CN109379139B - 星型连续变量量子密钥分发网络及其方法、介质 - Google Patents

星型连续变量量子密钥分发网络及其方法、介质 Download PDF

Info

Publication number
CN109379139B
CN109379139B CN201811320018.4A CN201811320018A CN109379139B CN 109379139 B CN109379139 B CN 109379139B CN 201811320018 A CN201811320018 A CN 201811320018A CN 109379139 B CN109379139 B CN 109379139B
Authority
CN
China
Prior art keywords
network
wavelength
light
wavelengths
endpoints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811320018.4A
Other languages
English (en)
Other versions
CN109379139A (zh
Inventor
齐源渊
黄鹏
汪超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai circulation Quantum Technology Co., Ltd
Original Assignee
Shanghai Xuntai Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Xuntai Information Technology Co ltd filed Critical Shanghai Xuntai Information Technology Co ltd
Priority to CN201811320018.4A priority Critical patent/CN109379139B/zh
Publication of CN109379139A publication Critical patent/CN109379139A/zh
Application granted granted Critical
Publication of CN109379139B publication Critical patent/CN109379139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25754Star network topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/085Secret sharing or secret splitting, e.g. threshold schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种星型连续变量量子密钥分发网络及其方法、介质,包括:步骤A:根据网络的网络端点数量确定网络拓扑结构,并根据网络拓扑结构选择激光源的可调波长,以实现网络中各网络节点间的逻辑连接;步骤B:根据所述逻辑连接建立实际连接并分配波长,用于量子信号光和本振光的制备与传输。本发明基于量子力学的量子保密通信具有物理上的无条件安全性,既能满足人们对信息量的要求,也能满足网络的信息安全。

