分的蒸发,该收缩过程可带动色度向第二接触角区域212迁移,由此在检测池21内的第二接触角区域212汇聚形成具有较高色度的斑点,便于利用便携式检测设备(如内置软件的智能手机)进行色度识别和比色分析。图2示出了本发明一种纸基微流控芯片的检测效果图,其中,第一接触角区域211环绕第二接触角区域212并具有91°的水接触角,第二接触角区域212呈圆形并具有2mm的直径。可以看出,不同接触角区域的设置使得检测池内具有较好的色度富集效果,提高了检测灵敏度并降低检出限,同时增大取点范围,改善了取点可操作性和检测重复性,便于进行色度识别和比色分析。
在本发明中,可以通过多种不同方式在检测池21内形成上述第一接触角区域211和第二接触角区域212。例如,可以在检测池21内的靠近外周边缘的部分铺设、沉积或浸润疏水性材料,由此形成第一接触角区域211,并且/或者,在检测池21内的中心部分铺设、沉积或浸润亲水性材料,由此形成第二接触角区域212。具体地,在检测池21内的靠近外周边缘的部分可以铺设有聚四氟乙烯薄膜,或者在该部分的表面沉积或浸润例如硅烷化试剂、含氟材料等疏水性材料,由此通过使得待检测溶液与纸基层的基材隔离或对纸基层的基材进行输水改性而获得具有较大接触角的第一接触角区域211;在检测池21内的中心部分可以不作处理,以纸基层本身的滤纸、纤维素滤膜等材料构成亲水性的第二接触角区域212,或者,对该部分的表面进行等离子体处理、涂覆牛血清蛋白(BSA)溶液等,通过表面改性降低接触角,形成具有较小接触角的第二接触角区域212。 在一种优选实施方式中,通过在检测池21内铺设聚四氟乙烯薄膜,或者沉积或浸润例如硅烷化试剂、含氟材料等疏水性材料,以使得整个检测池21的接触角增大,形成为具有相对较大接触角的疏水层。然后,在检测池21的中间部分,通过在疏水层上方铺设、沉积或浸润亲水性材料(如铺设滤纸、涂覆BSA等)而在检测池21的中间部分形成具有相对较小接触角的第二接触角区域212,而检测池21内的其他部分则为所述第一接触角区域211。
其中,在本发明的纸基微流控芯片的检测池21中,第一接触角区域211可以设置为水接触角大于60°,优选大于90°,更优选大于120°;第二接触角区域212可以设置为水接触角小于30°,甚至接近0。由此,检测池21内的溶液会随着蒸发过程而向第二接触角区域212汇聚,使得色度富集于该第二接触角区域212并形成斑点,能够有效检测较低浓度的待检测液体,提高了检测灵敏度并降低检出限。
根据上述可知,本发明通过在检测池21内设置具有不同接触角的区域而使得色度在特定区域富集,由此可以根据需要选择检测取点位置,该取点位置取决于第二接触角区域212在检测池21内的位置。在图示优选实施方式中,检测池21形成为直径为2mm-8mm的圆形,第二接触角区域212位于检测池21的圆心位置,由此,进入检测池21内的待检测液体可以从各个方向向圆心部分均匀汇聚,有利于提高检测准确性和精度。在替代实施方式中,第二接触角区域212也可以位于检测池21的其他位置,如相对圆心位置偏移的其他中间部分,而第一接触角区域211环绕该第二接触角区域212。或者,检测池21可以形成为正多边形,其外接圆直径为2mm-8mm,而第二接触角区域212布置于该正多边形的中心位置。
根据色度在检测池21内的迁移机理,色度富集形成的斑点大小和富集程度在很大程度上取决于第二接触角区域212的大小。即当第二接触角区域212较小时,色度富集程度较高,形成的斑点较小,更有利于检测较低浓度溶液。为此,可以根据检测池21的大小确定第二接触角区域212的大小,使第二接触角区域212在检测池21的面积占比不超过50%,优选为不超过30%。对于一般的检测池(直径为2mm-8mm的圆形或外接圆直径为2mm-8mm的正多边形)而言,第二接触角区域212可以设置为直径为0.5mm-5mm(优选为1mm-3mm)的圆形 区域或外接圆直径为0.5mm-5mm(优选为1mm-3mm)的正多边形区域。
结合图1和图3所示,为了加强色度富集和均匀分布效果,本发明的纸基微流控芯片还可以在检测池21内设置多级接触角区域,使得从检测池21的中心向周缘,其接触角逐级递增,形成梯度分布的多种接触角区域。具体地,第一接触角区域211可以包括靠近检测池21的外边缘的第一梯度区2111和靠近第二接触角区域212的第二梯度区2112,该第二梯度区2112的接触角小于第一梯度区2111的接触角,由此,在液体蒸发过程中,沿从检测池21的边缘向第二接触角区域212的方向的驱动力逐渐减小,可以使得液体向第二接触角区域212移动的加速度逐渐降低,有利于色度在该第二接触角区域212均匀分布。图3示出了检测池不同接触角区域的梯度分布示意图。可以理解的是,图示包括两级梯度区的第一接触角区域211仅是示例性的,本发明的纸基微流控芯片可以在检测池21设置更多个梯度区。
