WO2024093279A1 - 一种天线电路和辐射射频信号的方法 - Google Patents
一种天线电路和辐射射频信号的方法 Download PDFInfo
- Publication number
- WO2024093279A1 WO2024093279A1 PCT/CN2023/102774 CN2023102774W WO2024093279A1 WO 2024093279 A1 WO2024093279 A1 WO 2024093279A1 CN 2023102774 W CN2023102774 W CN 2023102774W WO 2024093279 A1 WO2024093279 A1 WO 2024093279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency signal
- radio frequency
- antenna
- excitation unit
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000005284 excitation Effects 0.000 claims abstract description 73
- 230000005855 radiation Effects 0.000 claims abstract description 63
- 238000010168 coupling process Methods 0.000 claims abstract description 29
- 230000008878 coupling Effects 0.000 claims abstract description 28
- 238000005859 coupling reaction Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 238000013461 design Methods 0.000 abstract description 35
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 16
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000015654 memory Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 23
- 238000003860 storage Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
Definitions
- the present application relates to the field of communications, and more particularly, to an antenna circuit and a method for radiating a radio frequency signal.
- Optical network terminal (ONT)/access point (AP) products are mainly divided into external and internal types, and there are obvious differences in antenna design between the two.
- the main feature of the antenna of external products is the omnidirectional high-gain design, which uses the array design in the vertical dimension to achieve the superposition of multi-element radiation energy, thereby achieving the effect of vertical narrow beam and horizontal high gain.
- small printed circuit board (PCB) antennas are mainly used. With the help of small-size structures, high integration within the product is achieved, but the gain is small and the performance is not high.
- one-dimensional linear array is the main method.
- the narrow antenna structure and routing in the built-in environment introduce too many manual manufacturing links, which will challenge product quality and cost.
- the complex cable connection relationship will reduce manufacturing efficiency and product batch consistency.
- the present application provides an antenna circuit and a method for radiating a radio frequency signal, which are helpful to reduce the size of a built-in antenna and lower production costs.
- an antenna circuit which includes a printed circuit board (PCB), an excitation unit and a radiation unit.
- the PCB is used to generate a first radio frequency signal
- the excitation unit is arranged on the PCB and connected to the radio frequency strip line on the PCB, and the excitation unit is used to excite the first radio frequency signal to obtain a second radio frequency signal.
- the radiation unit and the excitation unit are located on the same plane, and the distance between the radiation unit and the excitation unit is less than or equal to the first threshold.
- the radiation unit is used to receive the second radio frequency signal from the excitation unit by air coupling, invert the second radio frequency signal to obtain a third radio frequency signal, and radiate the second radio frequency signal and the third radio frequency signal outward.
- the second radio frequency signal and the third radio frequency signal have the same frequency and can be superimposed on the horizontal plane to enhance the spatial radiation energy.
- the antenna circuit disclosed in the present application designs a conventional high-gain antenna in a separate manner, uses the antenna on the PCB board as an excitation unit, and uses the high-gain antennas arranged side by side as radiation units. It uses air coupling to achieve energy transfer, thereby eliminating the RF coaxial connection, so that the overall design has a flexible design space and can be flexibly implemented using a variety of low-cost processes, which helps to reduce the size of the built-in antenna and reduce production costs.
- the excitation unit is a balanced dipole structure, and the feeding port of the excitation unit is cascaded with the RF strip line on the PCB.
- the excitation unit is an unbalanced dipole structure
- the first end of the excitation unit is connected to the RF strip line of the PCB board
- the second end of the excitation unit is connected to the ground layer of the PCB board.
- the excitation unit is a folded oscillator structure.
- the radiation unit includes a first radiator, an inverter, and a second radiator.
- the first radiator and the excitation unit have comparable electrical dimensions in the vertical direction
- the first radiator is used to receive the second radio frequency signal from the excitation unit by air coupling, and transmit it to the inverter, and the first radiator is also used to radiate the second radio frequency signal outward
- the inverter is connected in series with the first radiator, and is used to invert the second radio frequency signal to obtain a third radio frequency signal
- the second radiator is connected in series with the inverter, and is used to radiate the third radio frequency signal outward.
- the first radiator is a folded U-shaped loop structure or a half-wave dipole structure.
- the radiation unit is an independent steel sheet stamping structure or a printed structure.
- a method for radiating a radio frequency signal is provided, and the method is performed by the antenna circuit described in the first aspect.
- the method includes: generating a first radio frequency signal; performing excitation processing on the first radio frequency signal to obtain a second radio frequency signal; performing inversion processing on the second radio frequency signal to obtain a third radio frequency signal; and radiating the second radio frequency signal and the third radio frequency signal outwardly.
- the second radio frequency signal and the third radio frequency signal have the same frequency and can be superimposed in the horizontal plane to enhance the spatial radiation energy.
- the technical solution disclosed in the present application designs a conventional high-gain antenna in a separate type, utilizes the antenna on the PCB board as an excitation unit, and uses the high-gain antennas arranged side by side as radiation units, and utilizes air coupling to achieve energy transfer, thereby eliminating the RF coaxial connection, so that the overall design has a flexible design space and can be flexibly implemented using a variety of low-cost processes, which helps to reduce the size of the built-in antenna and reduce production costs.
- FIG1 is a schematic diagram of the structure of a first antenna circuit provided in an embodiment of the present application.
- FIG. 2 is a front schematic diagram of a second antenna circuit provided in an embodiment of the present application.
- FIG. 3 is a schematic diagram of the back side of a second antenna circuit provided in an embodiment of the present application.
- FIG. 4 is a plan projection diagram of a second antenna circuit provided in an embodiment of the present application.
- FIG. 5 is a diagram showing a first internal assembly method of a built-in product provided in an embodiment of the present application.
- FIG. 6 is a second internal assembly method of a built-in product provided in an embodiment of the present application.
- FIG. 7 is a comparison diagram of the radiation directions of the second antenna circuit provided in an embodiment of the present application and a conventional high-gain antenna under the same layout.
- FIG8 is a plan projection schematic diagram of a third antenna circuit provided in an embodiment of the present application.
- FIG. 9 is a plan projection schematic diagram of a fourth antenna circuit provided in an embodiment of the present application.
- FIG. 10 is a structural comparison diagram of the antenna circuit provided in an embodiment of the present application and a conventional board-printed copper wire direct connection structure.
- FIG. 11 is a structural comparison diagram of the antenna circuit provided in an embodiment of the present application and a structure of a conventional size plate printed with a small steel sheet.
- FIG. 12 is a comparison diagram of the radiation directions of the antenna circuit provided in the embodiment of the present application, a conventional board-printed copper wire direct connection structure, and a conventional-size board-printed small steel sheet structure under the same layout.
- FIG. 13 is a flow chart of an example of a method for radiating radio frequency signals provided in an embodiment of the present application.
