WO2024092992A1 - Qkd光网络中时隙感知的共享路径保护方法及系统 - Google Patents

Qkd光网络中时隙感知的共享路径保护方法及系统 Download PDF

Info

Publication number
WO2024092992A1
WO2024092992A1 PCT/CN2022/142164 CN2022142164W WO2024092992A1 WO 2024092992 A1 WO2024092992 A1 WO 2024092992A1 CN 2022142164 W CN2022142164 W CN 2022142164W WO 2024092992 A1 WO2024092992 A1 WO 2024092992A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
protection
path
alternative
slot block
Prior art date
Application number
PCT/CN2022/142164
Other languages
English (en)
French (fr)
Inventor
陈伯文
何彬
沈纲祥
陆宇轩
马维克
王守翠
高明义
王晓玲
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2024092992A1 publication Critical patent/WO2024092992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present invention relates to the field of quantum key distribution optical network technology, and in particular to a time slot-aware shared path protection method and system in a QKD optical network.
  • QKD quantum key distribution
  • the technical problem to be solved by the present invention is to overcome the deficiencies in the prior art and provide a time slot-aware shared path protection method and system in a QKD optical network, which can effectively improve the success rate of services, ensure that more services can be encrypted using keys, thereby increasing key consumption and improving the utilization rate of network resources.
  • the present invention provides a time slot-aware shared path protection method in a QKD optical network, comprising:
  • a quantum key distribution network model including a bearer weight, wherein the bearer weight reflects the service receiving capability of the time slot block through the number of time slots in the time slot block, and obtain a service request;
  • a set of alternative protection paths is established according to the service request and the bearer weight, and a final protection path is selected from the set of alternative protection paths and resources are allocated according to the difference in the bearer weight before and after resource allocation, combined with protection time slots and idle time slots.
  • the quantum key distribution network model is G(N,L, ⁇ ,T),
  • N represents a set of quantum nodes
  • L represents a set of optical fiber links in the network, two switching nodes i and j are connected by an optical fiber link (i, j), (i, j) ⁇ L
  • represents a set of quantum channels
  • T represents the set of time slots on each quantum channel
  • the bearing weight g l, ⁇ ,k of the kth time slot block with wavelength ⁇ ⁇ 1 , ⁇ 2 ,..., ⁇
  • ⁇ on link l ⁇ l 1 ,l 2 ,...,l
  • is:
  • tl, ⁇ ,k represents the number of idle time slots in the kth time slot block with wavelength ⁇ on the optical fiber link l
  • represent the number of optical fiber links and quantum channels in the quantum key sharing network, respectively.
  • a set of alternative working paths is established according to the service request and the bearer weight, specifically:
  • w l, ⁇ is the cost function of the working path
  • k l, ⁇ represents the number of idle time slot blocks with wavelength ⁇ on link l
  • a shortest path algorithm is used according to the weight of the wavelength to obtain an alternative working path, and finally a set of alternative working paths is formed.
  • a final allocation method is selected according to the difference in the bearer weight before and after resource allocation, specifically:
  • a time slot block whose number of time slots is not less than the number of time slots required by the service is selected to form a candidate time slot block set Q t ;
  • the candidate path where the idle time slot block with the smallest difference in bearer weight before and after allocation on the entire working path is located is selected from all idle time slot blocks to establish the final working path and allocate time slot resources.
  • the calculation of the difference in the bearer weight before and after the allocation of each link l on the working path where the idle time slot block is located is specifically:
  • the calculation method of the bearer weight difference tl, ⁇ ,k before and after the allocation of each link l on the working path where the kth idle time slot block is located is:
  • the calculation of the difference in the bearer weight before and after the allocation on the entire working path of the idle time slot block is specifically:
  • the calculation method of the difference T k between the bearer weight before and after the kth idle time slot block is allocated on the entire working path is:
  • L ⁇ ,k represents the number of links included in the kth idle time slot block on the alternative path.
  • a set of alternative protection paths is established according to the service request and the bearer weight, specifically:
  • r l, ⁇ represents the cost function of the protection path
  • u l, ⁇ ,k and v l, ⁇ ,k represent the load weights of the kth idle time slot block and the kth protection time slot block respectively. and They represent the number of idle time slot blocks and protection time slot blocks with wavelength ⁇ on link l respectively;
  • a shortest path algorithm is used to obtain an alternative protection path to form an alternative protection path set.
  • the method of selecting a final protection path from the set of candidate protection paths and allocating resources according to the difference between the bearer weights before and after allocating resources and combining the protection time slot and the idle time slot is as follows:
  • an available time slot block set Q s and a protection time slot block set Q m are established, wherein the available time slot block set Q s includes protection time slots and idle time slots, and the protection time slot block set Q m includes only protection time slots;
  • the difference in the bearer weight before and after the allocation on the entire protection path of the available time slot block is calculated, and the alternative protection path where the available time slot block with the smallest difference in the bearer weight before and after the allocation on the entire protection path of all available time slot blocks is located is selected as the final protection path and time slot resources are allocated.
  • the present invention also provides a time slot-aware shared path protection method system in a QKD optical network, comprising a network initialization module, a service request generation module, an alternative path establishment module, a working path selection and resource allocation module, and a protection path selection and resource allocation module.
  • the network initialization module establishes and initializes a quantum key distribution network model including a bearer weight, wherein the bearer weight reflects the receiving capability of the time slot block for the service;
  • the service request generation module generates a service request according to the source node and the destination node, configures the number of connection requests, the source nodes and the destination nodes of different connection requests, the number of keys required, and the number of time slots required;
  • the alternative path establishment module establishes an alternative working path set and an alternative protection path set according to the service request and the bearer weight,
  • the working path selection and resource allocation module selects a final working path from the set of candidate working paths and allocates resources according to the difference in the bearer weight before and after allocating resources;
  • the protection path selection and resource allocation module selects a final protection path from the candidate protection path set and allocates resources according to the difference between the bearer weights before and after resource allocation, combined with protection time slots and idle time slots.
  • it also includes a time slot continuity and consistency module and a quantum key update module.
  • the time slot continuity and consistency module is used to calculate the idle time slots and the protection time slots, and the continuity and consistency of the time slots are considered during the calculation;
  • the quantum key update module changes the quantum key information used for encryption between two users in real time, and updates the key of the service in real time according to the quantum key update time generated by the service request.
  • the present invention reflects the receiving capacity of the time slot block for the service through the bearing weight, and on this basis selects the working path and the protection path allocation resources through the difference of the bearing weights of each link before and after the time slot block is pre-allocated. While considering the survivability of the quantum key distribution network, the success rate of the service can be effectively improved, ensuring that more services can be encrypted with keys, thereby increasing the consumption of keys and improving the utilization rate of network resources.
  • FIG1 is a flow chart of the method of the present invention
  • FIG. 2 is an example diagram of a network topology structure in the present invention
  • FIG3 is an example diagram of a shared path protection method in the present invention.
  • FIG4 is a specific process diagram of the method of the present invention.
  • FIG5 is a schematic diagram of the structure of the system of the present invention.