Description

星型连续变量量子密钥分发网络及其方法、介质
技术领域
本发明涉及量子密钥分发的网络路由领域,具体地,涉及星型连续变量量子密钥分发网络及其方法、介质。尤其是基于阵列波导光栅的星型连续变量量子密钥分发网络,用可调激光源来产生不同波长的光,而不同的波长对应不同的信道,并利用阵列波导光栅选择波长即选择信道进行传输,且本振光和信号光用同一波长对应的信道传输的一种CVQKD的网络路由技术。。
背景技术
随着信息技术的迅速发展,信息安全成为了人们关注的焦点。虽然传统经典算法提供了当前来看较为安全的方法,但传统经典算法的安全性是基于数学上的计算安全性,随着量子计算机的快速发展,可能以后并不能成为安全的加密算法。
另一方面,人们传递的信息量越来越大,并且传递的端口越来越多,这就使得网络的构建成为必要因素。当前互联网的快速发展,使得许多端口能够同时进行收发信息,并且速度极快。随着网络技术的不断发展,网络容量会日趋增大,网络中信号的传输速度会越来越快,网络延时越来越低,故能满足用户日益增长的需求。为了更加便捷,使得人们能够随时使用网络资源,无线网络日趋发达,移动端网络大面积使用,亟待一种构建连续变量量子密钥分发(CVQKD)网络的方法。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种星型连续变量量子密钥分发网络及其方法、介质。
根据本发明提供的一种星型连续变量量子密钥分发网络的构建方法,包括:
步骤A:根据网络的网络端点数量确定网络拓扑结构,并根据网络拓扑结构选择激光源的可调波长,以实现网络中各网络节点间的逻辑连接;
步骤B:根据所述逻辑连接建立实际连接并分配波长,用于量子信号光和本振光的制备与传输。
优选地,所述步骤A包括如下步骤:
步骤A1:确定网络的网络端点数N,其中,N为正整数;
步骤A2:根据所述网络端点数N确定所有激光源的可调波长数;每个可调波长对应一对网络端点的连接;
步骤A3:根据所述所有激光源的可调波长数,对每个网络端点的可调波长进行分配;确定每个网络端点需要的可调波长数为N-1个;
步骤A4:对于每个网络节点,将每个网络端点的可调波长作为连接线实现一个网络端点与其他不同网络端点的逻辑连接。
优选地,在所述步骤2中,长与信道是一一对应的,每个信道对应两个网络端点的连接,同时也对应唯一的一个波长;让N个网络端点实现全通连接,则需要的可调波长数为
Figure BDA0001857276610000021
个。
优选地,激光源能够产生可调波长的光;不同网络端点连接建立通过波长来实现,不同的波长在不同的信道中传输,对于一个网络端点,令该网络端点与其他N-1个网络端点都能够共享密钥,则此网络节点的激光源需要产生N-1个波长的光。
优选地,在所述步骤A4中,对于一网络端点,该网络端点与其他网络端点的连接都需要不同的波长,即此网络端点光源能够产生的波长为总波长数
Figure BDA0001857276610000022
其中的N-1个;其他网络端点光源产生的波长集中不能用这N-1个波长的光,实现波长与信道一一对应。
优选地,所述步骤B包括如下步骤:
步骤B1:对于网络端点数为N的网络,总共选择
Figure BDA0001857276610000023
个不同的波长,而每个网络端点的激光源只需要从这
Figure BDA0001857276610000024
选出N-1个波长作为此网络端点与其余网络端点连接的光线载体;
步骤B2:根据步骤B1确定的网络端点将每个网络端点都连接阵列波导光栅,即波分解复用器,用于区分不同波长,从而建立不同波长对应不同网络端点的实际连接;
步骤B3:在步骤B2建立的实际连接和步骤B1分配的波长条件下,对于每个网络端点,若为发送端,则将可调波长激光源发出的同一波长光制备信号光和本振光后将二者进行时分偏振复用,之后通过光纤传输给对应的网络节点;若为接收端,则对通过网络节点传输过来的光进行时分偏振解复用而恢复信号光。
优选地,在所述步骤B1中,每个网络端点选出的N-1个波长不能与其他网络端点选择的波长有重复,即不同网络端点的可调光源需产生不同波长的光。
优选地,在所述步骤B2中,阵列波导光栅连接所有网络端点,即阵列波导光栅位于星型网络的中心,并且阵列波导光栅用于选择波长,即选择信道;
时分偏振复用器用于把本振光和信号光复用后放到光纤中进行传输,而解复用器用于恢复信号光。
根据发明提供的一种存储有计算机程序的计算机可读存储介质,所述计算机程序被处理器执行时实现所述的星型连续变量量子密钥分发网络的构建方法的步骤。