- a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
- the character "/” generally indicates that the objects associated before and after are in an "or” relationship.
- references to "one embodiment” or “some embodiments” etc. described in this specification mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in one or more embodiments of the present application.
- the phrases “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification do not necessarily all refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized in other ways.
- the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
- Optical network terminal (ONT)/access point (AP) products are mainly divided into two types: external and internal, and there are obvious differences in antenna design between the two.
- the main feature of the antenna of external products is the omnidirectional high-gain design, which uses the array design in the vertical dimension to achieve the superposition of multi-element radiation energy, thereby achieving the effect of vertical narrow beam and horizontal high gain.
- small printed circuit board (PCB) antennas are mainly used, and high integration within the product is achieved with the help of small-size structures, but the gain is small and the performance is not high. In order to improve performance, improving the gain and roundness of the built-in antenna is usually the main means.
- the main idea is to reuse the radiator in the external high-gain antenna and directly use the radiating structure in the external antenna instead of the traditional internal small antenna. Since the external antenna itself is a multi-element array design, there are two main problems for the internal use of the antenna: 1) The impact of changes in the antenna working environment on performance. The external antenna works independently outside the ONT machine, similar to the free space environment, and the antenna omnidirectionality is easy to obtain; in the built-in environment, due to the constraints of the single board and structure, it is difficult to maintain the same working environment.
- the antenna can work and the performance changes will vary greatly; 2) As an independent component, the external antenna has high assembly flexibility, but the narrow and long antenna structure and routing in the built-in environment will place very high requirements on the entire machine, and too many manual manufacturing links will challenge product quality.
- the antenna In the high-gain antenna in the form of PCB, the two diagonal fifth-generation mobile communication technology (5th generation mobile networks, 5G) antennas use PCB series feed design to achieve 4dBi+ omnidirectional high-gain design.
- 5G fifth-generation mobile communication technology
- the antenna adopts a similar usage method to the external antenna. The antenna is placed independently on the top, and finally a large structural cover is used to wrap all the antennas inside. In other words, it is similar to the existing external product with a large structure wrapped outside, so as to achieve the purpose of not seeing the antenna in appearance.
- the overall size of the product will be very large, and the increased volume of the whole machine is the external antenna spacing * height.
- the product is verified and compressed in the width direction, and the multiple input multiple output (MIMO) spacing under the dual antenna is greatly sacrificed. Therefore, although the working environment and performance of the single antenna are better, the smaller spacing aggravates the coupling between the antennas and weakens the MIMO performance, and the overall benefit will not be very high.
- MIMO multiple input multiple output
- the product is verified and compressed in the width direction, and the MIMO spacing under the dual antenna is greatly sacrificed. Therefore, although the working environment and performance of the single antenna are relatively good, the smaller spacing aggravates the coupling between antennas and weakens the MIMO performance, and the overall benefit will not be very high.
- the top independent clearance design is unacceptable in the above two methods.
- Antennas usually require a narrow and long PCB process design.
- the internal PCB array of the external antenna is placed on both sides of the circuit board, and then connected together with the RF coaxial line to achieve a high integration effect. Therefore, the coplanar layout of the antenna and the PCB board will deteriorate the omnidirectional radiation performance of the antenna, resulting in uneven 360-degree coverage on the horizontal plane.
- the RF coaxial connection between the board and the antenna coupling and conduction interference introduced by the RF coaxial on the dry board will occur, reducing the receiving sensitivity of the whole machine, and ultimately affecting the coverage performance of the whole machine.
- the leakage current on the coaxial surface will also partially participate in the radiation, thereby causing the problem of high-gain narrow beam downtilt.
- the more space the antenna overlaps with the PCB board inside the product the stronger the reflection caused by the board and high components, and the more the omnidirectional radiation performance of the antenna will deteriorate.
- How to achieve omnidirectionality in the tight coupling state between the antenna and the board is also a key requirement to ensure coverage performance.
- the proximity of the antenna to the board will also increase the risk of the antenna receiving potential interference sources on the PCB board.
- How to avoid the introduction of additional electromagnetic radiation under cable connection is also a key challenge to determine the antenna radiation and even the performance of the whole machine.
- the narrow antenna structure and routing in the built-in environment introduce too many manual manufacturing links, which will challenge product quality and cost.
- the complex cable connection relationship will reduce manufacturing efficiency and product batch consistency.
- How to achieve the omnidirectionality of traditional high-gain omnidirectional antennas in a built-in environment reduce the size of the antenna and the entire device, and even the complexity of assembly, is the key to determining its value.
- the present application proposes an antenna circuit and a method for signaling, in the hope of reducing the size of the built-in antenna and lowering the production cost.
- FIG1 shows a schematic structural diagram of a first antenna circuit of the present application.
- the antenna circuit 100 includes a printed circuit board PCB single board 110, an excitation unit 120 and a radiation unit 130.
- the PCB single board 110 is used to generate a first radio frequency signal.
- the excitation unit 120 is printed on the PCB single board 110 and connected to the radio frequency strip line on the PCB single board.
- the excitation unit 120 is used to excite the first radio frequency signal to obtain a second radio frequency signal.
- the radiation unit 130 and the excitation unit 120 are located on the same plane, and the distance between the radiation unit 130 and the excitation unit 120 is less than or equal to the first threshold.
- the radiation unit 130 is used to receive the second radio frequency signal from the excitation unit 120 by air coupling, perform inversion processing on the second radio frequency signal to obtain a third radio frequency signal, and radiate the second radio frequency signal and the third radio frequency signal outward.
- the second radio frequency signal and the third radio frequency signal have the same frequency and can be superimposed on the horizontal plane to enhance the spatial radiation energy.
- the solution of the present application is to separate the conventional high-gain antenna, use the small antenna on the PCB board as the excitation, and the side-by-side high-gain antenna as the main radiator.
- the two use air coupling to achieve energy transfer, thereby eliminating the RF coaxial connection.
- the separation of the excitation antenna and the radiation structure gives the two a more flexible design space.
- the present application uses air coupling to achieve the transfer of RF energy on the PCB board to the radiating array next to it, and finally uses the radiating array to achieve high-gain omnidirectional performance.
- the excitation antenna on the PCB board is small in size, does not occupy additional area, and does not increase the complex structure, the PCB board can be completed through a one-time automated process.
- the radiating array only needs to maintain a certain distance from the excitation antenna.
- the specific implementation method depends only on the space and manufacturing requirements of the product structural parts, and maximizes the use of the space inside the structural parts to make the radiating array, so it can be flexibly implemented using a variety of low-cost processes. At the same time, it eliminates the need for manual assembly, which is a very good choice for product cost reduction, performance improvement, and multi-frequency high-integration design.
- FIG. 2 shows a front schematic diagram of a second antenna circuit of the present application.