  • FIG6 is a schematic diagram of a quantum key light-sharing network topology structure established and initialized in an embodiment of the present invention
  • FIG7 is a schematic diagram of the weights of the wave plane after updating the working weights of the ⁇ 1 wavelength on the link in the quantum key light-sharing network of FIG6 ,
  • FIG8 is a schematic diagram of the weights of the wave plane after updating the working weights of the ⁇ 2 wavelength on the link in the quantum key light-sharing network of FIG6 ,
  • FIG. 9 is a schematic diagram of pre-allocating idle time slot blocks 1 and 2 in the quantum key light distribution network of FIG. 6 .
  • FIG. 10 is a schematic diagram of pre-allocating idle time slot block 3 in the quantum key light distribution network of FIG. 6 .
  • FIG11 is a schematic diagram of the weights of the wave plane after updating the protection weights of the ⁇ 1 wavelength on the link in the quantum key light-sharing network of FIG6 ,
  • FIG12 is a schematic diagram of the weights of the wave plane after updating the protection weights of the ⁇ 2 wavelength on the link in the quantum key light-sharing network of FIG6 ,
  • FIG13 is a schematic diagram of pre-allocating protection time slot block 1 in the quantum key distribution network of FIG6,
  • FIG. 14 is a schematic diagram of pre-allocating protection time slot block 2 in the quantum key distribution network of FIG. 6 .
  • the present invention discloses a time slot-aware shared path protection method in a QKD optical network, comprising the following steps:
  • Step 1 Establish and initialize a quantum key distribution network model including a bearer weight, where the bearer weight reflects the receiving capacity of a time slot block for services.
  • the quantum key distribution network model is G(N,L, ⁇ ,T), where N represents a set of quantum nodes, L represents a set of optical fiber links of the network, two switching nodes i and j are connected by an optical fiber link (i,j), (i,j) ⁇ L; ⁇ represents a set of quantum channels, and T represents a set of time slots on each quantum channel;
  • the bearing weight g l, ⁇ ,k of the kth time slot block with wavelength ⁇ ⁇ 1 , ⁇ 2 ,..., ⁇
  • ⁇ on link l ⁇ l 1 , l 2 ,...,l
  • is defined as:
  • t l, ⁇ ,k represents the number of idle time slots in the kth time slot block with wavelength ⁇ on the optical fiber link l
  • respectively represent the number of quantum nodes, optical fiber links, quantum channels and time slots in the quantum key distribution network.
  • the bearer weight reflects its carrying capacity through the number of time slots in the time slot block. The more time slots in the time slot block, the stronger its carrying capacity is, and the more likely it is to be selected for resource allocation. Updating the weight of the wavelength in the link based on the nature of the bearer weight can effectively reflect its receiving capacity for the current service.
  • each optical fiber link contains four quantum channels, corresponding to wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 , respectively. Due to the use of OTDM, each quantum channel is divided into five time slots, including t 1 , t 2 , t 3 , t 4 , and t 5 .
  • time slot consistency that is, in each link of the selected transmission path, the same time slot resources should be allocated to the service request
  • continuity the time slots allocated for each service request must be continuous).
  • the shared path protection method is adopted for the protection method. As shown in Figure 3, two services successfully establish paths, their working paths are AB and EF, and their protection paths are ACDB and ECDF. As can be seen from Figure 3, due to the adoption of the shared path protection method, time slots t2 and t3 on the CD link are shared by two services at the same time, reducing the consumption of time slot resources.
  • Step 2 Generate a service request.
  • the service request is represented by R(s, d, t, m, n), which indicates a service request from source node s to destination node d, arriving at time t.
  • the number of quantum keys used to encrypt the service request is m, and the number of time slots required is n.
  • Step 3 Establish a set of alternative working paths according to the service request and the bearer weight.
  • Step 3-1 Use formula (2) to update the working weights of wavelengths on all optical fiber links:
  • w l, ⁇ is the cost function of the working path
  • k l, ⁇ represents the number of idle time slot blocks with wavelength ⁇ on link l
  • Step 3-2 For each wave plane, use the shortest path algorithm according to the weight of the wavelength to obtain an alternative working path, and finally form a set of alternative working paths.
  • Step 3-3 If the set of alternative working paths is empty, the service request is blocked; if the set of alternative working paths is not empty, the set of alternative working paths is established successfully, and step 4 is executed.
  • Step 4 Work path resource allocation: According to the difference between the bearer weights before and after resource allocation, an alternative work path is selected from the set of alternative work paths as the final work path and resources are allocated.
  • Step 4-1 For each candidate working path, select a time slot block with a number of time slots not less than the number of time slots required by the service to form a candidate time slot block set Q t . Each candidate time slot block in the set Q t will be pre-allocated. If the set Q t is empty, the service request is blocked, otherwise, execute step 4-2.
  • Step 4-2 For all idle time slot blocks in the candidate time slot block set Qt , use formula (3) to calculate the bearer weight difference tl , ⁇ ,k before and after the allocation of each link l on the working path where the kth idle time slot block is located:
  • L ⁇ ,k represents the number of links included in the kth idle time slot block on the alternative path.
  • Step 4-3 After all the candidate time slot blocks are calculated, select the candidate path where the time slot block with the smallest difference in the bearer weight before and after allocation on the entire working path among all the idle time slot blocks is located to establish the final working path and allocate time slot resources.
  • the bearer weight difference is the sum of the differences in the bearer weights of each link before and after the pre-allocation of the time slot block, which can effectively reflect the changes in the bearer weights before and after the allocation. Since the allocation method with the smallest bearer weight difference is selected, it reserves more resources for subsequent services, so this method can effectively improve the success rate of service establishment. Therefore, the smaller the bearer weight difference, the smaller the reduction in bearer capacity, which is more conducive to the establishment of subsequent services.
  • Step 5 Establish a set of alternative protection paths according to the service request and the bearer weight.
  • Step 5-1 Use formula (5) to update the protection weights of wavelengths on all links:
  • r l, ⁇ represents the cost function of the protection path
  • u l, ⁇ ,k and v l, ⁇ ,k represent the load weights of the kth idle time slot block and the kth protection time slot block respectively (calculated by formula (1)), and They represent the number of idle time slot blocks and protection time slot blocks with wavelength ⁇ on link l respectively.
  • Step 5-2 For each wave plane, use the shortest path algorithm to obtain an alternative protection path to form a set of alternative protection paths.
  • Step 5-3 If the set of alternative protection paths is empty, the service request is blocked, otherwise, execute step 6.
  • Step 6 Allocate protection path resources: According to the difference between the bearer weights before and after resource allocation, the final protection path is selected from the candidate protection path set in combination with the protection time slot and the idle time slot, and resources are allocated.
  • Step 6-1 For each candidate protection path, since there are two types of time slots, namely, protection time slots and idle time slots, when establishing a candidate time slot block set on the protection path, two candidate time slot block sets need to be established.
  • An available time slot block set Q s and a protection time slot block set Q m are established, wherein the available time slot block set Q s includes protection time slots and idle time slots, and the protection time slot block set Q m includes only protection time slots;
  • Step 6-2 Determine whether the set Q m is empty. If the set Q m is not empty, execute step 6-3; if the set Q m is empty, execute step 6-4.
  • shared protection time slots will be given priority when allocating time slot resources of protection paths, which can effectively improve the success rate of services, resource utilization, and the amount of keys consumed.