根据本发明提供的一种通信网络,其特征在于,所述通信网络是通过所述的星型连续变量量子密钥分发网络的构建方法得到的。
与现有技术相比,本发明具有如下的有益效果:
1、本发明基于量子力学的量子保密通信具有物理上的无条件安全性,在以计算安全为基础的传统密码算法中开辟了新的天地。量子密钥分发作为量子保密通信的核心技术,提供了一种相距很远的两端共享安全密钥的方法,它的安全性基于海森堡定理、量子不可克隆定理和测不准原理,即使使用计算能力更为强大的量子计算机,也无法破译真正密钥。
2、本发明既能满足人们对信息量的要求,也能满足网络的信息安全。
3、本发明由于采用连续变量的量子密钥,故密钥率较高,单位时间内传递的信息量也相应较大,在多用户同时进行密钥共享时能够提供较大的网络容量。
4、本发明由于构建了CVQKD网络为全通网络,故可以实现网络中任意不同网络端点之间的密钥共享。同时CVQKD网络具有无条件安全性,进一步提升了网络信息安全。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中的网络结构图。
图2为本发明中的网络断点A的结构图。
下面为说明书附图中的各个标记的含义:
A,B,C表示各个网路网络端点,AWG表示阵列波导光栅。
波长用λ表示,不同波长以下标来进行区分。
网络端点A连接B、C的波长分别为λ1、λ2,因此网络端点A的激光源要产生的光波长为λ1和λ2,偏振复用和解复用的光波长亦为λ1和λ2
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
本发明提供一种基于CVQKD的系统网络构建方法。由于网络中的信息量越来越大,与此同时人们对网络的信息安全的要求也越来越高,而CVQKD系统网络能够同时满足以上两个条件,故成为我们研究的课题。首先CVQKD的密钥率很高,能提供较高的信息传递速率和网络容量,系统的实时性能得到保障。另一方面,由于CVQKD系统的安全性是基于海森堡定理,不可克隆定理的物理理论上的无条件安全,而非数学上的计算安全性,即使遇到计算能力强大的量子计算机,安全性也能有效保证。当CVQKD系统用于网络构建而不是仅仅两点之间进行通信时,就能实现多个地点的密钥共享,而鉴于CVQKD与传统光纤的相容性,利用光纤就可作为不同地点间信道的实际连接,如此便可把CVQKD的安全性、时效性引入网络。
根据本发明提供的一种星型连续变量量子密钥分发网络的构建方法,包括:
步骤A:根据网络的网络端点数量确定网络拓扑结构,并根据网络拓扑结构选择激光源的可调波长,以实现网络中各网络节点间的逻辑连接;
步骤B:根据所述逻辑连接建立实际连接并分配波长,用于量子信号光和本振光的制备与传输。
根据发明提供的一种存储有计算机程序的计算机可读存储介质,所述计算机程序被处理器执行时实现所述的星型连续变量量子密钥分发网络的构建方法的步骤。
根据本发明提供的一种通信网络,其特征在于,所述通信网络是通过所述的星型连续变量量子密钥分发网络的构建方法得到的。
下面通过优选例,对本发明进行更为具体的说明。
我们构造了3网络端点的CVQKD系统网络。
整个网络的结构如图1所示,每个网络端点都会连接阵列波导光栅,阵列波导光栅用于对激光器产生的光的波长进行选择从而选择不同的信道,从而实现整个网络的逻辑连接。图1即为3网络节点的星型网络结构,可以看出,若要实现3网络端点的连接,总共需要2+1=3个波长,而对于每个网络端点,比如网络端点A,则需要3-1=2个波长便可实现与其他网络端点的连接。再看网络端点B,由于网络端点B已经和网络端点A连接过,因此再需2-1=1个波长就能使得网络端点B与其余点进行连接。最后看网络端点C,由于网络端点C已经和网络端点A和网络端点B连接,因此网络端点C无需再另外产生其他波长的光。
图1中网络端点A,B,C之间的逻辑连接用虚线表示,而实际连接用实线表示。用不同的波长对应不同的信道,但实际都要与阵列波导光栅连接,为了方便理解,用虚线表示逻辑连接。
对于每个网络端点,若为发送端,则制备信号光后与本振光进行时分偏振复用,之后通过光纤传输给阵列波导光栅;若为接收端,则对通过阵列波导光栅传输过来的光进行时分偏振解复用而恢复信号光。
拿网络端点A来看,网络端点A的结构如图2所示。左边部分为网络端点A作为接收端的结构,由于构建3网络端点全通网时每个网络端点需要产生2个波长,故有2个解复用器来恢复信号光;右边部分为网络端点A作为发送端的结构,由于构建全通网有2个波长,故通过偏振复用器复用本振光和信号光的结构有2个。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (5)