在本发明的上述纸基微流控芯片中,检测池21可以设置为向外开放的,待检测液体中的挥发性成分可以直接通过检测池21的上部开口蒸发,直至色度富集于第二接触角区域212。在此基础上,本发明还可以通过控制待检测液体的限域挥发而控制色度的迁移方向和速度,进一步改善检测池内的色度富集效果,以下将对此进行详细说明。
参照图4所示,根据本发明另一种优选实施方式的纸基微流控芯片,包括上述设有检测池(未示出)的纸基层2以及分别设于该纸基层2的上、下两侧的盖层3和底层1。其中,底层1可以通过粘接等方式覆盖于纸基层2的下侧(第一侧),盖层3也可以通过粘接等方式覆盖于纸基层2的上侧(第二侧),该盖层3和底层1可以全部地或仅覆盖检测池的部分形成为非透水透气部分,如该盖层3和底层1可以整体由非透水透气材料制成,或在覆盖检测池的部分由非透水透气材料制成。具体地,此处所述非透水透气材料可以为聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、硅胶、聚四氟乙烯等,也可以对由透水材料制成的盖层3和底层1进行疏水处理,如在滤纸上涂蜡并加热使其浸润到滤纸内部、将滤纸浸润于溶于有机溶剂的塑料溶液并晾干等。底层1和盖层3可以互相接触,也可以不接触,二者的面积和形状不要求相同,也不要求大于纸基层2,但均要全部覆盖检测池。另外,底层1和盖层3可以使用透明或者不透明材料,优选为透明材料。
其中,盖层3的覆盖检测池的部分形成有通气孔31,由此允许检测池内的液体4通过该通气孔31进行限域挥发。由此,通气孔31可以引导检测池内的液体4在蒸发过程中向该通气孔31位置汇集,从而携带色度在该位置富集。具体地,盖层3覆盖检测池的边缘部分,从而避免液体4从检测池的边缘蒸发;同时,盖层3上的通气孔31连通检测池和外部空间,使得检测池内的液体仅能够通过该通气孔31向外蒸发,由此,在蒸发过程中,检测池内靠近通气孔31的位置水分蒸发速度较快,边缘位置的水分向靠近通气孔31的位置补充,从而携带色度向该位置迁移,形成色度富集的斑点。
在此情形下,可以设置通气孔31相对检测池的位置,如使得通气孔31所在的位置与前述第二接触角区域212在检测池内的位置对应(在同一竖直直线上),能够有效增强色度在检测池内的富集作用,并由此降低检测限,提高检测灵敏度。
为此,通气孔31可以设置为与第二接触角区域212具有相同的形状和尺寸,且面积和孔径均小于所述第二接触角区域212。如通气孔31可以为正多边形或圆形,其直径或外接圆直径可以为0.5mm-5mm,优选为1mm-3mm。该通气孔31可以设置于检测池的中心位置上方,以便在检测池内的液体挥发过程中使得色度均匀富集。
另外,通气孔31的孔径大小对色度富集效果具有重要影响,如图5所示,在一定范围内(色度达到饱和之前),通气孔的孔径越小,最终形成的斑点的色度越高。例如,在通气孔孔径为3mm时,富集后的色度(距离)仅为约120;而通气孔孔径为1.5mm时,富集后的色度(距离)可达200以上。因此,为了实现更好的色度富集效果,通气孔31的直径或外接圆直径可设置为1mm-3mm,但这可能要求更长的富集时间。为此,可以通过对检测池所在区域的环境温度、湿度和真空度等调控而加速液体的挥发,这将在随后进行说明。
图6示出了本发明的纸基微流控芯片的改进实施方式,其提供了具有增益作用的芯片结构。具体地,该纸基微流控芯片在纸基层2上设置有环绕检测池21布置的蓄液池24,以在当检测池21内的液体由于蒸发速度过快而导致色度无法全部迁移至通气孔31附近时,可以通过向该蓄液池24内添加无色液体,从而向检测池21内补充需要被蒸发的液体,由此继续带动色度向通气孔31附近迁移。 作为补充液体的通道,可以在所述盖层3上覆盖蓄液池204的部分形成有一个或多个可开闭的补液孔,补液孔可以在有补液需求时打开,并在完成补液后关闭。在实际检测中,添加至蓄液池24内的无色液体可以为水或不同溶剂的混合物,但添加的液体需要能够溶解/携带色度,且不会与芯片的其他部分相互作用。增加了蓄液池24的纸基微流控芯片的检测效果如图7所示;图8示出了具有和不具有蓄液池24的纸基微流控芯片的色度富集效果对比。可以看出,通过向蓄液池24内添加补充液体,可以显著提高色度在通气孔附近的富集程度,在相同条件下,无蓄液池的芯片(芯片2)将色度从48.2富集至190.3,而具有蓄液池的芯片(芯片1)则可将色度从49.4富集至257.4。