  • Step 6-3 For all protection time slot blocks in Q m , use formula (4) and formula (5) to calculate the difference in the bearer weight before and after allocation on the entire protection path, select the candidate protection path where the protection time slot block with the smallest difference in the bearer weight before and after allocation on the entire protection path in Q m is located as the final protection path and allocate time slot resources;
  • Step 6-4 If the set Q m is empty, then for all available time slot blocks in Q s , use formula (4) and formula (5) to calculate the difference in the bearing weight before and after allocation on the entire protection path, select the candidate protection path where the available time slot block with the smallest difference in the bearing weight before and after allocation on the entire protection path in Q s is located as the final protection path and allocate time slot resources. If the set Q s is empty, the service request is blocked. In the process of selecting the protection path and allocating resources, the allocation method of giving priority to the protection time slot block is adopted, which is conducive to reducing the generation of protection time slot fragments and improving the sharing degree of protection time slots.
  • the weight of the wavelength on the link is updated by the time slot perception method. Considering the different resources used by the working path and the protection path, two different cost functions are established when updating the weight of the wavelength on the link. On this basis, the change of the bearer weight before and after resource allocation is calculated through pre-allocation processing, so as to select more reasonable paths and time slot resources.
  • the present invention further discloses a time slot-aware shared path protection system in a QKD optical network, comprising:
  • Quantum key distribution network initialization module establish and initialize a quantum key distribution network model including a bearer weight, which reflects the receiving capacity of a time slot block for services.
  • a quantum key distribution network model including a bearer weight, which reflects the receiving capacity of a time slot block for services.
  • G(N,L, ⁇ ,T) In the physical optical network G(N,L, ⁇ ,T), read the network topology, link status in the optical network, number of network quantum nodes, number of optical fiber links, number of quantum channels in each optical fiber link, and number of time slots in each quantum channel.
  • Service request generation module generates service requests according to the uniform distribution of source nodes and destination nodes, and configures information such as the number of connection requests, source nodes and destination nodes of different connection requests, the number of required keys, and the number of required time slots.
  • Alternative path establishment module Update the weight of the wavelength on the link according to the cost function. For each wave plane, establish an alternative working path set according to the shortest path algorithm and the bearer weight. For each wave plane, establish an alternative protection path set according to the shortest path algorithm and the bearer weight.
  • Working path selection and resource allocation module pre-allocate all idle time slot blocks on each alternative working path in the alternative working path set, calculate the difference in the carrying weight before and after resource allocation, select the alternative path where the time slot block with the smallest difference is located as the working path, and allocate the corresponding time slot resources.
  • Protection path selection and resource allocation module According to the difference in the bearing weight before and after resource allocation, the final protection path is selected from the set of alternative protection paths in combination with the protection time slot and the idle time slot, and resources are allocated. Considering that the time slot resources used to establish the protection path are divided into two parts, namely the protection time slot and the idle time slot, the process is divided into two steps. First, the protection time slot block is selected for pre-allocation processing, and the difference in the bearing weight before and after its allocation is calculated. The alternative path where the time slot block with the smallest difference in the protection time slot block is located is selected as the protection path, and the corresponding time slot resources are allocated.
  • the protection time slot block does not meet the conditions, all available time slot blocks (including protection time slots and idle time slots) will be used for pre-allocation. Similarly, the alternative path where the time slot block with the smallest difference is located is selected as the protection path, and the corresponding time slot resources are allocated. If the available time slot block also does not meet the conditions, the service is blocked.
  • Time slot continuity and consistency module used to calculate idle time slots, protection time slots, and available time slots, taking into account the continuity and consistency of time slots during calculation.
  • Quantum key update module Data encryption needs to be flexible and changeable, and the quantum key information used for encryption between two users needs to be constantly changed, making it difficult for eavesdroppers to crack.
  • the key of the service is updated regularly according to the quantum key update time generated by the service request.
  • the present invention reflects the receiving capacity of the time slot block for the service by defining the bearing weight, updates the weight by constructing different cost functions for the working path and the protection path, and finds the alternative path through the shortest path algorithm according to the updated weight.
  • the alternative path at this time is the path that is most likely to successfully establish the service.
  • the working path and the protection path are selected by the difference between the bearing weights of each link before and after the pre-allocation of the time slot block.
  • the protection time slot is given priority to allocate the protection path resources, which is conducive to reducing the generation of protection time slot fragments, improving the sharing rate of time slots, and realizing the reasonable allocation of resources.
  • the present invention can effectively improve the success rate of the service while considering the survivability of the quantum key distribution network, ensuring that more services can be encrypted using keys to increase the consumption of keys, and also ensuring that they can be protected when a failure occurs, thereby improving the utilization rate of network resources.
  • a quantum key distribution network as shown in FIG. 6 is established and initialized, and experiments are conducted on updating weights, selecting working paths and protection paths, and allocating time slot resources to increase the success rate of service request establishment while considering survivability, specifically including:
  • Step 1 Network initialization.
  • the quantum key distribution optical network is a network topology diagram consisting of 4 nodes and 5 links.
  • Each optical fiber link contains 2 quantum channels corresponding to wavelengths ⁇ 1 and ⁇ 2 , and each quantum channel is divided into 5 time slots through time division multiplexing technology. At the same time, the state of the time slot on each link has been given.
  • Step 2 Generate a service request.
  • Establish a service request CR 1 (C,B,2,1,3) It means that the service CR 1 (C,B,2,1,3) arrives at time 2, and it is necessary to establish a working path and a protection path from node C to node B, each of which consumes 1 time slot.
  • the number of keys of the node consumed by the transmission is 3. In this embodiment, only the case of sufficient keys is considered, that is, only the number of keys consumed in the end is considered, regardless of whether the number of keys of the node is greater than the required number of keys.
  • Step 3 Update the working weight of each wavelength on the link. Update the weight of each wavelength on the link according to formula (2).
  • Figures 7 and 8 show the updated weights of the ⁇ 1 and ⁇ 2 wave planes respectively.
  • Step 4 Working path selection and resource allocation:
  • the weight of each wave plane can be known from Figures 7 and 8, and thus, the candidate path can be obtained through the shortest path algorithm.
  • the candidate path obtained is CB
  • the candidate path obtained is also CB.
  • the candidate path record the idle spectrum blocks that meet the time slot continuity and consistency conditions.
  • the two candidate paths contain a total of 3 available idle time slot blocks.
  • Pre-allocation processing is performed for each idle time slot block, and its bearing weight difference is calculated. By calculation, it can be obtained that the bearing weight difference of idle time slot blocks 1, 2, and 3 is 1, 2.36773, and 1.82843, respectively.
  • the candidate path where the idle time slot block 1 is located will be selected for resource allocation, that is, the working path finally selected to be established is CB, and the time slot selected to be used is the first time slot with a wavelength of ⁇ 1. It can be seen from the allocation process that the present invention aims to select the time slot block with the smallest bearing weight difference. The smaller the difference is, the closer the idle time slot block size is to the required number of time slots, which results in less time slot fragmentation and more available resources for subsequent services.
  • Step 5 Update the protection weights of each wavelength on the link. Considering the disjointness of the working link and the protection link, when establishing the protection path, the link used by the working path needs to be truncated. Then the weights are updated using formula (5). The results are shown in Figures 11 and 12.