1.一种星型连续变量量子密钥分发网络的构建方法,其特征在于,包括:
步骤A:根据网络的网络端点数量确定网络拓扑结构,并根据网络拓扑结构选择激光源的可调波长,以实现网络中各网络节点间的逻辑连接;
步骤B:根据所述逻辑连接建立实际连接并分配波长,用于量子信号光和本振光的制备与传输;
可调激光源产生不同波长的光,不同的波长对应不同的信道,并利用阵列波导光栅选择波长即选择信道进行传输,且本振光和信号光用同一波长对应的信道传输;
所述步骤A包括如下步骤:
步骤A1:确定网络的网络端点数N,其中,N为正整数;
步骤A2:根据所述网络端点数N确定所有激光源的可调波长数;每个可调波长对应一对网络端点的连接;
步骤A3:根据所述所有激光源的可调波长数,对每个网络端点的可调波长进行分配;确定每个网络端点需要的可调波长数为N-1个;
步骤A4:对于每个网络节点,将每个网络端点的可调波长作为连接线实现一个网络端点与其他不同网络端点的逻辑连接;
所述步骤B包括如下步骤:
步骤B1:对于网络端点数为N的网络,总共选择
Figure FDA0003121745790000011
个不同的波长,而每个网络端点的激光源只需要从这
Figure FDA0003121745790000012
选出N-1个波长作为此网络端点与其余网络端点连接的光线载体;
步骤B2:根据步骤B1确定的网络端点将每个网络端点都连接阵列波导光栅,即波分解复用器,用于区分不同波长,从而建立不同波长对应不同网络端点的实际连接;
步骤B3:在步骤B2建立的实际连接和步骤B1分配的波长条件下,对于每个网络端点,若为发送端,则将可调波长激光源发出的同一波长光制备信号光和本振光后将二者进行时分偏振复用,之后通过光纤传输给对应的网络节点;若为接收端,则对通过网络节点传输过来的光进行时分偏振解复用而恢复信号光;
每个网络端点都会连接阵列波导光栅,阵列波导光栅用于对激光器产生的光的波长进行选择从而选择不同的信道,从而实现整个网络的逻辑连接;
在所述步骤A4中,对于一网络端点,该网络端点与其他网络端点的连接都需要不同的波长,每个网络端点光源能够选择的波长为总波长数
Figure FDA0003121745790000021
其中的N-1个;任意两个网络端点的波长集都不相同,实现波长与信道一一对应;
在所述步骤B1中,每个网络端点选出的波长集不能与其他网络端点选择的波长集有重复;
在所述步骤B2中,阵列波导光栅连接所有网络端点,即阵列波导光栅位于星型网络的中心,并且阵列波导光栅用于选择波长,即选择信道;
时分偏振复用器用于把本振光和信号光复用后放到光纤中进行传输,而解复用器用于恢复信号光;
阵列波导光栅的数量为一个。
2.根据权利要求1所述的星型连续变量量子密钥分发网络的构建方法,其特征在于,在所述步骤A2中,波长与信道是一一对应的,每个信道对应两个网络端点的连接,同时也对应唯一的一个波长;让N个网络端点实现全通连接,则需要的总可调波长数为
Figure FDA0003121745790000022
个。
3.根据权利要求2所述的星型连续变量量子密钥分发网络的构建方法,其特征在于,激光源能够产生可调波长的光;不同网络端点连接建立通过波长来实现,不同的波长在不同的信道中传输,对于一个网络端点,令该网络端点与其他N-1个网络端点都能够共享密钥,则此网络节点的激光源需要产生N-1个波长的光。
4.一种存储有计算机程序的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时实现权利要求1至3中任一项所述的星型连续变量量子密钥分发网络的构建方法的步骤。
5.一种通信网络,其特征在于,所述通信网络是通过权利要求1至3中任一项所述的星型连续变量量子密钥分发网络的构建方法得到的。
CN201811320018.4A 2018-11-07 2018-11-07 星型连续变量量子密钥分发网络及其方法、介质 Active CN109379139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811320018.4A CN109379139B (zh) 2018-11-07 2018-11-07 星型连续变量量子密钥分发网络及其方法、介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811320018.4A CN109379139B (zh) 2018-11-07 2018-11-07 星型连续变量量子密钥分发网络及其方法、介质