在本发明的一些实施方式中,待检测液体可以从检测池21的上方直接加入检测池21中,例如上述通气孔31可以用作加样孔。在另一些实施方式中,可以在纸基层2的与检测池21相隔的其他位置设置加样区22,并通过扩散通道23连通该加样区22和检测池21,相应地,盖层3上对应加样区22的位置可以设置有加样孔32,如图9所示。由此,待检测液体可以通过加样孔32将注入加样区22,并在自驱动作用下经过扩散通道23进入检测池21,继而进行后续色度富集和检测过程。在本发明的一些实施方式中,如图10所示,所述检测池21可以设置为多个,设置数量可以根据需要检测的样品数和/或待检测参数的数量确定。各检测池21优选与加样区22的距离相等,即各扩散通道23的长度相等,检测池21围绕中心的加样区22设置为7个,从而在需要平行检测多个样品或者多次重复测试时,可以利用一次芯片检测完成,提高了检测通量并且进一步降低平行试验之间的误差。
为了便于检测,还可以在检测池21或上述扩散通道23内预置显色试剂,该显色试剂可以通过如化学反应等方式使得检测池21内的液体呈现明显显现的颜色,以便进行色度识别和比色分析等。
本发明的第二方面提供一种包括上述纸基微流控芯片的微流控检测系统,该微流控检测系统可以具有与上述纸基微流控芯片配套使用的相关设备,如芯片载架、相机等。
特别地,对于设置有通气孔的纸基微流控芯片,微流控检测系统可以配置有用于调控检测池21所在区域的环境温度、空气流动速度、湿度和真空度中的 一种或多种的调控单元,通过这些环境因素的调节而控制检测池21内的液体的蒸发速度,以改善色度富集效果。例如,可以设置用于加热检测池21所在区域的环境温度的加热板,该加热板将检测池21所在区域的环境温度保持为35℃-45℃之间的预定温度范围。图11示出了25℃、35℃和45℃环境温度下色度距离与检测时间的关系图,其中,可以看出环境温度为35℃和45℃时的色度富集速度显著高于25℃时,其最终富集的程度基本是一致的。因此,通过设置适当的调控单元,可以有效提升检测效率。
调控单元可以设置为调控环境温度之外的其他环境因素,如可以包括通气装置,该通气装置设置为能够在检测池21上方释放压力气体或置换检测池21上方的空气,以加速通气孔31周围的空气流动速度或降低通气孔31附近的湿度。或者,调控单元可以包括真空干燥箱,在检测过程中,将纸基微流控芯片置于该真空干燥箱内静置预定时间,以加速色度富集。
本发明的第三方面提供一种基于上述纸基微流控芯片的液体检测方法,包括如下步骤:S1.将待测液体通入纸基微流控芯片的检测池21内;S2.将纸基微流控芯片静置预定时间;以及S3.对检测池21内的预定区域进行色度识别和/或比色分析。其中,所述预定区域为检测池21内的色度富集区域。
正如前述,为了加速液体蒸发速度、改善色度富集效果,可以在上述步骤S2中对检测池21所在区域的环境温度、湿度和真空度中的一种或多种进行调控,例如,可以将检测池21所在区域的环境温度调控为保持在25℃-60℃之间的预定温度范围内。
本发明的第四方面提供上述纸基微流控芯片、微流控检测系统或者上述液体检测方法在水质检测、环境检测、食品医疗中的应用。例如,上述纸基微流控芯片、微流控检测系统和液体检测方法可以用于水中镍、铬、磷酸盐等的含量检测,或者生物医疗中各种指标的测定和食品中各种物质的达标测定等。
本发明的纸基微流控芯片、微流控检测系统和液体检测方法能够提高定量准确性并降低检测下限,与现有技术相比,本发明:1)增强了比色定量时检测池的色度强度,使得原本只有微弱颜色反应甚至不可见的颜色强度得以加深,从而降低待分析物的检测下限;2)通过对色度的调控,使得纸芯片上色度提高的同时提高分布的均匀,从而增大取点位置,提高可操作性,进而提高检测的准确 性和重复性;3)通过三维结构设计辅以材料表面改性的简单方式来实现,无需增加额外的复杂设备,保证了纸芯片检测的便携性;4)适用于绝大多数基于比色定量的纸芯片,具有较高的可行性和普适性。
以下将通过实施例对本发明进行详细描述,其中,接触角通过OCA200全自动单一纤维接触角测量仪测得。
实施例1