- FIG. 3 shows a schematic diagram of the back side of a second antenna circuit of the present application.
- the antenna circuit 200 has a substantially similar structure to the antenna circuit 100, except that a specific example of the excitation unit 120 and the radiation unit 130 is shown in the antenna circuit 200.
- the excitation unit 120 may be a small printed antenna located on the PCB board 110
- the radiation unit 130 may be a series array antenna that is arranged side by side with the excitation unit 120 at a certain distance (first threshold).
- first threshold a certain distance
- the excitation unit 120 is a small printed antenna located on the PCB board 110
- the small printed antenna may be in the form of a balanced dipole, and the feed port may be directly cascaded with the RF strip line, so that low insertion loss and cable-free input may be achieved.
- FIG4 shows a plan projection schematic diagram of a second antenna circuit provided in an embodiment of the present application.
- the series array antenna when the radiation unit 130 is a series array antenna, the series array antenna includes a first radiator 131, an inverter 132, and a second radiator 133.
- the first radiator 131 and the excitation unit 120 have comparable electrical dimensions in the vertical direction, so that the same frequency resonance can be achieved, so that the energy on the small dipole (excitation unit 120) is efficiently coupled to the radiation unit 130.
- the first radiator 131 is a folded U-shaped loop structure, close to the printed PCB antenna (excitation unit 120), and placed parallel and side by side, and the open end of the U-shaped loop is on the same horizontal plane as the midpoint of the printed dipole.
- the size of the first radiator 131 is half the wavelength corresponding to the operating frequency.
- the inverter 132 It is used to receive the second radio frequency signal from the excitation unit 120 by air coupling and transmit it to the inverter 132.
- the first radiator 131 is also used to radiate the second radio frequency signal outward.
- the size of the inverter 132 is half the wavelength corresponding to the operating frequency, so that the surface current conducted from the first radiator 131 changes its phase by 180 degrees after passing through the inverter, so that the surface currents of the first radiator 131 and the second radiator 133 have the same phase characteristics.
- the inverter 132 is connected in series with the first radiator 131, and is used to invert the second RF signal to obtain a third RF signal.
- Inversion processing refers to the effect of making the current distribution on the second radiator 133 through the middle serpentine inverter have the same phase as the distributed current on the first radiator 131 below the inverter 132, so as to meet the effect of forming an array in the vertical direction.
- the size of the second radiator 133 is half the wavelength corresponding to the operating frequency, so that when the shape changes arbitrarily, it has a half-wave oscillator radiation effect.
- the second radiator 133 is connected in series with the inverter 132, and is used to radiate the third RF signal outward.
- Fig. 5 is a first internal assembly method of a built-in product provided in an embodiment of the present application. As shown in Fig. 5, in the first internal assembly method, the inverter and the second radiator are located in the same plane, but are orthogonal to the plane where the first radiator is located.
- Fig. 6 is a second internal assembly method of a built-in product provided in an embodiment of the present application. As shown in Fig. 6, in the second internal assembly method, the inverter, the first radiator and the second radiator are all located in the same plane.
- FIG. 7 is a comparison diagram of the radiation directions of the second antenna circuit provided in an embodiment of the present application and a conventional high-gain antenna under the same layout.
- the antenna circuit provided by the present application eliminates the problem of cable cascading by using air coupling, and the radiating array (radiating unit 130) can very stably realize the state of the upper and lower radiators (first radiator 131 and second radiator 133) being in phase, thereby realizing high-efficiency omnidirectional high-gain radiation.
- the omnidirectionality is significantly improved, and the minimum gain is basically 0dBi.
- the high-gain antenna that is conventionally connected by a cable is replaced by an air coupling method, so that the high-gain omnidirectional antenna becomes a combined structure divided into two, achieving the purpose of decoupling the excitation part of the PCB circuit board from the main radiation structure. Therefore, as long as the air coupling effect is maintained and the efficient transmission of energy from the RF channel to the antenna radiator is achieved, the excitation unit and the radiation unit can be optimized independently.
- the excitation unit 120 can be made of double-sided PCB printing, and the radiation unit 130 can be stamped from a steel sheet with a certain thickness.
- the excitation unit 120 can also be in other forms.
- FIG8 shows a plan projection schematic diagram of a third antenna circuit provided in an embodiment of the present application.
- the excitation unit 121 adopts a single-sided unbalanced dipole design, one end of which is directly connected to the ground layer of the PCB board 110 , and the other end is directly connected to the RF strip line on the PCB board 110 , without the need for coupling strip line excitation on the back side.
- FIG. 9 is a plan projection schematic diagram of a fourth antenna circuit provided in an embodiment of the present application.
- the excitation unit 122 is in the form of a folded dipole.
- One advantage of the folded dipole antenna is that all conductors are connected together, and the midpoint of the parasitic dipole can be used as a mounting point. The structure is simpler than a dipole with midpoint disconnected feeding.
- the printed small antenna can be printed on both sides or one side on the edge area of the PCB board. Its main function is to connect the RF strip line on the PCB board and serve as an excitation source for the series array radiator, so as to realize the high-efficiency transmission of energy between the printed small antenna on the PCB board and the external series array radiator (radiation unit) without contact, thereby achieving contactless integration.
- the radiation unit may be an independent steel sheet stamping structure, or an electroplated or chemically plated structure directly printed on the inner surface of a built-in product structure, or may be a printed form similar to a PCB printed small antenna.
- the radiation unit may be in a planar form or a three-dimensional structure, which is not limited in the present application.
- the radiation unit is for the purpose of achieving high gain, and therefore, the data of the series-connected radiation volume inverters depends on the gain to be achieved and the internal space of the built-in product.
- FIG. 10 is a structural comparison diagram of the antenna circuit provided in an embodiment of the present application and a conventional board-printed copper wire direct connection structure.
- the PCB single board 210 is designed to be small in size, and the radiation unit 230 is designed to extend out of the PCB single board 210 .
- FIG. 11 is a structural comparison diagram of the antenna circuit provided in an embodiment of the present application and a structure of a conventional size plate printed with a small steel sheet.
- the PCB single board 310 adopts a large-size design
- the radiation unit 330 adopts a small steel sheet structure design extending outside the single board.
- the antenna circuit of the present application uses air coupling to transfer energy, which reduces insertion loss and avoids interference risks, which helps factories manufacture and produce high-quality and reliable products.
- FIG. 12 is a comparison diagram of the radiation directions of the antenna circuit provided in the embodiment of the present application, a conventional board-printed copper wire direct connection structure, and a conventional-size board-printed small steel sheet structure under the same layout.
- the antenna circuit provided by the present application eliminates the problem of cable cascading by using air coupling, and the radiating array (radiating unit 130) can very stably realize the state of the upper and lower radiators (first radiator 131 and second radiator 133) being in phase, thereby achieving high-efficiency omnidirectional high-gain radiation.