Publications (2)

Publication Number Publication Date
CN109379139A CN109379139A (zh) 2019-02-22
CN109379139B true CN109379139B (zh) 2021-10-01

Family

ID=65383905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811320018.4A Active CN109379139B (zh) 2018-11-07 2018-11-07 星型连续变量量子密钥分发网络及其方法、介质

Country Status (1)

Country Link
CN (1) CN109379139B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116132042B (zh) * 2023-04-13 2023-06-23 南京汇荣信息技术有限公司 一种基于量子技术的网络安全数据加密方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935428A (zh) * 2015-06-02 2015-09-23 华南师范大学 基于m-z干涉仪的多用户qkd网络系统及其密钥分发方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018144A (ja) * 2001-06-29 2003-01-17 Nec Corp 量子暗号多ノードネットワーク及び多ノードネットワーク上の鍵配布方法及び量子暗号装置
CN100483975C (zh) * 2003-07-08 2009-04-29 中国科学技术大学 量子网络寻址方法及量子网络路由器
US8285144B2 (en) * 2009-07-30 2012-10-09 Jds Uniphase Corporation Optical device for rearranging wavelength channels
ES2370187B1 (es) * 2009-09-28 2012-10-26 Telefonica, S.A. Sistema de integracion de canales con informacion cuantica en redes de comunicaciones
JP2012004956A (ja) * 2010-06-18 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> 量子通信システム
CN106685655B (zh) * 2017-01-16 2019-08-16 华南师范大学 一种相位偏振多自由度调制qkd网络系统及方法
CN107135072B (zh) * 2017-06-05 2020-09-01 三峡大学 一种基于量子加密的无线传感器网络系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935428A (zh) * 2015-06-02 2015-09-23 华南师范大学 基于m-z干涉仪的多用户qkd网络系统及其密钥分发方法

Also Published As

Publication number Publication date
CN109379139A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
US10757570B2 (en) Architecture for reconfigurable quantum key distribution networks based on entangled photons directed by a wavelength selective switch
Bacco et al. Boosting the secret key rate in a shared quantum and classical fibre communication system
EP3243295B1 (en) Quantum key distribution system, method and apparatus based on trusted relay
Cao et al. KaaS: Key as a service over quantum key distribution integrated optical networks
Liu et al. An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution
US20130266144A1 (en) Architecture for Reconfigurable Quantum Key Distribution Networks Based on Entangled Photons by Wavelength Division Multiplexing
Cao et al. SDQaaS: Software defined networking for quantum key distribution as a service
CN102769527A (zh) 基于大规模单原子腔体量子网络的组网方法
Zhang et al. Fragmentation-aware entanglement routing for quantum networks
Huang et al. Experimental implementation of secure anonymous protocols on an eight-user quantum key distribution network
Wang et al. A dynamic multi-protocol entanglement distribution quantum network
Xie et al. Performance optimization and evaluation for torus-based optical networks-on-chip
CN109379139B (zh) 星型连续变量量子密钥分发网络及其方法、介质
Ma et al. Equilibrium allocation approaches of quantum key resources with security levels in QKD-enabled optical data center networks
Clark et al. Entanglement distribution quantum networking within deployed telecommunications fibre-optic infrastructure
Terzenidis et al. Performance analysis of a 1024-port Hipoλaos OPS in DCN, HPC, and 5G fronthauling Ethernet applications
Zahidy et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber
CN106537818A (zh) 一种支持无数据包丢失信令系统和松散耦合的应用加权路由的并行光电网络
CN109510670A (zh) 连续变量量子密钥分发网络构建方法、介质、网络及节点
CN111431703B (zh) 基于qkd协议分类的混合qkd网络系统
Skoog et al. Analysis and implementation of a 3-way handshake signaling protocol for highly dynamic transport networks
Cao et al. Resource allocation in software-defined optical networks secured by quantum key distribution
Kamchevska et al. On-Chip SDM Switching for Unicast, Multicast, and Traffic Grooming in Data Center Networks
Fayyaz et al. Blocking probability in optical interconnects in data center networks
Ganguly System and Architecture of a Quantum Key Distribution (QKD) Service over SDN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 200241 room 1139, building C, No. 555, Dongchuan Road, Minhang District, Shanghai

Patentee after: Shanghai circulation Quantum Technology Co., Ltd

Address before: 200241 room 1139, building C, No. 555, Dongchuan Road, Minhang District, Shanghai

Patentee before: Shanghai Circulation Information Technology Co., Ltd

CP01 Change in the name or title of a patent holder