图12所示为该实施例的纸基微流控芯片,包括底层1、纸基层2和富集层25。纸基层2具有呈环形阵列排布的六个检测池21和位于中间的空白对照检测池;富集层25为位于每个检测池21上附加的富集载体,该富集载体在检测池21的中部位置(包括但不限于中心)。检测池21由具有较大接触角的材料(如经过含氟硅烷试剂改性的滤纸或本身具有较大接触角的塑料片)制成,富集载体为具有较小接触角材质的材料(如滤纸、纤维素滤膜或经等离子体处理或表面改性的其他材料),富集载体尺寸小于检测池21并形成具有较小接触角的第二接触角区域,一般优选为圆形或正多边形,外接圆直径为1mm-3mm;检测池21内的其他部分形成具有较大接触角的第一接触角区域。富集载体、检测池、底层之间以胶粘或其他方式互相粘附。
将反应后的具色溶液(例如浓度为0.1%的染料溶液、不同浓度的待测物溶液与特异性试剂混合后的溶液)分别滴加到环形阵列排布的检测池中,中心检测池为空白对照,色度富集效果如图13所示。在特定条件(如35℃,10min)下进行色度富集后,自然光照条件下对检测池进行拍照,分析照片RGB值并计算色度距离D。浓度为0.1%的红色染料溶液富集后色度如下表所示:
实施例2
该实施例采用三层结构的纸芯片作为色度增强的基础芯片,以添加了染料 的水溶液作为样品,用于说明本发明能够对所有基于颜色的溶液进行色度增强,也为了说明色度富集现象发生在任意与大气相通的小面积区域,无需与加样孔同轴。
纸芯片的结构如图14所示,在以裁切方法制作的纸基层上、下侧分别覆透明的非透气薄膜,其中上层薄膜(盖层)在对应检测池的位置分别留有通气孔。加样孔设置在与各个检测池相同距离位置处。从加样孔注入染料溶液,该染料溶液沿着亲水性扩散通道分布并到达各个检测池1-7。将纸芯片自然放置(环境温度26℃,湿度70%),在经过一段时间后(10min~60min),色度在检测池的通气孔区域富集,随着时间的推移,富集区域的色度与其他区域的色度对比越来越明显。对不同检测池内及同一检测池内多个区域的色度进行RGB值读取,结果分别如下表及图15所示:

从上表分别可以看出,不同检测池之间、同一检测池不同区域之间的R、G、B值均具有相似性,且不同检测池之间、同一检测池不同区域之间的R、G、B值标准偏差均小于3%,说明本发明提出的色度增强及液体检测方法均匀性和重复性较好。
实施例3
该实施例用于说明色度富集结构带来的水中镍检出限降低。
该实施例采用的纸基微流控芯片的底层为透明非透气膜,纸基层为经过疏水改性的滤纸(加样区、扩散通道和检测池保持为亲水性,其余区域改性为疏水性,其中检测池预置了以丁二酮肟为主要物质的复配试剂,能够与镍发生特异性 显色反应),盖层为透明非透气膜并设有与加样区连通的加样孔和与检测池连通的通气孔。检测池直径为4mm,通气孔的孔径为2mm。
检测时,从加样孔注入含镍水样,样品沿着扩散通道流向检测池,并与复配试剂发生反应生成粉红色物质。将芯片放置一段时间后,水蒸气沿着盖层上的通气孔蒸发,显色成分在蒸发作用的带动下向色度富集区域扩散并聚集,颜色逐渐加深。反应完成后,对纸芯片色度富集区域进行拍照,利用matlab对此区域的色度信息进行提取,进而进行定量计算。
根据图16和图17可以看出,普通纸芯片对水中镍的检出限较高;色度富集之后,水中镍的检出限降低至0.1mg/L,检出限降低效果明显。对线性范围的镍溶液分别进行标曲拟合,得到拟合直线的线性度有非常明显的提高。
实施例4
该实施例用于说明色度富集结构带来的水中铬检出限降低。
该实施例采用的纸基微流控芯片的底层为透明非透气膜,中间层为经过疏水改性的滤纸(加样区、扩散通道和检测池保持为亲水性,其余区域改性为疏水性,其中检测池预置了以二苯碳酰二肼为主要组成的复配试剂,能够与铬发生特异性显色反应),盖层为透明非透气膜并设有与加样区连通的加样孔和与检测池连通的通气孔。检测池直径为4mm,通气孔的孔径为2.5mm。
检测时,从加样区注入含铬水样,样品沿着扩散通道流向检测池,并与复配试剂发生反应生成粉红色物质。将芯片放置一段时间后,水蒸气沿着盖层上的通气孔蒸发,显色成分在蒸发作用的带动下向色度富集区域扩散并聚集,颜色逐渐加深。
结果显示,在色度富集前,普通纸芯片对铬的检出限位0.05mg/L;在基于本实施例的纸芯片进行增强显色后,检出限下降至0.03mg/L。
实施例5
该实施例用于说明色度富集结构带来的水中亚硝酸检出限降低。
该实施例采用的纸基微流控芯片的底层为透明非透气膜,纸基层为经过疏水改性的滤纸(加样区、扩散通道和检测池保持为亲水性,其余区域改性为疏水 性,其中检测池预置了格里斯试剂,能够与亚硝酸盐发生特异性显色反应),盖层为透明非透气膜并设有与加样区连通的加样孔和与检测池连通的通气孔。检测池直径为5mm,通气孔的孔径为2mm。
检测时,从加样区加入含铬水样,样品沿着扩散通道流向检测池,并与复配试剂发生反应生成粉红色物质。将芯片放置一段时间后,水蒸气沿着盖层上的通气孔蒸发,显色成分在蒸发作用的带动下向色度富集区域扩散并聚集,颜色逐渐加深。