- the antenna circuit provided by the present application also has very good profit value.
- Fig. 13 is a schematic diagram of a flow chart of a method for radiating radio frequency signals provided in an embodiment of the present application. The method is executed by the above antenna circuit.
- the first radio frequency signal may be generated by the PCB board, and the first radio frequency signal may be transmitted to the excitation unit through the radio frequency strip line.
- the PCB board generating the first radio frequency signal may also include the PCB board acquiring the first radio frequency signal generated by other devices.
- S1320 Perform excitation processing on the first radio frequency signal to obtain a second radio frequency signal.
- the excitation unit may perform excitation processing on the first radio frequency signal to obtain the second radio frequency signal.
- the excitation unit may be in the form of being printed on the edge area of the PCB on both sides or on one side. For example, a balanced dipole form, an unbalanced dipole form, or a folded oscillator form.
- S1330 Perform inversion processing on the second radio frequency signal to obtain a third radio frequency signal.
- the second radio frequency signal is transmitted to the first radiator on the radiation unit by air coupling, and the second radio frequency signal is inverted by the inverter on the radiation unit to obtain the third radio frequency signal.
- S1340 radiate the second radio frequency signal and the third radio frequency signal outwardly.
- the second radio frequency signal is radiated outwardly through the first radiator on the radiating unit
- the third radio frequency signal is radiated outwardly through the second radiator on the radiating unit.
- the second radio frequency signal and the third radio frequency signal have the same frequency and can be superimposed on the horizontal plane to enhance the spatial radiation energy.
- the technical solution disclosed in the present application designs a conventional high-gain antenna in a separate type, utilizes the antenna on the PCB board as an excitation unit, and uses the high-gain antennas arranged side by side as radiation units, and utilizes air coupling to achieve energy transfer, thereby eliminating the RF coaxial connection, so that the overall design has a flexible design space and can be flexibly implemented using a variety of low-cost processes, which helps to reduce the size of the built-in antenna and reduce production costs.
- the present application also provides a device including a processor and an interface.
- the processor can be used to execute the above method The method in the embodiment.
- the above-mentioned processing device can be a chip.
- the processing device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips.
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- SoC system on chip
- CPU central processor unit
- NP network processor
- DSP digital signal processor
- MCU microcontroller unit
- PLD programmable logic device
- each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
- the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
- the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
- the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
- the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
- each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
- the above processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP digital signal processor
- ASIC application-specific integrated circuit
- FPGA field programmable gate array
- the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
- the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined and performed.
- the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
- the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
- the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory can be a random access memory (RAM), which is used as an external cache.
- RAM random access memory