  • Step 6 Protection path selection and resource allocation: As shown in Figures 11 and 12, the weight of each wave plane can be known, and thus, the candidate path can be obtained through the shortest path algorithm. For the ⁇ 1 wave plane, the candidate path obtained is CDB, and for the ⁇ 2 wave plane, the candidate path obtained is also CDB. For each candidate path, record the idle spectrum blocks that meet the time slot continuity and consistency conditions. As shown in Figures 13 and 14, the two candidate paths contain a total of 2 protection time slot blocks and 2 idle time slot blocks. The protection time slot block is considered first. If the protection time slot block does not meet the requirements, the protection time slot block and the idle time slot block will be considered at the same time. Pre-allocation processing is performed for each protection time slot block, and its bearing weight difference is calculated by the formula.
  • the bearing weight difference of protection time slot blocks 1 and 2 is 3.65686 and 5.6077 respectively. Therefore, the candidate path where the protection time slot block 1 is located will be selected for resource allocation. Finally, the established working path is selected as CDB, and the time slot selected for use is the second time slot with a wavelength of ⁇ 1 . Thus, when both the working path and the protection path are successfully established, and the network time slot resources are allocated on both the working path and the protection path, the entire service request is successfully established. (The numbers under the protection time slot block in Figures 13 and 14 represent how many services are sharing it at the same time).
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及量子密钥分发光网络技术领域,公开一种QKD光网络中时隙感知的共享路径保护方法及系统,方法包括建立并初始化包含承载权重的量子密钥分发光网络模型,根据承载权重建立备选的工作路径集合和备选的保护路径集合,同时考虑保护时隙和空闲时隙,根据分配资源前后承载权重的差值从备选集合中选择最终的工作路径和保护路径并分配资源;系统包括网络初始化模块、业务请求产生模块、备选路径建立模块、工作路径选择和资源分配模块、保护路径选择和资源分配模块。本发明可以有效提高业务的成功率、密钥的消耗量、网络资源的利用率。

Description

QKD光网络中时隙感知的共享路径保护方法及系统 技术领域
本发明涉及量子密钥分发光网络技术领域,尤其是指一种QKD光网络中时隙感知的共享路径保护方法及系统。
背景技术
近年来,随着越来越多的数据在光网络中传输,光网络中数据的安全问题也受到了更加广泛的关注。传统密钥系统的安全性依赖于数学问题的复杂性,然而随着量子计算机的发展,这种复杂性可以被量子计算机通过其强大的计算能力所破解。对于这个问题人们提出了一种很有潜力的解决方案:量子密钥分发(QKD),它可以根据以下物理定理提供理论上无条件的安全性:量子不可克隆定理以及海森堡不确定性定理。
考虑到互联网流量主要是通过光纤传输的,将QKD与现有光学系统集成是合理的部署方案。在量子信号和传统的数据信号共纤传输的系统中,对于一根光纤,其上的可用波长被分为三种信道使用,包括量子信道(QCh)、测量信道(MCh)和传统数据信道(TDCh)。这三种信道同时被分配到C波段以提高密钥生成的速率。此外量子信道与其他经典通道之间存在200GHz的保护带,以避免量子信号和经典信号之间的相互作用。由于建立量子信道的成本高昂,所以只能建立有限的量子信道。考虑到此因素,光时分复用(OTDM)技术被运用到量子密钥分发光网络中,以此来为更多的业务提供保护。因此,需要有效地分配时隙资源以确保更多服务受到保护,防止因故障而造成业务无法传输、无法保证网络的安全性。
此外,随着量子密钥分发光网络中节点及链路数量的增加,整个网络的故障率也在不断增加。因此,考虑基于量子密钥分发光网络中的生存性是必要的。由于时隙资源的稀缺性,使用能使多个业务共享相同资源的共享路径保护方法,是比专用路径保护方法更加合理的方案。
但是,现有技术中在解决量子密钥分发光网络中的资源分配问题时,大都只考虑了有限的时隙资源,不能高效合理地分配时隙资源,无法提高网络资源利用率,使得更多的业务能通过量子密钥得到保护。同时,在解决量子密钥分发光网络中的生存性问题时,只考虑QKD光网络的生存性,以及选择采用何种保护方案来保证故障发生时业务能得到有效的保护,无法同时提高业务的成功率。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中的不足,提供一种QKD光网络中时隙感知的共享路径保护方法及系统,可以有效提高业务的成功率,保证更多的业务能使用密钥进行加密从而提高密钥的消耗量,提高网络资源的利用率。
为解决上述技术问题,本发明提供了一种QKD光网络中时隙感知的共享路径保护方法,包括:
建立并初始化包含承载权重的量子密钥分发光网络模型,所述承载权重通过时隙块中时隙的数目来反映时隙块对业务的接收能力,获取业务请求;
根据业务请求和所述承载权重建立备选的工作路径集合,根据分配资源前后所述承载权重的差值,从所述备选的工作路径集合中选择最终的工作路径并分配资源;
根据业务请求和所述承载权重建立备选的保护路径集合,根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源。
在本发明的一个实施例中,所述量子密钥分发光网络模型为G(N,L,Δ,T),
其中,N表示一组量子节点集合,L表示网络的一组光纤链路集合,两个交换节点i和j构成一条光纤链路(i,j)所连接,(i,j)∈L;Δ表示一系列量子信道的集合,T表示每条量子信道上时隙的集合;
链路l={l 1,l 2,...,l |Δ|}上波长为λ={λ 12,...,λ |L|}的第k个时隙块的承载权重g l,λ,k为:
Figure PCTCN2022142164-appb-000001
其中,t l,λ,k代表的是光纤链路l上波长为λ的第k个时隙块的空闲时隙的个数,|L|、|Δ|分别表示量子密钥分发光网络中光纤链路、量子信道的数量。
在本发明的一个实施例中,根据业务请求和所述承载权重建立备选的工作路径集合,具体为:
更新所有光纤链路上波长的工作权值:
Figure PCTCN2022142164-appb-000002