结果显示,在色度富集前,普通纸芯片对铬的检出限位0.1mg/L,在基于本实施例的纸芯片进行增强显色后,检出限下降至0.05mg/L。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (19)

  1. 一种纸基微流控芯片,其中,该纸基微流控芯片包括纸基层(2),所述纸基层(2)设置有检测池(21),该检测池(21)内具有第一接触角区域(211)和第二接触角区域(212),并设置为:所述检测池(21)内的液体在所述第一接触角区域(211)的接触角大于在所述第二接触角区域(212)的接触角。
  2. 根据权利要求1所述的纸基微流控芯片,其中,所述检测池(21)内设有由疏水性材料铺设、沉积或浸润而成的所述第一接触角区域(211),和/或,所述检测池(21)内设有由亲水性材料铺设、沉积或浸润而成的所述第二接触角区域(212)。
  3. 根据权利要求1所述的纸基微流控芯片,其中,通过在所述检测池(21)内铺设、沉积或浸润疏水性材料而在所述检测池(21)内形成疏水层,并在所述检测池(21)的中间部分通过在所述疏水层的上方铺设、沉积或浸润亲水性材料而形成所述第二接触角区域(212)和环绕所述第二接触角区域(212)的所述第一接触角区域(211)。
  4. 根据权利要求1所述的纸基微流控芯片,其中,所述第二接触角区域(212)位于所述检测池(21)的中间部分,所述第一接触角区域(211)环绕所述第二接触角区域(212)。
  5. 根据权利要求4所述的纸基微流控芯片,其中,所述检测池(21)形成为直径为2mm-8mm的圆形或外接圆直径为2mm-8mm的正多边形,所述第二接触角区域(212)位于所述检测池(21)的中心位置,并且/或者,所述第二接触角区域(212)为直径为0.5mm-5mm的圆形区域或外接圆直径为0.5mm-5mm的正多边形区域。
  6. 根据权利要求4所述的纸基微流控芯片,其中,所述第一接触角区域(211)设置为:从所述第二接触角区域(212)向所述检测池(21)的边缘,所述检测池(21)内的液体在该第一接触角区域(211)的接触角递增。
  7. 根据权利要求1所述的纸基微流控芯片,其中,所述第一接触角区域(211)的水接触角大于60°,优选大于90°,更优选大于120°。
  8. 根据权利要求1至7中任意一项所述的纸基微流控芯片,其中,所述纸基微流控芯片包括设于所述纸基层(2)的第一侧的底层(1)和设于所述纸基层(2)的与所述第一侧相对的第二侧的盖层(3),该底层(1)和盖层(3)具有覆盖所述检测池(21)的非透水透气部分,且所述盖层(3)的覆盖所述检测池(21)的部分形成有通气孔(31)。
  9. 根据权利要求8所述的纸基微流控芯片,其中,所述通气孔(31)为正多边形或圆形,且面积和孔径均小于所述第二接触角区域(212),优选地,所述通气孔(31)的直径或外接圆直径为0.5mm-5mm,优选为1mm-3mm。
  10. 根据权利要求8所述的纸基微流控芯片,其中,所述通气孔(301)在所述盖层(3)上的位置与所述第二接触角区域(212)在所述检测池(201)内的位置对应。
  11. 根据权利要求8所述的纸基微流控芯片,其中,所述纸基层(2)上还设置有加样区(22)以及连接所述加样区(22)和所述检测池(21)的扩散通道(23);
    并且,在所述盖层(3)上对应所述加样区(22)的位置设置有加样孔(32)。
  12. 根据权利要求11所述的纸基微流控芯片,其中,所述检测池(21)和/或所述扩散通道(23)内预置有显色试剂。
  13. 根据权利要求8所述的纸基微流控芯片,其中,所述纸基层(2)上还设置有环绕所述检测池(21)布置以能够用于向该检测池(21)补充液体的蓄液池(24)。
  14. 一种微流控检测系统,其中,包括根据权利要求1至13中任意一项所述的纸基微流控芯片。
  15. 根据权利要求14所述的微流控检测系统,其中,还包括用于调控所述检测池(21)所在区域的环境温度、空气流动速度、湿度和真空度中的一种或多种的调控单元。
  16. 一种液体检测方法,其中,包括:
    S1.将待测液体通入根据权利要求1至13中任意一项所述的纸基微流控芯片的检测池(21)内;
    S2.将所述纸基微流控芯片静置预定时间;
    S3.对所述检测池(21)内的预定区域进行色度识别和/或比色分析。