- SRAM static RAM
- DRAM dynamic RAM
- SDRAM synchronous DRAM
- DDR SDRAM double data rate SDRAM
- ESDRAM enhanced SDRAM
- SLDRAM synchlink DRAM
- DR RAM direct rambus RAM
- the present application also provides a computer program product, which includes: a computer program code, when the computer program code is run on a computer, the computer executes the method of the embodiment shown in Figure 11.
- the present application also provides a computer readable medium.
- Program codes are stored, and when the program codes are run on a computer, the computer is caused to execute the method of the embodiment shown in FIG. 11 .
- the computer program product includes one or more computer instructions.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
- the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disc (SSD)), etc.
- a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
- an optical medium e.g., a high-density digital video disc (DVD)
- DVD high-density digital video disc
- SSD solid state disc
- a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program and/or a computer.
- applications running on a computing device and a computing device can be components.
- One or more components may reside in a process and/or an execution thread, and a component may be located on a computer and/or distributed between two or more computers.
- these components may be executed from various computer-readable media having various data structures stored thereon.
- Components may, for example, communicate through local and/or remote processes according to signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
- signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each functional unit may be integrated into one processing unit.
- the unit may exist physically alone, or two or more units may be integrated into one unit.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本申请提供了一种天线电路和辐射射频信号的方法。该天线电路包括PCB单板,用于产生第一射频信号;激励单元用于对第一射频信号进行激励得到第二射频信号;辐射单元与激励单元位于同一平面上,辐射单元与激励单元之间的距离小于或等于第一阈值,辐射单元用于通过空气耦合的方式从激励单元接收第二射频信号,对第二射频信号进行反相处理得到第三射频信号,向外辐射第二射频信号和第三射频信号。本申请所揭示的天线电路,将常规的高增益天线进行分离式设计,利用空气耦合方式实现能量的传递从而消除了射频同轴连接,使得整体设计具有灵活的设计空间,可以灵活使用多种低成本工艺实现,有助于减小内置天线的尺寸,降低生产成本。
Description
本申请要求于2022年11月04日提交中国国家知识产权局、申请号为202211375301.3、申请名称为“一种天线电路和辐射射频信号的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域,并且更具体地,涉及一种天线电路和辐射射频信号的方法。
光网络终端(optical network terminal,ONT)/接入点(access point,AP)产品主要分为外置和内置两种,两者在天线设计上存在明显的差异化。其中,外置产品的天线主要的特点是全向高增益设计,利用垂直维度上的组阵设计实现多阵元辐射能量叠加,从而实现垂直窄波束、水平高增益的效果。对于内置产品的天线主要采用小印制电路板(printed circuit board,PCB)天线的形式,借助小尺寸结构实现产品内的高集成,但增益较小,性能不高。对于内置产品,为了提升远覆盖性能需要引入高增益天线,利用超出2dBi小天线的增益增量,进一步提升覆盖的距离,甚至达到类似外置产品的性能。因此如何在紧凑ID的内置产品中集成高增益天线,并尽可能实现等同于外置天线的性能,成为了研究热点。
而对于高增益全向天线设计,一维线阵列是主要的方式,增益越高,阵列尺寸越长,需要的安装空间越大,因此天线与产品内部的PCB单板重叠的空间越多,单板及高器件造成的反射作用越强,天线全向辐射性能会恶化越多。此外,内置环境下狭长的天线结构及走线引入过多的人工制造环节会让产品质量和成本提出挑战,复杂的电缆(Cable)连接关系会降低制造效率以及产品批量一致性。
因此,亟需一种天线电路,能够在保证性能的同时,减小内置天线的尺寸,降低生产升本。
发明内容
本申请提供一种天线电路和辐射射频信号的方法,有助于减小内置天线的尺寸,降低生产成本。
第一方面,提供了一种天线电路,该天线电路包括印制电路板PCB单板、激励单元和辐射单元。其中:PCB单板,用于产生第一射频信号;激励单元设置在PCB单板上,与PCB上的射频带线相连接,激励单元用于对第一射频信号进行激励得到第二射频信号。辐射单元与激励单元位于同一平面上,辐射单元与激励单元之间的距离小于或等于第一阈值,辐射单元用于通过空气耦合的方式从激励单元接收第二射频信号,对第二射频信号进行反相处理得到第三射频信号,向外辐射第二射频信号和第三射频信号。其中,第二射频信号和第三射频信号同频率,能够在水平面叠加,增强空间辐射能量。
本申请所揭示的天线电路,将常规的高增益天线进行分离式设计,利用PCB单板上的天线充当激励单元,将并排设置的高增益天线作为辐射单元,利用空气耦合方式实现能量的传递从而消除了射频同轴连接,使得整体设计具有灵活的设计空间,可以灵活使用多种低成本工艺实现,有助于减小内置天线的尺寸,降低生产成本。
结合第一方面,在第一方面的某些实现方式中,激励单元为平衡型偶极子结构,激励单元的馈电端口与PCB上的射频带线级联。
结合第一方面,在第一方面的另一些实现方式中,激励单元为非平衡型偶极子结构,激励单元的第一端与PCB单板的射频带线相连接,激励单元的第二端与PCB单板的地层相连接。
结合第一方面,在第一方面的又一些实现方式中,激励单元为折合振子结构。
结合第一方面,在第一方面的某些实现方式中,辐射单元包括第一辐射体、反相器和第二辐射体。其中:第一辐射体与激励单元在垂直方向上具有相当的电尺寸,第一辐射体用于通过空气耦合的方式从激励单元接收第二射频信号,并将传输至反相器,第一辐射体还用于向外辐射第二射频信号;反相器与第一辐射体串联,用于对第二射频信号进行反相处理,得到第三射频信号;第二辐射体与反相器串联,用于向外辐射第三射频信号。
结合第一方面,在第一方面的某些实现方式中,第一辐射体为折合U型回路结构或者半波偶极子结构。
结合第一方面,在第一方面的某些实现方式中,辐射单元为独立钢片冲压架构或者印制结构。
第二方面,提供了一种辐射射频信号的方法,该方法由第一方面所述的天线电路执行。该方法包括:生成第一射频信号;对第一射频信号进行激励处理,得到第二射频信号;对第二射频信号进行反相处理,得到第三射频信号;向外辐射第二射频信号和第三射频信号。其中,第二射频信号和第三射频信号同频率,能够在水平面叠加,增强空间辐射能量。