其中,w l,λ是工作路径的代价函数,k l,λ代表链路l上波长为λ的空闲时隙块的数量;
对于每一个波平面,根据波长的权值使用最短路径算法获得一条备选的工作路径,最终形成一个备选工作路径集合。
在本发明的一个实施例中,所述对备选的工作路径集合中的每一条备选工作路径,根据分配资源前后所述承载权重的差值选择最终的分配方式,具体为:
对于每一条备选工作路径,选取时隙数不少于业务所需时隙数的时隙块形成备选时隙块集合Q t
对于备选时隙块集合Q t中的所有空闲时隙块,计算在空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值,计算在空闲时隙块整条工作路径上分配前后的承载权重的差值;
选择所有空闲时隙块中整条工作路径上分配前后的承载权重的差值最小的空闲时隙块所在的备选路径建立最终的工作路径并分配时隙资源。
在本发明的一个实施例中,所述计算在空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值,具体为:
第k空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值t l,λ,k的计算方法为:
Figure PCTCN2022142164-appb-000003
其中,
Figure PCTCN2022142164-appb-000004
分别表示在光纤链路l上波长为λ的第k个空闲时隙块分配资源前和分配资源后的承载权重。
在本发明的一个实施例中,所述计算在空闲时隙块整条工作路径上分配 前后的承载权重的差值,具体为:
第k个空闲时隙块整条工作路径上分配前后的承载权重的差值T k的计算方法为:
Figure PCTCN2022142164-appb-000005
其中,L λ,k代表第k个空闲时隙块在备选路径上所包含的链路数。
在本发明的一个实施例中,根据业务请求和所述承载权重建立备选的保护路径集合,具体为:
更新所有链路上波长的保护权值:
Figure PCTCN2022142164-appb-000006
其中,r l,λ代表保护路径的代价函数,u l,λ,k和v l,λ,k分别代表第k个空闲时隙块以及第k个保护时隙块的承载权重,
Figure PCTCN2022142164-appb-000007
Figure PCTCN2022142164-appb-000008
分别代表链路l上波长为λ的空闲时隙块以及保护时隙块的数目;
对于每一个波平面,使用最短路径算法获得一条备选的保护路径形成备选的保护路径集合。
在本发明的一个实施例中,所述根据分配资源前后所述承载权重的差值, 结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源,具体为:
对于每一条备选保护路径,建立可用时隙块集合Q s和保护时隙块集合Q m,所述可用时隙块集合Q s包括保护时隙和空闲时隙,所述保护时隙块集合Q m只包括保护时隙;
判断集合Q m是否为空,若集合Q m不为空,则对于Q m中的所有保护时隙块,计算在保护时隙块整条保护路径上分配前后的承载权重的差值,选取所有保护时隙块中整条保护路径上分配前后的承载权重的差值最小的保护时隙块所在的备选保护路径作为最终的保护路径并分配时隙资源;
若集合Q m为空,则对于Q s中的所有可用时隙块,计算在可用时隙块整条保护路径上分配前后的承载权重的差值,选取所有可用时隙块整条保护路径上分配前后的承载权重的差值最小的可用时隙块所在的备选保护路径作为最终的保护路径并分配时隙资源。
本发明还提供了一种QKD光网络中时隙感知的共享路径保护方法系统,包括网络初始化模块、业务请求产生模块、备选路径建立模块、工作路径选择和资源分配模块、保护路径选择和资源分配模块,
所述网络初始化模块建立并初始化包含承载权重的量子密钥分发光网络模型,所述承载权重反映时隙块对业务的接收能力;
所述业务请求产生模块根据源节点与目的节点产生业务请求,配置连接请求数目、不同连接请求的源节点与目的节点、所需密钥数目、所需时隙数目;
所述备选路径建立模块根据业务请求和所述承载权重建立备选的工作路径集合和备选的保护路径集合,
所述工作路径选择和资源分配模块根据分配资源前后所述承载权重的差值,从所述备选的工作路径集合中选择最终的工作路径并分配资源;
所述保护路径选择和资源分配模块根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源。
在本发明的一个实施例中,还包括时隙连续性和一致性模块、量子密钥更新模块,
所述时隙连续性和一致性模块用于计算空闲时隙和保护时隙,计算时考虑时隙的连续性和一致性;
所述量子密钥更新模块实时更改两个用户之间用以加密的量子密钥信息,根据业务请求生成的量子密钥更新时间,实时更新业务的密钥。
本发明的上述技术方案相比现有技术具有以下优点:
本发明通过承载权重反应时隙块对业务的接收能力,并在此基础上通过时隙块预分配前后各链路承载权重的差值来选择工作路径和保护路径分配资源,在考虑量子密钥分发光网络的生存性的同时可以有效提高业务的成功率,保证更多的业务能使用密钥进行加密从而提高密钥的消耗量,提高了网络资源的利用率。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:
图1是本发明中方法的流程图,
图2是本发明中的网络拓扑结构的示例图,
图3是本发明中的共享路径保护方法的示例图,
图4是本发明中方法的具体过程图,
图5是本发明中系统的结构示意图,
图6是本发明实施例中建立和初始化的量子密钥分发光网络拓扑结构示意图,
图7是在图6的量子密钥分发光网络中更新链路上λ 1波长的工作权值后的波平面的权值示意图,
图8是在图6的量子密钥分发光网络中更新链路上λ 2波长的工作权值后的波平面的权值示意图,
图9是在图6的量子密钥分发光网络中对空闲时隙块1和2进行预分配的示意图,
图10是在图6的量子密钥分发光网络中对空闲时隙块3进行预分配的示意图,
图11是在图6的量子密钥分发光网络中更新链路上λ 1波长的保护权值后的波平面的权值示意图,
图12是在图6的量子密钥分发光网络中更新链路上λ 2波长的保护权值后的波平面的权值示意图,
图13是在图6的量子密钥分发光网络中对保护时隙块1进行预分配的示意图,
图14是在图6的量子密钥分发光网络中对保护时隙块2进行预分配的示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明公开了一种QKD光网络中时隙感知的共享路径保护方法,包括以下步骤:
步骤1:建立并初始化包含承载权重的量子密钥分发光网络模型,所述承载权重反映时隙块对业务的接收能力。
所述量子密钥分发光网络模型为G(N,L,Δ,T),其中,N表示一组量子节点集合,L表示网络的一组光纤链路集合,两个交换节点i和j构成一条光纤链路(i,j)所连接,(i,j)∈L;Δ表示一系列量子信道的集合,T表示每条量子信道上时隙的集合;
为了反映时隙块对业务的接收能力,定义链路l={l 1,l 2,...,l |Δ|}上波长为λ={λ 1,λ 2,...,λ |L|}的第k个时隙块的承载权重g l,λ,k为:
Figure PCTCN2022142164-appb-000009
其中,t l,λ,k代表的是光纤链路l上波长为λ的第k个时隙块的空闲时隙的个数,|N|、|L|、|Δ|、|T|分别表示量子密钥分发光网络中量子节点、光纤链路、量子信道以及时隙的数量。承载权重通过时隙块中时隙的数目来反映其的承载能力,时隙块中时隙的数目越多,说明其承载能力就越强,越有可能被选中进行资源分配。依托于承载权重的性质来更新链路中波长的权值就能有效地反映其对当前业务的接收能力。
如图2所示,其有3个量子节点,A、B、C,以及2条光纤链路A-B、B-C。在每一条光纤链路上包含了4条量子信道,分别对应着波长λ 1、λ 2、λ 3、λ 4,而在每一条量子信道由于采用了OTDM,其又被分割成了5个时隙,包括t 1、t 2、t 3、t 4、t 5。同时如图所示,在进行时隙分配时需要考虑时隙一致性(即在所选择的传输路径的每一条链路,都应为业务请求分配相同的时隙资源)和连续性(为每个业务请求分配的时隙必须是连续的)。
由于时隙数量有限,对于保护方法,采用共享路径保护方法。如图3所示,有两个业务成功建立路径,其工作路径分别是A-B以及E-F,其保护路径分别是A-C-D-B和E-C-D-F。从图3中可见,由于采用了共享路径保护方法,C-D链路上的时隙t 2和t 3被两个业务同时共享,减少了时隙资源的消耗。
步骤2:生成业务请求;业务请求用R(s,d,t,m,n)表示,它表示从源节点s到目的节点d的业务请求,在t时刻到达,业务请求用以加密的量子密钥个数是m,所需的时隙数为n。