  17. 根据权利要求16所述的液体检测方法,其中,在步骤S2中,使得所述检测池(21)所在区域的环境温度在25℃-60℃之间。
  18. 根据权利要求16所述的液体检测方法,其中,在步骤S2中,利用调控单元调控所述检测池(21)所在区域的环境温度、湿度和真空度中的一种或多种。
  19. 一种根据权利要求1至13中任意一项所述的纸基微流控芯片、权利要求14或15所述的微流控检测系统或者权利要求16至18中任意一项所述的液体检测方法在水质检测、环境检测、食品医疗中的应用。
PCT/CN2023/108659 2022-11-04 2023-07-21 纸基微流控芯片、微流控检测系统、液体检测方法和应用 WO2024093376A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202222939918.5U CN219150166U (zh) 2022-11-04 2022-11-04 纸基微流控芯片和微流控检测系统
CN202222939919.XU CN219072981U (zh) 2022-11-04 2022-11-04 纸基微流控芯片和微流控检测系统
CN202222939918.5 2022-11-04
CN202211379392.8 2022-11-04
CN202211379392.8A CN117983329A (zh) 2022-11-04 2022-11-04 纸基微流控芯片、微流控检测系统、液体检测方法和应用
CN202222939919.X 2022-11-04
CN202211379390.9A CN117990685A (zh) 2022-11-04 2022-11-04 微流控检测系统和液体检测方法
CN202211379390.9 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093376A1 true WO2024093376A1 (zh) 2024-05-10

Family

ID=90929610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108659 WO2024093376A1 (zh) 2022-11-04 2023-07-21 纸基微流控芯片、微流控检测系统、液体检测方法和应用

Country Status (1)

Country Link
WO (1) WO2024093376A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258020A1 (en) * 2013-10-21 2016-09-08 The Regents Of The University Of California Enrichment and detection of nucleic acids with ultra-high sensitivity
CN206082558U (zh) * 2016-04-27 2017-04-12 浙江工业大学 微流体自驱动式纸基微流控芯片
CN107570244A (zh) * 2017-07-31 2018-01-12 华南理工大学 一种可信号放大的纸基微流控芯片及其制备方法
CN109877472A (zh) * 2019-04-22 2019-06-14 北京理工大学 基于飞秒激光制备超亲水-超疏水复合sers基底的方法
CN112067595A (zh) * 2020-07-29 2020-12-11 温州大学 一种sers基底及其制备方法、检测装置
CN113405992A (zh) * 2021-06-22 2021-09-17 江南大学 络合比色阵列微流控纸芯片结合智能手机检测重金属离子的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258020A1 (en) * 2013-10-21 2016-09-08 The Regents Of The University Of California Enrichment and detection of nucleic acids with ultra-high sensitivity
CN206082558U (zh) * 2016-04-27 2017-04-12 浙江工业大学 微流体自驱动式纸基微流控芯片
CN107570244A (zh) * 2017-07-31 2018-01-12 华南理工大学 一种可信号放大的纸基微流控芯片及其制备方法