本申请所揭示的技术方案,将常规的高增益天线进行分离式设计,利用PCB单板上的天线充当激励单元,将并排设置的高增益天线作为辐射单元,利用空气耦合方式实现能量的传递从而消除了射频同轴连接,使得整体设计具有灵活的设计空间,可以灵活使用多种低成本工艺实现,有助于减小内置天线的尺寸,降低生产成本。
图1是本申请实施例提供的第一种天线电路的结构示意图。
图2是本申请实施例提供的第二种天线电路的正面示意图。
图3是本申请实施例提供的第二种天线电路的背面示意图。
图4是本申请实施例提供的第二种天线电路的平面投影示意图。
图5是本申请实施例提供的内置产品第一种内部装配方式。
图6是本申请实施例提供的内置产品第二种内部装配方式。
图7是本申请实施例提供的第二种天线电路与常规高增益天线在相同布局下的辐射方向对比图。
图8是本申请实施例提供的第三种天线电路的平面投影示意图。
图9是本申请实施例提供的第四种天线电路的平面投影示意图。
图10是本申请实施例提供的天线电路与常规板印加铜丝直连结构的结构对比图。
图11是本申请实施例提供的天线电路与常规尺寸板印加小钢片结构的结构对比图。
图12是本申请实施例提供的天线电路与常规板印加铜丝直连结构以及常规尺寸板印加小钢片结构在相同布局下的辐射方向对比图。
图13是本申请实施例提供的辐射射频信号方法的一例流程示意图。
下面将结合附图,对本申请中的技术方案进行描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
光网络终端(optical network terminal,ONT)/接入点(access point,AP)产品主要分为外置和内置两种,两者在天线设计上存在明显的差异化。其中,外置产品的天线主要的特点是全向高增益设计,利用垂直维度上的组阵设计实现多阵元辐射能量叠加,从而实现垂直窄波束、水平高增益的效果。对于内置产品的天线主要采用小印制电路板(printed circuit board,PCB)天线的形式,借助小尺寸结构实现产品内的高集成,但增益较小,性能不高。为了提高性能,提升内置天线增益及圆度通常是主要手段。
目前业界也有少量产品在尝试上述做法,主要思路是复用外置高增益天线中的辐射体,直接外置天线中的辐射结构替代传统内置小天线来使用。由于外置天线本身就是多阵元的阵列式设计,因此对于天线内置用法而言,主要面临两个问题:1)天线工作环境的变化对性能的影响,外置天线独立工作在ONT整机外部,类似自由空间环境,天线全向性容易获得;而内置环境下由于单板及结构约束,很难保持相同的工作环境,此时天线能否工作,以及性能变化会有很大的变化;2)外置天线作为独立组件,装配灵活性较高,但内置环境下狭长的天线结构及走线会对整机非常高的要求,过多的人工制造环节会让产品质量提出挑战。
复杂的电缆(Cable)连接关系会严重降低制造效率以及产品批量一致性,如何实现传统高增益全向天线在内置环境下的全向性,降低天线及整机尺寸,乃至装配复杂度,是决定其发挥价值的关键。
传统高增益全向天线主要采用串馈富兰克林形式,例如,在塔式标识(identification,ID)
下PCB形式的高增益天线中,两个对角的第五代移动通信技术(5th generation mobile networks,5G)天线采用了PCB串馈设计实现4dBi+的全向高增益设计,为了保障全向辐射性能,天线采用了类似外置天线的使用方式,天线独立放置在顶部,最后采用一个大的结构外罩将所有天线均包裹在里面。换句话说,类似现有外置产品外部再外加一个大的结构包起来,从而实现外观上看不到天线的目的。但是考虑到产品ID约束,为了达到类似外置用法的效果,产品整体尺寸会非常大,整机增加的体积就是外置天线间距*高度。同时,产品在宽度方向上验证压缩,双天线下多输入多输出(multiple input multiple output,MIMO)间距牺牲很大,因此,尽管单天线工作环境及性能比较好,但较小的间距加剧了天线间的耦合,弱化MIMO性能,整体收益不会很高。
传统高增益全向天线还有另外一种形式,与上述方式不同的是,两全向高增益天线采用PCB小板加螺旋铜丝的方式。类似于外置产品,天线独立放在在单板的四角,最后采用一个大的结构外罩将所有天线均包裹在里面,从而实现外观上看不到隐藏天线的目的。但是在该方式中,采用螺旋铜棒替代了部分PCB,增加了组装的复杂度,使得产品在天线固定上仅依赖于底部支架,上部悬空的方式考虑产品ID约束,为了达到类似外置用法的效果,产品整体尺寸会非常大,整机增加的体积就是外置天线间距*高度。同时,产品在宽度方向上验证压缩,双天线下MIMO间距牺牲很大,因此,尽管单天线工作环境及性能比较好,但较小的间距加剧了天线间的耦合,弱化MIMO性能,整体收益不会很高。
因此,为了实现高集成度下的小尺寸结构,上述两种方式中,顶部独立净空设计是不可接受的。天线通常需要狭长的PCB工艺设计。实质上就是将外置天线内部PCB阵子放置在电路板两边,然后利用射频同轴线连接在一起,达到高集成的效果。因此,天线与PCB单板共面布局,会恶化天线全向辐射性能,从而造成水平面上360度覆盖的不均匀。考虑射频同轴连接单板与天线,会产生由于射频同轴引入干板上的耦合及传导干扰,降低整机的接收灵敏度,最终影响整机的覆盖性能。而同轴表面存在的漏电流也会部分参与辐射,从而引发高增益窄波束下倾问题。
综上所述,对于内置产品,为了提升远覆盖性能需要引入高增益天线,利用超出2dBi小天线的增益增量,进一步提升覆盖的距离,甚至达到类似外置产品的性能。因此如何在紧凑ID的内置产品中集成高增益天线,并尽可能实现等同于外置天线的性能,将是考验设计者能力的关键挑战。而对于高增益全向天线设计,一维线阵列是主要的方式,增益越高,阵列尺寸越长,需要的安装空间越大,因此天线与产品内部的PCB单板重叠的空间越多,单板及高器件造成的反射作用越强,天线全向辐射性能会恶化越多,如何在天线与单板的紧耦合状态实现全向性也是保障覆盖性能的一个关键诉求。天线与单板靠近也会造成天线接收PCB单板上潜在干扰源的风险也越大,如何避免Cable连接下引入额外电磁辐射影响也是决定天线辐射,乃至整机性能的关键挑战。此外,内置环境下狭长的天线结构及走线引入过多的人工制造环节会让产品质量和成本提出挑战,复杂的Cable连接关系会降低制造效率以及产品批量一致性。如何实现传统高增益全向天线在内置环境下的全向性,降低天线及整机尺寸,乃至装配复杂度,是决定其发挥价值的关键。
基于上述原因,本申请提出了一种天线电路和方法信号的方法,以期望能够减小内置天线的尺寸,降低生产成本。
图1示出了本申请第一种天线电路的结构示意图。
如图1所示,天线电路100包括印制电路板PCB单板110、激励单元120和辐射单元130。其中,PCB单板110用于产生第一射频信号。激励单元120印刷在PCB单板110上,与PCB单板上的射频带线相连接。激励单元120用于对第一射频信号进行激励得到第二射频信号。辐射单元130与激励单元120位于同一平面上,辐射单元130与激励单元120之间的距离小于或等于第一阈值。辐射单元130用于通过空气耦合的方式从激励单元120接收第二射频信号,对第二射频信号进行反相处理得到第三射频信号,向外辐射第二射频信号和第三射频信号。其中,第二射频信号和第三射频信号同频率,能够在水平面叠加,增强空间辐射能量。
本申请的方案,将常规的高增益天线进行分离式设计,利用PCB单板上的小天线充当激励,并排的高增益天线作为主要的辐射体,两者利用空气耦合方式实现能量的传递从而消除了射频同轴连接。激励天线与辐射结构的分离,使得两者具有更灵活的设计空间。本申请利用空耦方式实现PCB单板上的射频能量传递到旁边的辐射阵子上,最终利用辐射阵子实现高增益全向性能。且由于PCB单板上面的激励天线尺寸小,不占用额外的面积,也不增加复杂的结构,因此PCB单板可以通过一次性的自动化工艺完成。辐射阵子则只需要与激励天线保持一定的间距即可,具体实现方式仅取决于产品结构件的空间及制造要求,最大化利用结构件内部的空间来做辐射阵子,因此可以灵活使用多种低成本工艺实现。同时免除了人工组装要求,对于产品降成本、提性能以及多频高集成设计均是非常好的选择。
图2示出了本申请第二种天线电路的正面示意图。
图3示出了本申请第二种天线电路的背面示意图。
如图2和图3所示,天线电路200与天线电路100结构基本相同,不同的是,天线电路200中示出了激励单元120和辐射单元130的一种具体的示例。例如,激励单元120可以是位于PCB单板110上的印制小天线,辐射单元130可以是与激励单元120并排一定间距(第一阈值)的串联的阵列天线。其中,当激励单元120为位于PCB单板110上的印制小天线时,该印制小天线可以采用平衡型偶极子形式,馈电端口直接与射频带线级联,这样,可以实现低插损免Cable输入。
图4示出了本申请实施例提供的第二种天线电路的平面投影示意图。