步骤3:根据业务请求和所述承载权重建立备选的工作路径集合。
步骤3-1:使用公式(2)更新所有光纤链路上波长的工作权值:
Figure PCTCN2022142164-appb-000010
其中,w l,λ是工作路径的代价函数,k l,λ代表链路l上波长为λ的空闲时隙块的数量;
步骤3-2:对于每一个波平面,根据波长的权值使用最短路径算法获得一条备选的工作路径,最终形成一个备选工作路径集合。
步骤3-3:若备选工作路径集合为空,则业务请求阻塞;若备选工作路径集合不为空,则建立备选的工作路径集合成功,执行步骤4。
步骤4:工作路径资源分配。根据分配资源前后所述承载权重的差值,从所述备选的工作路径集合中选择一条备选工作路径作为最终的工作路径并分配资源。
步骤4-1:对于每一条备选工作路径,选取时隙数不少于业务所需时隙数的时隙块形成备选时隙块集合Q t,集合Q t中的每一个备选时隙块会进行预分配处理;如果集合Q t为空,则业务请求阻塞,否者执行步骤4-2。
步骤4-2:对于备选时隙块集合Q t中所有空闲时隙块,采用公式(3)计算在第k个空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值t l,λ,k
Figure PCTCN2022142164-appb-000011
其中,
Figure PCTCN2022142164-appb-000012
分别表示在光纤链路l上波长为λ的第k个空闲时隙块分配前、后的承载权重;
计算在第k个空闲时隙块整条工作路径上分配前后的承载权重的差值T k为:
Figure PCTCN2022142164-appb-000013
其中,L λ,k代表第k个空闲时隙块在备选路径上所包含的链路数。
步骤4-3:在所有备选时隙块都计算完成后,选择所有空闲时隙块中整条工作路径上分配前后的承载权重的差值最小的时隙块所在的备选路径建立最终的工作路径并分配时隙资源。承载权重差值,即时隙块预分配前后各链路承载权重差值的总和,其能有效地反映分配前后承载权重的变化。由于选择了承载权重差值最小的分配方式,其为后续业务预留更多的资源,所以此方法能有效地提高业务建立的成功率。因此承载权重差值越少,说明承载能力 减少就越小,越有利于后续业务的建立。
步骤5:根据业务请求和所述承载权重建立备选的保护路径集合。
步骤5-1:使用公式(5)更新所有链路上波长的保护权值:
Figure PCTCN2022142164-appb-000014
其中,r l,λ代表保护路径的代价函数,u l,λ,k和v l,λ,k分别代表第k个空闲时隙块以及第k个保护时隙块的承载权重(由公式(1)计算得),
Figure PCTCN2022142164-appb-000015
Figure PCTCN2022142164-appb-000016
分别代表链路l上波长为λ的空闲时隙块以及保护时隙块的数目。
步骤5-2:对于每一个波平面,使用最短路径算法获得一条备选的保护路径形成备选的保护路径集合。
步骤5-3:若备选的保护路径集合为空,则业务请求阻塞,否则执行步骤6。
步骤6:保护路径资源分配。根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源。
步骤6-1:对于每一条备选保护路径,由于存在保护时隙、空闲时隙两种时隙,因此在保护路径上建立备选时隙块集合时,需要建立两个备选时隙块集合。建立可用时隙块集合Q s和保护时隙块集合Q m,所述可用时隙块集合Q s包括保护时隙和空闲时隙,所述保护时隙块集合Q m只包括保护时隙;
步骤6-2:判断集合Q m是否为空,若集合Q m不为空则执行步骤6-3,若集合Q m为空则执行步骤6-4。
为了提高保护资源的共享度、减少保护时隙碎片的产生,在分配保护路径的时隙资源时会优先考虑共享的保护时隙,可以有效地提高业务的成功率,资源的利用率,消耗的密钥量。
步骤6-3:对于Q m中的所有保护时隙块,使用公式(4)和公式(5)计算整条保护路径上分配前后的承载权重的差值,选取Q m中整条保护路径上分配前后的承载权重的差值最小的保护时隙块所在的备选保护路径作为最终的保护路径并分配时隙资源;
步骤6-4:若集合Q m为空,则对于Q s中的所有可用时隙块,使用公式(4)和公式(5)计算整条保护路径上分配前后的承载权重的差值,选取Q s中整条保护路径上分配前后的承载权重的差值最小的可用时隙块所在的备选保护路径作为最终的保护路径并分配时隙资源。如果集合Q s为空,则业务请求阻塞。在选择保护路径和资源分配过程,采用了优先选择保护时隙块的分配方式,这样有利于减少保护时隙碎片的产生,并可以提高保护时隙的共享度。
通过时隙感知方法来更新链路上波长的权值,考虑到工作路径与保护路径所采用的资源不同,在更新链路上波长的权值时,建立两种不同的代价函数。在此基础上通过预分配处理来计算资源分配前后承载权重的变化,以此来选择更加合理的路径以及时隙资源。
本实施例中的具体执行过程如图4所示。
如图5所示,本发明还公开了一种QKD光网络中时隙感知的共享路径保护系统,包括:
量子密钥分发光网络初始化模块:建立并初始化包含承载权重的量子密 钥分发光网络模型,所述承载权重反映时隙块对业务的接收能力。在物理光网络G(N,L,Δ,T)中,读取网络拓扑结构,光网络中链路状态,网络量子节点数,光纤链路数,每条光纤链路的量子信道个数,每条量子信道的时隙个数。
业务请求产生模块:根据源节点与目的节点均匀分布产生业务请求,配置连接请求数目、不同连接请求的源节点与目的节点、所需密钥数目、所需时隙数目等信息。
备选路径建立模块:根据代价函数,对链路上波长的权值进行更新。对于每一个波平面,根据最短路径算法和所述承载权重建立备选的工作路径集合。对于每一个波平面,根据最短路径算法和所述承载权重建立备选的保护路径集合。
工作路径选择和资源分配模块:对备选的工作路径集合中的每一条备选工作路径上所有的空闲时隙块进行预分配处理,计算分配资源前后所述承载权重的差值,选择差值最小的时隙块所在的备选路径作为工作路径,并分配相应的时隙资源。
保护路径选择和资源分配模块:根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源。考虑到建立保护路径所使用的时隙资源分为两部分,分别是保护时隙和空闲时隙,所以分为两步进行处理。首先选着保护时隙块进行预分配处理,计算其分配前后的承载权重差值。选择保护时隙块中差值最小的时隙块所在的备选路径作为保护路径,并分配相应的时隙资源。其次,如果保护时隙块不满足条件,则会使用全部可用时隙块(包括保护时隙和空闲时隙)来进行预分配。同样地,选择差值最小的时隙块所在的备选路径作为保护路径,并分配相应的时隙资源。如果可用时隙块也不满足条件,则业务阻塞。
时隙连续性和一致性模块:用于计算空闲时隙、保护时隙、可用时隙, 计算时考虑时隙的连续性和一致性。
量子密钥更新模块:数据的加密需要灵活多变,不断更改两个用户之间用以加密的量子密钥信息,使得窃听者难以破解。根据业务请求生成的量子密钥更新时间,对业务的密钥进行定期更新。
本发明通过定义承载权重来反应时隙块对业务的接收能力,通过构建工作路径和保护路径不同的代价函数更新权值,并根据更新后的权值通过最短路径算法所找到的备选路径,此时的备选路径就是最有可能成功建立业务的路径。在此基础上通过时隙块预分配前后各链路承载权重的差值来选择工作路径和保护路径,在此基础上优先考虑保护时隙来分配保护路径资源,有利于减少保护时隙碎片的产生、提高时隙的共享率,实现对资源的合理分配。本发明可以在考虑量子密钥分发光网络的生存性的同时可以有效提高业务的成功率,保证更多的业务能使用密钥进行加密从而提高密钥的消耗量、同时也保障其故障发生时能得到保护,提高了网络资源的利用率。
为了进一步说明本发明的有益效果,本实施例中建立并初始化如图6所示的量子密钥分发光网络,并对更新权值、选取工作路径和保护路径、进行时隙资源的分配,以此在考虑生存性的同时增加业务请求建立的成功率进行实验,具体包括:
步骤一:网络初始化。如图6所示,量子密钥分发光网络是由4个节点和5条链路组成的网络拓扑结构图。每一条光纤链路包含2个量子信道对应波长λ 1、λ 2,每一条量子信道通过时分复用技术又划分为5个时隙。同时,其每条链路上时隙的状态已给出。
步骤二:生成业务请求。建立业务请求CR 1(C,B,2,1,3)。它表示业务CR 1(C,B,2,1,3)在时刻2到达,需要从C节点到B节点建立消耗时隙数为1的工作路径和保护路径各一条。传输所消耗的节点的密钥量为3,在本实施例中只考虑密钥充足的情况,即只考虑最终消耗的密钥数量,不考虑节点的密钥量是否大于所需密钥数量。