CN109877472A (zh) * 2019-04-22 2019-06-14 北京理工大学 基于飞秒激光制备超亲水-超疏水复合sers基底的方法
CN112067595A (zh) * 2020-07-29 2020-12-11 温州大学 一种sers基底及其制备方法、检测装置
CN113405992A (zh) * 2021-06-22 2021-09-17 江南大学 络合比色阵列微流控纸芯片结合智能手机检测重金属离子的方法

Similar Documents

Publication Publication Date Title
EP0348006B1 (en) Liquid transport device and diagnostic assay device
US8679737B2 (en) Microfluid device and method of producing diffusively built gradients
AU2010221117A1 (en) Methods of micropatterning paper-based microfluidics
US20100178708A1 (en) Liquid fluid testing instrument and testing method
Raj et al. Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching
WO2024093376A1 (zh) 纸基微流控芯片、微流控检测系统、液体检测方法和应用
WO2021218537A1 (zh) 检测芯片及检测系统
US20080241956A1 (en) Method for detecting analyte and biochip
Raj et al. Semi-enclosed microfluidic device on glass-fiber membrane with enhanced signal quality for colorimetric analyte detection in whole blood
Benhabib et al. Low-cost assays in paper-based microfluidic biomedical devices
CN117983329A (zh) 纸基微流控芯片、微流控检测系统、液体检测方法和应用
CN219072981U (zh) 纸基微流控芯片和微流控检测系统
CN219150166U (zh) 纸基微流控芯片和微流控检测系统
US10393664B2 (en) Point-of-care test system and method for applying a sample
CN117990685A (zh) 微流控检测系统和液体检测方法
US20230415156A1 (en) Cartridge comprising a plurality of analysis chambers for receiving a biological liquid
US9981264B2 (en) Nitrocellulose extrusion for porous film strips
Raghu et al. A label-free technique for the spatio-temporal imaging of single cell secretions
US20200376487A1 (en) Microfluidic devices and method of making same
WO2015127277A1 (en) Method for guiding cell spreading in automated cytogenetic assays
KR20220027661A (ko) R2r 공정을 이용한 오가노이드 실시간 모니터링 장치 제조
CN114034662B (zh) 基于金纳米孔阵列的高兼容便携式生物检测装置及其制备方法与应用
JP3640354B2 (ja) 特異結合分析方法およびこれに用いるデバイス
JPWO2006035874A1 (ja) 多層分析要素
US20090203152A1 (en) Method for Analyzing an Analyte Qualitatively and Quantitatively