如图4所示,当辐射单元130为串联的阵列天线时,该串联的阵列天线包括第一辐射体131、反相器132和第二辐射体133。其中:第一辐射体131与激励单元120在垂直方向上具有相当的电尺寸,这样能够实现同频谐振,使得小偶极子(激励单元120)上能量高效率的耦合到辐射单元130上。第一辐射体131为折合U型回路结构,与印制PCB天线(激励单元120)靠近,并且平行并排摆放,U型回路开口一端与印制偶极子中点在同一水平面上。第一辐射体131的尺寸为工作频率对应的半波长。用于通过空气耦合的方式从激励单元120接收第二射频信号,并将传输至反相器132。第一辐射体131还用于向外辐射第二射频信号。反相器132的尺寸为工作频率对应的半波长,使得从第一辐射体131上传导上来的表面电流经过反相器后相位产生180度变化,从而实现第一辐射体131和第二辐射体133的表面电流具有相同相位特征。其中,反相器132与第一辐射体131串联,用于对第二射频信号进行反相处理,得到第三射频信号。反相处理是指将通过中间的蛇形反相器到达第二辐射体133上电流分布与反相器132下方的第一辐射体131上分布电流具有同相的效果,满足垂直方向上组阵的效果。第二辐射体133的尺寸为工作频率对应的半波长,使得形状任意变化时,具有半波振子辐射效果。第二辐射体133与反相器132串联,用于向外辐射第三射频信号。
图5是本申请实施例提供的内置产品第一种内部装配方式。如图5所示,在第一种内部装配方式中,反相器和第二辐射体位于同一平面,但与第一辐射体所在平面法向正交。
图6是本申请实施例提供的内置产品第二种内部装配方式。如图6所示,在第二中内部装配方式中,反相器和第一辐射体和第二辐射体均位于同一平面。
图7是本申请实施例提供的第二种天线电路与常规高增益天线在相同布局下的辐射方向对比图。
如图7所示,本申请所提供的天线电路,利用空耦消除了Cable级联的问题,辐射阵子(辐射单元130)能够非常稳定的实现上下辐射体(第一辐射体131和第二辐射体133)同相的状态,从而实现高效率的全向高增益辐射。相比常规高增益天线的用法下定向辐射特征,全向性有明显改善,最小增益也基本上在0dBi。
对于整个天线电路而言,将常规采用Cable线连接的高增益天线,利用空耦方式进行替代,使得高增益全向天线变成一分为二的组合架构,实现PCB电路板的激励部分与主要辐射结构解耦的目的。因此,只要保持空耦的效果,实现能量从射频通道到天线辐射体的高效传输,激励单元与辐射单元可以独立优化。在天线电路200中,激励单元120可以采用双面PCB印制涉及,辐射单元130则可以采用具有一定厚度的钢片冲压而成。对于激励单元120除了可以采用上述天线电路200中的平衡型偶极子形式外,还可以由其他形式。
图8示出了本申请实施例提供的第三种天线电路的平面投影示意图。
如图8所示,天线电路800中,激励单元121采用了单面设计的非平衡型偶极子设计,一端直接PCB单板110的地层,另一端直接与PCB单板110上的射频带线连接,不需要背面的耦合带线激励。
图9是本申请实施例提供的第四种天线电路的平面投影示意图。
如图9所示,天线电路900中,激励单元122采用了折合振子的形式,折合振子天线的一个优点是所有导体连在一起,寄生振子的中点可以做为安装点,结构比中点断开馈电的偶极振子简单。
应理解,对于高增益辐射结构,当不考虑PCB尺寸或者成本时,也可以采用PCB印制工艺与激励天线(激励单元)一起做到PCB电路板上。
还应理解,在本申请中,印制小天线(激励单元)可以是双面或者单面印刷在PCB单板的边缘区域上,其作用主要是作为连接PCB单板上射频带线,并作为串联阵列辐射体的激励原,实现存在于PCB单板上的印制小天线与外部串联阵列辐射体(辐射单元)无接触下,高效率的传输能量,达到免接触的集成工作。
可选的,辐射单元可以是独立钢片冲压结构,也可以是直接印制在内置产品结构间内表面的电镀或者化镀结构,也可以是同PCB印制小天线一样的印制形式。
可选的,辐射单元可以是平面形式,也可以是三维结构,本申请对其不作限定。
在本申请实施例中,辐射单元是为了实现高增益的目的,因此,串联的辐射体积反相器数据取决于要实现的增益及内置产品内部空间。
图10是本申请实施例提供的天线电路与常规板印加铜丝直连结构的结构对比图。
如图10所示,常规板印加铜丝直连结构的高增益天线设计中,PCB单板210采用小尺寸设计,辐射单元230采用伸出PCB单板210的设计。
图11是本申请实施例提供的天线电路与常规尺寸板印加小钢片结构的结构对比图。
如图11所示,常规尺寸板印加小钢片结构的高增益天线设计中,PCB单板310采用大尺寸设计,辐射单元330采用伸出单板外部的小钢片结构设计。
由图10和图11可以看出,不管是采用常规板印加铜丝直连结构的高增益天线设计还是采用常规尺寸板印加小钢片结构的高增益天线设计,都会增加单板环境的复杂性,这两种直连方式需要额外的人工焊接来实现,同时超出单板的结构还会造成PCB单板在制造、运转以及保存过程中撞件风险,甚至发生人身伤害,是当前制造环节非常抵触的设计。相比而言,通过本申请的天线电路,不仅可以使PCB单板做到最小尺寸,且由于辐射单元与PCB单板分离,两者还能独立制造并同时安装,也有助于引入自动化生产,大幅提升效率。同时,本申请的天线电路利用空气耦合的方式来传递能量,减小了插损并回避了干扰风险,有助于工厂制造生产实现高质量高可靠的产品。
图12是本申请实施例提供的天线电路与常规板印加铜丝直连结构以及常规尺寸板印加小钢片结构在相同布局下的辐射方向对比图。
如图12所示,本申请所提供的天线电路,利用空耦消除了Cable级联的问题,辐射阵子(辐射单元130)能够非常稳定的实现上下辐射体(第一辐射体131和第二辐射体133)同相的状态,从而实现高效率的全向高增益辐射。与常规板印加铜丝直连结构以及常规尺寸板印加小钢片结构相比,在相同布局下,本申请所提供的天线电路也有非常好的收益价值。
图13是本申请实施例提供的辐射射频信号方法的一例流程示意图。该方法由上述天线电路执行。
S1310,生成第一射频信号。
具体的,可以由PCB单板生成第一射频信号,并通过射频带线将第一射频信号传输至激励单元。
可选的,PCB单板生成第一射频信号也可以包括PCB单板获取其他器件生成的第一射频信号。
S1320,对第一射频信号进行激励处理,得到第二射频信号。
具体的,可以由激励单元对第一射频信号进行激励处理,得到第二射频信号。可选的,激励单元可以是双面或者单面印刷在PCB单板的边缘区域上的形式。例如,平衡型偶极子形式、非平衡型偶极子形式或者折合振子形式。
S1330,对第二射频信号进行反相处理,得到第三射频信号。
具体的,通过空气耦合的方式将第二射频信号传输至辐射单元上的第一辐射体中,并通过辐射单元上的反相器对第二射频信号进行反相处理,得到第三射频信号。
S1340,向外辐射第二射频信号和第三射频信号。
具体的,通过辐射单元上的第一辐射体向外辐射第二射频信号,通过辐射单元上的第二辐射体向外辐射第三射频信号。其中,第二射频信号和第三射频信号同频率,能够在水平面叠加,增强空间辐射能量。
本申请所揭示的技术方案,将常规的高增益天线进行分离式设计,利用PCB单板上的天线充当激励单元,将并排设置的高增益天线作为辐射单元,利用空气耦合方式实现能量的传递从而消除了射频同轴连接,使得整体设计具有灵活的设计空间,可以灵活使用多种低成本工艺实现,有助于减小内置天线的尺寸,降低生产成本。
本申请实施例还提供了一种装置,包括处理器和接口。所述处理器可用于执行上述方法
实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图11中所示实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质
存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图11中所示实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个
单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本申请所提供的实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (8)
- 一种天线电路,其特征在于,包括印制电路板PCB单板、激励单元和辐射单元,其中:所述PCB单板,用于产生第一射频信号;所述激励单元设置在所述PCB单板上,与所述PCB上的射频带线相连接,所述激励单元用于对所述第一射频信号进行激励得到第二射频信号;所述辐射单元与所述激励单元位于同一平面上,所述辐射单元与所述激励单元之间的距离小于或等于第一阈值,所述辐射单元用于通过空气耦合的方式接收所述第二射频信号,对所述第二射频信号进行反相处理得到第三射频信号,向外辐射所述第二射频信号和所述第三射频信号。
- 根据权利要求1所述的天线电路,其特征在于,所述激励单元为平衡型偶极子结构,所述激励单元的馈电端口与所述PCB上的射频带线级联。
- 根据权利要求1所述的天线电路,其特征在于,所述激励单元为非平衡型偶极子结构,所述激励单元的第一端与所述PCB单板的射频带线相连接,所述激励单元的第二端与所述PCB单板的地层相连接。
- 根据权利要求1所述的天线电路,其特征在于,所述激励单元为折合振子结构。
- 根据权利要求1至4中任一项所述的天线电路,其特征在于,所述辐射单元包括第一辐射体、反相器和第二辐射体,其中:所述第一辐射体与所述激励单元在垂直方向上具有相当的电尺寸,所述第一辐射体用于通过空气耦合的方式从所述激励单元接收所述第二射频信号,并将所述传输至所述反相器,所述第一辐射体还用于向外辐射所述第二射频信号;所述反相器与所述第一辐射体串联,用于对所述第二射频信号进行反相处理,得到所述第三射频信号;所述第二辐射体与所述反相器串联,用于向外辐射所述第三射频信号。
- 根据权利要求5所述的天线电路,其特征在于,所述第一辐射体为折合U型回路结构或者半波偶极子结构。
- 根据权利要求1至6中任一项所述的天线电路,其特征在于,所述辐射单元为独立钢片冲压架构或者印制结构。