步骤三:更新链路上各个波长的工作权值。按照公式(2)对链路上各个波长的权值进行更新。图7和图8分别展示了λ 1、λ 2波平面更新后的权值。
步骤四:工作路径选择和资源分配:由图7和图8可知每一个波平面的权值,由此,可以通过最短路径算法获得候选路径。对于λ 1波平面获得候选路径为C-B,对于λ 2波平面获得候选路径也为C-B。对于每一条候选路径记录符合时隙连续性和一致性条件的空闲频谱块。如图9和图10所示,两条候选路径总共包含3个可用的空闲时隙块。对于每一个空闲时隙块进行预分配处理,并计算其承载权重差值。通过计算可得空闲时隙块1、2、3的承载权重差值分别为1、2.36773、1.82843。因此,会选择空闲时隙块1所在的候选路径进行资源分配,即最终选择建立的工作路径为C-B,选择使用的时隙为波长为λ 1的第1个时隙。从分配过程可以看出本发明旨在选择承载权重差值最小的时隙块。差值越小说明空闲时隙块大小与所需时隙数越接近,那么所造成的时隙碎片就越少,对于后续到来的业务可用资源就越多。
步骤五:更新链路上各个波长的保护权值。考虑到工作链路和保护链路的不相交性,在建立保护路径时,需要对工作路径所使用的链路进行截断处理。之后通过公式(5)对权值进行更新。结果如图11和图12所示。
步骤六:保护路径选择和资源分配:由图11和图12可知每一个波平面的权值,由此,可以通过最短路径算法获得候选路径。对于λ 1波平面获得候选路径为C-D-B,对于λ 2波平面获得候选路径也为C-D-B。对于每一条候选路径记录符合时隙连续性和一致性条件的空闲频谱块。如图13和图14所示,两条候选路径总共包含2个保护时隙块以及2个空闲时隙块。首先考虑的是保护时隙块,如果保护时隙块不满足要求,才会同时考虑保护时隙块以及空闲时隙块。对于每一个保护时隙块进行预分配处理,并通过公式计算其承载权重差值。通过计算可得保护时隙块1、2的承载权重差值分别为3.65686、5.6077。因此,会选择保护时隙块1所在的候选路径进行资源分配,最终,选择建立的工作路径为C-D-B,选择使用的时隙为波长为λ 1的第2个时隙。这样,当工作路径和保护路径都建立成功,以及在工作路径和保护路径上都 分配好网络的时隙资源时,则整个业务请求成功建立。(图13和图14中保护时隙块下的数字代表其同时被多少个业务所共享)。
从上述实验可以看出,承载权重差值越小,备选时隙块的数目就越接近业务所需时隙数,说明分配方式越合理。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种QKD光网络中时隙感知的共享路径保护方法,其特征在于,包括:
    建立并初始化包含承载权重的量子密钥分发光网络模型,所述承载权重通过时隙块中时隙的数目来反映时隙块对业务的接收能力,获取业务请求;
    根据业务请求和所述承载权重建立备选的工作路径集合,根据分配资源前后所述承载权重的差值,从所述备选的工作路径集合中选择最终的工作路径并分配资源;
    根据业务请求和所述承载权重建立备选的保护路径集合,根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源。
  2. 根据权利要求1所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:所述量子密钥分发光网络模型为G(N,L,Δ,T),
    其中,N表示一组量子节点集合,L表示网络的一组光纤链路集合,两个交换节点i和j构成一条光纤链路(i,j)所连接,(i,j)∈L;Δ表示一系列量子信道的集合,T表示每条量子信道上时隙的集合;
    链路l={l 1,l 2,...,l |Δ|}上波长为λ={λ 12,...,λ |L|}的第k个时隙块的承载权重g l,λ,k为:
    Figure PCTCN2022142164-appb-100001
    其中,t l,λ,k代表的是光纤链路l上波长为λ的第k个时隙块的空闲时隙的个 数,|L|、|Δ|分别表示量子密钥分发光网络中光纤链路、量子信道的数量。
  3. 根据权利要求2所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:根据业务请求和所述承载权重建立备选的工作路径集合,具体为:
    更新所有光纤链路上波长的工作权值:
    Figure PCTCN2022142164-appb-100002
    其中,w l,λ是工作路径的代价函数,k l,λ代表链路l上波长为λ的空闲时隙块的数量;
    对于每一个波平面,根据波长的权值使用最短路径算法获得一条备选的工作路径,最终形成一个备选工作路径集合。
  4. 根据权利要求2所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:所述对备选的工作路径集合中的每一条备选工作路径,根据分配资源前后所述承载权重的差值选择最终的分配方式,具体为:
    对于每一条备选工作路径,选取时隙数不少于业务所需时隙数的时隙块形成备选时隙块集合Q t
    对于备选时隙块集合Q t中的所有空闲时隙块,计算在空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值,计算在空闲时隙块整条工作路径上分配前后的承载权重的差值;
    选择所有空闲时隙块中整条工作路径上分配前后的承载权重的差值最小 的空闲时隙块所在的备选路径建立最终的工作路径并分配时隙资源。
  5. 根据权利要求4所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:所述计算在空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值,具体为:
    第k空闲时隙块所在工作路径上每一条链路l的分配前后的承载权重差值t l,λ,k的计算方法为:
    Figure PCTCN2022142164-appb-100003
    其中,
    Figure PCTCN2022142164-appb-100004
    分别表示在光纤链路l上波长为λ的第k个空闲时隙块分配资源前和分配资源后的承载权重。
  6. 根据权利要求5所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:所述计算在空闲时隙块整条工作路径上分配前后的承载权重的差值,具体为:
    第k个空闲时隙块整条工作路径上分配前后的承载权重的差值T k的计算方法为:
    Figure PCTCN2022142164-appb-100005
    其中,L λ,k代表第k个空闲时隙块在备选路径上所包含的链路数。
  7. 根据权利要求1-6任一项所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:根据业务请求和所述承载权重建立备选的保护路径集 合,具体为:
    更新所有链路上波长的保护权值:
    Figure PCTCN2022142164-appb-100006
    其中,r l,λ代表保护路径的代价函数,u l,λ,k和v l,λ,k分别代表第k个空闲时隙块以及第k个保护时隙块的承载权重,
    Figure PCTCN2022142164-appb-100007
    Figure PCTCN2022142164-appb-100008
    分别代表链路l上波长为λ的空闲时隙块以及保护时隙块的数目;
    对于每一个波平面,使用最短路径算法获得一条备选的保护路径形成备选的保护路径集合。
  8. 根据权利要求6所述的QKD光网络中时隙感知的共享路径保护方法,其特征在于:所述根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源,具体为:
    对于每一条备选保护路径,建立可用时隙块集合Q s和保护时隙块集合Q m,所述可用时隙块集合Q s包括保护时隙和空闲时隙,所述保护时隙块集合Q m只包括保护时隙;
    判断集合Q m是否为空,若集合Q m不为空,则对于Q m中的所有保护时隙块,计算在保护时隙块整条保护路径上分配前后的承载权重的差值,选取所有保护时隙块中整条保护路径上分配前后的承载权重的差值最小的保护时隙块所在的备选保护路径作为最终的保护路径并分配时隙资源;
    若集合Q m为空,则对于Q s中的所有可用时隙块,计算在可用时隙块整条保护路径上分配前后的承载权重的差值,选取所有可用时隙块整条保护路径上分配前后的承载权重的差值最小的可用时隙块所在的备选保护路径作为最终的保护路径并分配时隙资源。