- 一种辐射射频信号的方法,其特征在于,所述方法由天线电路执行,所述天线电路包括印制电路板PCB单板、激励单元和辐射单元,其中所述辐射单元与所述激励单元位于同一平面上,所述辐射单元与所述激励单元之间的距离小于第一阈值,所述方法包括:生成第一射频信号;对所述第一射频信号进行激励处理,得到第二射频信号;对所述第二射频信号进行反相处理,得到第三射频信号;向外辐射所述第二射频信号和所述第三射频信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211375301.3A CN117996423A (zh) | 2022-11-04 | 2022-11-04 | 一种天线电路和辐射射频信号的方法 |
CN202211375301.3 | 2022-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093279A1 true WO2024093279A1 (zh) | 2024-05-10 |
Family
ID=90900239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/102774 WO2024093279A1 (zh) | 2022-11-04 | 2023-06-27 | 一种天线电路和辐射射频信号的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117996423A (zh) |
WO (1) | WO2024093279A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118433575A (zh) * | 2024-07-01 | 2024-08-02 | 广东电网有限责任公司广州供电局 | 一种多腔体射频赋能及温度信号转换器及测温系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010028316A (ko) * | 1999-09-20 | 2001-04-06 | 서평원 | 이동통신 단말기용 안테나 |
US6340952B1 (en) * | 2000-10-20 | 2002-01-22 | Hon Hai Precision Ind. Co., Ltd. | Induced loop antenna |
CN108232425A (zh) * | 2017-12-29 | 2018-06-29 | 广东欧珀移动通信有限公司 | 天线组件及电子装置 |
CN108599874A (zh) * | 2018-03-27 | 2018-09-28 | 维沃移动通信有限公司 | 一种功率检测电路、装置和移动终端 |
CN108959777A (zh) * | 2018-07-05 | 2018-12-07 | 中国舰船研究设计中心 | 一种阵列天线近场电磁兼容精确预报方法 |
CN114695332A (zh) * | 2020-12-30 | 2022-07-01 | 上海华为技术有限公司 | 一种射频放大器 |
-
2022
- 2022-11-04 CN CN202211375301.3A patent/CN117996423A/zh active Pending
-
2023
- 2023-06-27 WO PCT/CN2023/102774 patent/WO2024093279A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010028316A (ko) * | 1999-09-20 | 2001-04-06 | 서평원 | 이동통신 단말기용 안테나 |
US6340952B1 (en) * | 2000-10-20 | 2002-01-22 | Hon Hai Precision Ind. Co., Ltd. | Induced loop antenna |
CN108232425A (zh) * | 2017-12-29 | 2018-06-29 | 广东欧珀移动通信有限公司 | 天线组件及电子装置 |
CN108599874A (zh) * | 2018-03-27 | 2018-09-28 | 维沃移动通信有限公司 | 一种功率检测电路、装置和移动终端 |
CN108959777A (zh) * | 2018-07-05 | 2018-12-07 | 中国舰船研究设计中心 | 一种阵列天线近场电磁兼容精确预报方法 |
CN114695332A (zh) * | 2020-12-30 | 2022-07-01 | 上海华为技术有限公司 | 一种射频放大器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118433575A (zh) * | 2024-07-01 | 2024-08-02 | 广东电网有限责任公司广州供电局 | 一种多腔体射频赋能及温度信号转换器及测温系统 |
Also Published As
Publication number | Publication date |
---|---|
CN117996423A (zh) | 2024-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5738437B2 (ja) | 移動通信基地局用二重偏波アンテナ及びそれを使用する多重帯域アンテナシステム | |
US8902117B2 (en) | Antenna apparatus including dipole antenna and parasitic element arrays for forming pseudo-slot openings | |
WO2016112839A1 (en) | Combination antenna element, array and printed circuit board | |
JP2017163542A (ja) | 多周波アレイアンテナおよび通信システム | |
WO2024093279A1 (zh) | 一种天线电路和辐射射频信号的方法 | |
US11296430B2 (en) | Antenna module including plurality of radiators, and base station including the antenna module | |
JP2014039245A (ja) | 電磁バンドギャップ構造を有するmimoアンテナ | |
CN112005436B (zh) | 一种天线及移动终端 | |
US11652299B2 (en) | Wideband dipole array with differential feeding | |
TWI612725B (zh) | 具有天線的電子裝置 | |
CN108963437B (zh) | 一种微站天线的辐射单元及微站天线 | |
JP2006352865A (ja) | アンテナ | |
WO2023064051A1 (en) | Multi-directional dual-polarized antenna system | |
WO2020020054A1 (zh) | 终端设备 | |
US20230327341A1 (en) | Antenna and communication device | |
US20200235469A1 (en) | Antenna module including metal structure for reducing radio waves radiated toward back lobe and electronic device including the same | |
US20160344104A1 (en) | Antenna Structure | |
TWI521796B (zh) | 提升天線隔離度之射頻裝置及無線通訊裝置 | |
Ahmed et al. | Microstrip antenna design for femtocell coverage optimization | |
CN213636292U (zh) | 一种天线及电子设备 | |
CN212162071U (zh) | 辐射单元及天线 | |
EP4427299A1 (en) | An antenna device with two stacked radiating elements | |
Vettikalladi et al. | High gain and high efficient stacked antenna array with integrated horn for 60 GHz communication systems | |
TWM583136U (zh) | 毫米波陣列天線結構 | |
CN105826695A (zh) | 一种双极化天线阵子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884218 Country of ref document: EP Kind code of ref document: A1 |