  9. 一种QKD光网络中时隙感知的共享路径保护系统,其特征在于:包括网络初始化模块、业务请求产生模块、备选路径建立模块、工作路径选择和资源分配模块、保护路径选择和资源分配模块,
    所述网络初始化模块建立并初始化包含承载权重的量子密钥分发光网络模型,所述承载权重反映时隙块对业务的接收能力;
    所述业务请求产生模块根据源节点与目的节点产生业务请求,配置连接请求数目、不同连接请求的源节点与目的节点、所需密钥数目、所需时隙数目;
    所述备选路径建立模块根据业务请求和所述承载权重建立备选的工作路径集合和备选的保护路径集合,
    所述工作路径选择和资源分配模块根据分配资源前后所述承载权重的差值,从所述备选的工作路径集合中选择最终的工作路径并分配资源;
    所述保护路径选择和资源分配模块根据分配资源前后所述承载权重的差值,结合保护时隙和空闲时隙从所述备选的保护路径集合中选择最终的保护路径并分配资源。
  10. 根据权利要求9所述的QKD光网络中时隙感知的共享路径保护系统,其特征在于:还包括时隙连续性和一致性模块、量子密钥更新模块,
    所述时隙连续性和一致性模块用于计算空闲时隙和保护时隙,计算时考虑时隙的连续性和一致性;
    所述量子密钥更新模块实时更改两个用户之间用以加密的量子密钥信息,根据业务请求生成的量子密钥更新时间,实时更新业务的密钥。
PCT/CN2022/142164 2022-10-31 2022-12-27 Qkd光网络中时隙感知的共享路径保护方法及系统 WO2024092992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211346328.XA CN115765988A (zh) 2022-10-31 2022-10-31 Qkd光网络中时隙感知的共享路径保护方法及系统
CN202211346328.X 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024092992A1 true WO2024092992A1 (zh) 2024-05-10

Family

ID=85354501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142164 WO2024092992A1 (zh) 2022-10-31 2022-12-27 Qkd光网络中时隙感知的共享路径保护方法及系统

Country Status (2)

Country Link
CN (1) CN115765988A (zh)
WO (1) WO2024092992A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117119335A (zh) * 2023-07-20 2023-11-24 苏州大学 一种基于qkd的光网络优化方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163759A1 (en) * 2010-01-29 2013-06-27 Keith Harrison Quantum key distribution method and apparatus
CN110299939A (zh) * 2019-05-09 2019-10-01 北京邮电大学 面向时分复用qkd光网络的共享保护方法和装置
CN115021904A (zh) * 2022-05-23 2022-09-06 苏州大学 基于概率共享风险的量子密钥分发保护方法与系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163759A1 (en) * 2010-01-29 2013-06-27 Keith Harrison Quantum key distribution method and apparatus
CN110299939A (zh) * 2019-05-09 2019-10-01 北京邮电大学 面向时分复用qkd光网络的共享保护方法和装置
CN115021904A (zh) * 2022-05-23 2022-09-06 苏州大学 基于概率共享风险的量子密钥分发保护方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG CHAO: "Hierarchical Routing Scheme for Wide-Area Quantum Key Distribution Network", ACTA ELECTRONICA SINICA, vol. 49, no. 5, 15 May 2021 (2021-05-15), pages 975 - 983, XP093167443 *

Also Published As

Publication number Publication date
CN115765988A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN110868439B (zh) 一种区块链系统
CN111711517B (zh) 基于业务安全等级的量子密钥分发保护方法及系统
Nguyen et al. Cooperative task offloading and block mining in blockchain-based edge computing with multi-agent deep reinforcement learning
CN101252506B (zh) 一种数据传输系统
CN1801696B (zh) 一种网格计算机环境下虚拟组织的密钥管理方法
CN106953710B (zh) 弹性光网络中最小代价频谱分配与碎片感知的路由方法
CN112769550A (zh) 面向数据中心的负载均衡的量子密钥资源分配系统
WO2024092992A1 (zh) Qkd光网络中时隙感知的共享路径保护方法及系统
CN112737776B (zh) 面向数据中心的负载均衡的量子密钥资源分配方法
WO2023108715A1 (zh) 数据中心的空分复用光网络专用保护频谱分配方法及系统
WO2023185046A1 (zh) 区块链系统中共识节点的轮换方法、节点和区块链系统
CN114302266B (zh) 一种量子密钥分发光网络中资源分配方法及系统
CN116668313A (zh) 基于分片的可拓展区块链网络模型
Zhu et al. Resource allocation in quantum-key-distribution-secured datacenter networks with cloud–edge collaboration
Bany Taha et al. Smart offloading technique for CP-ABE encryption schemes in constrained devices
Kokkinos et al. Scheduling efficiency of resource information aggregation in grid networks
Chen et al. A quantum key distribution routing scheme for hybrid-trusted QKD network system
WO2023226130A1 (zh) 基于概率共享风险的量子密钥分发保护方法与系统
Truong-Huu et al. Virtual network embedding in ring optical data centers using Markov chain probability model
CN109379139B (zh) 星型连续变量量子密钥分发网络及其方法、介质
Zhu A survey on mobile edge platform with blockchain
CN109361710A (zh) 一种安全协议重构方法及装置
CN109510670A (zh) 连续变量量子密钥分发网络构建方法、介质、网络及节点
CN115459858B (zh) 基于量子纠缠分发网络的统一化建模方法和装置
Lee et al. A probability model for reconstructing secret sharing under the internet environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964286

Country of ref document: EP

Kind code of ref document: A1